
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Irreversibility of biological systems

Relatore Laureando

Prof. Marco Baiesi Emanuele Tovazzi

Anno Accademico 2017/2018





Abstract

In a context of Markov processes, an ecological model of three in-
teracting species is studied, which dynamics is described by the master
equation. It is presented a theoretical method through which to estimate
the entropy production of the system along its evolution and its link with
the concept of irreversibility of the system state. At each step only two
species interact each others through a birth-death or mutation mecha-
nism, bringing an increasing/decreasing by one unit of the number of
the specific individuals. All the information about the interactions are
encoded in the transition rates of the model which depend by a com-
petition matrix and a mutation matrix. It is also imposed a cyclical
competition in these coefficients. Using a van Kampen system’s size ex-
pansion the deterministic equations at which the model approaches when
the total number of individuals tend to infinity are obtained. These as-
sumes the form of antisymmetric Lotka-Volterra differential equations.
The Fokker-Planck equations for this model are derived analytically. Nu-
merical simulations of the system evolution at different initial conditions
are performed. It is shown that the system present two different type of
dynamics. In particular using the Fokker-Planck equations is shown that
if the mutation coefficients are above the critical value of 1, any species
can cyclically dominates over the others. The entropy production in this
case is significantly higher that a condition in which a species prevails.
We study the analytic expression of the production of entropy on the
plane in which the sum of the three species concentrations is constantly
1. Furthermore it peaks at the point in which all the concentration are
equal. In the final plot are shown the two entropy productions regimes
for higher/lower values of critical mutation rate.
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Introduction

The study of population dynamics between one or more species has been one of
the sectors of ecology, which was profoundly investigated by ecologists, biologists,
mathematicians and physicians since the late ’20 of the past century [1],[2],[3]. In
order to render in the best way the setting upon which our thesis will deal with, we
start with the general definition of Ecosystem, namely1:
“A biological community of interacting organisms and their physical environment.”
Beyond the fact that every ecological community can have great different environ-
mental conditions and mechanisms of interaction, some general patterns appear to
take place in a wide variety of ecological systems. Of course this suggests that cer-
tain properties or dynamical evolutions of multiple systems are not susceptible to the
particular details of the interactions, but instead it is possible to make good models
that represent in a reliable way the fundamental relations between the constituents
elements of an ecosystem. This way to proceed fits perfectly with statistical physics,
and the challenge involved is to find those parameters that have major weight for
an effective description of the model.
Models defined by Lotka and Volterra were the first to give a qualitative and quan-
titative description of the dynamics of interacting ecological species in the same
environment. Despite the continuous enhancement of the knowledge achieved in
this field, there is a diffuse indecision on saying how much populations are influ-
enced by internal density-dependent factors, that are the specific relations of the
model that has been taken into account or by external-dependent factors, of which
there is less information due to its complexity [4].
During the 70s McArthur and May provided a link between interacting populations
with common resources and the Lotka-Volterra equations, besides giving the formu-
las for the competition matrix (see Chapter 1). We specify that these (deterministic)
models are supported by the concept of niche, which must be defined only a poste-
riori. Furthermore there are many drawbacks that must be taken into account: (1)
There are lots of parameters that are not easy to guess from the collection of data.
(2) It is hard to extend these models to include space dependence. (3) Ts is not easy
to analyze the general patterns of these systems, rather than their time series.
It is of fundamental importance to stress that for a comprehensive study of a partic-
ular system, deterministic and stochastic computations of the same model are nec-

1From the Oxford dictionary.
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essary (in which the only difference is the introduction of random effects)[8]. Indeed,
a finite size system sometimes shows effects that can determine a spatio-temporal
regular dynamics, revealing degrees of collective behaviors that are absent in the
context of the deterministic formulation. Although nature is intimately stochastic,
deterministic behaviors can give (not always) a great amount of information about
the particular evolution that we are considering and usually they arise as solutions of
ordinary differential equations (ODE). We also know that usually, as a system starts
to get a little more complex, it immediately becomes mathematically intractable,
and only few things can be said by a pure theoretical research. Furthermore, different
stochastic realizations of a system can be very different and in some case determine
different “end-stage” of one or more specific populations considered (in the case of
an exponential growth population with few members fixing the initial condition this
can lead to a relative extinction or explosion). However during these past several
decades plenty of models that describe very different kind of ecological phenomena
have been proposed, of which we present only a summary list: (1) The Malthus ex-
ponential growth model, (2) The Verhulst logistic growth model, (3) Competing or
colony models, (4) Fluctuating environment models, (5) Spatial and time lag models
of population growth, (6) Epidemiological models and so on [5, 6, 7]. Of course all
these models and all their variations have been studied in detail with great success,
and it is not our goal to study and present them here. The advent of computers
brought a huge increase of the complexity and variety of the models just presented.
As we will discuss later, in many occasions the intrinsic stochasticity of the simula-
tions permits a more reliable way to study a particular system, with respect to the
analytical solutions that can be obtained. For this reason the counterpart of this
method is that the numerical results are often of difficult interpretation, since they
differ (sometimes quite a lot) from the analytical-based solution of the dynamics at
issue. In fact it happens that the stochastic effects change significantly the behavior
of non-linear system like the one we will encounter. The context of a Markovian
dynamics will be the starting point of our study in this work, where the complete de-
scription of system with intrinsic noises will be given by the master equation (ME).
In particular we will see a Markovian discrete jump process with continuous time
dependence.The master equation contains the deterministic ODE equations of the
model dynamics. These are also called Mean-Field equations since the contribution
of noise is cancelled out (sometimes this term is used in ecology only if we refer to
the non-spatial system). The mean-field equations can be obtained both via Van
Kampen’s expansion or the Kramers-Moyal’s expansions. We present and use the
first one for the recovery of the deterministic equations and the second to obtain
the Fokker-Planck equation (that describes the Gaussian fluctuations). In this work
we study the evolution of a three species population model and how the particular
choice and tuning of its parameters gives a more stable/unstable evolution of the
system. At last we perform an entropy production estimation for these conditions,
which is related to the irreversibility of the system’s evolution.
Most of the physical processes in nature deal with their apparent irreversibility and
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with the growth of uncertainty in our predictions about them. This refers first to
our approximate description of the model and second to our inability to drive a
system exactly backward by reversing the external forces that guide its evolution.
In classical statistical mechanics this is linked with the entropy production and to
the dissipation of energy towards the environment. The difference of the effects de-
pending on the couplings of the system with the environment is the reason behind
this “arrow” of the flow of energy [9, 35]. This privileged direction of the evolution
of the processes is nothing else than the manifestation of the irreversibility of the
dynamics of the system itself. A measure of this irreversibility can be given im-
mediately by taking the ratio of the probabilities P of the system to evolve along
an allowed trajectory ω, i.e. P [ω], and the reversed one, i.e. P

[
ωR
]

[10]. This
ratio is connected with the entropy production of the system and is equal to one
only if the process is perfectly reversible, which implies equilibrium (see Chapter
3). Out of equilibrium, P [ω] 6= P

[
ωR
]

and the time-reversibility is broken. So the
computation of the entropy production along the temporal evolution of the system,
is a reliable way to study how much the system itself departs from an equilibrium
configuration. This is the fundamental aim of this thesis: to examine the entropy
production of a system of mutating/competing species and see if this quantity has a
particular growth for certain types of dynamics (in particular, we impose a cyclicity
underlying the interaction between these species).
Usually the natural processes are out of equilibrium and the notion of being out of
equilibrium will be presented in Chapter 2. A central tool in this thesis is Stochas-
tic Thermodynamics (which deals with quantities such as entropy, energy, heat,
and work, that are defined on the stochastic trajectory-level of the system). That,
together with Markovian jumps, provides the right conceptual framework for the
description of complex systems that are fairly out of equilibrium.
Classical thermodynamics plays an important role in equilibrium dynamics, with
systems with a very large number of particles (N ∼ 1023) but if we consider systems
that are completely irreversible or simply out of equilibrium, then the classical ther-
modynamics can not be used anymore as a good tool in order to give a description
of their main properties. As we will see, it is possible to have a well-defined ex-
pression of the entropy production along a Markovian trajectory, i.e. the framework
underlaying our model. Indeed, we know that in most physical situations the system
under consideration is not isolated, but it interacts with the environment.

We now present the plan of the thesis:

Chapter 1 : We discuss the notion of Ecology, its stability and we present the main
results of nonlinear dynamical systems. After that we introduce a particular type
of nonlinear differential equations named Lotka-Volterra (LV) and sketch some the-
oretical properties of these equations, taking into account the important case of
antisymmetric coefficients of the mentioned community matrix.

Chapter 2 : We introduce the definition of a Markov process and derived the funda-
mental object for the description of stochastic systems like ours: the master equa-



4 CONTENTS

tion. Then, the Fokker-Planck equation is introduced and the existing bridge be-
tween these two objects. Furthermore, we discuss the concept of detailed balance
and its connection to thermodynamics and the consequences on it dealing with a
non-equilibrium state. Since it will be performed in Chapter 4, it is presented the
systematic procedure of the Van Kampen’s expansion that bring us to the deter-
ministic equations of our model.

Chapter 3 : A chapter dedicated to the main concept of non equilibrium and to
Stochastic Thermodynamics and is illustrated how a well defined quantity of en-
tropy production can be assigned to a single path of our system. It is also shown
how the entropy production can be splitted in two subterms, one relative to the
internal entropy production of the system and the other one about the external en-
tropy production in the environment.

Chapter 4 : Here is presented and analytically described the specific system of three
interacting species, then is shown the stochastic simulation in various cases with dif-
ferent parameters, demonstrating how the performance and stability of the system
is affected by different values of the matrices entries of the transition rates that rule
the evolution of the species. In particular, the above mentioned entropy production,
that is strictly correlated with the irreversibility of the system’s temporal evolution,
will be the entropy production of the environment.

Chapter 5 : In the last chapter we summarize the main results obtained and we
provide some future possibilities of study for systems like the one explored here.



Chapter 1

Ecological models and stability

Here we present the Lotka-Volterra model, which will emerge in the following chap-
ters of this thesis and we show the main properties that belong to these systems’
framework.

1.1 Stability of ecological systems

As starting point, in order to introduce concepts useful for this thesis, we give a
definition of the term stability. Following the distinctions made by J. Hofbauer [15],
while a physicist intends the stable equilibrium of a population as a steady state
that is constantly re-assumed after a small perturbation, a biologist will certainly
identify as equilibrium a random process evolving with time, i.e. stochastic, that
never becomes extinct over time, where the populations fluctuate around average
values with defined variances. We also distinguish between inner stability, that
regards the stability of a system under little fluctuations. Thanks to self-regulation,
and the outer stability, which deals with the introduction (like migration from the
surrounding environment) of a new species in the considered system. A quantity
that usually is relevant in ecology is the Time to extinction parameter Te and its
related index of stability ξ = ln(Te). Sometimes it is a relevant number to quantify
the stability of a system.

We start with the main definitions and concepts about stability in dynamical
systems.

Definition 1.1 (Ordinary Differential Equations ODE). Given a vector field f :
Rn → Rn we define a system of ODE as

ẋ(t) = f(t,x) (1.1)

A solution of a ODE is a map

t→ x(t) = (x1(t), . . . , xn(t))

where t ∈ I some interval in R to Rn, that satisfies the former equation.

5
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An initial condition is a particular value of the solution at a given time, and
the theorem of uniqueness of solution tells us that there can be only one solution
for each initial condition. A particular case (that we will consider most) of ODE is
the time-independent: ẋ = f(x). The solutions of the form x(t) = c ; c ∈ Rn are
known as equilibrium points. Recalling the concept (in Lyapunov sense) of stable
equilibrium point we define:

Definition 1.2 (Stable equilibrium point). An equilibrium point c ∈ Rn is defined
to be stable if for every neighborhood U of c, ∃ a neighbourhood V of c, such that
the solution x(x0, t) with x0 = x(t0) will stay in U for every time.

Definition 1.3 (Asymptotically stable equilibrium point). If the orbits of the latter
definition converge to c (i.e. x(t) converge to c) then the stable point is asymptoti-
cally stable. The set of points x whose orbits converge to c is called basin of attraction
of c (and it is an open invariant set).

If we act on the system by producing a perturbation, it can be that the solution
will stay stationary in the perturbed condition or that it will oscillate with fixed
amplitude. In these cases we refer to a neutral stability point.
Let us introduce the object that defines the asymptotic properties of a solution x(t):
The ω-limit of a solution x for a time-independent ODE, is the set of all accumulation
points of x(t) for t→ +∞:

ω(x) = {y ∈ Rn : x(tk)→ y for some sequence tk → +∞}

The converse limit for tk → −∞ is called α-limit. Of course this set can be empty,
and all the points in the ω-limit have their neighbourhood visited constantly by x(t)
for t > 0. This set has the property of being closed, since it is a set of accumulation
points. It is also invariant and also it can be write the ω-limit as an intersection of
closed sets:

ω(x) =
⋂
t≥0
{x(s) : s ≥ t}

Other features are that rest points and periodic orbits constitute their own ω-limits
and if ω(x) is compact, it is also connected, that is any two points that belong to
ω(x) can be joined by a continuous path in ω(x) itself. Thank to the Lyapunov
Theorem we can deal with ω-limit also lacking of the explicit solution (but it does
not tell us how to find a proper V ):

Theorem 1.1.1 (Lyapunov theorem).
Let ẋ = f(x) a time- independent ODE defined on some subset G of Rn. Let
V : G → R be continuously differentiable. If for some solution x(t) the derivative
of V̇ of the map t → V (x(t)) satisfies the inequality V̇ ≥ 0 (or V̇ (x) ≤ 0), then
ω(x)

⋂
G is contained in the set {x ∈ G : V̇ = 0} (and so is α(x)

⋂
G).

Proof. If y ∈ ω(x)
⋂
G, there is a sequence tk → +∞ with x(tk)→ y. Since V̇ ≥ 0

along the orbit of x, one has V̇ (y) ≥ 0 by continuity. Suppose that V̇ (y) = 0 does



1.1. Stability of ecological systems 7

not hold. Then V̇ (y) > 0. Since the value of V can never decrease along an orbit,
this implies

V (y(t)) > V (y)

for t > 0. The function V (x(t)) is monotonically increasing. Since V is continuous,
V (x(t)) converges to V (y), and hence

V (x(t)) ≤ V (y)

for very t ∈ R. From tk → y it follows that x(tk + t)→ y(t) and hence

V (x(t)k + t)→ V (y(t))

and thanks to the first relation V (y(t)) > V (y) we get

V (x(tk + t)) > V (y)

for k sufficiently large. This contradicts the fact that V (x(t)) ≤ V (y).

Note that this theorem does not tell us how to find a Laypunov function V , and
in general this is a tough task.

If we consider a two dimensional differential Lotka-Volterra equation, then any
solution is a curve γ that divides the plain in an exterior and interior. Thanks to
this property we can show the

Theorem 1.1.2 (Poincarè-Brendixon theorem).
Let ẋ = f(x) be an ODE defined on an open set G ⊆ R2. Let ω(x) be a nonempty
compact ω-limit set. Then if ω(x) contains no equilibrium point, it must be a periodic
orbit.

This means that if K ⊆ G is nonempty, compact and forward invariant, then K
must contain a rest point or a periodic orbit. If γ is a periodic orbit which, together
with its interior Γ, is contained in G, then Γ contains a rest point.

1.1.1 Linearisation

One of the most used techniques in the study of differential equations is the process of
linearisation. In fact locally, thanks to the Grobman-Hartman theorem [11, 12, 13],
the orbits near the fixed point of the non-linear equation look like those of the linear
ones in the origin of the transformed coordinates. Considering the equation 1.1, that
have an equilibrium in x∗, and then expanding it with Taylor around the fix point
x∗, brings the linear equation

ẏ = Ay

where y = x− x∗, and A is the Jacobian matrix with entries Aij = ∂fi
∂xj

. The study
of this matrix gives the local behavior of 1.1.
If A is a real real matrix and has complex eigenvalues, they occur in conjugated
pairs. Indeed the solution of the linear equation is a combination of the following
objects:
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1. eλt, if λ is a real eigenvalue of A;

2. eat cos bt and eat sin bt, where µ = a+ ib is a complex eigenvalue of A;

3. tjeλt, or tjeat cos bt and tjeat sin bt, with 0 ≤ j < m,if the eigenvalue λ or µ
occurs with multiplicity m.

With complex eigenvalues, the term introduces an oscillatory component, that will
be damped only if a < 0. The origin 0 is a fixed point of the differential equation.
The complex eigenvalues µ introduce an oscillatory component to the solutions, that
are damped only if a < 0.
The origin 0 is a fix point and is called:

• a sink, if the real parts of all the eigenvalues are all negative. Then 0 is the
ω-limit of every orbits.

• a source, if the real parts of all the eigenvalues are all positive. Then 0 is the
α-limit of every orbits.

• a saddle, if some eigenvalues are in the right half of the complex plane and
some are in the left half of it, but non stands on the imaginary axis. The
orbits whose ω-limit (α-limit) is 0 form a linear submanifold in Rn called
“stable (unstable) manifold”

• hyperbolic, if no eigenvalue has null real part (it is a source, a saddle or a sink).

• a center, if alla eigenvalues are on the imaginary axes.

We presented this topic in the most brief way possible and as we see in Chapter
4, these results sketched here will be useful.

1.1.2 The community matrix

We now show that the matrix A that follows from linearisation is a useful object that
describes the biological features of the specific system and contains the mathematical
features that describe its stability.
If we consider a set of n equations for the relative Ni(t) species of the ecological
system [19] that we are taking in account

dNi(t)
dt

= fi(N1(t), . . . , Nn(t)) (1.2)

where the growth rate is given by the fi functions, that also gives us the equi-
librium points of the system

fi(N∗1 , . . . , N∗n) = 0

To get a local information of the stability of these points we perform a linear expan-
sion near the equilibrium

Ni(t) = N∗i + xi(t)
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where xi is a small perturbation of the i-th species. Substituting the latter equation
in 1.2 and ignoring the terms of second (or higher) order gives

dxi(t)
dt

=
n∑
j=1

aijxj(t) (1.3)

and the set of n equations describes the dynamics close to ~N∗

d~x(t)
dt

= A~x(t) (1.4)

Here the n × n matrix A is called “community matrix” (CM) (Levins 1968a)
whose elements (A)ij = aij , describe the effect of species j on the i near equilibrium
and that has a prominent role on the system’s stability

aij =
(
∂fi
∂Nj

)∣∣∣∣∣
~N∗

(1.5)

The solutions of equation 1.3 can be written as

xi(t) =
n∑
j=1

Cijexp(λjt)

where the coefficients Cij are given by the initial conditions and λi are the
relative eigenvalues of A with i = 1, . . . , n that in general takes the form λ = ζ + iξ.
Depending of the sign of ζ we will have an oscillatory exponential oscillation that
will depend on the imaginary part ξ. This means that a little perturbation from
the equilibrium point will be dumped only if all the eigenvalues have negative real
parts, so that we can claim that an equilibrium point will be locally stable if the
eingenvalues of the system lie on the negative demiplane of the complex numbers.
If only one λ has positive real part, then the equilibrium is unstable. In the latter
case, at first perturbations will grow, but we cannot say much more because we must
consider the terms of second (or higher) order and nonlinearities will have the last
word on the dynamics of the system.
We stress the fact that in the linear case, the elements of the CM describe the real
interactions between species, but in the nonlinear case, it describes the behavior of
the system only near the equilibrium points.

Qualitative study of CM

As first described by Odum [16], the signs of the elements of the CM are related to
the interactions between the species of the system. If the effect of the j-th species
is to favor contrast or ignore the i-th species, then the relative signs of the Odum’s
scheme will be respectively positive, negative or zero. Below we present the table of
all possible interaction types:

We can distinguish between five categories of interaction between species (where
the symbols +,−, 0 are relative to the signs of the elements aij) and they are: com-
mensalism (+0), amensalism (−0), mutualism or symbiosis (++), competition (−−)
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i to j/ j to i + 0 -
+ ++ +0 +-
0 0+ 00 0-
- -+ -0 –

Table 1.1: Odum’s scheme for interacting species.

and general predator-prey interaction (+−). Even a qualitative study of the com-
munity matrix gives important information about the stability of the system that we
are considering. The qualitative stability is defined as the stability that is determined
without considering the intensities of the elements of the matrix itself. Sometimes it
can be that one, looking at the food web diagram of a particular biological system,
may determine the sign of the community matrix elements. This means that it can
be given a sketch of how the system will evolve without sophisticated techniques. In
1965, it was proposed [17] that there exists a set of necessary and sufficient conditions
for a matrix A of n× n elements aij to be qualitative stable:

1. aii ≤ 0, for all i.
This first criterion requires the fact that the interactions inside the same species
did not produce positive destabilizing feedback effect.

2. aii 6= 0, at least for one i.
This means that inside the whole system, one of the species presents an auto-
stabilizing effect.

3. aijaji ≤ 0 for all i 6= j.
That is the mutualistic (++) and competitive (−−) interactions does not
contribute to the stability of the system.

4. For each sequence of three or more indices i, j, k, . . . , p, q (with i 6= j 6= k 6=
· · · 6= p 6= q), the product aijajk, . . . , apqaqi = 0. This means that the closed
circle contributes negatively to the stability of the system.

5. det(A) 6= 0.
It is required that the matrix A must be non-singular otherwise there would
be more species than equations, and the system would be indetermined.

1.2 The Lotka-Volterra model

As we said this was the first model proposed about the evolutionary dynamics of pop-
ulation numbers that compete with each other in their relative niche, in particular
it describes asymmetrical interactions between predator-prey or resource-consumers
systems.
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Of course, the stochastic form of L-V will certainly drive one of the species to ex-
tinction1, meanwhile oscillations in the populations can be induced by imposing a
limit to the preys population (Volterra model). Thus the deterministic L-V model
and the stochastic Volterra model have similar features. In the deterministic L-V
model, the evolution of the species involved is characterized by a positive growth
rate of the preys (H) in absence of predators, and by a negative rate depending of
the predator population. Instead for the predator (P ), we have a negative rate in
absence of preys and a positive rate that multiplies the preys population2 [19],

dH(t))
dt = [a− αP (t)]H(t)

dP (t))
dt = [−b+ βH(t)]P (t)

(1.6)

The stable point of 1.6 is easy to find by imposing null derivatives (the trivial
solution P ∗ = 0 and H∗ = 0 will not be considered)[a− αP (t)]H(t) = 0 ⇒ P ∗ = a/α

[−b+ βH(t)]P (t) = 0 ⇒ H∗ = b/β
(1.7)

so that the CM has the form A =
(

0 −αb/β
βa/α 0

)
. The eigenvalues of A are

λ = ±i
√
ab that indicate neutral stability, and a local study of the dynamics around

(H∗, P ∗) gives us the period of the oscillations around the equilibrium point with
T = 2π/

√
ab. Now we show some examples of the closed curves and two different

examples of the time-dependent solutions of this system.

0 1 2 3 4 5

0

1

2

3

4

5

Preys

P
re
d
a
to
rs

Figure 1.1: Representation of the closed curves of the coupled equations.

1Since the model does not contain a spatial component.
2The classical deterministic L-V model has been criticized by many for its non-realistic feature

of the oscillations, since they are completely determined by the system’s initial conditions. Another
weak point is the lack of robustness of the marginally stable neutral cycle against perturbations
[18].
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Figure 1.2: Some examples of Lotka-Volterra realisation with different initial condi-
tions and parameters.

As we anticipated above, these quantities will oscillate with a relative frequen-
cies3 around (P ∗, H∗). Denoting T the period of the solution we have

1
T

∫ T

0
H(t)dt = H∗ ,

1
T

∫ T

0
P (t)dt = P ∗

thus by rearranging and integrating 1.6 we get

d

dt
ln H(t)dt = Ḣ

H
= a− αP (t) ⇒

∫ T

0

d

dt
log H(t)dt =

∫ T

0
(a− αP (t))dt

and using the fact that H(T ) = H(0) we have lnH(T ) = lnH(0) and then

1
T

∫ T

0
P (t) dt = a

α
= P ∗

As anticipated before, by a simple manipulation of the equations 1.6 it is possible
to show that the dynamic is given by periodic close curves. In fact, integrating with
the separation of the variables we get

dH

dP
= [a− αP ]H

[−b+ βH]P ⇒ b lnH − βH + a lnP − αP = cost.

These equations are closed curves that are determined by the initial condition
(H(0), P (0)). Following Hofbauer, another common way to represent a Lotka-
Volterra system is

ẋi = xi

ri +
n∑
j=1

aijxj


where i = 1, . . . , n. Where the matrix Ã = (aij) is called interaction matrix4. The
topic relative to these equations is very vast, so there are plenty of results that have
relevance. In this framework, it is important to show a theorem that will be verified

3Depending on the initial conditions.
4Do not make mistake by confusing these coefficient with those of the community matrix. From

now on is used only the interaction matrix with the above defined entries.
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immediately by our simulation in chapter 4, which implies that if there exists a rest
point p, and if the solution x(t) converges neither to the boundary nor to infinity,
then its time average converges to p :

Theorem 1.2.1.
If there exist positive constant a and A such that a < xi(t) < A for all i = 1, . . . , n
and all t > 0, and p is the only fixed point in the positive real demiplan, then
limT→∞

1
T

∫ T
0 xi(t)dt = pi.

Proof. Let us write the differential equation

(log xi)′ = ri +
∑
i

aijxj

and integrate it from 0 to T. After dividing by T, we obtain

log xi(T )− log xi(0)
T

= ri +
∑

aijzj(T ) (1.8)

where
zj(T ) = 1

T

∫ T

0
xj(t)dt.

Obviously a < zj(T ) < A for all j and all T > 0. Now consider any sequence Tk
converging to +∞. The bounded sequence zj(Tk) admits a convergent subsequence.
By diagonalisation we obtain a sequence (which we are calling Tk again) such that
zj(Tk) converges for every j towards some limit which we shall denote by zj . The
subsequence log xi(Tk)− log xi(0) are also bounded. Passage to the limit in eq. 1.8
thus leads to

0 = ri +
∑

aij z̄j

The point z̄ = (z̄1, . . . , z̄n) is therefore a rest point. Since zj ≥ a > 0, belongs to
int Rn, hence it coincides with p.

1.2.1 Lotka-Volterra model for 2n species

It is now easy to extend the model to the case of 2n species, where now there are
n predators P(i), [i = 1, 2, . . . , n] and n preys Hi(t), [i = 1, . . . , n]. The extended
model now takes the form of equation 1.9.

dHi(t))
dt = Hi(t)

[
ai −

∑n
j=1 αijPj(t)

]
dPi(t))
dt = Pi(t)

[
−bi +

∑n
j=1 βijHj(t)

] (1.9)

Where i = 1, . . . , n and all the parameters are positive. In order to find the
equilibrium points for both predators and preys populations, the square brackets in
equation 1.9 must be set to zero. Then we get to deal with a set of n linear equations
that can be expressed in the compact form
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αP∗ = a (1.10)

Where α is a n × n matrix and P∗ is the vector with n components P ∗i and a
the vector with ai. In the same way we have the equilibrium point for Hi we have

βH∗ = b (1.11)

Where the only bound for the parameters must be such that the equilibrium
points must be positive for every populations.
The community matrix (CM) is then a 2n× 2n matrix of this form [19],

A =
(

0 −α∗

β 0

)
(1.12)

Where α∗ and β∗ are n× n matrices with these elements

α∗ij = H∗i αij , β∗ij = P ∗i βij

The 2n eigenvalues of this matrix are found to be in n pairs

λ = ζ + iξ λ = −ζ − iξ

This means that all the eigenvalues have real parts equal to zero, which indicates
a neutrally stable behaviour, or at least one eigenvalue has positive real parts and
then we are in the unstable system. In Fig.1.3 we show a particular realisation for
this latter case in which one of the two prey species goes extinct. This observation
tells us that systems with more than 2 populations are in general equal or less stable.

This model can be generalised taking in account of a more general type of (diag-
onal5) interaction between the species involved. In fact considering the rate factors
members as a generic function of the popilation Ni, where i = 1, . . . , n:

dNi

dt
= fi(Ni)gi(N1, . . . , Nj , . . . , Nn) ; j 6= i

This means that the dependence of the species itself (Fi) can be put as a multi-
plying factor. As before, to get the equilibrium points we impose gi = 0 for each i.
Setting fi(Ni) = Ni and a simple linear G, we recover equation 1.9. As shown in
[20] such systems will drive the some populations to extinction in order to get the
stability.

Lotka-Volterra equations with antisymmetric matrix

The Lotka-Volterra equations can be studied more easily if the matrix elements
undergo some symmetries. A particular case can be an antysimmetric matrix. In
this case we deal with an equation like

5The diagonal elements of the community matrix will be aii = 0.
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Figure 1.3: Simulation with 2 prey populations. Red (blue) lines are respectively
H1, (H2). The initial conditions of this system are H1(0) = 1.5(red) and H2(0) =
1.3(blue), where the dashed lines represent the normalised equilibrium populations
H∗1 , H

∗
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dNi(t)
dt

= Ni(t)

ai − n∑
j=1

αijNj(t)

 (1.13)

where of course the non-diagonal coefficients are antisymmetric and the diagonal
are zero

αij = −αji and αii = 0.

In this case, the relative biological modeling depends on the sign of αij : if α > 0,
then the jth species is the prey of the ith one, while if α < 0 then the ith species is
the prey of the jth one. Thus a certain species can be both a predator and a prey
in its interactions inside the system. We see also that setting in equation 1.9 the
parameters αji = βij we recover equation 1.13, and we get the the equilibrium point
in the usual way

ai =
n∑
j=1

aijN
∗
j .

Due to the properties of the antisymmetric matrices, its eigenvalues are forced to
be imaginary6, so that the systems have purely oscillatory behavior when displaced
from equilibrium i.e. neutral stability.

6Since the eigenvalues occur as conjugated purely imaginary numbers ±iω, it follows that with
a odd number of species, the relative eigenvalue must be zero.
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Given the equilibrium point N∗i , it has been shown (Kerner, 1957) that the quantity

Φ ≡
m∑
i=1
{Ni(t)−N∗i lnNi(t)} (1.14)

and if we derive it in time we obtain

dΦ
dt

= −
m∑

i,j=1
(Ni(t)−N∗i )αij

(
Nj(t)−N∗j

)
(1.15)

the summation all over the indicies implies that the equation 1.15 is equal to zero if
αij = −αji. This conservation law is associated with the oscillatory behavior of the
system.



Chapter 2

Non-equilibrium and Markov
processes

2.1 Presenting the non-equilibrium

As we know, at first the aim of statistical mechanics was that of creating a bridge
between the microscopical description of a system and thermodynamics. Indeed
it considers only the macroscopical properties and features of the specific system
in which the fluctuations (typically Gaussian) could be neglected for big enough
systems since they are ∼ 1/

√
N , with N the number of particles. By taking into

account fluctuations, statistical mechanics gives us mathematical relations that are
not reachable with standard thermodynamic. The corner stone of this framework
was that all the considerations and results achieved along the years were obtained at
equilibrium, i.e. for system state in which all observable quantities do not depend on
time and where there are no currents. Time, as is pointed out later, plays a central
role for non-equilibrium thermodynamic.
In this chapter we will show that the thermodynamic equilibrium is linked with
the time-reversal invariance. A macroscopic system is said to reach thermodynamic
equilibrium if it reaches thermal, mechanical and chemical equilibrium, i.e. tem-
perature, pressure and chemical potential of different parts are the same [21]. In
conclusion, the thermodynamic equilibrium is characterized by the fact that the
average values of all the fluxes exchanged between the different components of the
system and its environment identically vanish.
The non-equilibrium concept subverts the last statement and can be applied in a
broad cases of systems, such as: chemical reactions, electrical circuits, systems in
contact with many reservoirs with different temperatures, biological systems that
have internal fluxes or with fluxes exchanged with the environment like probabilistic
cellular automata [22, 23, 24]. Citing Gallavotti [25], the essential difference between
equilibrium and non-equilibrium is that in the first case, time evolution is conser-
vative and Hamiltonian while in the second case time evolution takes place under
the action of external agents which could be, for instance, external non-conservative

17
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forces. This means that in non-equilibrium processes a privileged direction of time
emerges, and time-reversibility is prohibited. A non-equilibrium state can be reached
because of a change of the environment state or because of time (in)dependent forces.
In the latter case the system (does) does not reach a non-equilibrium stationary state
(NESS), and the system performs like a biased random walk in its own configuration
space, leading to non-vanishing probability currents, and this is exactly what our
model concerns about [42].
Thus by definition, a NESS is a stationary state of the system in which the mean
values of its observables are constant and there are non-zero currents in it. Here
in this thesis, we are interested in systems with “driving forces”. Furthermore, we
are mainly interested in the time-invariant stationary behavior of such systems. To
sum up, the non-equilibrium steady state1 is characterized in terms of several key
notions: time irreversibility, breakdown of detailed balance, free energy dissipation,
and positive entropy production rate [21].

2.2 Stochastic and Markov Processes

The processes that usually happen in nature are not at equilibrium, and in general
they cannot be well described by deterministic equations (this comes evident just
thinking about quantum mechanics and the theory of chaos arised in the last cen-
tury). The fundamental tool for studying these processes require the introduction
of a definition of an aleatory variable, i.e. whose values occurs with a certain prob-
ability along its observation. This means that forward we do not consider anymore
the ensamble theory for a certain state, but we focus on the probabilistic trajectory
done by our system in its phase-space volume.
Since we assume that the model that describes our system follows a microscopic
stochastic dynamics, we can say that the system is described by a continuous-time
Markovian stochastic process. Considering for example a discrete space of states,
this assumption means that the time evolution equation is set up once transition
rates are given. Thus transition rates play a central role in the present approach
and we can certainly say that a system is considered to be theoretically defined once
this quantities are given a priori (and this is exactly what we are going to do in
Chapter 4). Given the transition rates, the probability P (x; t) of state being in x

at time t is obtained by solving its evolution equations. In this chapter is presented
the concept of stochastic process, of Markovian dynamics and will be derived the
master equation[27]. Then is discussed the Van Kampen’s systems size expansion
that allow us in Chapter 4 to derive the deterministic equations for the model itself.
At the end we treat the Fokker-Planck equations and its main features.

A random variable X is defined by a set Ω of possible values (that can be either

1An interesting point is what I. Prigogine [26] said in his books, claiming that non-equilibrium
systems can generate self-organized order even without introducing external mechanical forces.
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discrete or continuous) and a probability distribution PX(x) over this set2. We note
that PX(x) dx is the probability of variable X to have a value between x and x+dx.
In case of continuous variable we have that PX(x) ≥ 0 and that

∫
PX(x)dx = 1. If

we consider a stochastic variable X, is possible to define a transformation of variable
X using a function Y = f(X) so that

PY (y) =
∫
PX(x)δ(f(x)− y)dx.

If now we consider a transformation of the stochastic variable X that have a depen-
dence in time t we get

YX(t) = f(X, t)

and if we consider a particular value x = X for the function f the evolution of this
process along time is called a realization of a stochastic process

Yx(t) = f(x, t).

In order not to be much dispersive, we do not report the definitions of n-th moments,
the autocorrelation function or of the generating function.
The probability density for YX(t) to take the value y at time t is

P1(y, t) =
∫
δ(y − Yx(t))PX(x) dx

and the joint probability density that the variable Y has the value y1 at t1, the value
y2 at t2 and o on is

Pn(y1, t1; y2, t2; . . . ; yn, tn) =
∫
dxPX(x)δ(y1−Yx(t1))δ(y2−Yx(t2)) · · · δ(yn−Yx(tn))

(2.1)
In this way have defined an infinite hierarchy of probabilities densities Pn and with
that we can have the averages mentioned before

〈Y (t1)Y (t2) · · ·Y (tn)〉 =
∫
y1y2 · · · ynPn(y1, t1; y2, t2; . . . ; yn, tn)dy1dy2 . . . dyn

If we consider Pn where all the times are different (and ordinated by t1 ≤ t2 ≤ . . . ≤
tn), then the hierarchy of function Pn

P1(y1, t1) , P2(y1, t1; y2, t2) . . . Pn(y1, t1; y2, t2; . . . ; yn, tn)

defined follows this conditions:

• Pn ≥ 0;

• Pn does not change by swapping two pairs: (yk, tk) � (ym, tm);

•
∫
Pn(y1, t1; y2, t2; . . . ; yn−1, tn−1; yn, tn)dyn = Pn−1(y1, t1; y2, t2; . . . ; yn−1, tn−1);

2Sometimes PX(x) will be called P (x), omitting the X variable.
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•
∫
P1(y1, t1)dy1 = 1;

Kolmogorov proved that since Pn allows to calculate averages, then the constitute
completely a stochastic process Y (t). The conditional probability for the probability
density function Y to take the values y2 at t2, given the fact that it was in y1 at t1
is ∫

P1|1(y − 2, t2|y1, t1)dy2 = 1 (2.2)

and in a general way we can define the conditional probability with many different
times:

Pl|k(yk+1, tk+1; . . . ; yk+l, tk+l|y1, t1; . . . ; yk, tk) =

= Pk+l(y1, t1; . . . ; yk, tk; yk+1, tk+1; . . . ; yk+l, tk+l)
Pk(y1, t1; . . . ; yk, tk)

(2.3)

where by definition Pl|k is both symmetric in the set of k and l variables.
A stochastic process is called stationary when all the Pn depend only on the differ-
ences on time

Pn(y1, t1 + τ ; y2, t2 + τ ; . . . ; yn, tn + τ) = Pn(y1, t1; y2, t2; . . . ; yn, tn)

thus the moments will not be affected by a shift in time 〈Y (t1 + τ)Y (t2 + τ) · · ·Y (tn + τ)〉 =
〈Y (t1)Y (t2) · · ·Y (tn)〉 , ∀ τ, ti, n. Now we are ready to define a Markov process.

2.3 Markov processes

In literature exist plenty of way to introduce and define a Markov chain or process,
but here we follow Van Kampen’s book [27] since it is one of the most concise and
less technical from the mathematical point of view.
A Markov process is defined as a stochastic process with n successive time t1 < t2 <

. . . < tn and with the fundamental property

P1|n−1(yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1) (2.4)

or equivalently

Pl|k(yk+1, tk+1; . . . ; yk+l, tk+l|y1, t1; . . . ; yk, tk) = Pl|1(yk+1, tk+1; . . . ; yk+l, tk+l|yk, tk)
(2.5)

which means that a process like this has “no memory”3. To be more precise, the
memory history of the process has a role in the evolution of itself but what we are
stating here is that the probability of going in the next configuration (continuous or
discrete that it is) depends only on the last configuration assumed by it.
Here we present a simple classification of different Markov processes based on the
kind of its states and indices:

3The oldest Markov process identified in nature is the Brownian motion, in which a heavy particle
immersed in a fluid randomly collides with the molecules of the medium. The markovianity of this
process is due to the fact that the particle’s velocity at each collision depends only on its velocity
before being totally changed with another collision.
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states/indicies continuous discrete
continuous Markov processes at Markov processes at

continuous time discrete time
discrete Markov chains at Markov chains at

continuous time discrete time

The definition just presented is very powerful, since it allows to describe the entire
Markov process knowing only the probability P1(y1, t1) and P1|1(y2, t2|y1, t1) i.e. we
can reconstruct the entire hierarchy from those. As useful example, we “decompose”
a three step process P3 with t1 < t2 < t3 by using the Markov property:

P3(y1, t1; y2, t2; y3, t3) = P2(y1, t1; y2, t2)P1|1(y3, t3|y2, t2)
= P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2)

(2.6)

where we have used equation 2.3 and 2.4. If one iterates this procedure can obtains
all Pn.

Chapman-Kolmogorov equation

Now that we have defined the basic notions of our framework, it is possible to derive
a fundamental equation for a Markov process, named the Chapman-Kolmogorov
equation. Again we consider a three step process with temporal ordering t1 < t2 < t3.
As seen above we have

P3(y1, t1; y2, t2; y3, t3) = P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2).

Integrating this equation for dy2 we get∫
dy2P3(y1, t1; y2, t2; y3, t3) = P2(y1, t1; y3, t3) = �����P1(y1, t1)P1|1(y3, t3|y1, t1)

= �����P1(y1, t1)
∫
dy2P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2)

(2.7)

so that
P1|1(y3, t3|y1, t1) =

∫
P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1)dy2. (2.8)

This is the Chapman-Kolmogorov equation. It says that a process starting at t1 in
y1, reaches y1 at t1 via all the possible space-time configuration between the first
and the final point. Of course the functions P1 and P1|1 must not only obey the
Chapman-Kolmogorov equation, but also the consistency relation

P1(y2, t2) =
∫
dy1P1|1(y2, t2|y1, t1)P1(y1, t1). (2.9)

Note that 2.9 actually contains the profound claim that for the step from 2 to 3 its
previous position at 1 has no relevance.
From the Chapman-Kolmogorov equation is possible to verify that it is satisfied by
the Weiner process, a fundamental process in this field.
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2.3.1 Stationary Markov process

Furthermore, if a Markov process is stationary, it becomes a useful tool for describing
fluctuations at equilibrium. A Markov process is called stationary if the transition
probability P1|1 depends only on time interval:

P1|1(y2, t2|y1, t1) ≡ Tτ (y2|y1) ; τ = t2 − t1

so that the Chapman-Kolmogorov equation has the form

Tτ+τ ′(y3|y2)
∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2

and if we read the integral as a production of two matrices we have

Tτ+τ ′ = Tτ · Tτ ′ (τ, τ ′ ≥ 0).

Homogeneous process

If we consider a stationary Markov process given by the probabilities P1(y1) and
Tτ (y2|y1), a non-stationary Markov process can be defined by taking a fixed time t0
and fixed variable y0 writing

P ∗1 (y1, t1) = Tt1−t0(y1|y0) ,

P1|1(y2, t2|y1, t1) = Tt2−t1(y2|y1) .

This procedure is nothing than extracting a “sub-ensamble” from the initial process
considered. Of course, these processes cannot be stationary since it has been selected
a particular time t0. Anyway its transition probability depends only on time interval
just like the transition probability of the starting stationary process. These non-
stationary Markov processes are called homogeneous. From the physical point of
view the extraction of a sub-ensamble means three things:

1. The system derived from the extraction of a sub-ensamble implies that it is
set in a non-equilibrium condition.

2. After long time enough, the system returns to equilibrium:

P ∗1 (y1, t1)→ P1(y1) for t→∞

3. From the above equation this means also that

Tt1−t0(y1|y0)→ P1(y1)

In practice, we have a stochastic variable that at time t0 is fixed on having value y0
and, with the passing of time it evolves to the stationary configuration. This is a
usual method of creating in practice stationary systems.
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2.3.2 Master Equation

Now we want to derive an equation for Markov processes that is equivalent to the
Chapman-Kolmogorov ones, with the advantages of being more easy to use, and
which describe the temporal evolution of the probability of the system to be in a
certain state. That should concern a differential equation obtained by a taking the
limit of the time difference τ → 0. This means that a master equation is nothing
that a continuous-time version of a Markov chain. For convenience we take an
homogeneous Markov process with continuous time [29]. We recover the Chapman-
Kolmogorov equation derived above for a homogeneous process

Tτ+τ ′(y3|y1) =
∫
dy2Tτ ′(y3|y2)Tτ (y2|y1) (2.10)

where τ = t2 − t1 and τ ′ = t3 − t2. Then we differentiate respect to τ ′ and take the
limit τ ′ → 0.
As τ ′ tends to zero, the transition rate T ′τ (y3|y2) at first order in τ ′ is Tτ ′(y3|y2) con:

Tτ ′(y3|y2) = (1− τ ′a0(y2))δ(y3 − y2) + τ ′W (y3|y2) + · · · (2.11)

Note that the δ-function is here in order to take account of the possibility of the state
to stay in its starting state during τ ′ and W (y3|y2) ≥ 0 is the transition probability
per unit time W (y3|y2) = limτ ′→0

Tτ ′ (y3|y2)
τ ′ .

Using the normalisation condition∫
Tτ (y2|y1)dy2 = 1 (2.12)

we integrate by dy3 so that

�1 =
∫
dy3Tτ ′(y3|y2) =

=
∫
dy3

[
(1− τ ′a0(y2))δ(y3 − y2) + τ ′W (y3|y2)

]
=

= �1− τ ′a0(y2) + τ ′
∫
dy3W (y3|y2) (2.13)

��τ
′a0(y2) =��τ

′
∫
dy3W (y3|y2) ⇒ a0(y2) =

∫
dy3W (y3|y2)

Renaming the variable y2 → y3 and vice-versa, we get

a0(y3) =
∫
dy2W (y2|y3).

Then if we replace equation 2.11 in 2.10 and integrate in dy2, we obtain

Tτ+τ ′(y3|y1) =
∫ {

[1− τ ′a0(y2)]δ(y3 − y2)Tτ (y2|y1) + τ ′W (y3|y2)Tτ (y2|y1)
}
dy2 =

= Tτ (y3|y1)− τ ′a0(y3)Tτ (y3|y1) + τ ′
∫
W (y3|y2)Tτ (y2|y1)dy2



24 CHAPTER 2. NON-EQUILIBRIUM AND MARKOV PROCESSES

Rearranging the last equation and dividing by τ ′ and finally taking the limit τ ′ → 0
comes the definition of partial derivative ∂/∂τ one obtains

lim
τ ′→0

Tτ+τ ′(y3|y1)− Tτ (y3|y1)
τ ′

=
∫
dy2 [W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)]

thus we have derived the so-called Master Equation:

∂

∂τ
Tτ (y3|y1) =

∫
dy2 [W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)] (2.14)

This equation is usually written in this fashion:

∂P (y, t)
∂t

=
∫ {

W (y|y′)P (y′, t)−W (y′|y)P (y, t)
}
dy′ (2.15)

But it must be stressed the fact that 2.15 is not meant as an equation for the single-
time distribution P1(y, t). In fact, if we take a time t1 and an y1, and consider the
solution of 2.23 (that is determined for t ≥ t1 by the initial condition P (y, t1) =
δ(t− t1), then we have the solution Tt−t1(y|y1). This equation is the starting point
in our model, since it gives a chance to study the dynamics of a Markov process
directly from its microscopic interactions. Concluding, if the probability density
function T (y3|y1; τ) is known, one can multiply by P1(y1, t1) and integrate over y1

P1(y3, t1 + τ) =
∫
dy1Tτ (y3|y1)P1(y1, t1)

so that

∂τP1(y3, t1 + τ) =
∫
dy2 {W (y3|y2)P1(y2, t1 + τ)−W (y2|y3)P1(y3, t1 + τ)} .

2.3.3 Definition of a continuous Markov process

From a theoretical point of view, we need to have a strong definition of whether and
how a Markov process can be defined continuous. As shown in literature [30], the
sample path of a Markov process are continuous functions of it with probability one
if (uniformly in ~z, t and ∆t) for any ε > 0 is valid the so-called Lindeberg condition:

lim
∆t→0

1
∆t

∫
|~x−~z|>ε

d~x p(~x, t+ ∆t|~z, t) = 0

which means that the probability for the ending position ~x to be finitely different
from ~z goes to zero faster than ∆t as ∆t goes to zero.

2.3.4 The Fokker-Planck equation

From the master equation can be derived an important relation, that gives the
deterministic evolution of the considered system’s probability Pt(C). In particular
it is used as an approximation of a “real” process or as a general description model
for the Markov processes, in which the individual jumps are very small. Using the
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notation that will be used in 2.26, the Fokker-Planck equation is a master equation
in which the Markov operator is a second order differential operator which brings
to:

∂P (y, t)
∂t

= − ∂

∂y
A(y)P (y, t) + 1

2
∂2

∂y2B(y)P (y, t) (2.16)

where the range of y is continuous and the coefficients A(y) and B(y) are called
respectively drift term and diffusion term4. Indeed, consistently with what said in
the last paragraph, the solution of equation 2.16 for t ≥ t1 is P (y, t|y1, t1) which
assumes the form of a δ(y − y1) when t = t1. The Fokker-Planck equation can be
written in terms of a diffusion equation by choosing

J(y, t) = A(y)P − 1
2
∂

∂y
B(y)P

so that
∂P (y, t)
∂t

= −∂J(y, t)
∂y

and it can be shown that the solution of a Markov process that is described by a
linear5 Fokker-Planck equation (with A1 < 0) is the Ornstein-Uhlenbeck process (a
Gaussian) [27]. Let’s now derivate the expression of the Fokker-Planck: First we
write transition rate as function of the starting point and of the jump

W (y|y′) = W (y′; r), r = y − y′.

Thus the master equation now has the following form

∂P (y, t)
∂t

=
∫
W (y − r; r)P (y − r, t)dr − P (y, t)

∫
drW (y;−r) (2.17)

we now make two fundamental assumptions:

1. Only small jumps occur i.e. W (y′; r) is a sharply peaked function of r that
varies slowly with y′.

2. Also the solution P (y, t) varies slowly with y, so that is possible to use y − r
instead of y in the first piece of 2.17 by expanding with Taylor until second
order as follow:

∂P (y, t)
∂t

=
∫
W (y; r)P (y, t)dy −

∫
r
∂

∂y
{W (y;−r)P (y, t)}+

+ 1
2

∫
r2 ∂

2

∂y2 {W (y; r)P (y, t)} dr − P (y, t)
∫
W (y;−r) dr (2.18)

4It is interesting to note that tis equation does not require a complete knowledge of the rate
W (y|y′) but only the functions A(y) and B(y).

5We shall call the Fokker-Planck equation linear if A is a linear function of y: A(y) = A0 +A1y

and B is a constant.
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Note that an expansion with respect to the r-argument is not allowed as W varies
rapidly with r. Indeed the first and last term in the right member cancel out each
others6:

∂P (y, t)
∂t

=
����������∫
W (y; r)P (y, t)dy −

∫
r
∂

∂y
{W (y;−r)P (y, t)}+

+ 1
2

∫
r2 ∂

2

∂y2 {W (y; r)P (y, t)} dr −
�����������

P (y, t)
∫
W (y;−r) dr.

Finally, using the definition of the n-th jump moment:

aν(y) =
∫ +∞

−∞
rνW (y; r)dr (2.19)

We get the Fokker-Planck equation:

∂P (y, t)
∂t

= − ∂

∂y
{a1(y)P (y, t)}+ 1

2
∂2

∂y2 {a2(y)P (y, t)} (2.20)

This equation regulates the mean’s broadening position as time increase, or equiva-
lently it describes the dynamics of the Gaussian fluctuations around the deterministic
solution. The generalisation of the Fokker-Planck equation in case of multiple (m)
variable gives the following expression:

∂P (y, t)
∂t

= −
m∑
i=1

∂

∂yi
Ai(y)P (y, t) + 1

2

m∑
i,j=1

∂2

∂yi∂yj
Bij(y)P (y, t)

where the coefficients Ai and Bij are real differentiable functions and Bij is taken
symmetric and positive definite, or more precisely,

∑m
i,j=1Bijxixj ≥ 0 for each vector

{xi}.

Kramers-Moyal expansion

It is not difficult to insert all the orders of the Taylor expansion in equation 2.20.
This leads us to the so-called Kramers-Moyal expansion [28]:

∂P (y, t)
∂t

=
∑
ν=1

(−1)ν

ν!

(
∂

∂y

)ν
{aν(y)P} (2.21)

This equation is nothing else than an alternative expression of the master equation
and it is often used in literature since if we stop at the second order, we obtain
the F-K equation. At last, we specify that in order to make the Fokker-Planck
equation exact instead of an approximation, one must make the rate W to depend
on a parameter ε in such a way the two assumption made above are exact when
limε→0 .

6We rename the variable of integration and we know that P ∼ const. in r.
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2.3.5 Differential Chapman-Kolmogorov equation

In order to get a separation of the differentiability condition into a part concerning
the continuous motion and another one considering the discontinuous one, we make
the following requirements for all ε > 0:

i) lim∆t→0 p(~x, t+∆t|~z, t)/∆t = W (~x|~z, t) ; uniformly in ~x, ~z and t for |~x−~z| ≥ ε

ii) lim∆t→0
1

∆t
∫
|~x−~z|>ε d~x(xi − zi)p(~x, t+ ∆t|~z, t) = Ai(~z, t) +O(ε)

iii) lim∆t→0
1

∆t
∫
|~x−~z|>ε d~x(xi − zi)(xj − zj)p(~x, t+ ∆t|~z, t) = Bij(~z, t) +O(ε)

Where ii) and iii) must be uniform in ~z,ε ant t.
It is possible to show that the higher order of ii) and iii) must vanish.
We are not interested in the proof of this result (which uses Lindeberg condition
enounced before), and that can be entirely found in [28]. At the end we can say
that for all ~z in the interior of R (a region in which the whole process is confined)
we have:

∂tp(~z, t|~y, t′) = −
∑
i

∂

∂zi

[
Ai(~z, t)p(~z, t|~y, t′))

]
+
∑
i,j

1
2

∂2

∂zi∂zj

[
Bij(~z, t)p(~z, t|~y, t′))

]
+
∫
d~x
[
W (~z|~x, t)p(~x, t|~y, t ′)−W (~x|~z, t)p(~z, t|~y, t ′)

]
(2.22)

Furthermore, it was shown that if we have A(~x, t) and B(~x, t) semi-definite
positive, and W (~x|~y, t) non-negative, that exists a non-negative solution of the
Chapman-Kolmogorov equation and the differential’s one. Clearly the requirements
that need to be satisfied are the initial conditions: p(~z, t|~y, t) = δ(~y − ~z).

Fokker-Planck and deterministic equation

If we set W (~z|~x, t) = 0, then equation 2.22 reduces to the Fokker-Planck equation,
that corresponds to a diffusion process equation. This equation describes a process
in which are involved continuous paths. It can also be shown that if the W and the
matrix elements are both set to zero, then 2.22 describe a deterministic process, i.e.
an ordinary differential equation. Thus its solution is a particular elementary form
of Markov Process.
Furthermore, it can be show [28] that if B = 0, then we handle a deterministic
equation

dxi(~x, t)
dt

= Ai [~x(t), t]

Again on master equation

In equation 2.22 we can obtain the m.e. by setting Ai(~z, t) = Bij(~z, t) = 0 we have
recovered the Master Equation
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∂tp(~z, t |~y, t′) =
∫
d~x
[
W (~z | ~x, t)p(~x, t | ~y, t ′)−W (~x |~z, t)p(~z, t | ~y, t ′)

]
(2.23)

Since this integro-differential equation has only the contributes of the discontin-
uous jumps, a sample of a process ruled by this equation will be made-up by straight
lines over time with jumps that denote that our system has gone from a state to
another one. If we handle with discrete states then our equation gets the form

∂tP (~n, t|~n′, t′) =
∑
m

[
W (~n | ~m, t)P (~m, t |~n′, t ′)−W (~m |~n, t)P (~n, t |~n′, t ′)

]
(2.24)

Here W can be seen as the rates at a given time to go from one state to another.
The use of these probabilistic tools are very useful for describing systems out of
equilibrium.
There are more compact ways [31] to express 2.24, enumerating the microstates of
the system {C1, C2, . . .} and calling Pt(C) the probability of the system of being
in the state C at time t, and W (C ′, C)dt the probability of a transition C → C ′

between time t and t+ dt we get

d

dt
Pt(C) =

∑
C′ 6=C

W (C,C ′)Pt(C ′)−

 ∑
C′ 6=C

W (C ′, C)

Pt(C) (2.25)

This is a linear equation in the probability vector Pt whose components are given
by {Pt(C)}. Thus, a possible evolution of a system that start at time t0 in a
configuration C0 and that evolve until a time T is C0

t1−→ C1
t2−→ · · · ti−→ Ci

ti+1−→
· · · tT−→ CT (Note that we can define a function C(t).

Connection to thermodynamics and Detailed balance

If we define the Markov operator W, the master equation can be recasted as

d

dt
Pt(C) = W · Pt(C) (2.26)

where the Markov operator W has the following structure:

• For elements C 6= C ′ the entries are the usual W (C,C ′).

• For diagonal elements are defined by W (C,C) = −
∑
C′ 6=CW (C ′, C).

• A stationary vector P∞ in kernel of W is a stationary state. This means
dP∞
dt

= 0. And thanks to Perron-Frobenius theorem it can be shown that
this state is unique [27] and that all other eigenvalues of W have strictly
negative real parts; the inverse of these real parts correspond to the intrinsic
system’s relaxation times towards its stationary state and the imaginary parts
(if existing) characterize the oscillations during relaxation. This behavior will
be tested in our numerical simulations in Chapter 4.
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Then the stationary state is obtained through d
dtPt(C) = 0 and the connection with

thermodynamics is obtained by the condition that the stationary state of Markovian
dynamics P∞ is given by the Boltzmann-Gibbs canonical formula which describes
a system in thermal equilibrium: the requirement for having thermal equilibrium is
verified to be [31]:

∑
C′ 6=C

W (C,C ′)e−
E(C′)
kBT = e

−E(C)
kBT

 ∑
C′ 6=C

W (C ′, C)


where7 P∞(C) = Peq(C) ≡ e−βE(C)/Z. This condition means that a system de-
scribed by the stochastic dynamics reaches ultimately a state of thermodynamic
equilibrium. Note that for systems far from equilibrium with a non-thermodynamic
stationary state, this relation does not hold anymore. Using the fact that the sys-
tem’s microscopic dynamics (which is represented by an effective Markovian model)
is Hamiltonian and that Hamiltonian dynamics is in general time-reversible, Onsager
derived the following, much stronger, constraint:

W (C,C ′)Peq(C ′) = W (C ′, C)Peq(C) (2.27)

This important relation, known as detailed balance, is a consequence of time-reversal
symmetry of the system’s microscopic dynamics and it holds for systems at thermo-
dynamic equilibrium and implies also annihilation of the currents inside the system
itself. We stress that if we only ask for the Gibbs-Boltzmann distribution to be sta-
tionary, we need only that 2.27 holds added over configurations as seen above, and
not term by term (from here comes the term ‘detailed’) [38]. The detailed balance8

condition is a fundamental dynamic property of equilibrium systems that holds also
for laws that do not concern classical thermodynamics.
If a system has an invariant probability distribution P∗(C), such that Ṗ∗(C) = 0,
but the equality is not satisfied for each term:

W (C,C ′)P∗(C ′) 6= W (C ′, C)P∗(C) (2.28)

i.e. detailed balance is broken, then the system is said to be in a NESS. Usually in
this case P∗ is not a Boltzmann-Gibbs distribution but exists examples that lack of
detailed balance but still have a B-G distribution [40].
There is an interesting way to write the detail balance as the hermiticity of the
Markov operator W by dividing equation 2.27 at both members for Peq(C)1/2 Peq(C ′)1/2

we get

Peq(C)−1/2W (C,C ′)Peq(C ′)1/2 = Peq(C ′)−1/2W (C ′, C)Peq(C)1/2 (2.29)

7Z is the usual partition function of canonical ensemble and E(C) is the energy given by
Boltzmann-Gibbs canonical law.

8Sometimes a systems that reaches this condition is said to thermalise.
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By defining the diagonal matrix Q as follows

Q =


. . .

Peq(C2)1/2

. . .

 =


Peq(C1)1/2 0 · · · 0

0 Peq(C2)1/2 · · ·
...

... 0 . . . 0
0 · · · 0 Peq(CT )1/2


and

W = Q−1WQ

then the detailed balance implies the hermiticity of the matrix W:

W =W†. (2.30)

Before continuing, we want to stress the fact that a system at thermodynamic equi-
librium fulfill the detailed balance as a consequence of time-reversal symmetry of the
system’s microscopic dynamics, but if the system’s steady state is not in equilibrium
i.e. is in a non-equilibrium steady state, then detailed balance is broken and the
state is necessary out of equilibrium.
Now, the master equation can be rewritten in the following way:

d

dt
Pt(C) =

∑
C′

{
W (C,C ′)Pt(C ′)−W (C ′, C)Pt(C)

}
:=
∑
C′

Jt(C,C ′) (2.31)

where J is defined as the probability flux from C ′ to C.From this definition we can
lists some main properties:

• The cumulative probability is conserved then

∑
C′

Jt(C,C ′) = 0 (2.32)

• The probability flux is symmetric

Jt(C,C ′) = −Jt(C ′, C) (2.33)

• For a stationary state must hold the following

∑
C′

J∞(C,C ′) = 0 (2.34)

Let’s see a picture that better gives an idea of the trajectory P (C; t) that evolve
until a time T :
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C(t)

t
t0 t1 t2 t3 tn−1 tn T

C0

C1

C2
C3

· · ·

Cn−2

Cn−1
Cn

Figure 2.1: The red lines represent the jumps occurred along the stochastic system’s
trajectory for a continuous time Markov process (chain) with discrete state.

Let’s show here that the equilibrium state of a system which satisfies the detailed
balance, is necessarily invariant by time reversal.
In order to determine the probability of the trajectory, it must be determined the
state’s probability to remain in C for a time τ ; in general, since W (C,C) < 0, the
probability that a trajectory would not change in a time dt is 1 +W (C,C)dt. Using
then the markovian property of the system, we can calculate the probability for
state C to remain in it for a time τ by multiplying the same term and taking the
limit dt→ 0:

lim
dt→0

[1 +W (C,C)dt]
τ
dt = eW (C,C)τ (2.35)

At time τ , the system goes in C ′, bringing a probability W (C ′, C)dτ . In general,
the probability of going from C to C ′ during an interval dt is: W (C ′;C)dt. Then,
going along the whole trajectory (see Fig. 2.1), we have the probability

Pr {C(t)} = eW (Cn,Cn)(T−tn)W (Cn, Cn−1)dtn eW (C1,C1)(t2−t1)W (C2, C1)dt2 . . .

. . . eW (C0,C0)t1W (C1, C0)dt1Peq(C0)

The inverse trajectory is called Ĉ(t) ≡ C(T − t) and its probability is

Pr
{
Ĉ(t)

}
= eW (C0,C0)(t1−t0)W (C0, C1)dt1 . . .

. . . eW (Cn−1,Cn−1)(tn−tn−1)W (Cn−1, Cn)dtneW (Cn,Cn)(T−tn)Peq(Cn)

If we consider the division of the members

Pr {C(t)}
Pr
{
Ĉ(t)

} = W (Cn, Cn−1)W (Cn−1, Cn−2) . . .W (C2, C1)W (C1, C0)Peq(C0)
W (C0, C1)W (C1, C2) . . .W (Cn−2, Cn−1)W (Cn−1, Cn)Peq(Cn)

Now we assume the equilibrium and the related detailed balance, which brings a
great semplification

Pr {C(t)}
Pr
{
Ĉ(t)

} = Peq(C0)
Peq(Cn) ·

Peq(C1)
Peq(C0) ·

Peq(C2)
Peq(C1) · · ·

Peq(Cn)
Peq(Cn−1) = 1 (2.36)
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As we wanted to show, at equilibrium, the probability of a certain trajectory is the
same of its time reversed one

Pr {C(t)} = Pr
{
Ĉ(t)

}
We know that the predictive power of equilibrium statistical mechanics relies on
the fact that the stationary probability distribution of a thermalized system is uni-
versal and can be classified into a small number of thermodynamic ensembles [33].
In particular, an isolated system will thermalize in such a way that each available
configuration is visited with the same probability. This fundamental equal a priori
probability postulate is the core of equilibrium statistical mechanics, from which all
other thermodynamic ensembles can be derived. Recalling what we have said about
the non-equilibrium condition, we see then that if the detailed balance law is broken,
then the probability currents do not vanish at the stationary state.
In a NESS [34], the probability distribution of the microscopic trajectories inside
the system differs from the probability distribution of the time-reversed trajectories
so that the system is in an (stochastic) irreversible state (and this is directley con-
nected with entropy production). The irreversibility of a NESS thus finds its origin
in a selection of the initial conditions for the trajectories incoming the open system.
In fact, most trajectories have an initial condition which is different from the initial
condition of the timereversed trajectory and, moreover, the stationary probability
distribution of a NESS gives a different weight to the forward and backward trajec-
tories. Therefore, the selection of initial conditions by the flux boundary conditions
explicitly breaks the time-reversal symmetry of the model considered. In this con-
text, the irreversibility of a NESS is commonly characterized by the production of
entropy inside the system and we will give a formula for its measure in Chapter 3.

2.4 Van Kampen’s system size expansion

As we have said before, the master equation describe the system completely, taking
into account its intrinsic stochastic nature. This induces a lot of complexities in the
description of its evolution, given a specific initial condition. This means that solv-
ing exactly the master equation can be done only in very few cases. Thus is required
a general method for expanding the equation, and this should give (with the cor-
rect assumptions) the results given by the Fokker-Planck equation or the Langevin’s
description (which we not develop here) [27]. Here we want to introduce the the-
oretical approach to this procedure that will be used in Chapter 4 to obtain the
deterministic equations. The Van Kampen’s system size expansion is, as suggested
by the name, a perturbative expansion of the master equation, by considering that
the fluctuations around the macroscopic value that describe the system, are small.
Even if the nature has a stochastic behavior, it is also true that a great ensamble of
particles often follow a deterministic description. In fact, has been well shown that
a system of N particles usually present fluctuations of order ∼ N1/2, this means
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that the macroscopic properties are ∼ N−1/2.
Thus, we now define a parameter Ω that must:

1. Be present inside the master equation in the formulation of the problem.

2. Govern the size of fluctuations around the peak of the system variable.

3. Determine the size of the relative jumps at each instant in which the system
evolves. For high Ω we require that the respective jump size will be small, and
usually Ω is the size of the system itself.

It is now necessary to make the assumption for the proper expansion of Ω. For
example, following what we said before, defining Pn the solution of the master
equation involved to have a certain variable n at time t with a certain probability,
one expects that Pn would be peaked around its macroscopic value φ(t) with a width
that is

n ∼ Ωφ(t) + Ω1/2ξ

where ξ is the new variable replacing n.
Being more general, we see that the parameter Ω creates on one side a point of view
in which the size of jumps, that will be denoted by the extensive variable X, that
remains the same even if Ω changes. On the other side, it creates a point of view in
which the macroscopic properties can be studied by a parameter x = X/Ω, that is
an intensive variable. Of course the limit of interest is at large Ω and fixed x.
The starting point of our derivation is to write the transition rates as functions of
the starting point and jump length, so that the master equation (in which we will
specify the parameter dependence in the rates) is

Ṗ (X, t) =
∫ {

WΩ(X|X ′)P (X ′, t)−WΩ(X ′|X)P (X, t)
}
dX ′ (2.37)

and the rate can be expressed as function of the starting point and of the jump
length r ≡ ∆X = X −X ′:

WΩ(X|X ′) = WΩ(X ′;X −X ′) = WΩ(X ′; r). (2.38)

Here the dependence on r give the probability measure of the possible jumps length
inside the system, while the dependence on X ′ gives the general probability. Some
author like Gardiner then immediately make the following assumption

W (X ′; r) = Ωψ
(
x′ ≡ X ′

Ω ; r
)

and starts with the procedure of expansion. We follow the Van-Kampen’s way, which
in general affirms that there is a function of two variables r and x′:

WΩ(X ′;X −X ′) = Φ
(
X ′

Ω ;X −X ′
)
≡ Φ

(
x′; r

)
and WΩ(X ′|X) = Φ(x;−r) (2.39)
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We note that there can be present a positive factor f(Ω) which can be deleted by a
simple redefinition of the time coordinate (the system will evolve faster or slowly).
The expansion then reads

WΩ(X|X ′) = f(Ω)
{

Φ0

(
X ′

Ω ; r
)

+ Ω−1Φ1

(
X ′

Ω ; r
)

+ Ω−2Φ2

(
X ′

Ω ; r
)

+ · · ·
}
(2.40)

This expression takes the name of canonical form and occur in most of the natural
cases. We then substitute 2.40 inside 2.37 so that

Ṗ (X, t) = f(Ω)
∫ {

Φ0

(
X − r

Ω ; r
)

+ Ω−1Φ1

(
X − r

Ω ; r
)

+ · · ·
}
P (X − r, t) dr

− f(Ω)
∫ {

Φ0

(
X

Ω ;−r
)

+ Ω−1Φ1

(
X

Ω ;−r
)

+ · · ·
}
P (X, t) dr (2.41)

As we anticipated at the beginning of the paragraph, we now need to anticipate
how the solution will depend on Ω. At time 0, one expects that the solution of the
master equation P (X, 0) = δ(X − X0). As time passes, P will be sharply peaked
on a position of order Ω, but it will still have a width of order Ω1/2. Explicitly this
means that X have a first macroscopic term plus a noise:

X = Ωφ(t) + Ω1/2ξ (2.42)

where the function φ(t) evolves as the peak does. Note that 2.42 is the only expansion
that justifies a deterministic description that have a natural stochasticity. Thus we
have the following expansion:

P (X, t) = P (Ωφ(t) + Ω1/2ξ, t) = Π(ξ, t) (2.43)

The respective transformations of the derivatives are:

∂νΠ
∂ξν

= Ω
ν
2
∂νP

∂Xν
(2.44)

∂Π
∂t

= ∂P

∂t
+ Ωdφ

dt

∂P

∂X
= ∂P

∂t
+ Ω1/2dφ

dt

∂Π
∂ξ

(2.45)

Thus, the master equation 2.41 is

∂Π(ξ, t)
∂t

− Ω1/2dφ

dt

∂Π
∂ξ

=

= f(Ω)
∫

Φ0(φ(t) + Ω−1/2(ξ − Ω−1/2r; r))Π(ξ − Ω−1/2r, t)dr+

+ Ω−1f(Ω)
∫

Φ1(φ(t) + Ω−1/2(ξ − Ω−1/2r; r))Π(ξ − Ω−1/2r, t)dr + · · ·

− f(Ω)
∫

Φ0(φ(t) + Ω−1/2ξ;−r)Π(ξ, t)

− Ω−1f(Ω)
∫

Φ1(φ(t) + Ω−1/2ξ;−r)Π(ξ, t)− · · · . (2.46)
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we can now follow the steps of the expansion done during the derivation of the
Fokker-Planck equation, but now are visible the order terms in Ω−1/2. Expanding
with Taylor the first two terms of the second member (note that ξ is shifted by -
Ω−1/2) we get a semplification of the first two terms with the last two of the member.

∂Π(ξ, t)
∂t

− Ω1/2dφ

dt

∂Π
∂ξ

=

= −Ω−1/2f(Ω) ∂
∂ξ

∫
rΦ0(φ(t) + Ω−1/2ξ; r)Π(ξ, t)dr+

+ 1
2Ω−1f(Ω) ∂

2

∂ξ2

∫
r2Φ0(φ(t) + Ω−1/2ξ; r)Π(ξ, t)dr

− 1
3!Ω

−3/2f(Ω) ∂
3

∂ξ3

∫
r3Φ0(φ(t) + Ω−1/2ξ; r)Π(ξ, t)dr+

− Ω−3/2f(Ω) ∂
∂ξ

∫
rΦ1(φ(t) + Ω−1/2ξ; r)Π(ξ, t)dr +O(Ω−2). (2.47)

To simplify this expression we can define the jump moments

αν,λ(x) =
∫
rνΦλ(x; r)dr (2.48)

and rescaling the time as follow

Ω−1f(Ω)t = τ

by doing that we get

∂Π(ξ, t)
∂t

− Ω1/2dφ

dt

∂Π
∂ξ

=− Ω1/2 ∂

∂ξ
α1,0(φ(τ) + Ω−1/2ξ)Π

+ 1
2
∂2

∂ξ2α2,0(φ(τ) + Ω−1/2ξ)Π

− 1
3!Ω

−1/2 ∂
3

∂ξ3α3,0(φ(τ) + Ω−1/2ξ)Π

− Ω−1/2 ∂

∂ξ
α1,1(φ(τ) + Ω−1/2ξ)Π +O(Ω−1)

(2.49)

we now expand the jump moments and we get (note that the primes indicates the
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derivatives)9:

∂Π(ξ, t)
∂t

− Ω1/2dφ(τ)
dt

∂Π
∂ξ

=− Ω1/2α1,0(φ(τ))∂Π
∂ξ
− α′1,0

∂

∂ξ
ξΠ− 1

2Ω−1/2α′′1,0(φ(τ)) ∂
∂ξ
ξ2Π

+ 1
2α2,0(φ(τ))∂

2Π
∂ξ2 + 1

2Ω−1/2α′2,0(φ(τ)) ∂
2

∂ξ2 ξΠ

− 1
3!Ω

−1/2α3,0(φ(τ))∂
3Π
∂ξ3

− Ω−1/2α1,1(φ(τ))∂Π
∂ξ

+O(Ω−1)

(2.50)

The same result could be obtained via Kramers-Moyal expansion.
At first one could rebut that the expansion performed is incorrect, since it presents
terms of order Ω1/2. We can make them cancel out if we impose that the system
fulfill the equation

dφ

dτ
= α1,0(φ(τ)) (2.51)

The solution of 2.51 is given by the initial condition: P (X, 0) = δ(X −X0); and the
initial value X0 which is given by φ(0) = X0/Ω = x0. This equation is nothing that
the deterministic equations.
After we have considered the terms of order Ω1/2, we now can consider the terms of
order Ω0. This brings to

∂Π(ξ, t)
∂t

= −α′1,0(φ(τ)) ∂
∂ξ
ξΠ + 1

2α2,0(φ(τ))∂
2Π
∂ξ2 . (2.52)

that’s a linear Fokker-Planck equation whose coefficients depends on time, since φ
depends on it. All this procedure has given the so-called linear noise approximation
that is obtained thanks to a systematic expansion in Ω−1, and it is also called the
Gaussian approximation because if the Fokker-Planck equation describes a linear
process, its solution is a Gaussian. This fact implies that the distribution Π(ξ, t) is
completely specified by the first two moments 〈ξ〉t and

〈
ξ2〉

t. To obtain that, one
must multiply equation 2.52 by ξ and ξ2 and integrate over ξ:

∂τ 〈ξ〉 = α′1,0(φ) 〈ξ〉

∂τ
〈
ξ2
〉

= 2α′1,0(φ)
〈
ξ2
〉

+ α2,0(φ)

and the variance obeys the following

∂τ
〈〈
ξ2
〉〉

= 2α′1,0(φ)
〈〈
ξ2
〉〉

+ α2,0(φ)

9The relation between the old jump moments aν and the new αν,λ:

aν(X) = f(Ω)
[
αν,0(XΩ ) + 1

Ωαν,1
(
X

Ω

)
+ · · ·

]
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Of course, since we want to start with a solution that is a delta-function and we want
x0 to be the starting value of the macroscopic quantity, then the initial fluctuation
will be zero: 〈ξ〉0 =

〈
ξ2〉

0 =
〈〈
ξ2〉〉 = 0. Integrating the first equation brings to

〈ξ〉τ = 〈ξ〉0︸︷︷︸
0

exp
∫ t

0
dτ α′1,0(φ(τ))

This implies that 〈ξ〉τ = 0 and then

〈X〉τ = Ωφ(τ |x0) + Ω1/2〈ξ〉τ︸︷︷︸
0

so that in the linear noise approximation the average 〈x〉 = 〈X〉τ /Ω follows the
deterministic equations

∂τ 〈x〉 = α1,0(〈x〉) +O(Ω−1)

It is important to stress the fact that the expansion proposed in 2.42 is not one of
the possible approximations, but it will match with the common postulate of using
a Gaussian noise as first approximation going beyond the mean-field description.
Finally, we want to give an a posteriori reason from the Ansatz 2.42. The equation
2.52 does not contain Ω, this implies the fairness of 2.42 since the fluctuation emerges
in the right order.
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Chapter 3

Entropy and entropy production

As in thermal equilibrium there are no flows of free energy, which mean no expend-
able work for the system, life relies on non-equilibrium thermodynamics. Biological
systems are usually open systems1, i.e. a system where its constituents are in con-
tact with an environment, and energy flows inside and outside them. However, in
ecology sometimes the systems are treated as approximately closed, and they can
approach to equilibrium before being disrupted in one way or another. This can
happen in a multitude of cases such as an evolutionary population (or a chemi-
cal reaction) that reaches its stable state. All these events have in common the
fact that all constantly tend to increase their entropy [39, 21]. The breaking of
time-reversal symmetry is certainly an important feature of non-equilibrium sys-
tems. While the underlying microscopic dynamics is (under usual circumstances)
time-reversal symmetric, the plausibility of the time-reversed history of mesoscopic
or even more macroscopic conditions can greatly differ from that of the original his-
tory. This means that out of equilibrium a particular sequence of macrostates and
its time-reversal can have a very different plausibility and these considerations are
very much linked with the concept of entropy and its production. As written by
Max Planck in 1926 [20]: “...there is no other general measure for the irreversibility
of a process than the amount of increase of entropy”. In Chapter 2, we dealt with
stochastic systems in non-equilibrium conditions. Here we want to introduce the
idea of entropy and its main features, since it is the fundamental quantity of study
in this work of thesis. Specifically we are interested in the entropy production in a
framework of Markovian processes. Historically, the notion of entropy emerged in
conceptually distinct contexts, we will present entropy by its three main different
perspective and conceptions, that are:

• Entropy seen as irreversibility of a certain transformation that occurs inside a
system.

1 Note that in open systems the increment of entropy may be negative (and free energy increment
may be positive), this because the system is driven by the environment: energy is pumped into the
system. In the steady state of an open system, it is now the entropy production rate that must be
nonnegative [21].

39
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• Entropy seen as a measure of disorder of a system.

• Entropy seen as a measure of the lack of information about a system.

3.1 Entropy and non-equilibrium entropy

Let’s start discussing the first time in which the concept of entropy emerged in
literature [32].

Entropy as irreversibility

During the experiments on the steam engines in the early ’800, scientists started
realising that some of the heat energy involved in the transformations was lost
into a cold reservoir due to vibration, friction etc. This fact showed that energy
conservation (that is expressed thermodynamically by the first law dU = δQ− δW )
cannot be the only principle that must be valid for heat engines. In 1824 Carnot
published a treatise in which was stated that the efficiency of n engine could not
never reach 100% efficiency i.e. it is not possible to convert all the usable heat of a
reservoir in work and found that the most efficient engines are the reversible one’s,
named Carnot’s engine. In a Carnot’s cycle he found that, named Q1, Q2 the heat
flux inside/outside the piston and T1, T2 its relative temperature, the following law
holds

Q1
T1

= Q2
T2

and ater scientists decided to call this ratio the “entropy change”2

∆Stherm = Q

T
(3.1)

The notion of entropy was defined by Clausius in 1850–1865 as an extensive quantity
that links temperature with heat

dS = δQ

T
⇒ ∆S =

∫
δQ

T
(3.2)

where T is the temperature and Q is the heat flowed into the system. Of course if the
process is irreversible, then we have the second law of thermodynamics: ∆S ≥

∫ δQ
T

where the total entropy of an isolated system always increase until a maximum is
reached. For more general time-dependent processes from an equilibrium state A to
another equilibrium state B, holds the inequality

S(B)− S(A) =
∫ tB

tA

Q(t)
T (t)dt (3.3)

where T (t) is the temperature of a single heat bath in contact with a system, and
Q(t) is a heat flux i.e. the energy transfer from the heat bath at time t.

2 This means that in a Carnot’s engine cycle no entropy is produced.
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Entropy as disorder

Another interpretation of entropy is as a measure of the disorder in a system. Follow-
ing the usual procedure describing the microcanocical ensemble, remembering the
fundamental claim that all points in phase space (with a given energy) are a priori
equally likely, we arrive at the probability of a system having a certain phase-space
volume Ω(E) in a shell of energy E

Ω(E) =
∫
dE1Ω1(E1)Ω2(E − E1) (3.4)

where the subscripts 1 and 2 indicate the respective two subsystems. Thus by
normalisation we can obtain the probability density of the subsystem with E1 of
being in any of the compatible state with that energy that is

ρ(E1) = Ω1(E1)Ω2(E − E1)
Ω(E)

taking the maximum of the derivative in the integrand above gives the energy of
the first subsystem. Then we can define the equilibrium entropy as done at first
in 1887 by Boltzmann, that creates a bridge between the statistical mechanics and
thermodynamics:

Seq(E) = kB log(Ω(E)) (3.5)

The condition of thermal equilibrium is then reached by an extremum of entropy,
and it can be seen by taking its derivative d/dE1 for both subsystems. Now, if we
consider a system with N particles of two types, and we mix them, the entropy will
be given, by following equation

S = kB log(W )

where W is the discrete number of possible configurations. A much disordered
system has obviously a greater number of possible configurations W which implies
a greater values of S.

Entropy as lack of information

Another interpretation of entropy is as a measure of our ignorance about a system.
If we consider an equilibrium state following this interpretation, then we see that it
reaches the maximum of entropy because we have lost all the information about the
initial condition of the state except for the conserved quantities. The entropy of a
certain mixture of atoms in a box is nothing but a measure of the possible states in
which these atoms could be arranged inside the box, given our ignorance about the
real arrangement3. So, in information theory, the entropy of a system is defined as
the amount of information which is necessary to describe the configuration of the
system. Since an ordered system requires less information to be described than a

3We note that the many possible arrangement of these particles are defined by statistical me-
chanics by the ensamble theory.
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disordered one, the entroy can be seen as a measure of disorder.
This definition of entropy was given by Shannon [47] in the context of information
theory and, since in this particular case we are not interested in the connection
with temperature, instead of using the Boltzmann’s constant it uses the constant
kS = 1/ log(2)

SS = −kS
Υ∑
i

pi log pi .

We note that the definition of kS is necessary if we want to measure the entropy in
bits, as was done by Shannon. In this framework, in a low-entropy set of data it is
easy to predict, so that in information theory it is necessary only to transmit those
data that violates our predictions.

Non-Equilibrium entropy

An extension of entropy outside of equilibrium has been done, and in literature this
definition is named in several ways. We start from a discrete probability distribution
{Pt(C)}, and we define the entropy as a functional of the set of probabilities just
introduced for finding a given system in a state C (where C = C1, C2, . . . ,Υ) at
time t:

S [P ] = −kB 〈log(Pt(C))〉 = −kB
∑
C

Pt(C) log(Pt(C)) (3.6)

In this definition the stochasticity properties of a system emerge naturally and it is
easy to see that, if we consider all the possible state Ω as equally probable so that
P = 1/Ω, then we recover equation 3.5. We can then extend this definition in the
continuous case considered as a quantity derived by many ensamble of the system’s
constituents, that often is called Boltzmann-Gibbs entropy:

Sneq = −kB 〈log(ρ)〉 =

= −kB
∫
ρ log ρ = −kB

∫
E<H(p,q<E+δE)

dp dq

h3N ρ(p, q) log ρ(p, q) (3.7)

where ρ(p, q) is the probability density in the continuous phase space Υ with (p, q) ∈
Υ. It is interesting to note that, even if all the notions presented are conceptually
different, the functional form behind these definitions is the same.

3.2 Entropy production on Markov processes

Entropy is probably the most fundamental concept of statistical physics. From the
information/theoretic point of view, as we have seen, the entropy of a system can be
defined as the amount of information which is necessary to describe the configuration
of the system. Since the description of a highly ordered configuration requires less
information than a disordered one, entropy can be viewed as a measure of disorder.
The amount of information which is necessary to describe a configuration depends on
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the already existing partial knowledge of the observer at a given time. For example,
deterministic systems with a given initial configuration have no entropy because the
observer can compute the entire trajectory in advance, having complete knowledge
of the configuration as a function of time even without measuring it. Contrarily,
in stochastic systems the observer has only a partial knowledge about the system
expressed in terms of the probability distribution Pt(C).[33].
In order to give the right framework in which we operate, it is fundamental presenting
the main concepts of Stochastic Thermodynamics (ST) of single trajectories . In the
last decades this field has been introduced by the works of Crooks, Sekimoto, Seifert
and Schnakenberg [41]-[43]. We summarize here ST and the most important results
for our purposes of work, taking into account that we are interested mainly on the
applications of these concept in the master equation formalism. Because of that
many results that do not pertain to our goals will not be presented below.

3.2.1 Stochastic Thermodynamics

Stochastic Thermodynamics, is usually introduced as the combination of stochastic
energetics [41] with the possibility of assigning in a consistent way an entropy to a
single fluctuating trajectory. Instead, stochastic energetics can be seen as the link
between the usual thermodynamics and the stochastic dynamics, that concerns the
so-called Brownian motion and thermal fluctuations. We know that one of the first
systems of the non-equilibrium statistical mechanics is based on a colloidal particle
which is well described by the Langevin equation. For this reason we will follow
some detail of this equation in [42].
If we imagine a particle immersed in a heat bath, it is clear how to assign an entropy
change, it is less obvious to do that for the particle itself. Starting from a overdamped
motion x(τ) of a particle with mobility µ along a one-dimensional coordinate in the
time-interval 0 ≤ τ ≤ t subject to a force

F (x, l) = − ∂

∂x
V (x, l) + f(x, l)

where the force can come from a conservative potential V (x, l) or from the particle
itatvself f(x, l). For these sources of the force can be defined a control-parameter
λ(t) that varies coherently with the experimental prescriptions. Thus the motion is
controlled by the Langevin equation

ẋ = µF (x, l) + ζ

The stochastic term is given by a Gaussian white noise4 with
〈ζ(τ)ζ(τ ′)〉 = 2Dδ(τ − τ ′) where D is the diffusion constant.At the equilibrium, D
and µ are related by the Einstein relation D = Tµ where T is the temperature of
the medium in which the particle is immersed5. In order to get a good definition

4The term white means that the respective Fourier transformation of ζ has a flat spectrum.
5Up to now we will se the Boltzmann constant kB = 1 so that the entropy results dimensionless.
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of the entropy along a single trajectory, we use the Fokker-Planck equation for the
probability p(x, τ) to find the particle at a specific point in time and space

∂τp(x, τ) = −∂xj(x, τ) = −∂x(µF (x, l)−D∂xp(x, τ) (3.8)

where the initial condition is set as p(x, 0) ≡ p0(x).

As specified in the previous paragraph, the non-equiibrium Gibbs entropy can be
stated as

S(τ) ≡ −
∫
dx p(x, τ) ln p(x, τ) ≡ 〈s(τ)〉

and suggested that a possible definition of the entropy of a single-trajectory is

s(τ) = − ln p(x(τ), τ) (3.9)

where the probability p(x, τ) is obtained by the solutions of the Fokker-Planck equa-
tion evaluated along the trajectory x(τ). From what said, the entropy s(τ) depends
on the initial condition p0(x), which means that it contains informations of the whole
ensamble and for an equilibrium Boltzmann distribution at fixed l, this definition
gives the following

s(x) = (V (x, l)−F(l))/T

with the free energy F(l) ≡ −T
∫
dx e−V (x,l)/T .

Following this framework it is possible to show the entropy production ṡ(τ) of the
particle, the ṡm(τ) of the medium and the Fluctuation Theorem for the total change
of entropy. In our model we are interested in a generalisation of these concepts for
more than one degree of freedom, in which enter the master equation.

3.2.2 Entropy production and master equation

In this framework, we want to present a well defined entropy production rate for
a single trajectory taking into account that there is not (conversley to a colloidal
particle) the concept of heat that makes easily to define entropy production in the
medium. Firstly, we want to sketch the way in which Schnakenberg defined the
entropy production rate. The concept of time reversal as previously seen, is central
in this framework since it ditinguishes the flow of a particular event in a sense or in
the other and we will use it to get a good definition of entropy production.
Considering equation 2.25, it can be rewritten in the following fashion6

d

dt
Pt(C) =

∑
C′ 6=C

[
WC,C′Pt(C ′)−WC′,CPt(C)

]
(3.10)

where the quantities WC′,C are the usual transition rates defined in the past
chapter. By taking the bilinear expression

Ṡ = 1
2
∑
C,C′

JC′,CAC′,C

6In the next pages the rates WC′,C will also benne expressed by the notation: Γ(C → C′) ≡
Γt(C → C′) ≡ ΓC′,C(t).
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with AC′,C being the generalise thermodynamic force of the processes involved and
JC′,C the fluxes of the system itself 7 gives

Ṡ = 1
2
∑
C,C′

[
WC′,CPt(C)−WC,C′Pt(C ′)

]
ln WC′,CPt(C)
WC,C′Pt(C ′)

(3.11)

We note that in this case the transition rates were indipendent of time t and
that Jt(C,C ′) = WC′,CPt(C)−WC,C′Pt(C ′). Following [44], we introduce the time-
reversed trajectory defined by

Crev ≡ Ĉ = {C(t− τ), 0 ≤ τ ≤ t}

Again, the non-equilibrium ensamble entropy of a stochastic system is the Gibbs’
one [47, 33], noting that below the average is taken since an observer lacks of in-
formation about the probability function (that would be known only by solving the
F-P equation 3.8):

〈S(t)〉 = −
∑
C

P (C; t) lnP (C; t) = −〈lnP (C; t)〉 (3.12)

and we see that is the average of the entropy associated to the system in 3.9 Indeed,
we take the definition 3.12, and we operate to it in order to obtain two component
of the entropy: one dealing with the internal entropy production and the other with
the exchange (flow) of entropy per unit time in the environment. We will see that for
the ensemble-averaged rate of total entropy production in a non-equilibrium process
that assures the important condition 〈Stot ≥ 0〉.
Let us start taking the time-derivative of equation 3.12 and using the master equation
and defining J̃C′,C := W (C,C ′)PC′(t) so that the master equation can be written as
ṖC =

∑
C′

[
J̃C′,C − J̃C,C′

]
:〈

Ṡ(t)
〉

= −
∑
C

ṖC(t) logPC(t) +
∑
C

ṖC(t)

= −
∑
C

ṖC(t) logPC(t) + d

dt

{∑
C

PC(t)︸ ︷︷ ︸
1

}

= −
∑
C,C′

[
J̃C′,C − J̃C,C′

]
logPC(t) =

∑
C,C′

[
J̃C,C′ − J̃C′,C

]
logPC(t)

(3.13)

= 1
2
∑
C,C′

[
J̃C,C′ − J̃C′,C

]
logPC(t) + 1

2
∑
C,C′

[
J̃C′,C − J̃C,C′

]
logPC′(t)

= 1
2
∑
C,C′

J̃C,C′ log PC(t)
PC′(t)

+
{1

2
∑
C,C′

J̃C,C′ logPC(t)− 1
2
∑
C,C′

J̃C,C′ logPC′(t)
}

=
∑
C,C′

J̃C,C′ log PC(t)
PC′(t)

=
∑
C,C′

PC(t)W (C ′, C) log PC(t)
PC′(t)

.

(3.14)
7In the following we will consider {C} as the trajectory of the particle, meanwhile the bare

symbol C will indicates the particular states in which the particle lies at that time.
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where in certain passages we changed C � C ′.
In accordance to what will be derived in 3.20, this entropy production (generated
by the interaction of the system with particle/heat reservoirs which leads to the
stochastic jumps) can be divided into terms representing the total entropy produc-
tion of the stochastic system itself and an entropy flow that leads to a change of
the entropy of the environment (the reservoirs). In fact, multiplying and dividing

log PC(t)
PC′(t)

in 3.13 for WC′,C

WC,C′
we obtain the internal entropy production

〈
Ṡtot(t)

〉
≡
∑
C′,C

WC′,C(t)PC(t) ln WC′,C(t)PC(t)
WC,C′(t)PC′(t)

(3.15)

note that this quantity is zero if the detailed balance holds. Indeed the flow of
entropy in the environment i.e. the variation of entropy due to the interaction with
the environment or equivalently the heat exchange with the surroundings of the
system: 〈

Ṡenv(t)
〉
≡
∑
C′,C

WC′,C(t)PC(t) log WC,C′(t)
WC′,C(t) (3.16)

note that is exactly this term that prevents the system to reach an equilibrium state.
And of course holds

〈
Ṡtot

〉
+
〈
Ṡenv

〉
=
〈
Ṡ
〉

. These ensemble averages can be given
in a microscopic meaning in terms of the entropy change along a single stochastic
trajectory. Thus, we can go back from the ensemble-averaged Gibbs entropy to
microscopic configurations and assigns an ‘entropy’ in the following way8

S = − lnP (Ck; t) for tk ≤ t ≤ tk+1

S = − logP (C; t) for 0 ≤ t ≤ T

for the configurations of the trajectory {C}. Therefore, S(t) is time-dependent due
to two contributions:

• There can be a time-dependence in P (Ck; t) even if the system doen’t effectuate
jumps because there can be a possible relaxation from a non-stationary initial
state.

• There can be time-dependent rates that imply a direct dependence in time for
P (Ck; t).

Including th jumps, the rate of change of entropy is

Ṡ(t) = −∂tP (C(t); t)
P (C(t); t) −

n∑
k=1

δ(t− tk) ln
[
P (Ck; tk)
P (Ck−1; tk)

]
(3.17)

and that can be split in two parts:
8From the notational point of view, now S represents the same of the s(t) that was used in the

previous paragraph.
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Ṡtot ≡ −
∂tP (C(t); t)
P (C(t); t) −

n∑
k=1

δ(t− tk) ln
[
WCk−1,Ck(tk)P (Ck; tk)
WCk,Ck−1(tk)P (Ck−1; tk)

]
(3.18)

Ṡenv ≡
n∑
k=1

δ(t− tk) ln
[
WCk,Ck−1(tk)

WCk−1,Ck(tk)

]
(3.19)

with Ṡ = Ṡtot − Ṡenv, where by taking the ensamble averages bring back the
equation presented before. In order to take the average, it is needed the probability
for a jump that occurs at t = tk from Ck−1 to Ck that is P (Ck−1; tk)WCk,Ck−1(tk),
thus we have 〈

Ṡenv(t)
〉

=
∑
C′,C

P (C; t)WC′,C(t) ln WC′,C(t)
WC,C′(t)

(3.20)

and same for the other relation. Of course adding these quantities we have
〈
Ṡtot(t)

〉
=〈

Ṡenv(t)
〉

+
〈
Ṡ(t)

〉
with

〈
Ṡtot(t)

〉
≥ 0.

Therefore we have shown that dS/dt can be written by the sum of two term: the
first correspond to dS, and the second to dSenv, that can be interpreted also as the
heat dissipation rate (h.d.r.) called −hd.
The first term is indeed dS ≥ 0, unless it holds the law of detail balance, where in
that case dS = 0. We regard that if the system is in a NESS, then we have

dStot
!= 0 = dS + dSenv ≡ dS − hd

so that the heat dissipation rate equals the entropy production of the system9. We
note that since

dS + dSenv ≡ dS + dSenv = dS + δQ

T
≥ δQ

T

if the system is adiabatically isolated, then δQ = 0 (there’s no exchange of heat
with the environment of the system, preventing a contribution for the entropy).
This means that

dStot = dS ≥ 0 .

It is interesting to show [46] that if we integrate for a time interval the follow equation
we get

dStot
dt

= dS

dt
+ dSenv

dt
(3.21)

thus we recover the Clausius relation, by simply interpreting (as we suggested before)
dSenv
dt as the ratio between the heat flux dQ

dt and the temperature T of the environment
so that

∆Stot =
∫
dS dt+

∫
dSenv dt

9Usually the scientific papers define the entropy production like dS/dt = Π−Φ, where Π stands
for the entropy production rate and Φ stands for the flux of entropy from inside the system to the
environment.
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then since dS
dt ≥ 0 we get

∫
dSenv dt = −

∫
dQ

T
⇒ ∆Stot ≥

∫
dQ

T

and this is exactly the Clausius relation briefly discussed before. The difference
between ∆Stot and

∫ dQ
T is the production of entropy.

Thus, the results presented above tell us a concrete (and computational) way to
calculate the entropy production of a certain system. This is done by performing
the logarithm of the ratio between the rates of the forward jump and its reversed
one. Of course this is also strictly related to the concept of irreversibility since if the
two rates were equal at each step, then the entropy production would be zero and
there would not be a privileged choice for the system to realize a particular path
induced by non-symmetric probabilities. As in Fig. 3.1, in nature isolated systems
are expected to thermalize, we can conclude that conversely a non-thermalizing
system must always interact with the environment [33].

Non-equilibrium
system

Environment

Entropy production

Drive (rates)

Figure 3.1: Scheme of the relations between the Non-equilibrium system and the
Environment.

This means that an external drive is needed to prevent the system from ther-
malizing by driving it from the outside, maintaining its non-vanishing probability
currents which can be seen as the forces that (coupling with the system) allow its
rates to be maintained in the defined analytical form through time. The external
drive, that keeps the system away from thermal equilibrium, inevitably increases
the entropy in the environment. We point out that thermalizing systems (i.e. sys-
tems with balanced rates relaxing into thermal equilibrium) can contain subsystems
which are out of thermal equilibrium in the sense that the transition rates do not
obey detailed balance i.e. they are antisymmetric. This apparent contradiction is
resolved by observing that the rates in the subsystem are generally time-dependent
and will eventually be adjusted in such a way that the subsystem thermalizes as
well with the rest of the environment, but later in time. However, for a limited time
interval (that can also be long) it is possible to keep them constant in order to make
them violating the detailed balance. This is exactly what happens in experiments
and simulations far from equilibrium – typically they depend on external power and
will quickly thermalize just it is turned off.
To conclude, there is another interesting way to derive the entropy production of a
system [35, 36, 37], by assuming the so-called local detailed balance condition. Start-
ing from a condition of equilibrium which holds the detailed balance condition, the
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equilibrium probability

Peq(C) = e−U(C)/(kB T )

Z

which means that the ratio

W (C ′, C)
W (C,C ′) = e−β(U(C′)−U(C)) = e−β∆U = e∆S/kB

where as usual S is the entropy change of the environment in the transition C → C ′.
Upon now the system was considered at equilibrium, and out of equilibrium this
relation cannot still hold. Here comes the local detailed balance condition: if it
is assumed that for a sufficiently short time and space, the system equilibrates
locally with the reservoirs interacting singularly with one of them at a time (but the
reservoirs does not interact each other), then we can use the relation above.

Then, without making any assumptions on the time-dependent transition rates,
we can decompose them in two parts, one (time) symmetric and the other one (time)
antisymmetric:

W (C ′, C) ≡W (C → C ′) = a(C ′, C) e
F (C ′, C)

2 (3.22)

and the reverse rate that is

W (C,C ′) ≡W (C ′ → C) = a(C,C ′) e
−
F (C ′, C)

2 (3.23)

where a(C ′, C) =
√
W (C ′, C)W (C,C ′) = a(C,C ′) are called activity parameters

and reflects the accessibility to the respective channel: they are frequencies and
can depend both on intensive parameters of the environment or on external forces.
Since a is symmetric in time, implies that it is a non-dissipative element in the
decomposition of W . The term F (C ′, C), due to its asymmetry, can be seen as the
driving force of the system (we omitted the kB factor). Indeed, taking the ratio
between 3.22 and 3.22 we get

F (C ′, C) = log W (C ′, C)
W (C,C ′) = −F (C,C ′). (3.24)

Thus we can interpret F as the entropy production on the environment due to its
coupling to the system.
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Chapter 4

Our model of interactive species

4.1 The stochastic model and master equation

In the introduction, we enounced that our goal in this thesis is to study a particular
model of interaction between species. There exist various examples of systems which
consist of elements that influence each other through competition or cooperation.
Some important cases are: populations of various biological species, political par-
ties, businesses, countries, coupled reacting chemical components in bodies of water,
and in organisms, components of the nervous system and so on [48]. Specifically,
we want to use the theoretical tools introduced in the previous Chapters (2-3) to
give information about the evolution of the system. Furthermore, we are interested
in performing a study of its entropy production in different conditions that will be
expressed by various values of the parameter on which the system depends. These
values must be interpreted as the intrinsic definition of the biological relationships
between the species of the relative ecosystem and they may depend on external or
internal factors. The procedure that will be followed here consists first by a descrip-
tion of the model that has been chosen for this thesis and then of the method used to
simulate the processes involved, then a mathematical analysis is presented in which
the deterministic equations (when N � 1) are derived via Van Kampen’s system
size expansion and the Fokker-Planck equation (linear noise approximation). The
populations evolutions is modelled in a stochastic way by an instantaneous random
births-deaths process (Moran Process). Finally, we perform the numerical simula-
tions, plus a comparison between the deterministic and the high population model
and we study for which cases (values of the rates entries) the entropy production of
the system is higher.

As we said, it is a consolidated procedure to describe these ecological process
as stochastic Markov processes (regulated by a master equation) of discrete vari-
ables (that represent the single individuals). These kind of formulations are called
“Individual-Based-Model” (IBM) where the noise/stochasticity stems from the dis-
creteness of the system itself and not from an external noise. The IBM strength
lives in the possibility of a numerical and analytical study, instead of the so called

51
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“Agent-Based-Models” (ABM), that use algorithms, preventing further studies in
depth [49].
The model from which we start is that of an ecological system composed of a de-
fined number of species that mutually interact and compete between each other
with birth-death processes [14]. Specifically, we handle with a system of m different
states Ei, i = 1, . . . ,m, each of them occupied by Ni ≥ 0 individuals of that partic-
ular state. Of course each state represents its respective species in our model. The
configuration of the system, that is nothing that the vector whose entries are the
occupation number of all the m species, is

C =



N1
N2
N3
...

Nm−1
Nm


(4.1)

This configuration, as time passes, changes its entries due to the competition process
that happens.
Furthermore, the system will have the total number N of individuals constant, that
is

N =
m∑
i=1

Ni(t), ∀ t ≥ 0. (4.2)

Note that this is a strict condition imposed a priori. In fact, there are plenty of
models that violate equation 4.2; for example, removing the conservation law gives
rise to spiral conformation of members of the same species that does not occur if
the total density is conserved [50]. Thus one could ask if this bound is legitimate or
not. In our case we are interested only in the competitive mechanisms between the
species, but we are not interested in the spatial variant of this model where the total
number of species cannot be conserved through time, so it is reasonable to make a
request like 4.2.
The microscopic interactions between the members of the system are described in
time by the following master equation1, which describe the time evolution of the
probability distribution P (C, t)

∂tP ( ~N, t) =
m∑

i,j=1
i 6=j

[
Γi←j(Ni − 1, Nj + 1)P ( ~N − ei + ej , t)− Γi←j(Ni, Nj)P ( ~N, t)

]
(4.3)

where ei ∈ Zm denotes the unit vector in direction i: ei = (0, . . . , 1︸︷︷︸
position i

, . . . , 0)

and the rate Γi←j pertains the specific “jump” of a unit from the j-th species to
the i-th one. Thus a jump implies that the new state of the system will be a C ′

1This kind of model are very popular in literature and have been studied in depth during the
last decades.
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vector where the state Ej lose a particle that goes to Ei. These jumps are given by
a predation or mutation process of the relative species considered. Indeed, the other
fundamental definition that is set a priori concerns the transition rate per unit time
Γi←j : we make them depend linearly on the number of individual in the departure
and in the arrival state:

Γi←j = rijNj(Ni + σij) ; rij ≥ 0, σij ≥ 0. (4.4)

There are two possible events for the competition process that are defined by the
predation rates rij and the mutation rates σij and their dimension is

[rij ] =
[ 1
T

]
, [σij ] =

[ 1
T

]
∀ i, j = 1, . . . ,m. (4.5)

These are two m×m matrices which describe the respective probability contribution
to the jump of a certain member on a specific time when the predation|mutation
happens:

r =


0 r1,2 · · · r1,m
... 0 · · ·

...

rm−1,1 rm−1,2
. . . rm−1,m

rm,1 rm,2 · · · 0

 σ =


0 σ1,2 · · · σ1,m
... 0 · · ·

...

σm−1,1 σm−1,2
. . . σm−1,m

σm,1 σm,2 · · · 0


(4.6)

The diagonal terms (Γi←i) are set to 0 because we do not consider any auto-
interaction.
Solving a master equation is usually very difficult, this is the reason why one adopts
two general methods that complement each other:

1. Starting from the master equation it is performed a Kramers-Moyal or a Van
Kampen’s expansion in order to recover the deterministic equations (taking
N →∞ ) and the Fokker-Planck ones that include the deterministic part plus
a correction term for the demographic stochasticity.

2. Through the so-called Stochastic Simulation Algorithm (SSA) also called Gille-
spie algorithm [51], it is a Monte Carlo method, which provides a computa-
tional method to simulate a single-realisation of a master equation regulated
process. We stress that our system is, in few words, a master equation on a
network of accessible states.

We now describe in detail how the Gillespie algorithm works and next we will show
the particular model that we have chosen for this master thesis. For completeness,
in [52] is shown the equivalence between the continuous master equation and the
discrete simulation of the process.
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4.2 The Gillespie algorithm for our model

Based on the assumption of a homogeneous and well-mixed system, Gillespie in the
70-ies [51] proposed an exact stochastic simulation algorithm to simulate directly the
time evolution of a master equation. At each time, the system is precisely situated
in a state C and the possible states reachable by the system are determined by
the number m of the ecological species. A particular way to represent the process
we want to simulate, is to consider the above cited network of states. The system
will start at a given initial condition, at a state C and it will jump from one state
to another at a time that will be calculated in a probabilistic way depending on
different rates as in Figure 4.1:

C1

C2

C3

C4

C5

C6

C7

Γ21

Γ12

Γ52

Γ25

Γ65

Γ56
Γ23

Γ32Γ46 Γ64
Γ45

Γ54

Γ42

Γ24

Γ73

Γ37Γ75

Γ57

Figure 4.1: Graphical representation of the system’s network of states
{C1, C2, C3, . . .} that are connected to each other with the appropriate rate con-
stants that bring the stochasticity of the evolution of the path, where for more
clarity Γ21 ≡ Γ(C1 → C2).

Specifically, the algorithm determines the new state C ′ in which the system will
jump and also the time interval ∆t at which this happens, given that at time t it
was in C. These two occurrences are determined in a stochastic way [53] i.e. the
algorithm determines which reaction occurs and at what time. We stress the fact
that these two steps do not depend on one another so they can be presented in an
arbitrary way and from a notational point of view we will represent the rates with
Γt(C → C ′).

Choice of the time interval

In order to choose the time interval of the system at each step, we define the sum of
all the transition rate from a state C to all the possible communicating states C ′:

λ(C) =
∑
C′ 6=C

Γ(C → C ′) (4.7)
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this is the Total Escape Rate from the state C.
Considering the dimensions of the rates involved in 4.5, we see immediately that all
together, they can bring a Time-scale χ that will be the inverse of λ(C). In fact,
the dimension of λ(C) is the same of the rate Γ, this means that by inversion one
can easily obtain the time scale

χ(C) = 1
λ(C) , (4.8)

Considering the state being at C at time t, the probability P (τ, ψ)dτ that the next
reaction2 ψ will occur in the time interval [t+ τ, t+ τ + dτ ] and that there will be
a reaction ψ. This means that

• no reaction occurs during [t, t+ τ ]

• the reaction ψ occurs in the interval [t+ τ, t+ τ + dτ ].

The probability that the reaction ψ will occur in the interval [t+ τ, t+ τ + dτ ] is

P (ψ, [t+ τ, t+ τ + dτ ]) = Γψdτ (4.9)

If we denote with
P0(τ ′ + dτ ′) = P0(τ ′)(1− λ(C)) (4.10)

indeed the probability that no reaction occurs during [t, t+ τ ′ + dτ ′] is equal to the
probability to have no reaction in [t, t+ τ ′] (= P (τ ′)) multiplied by the probability
to have no reaction in [t+ τ ′, t+ τ ′ + dτ ′], (1−λ(C)dτ ′) where λ(C)dτ ′ is the prob-
ability to have one reaction in the time interval [t, t+ τ ′ + dτ ′]. Dividing by dτ ′ we
get

P0(τ ′ + dτ ′)− P0(τ ′)
dτ ′

= −λ(C)P0(τ ′),

so that when we take the limit dτ ′ → 0, P0(τ ′) is

P0(τ ′) = exp(−λ(C) · P0(τ ′))

From this we obtain P (ψ, τ)

P (ψ, τ)dτ = P0(τ ′) · P (ψ, [t+ τ, t+ τ + dτ ])dτ (4.11)

At the end we have
PC(ψ, τ) = Γψ exp(−λ(C)τ). (4.12)

Summing all over the possible reactions we have that the next reaction takes place
with the following distribution:

PC(τ) = λ(C) exp(−λ(C)τ). (4.13)
2For example ψ can be a jump of the system in which an individual goes from N3 to N1. Thus

it will be regulated by the rate Γ1←3 ≡ Γψ.
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Our goal now is to obtain for each step the value τ . This can be done using a Monte
Carlo method. In fact, since PC(τ) is a probability, it has a value between 0 and 1.
Thus we generate a random number r1 ∈ [0; 1] and thanks to the inversion method
we can extract the associated random number τ from its probability distribution
function (see Fig.4.2):

PC(τ) 7→ r1 ⇒ τ = −χ ln(r1). (4.14)

x

F (x)

−1

r1 −

x1 = F−1(r1) ∝ ln(1/r1)

Figure 4.2: In this figure is sketched the inversion method that allows to obtain the
time τ at each step, where F (x) = 1− exp(−Ax) is F (x) =

∫ x
−∞ P (s) ds , with A=

const.

Thus at each iteration we have to compute τ , that is a different random number.
This means that each temporal jump, is usually not equal to the previous one and
it depends on the state C.

Choice of the new state

Now that we know for how long the system stays in a particular state, it is necessary
to know what its further step is. To do this, a cumulative probability function is often
used. In detail, starting from the transition rates Γ(C → C ′) we derive a probability

P (C → C ′) = Γ(C → C ′)
λ(C) (4.15)

and obviously this quantity has the right properties of a probability, since:

(i) It has both a value between 0 and 1, plus it has
(ii) The summation all over the probabilities gives 1 =

∑
C′ 6=C

P (C → C ′). A strategy

that is similar to the one just used, is to consider a random number r2 ∈ [0; 1] and
see if, defining the partial cumulative function3 as

ΛΘ =
Θ∑
C′i

P (C → C ′i)

3Where Θ is the considered (not all) number of reachable state from C.
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hold the relation
ΛΘ−1 < r2 < ΛΘ.

When that happens, it means that the state has privileged that particular jump and
this procedure can be now iterated.

∑
C′
PC→C′

C ′
C ′1 C ′2 C ′3 C ′4

r2 −

1 −

Figure 4.3: The cumulative function method for determining the next system’s state.
In this example we see that the state has fallen in C ′3. In this figure Θ = 4.

4.3 The cyclic three species model.

The model that we have introduced in the previous section is very general since we
have not specified how many species we are interested in and we did not point out
some very of its significant properties.

As we said before, the microscopic birth-death interactions between the species
imply that at each jump a global state C evolves in a C ′ state like in this example:

C =



N1
N2
N3
...

Nm−1
Nm


⇒ C ′ =



N1
N2 + 1
N3
...

Nm−1 − 1
Nm


(4.16)

This kind of models are called Moran processes [54, 55] (that are known since the
end of ’50) and they are the most simple in order to study reproduction/selection
in a finite population [56]. Since the gain of a species in compensated by the loss
of another, these systems are named also zero-sum games. In particular we are
considering the frequency-dependent Moran process, that follows these steps:



58 CHAPTER 4. OUR MODEL OF INTERACTIVE SPECIES

1. In each time step, following their respective fitness (that depends on the actual
global state C of the system), two different members are chosen.

2. One member will die and it will be replaced by the off-spring of the one that
has been chosen for the reproduction.

This model does not take in account the spatiality of the system, but considers it as
a well-mixed homogeneous system in which all the particles can interact with each
other without spatial limitations. In Fig.4.4 there’s a graphical representation of
what we said.

Step

Figure 4.4: Graphical description of the Moran process.

It must be clarified that this mechanism of competition between the species from
the biological point of view can be questioned by many sides [57, 58], here are some
of them:

• There is no account of the finiteness of food or resources for the species.

• Predator reproduction is immediately coupled to predation. It is not ecolog-
ically reasonable to assume a direct conversion of prey to predator, it is too
simple.

• The individuals of the population do not react instantaneously between them-
selves and to any change in the environment, a time-lag should be taken in
account.

• The mortality of single predators is uniform and does not depend on the abun-
dance of prey.

Since in the next section from this system, taking the limit of N → ∞, we will
recover the deterministic equations that will be Antisymmetric Lotka-Volterra ones,
it follows that these criticisms lead to a limited applicability of these equations
to a real ecological predator-prey system. Some experiments have shown that the
sustenance of biodiversity can often be achieved introducing a spatial structure: In
vitro experiments with Escherichia Coli, for example, have shown that the spatial
arrangement of the bacteria is crucial for keeping all three competing strands alive
[59] and in vivo experiments with bacterial colonies in the intestines of mice can
be considered as locally well-mixed populations, and showed that the mobility is
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sufficient to maintain coexistence of the species and give rise to traveling waves
(Igoshin et al., 2004), and can bring to the self-organization of individuals into
spirals in bacteria aggregation. The high mobility imply then a well-mixed system
with a spatially uniform configuration. Conversely to a well-mixed population, a
spatial system allows us to introduce an additional microscopic process that has no
effect if everybody interacts with everybody else: that is site exchange between an
individual and an empty site4. This gives rise to mobility, which arguably has a
profound impact on the outcome of the system’s evolution as it can both promote
and impede biodiversity [60, 50].
In this thesis we will concentrate on a model of only m = 3 species.The number of the
possible interactions between the species can be easily calculated and corresponds
to Ξ (m) = m(m − 1), thus for m = 3 ⇒ Ξ = 6. Following the fact that Ξ = 6,
this means that each state C is surrounded by six states C ′ (or Ci) and then the
abstract figure 4.1 for m = 3 is shown in Fig.4.6. The set of death-birth processes
contains six elements, described by the rate equations 4.18:

3 + 1→ 1 , 1; 2 + 1→ 1 , 1;
1 + 2→ 2 , 2; 3 + 2→ 2 , 2;
1 + 3→ 3 , 3; 2 + 3→ 3 , 3;

(4.17)

note that the numbers indicates the interacting species. This interaction leads
to a decrease of the first species by one unit which increase the second one. Since
r embodies multiplicative factors in the rates, it is the “driving force” of the cyclic
mechanism:

Γ1←2 = r12N2(N1 + σ12); Γ1←3 = r13N3(N1 + σ13)
Γ2←1 = r21N1(N2 + σ21); Γ2←3 = r23N3(N2 + σ23)
Γ3←1 = r31N1(N3 + σ31); Γ3←2 = r32N2(N3 + σ32)

(4.18)

The possible interactions between the species are represented as in Fig.4.5 below:

1

2 3
Figure 4.5: Diagram of the possible interactions between the species.

The choice of m has been done for the reason that the increase of the species
involved in a system, leads to a significant increment of the computational time
at each simulation, and since all of them have been performed on our computer,
the computational capacity was not extremely high. From literature [61, 62], we

4There exist models that does not permit to have empty sites.
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C

C1C2

C3

C4 C5
C6

Γ(C → C1)

Figure 4.6: Time continuous Markov chain with m = 3. It is represented a single
jump of the system from the starting state to the next one.

know that cases in which m = 4, 5, . . . are interesting and give rise to unexpected
phenomenologies like the formation of spatial cluster, complicated extinction proba-
bilities, the birth of alliance pairs between the two non directly interacting species or
the existence of 2(N +1) fixed point where N is the total number of the individuals.

Even if we have well defined the mathematical structure of our model, we do not
indicate the specific competitive mechanism between the species 1,2,3. Of course all
this information is encoded in the entries of the matrices rij and σij .
Our purpose is to study a non-equilibrium ecological system, and one of the most
common phenomena in nature and in particular in biological systems is character-
ized by cyclic competition, where different species compete with each other with
a cyclic dominance relation in which each species has an advantage over one of its
opponents but not the other. This cyclic dynamics embody the non-equilibrium
property of the species interactions. In nature, systems are frequently out of equi-
librium and relax to a NESS through time. In the numerical simulations we will try
to see if this is our case or not. In nature, exist plenty examples with this cyclicity.
For example, dominance of three male strategies has been reported in side-blotched
lizards in the inner Coast Range of California [63, 64]: Orange-throated males es-
tablish large territories holding several females. These populations are invaded by
males with yellow-striped throats, which do not contribute to the defense of the ter-
ritory but sneak on the females. Such a population of yellow-striped males can be
invaded by blue-throated males, which defend territories large enough to hold one
female which they defend against sneakers. Once yellow-striped sneakers are rare, it
is advantageous to defend a large territory with several females and the cycle starts
with orange-throated males again. Other interesting examples can be found in the
coral reef invertebrates (Jackson and Buss, 1975) and rodents in the high-Arctic
tundra in Greenland (Gilg et al., 2001) or in evolutionary public-good game [65, 66].
Cyclic competition is a very common phenomenon in nature and society and usually
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it takes the name of Rock-Scissors-Paper (RSP) game5.
Therefore the prescription that we need to get accomplished a cyclical behavior of
our system is to set the entries of the 3× 3 matrices r and s:

r =

 0 r1,2 R1,3
R2,1 0 r2,3
r3,1 R3,2 0

 s =

 0 σ1,2 σ1,3
σ2,1 0 σ2,3
σ3,1 σ3,2 0

 (4.19)

where the factors Rij > rij∀ i, j = 1, 2, 3. In many of the following analysis and in
the computational simulation we will set rij = 1 and Rij = R.

Could we set the factors rij = 0 (leaving Rij 6= 0)? That choice would not harm the
cyclical property of the system, but it would break its microscopic reversibility and,
considering that we are interested in the study of entropy production of the system,
the stochastic possibility must be included in the next step of the system to return
back to the previous state. Furthermore this should happen with a different (lower)
rate in order to preserve the cyclicity, otherwise the entropy production per time
would be equally zero at each time. Regarding the entries of the matrix σ, they are
usually expressed as a set of all equal values, this means: σij = σji ≡ σ in eq. 4.19.

4.4 Analytical results

Recalling what we said before, solving a master equation cannot be done very easily.
The main approach used then is try to obtain the ODE deterministic equation in
terms of the fraction populations of the stochastic system considered when N →
∞. This means that all the stochasticity of the system is neglected and we are
only considering the collective behaviors of the species i.e. the driving force of the
system. We now proceed doing the Van-Kampen system size expansion in order to
get those equations. At first we write the extended form of the master equation we
are handling with as

∂tP ( ~N, t) =
[
Γ1←2(N1 − 1, N2 + 1)P ( ~N − e1 + e2, t)− Γ1←2(N1, N2)P ( ~N, t)

]
+
[
Γ1←3(N1 − 1, N3 + 1)P ( ~N − e1 + e3, t)− Γ1←3(N1, N3)P ( ~N, t)

]
+
[
Γ2←3(N2 − 1, N3 + 1)P ( ~N − e2 + e3, t)− Γ2←3(N2, N3)P ( ~N, t)

]
+
[
Γ2←1(N2 − 1, N1 + 1)P ( ~N − e2 + e1, t)− Γ2←1(N2, N1)P ( ~N, t)

]
+
[
Γ3←1(N3 − 1, N1 + 1)P ( ~N − e3 + e1, t)− Γ3←1(N3, N1)P ( ~N, t)

]
+
[
Γ3←2(N3 − 1, N2 + 1)P ( ~N − e3 + e2, t)− Γ3←2(N3, N2)P ( ~N, t)

]
.

(4.20)
5A vast field of research is the so called Evolutionary Games Theory (EGT). It study the rela-

tionships between a group of players, that play some strategies and that evolves usually with time.
We are not interested here in this arguments, but let us say that exists a conceptual (and operative)
mapping between the evolution of the strategies implemented by the players and the evolution of
the species of an ecological system.



62 CHAPTER 4. OUR MODEL OF INTERACTIVE SPECIES

Then it is useful to define the equivalent of the rising/lowering-operator of Quantum
Mechanics for the master equation:{

Eif( ~N) = f( ~N + ei)
E−1
i f( ~N) = f( ~N − ei)

(4.21)

where f( ~N) is a generic function and ~N = (N1, N2, N3).
Following the procedure of Chapter 2, we now see that what we called Ω now is the
total number of individuals N = N1 +N2 +N3, and the van Kampen ansatz results
to be (we expand in order of N−1/2):

N1 = Nx1 +
√
Nξ1

N2 = Nx2 +
√
Nξ2

N3 = Nx3 +
√
Nξ3

(4.22)

where ξi is the i-th component of the 3-dimensional stochastic variable (fluctuations)
~ξ = (ξ1, ξ2, ξ3), and xi is the i-th component of the 3-dimensional variable ~x =
(x1, x2, x3) that are the concentrations of the various species.
Using the operatorial notation, the master equation can be edited in the form:

∂tP ( ~N, t) =
3∑

i,j=1
i 6=j

(
EjE−1

i − 1
) [

Γi←j(Ni, Nj)P ( ~N, t)
]

(4.23)

Up to now there is no approximations involved. Since Ei changes Ni in Ni + 1 and
then ξi in ξi +N−1/2, it can be expanded in power-series

E±1
i = 1 +

∞∑
`=1

(±1)`

`!
1

N `/2
∂`

∂ξ`i
(4.24)

Of course, we are interested on the first two orders, this brings
Ei = 1 + 1√

N

∂

∂ξi
+ 1

2N
∂2

∂ξ2
i

+ · · ·

E−1
i = 1− 1√

N

∂

∂ξi
+ 1

2N
∂2

∂ξ2
i

+ · · ·
(4.25)

Now we have to write the probability density function in terms of ξi: P (N1, N2, N3, t)→
Π(ξ1, ξ2, ξ3, t) which specifically implythese two conditions:

Π({ξi} , t) = N3/2P
(
N
{
xi +

√
Nξi

}
, t
)

(4.26)

∂P

∂t
= 1
N3/2

∂Π
∂t
− 1
N

∑
i

dxi
dt

∂Π
∂xi

(4.27)

We substitute eq. 4.22, 4.25, 4.4, 4.26 and 4.27 in 4.23 and we do the calculations:
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1
N3/2

∂Π
∂t
− 1
N

∑
i

dxi
dt

∂Π
∂xi

=
∑
i

∑
j

(
EjE−1

i

) [
rij(Nxj +

√
Nξj)(Nxi +

√
Nξi + σij)

Π
N3/2

]
−

− rij(Nxj +
√
Nξj)(Nxi +

√
Nξi + σij)

Π
N3/2 =

=
∑
i

∑
j

{
(Ej)

(
1− 1√

N

∂

∂ξj
+ 1

2N
∂2

∂ξ2
j

)[
rij(Nxj +

√
Nξj)(Nxi +

√
Nξi + σij)

Π
N3/2

]
−

−rij(Nxj +
√
Nξj)(Nxi +

√
Nξi + σij)

Π
N3/2

}
=

=
∑
i

∑
j

{
(Ej)

[
rij(· · · )j(· · · )i

Π
N3/2 −

�
�
�1√
N
rij(· · · )j���

√
N

Π
N3/2 −

1√
N

rij
N3/2 (· · · )j(· · · )i

∂Π
∂ξi

+

+ 1
2
√
N�

�
�1√
N

rij
N3/2 (· · · )j���

√
N
∂Π
∂ξi

+ 1
2
√
N�

�
�1√
N

rij
N3/2 (· · · )j���

√
N
∂Π
∂ξi

+

+ 1
2
√
N

rij
N3/2 (· · · )j(· · · )i

∂2Π
∂ξ2

i

1√
N

]}
− rij(· · · )j(· · · )i

Π
N3/2 =

Before continuing, we define (1) all the terms inside the square brackets of the
last expression, then:

=
∑
i

∑
j

{
(1) +

�
�
�1√
N

rij
N3/2�

��
√
N(· · · )iΠ + 1√

N

rij
N3/2 (· · · )j(· · · )i

∂Π
∂ξj
− rij
N3/2�

��
√
N
�

�
�1√
N

Π−

− rij
N3/2 (· · · )j

1√
N

∂Π
∂ξj
−
�
�
�1√
N

rij
N3/2�

��
√
N(· · · )i

∂Π
∂ξi
− 1√

N

1√
N

rij
N3/2 (· · · )j(· · · )i

∂2Π
∂ξiξj

+

�2
[
�
�
�1√
N

1
�2
√
N

rij
N3/2 �

��
√
N
∂Π
∂ξi

+ 1√
N

1
�2
√
N

rij
N3/2 (· · · )j

∂2Π
∂ξiξj

+
]

+

+
�
�
�1√
N

1
2
√
N

rij
N3/2�

��
√
N(· · · )i

∂2Π
∂ξ2

i

+ 3-rd order derivative in ξ... +

+ 1
2
√
N

rij
N3/2 (· · · )i

∂Π
∂ξj

+ 1
2
√
N�

�
�1√
N

rij
N3/2�

��
√
N(· · · )i

∂Π
∂ξj

+

+ 1
2
√
N

1√
N

rij
N3/2 (· · · )j(· · · )i

∂2Π
∂ξ2

j

− 1
2
√
N

rij
N3/2

∂Π
∂ξj
− 1

2
√
N

rij
N3/2

�
�
�1√
N

���
√
N − ∂Π

∂ξj
−

− 1
2
√
N

1√
N

rij
N3/2 (· · · )j

∂2Π
∂ξ2

j

− 1
2
√
N

1√
N�

�
�1√
N

rij
N3/2�

��
√
N(· · · )i

∂2Π
∂ξiξj

−

+ 3-rd ord. der. in ξ... + 1
2
√
N

1√
N

rij
N3/2

∂2Π
∂ξiξj

+ 1
2
√
N

1√
N�

�
�1√
N

rij
N3/2�

��
√
N
∂2Π
∂ξiξj

+

3-rd order derivatives in ξ...
}
− rij(· · · )j(· · · )i

Π
N3/2 =

(4.28)

Following the theoretical prescriptions described in Chapter 2, we have to put equal
the terms with ∂Π

∂ξiorj
. By doing that, we can exchange the indicies i � j and thus
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we obtain

∑
j

− rij
N2 (· · · )j(· · · )i

�
�
�∂Π

∂ξi
+ rji
N2 (· · · )j(· · · )i

�
�
�∂Π

∂ξi
= − 1

N

dxi
dt �

�
�∂Π

∂ξi
∀i = 1, 2, 3. (4.29)

Now, since

(· · · )j(· · · )i ≡ (Nxj +
√
Nξj + σij)(Nxi +

√
Nξi + σij),

we must remember that we have taken the limit N →∞, this means that the leading
order of the product is

(· · · )j(· · · )i ∼= (Nxj)(Nxi)

substituting this last relation in 4.29 brings

∑
j

[
rij
N2NxjNxi −

rji
N2NxjNxi

]
= 1
N

dxi
dt

(4.30)

Finally to get rid of the N , we remember that we can always do a resale of the time
calling Nrij ⇒ rij so we get the deterministic equation of our model:

ẋi = xi

m∑
j=1

(rij − rji) xj , m = 3, i = 1, 2, 3. (4.31)

We see immediately that, calling α ≡ rij − rji we get for example α12 = 1 − R ≡
−α ; α > 0, we can thus define a matrix Aij = −αij = αji and equation 4.31 is seen
to be an
Antisymmetric Lotka-Volterra equation (ALVE):

~̇x(t) = ~x(t) · [A~x(t)] ; A =

 0 −α α

α 0 −α
−α α 0

 (4.32)

The (non-linear) equations written in their explicit form give
ẋ1 = x1 (−αx2 + αx3)
ẋ2 = x2 (+αx1 − αx3)
ẋ3 = x3 (−αx1 + αx2)

(4.33)

Below in Fig. 4.7 is shown the solution of equation 4.33:
The classical approach to non-linear equations is to see the behavior of the lin-

earised system near the fixed points. We want now to find if other non-banal fixed
points that are the vertices of the plain exist. Let us consider a slightly more general
matrix:

A =

 0 a −b
−a 0 c

b −c 0

 (4.34)
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Figure 4.7: Solutions of the 3-species ALVE with initial conditions (0.2, 0.2, 0.6).

Imposing ~̇x = 0 of equation 4.32, more that the trivial solution ~x = 0 we get the
fixed points: 

ax∗2 − bx∗3 = 0
−ax∗1 + cx∗3 = 0
ax∗1 − cx∗2 = 0

⇒


ax∗2 = bx∗3
ax∗1 = cx∗3
ax∗1 = cx∗2

(4.35)

then we have

x∗1 + x∗2 + x∗3 = 1 = c

a
x∗3 +

(
b+ a

c
x∗1

)
= c

a
x∗3 + b

a
x∗3 + x∗3 = a+ b+ c

a
x∗3

and finally we obtain the fixed point
x∗3 = a

a+ b+ c

x∗2 = b

a+ b+ c
x∗1 = c

a+ b+ c

⇒ if a = b = c = α ⇒ p∗ =

1/3
1/3
1/3

 (4.36)

This result was suggested by the Figures 4.11, in which there are concentric closed
curves around p∗. A very interesting representation of the evolution of the system
can be performed considering that a mapping between the 3-cartesian-coordinates
and the two-coordinates ternary plot in a S2 simplex6 exists. Thus, noting Fig. 4.6,
the system evolution is represented as a curve on the network inside the simplex S2
(see Fig.4.8).

In order to do the linearisation we use the constant of motion N(t) = N to
symplify the calculations. In fact, once we have determined the motion of two of

6It can be shown that for a cartesian point of coordinates (a, b, c) the ternary plot coordiantes

are:
(

1
2
a+ 2 b
a+ b+ c

;
√

3
2

a

a+ b+ c

)
.
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Figure 4.8: Ternary plot in the simplex S2. Of course in the further simulations the
network will be much dense than in this picture.

the variables x1 and x2 then the third is determined by x3(t) = 1 − x1(t) − x2(t).
Thus defining the new quantities

δx1 = x1 − 1/3 ≡ z
δx2 = x2 − 1/3 ≡ w
δx3 = x3 − 1/3 ≡ l

(4.37)

we have the linearized system that is

(
ż

ẇ

)
=


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


|p∗

(
z

w

)
(4.38)

so that we have

Ż ≡
(
ż

ẇ

)
=

 0 −α3α

3 0

(z
w

)
(4.39)

The eigenvalues of this matrix are λ± = ±iα3 and the eigenvectors are (±i, 1). Using

the matrix Q =
(

0 1
1 0

)
we have7

AQ = Q

(
0 α/3
−α/3 0

)
7A is the linearised matrix in p∗. Indeed Q = Q−1.
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and setting Y = QZ leads to

Ẏ = QŻ ≡ ÃY = Q

 0 −α3α

3 0

Q−1Y︸ ︷︷ ︸
Z

⇒ Ẏ =

 0 α

3
−α3 0

Y
Finally, setting Y1(t) = r(t) cos θ(t) and Y2(t) = r(t) sin θ(t) we transform the cou-
pled equations in polar coordinates which gives (multiply by cos and sin respectively
second and first line and summing them)

{
ṙ cos θ − r sin θ̇ = −(α/3)r sin θ
ṙ sin θ + r cos θ̇ = (α/3)r cos θ

⇒
{
ṙ = 0
θ̇ = α/3

these are substantially circles around p∗. Now that we know the behavior of the
solutions near the fixed point, we show that exist another constant of motion with
respect to the total concentration, i.e. (x(t) = N(t)/N)

N(t) = N1(t) +N2(t) +N3(t) = N ⇒

⇒ x(t) = x1(t) + x2(t) + x3(t) = 1,

so that the solution of our equations will necessarily stay in the plane

{
(x1, x2, x3) ∈ (R+)3 : x1(t) + x2(t) + x3(t) = 1

}
(4.40)

Note that this is not the only constant of motion that the system has. In effect [67],
another one is the following quantity:

Ψ(t) ≡ xα1 (t)xα2 (t)xα3 (t) = xα1 (0)xα2 (0)xα3 (0) = const. (4.41)

Taking the derivative of Ψ and substituting eq.4.33, we get:

Ψ̇(t) = αxα−1
1 ẋ1 + αxα−1

2 ẋ1 + αxα−1
3 ẋ1

= αΨ
[
ẋ1
x1

+ ẋ2
x2

+ ẋ3
x3

]
= αΨ

[
x1 (−αx2 + αx3)

x1
+ x2 (αx1 − αx3)

x2
+ x3 (−αx1 + αx2)

x2

]
= αΨ

[
− αx2 + αx3 + αx1 − αx3 − αx1 + αx2

]
= 0.

This means that the solutions of the ALVE must be the class of curves that emerge
from the intersection between the plain 4.40 and different values of the function 4.41
as in Fig. 4.11.
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1

2 3

Figure 4.9: Representation of the closed curves of the coupled equations in a ternary
plot. This graphics has been obtained using the Dynamo package [68].

Figure 4.11: Representation of the closed curves of the coupled equations and some
examples of solutions of the Antisymmetric Lotka-Volterra equations.
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With the analysis done until now, it is well clear what the behavior of the drift
term is the deterministic behavior of the system. However, it is fundamental hav-
ing a knowledge of the diffusion term, and this can be obtained only finding the
Fokker-Planck equation. This could be obtained following the next order of the van
Kampen’s expansion. Instead, here we follow the formalism used in [69]. In fact the
master equation can be revived in the following form

∂tP (~x, t) =
∑
δ~x

{P (~x+ δ~x, t)W(~x+ δ~x→ ~x)− P (~x, t)W(~x→ ~x+ δ~x)} (4.42)

where W(~x → ~x + δ~x) denotes the transition probability from state ~x to the state
~x+ δ~x within one time step.
According to Kramers-Moyal expansion to the second order we get the Fokker-Planck
equation:

∂tP (~x, t) = −∂i [αi(~x)P (~x, t)] + 1
2N ∂i∂j [βij(~x)P (~x, t)] (4.43)

where the quantities are the following:

αi(~x) =
∑
δ~x

δxiW(~x→ ~x+ δ~x) (4.44)

βij(~x) =
∑
δ~x

δxiδxjW(~x→ ~x+ δ~x) (4.45)

Let us write the explicit form of αi(~x) and βij(~x) for our system. For example,
note that the term δxi = ± 1

N
if the rate considered in that term of the summation

describes a particle incoming or outgoing from the i-th position. Thus we calculate
the drift α1(~x) term remembering 4.19 and that Ni = N xi :

α1(~x) = 1
N
r12N2(N1 + σ12) + 1

N
r13N3(N1 + σ13)− 1

N
r21N1(N2 + σ21)−

− 1
N
r31N1(N3 + σ31) =

= r12Nx1x2 + r12x2σ12 + r13Nx3x1 + r13x3σ13

− r21Nx1x2 − r21x1 + σ21 − r31Nx1x3 − e31σ31x1 =
= (r12 −R21)Nx2x1 + (R13 − r31)Nx1x3+
+ [r12σ12x2 −R21σ21x1 +R13σ13x3 − r31σ31x1.]

(4.46)

Dividing both members by N, and rescaling the time coordinate Nt→ t, we get for
a generic indicies:

αi(~x) = xi

m∑
j=1

(rij − rji)xj + 1
N

m∑
j=1

(rijσijxj − rjiσjixi). (4.47)

As we expected, if N →∞, then we recover the ALVE. The same procedure can be
done for the terms βii(~x) and βij(~x) and we obtain the following diffusion expressions

βii(~x) =
m∑
j=1
i 6=j

(rij + rji) + 1
N

m∑
j=1
i 6=j

(rijσijxj + rjiσjixi) (4.48)

βij(~x) = −(rij + rji)xixj −
1
N

(rijσijxj + rjiσjixi). (4.49)
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4.5 Numerical simulations and its analysis

As we have just seen, the complexity of the obtained Fokker-Planck equations gives
little hope to study analytically the evolution of the system. Therefore in this last
section we see some numerical simulations of the SSA of the continuous time Markov
process we are dealing with. The SSA was written in C++ programming language.
It is our interest to study as the systems behave in different cases of:

1. Total number N , in which we expect an approach to the deterministic behavior
as N � 1.

2. Values of the predation and mutation rates rij and sij .

Above all, for these various cases we want to study the entropy production of the
system. Indeed individuals of the species produce and exchange entropy in an open
stochastic-thermodynamic system. Within the framework of the classical theory
of irreversible thermodynamics, and under the condition of constant external con-
straints, such a system will naturally evolve toward a globally stable thermodynamic
stationary state [70].
The entropy production at the i-th step of the system evolution, will be calculated
as shown in Chapter 3 by (see also Fig. 4.6):

δSi = log Γ(C → C ′)i
Γ(C ′ → C)i

.

It is important to stress that this formula does not require any knowledge about the
nature or composition of the environment. It depends exclusively on the stochastic
trajectory of the subsystem and the corresponding transition rates that drive it.
Indeed the total entropy production will be simply8

S =
∑
i

δSi

Furthermore, one of the first things we want to be sure of, is that the systems actually
goes to a NESS (from theory one expect this) and how fast it goes to it. We said
that this condition should be achieved when the mean of the observables (in this case
each of he three species) does not change with time. Since the definition of the mean
value of a generic observable OC (in our case we have OC(t) = Ni(t), i = 1, 2, 3.),
function of the states C is by definition

d 〈O〉
dt

:=
∑
C

OC
dPC
dt

is immediately clear that in a stationary state d 〈O〉
dt

= 0, ∀ t. To be precise, this
does not imply that the system effectively reached a NESS, because it could be at
equilibrium for example. Anyway, in the model we choose, it is not necessary to
prove this since we have by-hand imposed the rates in a way to get the cyclical
behavior that surely involves non-zero currents.

8Indeed, it is reasonable to expect that, being coupled in an irreversible way to the environment,
the system in a NESS continues to ‘induce’ the entropy of the surrounding medium to increase [71].
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Figure 4.12: Temporal evolution (averaged over 10000 samples) of the system to-
wards a NESS of species 1 with three different initial conditions. Parameters: r=1,
R=5, s=S=1.

In order to observe if the system effectively goes towards a NESS, we wrote a
program in C++ language which performed thousands of times the simulations of
the same process, and took the mean of the values of each species at every x jumps,
where usually x ∼ 100. Of course, we expect a greater reliability of the method if the
simulations involved are several thousands. All the simulations effectuated showed
that effectively the system goes towards a NESS very fast. Considering that all the
simulation performed involves a number of steps that are greater than ∼ 106, it can
be assumed that compared to the simulation times, the state goes toward a NESS
almost instantly. For example, in Fig.4.12 we show that running the program for
10000 simulations gives a perfect convergence to the NESS, even with different initial
conditions of the system. Another interesting result comes from the mathematical
structure of the spectrum of the master equation. In fact, if we increase the number
of N, then the system itself goes to a NESS in a (slightly) longer time.
In the following sections, different values of N and of parameters will be studied and
a study of the irreversibility will be performed (i.e. of the entropy production) for
those various conditions.

4.5.1 Case without cyclicity

Before studying the realizations of the SSA in which the cyclicity is present9, let
us see what happens in a case in which the predation rates are all equal rij = Rji.
One should expect the evolution to be strongly stochastic. In Fig. 4.13 and 4.14 are

9Of course it is imposed by the choice of the constants of the matrices of the rates.
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shown different simulations that justify what just stated.
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Figure 4.13: Simulations with parameters r = R = 1 and s = S = 0 with the same
initial conditions.

These simulations show that if N increases, the stochasticity of the system’s
evolution is less prominent.
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Simulation: N=10000
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Figure 4.14: Simulations with parameters r = R = 1 and s = S = 0 with different
initial conditions and N � 1.

4.5.2 Approaching the deterministic model: N � 1

In this thesis our interest is focused to a system where cyclicity is present, and this
implies that the r-matrix must be like in 4.19. In order to retrieve the differential
equations described in the analytical calculations, it is necessary to choose a number
for the initial condition of the system where N is sufficiently big. So we performed
a simulation in which is represented each single variation (step) of the system state
for all three species and N was set to 10000. In the following Fig. 4.15 we effectively
recover the solution of the ALVE obtained in this chapter (see Fig.4.7). Conversely
to what just done, during the run of the SSA we wrote in the data file of the
simulations the number Ni, i = 1, 2, 3 of the species only at every 500 steps (an
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Figure 4.15: Numerical simulation with parameters: R = 0.5, r = 0.4, σ = 1.

example of that can be seen in Fig. 4.18). This was done also in further simulations
for two central reasons:

1. It could be that we want to focus less on the immanent stochasticity of the
system’s evolution (except when this is not our specific interest like before) and
show its behavior in “coarse grained view”, in order to see the main properties
of the evolution of the species.

2. By writing the results only at intervals of several hundreds, we overcome the
computational problem of getting intractable (too heavy) data-files.

Furthermore, it is interesting to show the ternary plot mapping introduced above for
an analogue simulation, which well shows the curves that were discussed previously
in the analytical part:

As one would expect, the system’s evolution (in part) depends on the initial
state condition, and this is more evident when approaching to N →∞. In Fig.4.17
we show two graphics which start with different initial conditions. In Fig.4.16 it is
shown that the paths accomplished by the system approach the condition N → ∞
described in Fig.4.11.

Null mutation: case with σ = 0

An interesting case is that in which mutation is prevented, and that corresponds
to set all the non-diagonal parameters σij = 0. What do we expect by doing this
assumption in the simulations? Remembering that the r-matrix has the form of 4.19,
we expect that at some time, one of the three species involved will lead the system
and this should happen with a probability of 1/3 for all three species (see Fig. 4.18).
Once one of the systems (due to the intrinsic stochasticity of the evolution) takes the
total number N of the population, entropy should not be produced anymore since the
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Figure 4.16: Ternary plot for a simulation with N=10000 with initial concentrations
(0.8, 0.1, 0.1).
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(a) R = 0.5, r = 0.3, σ = 1
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(b) R = 5, r = 1, σ = 1

Figure 4.17: Simulations with different initial conditions: a=(8000, 1000, 1000) and
b=(3500, 3500, 3500).

system is stuck in a condition with no mutation, where all the other populations are
null, which implies null transition rates. In particular doing the simulations we have
seen that the system in these conditions tends to reach the bound of the simplex
S2, with a mechanism that seems more influencing than the simple stochasticity.
This is well explained in [72], in which it is shown that the constant of motion
can be used as a difference from the interior fixed point and its average change is
〈∆Ψ〉 ∝ 1/N2 −→

N�1
0. Regarding what we said about the entropy production, later

we will show that locally in time there can be a negative entropy production, but
on average, this quantity must be always positive. A first example is the entropy
production in the case of σ = 0 (see Fig. 4.19).

From this last plot, it is interesting to note that the entropy production rate
scales linearly with time, and this will be a general feature of this quantity. More
important is that at first sight, near the end of the simulation, where the system
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Figure 4.18: Simulation in which σ = 0, N=10000. The extinction of two species
out three and the leading of the left species can happen with a 1/3 probability.
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Figure 4.19: Entropy production s=S=0, N=10000.

evolves towards the bound of the simplex S2, it seems to produce less entropy.This
of course means that the system evolves into a state which can be interpreted as
“less irreversible”.

4.5.3 N= 100

Besides the case for N � 1, we show also the case in which N is not large (N ∼
100), here the effects of the intrinsic stochasticity should be very relevant. An
example is shown in Fig. 4.20 where the system’s cyclicity is heavily perturbed by
the randomness due to the finite size of the three interacting species.
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Figure 4.20: Example of the system’s evolution for N small. Parameters: r = 1,
R = 2, σ = 5.

4.5.4 N= 1000

The most interesting condition of analysis for us is when the system’s size is neither
too much low or high. In fact, in this case the effect of stochasticity is important,
but it is not enough effective to overcome the oscillatory mechanism imposed by the
transition rates. This can be seen below in Fig.4.21 that an example of evolution of
the system for certain parameters. Note that if one zooms in that figure, the cycles
appear immediately.
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Figure 4.21: Numerical simulation with parameters: r = 1, R = 10, σ = 5. Initial
condition (600, 200, 200).

Following our study on the entropy production, in Fig.4.22-4.23 is shown the
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time-series of the three species in a condition of low mutation rate with a remarkable
cyclicity imposed10.
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Figure 4.22: Numerical simulation with parameters: r = 1, R = 1.02, σ = 0.4.
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Figure 4.23: Entropy production with parameters: r = 1, R = 1.02, σ = 0.4.

In the entropy production figure one immediately sees that there are some re-
gions in which the entropy remains quite constant, i.e. the entropy production is
almost null. These regions correspond to a dominance of one species among the
others. This behavior goes along with the one of Fig.4.19.
Thus, everything that has been seen until now makes us suppose that the entropy
production is lower when the system accomplishes trajectories in which one species

10In this simulation every single jump was printed.
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is dominant.
To investigate more deeply this fact, it is interesting to evaluate the entropy produc-
tion for N � 1. Comparing Fig.4.24 and Fig.4.25, we clearly see that the entropy
production decreases more not only when there is a dominance of one species, but
when the system itself lives far from the fixed point N(1/3, 1/3, 1/3).
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Figure 4.24: Numerical simulation with parameters: r = 0.3, R = 0.5, σ = 1.
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Figure 4.25: Entropy production with parameters: r = 0.3, R = 0.5, σ = 1.

In Fig.4.24 a linear fit has been performed in the time range that corresponds
to the maximal distance of the vector state from the fix point. Here it is clear what
was anticipated before about the different regimes of entropy production associated
to different trajectories along through the simplex S2.
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The different entropy production is stressed if we plot the system’s entropy pro-
duction in a condition in which the state evolves far from the fix point and another
one that evolves near of it.
First, we have chosen some parameters that allowed the system to be de-localised
compared to the fix point, and the relative entropy production.
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Figure 4.26: Entropy production with parameters: r = 0.3, R = 0.5, σ = 1.
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Figure 4.27: Entropy production with parameters: r = 0.3, R = 0.5, σ = 1.
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Then, a high value of mutation rate is considered (Fig.4.28). Here the action of
the mutation forces the system to live near the fix point and this is the reason of
the higher entropy produced. The simulation time goes from 0 to 5. In Fig.4.29 it
is shown a comparison of the entropy production of the graphics 4.26-4.28 with a
high and low value of σ.
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Figure 4.28: Entropy production with parameters: r = 0.3, R = 0.5, σ = 30.
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Figure 4.29: Entropy production with different mutational parameters: r = 0.3,
R = 0.5, σ1 = 1, σ2 = 30, T = 5.

The comparison between the entropy produced in both the simulations gives a
difference of S2(T )− S1(T ) ' 5.4× 105 which corresponds to the 35% of S2(T ).
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An important fact that has not yet been clarified is for what values of the pre-
dation/mutation a system behaves in different manners. In particular during the
numerical simulations (see Fig.4.30), we saw that for a very small coefficient of mu-
tation σ the system presents large oscillation between the three species and with a
great mutation rate σ the system lives near the center of the simplex S2.
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(a) Mutation rate: σ = 0.3.
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(b) Mutation rate: σ = 5.

Figure 4.30: Representation of the two different system’s behavior depending on the
value of the mutation. Where N = 1000 with initial condition (800, 100, 100). In
these graphics the state was printed every 50 jumps.

Before giving an analytical result that justifies the graphic above, we study the
system’s mean entropy production at each point in the simplex.

4.5.5 Estimation of the mean entropy production on S2

Here we want to find an analytical method for determining the average entropy
produced at each step by our three species system during its evolution, depending
on the state C of the system itself. This means that we have to find an analytical
expression that gives us an estimate of the single-step mean entropy production.
A good way to do that is writing a weighted average of the usual expression of
the logarithm of the jump’s rates, where the weight are given by the possible rates
surrounding the actual state C. Considering the rates expression Γi←j we obtain a
function of the three species 〈S〉 (N1, N2, N3). Expressing this equation through the
form of the explicit rates one obtains

〈S〉 (N1, N2, N3) = 1∑3
i,j=1
i 6=j

rijNj(Nj + σij)
·

·
3∑

i,j=1
i 6=j

log
(

rijNj(Nj + σij)
rji(Ni + 1)((Nj − 1) + σji)

)
rijNj(Nj + σij) (4.50)
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Dividing 4.50 by N2 both at numerator and denominator, we can write the formula
in terms of the concentrations xi ∈ [0, 1] so that x1 + x2 + x3 = 1:

〈S〉 (x1, x2, x3) = 1∑3
i,j=1
i 6=j

rijxj

(
xj + σij

N

) ·

·
3∑

i,j=1
i 6=j

log

 rijxj

(
xj + σij

N

)
rji(xi + 1/N)((xj − 1/N) + σji

N
)

 rijxj (xj + σij
N

)
(4.51)

we now evaluate this function along all the possible values of the three coordinates
xi i = 1, 2, 3; and with a single mutation rate for all the possible transition σij = σ.

Figure 4.31: A 3 dimensional representation of the function 〈S〉 (x1, x2, x3) on S2.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Figure 4.32: A 3 dimensional representation of the function 〈S〉 (x1, x2, x3) on S2,
after the mapping in Cartesian coordinates.
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To show effectively how the entropy production of a system decreases moving
off the center of the simplex, the following parametrization of the coordinates of the
function 〈S〉 was used, (see eq.4.51). Using a parameter x we define


x1(x) = 1/3 + 2x
x2(x) = 1/3− x
x3(x) = 1/3− x

(4.52)

where x ∈ [ 0 ; 1/3 ].
Visually, this means that we calculate the entropy production for that precise jump
along the trajectory of figure 4.33

Figure 4.33: Graphical representation of 4.52, i.e. the direction along which the
function 〈S〉 is estimated. Here a, b, and c are the three species concentrations.
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Figure 4.34: Entropy production with parameters: r = 1, R = 2, dx = 0.02 and x

starts at 0 and goes up to 0.3.
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A program in C++ was written, that for different updated value of x, and the
curve obtained has been reported in Fig.4.34.

4.5.6 Calculation of the critical mutation rate

The system’s dynamics dependence on the mutation rate σ was shown first in [73],
which considered a different model. All the simulations done like the ones in Fig.4.30,
suggest that a critical mutation rate σc in which the probability of the system is
uniform through all the simplex S2 must exist. Considering that we fall in a NESS
practically instantaneously, the temporal derivative of the probability P (~x, t) is zero.
Thus we can simplify the probability P (~x, t) and try to find the critical value σc such
that the following equation holds, i.e. the value in which exist a transition between
these two different regimes

0 = −
3∑
i=1

∂i [αi(~x)] + 1
2N

3∑
i=1

3∑
j=1

∂i∂j [ βij(~x)]

∣∣∣∣∣∣
σ=σc

(4.53)

where the coefficients αi and βij are those found before in the analytical study. The
drift and diffusion terms are the ones found in the analytical calculation paragraph.
The first term can be moved to the left which brings the following

3∑
i=1

∂
∂xi

[αi(~x)] =
3∑
i=1

3∑
m=1

(rim − rmi)xm −
1
N

3∑
i=1

3∑
m=1

rmiσmi (4.54)

in the second member we must distinguish for terms with diagonal indices (βii) and
non-diagonal ones (βij):

∂
∂xi

∂
∂xi

[ βii(~x)] = ∂
∂xi

[ 3∑
m=1
m 6=i

(rim − rmi)xm +
3∑

m=1
m6=i

(rim − rmi)xiδmi+

+ 1
N

3∑
m=1
m6=i

(rmiσmiδim + rmiσmi)
] (4.55)

note that the second and third members are zero due to the presence of the δ

symbol and the fact that m 6= i, ∀i. We immediately see that acting with the
second derivative ∂i implies that all the terms are zero.
The non-diagonal term (with i 6= j) gives

∂
∂xi

∂
∂xj

[ βij(~x)] = ∂
∂xi

[
− (rij + rji)xi − (rij + rji)δijxj −

1
N

(rijσij + rjiσjiδij)
]

= −(rij + rji)− (rij + rji)δijδji

so that
3∑
i=1

3∑
m=1

∂i∂j [ βij(~x)] = −
3∑
i=1

3∑
m=1

(rij + rji). (4.56)



4.5. Numerical simulations and its analysis 85

Note that the mutation rate has been treated in the most general possible case, but
in our case we have σij = σ ≡ σc. Putting all together one obtains

3∑
i=1

3∑
m=1

(rim − rmi)xm −
1
N
σc

3∑
i=1

3∑
m=1

rmi = − 1
2N

3∑
i,j=1
i 6=j

(rij + rji) (4.57)

Using the antisymmetric property of the ALVE, we see that the first term is equal
to zero. The summing over the indices for the entries of r-matrix gives

− 1
N
σc3(r +R) = − 1

2N 6(r +R) (4.58)

⇒ σc = 1 . (4.59)

It is interesting to note that this is a constant value, that does not depend on the
parameters rij or N .
To verify the result just obtained, we performed several sets of simulations for dif-
ferent values of R while the entries r are set to 1 thanks to the property of rescaling
time in the master equation. The different values of σ are proposed using the formula
σ = 0.1(101/10)x where x ∈ N+, which produces values equispaced in log-scale.

0 5 10 15 20 25
σ

0

1000

2000

3000

4000

S
/T

R = 1.5
R = 3
R = 5

Mean entropy production

Figure 4.35: Entropy production Ṡ for different values of R and σ. The time of each
simulation is T = 200.

In order to have a better visualization in Fig.4.35, the values obtained of Ṡ are
normalized by the factor R ln(R). Thus at the critical value σc there is a smooth
transition of the entropy produced during the time T . This fact implies that the
transition of the system dynamics (varying σ) on S2 is not discontinuous as we
guessed during the analytical simulations.
If we divide each curve for the maximum value of Ṡ, we see that all the different
curves in Fig.4.35 appear to have the same structure in Fig.4.36.



86 CHAPTER 4. OUR MODEL OF INTERACTIVE SPECIES

0 5 10 15 20 25
σ

0.2

0.4

0.6

0.8

1

S
/T

R = 1.5
R = 3
R = 5

Entropy production

Figure 4.36: Entropy production Ṡ for different values of R and σ. The time of each
simulation is T = 200. All the data have been divided by the maximum value of Ṡ.

The dashed line in the plot above represents the point on the abscissa in which
σ = σc = 1, before and after this point the system shows two different trends, and
the entropy production increases linearly with σ for sufficiently high values of the
mutation rate.



Chapter 5

Conclusions

In this thesis we have discussed the theoretical framework concerning both the dy-
namical behavior and the entropy production of an ecological system with three
interacting species. In order to perform simulations of the stochastic realizations of
the system itself, we have written a program in C++ language, based on the Gille-
spie algorithm. In Chapter 2 we outlined the procedure of Van Kampen’s system’s
size expansion, which allowed us to get the deterministic equations of the system
when its size tends to infinity. In Chapter 3 we retraced the theoretical machinery
of Schnakenberg et al. which justifies the formulation of the single-step entropy
production in stochastic jumps. Specifically, it was found to be the logarithm of the
ratio between the forward and the backward transition rate.

In Chapter 4 we started from the definition of the master equation for our model
and it has been recovered that when N →∞, the evolution is governed by Antisim-
metric Lotka-Volterra Equations. We showed how their solutions can be obtained
using exclusively its conserved quantities along the solutions of those equations. Us-
ing the Kramers-Moyal expansion, we recovered the expression of the Fokker-Planck
equations, which embodies a first correction to the deterministic equations in order
to take into account the stochasticity. During the simulations we observed that
the system’s evolution depends on the value of the frequency of random mutations,
parametrised by a coefficient σ. For low values of σ the system lives mostly on the
boundaries of the simplex S2, i.e. persist a cyclical domination of one species among
the others. For high values of σ the fixed point becomes an asymptotically stable
point that is every species has its population near a third of the total considered of
the system. Using the Fokker-Planck equation we showed that there exists a critical
value of mutation σc = 1 that determines this transition from a cyclical dominance
to a mean coexistence condition, and this transition is found to be smooth. Further-
more it was shown that for values of σ > σc we get a higher production of entropy.
We also calculated the expected irreversibility (entropy production) of the ecosystem
as a function of the partition of its individuals among the various species during each
step. In particular it was shown that where one species dominates the others, the
mean entropy produced during each step is almost zero, while near the fixed point
the system produce respectively more entropy. All this is coherent with the simula-
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tions carried out. In the end we showed that σc does not depend on the predation
coefficient R, since all the different curves converge to the same if we divides all the
data for the respective maximum of the entropy produced Ṡ = S/T . To summa-
rize, we performed a study on the irreversibility of the biological system considered,
which is strictly linked with the concept of entropy production. It was shown that
at coexistence, i.e. close to the fixed point ,where all species have the same success,
the system evolve along a more irreversible state contrarily to the case in which one
species dominates among the others.

The approach followed in this work is very general and in future investigations
it could be applied to more complex systems, which may include a spatial structure
(instead of the well mixed ones studied here), environmental stochasticity or more
interacting species. It would be interesting to obtain similar results in such more
elaborate models, because it would explain the propensity of ecological systems to
have a great number of coexisting species that are always subjected to mutational
processes.
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Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Brux-
elles (1845). 18: 1–42. Retrieved 2013-02-18.

[7] D. Alonso A. J. McKane and M. Pascual: Stochastic amplification in epidemics,
J.R. Interface, 4, 575-582, (2007).

[8] S. Azaele et al.: Statistical mechanics of ecological systems: Neutral theory and
beyond, preprint: https://arxiv.org/abs/1506.01721.

[9] R. Klages, W. Just, and C. Jarzynski: Nonequilibrium Statistical Physics of
Small Systems, Wiley-VCH, (2013).

[10] C. Maes: On the origin and the use of fluctuation relations for the entropy,
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