

UNIVERSITÀ DEGLI STUDI DI PADOVA

FACOLTÀ DI INGEGNERIA

Corso di Laurea in Ingegneria Meccanica e Meccatronica curriculum Meccanico

Dipartimento di Tecnica e Gestione dei Sistemi Industriali

Tesi di Laurea Triennale

ANALISI NUMERICA DEL FATTORE TEORICO DI CONCENTRAZIONE DELLE TENSIONI DI PIASTRE IN MATERIALE ORTOTROPO CON INTAGLI ELLITTICI SOGGETTE A TRAZIONE

NUMERICAL ANALYSES OF THE STRESS CONCENTRATION FACTOR OF ORTHOTROPIC PLATES WEAKENED BY CENTRAL ELLIPTICAL NOTCHES UNDER TENSION

Relatore: Prof. Michele Zappalorto

Laureando: Nicola Pretto

Matricola: 1045548

ANNO ACCADEMICO 2015/2016

Sommario

Int	troduzione	1						
1.	Materiali ortotropi	3						
2.	. Teoria elasticità materiali ortotropi5							
	2.1. Equazioni indefinite di equilibrio	5						
	2.2. Equazioni di compatibilità	6						
	2.3. La funzione di Airy	6						
	2.4. Il legame tensioni – deformazioni	7						
	2.5. Effetto d'intaglio su materiali ortotropi	9						
	2.6. Fattore teorico di concentrazione delle tensioni	10						
3.	Analisi	14						
	3.1. Descrizione del componente	14						
	3.2. Metodo di analisi agli elementi finiti (FEM)	16						
	3.3. Costruzione del modello in Ansys	17						
	3.3.1 Il programma di calcolo Ansys	17						
	3.3.2 Preprocessor	17						
	3.3.3 Solution e PostProcessor	23						
4.	Risultati	25						
	4.1. Calcolo del fattore di concentrazione delle tensioni Ktg	25						
	4.2. Normalizzazione del Ktg	27						
	4.3. Calcolo dei fattori di forma α e confronto rispetto alla formulazione di Irwin	29						
	4.4. Calcolo di una espressione approssimata per il calcolo del Ktg in materiali ortotropi	31						
	4.4.1. Verifica di approssimazione	31						
	4.4.2. Calcolo dell'errore di approssimazione	34						
5.	Conclusioni	36						
Bil	bliografia	37						

Introduzione

Lo scopo di questa trattazione è quello di calcolare il fattore teorico di concentrazione delle tensioni Ktg (riferito alla gross section di una piastra), attraverso un'analisi agli elementi finiti (FEM), per diverse piastre in materiale ortotropo di tipologia differente, con intaglio centrale di forma ellittica a raggio di raccordo variabile.

Noti i valori di Ktg, si confronteranno poi i risultati ottenuti operando una normalizzazione dei dati e costruendo delle curve in ($Ktg_{normalizzato}$, 2a/W).

Utilizzando nuovamente i valori di Ktg trovati, si calcoleranno i corrispondenti valori del fattore di forma α , operando dapprima un confronto rispetto ai valori teorici proposti dallo studio di Irwin e poi, eseguendo una interpolazione dei dati, cercare di formulare una nuova espressione di α da poter utilizzare in applicazioni ingegneristiche per una stima rapida del Ktg.

1. Materiali ortotropi

Definizione:

Un materiale è ortotropo se è caratterizzato da proprietà meccaniche o termiche uniche e indipendenti nelle tre direzioni reciprocamente perpendicolari.

Nel caso di assunzione di comportamento lineare elastico del materiale, si può parlare di tre piani di simmetria elastica tra loro perpendicolari.

I materiali ortotropi sono un sottoinsieme dei materiali anisotropi, poiché le loro proprietà dipendono dalla direzione in cui vengono misurate.

Un esempio noto di un materiale ortotropo è il legno.

Le proprietà meccaniche del legno in un punto sono definite dalle direzioni longitudinale, radiale e tangente.

Figura 1.1

L'asse longitudinale (1) è parallelo alla direzione della fibra, l'asse radiale (2) è normale rispetto agli anelli e l'asse tangente (3) è tangente rispetto agli anelli.

Un altro esempio sono la lamiera metallica, formata per laminazione tra rulli che allungano la grana cristallina lungo una direzione preferenziale, oppure le lamine in materiale composito.

In particolare se il materiale ammette tre piani di simmetria mutuamente ortogonali, per esempio in una lamina di composito, tali piani sono individuati dal piano medio della lamina e dai piani a questo ortogonali paralleli alle due direzioni principali (direzione delle fibre e direzione ortogonale per rinforzo unidirezionale, direzioni delle fibre per rinforzo bidirezionale). Per comprendere meglio la differenza tra un materiale anisotropo generico ed uno ortotropo è utile osservare per esempio che l'applicazione di un carico di trazione, ad un elemento di forma cubica in materiale anisotropo, produce deformazioni e scorrimenti lungo tutti i lati dell'elemento (vedi fig.1.2a). Ciò si verifica indipendentemente dalla particolare direzione di applicazione del carico. Se invece il materiale è ortotropo allora esistono tre direzioni mutuamente ortogonali (direzioni principali o assi naturali del materiale) tale che l'applicazione di uno sforzo normale (trazione o compressione) in tali direzioni produce, come per un isotropo, deformazioni lineari nelle tre direzioni principali, mentre sono nulle le distorsioni nei piani da queste individuati (vedi fig.1.2b). Ciò è immediata conseguenza della simmetria del materiale e della sollecitazione applicata: la presenza di eventuali scorrimenti violerebbe infatti tale simmetria.

Figura 1.2

2. Teoria elasticità materiali ortotropi

Per poter trattare la teoria dell'elasticità per materiali ortotropi, e poter risolvere lo stato tensionale di un corpo soggetto a un sistema di forze assegnate, serve definire innanzitutto: le equazioni indefinite dell'equilibrio e le equazioni di congruenza (dette anche di compatibilità) descritte brevemente qui di seguito.

2.1. Equazioni indefinite di equilibrio

Si faccia riferimento all'ipotesi di uno stato piano di tensione ($\sigma_{zz} = \tau_{xz} = \tau_{yz} = 0$), e di uno stato piano di deformazione ($\varepsilon_{zz} = \gamma_{xz} = \gamma_{yz} = 0$), cioè rispettivamente che le tensioni e le deformazioni che agiscono al di fuori del piano xy siano nulle.

In tali condizioni si considerino agenti sull'elemento infinitesimo, rappresentato in figura (2.1) e di lati h e k, solamente le tensioni e deformazioni nel piano (x, y): σ_{xx} , σ_y , τ_{xy} , ε_{xx} , ε_{yy} , γ_{xy} .

Indicando con X la forza di volume in direzione x (per esempio la forza di gravità o d' inerzia), e imponendo l'equilibrio alla traslazione lungo la direzione x e dopo alcuni passaggi si ottiene:

$$\frac{d\sigma_{xx}}{dx} + \frac{d\tau_{xy}}{dy} + X = 0 \tag{2.1}$$

E ripetendo il procedimento impostando l'equilibrio in direzione y, si ottiene:

$$\frac{d\tau_{xy}}{dx} + \frac{d\sigma_{yy}}{dy} + Y = 0$$
(2.2)

Le eq. (2.1) e (2.2) sono dette equazioni indefinite di equilibrio.

2.2. Equazioni di compatibilità

Per determinare lo stato tensionale di un corpo non sono sufficienti solo le equazioni indefinite di equilibrio. Questo perché nel caso bidimensionale le equazioni indefinite sono due, mentre le componenti di tensione incognite sono tre (σ_x , σ_y , τ_{xy}), ed è quindi necessaria una terza equazione detta equazione di compatibilità espressa come segue:

$$\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
(2.3)

2.3. La funzione di Airy

Il metodo basato sulla funzione di Airy è uno dei più utilizzati per poter risolvere i problemi piani della teoria dell'elasticità.

La funzione di Airy è una funzione, che è generalmente indicata con ϕ ed è in funzione delle coordinate x e y.

Considerate due generiche funzioni f (x, y) e g (x, y), che soddisfano la relazione:

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y} \tag{2.4}$$

Tenendo presenti le condizioni di Cauchy-Schwarz, che assicurano l'esistenza di una funzione A (x, y) tale che:

$$f = \frac{\partial A}{\partial y}$$
 $g = \frac{\partial A}{\partial x}$ (2.5)

Utilizzando le equazioni indefinite di equilibrio, e Schwarz si ottiene:

$$\sigma_{xx} = \frac{\partial^2 \phi}{\partial y^2} \qquad \sigma_{yy} = \frac{\partial^2 \phi}{\partial x^2} \qquad \tau_{xy} = \frac{\partial^2 \phi}{\partial y \partial x}$$
(2.6)

Poi applicando le equazioni di Hooke generalizzate, l'equazione di congruenza, e applicando nuovamente il teorema di Schwarz, è possibile dimostrare l'esistenza di una equazione, detta equazione bi-armonica (dipendente dalla funzione di Airy), la cui risoluzione permette di trovare il campo di tensione per molti problemi:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}\right) = 0$$
(2.7)

2.4. Il legame tensioni – deformazioni

Considerando un generico sistema di riferimento (1,2,3), il legame tensioni – deformazioni può essere scritto in generale come segue:

Esprimendolo in forma più compatta si può scrivere:

$$(\sigma) = [C] \cdot (\varepsilon) \tag{2.9}$$

Dove [C] = matrice di rigidezza, ed è una matrice simmetrica. Inoltre la matrice [C] può essere invertita:

$$(\varepsilon) = [\mathcal{C}]^{-1} \cdot (\sigma) = [S] \cdot (\sigma) \tag{2.10}$$

Dove [S] = matrice di deformabilità o cedevolezza.

Nel caso di un materiale ortotropo, nella matrice di rigidezza, le costanti elastiche necessarie per descrivere il comportamento elastico sono 9 (anziché 21 costanti elastiche indipendenti necessarie per caratterizzare un materiale anisotropo):

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{12} \end{pmatrix}$$
(2.11)

Se si considera l'ipotesi di tensione piana in un materiale ortotropo ($\sigma_{33}, \sigma_{23}, \sigma_{13} = 0$), il legame tensioni – deformazioni diventa:

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{22} & 0 \\ 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{pmatrix}$$
(2.12)

Invertendo si ottiene:

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{pmatrix}$$
(2.13)

E la matrice di deformabilità può essere riscritta come:

$$[S] = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu_{21}}{E_2} & 0\\ \frac{-\nu_{12}}{E_1} & \frac{1}{E_2} & 0\\ 0 & 0 & \frac{1}{G_{12}} \end{bmatrix}$$
(2.14)

dove $E_1, E_2 =$ moduli elastici rispettivamente lungo le direzioni principali 1 e 2 $G_{12} =$ modulo di elasticità tangenziale

2.5. Effetto d'intaglio su materiali ortotropi

Sia ipotizzato uno stato piano di tensione e si riconsideri la funzione di Airy:

$$\sigma_{xx} = \frac{\partial^2 \phi}{\partial y^2} \qquad \sigma_{yy} = \frac{\partial^2 \phi}{\partial x^2} \qquad \tau_{xy} = \frac{\partial^2 \phi}{\partial y \partial x} \tag{2.15}$$

Considerando in modo esplicito le relazioni tensioni – deformazioni per un materiale ortotropo $(S_{16}, S_{26} = 0)$:

$$\begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{pmatrix}$$
(2.16)

$$\begin{cases} \varepsilon_{xx} = S_{11}\sigma_{xx} + S_{12}\sigma_{yy} \\ \varepsilon_{yy} = S_{12}\sigma_{xx} + S_{22}\sigma_{yy} \\ \gamma_{xy} = S_{66}\tau_{xy} \end{cases}$$
(2.17)

Sostituendovi la funzione di Airy si ottiene:

$$\begin{cases} \varepsilon_{xx} = S_{11} \frac{\partial^2 \phi}{\partial y^2} + S_{12} \frac{\partial^2 \phi}{\partial x^2} \\ \varepsilon_{yy} = S_{12} \frac{\partial^2 \phi}{\partial y^2} + S_{22} \frac{\partial^2 \phi}{\partial x^2} \\ \gamma_{xy} = S_{66} \frac{\partial^2 \phi}{\partial y \partial x} \end{cases}$$
(2.18)

Sostituendo infine nell'equazione di compatibilità:

$$\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + c \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
(2.19)

Si ottiene l'equazione bi-armonica modificata:

$$S_{22}\frac{\partial^4\phi}{\partial x^2} + (2S_{12} + S_{66})\frac{\partial^4\phi}{\partial x^2 \partial y^2} + S_{11}\frac{\partial^4\phi}{\partial y^4} = 0$$
(2.20)

La cui equazione caratteristica associata è:

$$S_{11}\mu^4 + (2S_{12} + S_{66})\mu^2 + S_{22} = 0$$
(2.21)

Che ammette 2 coppie di soluzioni complesse coniugate:

$$\mu_{1,3} = \pm i\beta_1 \qquad \qquad \mu_{2,4} = \pm i\beta_2 \tag{2.22}$$

2.6. Fattore teorico di concentrazione delle tensioni

Nei componenti meccanici è frequente la presenza di variazioni geometriche, come fori e intagli, e variazioni dimensionali. Questi hanno l'effetto di produrre delle perturbazioni nel campo tensionale del pezzo, comportando un aumento locale delle tensioni e deformazioni.

Per illustrare questo fenomeno si può considerare una piastra sottoposta a trazione che presenti nella sezione di mezzeria un intaglio (net section "sezione netta") come mostrato in figura (2.2).

Figura 2.2

Si può definire sulla piastra una tensione nominale sulla sezione lorda (pedice "g" gross), e sulla sezione netta (pedice "n" net).

$$\sigma_{nominale \, lorda} = \frac{F}{A_{lorda}} \qquad \sigma_{nominale \, netta} = \frac{F}{A_{netta}}$$
(2.23)

In particolare, in corrispondenza dell'apice dell'intaglio, si può notare un picco di tensione detto $\sigma_{picco\ elastico}$. Questa tensione è legata alla tensione nominale mediante un fattore, detto fattore teorico di concentrazione delle tensioni Kt:

$$Kt = \frac{\sigma_{picco\ elastico}}{\sigma_{nom}} \tag{2.24}$$

In base alla sezione a cui si fa riferimento, si può distinguere il kt della sezione netta o lorda:

$$Kt_{,net} = \frac{\sigma_{picco\ elastico}}{\sigma_{nom,net}} \qquad \qquad Kt_{,gross} = \frac{\sigma_{picco\ elastico}}{\sigma_{nom,gross}}$$
(2.25)

Nel caso di materiali isotropi il Kt, valutato in campo lineare elastico, dipende dai rapporti dimensionali tra le grandezze geometriche del componente, mentre non dipende dal materiale e dalle dimensioni assolute del componente.

Invece nel caso di materiali ortotropi il Kt, non dipende solamente dalla geometria e dai rapporti geometrici, ma anche dal materiale poiché, in base alla trattazione fatta in precedenza, è evidente che il calcolo tensionale in piastre ortotrope è influenzato dalle proprietà elastiche del materiale.

Per ovviare a questo problema M. Zappalorto e P. Carraro (2014) [2] hanno proposto una formulazione semplice (2.30) per poter stimare il Kt di una piastra ortotropa intagliata soggetta a trazione, utilizzando il Kt di una piastra di materiale isotropo, avente la stessa geometria.

A partire dall'espressione del Ktg riferito alla gross section per un foro ellittico in una piastra infinita di materiale ortotropo [3]:

$$Ktg = 1 + (\beta_1 + \beta_2)\sqrt{\frac{a}{\rho}} = 1 + \zeta\sqrt{\frac{a}{\rho}}$$
 (2.26)

Dove:

 $\zeta = \beta_1 + \beta_2$ = soluzioni dell'equazione caratteristica associata alla equazione bi-armonica modificata, per materiali ortotropi (ottenuta attraverso il metodo della funzione di Airy, che è già stata trattata precedentemente).

E richiamando la formulazione del Kt, per una piastra corrispondente isotropa con foro ellittico soggetta a trazione, calcolata da Inglis (nel 1913) utilizzando il metodo di Airy, (oppure ottenibile utilizzando anche il metodo dei potenziali complessi) si ha che:

$$\widetilde{Ktg} = 1 + 2\sqrt{\frac{a}{\rho}}$$
(2.27)

Dove $\rho = \frac{b^2}{a}$ raggio di curvatura all'apice dell'ellisse.

La si riscrive così:

$$\sqrt{\frac{a}{\rho}} = \frac{\widetilde{Ktg} - 1}{2} \tag{2.28}$$

E sostituendola nella formulazione (2.26) ottengo:

$$Ktg = 1 + \frac{\zeta}{2}(\widetilde{Ktg} - 1)$$
(2.29)

La quale in forma generica è:

$$Kt = 1 + \frac{\zeta}{2}(\widetilde{Kt} - 1) \tag{2.30}$$

Dove

 \widetilde{Kt} = Fattore teorico di concentrazione delle tensioni della piastra isotropa con la stessa geometria.

L'equazione (2.30) è valida solo per:

- Intagli poco profondi sia laterali che centrali in piastre infinite o semi-infinite soggette a trazione.
- Intagli laterali simmetrici molto profondi e con raggio di raccordo ridotto in piastre soggette a trazione.

Nel caso di tensione piana si ha che:

$$\zeta = \sqrt{2\sqrt{\frac{E_1}{E_2}} - 2\nu_{12} + \frac{E_1}{G_{12}}}$$
(2.31)

Osservazione:

Come riportato in [2] (par.10.4.2), nel caso di una piastra forata infinita in materiale composito ortotropo, con un foro centrale (Ktg = 3), l'espressione di Zappalorto e Carraro (2.30) restituisce:

$$Kt = 1 + \sqrt{2\sqrt{\frac{E_1}{E_2}} - 2\nu_{12} + \frac{E_1}{G_{12}}}$$
(2.32)

In accordo con la formulazione riportata su molti manuali tecnici (Agarwal, Broutman, Chandrashekhara, 2006).

Poiché l'equazione (2.26) è formulata per una piastra infinita, ovviamente non compare un termine che dipende direttamente dalle dimensioni della piastra, il quale sarebbe necessario per le applicazioni ingegneristiche.

Una possibile formulazione è:

$$Ktg = 1 + \alpha \left(\beta_1 + \beta_2\right) \sqrt{\frac{a}{\rho}} \qquad (2.33)$$

Dove α = fattore di forma secondo Irwin

$$\alpha = \sqrt{\frac{W}{\pi a} \cdot \tan\left(\frac{\pi a}{W}\right)}$$
(2.34)

Figura 2.4

3. ANALISI

3.1. Descrizione del componente

Il componente di interesse di questa trattazione è una piastra rettangolare, soggetta ad una tensione di trazione (σ), di base (W) e altezza (2W), che presenta al centro un intaglio di forma ellittica avente semiasse maggiore pari ad (a), semiasse minore pari a (b) e raggio di curvatura all'apice dell'ellisse pari a ($\rho = \frac{b^2}{a}$).

Un primo obiettivo di questa analisi è di trovare il Ktg tramite un'analisi agli elementi finiti (FEM), per tre geometrie di foro ellittico con (a = 1 mm fisso e raggio di raccordo ρ variabile) per 7 piastre di dimensioni differenti e per 6 relativi diversi materiali ortotropi (ovvero 21 modelli, geometrie di intaglio ellittico, ciascuna delle quali viene analizzata per 6 materiali differenti). Il tal modo, con i dati trovati, costruire delle curve in funzione di Ktg e 2a/W, per tutti i diversi casi, e confrontare poi i dati tra loro operando una normalizzazione del tipo $\frac{Ktg-1}{(\beta_1+\beta_2)}$. Le 3 geometrie di intaglio ellittico da analizzare sono:

a [mm]	ρ [mm]				
1	0.25				
1	0.1				
1	0.05				
Tabella 3.1					

Mentre le dimensioni delle 7 piastre in analisi sono:

$\frac{W}{2}$ [mm]	$\frac{2 a}{W}$ [mm]
100	0.01
50	0.02
20	0.05
10	0.1
5	0.2
3	0.33
2	0.5
Tabel	la 3.2

I materiali ortotropi analizzati sono:

	E_x [Mpa]	E_{y} [Mpa]	G_{xy} [Mpa]	v_{xy}	β_1	β_2	ς
							$(\beta_1 + \beta_2)$
Materiale 1	90900	18900	14600	0.57	0.5070	0.8902	1.3972
Materiale 2	18900	90900	14600	0.12	1.1249	1.9504	3.0788
Materiale 3	7990	164700	3030	0.012128	0.6208	7.3731	7.9939
Materiale 4	18500	204000	5600	0.020857	0.5561	5.9715	6.5276
Materiale 5	20650	207000	10040	0.031871	0.7176	4.4154	5.133
Materiale 6	160000	10000	5000	0.30	0.1799	1.3893	1.5692

Tabella 3.3

3.2. Metodo di analisi agli elementi finiti (FEM)

Il metodo di analisi agli elementi finiti è una delle metodologie di calcolo numerico che consente lo studio del campo di tensione di strutture e componenti meccanici più o meno complicati, quando non c'è la possibilità di utilizzare metodi analitici che forniscano soluzioni esatte in forma chiusa.

L'aspetto principale di questo metodo è la discretizzazione del continuo attraverso la creazione di una griglia (operazione detta mesh) composta da elementi primitivi (elementi finiti) di forma definita (triangoli e quadrilateri per domini 2D, esaedri e tetraedri per domini 3D), caratterizzati da un certo numero di nodi.

L'obiettivo di questa tecnica di simulazione è essenzialmente la risoluzione in forma discreta e approssimata di generali sistemi di equazioni alle derivate parziali (o PDE). In genere per risolvere questo tipo di problema ci si avvale del metodo delle rigidezze che consiste nel determinare, per un determinato sistema meccanico, la sua matrice di rigidezza [K] che ha la proprietà di legare il vettore degli spostamenti generalizzati {f} (spostamenti e rotazioni), al vettore delle forze generalizzate {F} (forze e momenti) del sistema, secondo questa equazione generalizzata, che il calcolatore è chiamato a risolvere:

$$\{F\} = [K] \{f\}$$
(3.1)

Da notare è il fatto che la risoluzione con il metodo agli elementi finiti è approssimata poiché la matrice di rigidezza [K] che si calcola, non è una matrice esatta. Questo perché dipende dalla dimensione dell'elemento utilizzato nella mesh, e inoltre non è possibile calcolarla in forma chiusa. Altro aspetto è che quando uso gli elementi finiti approssimo il campo di spostamento e il campo di tensione – deformazione usando delle funzioni di forma (che dipendono dalla forma dell'elemento e sono caratterizzate da polinomi di approssimazione).

Il risultato è che l'accuratezza di questo metodo dipende molto dalla dimensione dell'elemento finito che si utilizza, cioè più piccolo è l'elemento, più alta è risoluzione dell'analisi. Quindi la tendenza sarebbe quella di fare mesh più fitte in modo generalizzato, ma ciò comporta una certa onerosità computazionale che si traduce in tempi di risoluzione più lunghi e file più pesanti. Invece l'approccio più corretto ed efficiente, sarebbe quello di infittire la mesh nelle zone di maggiore interesse (specie nelle zone di variazione geometrica), evitare di realizzare elementi troppo distorti ed operare di volta in volta un'analisi di sensitività della mesh. Questa consiste nel condurre l'analisi risolvendo differenti proposte di mesh sempre più raffinate, fino a che non si arriva ad una sostanziale convergenza del risultato che si vuole ottenere: l'obiettivo è di valutare quale sia la soluzione che

permette di ottenere la migliore accuratezza con la mesh "meno fitta" e di quanto sia affidabile un risultato con un certo tipo di mesh.

3.3. Costruzione del modello in Ansys

3.3.1 Il programma di calcolo Ansys

Per risolvere la piastra con foro ellittico con il metodo degli elementi finiti, viene utilizzato il programma di simulazione FEM (Finite Element Method) Ansys.

Le fasi fondamentali per eseguire una simulazione in questo programma sono essenzialmente 3:

- 1) Preprocessor, prevede la:
- definizione del materiale e della sua legge costitutiva
- costruzione della geometria del componente e definizione di eventuali condizioni di simmetria
- tipologia dell'elemento da utilizzare nella mesh
- realizzazione della mesh
- scelta dei vincoli e delle forze in gioco a cui è sottoposto il componente
- 2) Solution: l'avvio della soluzione del modello creato.
- Postprocessor: fase in cui è possibile scegliere e visualizzare i risultati dell'analisi, quali per esempio lo stato tensionale del componente (anche in punti particolari), il profilo deformato, ecc.

Ora verranno illustrate di seguito le fasi per l'analisi della piastra con il programma Ansys.

3.3.2 Preprocessor

 <u>Definizione del tipo di elemento e di deformazione</u>: Element type - Add-Edit Delete / add / solid / 8 node 183 / ok Option - plane stress • <u>Definizione del Materiale</u>:

Material props - Material models / Structural / linear / Elastic / Orthotropic e si inseriscono i seguenti dati:

Moduli elastici	EX	***
	EY	***
	EZ	10000 Mpa
Coeff. di poisson	PRXY	***
	PRYZ	0.1
	PRXZ	0.1
Moduli elastici tangenz	ziali GXY	***
	GYZ	1000 Mpa
	GXZ	1000 Mpa

Legenda: *** = valori dati del materiale

• <u>Creazione della geometria</u>:

Per semplificare e snellire l'analisi, ci si limita a considerare un quarto di piastra e poi mettere in gioco le condizioni di simmetria.

- Creazione della piastra rettangolare:

Modeling / create / Areas / Rectangle / By 2 corners

(Nota: questa operazione fissa un vertice (un punto) da cui si definiscono la base e l'altezza del rettangolo)

Coordinate vertice	WP X	0
	WP Y	0
Dimensioni	Width	W/2
	Height	W

Figura 3.2

- Creazione del foro ellittico:
 - 1) Creazione cerchio

Modeling / create / Areas / Circle / solid circle

Coordinate centro cerchio WP X 0 WP Y 0 Raggio Radius 1 mm (semiasse maggiore (a))

 Creazione ellisse: trasformo il cerchio in una ellisse attraverso una operazione scala del semiasse minore (b)

Modeling / Operate / Scale / Areas / (selezionare il cerchio) / Apply

IMOVE Existing areas will be:

Moved (cancella il cerchio e mantiene l'ellisse)

 Creazione foro ellittico sulla piastra: Modeling / Operate / Booleans / Subtract / Areas / (selezionare la piastra rettangolare) / Apply / (seleziono ellisse) / ok

- <u>Creazione della mesh:</u>
- Creo suddivisioni sui lati interessati:
 Preprocessor / Meshing / Size Cntrls / Manual size / Lines / Picked Lines / (Selezionare linea i-esima) / (inserire):

Numero di suddivisioni	NDIV	***			
Gradiente di suddivisione	SPACE Ratio	***			
(Crea segmenti con lunghezza differente in base ad un gradiente,					
se = 1 segmenti uguali, se > 1 segmenti di diversa lunghezza)	I.				

N.B. Per invertire la direzione del gradiente dello SPACE Ratio, se necessario: Meshing / Size Cntrl / Manual size / Flip bias / (selezionare suddivisione) / ok

N.B. Scelgo il numero di suddivisioni in modo che:

- 1) La somma delle suddivisioni dei due lati contigui della piastra e opposti al bordo ellittico sia pari al numero di suddivisioni in corrispondenza del bordo dell'ellisse.
- Si ottenga in corrispondenza dello spigolo individuato tra bordo ellisse e base della piastra un elemento di mesh che abbia una forma similmente quadrata.

Per esempio nella piastra numero 1 sono stati utilizzati questi valori di NDIV e SPACE Ratio:

Figura 3.3

- Creazione effettiva della mesh:

Meshing / Mesh / Areas / Mapped / 3 o 4 sides / (selezionare area) / ok

- Infittire la mesh (mesh refinement) in corrispondenza del foro (questo per evitare di fare un refinement generale, che appesantirebbe troppo il file, ottenendo però lo stesso risultato):

Meshing / Modify Mesh / Refine at / at lines / (selezionare bordo ellisse) / (selezionare 1-5 Minimal) / (selezionare advanced option) / Dept of refinement (impostare un valore di profondità di refinement) / ok

Figura 3.5

• Applicazione delle condizioni di simmetria:

Preprocessor / Loads / Define Loads / Apply / Structural / Displacement / Symmetry BC / On lines / (selezionare le due linee di simmetria che separano il quarto della piastra dalla geometria complessiva) / ok

• Applicazione delle condizioni di carico:

Il carico che agisce è una tensione di trazione sulla superficie superiore della piastra

Preprocessor / Loads / Define Loads / Apply / Structural / Pressure / On lines / (selezionare la linea superiore della piastra a cui si applica la tensione di trazione) / Load Pres value (digitare – 100 Mpa) / ok

N.B. Essendo una simulazione condotta in campo lineare elastico, il valore del Ktg che si va a calcolare è ininfluente dal valore di tensione applicato, ed è quindi conveniente impostare una tensione di trazione di 100 Mpa, in modo tale che il valore di tensione che si leggerà, una volta avviata la soluzione, diviso per 100, dia proprio il valore di Ktg.

$$Kt_{,gross} = \frac{\sigma_{picco\ elastico}}{\sigma_{nom,gross}} = \frac{\sigma_{picco\ elastico}}{100}$$
(3.2)

3.3.3 Solution e PostProcessor

Solution

Ora è tutto pronto per poter lanciare la soluzione: Solution / Solve / Current LS / (attendere messaggio "Solution is done")

PostProcessor

Ora si va a visualizzare il risultato:

General Post Proc / Plot Results / Contour Plot / Nodal solu / (seleziono "stress Y direction")

Ora compare una schermata in cui si possono distinguere, in base alle zone colorate, gli stati tensionali nelle diverse regioni della piastra. Si nota subito che la zona maggiormente tensionata è quella in corrispondenza della zona inferiore dell'intaglio (zona rossa) corrispondente alla $\sigma_{picco\ elastico}$, dalla quale trovo immediatamente il valore di Ktg (dividendo $\sigma_{picco\ elastico}$ per 100).

Figura 3.6

4. Risultati

4.4. Calcolo del fattore di concentrazione delle tensioni Ktg

Notazione:

es. "1 – MAT1" = geometria foro 1 (ρ =0.25) e materiale 1

Kta	(FFM)	nº GFOM	FTRIA							
mg						-				
		1	2	3	1	2	3	1	2	3
n°	2a/w	1-MAT1	2-MAT1	3-MAT1	1-MAT2	2-MAT2	3- MAT2	1-MAT3	2-MAT3	3-MAT3
1	0,01	3,8081	5,4324	7,2484	7,1508	10,7214	14,751	16,835	26,0859	36,6472
2	0,02	3,8081	5,4421	7,2877	7,15	10,7282	14,7576	16,8762	26,06	36,3186
3	0,05	3,8161	5,4468	7,2779	7,1674	10,7301	14,7839	16,9424	26,3388	36,8105
4	0,1	3,8444	5,4795	7,3149	7,2273	10,8071	14,8862	17,4671	26,9825	37,6843
5	0,2	3,9649	5,6207	7,488	7,4626	11,1451	15,3008	18,9572	28,8022	40,1337
6	0,33	4,2961	5,9974	7,9319	8,0414	11,9229	16,3105	21,8208	33,2074	46,2818
7	0,5	5,1732	6,9684	9,0698	9,3513	13,6214	18,4807	26,0765	39,8448	55,238
Ktg	(FEM)	<u>n° GEOM</u>	ETRIA							
Ktg	(FEM)	n° GEOM	ETRIA 2	3	1	2	3	1	2	3
Ktg n°	(FEM) 2a/w	n° GEOM 1 1-MAT4	2 2-MAT4	3 3-MAT4	1 1-MAT5	2 2- MAT5	3 3-MAT5	1 1-MAT6	2 2-MAT6	3 3-MAT6
Ktg n° 1	(FEM) 2a/w 0,01	n° GEOMI 1 1-MAT4 14,044	2 2-MAT4 21,4536	3 3-MAT4 30,1689	1 1-MAT5 11,2572	2 2- MAT5 17,1665	3 3-MAT5 23,9562	1 1-MAT6 4,1393	2 2-MAT6 5,9624	3 3-MAT6 8,0182
Ktg n° 1 2	(FEM) 2a/w 0,01 0,02	n° GEOMI 1 1-MAT4 14,044 14,064	2 2-MAT4 21,4536 21,6488	3 3-MAT4 30,1689 30,1441	1 1-MAT5 11,2572 11,2657	2 2- MAT5 17,1665 17,2332	3 3-MAT5 23,9562 23,9401	1 1-MAT6 4,1393 4,1396	2 2-MAT6 5,9624 5,9638	3 -MAT6 8,0182 8,0197
Ktg n° 1 2 3	(FEM) 2a/w 0,01 0,02 0,05	n° GEOMI 1 1-MAT4 14,044 14,064 14,1145	2 2-MAT4 21,4536 21,6488 21,7842	3 3-MAT4 30,1689 30,1441 30,405	1 1-MAT5 11,2572 11,2657 11,3028	2 2- MAT5 17,1665 17,2332 17,295	3 3-MAT5 23,9562 23,9401 24,0474	1 1-MAT6 4,1393 4,1396 4,1449	2-MAT6 5,9624 5,9638 5,9713	3 -MAT6 8,0182 8,0197 8,0303
Ktg n° 1 2 3 4	(FEM) 2a/w 0,01 0,02 0,05 0,1	n° GEOMI 1 1-MAT4 14,044 14,064 14,1145 14,4161	2 2-MAT4 21,4536 21,6488 21,7842 22,1712	3 3-MAT4 30,1689 30,1441 30,405 30,9042	1 1-MAT5 11,2572 11,2657 11,3028 11,4681	2 2- MAT5 17,1665 17,2332 17,295 17,5195	3 3-MAT5 23,9562 23,9401 24,0474 24,3433	1 1-MAT6 4,1393 4,1396 4,1449 4,1736	2-MAT6 5,9624 5,9638 5,9713 6,004	3 3-MAT6 8,0182 8,0197 8,0303 8,0692
Ktg n° 1 2 3 4 5	(FEM) 2a/w 0,01 0,02 0,05 0,1 0,2	n° GEOMI 1 1-MAT4 14,044 14,064 14,1145 14,4161 15,3689	2 2-MAT4 21,4536 21,6488 21,7842 22,1712 23,3942	3 3-MAT4 30,1689 30,1441 30,405 30,9042 32,5473	1 1-MAT5 11,2572 11,2657 11,3028 11,4681 12,0616	2- MAT5 17,1665 17,2332 17,295 17,5195 18,3199	3 3-MAT5 23,9562 23,9401 24,0474 24,3433 25,412	1 1-MAT6 4,1393 4,1396 4,1449 4,1736 4,2991	2-MAT6 5,9624 5,9638 5,9713 6,004 6,1445	3 -MAT6 8,0182 8,0197 8,0303 8,0692 8,2324
Ktg n° 1 2 3 4 5 6	(FEM) 2a/w 0,01 0,02 0,05 0,1 0,2 0,33	n° GEOMI 1 1-MAT4 14,044 14,064 14,1145 14,4161 15,3689 17,2977	2 2-MAT4 21,4536 21,6488 21,7842 22,1712 23,3942 26,2781	3 3-MAT4 30,1689 30,1441 30,405 30,9042 32,5473 35,3732	1 1-MAT5 11,2572 11,2657 11,3028 11,4681 12,0616 13,3672	2 2- MAT5 17,1665 17,2332 17,295 17,5195 18,3199 20,1979	3 3-MAT5 23,9562 23,9401 24,0474 24,3433 25,412 27,5479	1 1-MAT6 4,1393 4,1396 4,1449 4,1736 4,2991 4,6475	2-MAT6 5,9624 5,9638 5,9713 6,004 6,1445 6,5237	3 3-MAT6 8,0182 8,0197 8,0303 8,0692 8,2324 8,6703

Tabella 4.1

Nota:

Per i materiali 3-4-5 è stata necessaria la realizzazione di una mesh più raffinata in corrispondenza dell'intaglio, rispetto agli altri casi, per cercare di ottenere una apprezzabile convergenza di Ktg nell' analisi di sensitività della mesh.

Graficamente si ottiene:

Calcolo Ktg teorico utilizzando la formulazione (2.26), nel caso di piastra infinita:

Ktg TEORICO	Ktg geom1	Ktg geom2	Ktg geom3
MAT1	3,7944	5,4183	7,2484
MAT2	7,1576	10,7360	14,7688
MAT3	16,9878	26,2789	36,7498
MAT4	14,0552	21,6420	30,1923
MAT5	11,266	17,2319	23,9554
MAT6	4,1384	5,96224	8,01767

Tabella 4.2

Osservazione: confrontando i dati di Ktg ottenuti dall'analisi FEM (tabella 4.1) e i valori teorici (tabella 4.2), si può osservare come nell'ipotesi di piastra infinita, ovvero dimensione della piastra molto maggiore delle dimensioni dell'intaglio (caso 2a/W = 0.01), i dati si corrispondano.

4.2. Normalizzazione del Ktg

Ora si esegue la normalizzazione dei dati del tipo $\frac{Ktg-1}{(\beta_1+\beta_2)}$:

4,4685

4,4647

4,5047

4,5811

4,8329

5,2658

6,3679

Ktg (Norm) <u>n° GEOMETRIA</u>										
		1	2	3	1	2	3	1	2	3
n°	2a/w	1-MAT1	2-MAT1	3-MAT1	1-MAT2	2-MAT2	3- MAT2	1-MAT3	2-MAT3	3-MAT3
1	0,01	2,0098	3,1723	4,4720	1,9977	3,1575	4,4663	1,9808	3,1381	4,4593
2	0,02	2,0098	3,1792	4,5002	1,9975	3,1597	4,4684	1,9860	3,1348	4,4181
3	0,05	2,0155	3,1826	4,4932	2,0031	3,1603	4,4770	1,9943	3,1697	4,4797
4	0,1	2,0357	3,2060	4,5196	2,0226	3,1853	4,5102	2,0599	3,2502	4,5890
5	0,2	2,1220	3,3071	4,6435	2,0990	3,2951	4,6449	2,2463	3,4779	4,8954
6	0,33	2,3590	3,5767	4,9612	2,2870	3,5477	4,9728	2,6045	4,0289	5,6645
7	0,5	2,9868	4,2716	5,7756	2,7125	4,0994	5,6777	3,1369	4,8593	6,7849
Ktg (Norm)		<u>n° GEOM</u>	ETRIA							
		1	2	3	1	2	3	1	2	3
n°	2a/w	1-MAT4	2-MAT4	3-MAT4	1-MAT5	2- MAT5	3-MAT5	1-MAT6	2-MAT6	3-MAT6

3,1495

3,1625

3,1745

3,2182

3,3742

3,7400

4,3798

4,4722

4,4691

4,4900

4,5476

4,7558

5,1720

6,0934

2,0005

2,0007

2,0041

2,0224

2,1024

2,3244

2,9049

3,1623

3,1632

3,1680

3,1888

3,2784

3,5200

4,1506

4,4724

4,4734

4,4801

4,5049

4,6089

4,8880

5,6016

1,9982

1,9999

2,0071

2,0393

2,1549

2,4093

2,8662

Tabella 4.3

Graficamente si ottiene:

1

2

3

4

5

6 7 0,01

0,02

0,05

0,1

0,2

0,33

0,5

1,9982

2,0013

2,0090

2,0552

2,2012

2,4967

2,9652

3,1334

3,1633

3,1840

3,2433

3,4306

3,8724

4,5663

Figura 4.2

Osservazione: si può notare come normalizzando Ktg rispetto alle proprietà del materiale, si individuano 3 andamenti distinti di Ktg, a dimostrazione della dipendenza di Ktg dalla geometria e dai rapporti geometrici.

Nota: Gli andamenti Ktg med GEOM 1-2-3 sono stati ottenuti per interpolazione dei dati:

n°	2a/w	Ktg med GEOM 1	Ktg med GEOM 2	Ktg med GEOM 3			
1	0,01	1,997604242	3,152217522	4,468505696			
2	0,02	1,999238431	3,160501098	4,465703215			
3	0,05	2,005571805	3,173237686	4,487484951			
4	0,1	2,03924593	3,215370947	4,542139733			
5	0,2	2,154352714	3,360588436	4,730286698			
6	0,33	2,413540367	3,714360505	5,154094144			
7	0,5	2,928792509	4,387872538	6,050228523			

Tabella A A

4.3. Calcolo dei fattori di forma α e confronto rispetto alla formulazione di Irwin

Si calcolano ora i valori di α e li si confrontano poi rispetto alla formulazione proposta da Irwin:

а

$$(FEM) \quad \alpha = \frac{Ktg_{FEM} - 1}{(\beta_1 + \beta_2)\sqrt{\frac{a}{\rho}}} \qquad (IRWIN) \quad \alpha = \sqrt{\frac{W}{\pi a}} \cdot \tan\left(\frac{\pi a}{W}\right) \qquad (4.1)$$

b

α_{FEM} <u>n° GEOMETRIA</u>										
		1	2	3	1	2	3	1	2	3
n°	2a/w	1-MAT1	2-MAT1	3-MAT1	1-MAT2	2-MAT2	3- MAT2	1-MAT3	2-MAT3	3-MAT3
1	0,01	1,0049	1,0031	0,9999	0,9988	0,9984	0,9987	0,9904	0,9923	0,9971
2	0,02	1,0049	1,0053	1,0062	0,9987	0,9991	0,9991	0,9930	0,9913	0,9879
3	0,05	1,0077	1,0064	1,0047	1,0015	0,9993	1,0010	0,9971	1,0023	1,0016
4	0,1	1,0178	1,0138	1,0106	1,0113	1,0073	1,0085	1,0299	1,0278	1,0261
5	0,2	1,0610	1,0458	1,0383	1,0495	1,0420	1,0386	1,1231	1,0998	1,0946
6	0,33	1,1795	1,1310	1,1093	1,1435	1,1219	1,1119	1,3022	1,2740	1,2666
7	0,5	1,4934	1,3508	1,2914	1,3562	1,2963	1,2695	1,5684	1,5366	1,5171

Tabella 4.5

α_{FEM}		<u>n° GEOMETRIA</u>								
		1	2	3	1	2	3	1	2	3
n°	2a/w	1-MAT4	2-MAT4	3-MAT4	1-MAT5	2- MAT5	3-MAT5	1-MAT6	2-MAT6	3-MAT6
1	0,01	0,9991	0,9908	0,9991	0,9991	0,9959	1,0000	1,0002	1,0000	1,0000
2	0,02	1,0006	1,0003	0,9983	0,9999	1,0000	0,9993	1,0003	1,0003	1,0002
3	0,05	1,0045	1,0068	1,0072	1,0035	1,0038	1,0040	1,0020	1,0018	1,0017
4	0,1	1,0276	1,0256	1,0243	1,0196	1,0177	1,0168	1,0112	1,0084	1,0073
5	0,2	1,1006	1,0848	1,0806	1,0774	1,0670	1,0634	1,0512	1,0367	1,0305
6	0,33	1,2483	1,2245	1,1774	1,2046	1,1827	1,1564	1,1622	1,1131	1,0929
7	0,5	1,4826	1,4439	1,4239	1,4331	1,3850	1,3625	1,4524	1,3125	1,2525

Tabella 4.6

n°	2a/w	α IRWIN (Teorico)
1	0,01	1,000041085
2	0,02	1,000164378
3	0,05	1,00102905
4	0,1	1,004140508
5	0,2	1,016963799
6	0,33	1,048930023

Graficamente si ottiene:

Osservazione: Si nota che l'andamento proposto da Irwin (per cricca centrata in una piastra di larghezza finita) approssima bene i dati nel caso di 2a/W= 0.01-0.02-0.05 (casi di piastre con dimensioni relative molto più grandi rispetto a quelle dell'intaglio); mentre per dimensioni di piastra più piccole, ovvero all'aumentare di 2a/W, si osserva che l'andamento degli α calcolati si allontana progressivamente da quello di Irwin.

4.4. Calcolo di una espressione approssimata di α per il calcolo del Ktg in materiali ortotropi

Interpolando i dati di α_{FEM} e approssimando l'andamento interpolante con una polinomiale di quinto grado (vedi figura 4.3), ottengo una espressione generale approssimata di α per calcolare il Ktg in materiali ortotropi:

n°	2a/w	α medio							
1	0,01	0,998269692							
2	0,02	0,999206338							
3	0,05	1,003227969							
4	0,1	1,017355286							
5	0,2	1,065870664							
6	0,33	1,177948198							
7	0,5	1,40161187							

Tabella 4.7

L'equazione della polinomiale che approssima meglio i dati è:

$$\alpha_{new} = -23,506x^5 + 24,966x^4 - 8,7097x^3 + 2,6942x^2 - 0,0146x + 0,9983$$
(4.2)

4.4.1 Verifica di approssimazione

Ora si esegue il calcolo della deviazione relativa (4.4) tra i Ktg_{new} (calcolati con la nuova espressione di α) e i Ktg_{FEM} (trovati con l'analisi FEM):

$$Ktg_{new} = 1 + \alpha_{new} \left(\beta_1 + \beta_2\right) \sqrt{\frac{a}{\rho}}$$
(4.3)

$$\Delta(\%) = \left(\frac{Ktg_{new}}{Ktg_{FEM}} - 1\right) \cdot 100 \tag{4.4}$$

					Tabella 4.8					
2A/W		0,01			0,02			0,05		
	ρ	Ktg	Ktg new	Δ (%)	Ktg	Ktg new	Δ (%)	Ktg	Ktg new	Δ (%)
		(FEM)			(FEM)			(FEM)		
MAT 1	0,25	3,8081	3,789971	-0,47607	3,8081	3,791661	-0,43168	3,8161	3,803804	-0,3222
	0,1	5,4324	5,411331	-0,38784	5,4421	5,414004	-0,51627	5,4468	5,433204	-0,24961
	0,05	7,2484	7,238564	-0,1357	7,2877	7,242344	-0,62236	7,2779	7,269497	-0,11545
MAT 2	0,25	7,1508	7,14784	-0,04139	7,15	7,151565	0,021889	7,1674	7,178323	0,152402
	0,1	10,7214	10,72059	-0,00757	10,7282	10,72648	-0,01605	10,7301	10,76879	0,360545
	0,05	14,751	14,74699	-0,0272	14,7576	14,75532	-0,01547	14,7839	14,81515	0,211384
MAT 3	0,25	16,835	16,96246	0,757105	16,8762	16,97213	0,568438	16,9424	17,04161	0,585552
	0,1	26,0859	26,23886	0,586383	26,06	26,25416	0,745035	26,3388	26,36401	0,095703
	0,05	36,6472	36,69314	0,125365	36,3186	36,71477	1,090818	36,8105	36,87012	0,161972
MAT 4	0,25	14,044	14,03451	-0,0676	14,064	14,0424	-0,15355	14,1145	14,09914	-0,10885
	0,1	21,4536	21,60937	0,726056	21,6488	21,62185	-0,12447	21,7842	21,71155	-0,33348
	0,05	30,1689	30,14604	-0,07576	30,1441	30,1637	0,065034	30,405	30,29056	-0,37638
MAT 5	0,25	11,2572	11,24973	-0,06638	11,2657	11,25594	-0,08665	11,3028	11,30055	-0,01991
	0,1	17,1665	17,20624	0,231514	17,2332	17,21606	-0,09944	17,295	17,2866	-0,04857
	0,05	23,9562	23,91909	-0,15491	23,9401	23,93298	-0,02976	24,0474	24,03273	-0,061
MAT 6	0,25	4,1393	4,133426	-0,14192	4,1396	4,135324	-0,10329	4,1449	4,148962	0,098005
	0,1	5,9624	5,954381	-0,1345	5,9638	5,957383	-0,1076	5,9713	5,978946	0,128053
	0,05	8,0182	8,006552	-0,14526	8,0197	8,010798	-0,111	8,0303	8,041294	0,136901

2A/W		0,1			0,2			0,33		
	ρ	Ktg	Ktg new	Δ (%)	Ktg	Ktg new	Δ (%)	Ktg	Ktg new	Δ (%)
		(FEM)			(FEM)			(FEM)		
MAT 1	0,25	3,8444	3,842838	-0,04064	3,9649	3,978534	0,343878	4,2961	4,291706	-0,10228
	0,1	5,4795	5,494921	0,281432	5,6207	5,709476	1,579455	5,9974	6,204644	3,455571
	0,05	7,3149	7,356778	0,572507	7,488	7,660205	2,299752	7,9319	8,360479	5,403229
MAT 2	0,25	7,2273	7,264335	0,51243	7,4626	7,563349	1,350057	8,0414	8,253439	2,636841
	0,1	10,8071	10,90478	0,903879	11,1451	11,37757	2,085819	11,9229	12,46869	4,577695
	0,05	14,8862	15,00748	0,814705	15,3008	15,6761	2,452783	16,3105	17,21918	5,571151
MAT 3	0,25	17,4671	17,26493	-1,15743	18,9572	18,0413	-4,8314	21,8208	19,83307	-9,10932
	0,1	26,9825	26,71711	-0,98355	28,8022	27,94466	-2,97733	33,2074	30,7777	-7,31673
	0,05	37,6843	37,36949	-0,83539	40,1337	39,10551	-2,56192	46,2818	43,11203	-6,84884

	ρ	Ktg	Ktg new	Δ (%)	Ktg	Ktg new	Δ (%)	Ktg	Ktg new	Δ (%)
		(FEM)			(FEM)			(FEM)		
MAT 4	0,25	14,4161	14,2815	-0,9337	15,3689	14,91546	-2,95037	17,2977	16,37857	-5,31358
	0,1	22,1712	21,99989	-0,77267	23,3942	23,00227	-1,67531	26,2781	25,31566	-3,66253
	0,05	30,9042	30,69833	-0,66616	32,5473	32,11592	-1,32541	35,3732	35,38753	0,040519
MAT 5	0,25	11,4681	11,44395	-0,21059	12,0616	11,94247	-0,98769	13,3672	13,09299	-2,05135
	0,1	17,5195	17,51333	-0,0352	18,3199	18,30156	-0,1001	20,1979	20,1207	-0,38223
	0,05	24,3433	24,35338	0,041409	25,412	25,4681	0,220776	27,5479	28,04075	1,789069
MAT 6	0,25	4,1736	4,192801	0,460047	4,2991	4,345202	1,072364	4,6475	4,696926	1,063501
	0,1	6,004	6,048261	0,73719	6,1445	6,289229	2,355419	6,5237	6,845354	4,930539
	0,05	8,0692	8,139319	0,868971	8,2324	8,480099	3,008831	8,6703	9,266578	6,877251

2A/W		0,5		
	ρ	Ktg	Ktg new	Δ (%)
		(FEM)		
MAT 1	0,25	5,1732	4,916771	-4,95688
	0,1	6,9684	7,192958	3,222524
	0,05	9,0698	9,758166	7,589646
MAT 2	0,25	9,3513	9,6308	2,98889
	0,1	13,6214	14,64649	7,525607
	0,05	18,4807	20,29906	9,839214
MAT 3	0,25	26,0765	23,4093	-10,2284
	0,1	39,8448	36,43221	-8,5647
	0,05	55,238	51,10872	-7,47544
MAT 4	0,25	20,356	19,29882	-5,19345
	0,1	30,807	29,93298	-2,83709
	0,05	42,5673	41,91741	-1,52674
MAT 5	0,25	15,7126	15,38934	-2,05734
	0,1	23,4817	23,75154	1,149161
	0,05	32,2775	33,17554	2,782247
MAT 6	0,25	5,5584	5,398938	-2,86884
	0,1	7,5132	7,955332	5,88474
	0,05	9,7901	10,83633	10,68656

4.4.2 Calcolo dell'errore di approssimazione

Tabella 4.9

Si riassumono, nella tabella che segue (4.9), i dati dei Δ (%) calcolati nella tabella (4.8):

	<u>N° GEOMETRIA</u>									
Δ(%)		1	2	3	1	2	3	1	2	3
N°	2a/w	1-MAT1	2-MAT1	3-MAT1	1-MAT2	2-MAT2	3- MAT2	1-MAT3	2-MAT3	3-MAT3
1	0,01	-0,47607	-0,38784	-0,1357	-0,04139	-0,00757	-0,0272	0,757105	0,586383	0,125365
2	0,02	-0,43168	-0,51627	-0,62236	0,021889	-0,01605	-0,01547	0,568438	0,745035	1,090818
3	0,05	-0,3222	-0,24961	-0,11545	0,152402	0,360545	0,211384	0,585552	0,095703	0,161972
4	0,1	-0,04064	0,281432	0,572507	0,51243	0,903879	0,814705	-1,15743	-0,98355	-0,83539
5	0,2	0,343878	1,579455	2,299752	1,350057	2,085819	2,452783	-4,8314	-2,97733	-2,56192
6	0,33	-0,10228	3,455571	5,403229	2,636841	4,577695	5,571151	-9,10932	-7,31673	-6,84884
7	0,5	-4,95688	3,222524	7,589646	2,98889	7,525607	9,839214	-10,2284	-8,5647	-7,47544
		<u>N° GEOM</u>	ETRIA							
Δ(%)		1	2	3	1	2	3	1	2	3
N°	2a/w	1-MAT1	2-MAT1	3-MAT1	1-MAT2	2-MAT2	3- MAT2	1-MAT3	2-MAT3	3-MAT3
1	0,01	-0,0676	0,726056	-0,07576	-0,06638	0,231514	-0,15491	-0,14192	-0,1345	-0,14526

Si valuta il valore massimo e minimo dei Δ (%) per ogni dimensione di piastra e poi si opera la differenza tra i due valori per il calcolo del Δ errore (%):

-0,08665

-0,01991

-0,21059

-0,98769

-2,05135

-2,05734

-0,09944

-0,04857

-0,0352

-0,1001

-0,38223

1,149161

-0,02976

0,041409

0,220776

1,789069

2,782247

-0,061

-0,10329

0,098005

0,460047

1,072364

1,063501

-2,86884

-0,1076

0,128053

0,73719

2,355419

4,930539

5,88474

-0,111

0,136901

0,868971

3,008831

6,877251

10,68656

2

3

4

5

6

7

0,02

0,05

0,1

0,2

0,33

0,5

-0,15355

-0,10885

-0,9337

-2,95037

-5,31358

-5,19345

-0,12447

-0,33348

-0,77267

-1,67531

-3,66253

-2,83709

0,065034

-0,37638

-0,66616

-1,32541

0,040519

-1,52674

Tabella 4.10

DEVIAZIONE RELATIVA (%)									
\mathbf{N}°	2a/w	Max (%)	Min (%)	Δ errore (%)					
1	0,01	0,75	-0,47	1,23					
2	0,02	1,09	-0,62	1,71					
3	0,05	0,58	-0,37	0,96					
4	0,1	0,90	-1,15	2,06					
5	0,2	3,00	-4,83	7,84					
6	0,33	6,87	-9,10	15,98					
7	0,5	10,68	-10,22	20,91					

.....

Osservazione sui risultati:

Si può osservare che per le piastre 2a/W= 0.01-0.02-0.05 si hanno valori di Δ errore (%) bassi intorno all'1%, e tali valori vengono approssimati molto bene anche dalla relazione di α calcolata da Irwin. Mentre per valori maggiori di 2a/W, si osserva un aumento progressivo del valore di Δ errore (%) che passa dal 2.06% (per 2a/W= 0.1) fino ad arrivare al 20.9% (per 2a/W= 0.5), a causa della dispersione dei dati che si ha per dimensioni di piastra più piccole.

Quindi da questa analisi la relazione per una stima rapida del Ktg per materiali ortotropi con intaglio centrale ellittico è:

$$Ktg = 1 + \alpha \left(\beta_1 + \beta_2\right) \sqrt{\frac{a}{\rho}}$$
(4.3)

Con:

$$\alpha = -23,506x^5 + 24,966x^4 - 8,7097x^3 + 2,6942x^2 - 0,0146x + 0,9983$$

dove
$$x = \frac{2a}{W}$$

5. Conclusioni

Dall'analisi sino a qui condotta si può concludere in una prima istanza che, dopo aver trovato i valori di Ktg attraverso una analisi numerica FEM, e poi operando una normalizzazione dei dati di Ktg, ovvero rimovendo la dipendenza dal materiale, è stato possibile confrontarli tra loro e riuscire a distinguere nel diagramma (figura 4.2) tre andamenti distinti, uno per ogni geometria di foro ellittico, a dimostrazione del fatto della dipendenza di Ktg dalla geometria e dai rapporti geometrici.

Dopodiché, calcolando i valori dei fattori di forma α con i dati di Ktg (FEM), utilizzando la formula (4.1a), e confrontandoli con quelli ottenuti con la formulazione di α proposta da Irwin (per cricca centrata in una piastra di larghezza finita), si può osservare una corrispondenza tra i dati fino a 2a/W= 0.05, mentre per valori di 2a/W superiori, si hanno α (FEM) molto maggiori rispetto ad α (Irwin). Infine con l'obiettivo di trovare una nuova espressione α_{new} , che permetta il calcolo rapido di Ktg in piastre di materiale ortotropo con intagli centrali ellittici, è stata eseguita una interpolazione dei dati di α , calcolati nel passaggio precedente, approssimando l'andamento con una funzione polinomiale. In conclusione per eseguire una verifica del grado di accuratezza della approssimazione, sono stati calcolati i nuovi valori di Ktg (formula 4.3), utilizzando i valori di α calcolati con la espressione (4.2), e si è fatto un confronto con i dati di Ktg (FEM), valutando rispettivamente tra loro la deviazione relativa in termini percentuali. Si è ottenuto (vedi tabella 4.10) che per le prime 3 dimensioni di piastra (2a/W = 0.01-0.02-0.05) l'errore di approssimazione commesso è basso, intorno all'1%. Mentre per valori di 2a/W progressivamente maggiori, ovvero per dimensioni di piastra più piccole, gli errori di approssimazione passano dal 2.06% (per 2a/W= 0.1) fino ad arrivare al 20.9% (per 2a/W= 0.5), a causa della dispersione dei dati.

Bibliografia

Sitografia:

[1] http://imechanica.org/files/Cap4.pdf

Bibliografia:

[2] M.Zappalorto (2015) "Appunti del corso di Meccanica dei Materiali" (Anno accademico 2015-2016)

[3] M.Zappalorto, P.Carraro (2014) "An engineering formula for the stress concentration factor of orthotropic composite plates" ScienceDirect

[4] M.Quaresimin, M.Zappalorto (2015) "Costruzioni di macchine" Cleup