
Model identification and flight control design
for the Prometheus mapping drone

Candidate: Nicola Dal Lago

Advisor: Prof. Luca Schenato
Advisor: Prof. George Nikolakopoulos

Master in Control Engineering
Department of Information Engineering

2016

ii

iii

Abstract

We have considered the problem of the modelling, system identification,
trajectory generation and control of the Prometheus mapping drone. The
Prometheus mapping drone is a project develop at Luleå University of
Technology, it consists in indoor navigation and mapping using a special
aerial vehicle built for this purpose. To develop the controller a full non-
linear mathematical model was computed, while, to perform system iden-
tification, some simplifications that linearized the system were introduced.
A trajectory generator was developed, it consists in generate a smooth tra-
jectory in the position and orientation that connects different waypoints.
Then, a controller able to track this trajectory was computed, taking in
consideration the dynamic of the system.

iv

CONTENTS v

Contents

Contents v

1 Introduction 1

2 Design and model 5
2.1 Mechanical design . 5
2.2 Mathematical model . 6

2.2.1 Quaternion math . 8
2.2.2 Quadrotor modeling . 10
2.2.3 Adding the rotating platform . 13

2.3 Experimental setup . 14

3 System identification 19
3.1 System simplification and linear approximation 19
3.2 Quadrotor parameters . 21
3.3 Kalman filter . 21
3.4 Results . 23

4 Trajectories generator 27
4.1 Trajectory definition . 27
4.2 Optimization of a trajectory between two waypoints 29
4.3 Optimization of a trajectory between m + 1 waypoints 31
4.4 Adding corridor constraints in d dimensions 35

5 Control 39
5.1 Position tracking controller in SE(3) . 39

5.1.1 Adding the rotating platform . 41
5.1.2 Simulation results . 42

5.2 Model predictive control . 45
5.2.1 Linear model . 46
5.2.2 Adding the rotating platform . 48
5.2.3 Simulation results . 49

6 Conclusions and future works 51

Bibliography 53

vi Contents

Introduction 1

1
Introduction

In these last years, robotics have increased its interest towards the world. In fact,
several industries (automotive, medical, manufacturing, space, etc.), require robots
to replace men in dangerous, repetitive or onerous situations. A wide area of this
research is dedicated to Unmanned Aerial Vehicle (UAV) and especially the one capable
of Vertical TakeOff and Landing (VTOL) [1]. This kind of vehicle can be use in a variety of
different scenarios, because of its reasonable price, small dimensions and great sensors
capability. In particular, nowadays intensive research has been accomplished in the
area of environment monitoring and exploration, performed with different strategies
and sensors.

Figure 1.1: An example of UAV.
T-Hawk, a US-made UAV, com-
monly used to search for road-
side bombs in Iraq, made its de-
but when it photographed the
Fukushima nuclear plant from
above, providing a detailed look
at the interior damage.

Many types of UAVs have been developed over the last years, in particular the quadro-
tor type [2]. The aim of this thesis is to contribute the develop of the so called
Prometheus mapping drone, a fully autonomous vertical takeoff and landing vehicle,
able to perform indoor environment exploration and mapping. To do this, we were
inspired from the film Prometheus, where drones are able to map an indoor cave. Ob-
viously, due to technology and budget limitations, the vehicle will not have the same
performance, but it would have the same capabilities. As previously said, this thesis
is only a part of the project, that has been divided in three main parts:

2

• mechanical design and building of the UAV [3];

• mathematical model, system identification and control;

• usage of the sensors, mapping and navigation algorithms.

This thesis will focus on the second point, mathematical model, system identification
and control. Despite this, briefly introductions of the other two points will be given,
particularly in the mechanical design, necessary to develop a mathematical model.

Figure 1.2: Frame of the
Prometheus movie, where
the drone is performing the
exploration and mapping of
the cave.

Figure 1.3: Simulation of
the navigation and map-
ping from the third point of
this project.

In details, this thesis is divided in different chapters.
In chapter 2 we will discuss about the mechanical design of the UAV, the sensors used
and the reasons behind the choice of them. From this, a mathematical model will be
derived and presented, complete with all the notations and math needed to describe
the dynamic of the vehicle. Of course, reasonable simplifications will be performed on
the way. Then, the thesis will describe the experimental setup, with all the hardware
and software used for this project.
In chapter 3 the system identification of the parameters of the UAV will be presented.
Before this, some simplification of the system will be shown, just to reduce the number
of the parameters and especially in order to linearize it. The reason to linearize the
system, by introducing some errors, is done in order to use a standard Kalman filter
approach to the system identification problem.

Introduction 3

In chapter 4 a trajectories generator algorithm will be described. This is necessary
because, usually, path finding and navigation algorithms provide only waypoints and
not full trajectory that smoothly connect the different waypoints. The thesis will de-
scribe a trajectory generator that smoothly connects waypoints till the fourth deriva-
tive of the position, the so called snap. Moreover, corridor constraints will be added
to the problem. A corridor constraint takes into account that the trajectory must be
inside a virtual corridor between two waypoints. This because if we not impose any
constraints we can end up with a trajectory that actually connects different waypoints,
but maybe could hit a wall. This is extremely important, since our main goal is to
operate the vehicle in a indoor environment.
In chapter 5 we will talk about the control of the vehicle. For control we mean that
the UAV must follow the desire trajectory in the space with the minimum error. This
control will take into account also the particular structure of the drone. It will be
derive from the mathematical model describes previously. Moreover we will compare
two different strategies, that are both widely used in the control of UAV.
In the end, in chapter 6 we will draw the conclusions of this work. Moreover, we will
describe also future possible works, that could start from some consideration of this
thesis.

4

Design and model 5

2
Design and model

In this chapter we will focus in the description of the mechanical model of the UAV
and the sensor system. From these, a mathematical model will be derived, necessary
to build and simulate a control law, and to perform system identification. In the end,
we will also describe the hardware and software used to the accomplish of this thesis.

2.1 Mechanical design

The overall objective of the Prometheus project is navigation and mapping, which
means obtaining a 3D reconstruction of an unknown indoor physical environment. To
do this a 360 degrees Lidar laser scanner is used.This is coupled to a quadrotor type
UAV, that will explore the environment in an autonomous way.

Figure 2.1: Lidar laser scanner, it is able
to perform a 360 degrees mapping.

Lidar is a surveying technology that measures distance by illuminating a target with
a laser light. Lidar is an acronym of Light Detection And Ranging, (sometimes Light

6 Mathematical model

Imaging, Detection, And Ranging). Lidar is popularly used as a technology to make
high-resolution maps, with applications in geodesy, geomatics, archeology, geography,
geology, geomorphology, seismology, forestry, atmospheric physics and so on. What is
known as Lidar is sometimes simply referred to as laser scanning or 3D scanning, with
terrestrial, airborne and mobile applications1. The specific Lidar laser scanner used
in this project is depict in figure 2.1, where is possible to see the rotating structure
moved by a motor attached in the bottom of the frame. However, this sensor is only
able to perform 2D mapping and, attached to a drone, make it practically impossible
to perform a complete 3D mapping. To solve this problem, several approaches could
be adopted, such as use a more complicated and more expensive sensor, that can
maps directly in 3D, or just by simply use more than one Lidar. However, the solution
adopted in this project is again inspired from the movie Prometheus, where the sensor
is also rotating around the UAV. In such a way, the Lidar has three degrees of freedom
in the movement and a 3D mapping can be performed. This solution comports, of
course,the usage of only one laser scanner, but require a rotating structure that can
move the sensor.

(a) Render of the entire vehicle. (b) Render of the moving cart.

Figure 2.2: Renders of the UAV and of the cart.

In figure 2.2a is possible to see clearly the platform, made of two lightweight rings,
and the cart that provides the circular movement of the sensor. An important choice
was also the selection of the UAV, that has to guarantee to flight also with the weight
of the mechanical structure, sensor and all the electronics needed to fly and control
the movement of the cart.

2.2 Mathematical model

Is pretty much clear from the previous section that this UAV is different from almost
every other vehicle that is possible to buy, this of course require a complete and de-
tailed study to characterize the mathematical model. For characterize the model, is
before necessary to provide some definitions, that are also valid for standard commer-
cial quadrotors.
A quadrotor helicopter is made of a central frame and four propellers that are attach
to the frame with respectively four arms. Moreover, the propellers’ rotation direction
must be opposite in pairs, like illustrated in figure 2.3.

1https://en.wikipedia.org/wiki/Lidar

https://en.wikipedia.org/wiki/Lidar

Design and model 7

OB

xB

yB

zB

Figure 2.3: Sketch of a standard quadrotor with its body frame attach.

Furthermore, is necessary to define two frames, the world fixed frame and the body frame
attached to the vehicle. In figure 2.4 is possible to see the two frames, the world frame,
in black, is fixed to a point and it can’t be moved, the body frame, in blue, instead is
attached to the quadrotor and can move with six degrees of freedom, that are position
and orientation. In this, we are interesting in knowing the translation and rotation of
the body frame in respect to the world frame. For represent the translation, a three
dimension vector x is enough, that actually indicate the position of the quadrotor in
the space. Instead, for the rotation, we used quaternions [4], that will be introduced in
the following section.

OW xW

zW

yW

OB

xB

zB

yB

Figure 2.4: Illustration of the world and body frames.

8 Mathematical model

2.2.1 Quaternion math

A quaternion is a hyper complex number of rank 4, which can be represented as
follow

q =
[
q0 q1 q2 q3

]T (2.1)

The quaternion units from q1 to q3 are called the vector part of the quaternion, while
q0 is the scalar part [5]. Multiplication of two quaternions p and q, is being performed
by the Kronecker product, denoted as ⊗. If p represents one rotation and q represents
another rotation, then p⊗ q represents the combined rotation.

p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 − p1q3 + p2q0 + p3q1
p0q3 + p1q2 − p2q1 + p3q0

 (2.2)

= Q(p)q =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0




q0
q1
q2
q3

 (2.3)

= Q̄(q)p =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0




p0
p1
p2
p3

 (2.4)

The norm of a quaternion is defined as

||q|| =
√

q2
0 + q2

1 + q2
2 + q2

3 (2.5)

If the norm of the quaternion is equal to 1, then the quaternion is called unit quaternion.
The complex conjugate of a quaternion has the same definition as normal complex
numbers.

q∗ =
[
q0 −q1 −q2 −q3

]T (2.6)

The inverse of a quaternion is defined as a normal inverse of a complex number.

q−1 =
q∗

||q||2 (2.7)

The time derivative of the unit quaternion is the vector of quaternion rates [6]. It
requires some algebraic manipulation but is important to notice that the quaternion
rates, q̇, are related to the angular velocity ω =

[
ωx ωy ωz

]T. It can be represented
in two ways:

Design and model 9

• as in equation (2.8) in case that the angular velocity is in the world frame (sub-
script W)

q̇ωW (q, ωW) =
1
2

q⊗
[

0
ωW

]
=

1
2

Q(q)
[

0
ωW

]
(2.8)

• as in equation (2.9) if the angular velocity vector is in the body frame of reference
(subscript B).

q̇ωB(q, ωB) =
1
2

[
0

ωB

]
⊗ q =

1
2

Q̄(q)
[

0
ωB

]
(2.9)

A unit quaternion can be used also as a rotation operator, however the transformation
requires both the quaternion and its conjugate, as show in equation (2.10). This rotates
the vector v from the world frame to the body frame represented by q.

ω = q⊗
[

0
v

]
⊗ q∗ (2.10)

Unit quaternion can be use also to represents rotation matrices. Consider a vector vW in
the world frame. If vB is the same vector in the body coordinates, then the following
relations hold

[
0

vB

]
= q ·

[
0

vW

]
· q∗ (2.11)

= Q̄(q)TQ(q)
[

0
vW

]
(2.12)

=

[
1 0T

0 Rq(q)

] [
0

vW

]
(2.13)

where

Rq(q) =

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 (2.14)

That is,

vB = Rq(q)vW (2.15)

vW = Rq(q)TvB (2.16)

Just as with rotation matrices, sequences of rotations are represented by products of
quaternions. That is, for unit quaternions q and p, it holds that

Rq(q · p) = Rq(q)Rq(p) (2.17)

10 Mathematical model

Finally, for representing quaternion rotations in a more intuitive manner, the conver-
sion from Euler angles (roll φ, pitch θ and yaw ψ) to quaternion and vice versa can be
performed by utilizing the following two equations respectively.

q =


cos (φ/2) cos (θ/2) cos (ψ/2) + sin (φ/2) sin (θ/2) sin (ψ/2)
sin (φ/2) cos (θ/2) cos (ψ/2)− cos (φ/2) sin (θ/2) sin (ψ/2)
cos (φ/2) sin (θ/2) cos (ψ/2) + sin (φ/2) cos (θ/2) sin (ψ/2)
cos (φ/2) cos (θ/2) sin (ψ/2)− sin (φ/2) sin (θ/2) cos (ψ/2)

 (2.18)

φ
θ
ψ

 =

atan2(2(q0q1 + q2q3), q2
0 − q2

1 − q2
2 + q2

3)
asin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), q2
0 + q2

1 − q2
2 − q2

3)

 (2.19)

2.2.2 Quadrotor modeling

We consider first a standard quadrotor, without a rotating platform, like in figure 2.5.

OB

xByB

zB

Ω4

Ω2Ω3

Ω1

f3

f4 f1

f2

τy τxτz

Figure 2.5: Sketch of a standard quadrotor.

In figure 2.5 are also impressed the force vectors Fi generate from each motor-propeller,
the torques vectors τx, τy and τz about the three axis and the propeller’s speed Ωi.
Now, for modeling the rigid body of a multirotor, the standard Newton-Euler kinemat-
ics equations can be utilized [7].

[
f
τ

]
=

[
m · I3×3 0

0T Icm

] [
ẍB
ω̇B

]
+

[
0

ωB × Icm ·ωB

]
(2.20)

Where f =
[

fx fy fz
]T is the vector of the total force, τ =

[
τx τy τz

]T is the total
torque, m is the mass of the quadrotor, Icm is the matrix of inertia related to the center
of mass, ẍB is the acceleration of the quadrotor center of mass related to the body
frame and ωB =

[
ωx ωy ωz

]T is the rotational rates in the body frame.

Design and model 11

Before deriving the torque relationship, the motors’ models from the input signal to
the thrust force are needed. In specific, the four input signals are the speed of the
propellers ui, map between 0 (no throttle) and 1 (full throttle). Then, the thrust for
each propeller can be simply derive as follow

fi(t) = a f ,iΩ2
i = a f ,iΩ2

max,iui(t)2 (2.21)

where a f ,i ∈ IR+ are the thrust constants of the motor-propeller combination, Ωmax,i ∈
IR+ are the maximum rotational speed of the motors and ui(t) are the motors’ signals.
What is missing in equation (2.21) is the model of the DC motors and in particular, a
map between the input signal ui(t) and the control signal uin,i(t). To keep the model
simple but still accurate2, the motor has been modeled like a first order system, like
in equation (2.22).

ui(t) ≈
1

τis + 1
uin,i(t) (2.22)

This approach is very common [8], since all the parameters of a motor are not provide
from datasheet, especially from cheap motors that is possible to find quite often in a
commercial quadrotor. Furthermore, to represent the direction of the thrust from a
motor it should be considered that

fi(t) = a f ,iΩ2
max,iui(t)2ni (2.23)

ni = Ri ·
[
0 0 1

]T (2.24)

Where, in this case, fi(t) is the force vector for each propeller and Ri is the rotational
matrix encoding the direction of the thrust and torque vector. Then the torque repre-
sentation is given by

τi(t) = − sgn(Ωi)b f ,iΩ2
max,iui(t)2ni (2.25)

where b f ,i ∈ IR+ is the torque constant.

Now, by defining the vector li =
[
lx,i ly,i lz,i

]T the distance between the center of mass
and the position where the propeller i is attached, combining equations (2.23), (2.24)
and (2.25) is possible to obtain equation (2.26) as in the work [9].

[
ftotal
τtotal

]
=


4
∑

i=1
fi(u2

i)

4
∑

i=1
li × fi(u2

i) + τi(u2
i)

 (2.26)

This combined with the Newton-Euler kinematics of equation (2.20) gives the final
model, from control signal to acceleration and angular acceleration, as depicted in

2http://pi19404.github.io/pyVision/2015/04/10/25/

http://pi19404.github.io/pyVision/2015/04/10/25/

12 Mathematical model

equations (2.27) and (2.28).

[
ẍB
ω̇B

]
=

. . .
a f ,iΩ2

max,ini
m . . .

. . . I−1
cm

[
(li + ∆l)× a f ,iΩ2

max,ini − sgn(Ωi)b f ,iΩ2
max,ini

]
. . .




...
u2

i
...

+

+

[
0

I−1
cm
(
ωB × IcmωB

)]
(2.27)

ui =
1

τis + 1
uin,1 (2.28)

Where ∆l is the offset vector of the center of gravity (CoG) in the body frame of ref-
erence. From the model (2.27) the linear and angular accelerations are given, is then
necessary to convert those from the body frame and integrate to obtain the position
xW and orientation qW of the quadrotor with the respect to the world frame. Then, by
adding the gravity term we have

ẍB,g = RqW (qW)T ·
 0

0
−g

+ ẍB (2.29)

where g is the gravity constant, about 9.81, and RqW (qW) is the rotation matrix built
from equation (2.14). To derive the velocity ẋW in the world frame, once again by
using the rotation matrix we obtain

ẋW = RqW (qW) · ẋB,g (2.30)

Instead, for the orientation, we use the results from the paragraph 2.2.1 and we get

q̇W =
1
2
·Q(ω) · qW (2.31)

Motors
(2.28) Quadrotor

dynamic
(2.27)

Gravity
(2.29)

1
s

Body
to

world
(2.30)(2.31)

1
s

1
s

1
s

uin u
ẋB ẋW

q̇W

ẍB

ω̇B ωB

ẍB,g xW

qW

Figure 2.6: Block diagram of the quadrotor dynamic.

In figure 2.6 is depicted a block diagram of the quadrotor dynamic, from the inputs
uin, to position xW and orientation qW in the world frame.

Design and model 13

2.2.3 Adding the rotating platform

Until now, all the model was designed for a standard quadrotor vehicle, what we want
to do in this section is to add the model of the rotating platform, necessary for deduce
a controller and simulate it.
The movement of the platform, introduces a time variant center of gravity, that is
simply modeled with time variant vectors li(t), that identify the displacement of the
center of the propeller i with the respect of the CoG. If we know precisely the position
of the CoG of the quadrotor (without the moving cart) and the position of the CoG of
the cart, the result position can be computed.

l1

l2

l4

l3

CoG

(a) Top view.

γ

CoG

(b) Side view.

Figure 2.7: Quadrotor with the rotating platform in blue, in red the CoG of the quadro-
tor and in orange the resulting CoG.

In figure 2.7 is illustrated how the resulting CoG change with the position of the cart,
is possible to see also the four li(t) vectors in black dashed line. Then the position of
the CoG is

p =
1
m
·
(
mquadpquad + mcartpcart

)
(2.32)

where m = mquad + mcart is the sum of the mass of the quadrotor plus the mass of the
moving cart, i.e. the total mass, pquad is the position of the center of gravity of the
quadrotor without the cart with the respect to the origin of the body frame (in general
the quadrotor frame is not symmetrical) and pcart is the position of the CoG of the cart
with the respect to the body frame. Then the vectors li are just the distance between
the center of the propeller i and p.
Another difference in using the rotating platform is that the moment of inertia Icm
is not constant, but depend from the position γ of the cart, like in figure 2.7b. This
problem can be solved by using the detailed CAD model of the entire vehicle, provided
in [3]. From this is possible to deduce the inertia for various position, and then create
a simple piecewise model.

14 Experimental setup

The movement of the sensor introduces also a centrifugal force in the vehicle. In
particular, if pcart is the vector that encode the position of the cart with the respect of
the body frame, the Newton’s law of motion for the cart in vector form is

fcart = mcartacart = mcart
d2pcart

dt2 (2.33)

By twice applying the transformation above from the stationary to the rotating frame,
the absolute acceleration of the cart can be written as [10]

d2pcart

dt2 =
∂

∂t

(dpcart

dt

)
+ ω×

(dpcart

dt

)
=

∂

∂t

(∂pcart

∂t
+ ω× pcart

)
+ ω×

(∂pcart

∂t
+ ω× pcart

)
(2.34)

where in this case ω is the angular velocity of the cart with the respect to the body
frame. Expanding expression (2.34), noting that the chain rule applies to differen-
tiation of cross products, that the cross product is distributive over addition, and
coupling with equation (2.33), we have

fcart = mcart
∂2pcart

∂t2 +mcart
dω

dt
× pcart︸ ︷︷ ︸

Euler force

+ 2mcartω×
∂pcart

∂t︸ ︷︷ ︸
Coriolis force

+mcartω×
(
ω× pcart

)︸ ︷︷ ︸
centrifugal force

(2.35)

That describe the so called Euler, Coriolis and centrifugal force of the moving platform.
To add this to the main model, we just simply need to sum up the vector fcart, divide
by mcart to the equation (2.27), in the first three rows of the matrix, that regard the
acceleration of the body frame

[
ẍB
ω̇B

]
=

. . .
AF,iΩ2

max,ini
m . . .

. . . I−1
cm

[
(li + ∆l)× AF,iΩ2

max,ini − sgn(Ωi)BF,iΩ2
max,ini

]
. . .




...
u2

i
...

+

+

[
0

I−1
cm
(
ωB × IcmωB

)]+ 1
mcart

[
fcart

0

]
(2.36)

2.3 Experimental setup

In this section we are going to introduce all the hardware and the software use in this
project.
Starting from the hardware, we used a main board develop entirely at Luleå University
of Technology (LTU), the KFly3. In figure 2.8 is reported a picture of the KFly board. It
is a small (36× 36 mm) but powerful enough board able to perform all the operations
needed during the flight.

3https://gitlab.com/korken89/KFly

https://gitlab.com/korken89/KFly

Design and model 15

Figure 2.8: KFly board.

It is also equipped with different sensors, such an accelerometer and a gyroscope sensors,
a magnetometer and a pressure sensors. With the accelerometer is possible to directly
measured the acceleration in the body frame, while with the gyroscope is possible to
directly measured the angular velocity. These two, combined with the magnetometer
form a Inertial Measurement Unit (IMU). It is also equipped with 8 outputs (we will
used 4 of them to control the motors) and 4 expansion connectors (3 UARTs and 1
CAN port) for the programming, communication, etcetera. For the communication
between the vehicle and the base station, we used te XBee Pro modules4.

Figure 2.9: XBee communication modules.

They have a built-in antenna, capable of a transmission range of theoretically 1000
meters. Moreover they have a maximum data rate of 250 kbps. Like previously said
the UAV is equipped with a IMU, but to measure directly the pose of the vehicle
we need other sensors. In particular, to test the control with extremely precision, we
used a motion capture system. More precisely we used a Vicon5 motion capture in the
Field Robotics Lab (FROST) of LTU. The system is composed by 20 different cameras,

4http://www.digi.com/lp/xbee
5https://www.vicon.com/

http://www.digi.com/lp/xbee
https://www.vicon.com/

16 Experimental setup

mounted in the perimeter of the lab. By applying a number of markers in the object,
is possible to track its position and orientation in the space, with a precision down to
the tenth of millimeter.

(a) One Vicon camera. (b) Representation of objects in the Vicon sys-
tem.

Figure 2.10: Vicon motion capture system.

In figure 2.11 there are some picture of the first prototype of the Prometheus mapping
drone. In particular, is possible to see all the electronics and the Vicon markers on top
and on the side of the Lidar sensor. These where useful during the test phase of the
3D mapping algorithm, in the third part of this project.
Moving to the software part, all the simulations are made in a MATLAB and SIMULINK
environment. This provided a fast and easy implementation of the control and system
identification algorithms. Moreover, MATLAB is very useful for data analyzing after
each flight. Instead, for the real application, we choose to use ROS, the Robotic Oper-
ating System6 and then to rewrote all the code in C++. ROS is an open source project
that is a collection of software frameworks for robot software development, provid-
ing operating system-like functionality on a heterogeneous computer cluster. ROS
provides standard operating system services such as hardware abstraction, low-level
device control, implementation of commonly used functionality, message-passing be-
tween processes, and package management. It is very popular nowadays in robotic
projects and there is a big worldwide community.
However, due to its simplicity, the main problem was that the KFly couldn’t run ROS
onboard. We solve this problem by using a laptop with ROS install to run the control
system, then send the control inputs to the KFly via XBee. By using this strategy we
encounter problems with the bandwidth of the XBee, reaching its saturation limit, if
we run the control algorithm at more than 50 Hertz, while the desire control rate was
about 100 Hertz. A possible solution could be to use another low cost board, such
as the Odroid c27, that can use high speed wi-fi link for the communication, and then
practically unlimited bandwidth. Another important feature of the Odroid, is that it
can run ROS onboard. This is extremely important in real world scenario, because run
the control algorithm in remote could be very dangerous in case of signal lost, radio
interference or other problems, and it can end up in a catastrophic failure of the entire
system.
In conclusion, ROS and the boards where powerful enough to run al the software in

6http://www.ros.org/
7http://www.hardkernel.com/main/main.php

http://www.ros.org/
http://www.hardkernel.com/main/main.php

Design and model 17

Figure 2.11: First prototype of the Prometheus mapping drone.

the loop, without any slowdown due to the workload of the control algorithm. This
was achieved by using simple but efficacy solutions, as we will se in the next sections.

18 Experimental setup

System identification 19

3
System identification

In this chapter, is about to be addressed an important part of this project. Since the
model of the previous chapter is depending from many parameters, is necessary to
identificate them, to be able to design an appropriate controller. A Kalman Filter
approach will be used, based from the work [9].

3.1 System simplification and linear approximation

Starting from the model deducted in section 2.2.2

[
ẍB
ω̇B

]
=

. . .
a f ,iΩ2

max,ini
m . . .

. . . I−1
cm

[
(li + ∆l)× a f ,iΩ2

max,ini − sgn(Ωi)b f ,iΩ2
max,ini

]
. . .




...
u2

i
...

+

+

[
0

I−1
cm
(
ωB × IcmωB

)]
(3.1)

ui =
1

τis + 1
uin,1 (3.2)

we need to do some simplification. In particular, by assuming that all engines have
the same parameters, is possible to rewrite these parameters as follows

a f ,iΩ2
max,i ≈ a f (3.3)

b f ,iΩ2
max,i ≈ b f (3.4)

τi ≈ τ (3.5)

Moreover the term I−1
cm
(
ω× IcmωB

)
can be neglected [9]. This can be easily seen simply

by simulating the mathematical model with and without the term, the differences are
very small, as depicted in figure 3.1.

20 System simplification and linear approximation

0 5 10 15 20 25 30
−2

−1

0

1

2

t [s]

ω̇
x

[r
a
d

s2
]

Simulated ω̇x

full dynamic
simplified dynamic

0 5 10 15 20 25 30
−2

−1

0

1

2

t [s]

ω̇
x

[r
a
d

s2
]

Simulated ω̇x

full dynamic
simplified dynamic

Figure 3.1: Simulation of the dynamic with and without the term I−1
cm
(
ω× IcmωB

)
.

Another simplification, is that the inertia matrix Icm is a diagonal matrix, Icm = diag(
Ixx, Iyy, Izz). This is generally true in a standard quadrotor but is not so immediate
for the vehicle of this project. However, if we align the x axis with the orientation of
the circular structure, we obtain a inertia matrix almost diagonal. What makes the
matrix "less diagonal" is the position of the cart. However, the mass of the sensor
is not sufficiently big to modify enough the matrix and this assumption is valid also
here. Of course, in different applications, where the mass of the quadrotor and the
mass of the sensor are more similar, a different approach is required.
Another non linearity is in the inputs, since the model require the square of these. A
solution of this problem proposed in [9] is to rewrite equation (3.2) with the square
of the control inputs. This effectively moves the squared control signal from the force
and torque equations to the input. This representation keeps the static relationship
but will affect the dynamics of the first order system, but is assumed that a first order
system still captures the majority of the dynamics. In conclusion, the approximate
linear model is

[
ẍB
ω̇B

]
=

[
. . . a f e3

m . . .

. . . I−1
cm

[
(li + ∆l)× a f e3 − sgn(Ωi)b f e3

]
. . .

] 
...

ui
...

 (3.6)

ui =
1

τs + 1
u2

in,i (3.7)

where instead of ni there is e3 because in the structure of this particular vehicle, the
propellers are mounted parallel to the ground and then with a force vector aligned to
e3 =

[
0 0 1

]T.

System identification 21

3.2 Quadrotor parameters

From the simplified model of equations (3.6) and (3.7), the identifiable parameters are

β =
[

a f
m

a f
Ixx

a f
Iyy

a f
Izz

b f
Izz

∆lx ∆ly

]T
, τ (3.8)

Then, is possible to rewrite the linear model in a more compact form:

[
ẍB
ω̇B

]
=

[
L(β1)
A(β)

]
u (3.9)

Under the assumption of the sampling rate to be much faster than the dynamics1,
equation (3.7) is implemented as discrete-time first order system, and the parameters
are modeled as integrated white noise, which gives the following prediction equations

ωk = ωk−1 + ∆tA(βk−1)uk−1 (3.10)

uk =
τk−1

∆t + τk−1
uk−1 +

∆t
∆t + τk−1

u2
in,k (3.11)

βk = βk−1 (3.12)
τk = τk−1 (3.13)

where uk and uin,k are the inputs at time instant k expressed in a vectorial way, ∆t is
the sampling period and •2 is the element-wise square of a vector.

3.3 Kalman filter

A Kalman filter approach is chose for this project since it has good result in this kind
of applications. Of course, better performances can be obtained with specific strategies
for non linear systems [11], but these methods are in general much more complicated
and require much more computational effort, especially if is necessary to estimate the
parameters online.
Now, is possible to use the standard Kalman filter equations [12] to develop an online
identification algorithm as follow.
The augmented state xest is

xest =
[
ωB uin β τ

]T ∈ IR15 (3.14)

The initial values of ωB and uin are know, so the state is initialized with these. More-
over, due to the parameters β and τ having a constraint to being positive, they are
implemented as exp(β) and exp(τ) to force positive results from the estimation, while
the ∆l are constrained to be within the propellers (the length of the arms is set to be

1In this case, thanks to the performance of the onboard electronics, the sampling rate is equal to 222
Hertz.

22 Kalman filter

equal to one, since the correct length is not necessary for the identification) which is
implemented using a zero centered logistic function

2
1− exp(−∆l)

− 1 (3.15)

With the augmented state is possible to write a new state space system in discrete
time with matrix Aest

2

Aω,uin =

 2∆teβ2(∆ly − 1) · uT

−2∆teβ3(∆lx + 1) · uT

− sgn(Ωi)2∆teβ4 · uT

 ∈ IR3×4

Aω,β1
= 03×1 ∈ IR3×1

Aω,β2
=

[
∆teβ2

(
∆ly

4
∑

i=1
u2

i − u2
1 − u2

2 + u2
3 + u2

4

)
0 0

]T

∈ IR3×1

Aω,β3
=

[
0 −∆teβ3

(
∆ly

4
∑

i=1
u2

i + u2
1 − u2

2 − u2
3 + u2

4

)
0
]T

∈ IR3×1

Aω,β4
=

[
0 0 −∆teβ4

4
∑

i=1
sgn(Ωi)u2

i

]T

∈ IR3×1

Aω,β5
=
[
0 0 ∆t

]T ∈ IR3×1

Aω,β6:7
=


0 ∆teβ2

4
∑

i=1
u2

i

−∆teβ3
4
∑

i=1
u2

i 0

0 0

 ∈ IR3×2

Aω,β =
[

Aω,β1
Aω,β2

Aω,β3
Aω,β4

Aω,β5
Aω,β6:7

]
∈ IR3×7

Auin =
(

1− ∆t
∆t + eτ

)
· I4 ∈ IR4×4

Aest,k =

 I3 Aω,uin Aω,β 03×1

04×3 Auin 04×8

08×7 I8

 ∈ IR15×15

and then use the Kalman filter equations in a recursive way [12]

2For notation, 0a×b is equal to a zero matrix with a rows and b columns,1a×b is equal to a ones matrix
with a rows and b columns,Ia is the identity matrix of dimension a × a, and the vector xest,a:b are the
entries from a to b of the augmented state (is implicit that is consider at time k)

System identification 23

Pk = Aest,k · Pk−1 · AT
est,k + Q ∈ IR15×15

Hk =

 I3 03×12

01×3 2eβ1 · uT 01×2 eβ1
4
∑

i=1
u2

i 01×5

 ∈ IR4×15

Sk = Hk · Pk · HT
k + R ∈ IR4×4

Kk = Pk · HT
k · S−1

k ∈ IR15×4

Pk =
(

I15 − Kk · Hk
)
· Pk−1 ∈ IR15×15

xest,k = xest,k−1 + Kk ·
([ω

ẍz

]
−
[

xest,1:3
eβ1 · 11×4 · x2

est,4:7

])
∈ IR15×1

where Pk is the state update covariance matrix based on model, Hk maps the measure-
ment to the states, Sk is the update measurement covariance, Kk is the update Kalman
gain, Q ∈ IR15×15 is the fixed covariance matrix and R ∈ IR4×4 the fixed measurement
covariance matrix. Both Q and R are diagonal matrices.

3.4 Results

−2

0

2

ω, ω̂ [rad/s]

ωx

ω̂x

−2

0

2
ωy

ω̂y

0 5 10 15 20 25 30

−1

0

1

t [s]

ωz

ω̂z

Figure 3.2: Measured and estimated angular rate, ωB and ω̂B.

The estimator needs to be setup with specific process and measurement covariance Q

24 Results

and R, and the starting state covariance P0. The values for Q and P0 where found sim-
ply with a trial and error procedure, while R was taken from the noise densities of the
measured signals. In particular we measured a steady state position of the quadrotor,
record the acceleration in the z axis ẍB,z and the angular rate ωB, then by analyzing
these data, a noise variance was extracted. Moreover, since in the augmented state
xest is present also an estimation of the angular rate ω̂, to evaluate the quality of the
estimation was also compare it with the measured angular rate. In this case the initial
values of the state xest were chose to be considerably different from a real value, just
to show the performance of the estimator.

5

10

15

af
m [N/Kg]

0

20

40

af
Iyy

[N/Kg ·m2]

1

1.5

2

bf
Izz

[N/Kg ·m2]

0 10 20 30
−2

0

2

4

6
·10−2

t [s]

∆lx [m]

0

200

400

af
Ixx

[N/Kg ·m2]

1

2

3

af
Izz

[N/Kg ·m2]

4

4.1

4.2
·10−2

τ [s]

0 10 20 30
−0.1

−0.05

0

t [s]

∆ly [m]

Figure 3.3: Estimated parameers β and τ.

As is possible to see in figure 3.2, the estimation of the angular rate yields good
results from the beginning for all the three axis. In figure 3.3 are instead plotted the
estimations of all parameters β and τ. The identification was performed with the
cart fixed in one position. Is possible to see that for almost all parameters there is
convergence after about 15 seconds, while for the parameter b f

Izz
is necessary more

System identification 25

time. This can be explain by observing the angular rate, in particular note that ωz
is almost zero for about the first 10 seconds, due to the particular trajectory of the
vehicle. Of course, is not possible to perform system identification without excitation
of the system and thats why the parameters depending on ωz require more time to
converge.
In conclusion the algorithm has been shown to work quite well, and for this applica-
tion is not then necessary to use more sophisticated techniques.

26 Results

Trajectories generator 27

4
Trajectories generator

An important aspect of this project is the path planning, because the aim is to map and
navigate in a environment without a priori information and in complete autonomous.
The study of path planning algorithms and the sensors’ fusion to obtain the pose of the
vehicle is not part of this thesis. However part of this thesis is to generate a trajectory
for the UAV based on the output of a path planning algorithm. In particular, usually
exploration algorithms provide only waypoints, not full trajectories [13] [14]. Hence,
is necessary to provide a tool to generate possible trajectories with constraints in the
environment and in the dynamic of the vehicle. In this project we implemented the
solution proposed in the works [15] and [16], where the authors, after providing model
and control, have generated a trajectory composed by piecewise polynomial functions.

4.1 Trajectory definition

In this work, a waypoint σdis defined as a position in the space, xd, and a yaw angle,
ψd, since in the next section we will control four degrees of freedom of the UAV, the
position in the space and the yaw angle. We consider the problem of navigate through
m waypoints at specific time. A trivial trajectory is one that interpolate the waypoints
using straight lines. However, such trajectory is inefficient because it requires the
quadrotor to come to a stop at each waypoint. This method generates trajectories that
smoothly transition through the waypoints at given times. We write down a trajectory
as piecewise polynomial functions of order n over m time intervals

σd(t) =



n
∑

i=0
σd,i,1ti t0 ≤ t < t1

n
∑

i=0
σd,i,2ti t1 ≤ t < t2

...
n
∑

i=0
σd,i,mti tm−1 ≤ t < tm

(4.1)

28 Trajectory definition

where σd,i,j is the coefficient of order i of the trajectory piece j and tk is the time that the
vehicle has to reach waypoint k; i ∈

[
0 n

]
, j ∈

[
1 m

]
, k ∈

[
1 m

]
. The interest is then

to minimize a cost function which can be written using these piecewise polynomial.

min
∫ tm

t0

µx

∣∣∣∣∣
∣∣∣∣∣dkx xd

dtkx

∣∣∣∣∣
∣∣∣∣∣
2

+ µψ

(
dkψ ψd

dtkψ

)2

dt (4.2)

subject to σd(ti) = σd,i, i = 0, . . . , m
dpxd

dtp

∣∣∣
t=tj

= 0, j = 0, m; p = 1, . . . , kr

dpyd

dtp

∣∣∣
t=tj

= 0, j = 0, m; p = 1, . . . , kr

dpzd

dtp

∣∣∣
t=tj

= 0, j = 0, m; p = 1, . . . , kr

dpψd

dtp

∣∣∣
t=tj

= 0, j = 0, m; p = 1, . . . , kψ

where µx and µψ are constants that make the integrand nondimensional. Here σd =[
xd yd zd ψd

]T and σd,i =
[
xd,i yd,i zd,i ψd,i

]T. We also assume that t0 = 0
without loss of generality. The first constraint indicates that the result trajectory has
to pass through the desire waypoints, while the rest of the constraints impose that
all the derivatives at the initial and final point have to be zero (is also possible to set
them to a specific value if necessary). By using the same choice of [17], we decide
to minimize the snap for the position (kx = 4) and the second derivative of the yaw
angle (kψ = 2). Now we want to formulate the trajectory generation problem as an
optimization of a functional but in a finite dimensional setting. This will keep the
computational effort very small to guarantee a real time application. In order to to
this, we first write the constants σd,i,j =

[
xd,i,j yd,i,j zd,i,j ψd,i,j

]T as a 4 · n · m × 1
vector c with decision variables {xd,i,j, yd,i,j, zd,i,j, ψd,i,j, i ∈

[
0 n

]
, j ∈

[
0 m

]
}. The

trajectory generation problem (4.3) can be written in the form of a quadratic program
(QP):

min cT Hc + f Tc (4.3)
subject to Ac ≤ b

Aeqc = beq

where the objective function will incorporate the minimization of the functional while
the constraint can be used to satisfy constraints in the trajectory and it derivatives. A
specification of an initial condition, final condition, or intermediate condition on any
derivative of the trajectory (e.g. dkxd

dtk) can be written as a row of the constraints Aeqc =
beq. If conditions do not need to be specified exactly then they can be represented
with the inequality constraint Ac ≤ b.
Moreover, to simplify the problem, can be notice that in the cost function of equation
(4.3), the four dimensions are independent, this means that the problem can be split
in four different problems for each dimension. In such a way, the construction of the

Trajectories generator 29

quadratic problem vectors and matrices will be considerable more simple. Further-
more, is possible to assume that each waypoint starts from t0 = 0 and ends to tj = 1.
This because if we define a new time variable such as

τ =
t− tj−1

tj − tj−1
(4.4)

the new one dimension position at time τ become

x(τ) = x
(t− tj−1

tj − tj−1

)
(4.5)

and its derivatives

d
dt

x(t) =
d
dt

x(τ)

=
d

dτ

dτ

dt
x(τ)

=
1

tj − tj−1

d
dτ

x(τ)

...

dk

dtk x(t) =
1

(tj − tj−1)k
dk

dτk x(τ)

We can thus solve for each piece of any piece-wise trajectory from τ = 0 to 1, then
scale to any t0 to tj.

4.2 Optimization of a trajectory between two waypoints

To make the derivation simpler, is better to start the optimization problem with only
two waypoints and in only one dimension. In particular, the cost function become

J =
∫ t1

t0

∣∣∣∣∣
∣∣∣∣∣dkx(t)

dt

∣∣∣∣∣
∣∣∣∣∣
2

dt = cT H(t0,t1)c (4.6)

subject to Ac = b

We can instead look for the non-dimensionalized trajectory x(τ) = cnτn + cn−1τn−1 +
· · · + c1τ + c0 where τ = t−t0

t1−t0
. Note that this makes τ range from 0 to 1. Let

c =
[
cn cn−1 . . . c1 c0

]T. We can write the cost function J in term of the non-
dimensionalized trajectory x(τ):

30 Optimization of a trajectory between two waypoints

J =
∫ t1

t0

∣∣∣∣∣
∣∣∣∣∣dkx(t)

dt

∣∣∣∣∣
∣∣∣∣∣
2

dt (4.7)

=
∫ 1

0

∣∣∣∣∣
∣∣∣∣∣ 1
(t1 − t0)k

dkx(τ)
dτ

∣∣∣∣∣
∣∣∣∣∣
2

d(τ(t1 − t0) + t0)

=
t1 − t0

(t1 − t0)2k

∫ 1

0

∣∣∣∣∣
∣∣∣∣∣dkx(τ)

dτ

∣∣∣∣∣
∣∣∣∣∣
2

dτ

=
1

(t1 − t0)2k−1 cT H(0,1)c

= cT

(
1

(t1 − t0)2k−1 H(0,1)

)
c

Thus, we want to minimize the cost function

J = cT

(
1

(t1 − t0)2k−1 H(0,1)

)
c (4.8)

subject to Ac = b

To find H(0,1), when c′ =
[
c0 c1 . . . cn−1 cn

]T, we can find H′(0,1) with:

H′[i, j](t0,t11) =


k−1
∏

z=0
(i− z)(j− z) ti+j−2k+1

1 −ti+j−2k+1
0

i+j−2k+1 i ≥ k ∧ j ≥ k

0 i < k ∨ j < k
(4.9)

i = 0, . . . , n, j = 0, . . . , n

However, c =
[
cn cn−1 . . . c1 c0

]T. Reflecting H′ from equation (4.9) horizontally
and vertically will give the desire H for the form of c we desire. The function to

minimize is then cT

(
1

(t1−t0)2k H(0,1)

)
c.

To find A

Ac = b

[
A(t0)
A(t1)

]
c =



x(t0)
...

x(k−1)(t0)
x(t1)

...
x(k−1)(t1)


Note that Ac only contains rows where constraints are specified, if a condition is
unconstrained just omit a row. Assuming that every condition is constrained, the
general form of A is:

Trajectories generator 31

A[i, j](t) =


i−1
∏

z=0
(n− z− j)tn−j−i n− j ≥ i

0 n− j < i
(4.10)

i = 0, . . . , r− 1, j = 0, . . . , n

where A[i, j] represents the (n − j)th coefficient of the ith derivative. In the non-
dimensionalized case, we have τ0 = 0 and τ1 = 1:

[
A(τ0)
A(τ1)

]
c =



x(t0)
...

(t1 − t0)k−1x(k−1)(t0)
x(t1)

...
(t1 − t0)k−1x(k−1)(t1)


(4.11)

4.3 Optimization of a trajectory between m + 1 waypoints

In this section, by recalling what we study in the previous section, is possible to
derive the equations to optimize a trajectory for an arbitrary number of waypoints. In
particular, we seek the piece-wise trajectory:

x(t) =


x1(t), t0 ≤ t < t1

x2(t), t1 ≤ t < t2
...
xm(t), tm−1 ≤ t < tm

(4.12)

and continue to minimize the cost function

J =
∫ tm

t0

∣∣∣∣∣
∣∣∣∣∣dkx(t)

dt

∣∣∣∣∣
∣∣∣∣∣
2

dt = cT H(t0,tm)c (4.13)

subject to Ac = b

and again look for the non-dimensionalized trajectory

x(τ) =

{
x1(τ) = c1,nτn + · · ·+ c1,0, t0 ≤ t < t1, τ = t−t0

t1−t0

xm(τ) = cm,nτn + · · ·+ cm,0, tm−1 ≤ t < tm, τ = t−tm−1
tm−tm−1

(4.14)

0 ≤ τ < 1

Let cz =
[
cz,n cz,n−1 . . . cz,1 cz,0

]T and c =
[
cT

1 cT
2 . . . cT

m
]T. Each piece of the

trajectory is optimized individually between τ0 = 0 and τ1 = 1. We want to minimize:

32 Optimization of a trajectory between m + 1 waypoints

J =
∫ tm

t0

∣∣∣∣∣
∣∣∣∣∣dkx(t)

dt

∣∣∣∣∣
∣∣∣∣∣
2

dt (4.15)

=
m

∑
z=1

∫ tz

tz−1

∣∣∣∣∣
∣∣∣∣∣dkxz(t)

dt

∣∣∣∣∣
∣∣∣∣∣
2

dt

=
m

∑
z=1

∫ 1

0

tz − tz−1

(tz − tz−1)2k

∣∣∣∣∣
∣∣∣∣∣dkxz(τ)

dτ

∣∣∣∣∣
∣∣∣∣∣
2

dτ

=
m

∑
z=1

cT
z

1
(tz − tz−1)2k−1 H(0,1)cz

= cT Hc
subject to Ac = b

To find H, we recall that for each c′z =
[
cz,0 cz,1 . . . cz,n−1 cz,n

]T, where z =

1, . . . , m, H′(0,1) is given by equation (4.9). Since cz =
[
cz,n cz,n−1 . . . cz,1 cz,0

]T,
reflecting H′ horizontally and vertically will give the desire H for the form of ck. Is
then possible to create the block diagonal matrix H

H =


1

(t1−t0)2k−1 H(0,1) . . . 0 0

.
...

. . . 0 1
(tm−1−tm−2)2k−1 H(0,1) 0

0 . . . 0 1
(tm−tm−1)2k−1 H(0,1)

 (4.16)

To find A, first, we need to account for endpoint constraints, in the non-dimensionalized
case:

Aendpointc = bendpoint (4.17)



A(τ0) 0 . . . 0
A(τ1) 0 . . . 0

0 A(τ0) . . . 0
0 A(τ1) . . . 0
... 0 . . .

...
0 . . . 0 A(τ0)
0 . . . 0 A(τ1)


c =



x1(t0)
...

(t1 − t0)k−1x(k−1)
1 (t0)

x1(t1)
...

(t1 − t0)k−1x(k−1)
1 (t1)

...
xm(tm−1)

...
(tm − tm−1)

k−1x(k−1)
m (tm−1)

xm(tm)

(tm − tm−1)
k−1x(k−1)

m (tm)



Trajectories generator 33

Like before, we just omit rows where a condition is unconstrained. Also, note that
except for constraints at t0 and tm, every other constraint must be include twice. The
equation for A[i, j](t) is the same of (4.10)
We must also take into account for constraints that ensure that when the trajectory
switches from one piece to another at the waypoints, position and all the derivative
lower than k remain continuous, for a smooth path. In other words, is require that

Acontc = bcont (4.18)

x1(t1)− x2(t2)
...

x(k−1)
1 (t1)− x(k−1)

2 (t1)
...

xm−1(tm−1)− xm(tm−1)
...

x(K−1)
m−1 (tm−1)− x(K−1)

m (tm−1)


= 0

Translating to the non-dimeensionalized case, τ0 = 0, τ1 = 1, and

Acontc = bcont (4.19)

x1(τ1)− x2(τ2)
...

1
(t1−t0)k−1 x(k−1)

1 (τ1)− 1
(t2−t1)k−1 x(k−1)

2 (τ1)
...

xm−1(τ1)− xm(τ0)
...

1
(tm−2−tm−1)k−1 x(K−1)

m−1 (τ1)− 1
(tm−tm−1)k−1 x(K−1)

m (τ0)


= 0

and then


Acont(t1) 0 . . . 0

0 Acont(t2) . . . 0
... 0 . . . 0
0 . . . 0 Acont(tm−1)

 c = 0 (4.20)

where

Acont[i, j](tz) =



1
(tz−tz−1)i

i−1
∏

z=0
(n− z− j)τn−j−i

1 , n− j ≥ i ∧ j ≤ n

0, n− j < i ∧ j ≤ n

− 1
(tz+1−tz)i

i−1
∏

z=0
(1− z− j)τ1−j−i

0 , 1− j ≥ i ∧ j > n

0, 1− j < i ∧ j > n

(4.21)

i = 0, . . . , k− 1, j = 0, . . . , 2(n + 1)

34 Optimization of a trajectory between m + 1 waypoints

The final constraints Ac = b take then the final form

Ac = b (4.22)[
Aendpoint

Acont

]
c =

[
bendpoint

0

]

0 2 4 6

0

0.5

1

1.5

t [s]

x(t) [m]

0 2 4 6

−0.5

0

0.5

1

t [s]

ẍ(t) [m/s2]

0 2 4 6

−5

0

5

t [s]

d4x(t)
dt4

[m/s4]

0 2 4 6
−0.2

0

0.2

0.4

0.6

t [s]

ẋ(t) [m/s]

0 2 4 6

−2

0

2

t [s]

d3x(t)
dt3

[m/s3]

setpoints
derivatives of the trajectory

Figure 4.1: Generated trajectory with its derivatives.

In figure 4.1 is reported the first dimension of a generated trajectory evolving over the
time. In particular in blue are plotted the trajectory and its first four derivatives, till
the snap. Instead in black are plotted the waypoints for the trajectory and the initial
and final conditions for each derivative, that are equal to zero. Notice that between
waypoints two and three, the trajectory is not as expected, in the sense that first tend
to go far from the desired waypoint and than reach it. That’s because this is only one
dimension of a more complex three dimension trajectory.

Trajectories generator 35

4.4 Adding corridor constraints in d dimensions

In this section, corridors constraints will be added in the cost function (4.3). For
corridor constraints, we mean that the desire trajectory must be inside a corridor, this
why for a safe obstacle avoidance and navigation algorithm, the vehicle must respect
distance between walls and obstacles. To do this, we first define ti as the unit vector
along the segment from waypoint ri and waypoint ri+1.

ti =
ri+1 − r
||ri+1 − r|| (4.23)

Let the constraint i be between waypoint i and i + 1 and applied to dimensions a, b,
and c (i.e. if the trajectory dimensions are

[
ψ x y z

]T, the dimensions x, y, and z
position will be a = 2, b = 3, c = 4). The perpendicular distance vector, di(t), from
segment i is defined as

di(t) = (rd(t)− ri)− ((rd(t)− ri) · ti)ti (4.24)

where rd(t) is the desire trajectory at istant t. A corridor width on the infinity norm,
δi, is defined for each corridor as follow

∣∣∣∣di(t)
∣∣∣∣

∞ ≤ δi while ti ≤ t ≤ ti+1 (4.25)

The reason to write the constraint like that, is because it can be incorporate into the
QP problem by introducing nc intermediate points as

∣∣∣∣∣ep · di

(
ti +

j
1 + nc

(ti+1 − ti)
)∣∣∣∣∣ ≤ δi for p = a, b, c j = 1, . . . , nc (4.26)

where for xa we mean that this procedure must be compute for xW , yW and zW , with
xW =

[
xW yW zW

]T. Of course a corridor constraint in the desire yaw doesn’t have
sense. To do this, we introduced inequality constraints of the form Aineqc ≤ bineq.
To find Aineq, we first break down the inequality (4.26) into

(ep · di(ti +
j

1 + nc
(ti+1 − ti))) ≤δi (4.27)

−(ep · di(ti +
j

1 + nc
(ti+1 − ti))) ≤δi (4.28)

This result in a total of 2 · p · nc constraints for each corridor constraint. Then by
performing some math, the matrix Aineq and the vector bineq can be deduce.

36 Adding corridor constraints in d dimensions

di(t) = (rd(t)− ri)−
(
(rd(t)− ri) · ti

)
ti (4.29)

= (rd(t)− ri)−
(

p

∑
j=1

((rd(t)− ri) · ej)(ti · ej)

)
ti

= (rd(t)− ri)−
(

p

∑
j=1

(
(rd(t)− ri) · ej

)(
(

ri+1 − ri

||ri+1 − ri||
) · ej

))(ri+1 − ri

||ri+1 − ri||

)

= (rd(t)− ri)−
(

p

∑
j=1

(
(rd(t)− ri) · ej

)(
ri+1 − ri

)
· ej

)(
ri+1 − ri

||ri+1 − ri||2

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

0.1

0.2

0.3

0.4

x [m]

y
[m

]

Trajectory generator

setpoints
trivial trajectory

witout corridor constraints
with corridor constraints

corridor width

Figure 4.2: Setpoints and desire trajectory, with and without corridor constraints be-
tween waypoints 2 and 3.

We can then construct the Aineq matrix and bineq vector

Trajectories generator 37

Ainexc ≤ bineq (4.30)

(
ea · di

(
ti +

1
1+nc

(ti+1 − ti)
))

−
(

ea · di
(
ti +

1
1+nc

(ti+1 − ti)
))

...(
ea · di

(
ti +

nc
1+nc

(ti+1 − ti)
))

−
(

ea · di
(
ti +

nc
1+nc

(ti+1 − ti)
))(

eb · di
(
ti +

1
1+nc

(ti+1 − ti)
))

−
(

eb · di
(
ti +

1
1+nc

(ti+1 − ti)
))

...(
eb · di

(
ti +

nc
1+nc

(ti+1 − ti)
))

−
(

eb · di
(
ti +

nc
1+nc

(ti+1 − ti)
))



≤



δi
δi
...
δi
δi
δi
δi
...
δi
δi



In figure 4.2 are reported examples of trajectories, with and without corridor con-
straints. For better understanding are report 2D trajectories, but the same example
could be made also for 3D trajectories. The corridor constraint is present only be-
tween two waypoints, waypoint 2 and waypoint 3. As is possible to see, the trajectory
remain in between the constraint, but become less smooth in compare to the one with-
out constraints. Moreover, notice that the entire trajectory is different and not only the
segment in between the corridor, this is another important advantage of using this
technique to generate trajectories.

38 Adding corridor constraints in d dimensions

Control 39

5
Control

The last important step of this work, is to derive a control law, able to track the desire
trajectory and to compensate for the movement of the sensor. We chose two different
control strategies, that are widely used in the control of quadrotor type UAV [18], [19].

5.1 Position tracking controller in SE(3)

In this section, will be introduce a tracking control for the vehicle, based on the work
[18]. We will use this control because it has been show to work well in many different
applications, from precision flights, to fast and aggressive flights. In particular, start-
ing from the model of the UAV, we will derive a position tracking control, based on
SO(3) group. The general linear group of order 3, GL(3), is a algebraic group composed
by all the non singular matrices A ∈ IR3×3 with matrix product. The orthogonal group
of order 3, O(3), is define as

O(3) = {A ∈ GL(3) : AT A = I} ⊆ GL(3)

It is easy to prove that if A belongs to O(3), then det[A] = ±1. The special orthogonal
group of order 3, SO(3), is define as

SO(3) = {A ∈ O(3) : det[A] = 1}

The rotation matrices belong to this group, and it is because the controller will use
errors based in the rotation matrices, we need to keep all the results in the group
SO(3). Finally, the special Euclidean group of order 3, SE(3), is just define as R ∈ SO(3),
T ∈ IR3

A :IR3 → IR3

x 7→ y = Rx + T

40 Position tracking controller in SE(3)

To derive the control law, we first need to define the tracking errors. In particular the
position and the velocity tracking errors are given by, respectively

ex = x− xd (5.1)
ev = ẋ− ẋd (5.2)

where the subscript d stands for desire. The attitude error is instead define as

eR =
1
2
(

RT
c R− RTRC

)∨ (5.3)

where R is the rotation matrix that encode the actual attitude of the UAV, while Rc(t) ∈
SO(3) is the computed attitude matrix, that must belongs to the special orthogonal
group. In fact we can define it as

b1,c =
[
cos(ψd) sin(ψd) 0

]T (5.4)

b3,c = −
kxex + kvev − ge3 − ẍd

||kxex + kvev − ge3 − ẍd||
(5.5)

b2,c =
b3,c × b1,c

||b3,c × b1,c||
(5.6)

Rc =
[

b2,c × b3,c b2,c b3,c
]

(5.7)

Where ψd is the desire yaw, e3 is the third dimension canonical vector, kx and kv are
positive control constants. The vee map ·∨ is the inverse of the hat map ·̂ : IR3 → SO(3)
define as

v =
[
v1 v2 v3

]T

v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (5.8)

The angular velocity error eω depends only from the desire yaw, since our trajec-
tory generator compute the desire yaw till the second derivative. However, it can be
compute simple by

eω = ω− RTRCω̂c (5.9)

where ω̂c = RT
c Ṙc.

The final control law is then divide in two contributions, one for the total force and
one for the torque

f = −(kxex + kvev − ge3 − ẍd)
TRe3 (5.10)

τ = −kReR − kωeω + ω× Icmω (5.11)

Control 41

where kR and kω are again positive control gains. As is possible to see, this controller
is very simple to implement and can be prove that the control is exponentially stable,
if the initial errors are sufficiently small1.
Of course the control law is not complete, because what we can control are the inputs
to the motors and not the force and torques. So for computing the linear acceleration
in the body frame we just need to do

ẍB =
1
m
·
[
0 0 f

]T (5.12)

For the angular acceleration in the body frame, we just need to compute

ω̇B = I−1
cm τ (5.13)

Then, by using the results from section 2.2.2, we can do the computation of the matrix
that encode the law from motors’ inputs to linear and angular acceleration and obtain


...

u2
i
...

 =


. . . a f . . .

. . .
(

li + ∆l
)
×
 0

0
a f

+

 0
0
b f

 . . .


−1

︸ ︷︷ ︸
T−1(β)

·
[

f
τ

]
(5.14)

where the matrix T−1(β) is the inverse of the estimated parameters, except that is
encoded only one row for the force, since the propellers are parallel to the frame of
the quadrotor. However the problem is in the computation of the inverse of the inertia
matrix, since the estimated parameters are coupled with the component of the inertia
and is not possible to estimate directly a f and b f . A naive approach is simply to
use the inertia computed with the CAD model. Of course, this approach will add
errors, since the CAD doesn’t provide a perfect data. However, this inverse will be
multiply with kR and kω and then just a simple retuning of the parameters will be
necessary. Instead, the term I−1

cm
(
ω × Icmω

)
as said in section 3.1 is very small and

will not introduce significant errors.

5.1.1 Adding the rotating platform

The previous controller was derive without the rotating platform. To introduce the
compensation for the movement of the cart, first of all we introduce the compensation
for the moving CoG. To do this we simply modify the terms li in the matrix T(β) and
then compute the inverse at every iteration. Of course, to do this, we need to know
precisely the position γ of the cart, this can be done since the motor that drive the cart
is provided of encoder [3]. The changing in the inertia matrix are instead compute
with the CAD, a more precisely solution could be to compute the system identifica-
tion with the moving cart or, if if doesn’t work, compute the system identification
multiple times with different positions of the sensors and then interpret the system as
a piecewise system.

1See the paper [18] for more details and the proof

42 Position tracking controller in SE(3)

Trajectory
generator

Position
controller

(5.10)(5.11)

T−1(β)
(5.14)

Quadrotor
dynamic

(2.36)

xd, ẋd, ẍd

ψd, ψ̇d, ψ̈d

f

τ

u

x, ẋ, ẍ

R, ω, ω̇

γ

Figure 5.1: Block diagram of the control scheme (the subscripts that indicate the mem-
bership of the frame are omitted).

The effects coming from the centrifugal force are not compensate in this controller,
because the maximum speed of the cart is sufficiently small to assume that all this
effects are neglectable. However, in case we want to take into account those, we just
need to add the compensation in the force vector, using the equation (2.35).

5.1.2 Simulation results

−4

−2

0

·10−2
x [m]

−5

0

5
·10−2

roll [rad]

−1

0

1

y [m]

−1

0

1
·10−2

pitch [rad]

0 5 10 15 20 25

0

0.5

1

t [s]

z [m]

without compensation
with compensation

0 5 10 15 20 25

0

0.5

1
·10−2

t [s]

yaw [rad]

Figure 5.2: Simulation results to a step input in the desire z, then hovering. Without
and with the cart compensation.

Control 43

In figure 5.2 is reported a simple example of trajectory tracking. In particular, the de-
sire trajectory is a step for the desire height z and hovering for the remaining variables.
Moreover, it is illustrates why the cart compensation is important.

In red, the result trajectories with the compensation are depicted, while, in blue, with-
out the compensation. Note how the results is much more stable with the compensa-
tion. Note also that in the simulation the mass of the moving cart is one third of the
real mass, this because if we simulate without compensation, the controller is not able
to keep the vehicle balance, resulting in a complete loss of control.

In figure 5.3 is instead depicted a simulation with the full mass of the cart. The control
algorithm is the one with the cart compensation and the desire trajectory is again a
step input for the desire height and constant for the other inputs. As is possible to
see the control works quite well but some oscillations are again noticeable. Those
oscillations come from the engines. It means that we know the position of the cart at
the actual time and than apply the control compensation. However the engines apply
a delay to the system and this compensation is delayed by the time constant of the
motors.

−4

−2

0

·10−2
x [m]

−2

0

2

·10−2
roll [rad]

−5

0

5

·10−2
y [m]

−1

0

1
·10−2

pitch [rad]

0 5 10 15 20 25

0

0.5

1

t [s]

z [m]

desire trajectory
results

0 5 10 15 20 25
−2
0
2
4
6

·10−3

t [s]

yaw [rad]

Figure 5.3: Simulation results to a step input in the desire z, then hovering. The cart is
moving with a constant speed of 6 rpm, the maximum possible for the engine adopted
[3].

44 Position tracking controller in SE(3)

This delay is very clear especially in the y position, since the moving part is in the y
and z axis. A solution for this problem could be to estimate the position of the cart
in advance with an accurate model of this. Other problems are some bias errors in
the steady state, however these problems come from the simulated bias of the sensors.
These errors are in conclusion in the order of the millimeter, and no solutions are
provide in this thesis, but is a direction for a future work in this project.

In figure 5.4 is instead reported an example of trajectory tracking with a smooth gen-
erated trajectory.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

0.5

1

t [s]

z
[m

]

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
[m

]

setpoints
generated trajectory

control output

Figure 5.4: Simulation of trajectory tracking.

Control 45

5.2 Model predictive control

Model predictive control (MPC) is an advanced method of process control that has been
in used in the process industries in chemical plants and oil refineries since the 1980s.
In recent years it has also been used in power system balancing models. Model pre-
dictive controllers rely on dynamic models of the process, most often linear empirical
models obtained by system identification. The main advantage of MPC is the fact
that it allows the current timeslot to be optimized, while keeping future timeslots in
account. This is achieved by optimizing a finite time-horizon, but only implementing
the current timeslot. MPC has the ability to anticipate future events and can take con-
trol actions accordingly. For instance, PID and the previously studied controllers do
not have this predictive ability. MPC is nearly universally implemented as a digital
control, although there is research into achieving faster response times with specially
designed analog circuitry2.
MPC is based on iterative, finite-horizon optimization of a model. At time t the
current plant state is sampled and a cost minimizing control strategy is computed
(via a numerical minimization algorithm) for a relatively short time horizon in the
future. Model Predictive Control is a multivariable control algorithm that uses:

• an internal dynamic model of the process,

• a history of past control moves,

• an optimization cost function J over the receding prediction horizon,

to calculate the optimum control moves. In particular, we use a state space model like

x(t + 1) = Ax(t) + Bu(t) (5.15)

where x(t) ∈ IRn, u(t) ∈ IRm are the state and input vectors, respectively, subject to
the constraints

x(t) ∈ X, u(t) ∈ U, ∀t ≥ 0 (5.16)

where the sets X ⊆ IRn and U ⊆ IRm are polyhedra [20]. MPC approaches such a
constrained regulation problem in the following way. Assume that a full measurement
or estimate of the state x(t) is available at the current time t. Then the finite time
optimal control problem

min
Ut→t+N|t

Jt
(
x(t), Ut→t+N|t

)
=

N

∑
i=1
||ri − xi||2Wx

+
N

∑
i=1
||∆u||2Wu

(5.17)

subject to xt+k+1|t = Axt+k|t + But+k|t, k = 1, . . . , N

xt+k|t ∈ X, ut+k|t ∈ U, k = 1, . . . , N

xt|t = x(t)

2https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control

46 Model predictive control

where || · ||2W is the square weighted norm, with weight matrix W, and ∆u is the
output rate. Now MPC just solve the optimization problem (5.17) and obtain the
corresponding input signal. The prediction of the state will be obtain with a standard
Kalman filter3. In conclusion, the main advantages of MPC for our applications are:

• take into account of all the system, include the motors,

• constraints in the input, in our case ui ∈
[
0 1

]
while the disvantages are:

• require the linearization of the system, loosing precision.

• more computation effort for the onboard CPU.

5.2.1 Linear model

First of all we need to compute a linear model for our vehicle. In particular, if we use
the results from section 3.1 we already have a linear model like

ω̇B = A(β)u (5.18)
ẍB = L(β1)u (5.19)

u̇ = − 1
τ

I4︸ ︷︷ ︸
=∆A

u +
1
τ

I4︸︷︷︸
=∆B

u2
in (5.20)

Now we need a linear model also for the position and orientation. To do this, we
will use the Euler angles instead of the quaternions, because all the math will be more
intuitive and clean, however, same results are possible using quaternions. If we denote
the orientation in the world frame as θW =

[
φ θ ψ

]T we have that

θ̇W = TωB (5.21)

where T is the rotation matrix

T =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)

 (5.22)

This is a higly non-linear system. To make this linear we chose the approach of the
small angles simplification. It means that if we assume that the angles are small
enough, we can approximate the trigonometric functions with the Taylor expansion:

sin(x) ≈ x

cos(x) ≈ 1− x2

2
tan(x) ≈ x

3For further more details, see [20]

Control 47

Moreover, we assume that the multiplication between two angles is approximate equal
to zero. From this, coupling equation (5.21) and the simplifications we have

θ̇W = TωB ≈
1 0 θ

0 1 −φ
0 θ 1

ωx,B
ωy,B
ωz,B

 =

ωx,B + θωz,B
ωy,B − φωz,B
ωz,B + φωz,B

 ≈
ωx,B

ωy,B
ωz,B

 = ωB (5.23)

Similar reasoning can be apply to the position in the world frame, that is

ẋW = RẋB (5.24)

where R is the rotation matrix, (for simplify the notation, s(x) = sin(x) and c(x) =
cos(x))

R =

c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(ψ) s(ψ)s(φ) + c(ψ)s(θ)c(ψ)
s(ψ)c(θ) c(ψ)c(φ) + s(ψ)s(θ)s(ψ) −c(ψ)s(φ) + s(ψ)s(θ)c(ψ)

s(θ) c(φ)s(θ) c(θ)c(φ)


and applying again the small angles approximations, we have

ẋW = RẋB ≈
 1 −ψ θ

ψ 1 −φ
−θ φ 1

ẋx,B
ẋy,B
ẋz,B


=

 ẋx,B − ψẋy,B + θẋz,B
ψẋx,B + ẋy,B − φẋz,B
−θẋx,B + φẋy,B + żx,B

 ≈
ẋx,B

ẋy,B
ẋz,B

 = ẋB (5.25)

The last simplification, actually is true if we consider the position error, and not the
position, if we assume that the error is sufficiently small. This makes sense, since in
our application we have that the trajectory is computed smooth and without any step
or artifacts that make the error big. Now, we need to add the gravity term and in
particular we have

ẍB = RT

 0
0
−g

+ L(β1)u ≈
 1 ψ −θ
−ψ 1 φ

θ −φ 1

 0
0
−g

+ L(β1)u

=

−θg
φg
−g

+ L(β1)u

=

0 −g 0
g 0 0
0 0 0


︸ ︷︷ ︸

=Ag

φ
θ
ψ

+ L(β1)u +

 0
0
−g

 (5.26)

48 Model predictive control

Coupling together equations (5.18), (5.19), (5.20), (5.23), (5.25), and (5.26), we obtain a
linear model for the control of the UAV:


ω̇B
θ̇W
u̇

ẋW
ẍB


︸ ︷︷ ︸

=ẋ

=


03×3 03×3 A(β) 03×3 03×3

I3 03×4 03×4 03×3 03×3
04×3 04×3 ∆A 04×3 04×3
03×3 03×3 03×4 03×3 I3
03×3 Ag L(β1) 03×3 03×3


︸ ︷︷ ︸

=A


ωB
θW
u

xW
ẋB


︸ ︷︷ ︸

=x

+


03×4
03×4
∆B

03×4
03×4


︸ ︷︷ ︸

=B

u2
in +

[
015×1
−g

]
︸ ︷︷ ︸

E

(5.27)

and if we want to control only the orientation, we can select as measured output θW

θW︸︷︷︸
=y

=
[
03×3 I3 03×10

]︸ ︷︷ ︸
=C

x + 03×4︸︷︷︸
=D

u2
in (5.28)

Finally, we need to discretized the system. We used the built-in MATLAB software to
do this, because it is easier and faster than do this by hands.

5.2.2 Adding the rotating platform

The last step of the controller is to add the compensation for the movement of the cart.
Again, we take into account only the displacement of the CoG and the changes in the
inertia matrix, neglecting the effects from the centrifugal force. We used a switching
MPC strategy. We design different linear models that correspond to a different posi-
tion of the cart. Then, during the cart movement, the controller decide which linear
model is closer to the actual position of the cart. Then apply the MPC regards that
specific linear model.

MPC 1

...

MPC n

Switch

Quadrotor
dynamic

(2.36)

Trajectory
generator

y

ref

uin,1

uin,n

uin

γ

Figure 5.5: Structure of a swithcing MPC controller with n different MPCs.

Control 49

In figure 5.5 is reported the structure of the switching MPC, note how all the MPC are
working, but the switch select only one output, depending on the position of the cart
γ.

5.2.3 Simulation results

In figure 5.6 we reported an example of trajectory tracking for the orientation with
an MPC controller. This simple example show that in simulation the MPC controller
works also with all the simplification and linearization of the system. More important,
there are no evidence of delay in the response of the system. This is an expected result,
since the main problem of the previous controller was that it doesn’t take into account
of the model of the motors, while MPC does. Moreover, the MPC has been shown to
work without an heavy workload in the CPU, and then an onboard implementation
is feasible.

0

0.2

0.4

θd,θ [rad]

φd
φ

−0.1

0

0.1 θd
θ

0 5 10 15 20 25 30

0

0.5

1

t [s]

ψd

ψ

Figure 5.6: Simulation of MPC control for attitude tracking.

For what concern the position control, instead, apart from the z axis, the control in x
and y doesn’t work as well as the previous attitude control. This is probably due to
the aggressive simplification made during the linearization of the system in equation
(5.25). Further more studies are needed to solve this problem. A possible solution
for this problem could be to use a switching MPC also for the position or couple
MPC with another controller. In particular, we tried to couple MPC with the previous
non-linear controller in SO(3). This solution is actually working but not as good as

50 Model predictive control

expected. In fact, if fe use only the non-linear controller, without MPC, we can obtain
better results.

Conclusions and future works 51

6
Conclusions and future works

In conclusion, in this thesis we contribute to the development of the control of the
Prometheus mapping drone.
We first derived a mathematical model of the vehicle with a different structure from
any other commercial UAV. Then, we have selected the hardware and software used
in the project.
We have linearized the system under some assumptions and compute a full estimation
of the model using a Kalman filter approach.
Then we implemented a trajectory generator that smoothly connect the setpoints from
navigation or covering algorithms, adding constraints necessary for indoor applica-
tion.
In the end we have developed two controllers, one able to track the trajectory previ-
ously generated and one to control the attitude of the UAV.
However, this is just a first approach in the control of the Prometheus UAV. During
the development of this thesis project, we encounter many problems and different so-
lutions to them. We applied some solutions but, in general. better performances could
be achieve if we used other solutions. In particular, in the model derivation we didn’t
take into account other phenomena, like aerodynamics turbulence caused by the so
called ground effect, the battery drain, and the deformation of the propellers at differ-
ent speed. We could also have used different strategies for the system identification
part, using more complicated algorithms that maybe work better for the full nonlinear
system of the quadrotor. The trajectory generator on one hand generates trajectory
that are smooth, in the sense that minimize the snap; on the other hand, it doesn’t
take into account the performance of the UAV. For instance, if we compute a trajec-
tory too aggressive and infeasible, we could end up with a big error in the control.
Further investigations are needed in this case. However, we could compute a trajec-
tory that take into account also the dynamic, for instance by adding other constraints
or by using a different cost function.
For the control part, we add some simplifications in the dynamic of the moving sen-
sors, adding errors in the steady state. We could also have computed a mathematical
model for the cart only, from the motor signal to the dynamic in the ring, then cou-
pling together with the model and obtained a more sophisticated controller. Moreover,

52

in the MPC, we didn’t investigate what all the linearization of the rotation matrices
actually comport, and we didn’t exploit other solutions, like non-linear MPC, adaptive
MPC or switching MPC also for the rotations and position. Another interesting so-
lution for the control part, could be to run the system identification online, and take
into account also of the varying of the parameters, derive from effects like the battery
drain during the fly.

BIBLIOGRAPHY 53

Bibliography

[1] P. Pounds, R. Mahony, and P.Corke. Modelling and control of a large quadrotor
robot. Control EngineeringPractice18, 2010. 1

[2] C. Mary, L. C. Totu, and S. Konge Koldbæk. Modelling and Control of Au-
tonomous Quad-Rotor. Aalborg Universitet, June 2010. 1

[3] C. Navarro Leoncio. Design of the Prometheus UAV. Master thesis project, Luleå
university of technology, 2016. 2, 13, 41, 43

[4] J. Solà. Quaternion kinematics for the error-state KF. February 2, 2016. 7

[5] E. Fresk, and G. Nikolakopoulos. Full Quaternion Based Attitude Control for a
Quadrotor. 2013 European Control Conference (ECC), July. 8

[6] J. Diebel. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors. Stanford University, 2006. 8

[7] T. Bresciani. Modelling, Identification and Control of a Quadrotor Helicopter. De-
partment of Automatic Control, Lund University, October 2008. 10

[8] E. Fresk, and G. Nikolakopoulos. Experimental Model Derivation and Control of
a Variable Pitch Propeller Quadrotor. IEEE Multi-Conference on System and Control,
2014. 11

[9] E. Fresk, R. J. Cotton, and G. Nikolakopoulos. Generalized Model Identification
for Multirotors: Towards applications in Auto Tunning. 2016. 11, 19, 20

[10] F. P. Beer, E. R. Johnston, D. F. Mazurek, P. J. Cornwell, and B. P. Self. Vector
Mechanics for Engineers, Statics and Dynamics. Tenth edition. 14

[11] N. Abas, A. Legowo, and R. Akmeliawati. Parameter Identification of an Au-
tonomous Quadrotor. 2011 4th International Conference on Mechatronics, 17-19 May
2011, Kuala Lumpur, Malaysia. 21

[12] G. Welch, and G. Bishop. An Introduction to the Kalman Filter. University of
North Carolina at Chapel Hill, Department of Computer Science. 21, 22

[13] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical Potential Field Tech-
niques for Robot Path Planning. Stanford University, California, 1989. 27

[14] M. Bl¨osch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision Based MAV Nav-
igation in Unknown and Unstructured Environments. Autonomous Systems Lab,
ETH Zurich. 27

54 Bibliography

[15] D. Mellinger, and V. Kumar. Minimum Snap Trajectory Geeration and Control
for Quadrotors. IEEE International Conference on Robotics and Automation, Shanghai,
China, 2011. 27

[16] C. Richter, A. Bry, and N, Roy. Polynomial Trajectory Planning for Quadrotor
Flight. Department of Aeronautics and Astronautics, Massachusetts Institute of Technol-
ogy, Cambridge. 27

[17] D. W. Mellinger. Trajectory Generation and Control for Quadrotors. University of
Pennsylvania, 2012. 28

[18] T. Lee, M. Leok, and N. H. McClamroch. Nonlinear Robust Tracking Control
of a Quadrotor UAV on SE(3). 2012 American Control Conference, Fairmont Queen
Elizabeth, Montréal, Canada, June 27 - June 29, 2012. 39, 41

[19] K. Alexis, G. Nikolakopoulos, and A. Tzes. Switching model predictive attitude
control for a quadrotor helicopter subject to atmospheric disturbances. Control En-
gineering Practice 19 (2011) 1195–1207. 39

[20] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for linear and hybrid
systems. January 29, 2014. 45, 46

	Contents
	1 Introduction
	2 Design and model
	2.1 Mechanical design
	2.2 Mathematical model
	2.2.1 Quaternion math
	2.2.2 Quadrotor modeling
	2.2.3 Adding the rotating platform

	2.3 Experimental setup

	3 System identification
	3.1 System simplification and linear approximation
	3.2 Quadrotor parameters
	3.3 Kalman filter
	3.4 Results

	4 Trajectories generator
	4.1 Trajectory definition
	4.2 Optimization of a trajectory between two waypoints
	4.3 Optimization of a trajectory between m+1 waypoints
	4.4 Adding corridor constraints in TEXT dimensions

	5 Control
	5.1 Position tracking controller in TEXT
	5.1.1 Adding the rotating platform
	5.1.2 Simulation results

	5.2 Model predictive control
	5.2.1 Linear model
	5.2.2 Adding the rotating platform
	5.2.3 Simulation results

	6 Conclusions and future works
	Bibliography

