

Corso di Laurea in Ingegneria dell'Energia

Relazione per la prova finale

Analisi magnetiche per il progetto preliminare di sensori DCCT per la misura di corrente di fascio dell'esperimento SPIDER

TUTOR UNIVERSITARIO

NICOLO' MARCONATO

Padova 14/09/2022

LAUREANDO

www.dii.unipd.i

Il lavoro svolto verte sulla realizzazione di modelli numerici per la simulazione di sensori DCCT per la misura del fascio di corrente di ioni dell'esperimento SPIDER.

I modelli realizzati sono stati utili al fine di:

- simulare il prototipo di DCCT che verrà prossimamente realizzato;
- implementare un primo modello con geometria realistica di DCCT installabile in SPIDER e realizzare alcune prime analisi preliminari per valutarne la fattibilità.

Il Direct current current transformer (DCCT) è un dispositivo che permette la misura accurata di correnti.

Permetterà una misura diretta del fascio di ioni di Spider.

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE FUNZIONAMENTO DI UN DCCT

- Due nuclei ferromagnetici coassiali sono magnetizzati in senso opposto da un segnale di modulazione attraverso;
- Due avvolgimenti di eccitazione (I_{mod}) avvolti in senso inverso attorno ai rispettivi nuclei per farli saturare;
- Un avvolgimento di pick-up (I_{ind}) avvolto su entrambi i nuclei permette la lettura della tensione indotta v_s;
 - $v_s = 0$ se $I_{beam} = 0$
 - $v_s \neq 0$ se $I_{beam} \neq 0$
- Il fascio di ioni è compensato dalla corrente di compensazione (I_{comp}) generata da un controllore.

Il modello numerico è stato implementato tramite software Comsol Multiphysics creando una geometria parametrica.

MODELLIZZAZIONE DEI COMPONENTI

- ferromagnetico
- 2. Avvolgimenti di eccitazione
- Bobina di sensing 3.
- Beam 4.

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

definizione input/output forzanti

 $\nabla \mathbf{x} \mathbf{H} = \mathbf{J}$

 $\mathbf{B} = \nabla \mathbf{x} \mathbf{A}$

 $J = \sigma E + Je$

 $\mathbf{E} = -\frac{\partial A}{\partial t}$

analisi della geometria bobina

Avvolgimenti di eccitazione: bobina numerica, in serie, avvolgimento omogeneizzato

Avvolgimento pick-up: **bobina numerica**, eccitato in corrente e **aperto** (I=0)

Beam: corrente esterna

COMPONENTI

Fisica utilizzata: circuiti elettrici e campi magnetici.

Studio Stazionario preliminare seguito da studio Transitorio nel dominio del tempo.

FISICA E CONDIZIONI AL CONTORNO

Vpk-pk	Ν	Nsense
8.8 V	50	10

l_beam			
А	0.1 A		
В	1 A		
С	10 A		

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Time (s)

0.0035

0.004

0.0045

0.005

0.0055

Corso di Laurea in Ingegneria ...

0.006

Tensione Sense [mV]

I_beam=**0** A

Tensione Sense [mV]

I_beam=10 A

E' stato realizzato un prototipo in laboratorio per valutare e confrontare i risultati ottenuti grazie alle simulazioni FEM.

3xx

0.0035

0.004

0.0045

0.005

0.0055

0.006

www.dii.unipd.it

o o.coos o.coi o.cois Corso di Laurea in Ingegneria ... 0.002

0.0025

0.003

12

Vsense_max			
I_beam	Modello numerico	Modello reale	
0 A	15 mV	51 mV	
1A	160 mV	195 mV	
10 A	490 mV	486 mV	

Next steps

- Geometria più realistica di nuclei e avvolgimenti
- Implementazione del modello circuitale completo in comsol
- Mesh più fine

GRAZIE PER L'ATTENZIONE