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Declaration of Intent

Our intent is to investigate the physics of gravitational lensing by vector
type perturbations in cosmology and if possible shed some light on their
observability, as little has been said in the past.
In order to do so, we first outline the fundamentals of gravitational lens-
ing in the context of General Relativity, and present insightful mathe-
matical tools in the weak lensing limit. Then, we review cosmological
perturbation theory, and examine the decomposition of spacetime per-
turbations into scalar, vector and tensor components. We find that the
Kerr metric, which pertains to a rotating mass in asymptotically flat
space, may add a vector type perturbation to the flat case, and thus
study in detail gravitational lensing in Kerr. We obtain a lensing map
and carefully define its validity; then, we apply the tools mentioned
above in the Kerr spacetime to gauge the effects rotation may have on
light bending.
At this point, we explore possible Kerr-like lenses in the sky, such as ro-
tating galaxies, and discuss to what extent our map may describe lensing
around such objects. We predict the magnitude of the effect galaxy ro-
tation may have on background lensing and compare this to lens survey
data to ultimately assess whether it may be observable.
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Chapter 1

Review of Gravitational Lensing

1.1 Introduction to Gravitational Lensing

At the core of the revolution brought about by Einstein’s theory of General Relativity
is the notion that energy, i.e. matter, curves space and time. One of the many effects
of this phenomenon is that the trajectories of free falling massive and massless particles
(geodesics) cannot be straight lines in the proximity of a body. Thus, light travelling
through space is bent according to the mass distribution it encounters. This is known as
gravitational lensing.

Ever since the mathematical description of lensing, astrophysicists have been using it
to map our Universe more precisely and to infer properties of the universe such as the na-
ture and distribution of massive objects. Truly, nothing we observe from Earth is exactly
where we see it, as no path in space can ever be perfectly straight; hence, if we can figure
out what type of distortions have been impressed on an image of a specific light source,
we learn a lot about what lies between us and the source. Vice versa, if we consider a well
known massive body and observe lensing around it, it is then possible to map out the true
positions of the light sources on the background.

Figure 1.1: Image from the NASA/ESA Hubble Space Telescope of the galaxy cluster
MACS J1206. Note the strong lensing of the background galaxies.
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There are different approaches to the study of gravitational lensing, depending mainly
on whether the effect is weak and can be analysed as a statistical effect, or strong. Look at
Figure 1.1: given a picture of the sky, weak lensing effects will invariably be present, but
only careful data analysis can reveal whether there is a global behaviour which may be
indicative of a specific mass distribution between observer and lens. Strong lensing on the
other hand is immediately recognisable, as the background is heavily warped; this effect
can only arise when lensing mass and background objects are almost perfectly aligned, and
thus is quite rare to observe. In extreme cases, light from the same source may propagate
past the mass on several different paths which come around different sides of the lens
giving rise to multiple images of the source.

We will review the relativistic calculations which describe the effect in the simplest
setup possible, using the Schwarzschild spacetime. We will then outline the vast field of
weak gravitational lensing highlighting the tools we’ll need in subsequent chapters.

Figure 1.2: In this photo, taken with the Hubble Space Telescope’s Wide Field Camera 3,
the gravity of the luminous red galaxy LRG 3− 757 has distorted the light from a much
more distant blue galaxy. This phenomenon is known as Einstein ring, as it was first
predicted by Albert Einstein in 1936, in a paper published on Science. In this paper he
also stated that

There is no hope of observing this phenomenon directly. First, we shall
scarcely ever approach closely enough to such a central line. Second,
the angle [spanned by the ring] will defy the resolving power of our
instruments.

− Science, vol 84 p 506, 1936

We are all very glad he was wrong.
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1.2 Lensing in the Schwarzschild Solution

We review the Schwarzschild solution to Einstein’s equations and the trajectories of
massless particles in this spacetime, to familiarise ourselves with the formalism and more
importantly as it will be of great use later, to compare it with a more complicated scenario.
We will use geometric units (c = G = 1) throughout.

The Schwarzschild metric is [1]

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
; (1.1)

it constitutes the unique, maximally symmetric, static solution to Einstein’s equations:

Gµν ≡ Rµν −
gµν
2
R = 8π Tµν . (1.2)

Note that r = 2m is a coordinate singularity and is associated with the event horizon of
a black hole of mass m, whereas r = 0, origin of coordinates, is a spacetime singularity.
The spacetime is asymptotically flat.

x

y

z

φ

θ

r

mass

observer

Figure 1.3: Spherical polar coordinates.

Consider now a static, spherically symmetric mass m sitting on a point O in space:
outside the mass, spacetime is described by the Schwarzschild metric 1.1, choosing O as
the origin of the coordinate system, as per Birkhoff’s theorem. Define a generic, affinely
parametrised worldline

xµ(τ) = (t(τ), r(τ), θ(τ), φ(τ)) ,

where we’ve chosen spherical polar coordinates. τ is in general an affine parameter; we will
take it to be equal to the proper time of the observer, and dotting in this chapter designates
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derivatives with respect to proper time to avoid complications. Since the metric is diagonal
and t− and φ− independent, it is quite straightforward, starting from the Lagrangian

L = gµν
dxµ

dτ

dxν

dτ
, (1.3)

to write down the equations of motion for each coordinate. The most efficient way to do
this is recognising the four Killing vectors of this spacetime, namely

kµt =


1
0
0
0

 , Lµ1 =


0
0

sinφ
cosφ
tan θ

 , Lµ2 =


0
0

cosφ

− sinφ
tan θ

 , Lµ3 =


0
0
0
1

 , (1.4)

and working out the conserved charges associated to them. One could alternatively write
down the geodesic equations, but these would be second order in τ , so needlessly compli-
cated. kt is the time-like Killing vector, and as such is associated to the energy

E = −kt µẋµ , (1.5)

while the conserved charges associated to the space-like Killing vectors arise from rotation
invariance, and are then the three components of angular momentum ~L. One can always
choose a frame of reference such that

~L =

L1µ ẋ
µ

L2µ ẋ
µ

L3µ ẋ
µ

 =

0
0
l

 , (1.6)

which implies

ṫ = E

(
1− 2m

r

)−1

, θ̇ = 0 , φ̇ =
l

r2
. (1.7)

The equation for r(τ) is then derived from the normalisation condition on the 4-velocity

gµν ẋ
µẋν = ε =

{
0, m = 0

−1, m 6= 0
, (1.8)

and is (for the massless case)

ṙ = ±
√
E2 −

(
1− 2m

r

)
l2

r2
. (1.9)

The sign of ṙ depends on whether one considers an incoming or an outgoing ray with
respect to the mass.
We interpret 1.7 and 1.9 as follows: the time coordinate t isn’t a constant of the motion, as
its variation is proportional to r divided by the radial distance from 2m (as per equation
1.7). Intuitively, this implies that the proper time of a stationary observer flows more
slowly the closer they are to the Schwarzschild radius, and vice versa faster when they are
further away.1 When r →∞, ṫ→ E, which is just the Minkowski space limit: dt

dτ = γ = E
for a test mass [2]. The two angular coordinates behave quite differently: φ changes with

1Assuming the observer lies outside the horizon.
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a rate which is inversely proportional to the distance squared, which means that the light
ray bends more and more as it approaches the mass, and less and less as it travels on
towards the observer; θ on the other hand is a constant of the motion, thus the whole
trajectory xi(τ) lies on a fixed plane.

It’s worth to fully appreciate this aspect of the Schwarzschild spacetime as it is the
only one with this feature. Let us consider light source, lensing mass and observer as point
masses in empty space, and take the trajectory of a single photon that leaves the light
source along a certain direction, is lensed by the mass, and reaches the observer. Assume
both the observer and the light source to be in the asymptotically flat region, and further
that the distance of closest approach r0 of the photon to the mass is much larger than
m, in order to use Euclidean geometrical axioms. since the metric is totally symmetric,
there is no preferential plane with respect to the mass so one can always choose the plane
on which xi(τ) lies and reduce the analysis to 2D. For obvious reasons, this must be the
plane containing both the source of light rays and the observer, plus the point P where
the lines tangent to the trajectory at the source and at the observer meet - this will appear
clearer in Figure 1.4; these three points identify one and one only plane. Note that even
in the completely general case in which light source, mass and observer aren’t aligned this

b

light source

mass

observer

lens plane

DL

DLS

image

ϑ

α

Figure 1.4: Simple example of gravitational lensing in the Schwarzschild spacetime: in
this set-up, observer, mass and source are aligned, and the distances between observer
and mass (DL) and mass and light source (DLS) are equal. Note that this last condition
is not unreasonable, as the void distribution in our Universe is approximately uniform,
so an object in the foreground lensing a light source in the background will probably be
roughly equidistant from us and the source.
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special plane will necessarily contain the mass itself. To see this, one must forget about
the observer (in fact, the latter plays no role in the lensing at all) and realise that all the
possible planes of motion are the infinite planes passing through the mass and light source.

Consider the set-up of Figure 1.4: supposing the mass m which appears in the metric
1.1 to be known, one can work out the bend angle α using the equations of motion above.
In fact, the total variation of the φ coordinate along the geodesic will be [3]

∆φ = 2

∫ φ2

φ1

dφ = 2

∫ r0

∞

dφ

dr
dr = 2

∫ r0

∞

φ̇

ṙ
dr , (1.10)

if we consider the source to be at r →∞, and introduce the distance of closest approach
r0. The latter is defined to be the distance at which ṙ changes sign, so

r0 = r(s0) | ṙ(s0) = 0 → r0 =
l

E

√
1− 2

m

r0
(1.11)

using 1.9. It’s important to point out that r0 → l
E as m→ 0, which is the flat spacetime

limit. Then, in flat space r0 ≡ l
E ≡ b, where b is simply the impact parameter associated

to the motion. One may extend this result to the Schwarzschild spacetime and define the
apparent impact parameter [4]

b ≡
∣∣∣∣ lE
∣∣∣∣ ; (1.12)

so 1.11 is effectively a relation between b and r0 in the Schwarzschild spacetime.
The total bend angle α is simply

α = 2

∫ r0

∞

∣∣∣∣∣ φ̇ṙ
∣∣∣∣∣ dr − π = 2

∫ r0

∞

(
r2

√
1

b2
−
(

1− 2m

r

)
1

r2

)−1

dr − π , (1.13)

once we’ve substituted 1.7, 1.9 and 1.12 into the left hand side. Note that we’re integrating
from ∞, as we consider the source to be at a distance D � r0, D → ∞ from the lens.
This integral may be solved by expanding the integrand in a convenient variable, and then
performing a direct integration on every independent term. To do this, first we write down
an expression for the distance of closest approach r0 as a function of the impact parameter
by inverting 1.11 (for details see [4], pp. 144-145):

r0 =
2 b√

3
cos

[
1

3
cos−1

(
−33/2m

b

)]
, (1.14)

which expanded in m
b yields

r0 = b

[
1− m

b
− 3

2

(m
b

)2
− 4

(m
b

)3
− 105

8

(m
b

)4
− 48

(m
b

)5
+O

(m
b

)6
]
. (1.15)

The choice of m
b as an expansion parameter is quite natural: we assume the impact

parameter to be much larger than the Schwarzschild radius 2m, i.e. the coordinate singu-
larity of the metric 1.1. The same goes for the parameter h = m

r0
, as previously mentioned,
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which we will use to expand the integral 1.13. Following the procedure in [3], we substitute
1.11 in 1.13 and change variable to x = r0

r to obtain

α = 2

∫ 1

0

dx√
1− 2h− x2 + 2hx3

− π ; (1.16)

now we expand the integrand in h and integrate with the help of Wolfram Mathematica
to obtain

α = 4h+ h2

(
−4 +

15π

4

)
+ h3

(
122

3
− 15π

2

)
+ h4

(
−130 +

3465π

64

)
+O(h5) . (1.17)

We prefer to express the bend angle as an expansion in m
b , since (we will see) b can be

very easily rewritten as a function of observable angles. Then, substituting 1.15 in 1.17
and expanding in m

b we obtain

α = 4
(m
b

)
+

15π

4

(m
b

)2
+

128

3

(m
b

)3
+

3465π

64

(m
b

)4
+

3584

5

(m
b

)5
+O

(m
b

)6
, (1.18)

which is commonly known as the Schwarzschild series [5].

Given an observation of α, in the special case that the source, the lens and the observer
are aligned, we can test General Relativity or estimate the mass of the lens. A historically
valuable example of the former are Arthur Eddington’s measurements of star positions
during the solar eclipse in May 1919. On the other hand, we can identify the alignment of
lens and light source due to the presence of Einstein rings around the lensing body, and
via relativistic calculations, it is possible to estimate the mass of the lens. An Einstein
ring is given by the deformation of light from a background galaxy or star into the shape
of a ring around the lensing mass, as may be seen in Figure 1.2.

Of course, it is uncommon to observe perfectly aligned lenses and sources; the more
typical case is shown in 1.5, where the light source is slightly misaligned with respect to
the mass and observer. As mentioned before, we can work in two dimensions on the plane
passing through the mass, the source and the observer as this will necessarily be the plane
on which the trajectory lies.
Note that in Figure 1.5 the point P doesn’t lie on the lens plane anymore, and a displace-
ment d occurs between the intersections of the tangents to the motion and the lens plane
- this will be key in our analysis. Further note that the light source subtends an angle β
on the observer’s sky, which is a priori unknown but can be written as a function of the
observable angle ϑ, as we will see; thus it is possible, using the equations of motion, to
trace the light ray back to the point of origin and map the position of the light source in
the sky, from the point of view of the observer. To do this, we follow [6].
We work out the displacement d as a function of the geometry; use Figure 1.6 for refer-
ence. Let us choose an arbitrary coordinate system: we pick an (xy) plane, or “equatorial
plane”, different from the motion plane, and take the x axis to be the optical axis. The
reason for this choice will become apparent in section 3, where we generalise the geometry
to a case where the motion does not occur on a single plane.
Project d and the angles of interest onto the equatorial plane and the vertical (xz) plane.

Notice how the tangents to the motion intersect the lens plane in points A and B, and
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b

light source

mass

observer

lens plane

DL

DLS

image

ϑ

α

image plane

d

P

ϑs

β

Figure 1.5: Lensing with displacement in the Schwarzschild spacetime.

d lies entirely on the motion plane. The components of A and B in this particular frame are

Ax = 0 , Ay = DL tanϑ cosϕ , Az = DL tanϑ sinϕ ;

Bx = 0 , By = Ay + q dy , Bz = Az + q dz .
(1.19)

q = ±1 is a necessary sign as these expressions depend on whether P lies on the observer’s
side of the lens plane, or on the opposite side. Looking at Figure 1.5, we see that

α = ϑ+ ϑs , (1.20)

and thus q depends on whether ϑ ≷ ϑs, specifically

q =

{
+1, ϑ > ϑs

−1, ϑ < ϑs
. (1.21)

We can read off the equation for d from the motion plane:

d = q (DL tanβ +DLS tanϑs −DL tanϑ) , (1.22)

where β is the unknown angle spanned by the light source on the observer’s sky. We now
need a lens equation that will give us β as a function of the observable angles on the

8
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b

light source

mass

observer

lens plane

DL

DLS

image plane

d

α
motion plane

P

image

ϕ

ϑ
β

AB

equatorial plane

z

x

y

Figure 1.6: 3D view of lensing in the Schwarzschild metric.

motion plane.

Writing down an exact lens equation is tricky, even in this simple case; see [7] for a
quick review of exact and approximate equations. [6] references a specific lens equation
from [7] which we can motivate briefly.
Consider the impact parameter b; it may be defined arbitrarily with respect to the incoming
or outgoing tangents to the ray, and in the asymptotic approximation 2 the incoming and
outgoing impact parameters will have the same value. The outgoing impact parameter is
simply b = DL sinϑ, and if we equate this to the incoming impact parameter drawn in
Figure 1.5 we can easily derive a lens equation using Pythagoras’ Theorem a number of
times:

DS tanβ = DL
sinϑ

cosϑs
−DLS tanϑs . (1.23)

Then, substituting in 1.22 one obtains

d = DL sinϑ

[
1

cosϑs
− 1

cosϑ

]
, (1.24)

which, projecting in the frame of Figure 1.6, simply decomposes in

dy = DL sinϑ cosϕ

[
1

cosϑs
− 1

cosϑ

]
, dz = DL sinϑ sinϕ

[
1

cosϑs
− 1

cosϑ

]
.

(1.25)

2The asymptotic approximation implies taking r →∞ both backwards and forwards along the motion.
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Thus, remembering the relation between ϑ and ϑs 1.20, one obtains an expression for
the displacement as a function of the two observable angles ϑ and ϕ which pinpoint the
position of the image with respect to the observer, and of the angle α which we’ve cal-
culated integrating geodesics in Schwarzschild 1.18. Note how all the relativistic aspects
of the geometry have been encapsulated in the angle α; asymptotic flatness is key to use
Euclidean geometry and thus obtain the lens equation above.

1.3 Weak Lensing

The general field of weak gravitational lensing encompasses all those lensing effects
that can only be measured statistically, averaging across multiple lenses [8]. We’ll briefly
review how these are commonly treated, and will ultimately focus on the distorting effects
brought about by inhomogeneous matter distributions.

observer

imagesource

matter
distribution

α

x

o
p
tica

l
a
x
is

lens plane

image plane

o
p
tica

l
a
x
is

observer plane

DLS

DL

Figure 1.7: Weak lens approximation.

Consider a matter distribution along the observer’s line of sight, as in Figure 1.7. If
the matter is localised such that the physical distances between the lenses is negligible
compared to the distance between observer and lens (DL), lens and source (DLS), as is
usually the case in our universe (i.e. galaxy clusters, etc...), then effectively the deflection
occurs in a very short section of the light path; we can then assume the matter distribution
to be planar and use the so-called thin lens approximation [9]. Then, the lens is fully
described by the surface density of the distribution

Σ(x) =

∫
ρ(x, z) dz , (1.26)

where x is a two-dimensional vector on the lens plane. Let us truncate the expansion 1.18
at first order, taking the bend angle by a single mass to be

α =
4m

b
; (1.27)
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we can then extend this formula to the general case of a planar mass distribution by
integrating on the lens plane [10]. Consider the contribution of an infinitesimal part of
the surface mass dm = Σ(y) d2y to the bend angle, y ∈ lens plane; note that the impact
parameter with respect to dm is |x− y|, so the integrated bend angle is

α(x) = 4DL

∫
Σ(y)

(x− y)

|x− y|2 d
2y (1.28)

and is a function of the position x, where the light ray intersects the lens plane.

The geometry represented on the right hand side of Figure 1.7 is just like that in Figure
1.4; then, just as before, we can look at the general case where the source is not aligned
with the optical axis - the geometry will simply be that of Figure 1.5. In this first order
approximation in the observable angles, the displacement d is negligible and we simply
take x = βDL, and then |x| ≈ b, as sinβ ≈ β. Note how we’ve made β a two dimensional
angle: it corresponds to the direction of the incoming ray in 3D space, and is measured
with respect to the optical axis. Also, from 1.20 we get α ≈ βs and the lens equation 1.23
reduces to

DS ϑ = DL β −DLS α , (1.29)

which is a simple, explicit equation that relates image position and source position. It’s
useful to further simplify it by rescaling the bend angle,

α̃ =
DLS

DS
α , (1.30)

and considering the distances DS ≈ DL; thus leaving us with [10]

ϑ = β − α̃ . (1.31)

Note how this equation does not have a unique solution; in fact, gravitational lensing may
produce effects such as multiple images and Einstein rings as mentioned before.

Lensing Potential. It is useful to associate a potential-like function to the mass dis-
tribution, and rewrite the bend angle as a result of its action. To do this, simply look
at the integral expression for α 1.28; firstly, it’s useful to rewrite the various ingredients
as functions of observable angles, as we will be taking derivatives with respect to these:
the infinitesimal mass dm = D2

L Σ(γ) d2γ, and the relative impact parameter DL |β − γ|.
We also combine 1.28 with 1.30 to work with adimensional quantities; thus the integral
expression for the re scaled bend angle is

α̃(β) = 4
DLSDL

DS

∫
Σ(η)

(β − η)

|β − η|2 d
2η ≡∇Φ(β) , where (1.32)

Φ(θ) = 4
DLSDL

DS

∫
Σ(η) ln (|β − η|) d2η (1.33)

is the lensing potential of a thin lens.
Taking the Laplacian of Φ(β) we get a scalar quantity:

∇2Φ(β) = 8π
DLSDL

DS
Σ(β) = 2

Σ(β)

Σc
≡ 2κ(β) , where (1.34)

11
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Σc ≡
1

4π

DS

DLSDL
(1.35)

is the critical surface density. 1.34 is the 2D Poisson equation, which proves itself ex-
tremely useful when estimating the surface mass density of a lens from lensing measure-
ments.

Distortion Matrix. Up to now, we’ve shown how a mass distribution modifies the path
travelled by light emitted by a point source. Of course, all sources are extended in nature,
and their image will not only be shifted, but also distorted by the lens. Ultimately, it is
the distortion of the lensed image that gives us precious insight about the mass distribu-
tion along the line of sight: spotting correlations between the shapes and orientations of
background sources is the typical way astrophysicists put these tools we’re reviewing to
good use.
All the information regarding the distortion of an infinitesimal source is contained in the
Jacobian of the lens equation

Dij =
∂ϑi
∂βj

, (1.36)

which is known as the distortion matrix.
Taking now 1.31 and rewriting it with explicit β dependence:

θ(β) = β −∇Φ(β) , (1.37)

we get a simple expression for D

Dij = δij −
∂2Φ

∂βi ∂βj
. (1.38)

The D associated to 1.31 is evidently symmetric, and has thus 4 − 1 = 3 degrees of
freedom. These degrees are associated to two distinct fields: the scalar field κ (namely,
the convergence) and the 2−dimensional vector field γ, which quantifies shear. We can
thus classify the nature of distortion, distinguishing between the two effects as shown in
Figure 1.8.
The distortion matrix is easily decomposed in diagonal and traceless parts, and we can
identify the components of κ and γi in the thin lens approximation:

Dij =

(
1− κ 0

0 1− κ

)
+

(
−γ1 −γ2

−γ2 γ1

)
, γ =

(
γ1

γ2

)
. (1.39)

Note that in the weak lensing regime, both |κ| and |γi| are subcritical, typically � 1.
The traceless part of the distortion matrix D constitutes the shear tensor Γ.

One can repeat this decomposition with a more complicated lens equation; in general,
the distortion matrix won’t be symmetric. The asymmetric contribution will result in a
rotation of the image, and it may be quantified by the parameter ρ [11]. We can summarise
all this by rewriting the distortion matrix as

Dij =

(
1− κ− γ1 −γ2 − ρ
−γ2 + ρ 1− κ+ γ1

)
. (1.40)
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x

κ > 0 γ1 > 0 γ2 > 0

Figure 1.8: The effect of the convergence and shear fields on an image. κ > 0 (< 0) induces
an isotropic expansion (contraction) of the image; γ1 > 0 (< 0) stretches (contracts) the
image along x and contracts (stretches) it along y, γ2 > 0 (< 0) does the same along the
x = ±y directions.

E- and B- Mode Decomposition in Weak Lensing. Typically, weak lensing can
only account for dilation and shearing effects, characterised by their symmetry around the
lens. In general, not all distortions will be symmetric, so it’s convenient to catalogue them
into different types; this is often done via the so-called E- and B- mode decomposition,
where the E-mode is an effect brought about by the shear field γ, and the B-mode encom-
passes all distortions that are not symmetric around the lens - see Figure 1.9 as an example.

To give the reader an overview of the subject, we will introduce the general notions of
E- and B- modes of the shear field on the celestial sphere, following Bartelmann’s review
[12].
Let us introduce the orthonormal coordinate basis on the sphere {e1, e2}:

e1 = ∂θ , e2 = sin−1 θ ∂φ ; (1.41)

from this basis, one can construct the helicity basis {e+, e−}:

e± =
1√
2

(e1 ± i e2) . (1.42)

Now look at the symmetric, traceless, rank-2 tensor field Γ expressed in 1.39,

Γ =

(
−γ1 −γ2

−γ2 γ1

)
; (1.43)

this tensor field defines the spin-(±2) fields p±2,

p±2 :=
(
Γij θ

i ⊗ θj
)

(e±, e±) =
1

2
(γ1 ± iγ2) . (1.44)

Thus, these fields may be decomposed into spin-(±2) spherical harmonics,

p±2 =
∑
l,m

p±2, l,m ±2Yl,m , (1.45)

where p±2, l,m are the expansion coefficients, and ±2Yl,m are the spin-weighted spherical
harmonics, defined by the differential equation

∇± (sYl,m) =

√
(l ± s) (l ∓ s+ 1)

2
s±1Yl,m (1.46)

13
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such that

∇2
± (Yl,m) =

1

2

√
(l + 2)!

(l − 2)!
±2Yl,m , ∇+∇− Yl,m = − l (l − 1)

2
Yl,m . (1.47)

∇± takes the divergence of the argument with respect to e±, respectively.
Then, one may define the spin-0 fields

q± := ∇2
± p =

1

2

∑
l,m

p±2, l,m

√
(l + 2)!

(l − 2)!
Yl,m , (1.48)

which will be independent of the orientation of the coordinate frame in which they are
measured. We may call the expansion coefficients

q±, l,m :=
1

2
p±2, l,m

√
(l + 2)!

(l − 2)!
. (1.49)

Let us show how one can use these to define parity-conserving and parity-changing
modes of the field: if the system undergoes the parity transformation {e1, e2} → {e1, −e2},
it appears clear looking at the Γ tensor that this implies

γ1 → γ1 , γ2 → −γ2 (1.50)

for the shear field. The γ1, 2 components may be combined from the spin-±2 fields p±2

turning 1.44 around,

γ1 = p2 + p−2 , γ2 = −i (p2 − p−2) ; (1.51)

hence the following linear combinations of the spherical harmonic coefficients

aE, l,m = −(p2, l,m + p−2, l,m) , aB, l,m = −i (p2, l,m − p−2, l,m) (1.52)

identify an E-mode, which conserves parity, and a B-mode which changes it. The termi-
nology arises from the similarity with the electric and magnetic fields, as the former is a
gradient field and as such is invariant under parity changes, whereas the latter isn’t as it
constitutes a curl field.
Substituting 1.49 into 1.52 one obtains

aE, l,m = −2

√
(l + 2)!

(l − 2)!
(q+, l,m + q−, l,m) , (1.53)

aB, l,m = −2i

√
(l + 2)!

(l − 2)!
(q+, l,m − q−, l,m) ; (1.54)

then we can build the E- and B- modes

E =
∑
l,m

aE, l,m Yl,m , B =
∑
l,m

aB, l,m Yl,m . (1.55)

Now let us see what happens to these coefficients in the weak lensing case. From [12]
we know that

p±2 = ∇2
∓Φ , (1.56)

14
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where Φ is the lensing potential introduced previously. Let us take this result without
further motivation, and refer the reader to Bartelmann’s review for a complete derivation.
We may decompose Φ in spherical harmonics,

Φ =
∑
l,m

Φl,m Yl,m ; (1.57)

then, using the previous relations shown for spherical harmonics, we find

∇2
±Φ =

1

2

∑
l,m

√
(l + 2)!

(l − 2)!
Φl,m ∓2Yl,m , (1.58)

which, comparing with 1.45, yields

p±2, l,m =
1

2

√
(l + 2)!

(l − 2)!
Φl,m . (1.59)

This implies, remembering equation 1.52, that aB, l,m ≡ 0, as there is a degeneracy in the
spin; so weak lensing alone can’t create a B-mode distortion pattern.
So, since weak lensing isn’t expected to give rise to B-modes, their presence in cosmological
surveys is typically taken to be a symptom of some non-lensing contamination. However,
we’ve seen we can generally expect a rotation field ρ to appear in the distortion matrix,
which breaks its symmetry. This is of principal interest for us and we’ll be investigating
the ρ field of a particular lens in Chapter 3.

Cosmology with gravitational lensing 21

The latter is affected gravitationally by the tidal field in the vicinity of the former
(as well as the tidal fields all the way along the line-of-sight), and if the orientation
of the foreground galaxy is affected by the local tidal field, as it surely must at
some level, then there can be a contamination of the cosmological lensing signal by
what is sometimes referred to as the ‘GI correlation’. This was first pointed out in
[30], and it seems to be likely to be a significant effect [29]. It is less easy to deal
with than the II correlation, but modelling and nulling methods exist, at the price of
diminished signal-to-noise [10, 40].

Fig. 7 Example patterns from
E-mode and B-mode fields
(from [79]). Weak lensing
only produces E-modes at
any significant level, so the
presence of B-modes can
indicate systematic errors.

E mode

B mode

4.5 E/B decomposition

Weak gravitational lensing does not produce the full range of locally linear distor-
tions possible. These are characterised by translation, rotation, dilation and shear,
with six free parameters. Translation is not readily observable, but weak lensing
is specified by three parameters rather than the four remaining degrees of freedom
permitted by local affine transformations. This restriction is manifested in a number
of ways: for example, the transformation of angles involves a 2⇥ 2 matrix which
is symmetric, so is not completely general, see equation (18). Alternatively, a gen-
eral spin-weight 2 field can be written in terms of second derivatives of a complex
potential, whereas the lensing potential is real. There are many other consistency
relations which have to hold if lensing is responsible for the observed shear field. In
practice the observed ellipticity field may not satisfy the expected relations, if it is
contaminated by distortions not associated with weak lensing. The most obvious of
these is optical distortions of the telescope system, but could also involve physical
effects such as intrinsic alignment of galaxy ellipticities, which we will consider
later.

Figure 1.9: An illustration of possible E- and B- type patterns, borrowed from [13]. Note
the axial symmetry of the E-mode, and asymmetry of the B-mode.

15



Gravitational Lensing by Vector Perturbations

16



Chapter 2

Cosmological Perturbation Theory
and Vector Perturbations

2.1 Introduction to Perturbation Theory

Cosmological perturbation theories have been developed primarily to describe struc-
ture formation and evolution in the universe as a result of primordial density fluctuations.
The linear perturbation analysis of spatially homogeneous and isotropic cosmological mod-
els was pioneered by Lifshitz in 1946, and was then revisited and extended in the following
years by numerous scientists; for a detailed historical overview, we recommend Kodama
and Sasaki’s Cosmological Perturbation Theory paper, [14].
Perturbation theories are an invaluable tool for cosmologists and are as such widely used
for a variety of purposes. Ultimately, the observation of cosmological perturbations in our
Universe is the most direct approach we have to explore early physics, before last scatter-
ing. In fact, the primary application of perturbation theory is the study of anisotropies in
the Cosmic Microwave Background, which are traced back to higher redshifts, z � 1100,
and the consequences these have on large-scale structure. They are also a key element
when it comes to fixing initial conditions for numerical simulations of structure formation.

In the context of General Relativity, it is straightforward to associate energy density
fluctuations with perturbations of the spacetime metric: a perturbation of the metric has a
direct effect on the Einstein tensor Gµν which, through the Einstein equations 1.2, affects
the energy-momentum tensor Tµν . We will write down explicitly the equations which link
metric perturbations to the energy they carry.

Let us follow the Kodama-Sasaki review of cosmological perturbation theory and lay
out the formalism for this section. Consider a 4-dimensional spatially homogeneous and
isotropic spacetime, i.e. the Robertson-Walker spacetime, which is described by the metric

ds2 = gµν dx
µ dxν = −dt2 + a(t)2 dΣ(xi)2 , (2.1)

where dΣ(xi)2 is the time independent metric of 3-dimensional space,

dΣ2 = γij dx
i dxj =

dr2

1− k r2
+ r2 dΩ2

2 , (2.2)

k is the curvature of the spacetime and dΩ2
2 is the metric on the 2-sphere. k = 0 corre-
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sponds to a flat universe, k = +/- 1 to a curved closed/open universe. As usual, Latin
indices run from 1 to 3, Greek indices from 1 to 4. The Riemann curvature tensor of the
3-dimensional subspace is given by

Rijkl = k (γik γjl − γil γjk) , (2.3)

as the space is maximally symmetric [1]. The Ricci tensor and scalar follow,

Rij = 2 k γij , R = 6 k . (2.4)

The plan is to perturb this spacetime, which is generally considered to be a good model
for our Universe, keeping the curvature k constant. On this spacetime, it is possible to
expand perturbations by harmonic functions and reduce their evolution equations to a set
of decoupled, ordinary differential equations, as we will show.
We choose conformal time η as time coordinate to simplify notation,

dη =
dt

a(t)
; (2.5)

it is implied that components of vectors and tensors are from now on in the coordinates
(η, xi).

By choosing a maximally symmetric background spacetime, we restrict the energy-
momentum tensor Tµν to take the following form:

Tµν = (ρ+ p)uµ uν + p gµν , (2.6)

where ρ and p are solely time dependent functions and are typically associated with the
density and pressure of a perfect fluid, and uµ is the 4-velocity [15].

Let us quickly mention a much-debated issue which arises naturally when approaching
spacetime perturbations: gauge invariance. In fact, a change of coordinates affects the
spacetime metric and may both generate fictitious gauge modes and remove real pertur-
bations [16]. Generally speaking, there are two (related) solutions to the gauge problem,
namely either the fixing of a particular gauge or the definition of special gauge-invariant
perturbations (Bardeen variables). In our analysis, we will choose a gauge and keep track
of all metric perturbations.

In this thesis, we aren’t particularly concerned with the evolution of density fluctua-
tions and their cosmological implications - our intent here is to review the decomposition
of perturbations into scalar, vector and tensor modes and concentrate on the vector type
components, as they have been somewhat overlooked in the past.
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2.2 Perturbation Decomposition into Scalar, Vector, and
Tensor Contributions

The classification of perturbations comes naturally when observing how these react
under space coordinate transformations, xi → x̃i; they may have scalar, vector or tensor
behaviour. Let us see what this entails.

We work on the 3-dimensional totally symmetric space described by the metric dΣ2

in 2.2. A vector v on this space may be decomposed into its own divergence and a
divergenceless part,

v = vv +∇vs , ∇ · vv = 0 ; (2.7)

we write the elliptic equation

∆vs = ∇ · v , where ∆ = γij∇i∇j , (2.8)

which defines the quantity vs
1. Thus, we have decomposed v into scalar part vs and vector

part vv in accordance with how these transform under coordinate changes.
The same can be done for a second rank tensor S. Note that we only need to consider
symmetric tensors, as the Einstein equations 1.2 cancel out the antisymmetric parts. Then,

Sij = Sijt +

(
∇i∇js− 1

3
γij∆s

)
+
(
∇jSiv +∇iSjv

)
+

1

3
Tr(S) γij ; (2.9)

where we have

s =
3

2
∆−1 (∆ + 3 k)−1

(
∇i∇jSij −

1

3
∆Tr(S)

)
, (2.10)

Siv = (∆ + 2 k)−1 (δi j −∇i∆−1∇j
) (
∇mSjm −

1

3
∇jTr(S)

)
, (2.11)

with

Tr(St) = 0 , ∇jSijt = 0 . (2.12)

As before, we call St the tensor type, Sv the vector type, and (s,Tr(S)) the scalar
type components of S.

In a Robertson-Walker spacetime and with certain constraints, scalar, vector, and
symmetric second-rank tensor equations may be decomposed into groups, each of which
contains components of only one type. This is true when the equations are covariant
with respect to coordinate changes in the 3−dimensional subspace dΣ2, linear at most
in unknown geometrical quantities and second order at most in the case of differential
equations. We provide a revised proof of this in Appendix A. In this case, it is possible to
study the three types separately: scalar, vector and tensor perturbations.

It is well known that scalar quantities can be expanded in a complete set of harmonic
functions, Q(0)(x), satisfying [17]

1Note: on our chosen space, 2.8 has a unique solution [14].
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∆Q(0) = −k2Q(0) ; (2.13)

evidently, −k2 is an eigenvalue of the Laplace operator ∆ on the 3-dimensional subspace,
and it takes continuous values when k ≤ 0 and discrete values when k > 0, as shown in
[18].
The same can be done for vector modes,

∆Q
(1)
i = −k2Q

(1)
i , with ∇ ·Q(1) = 0 , (2.14)

and tensor modes,

∆Q
(2)
ij = −k2Q

(2)
ij , with ∇iQ(2)

ij = 0 . (2.15)

Consider equations 2.7 and 2.9; one can construct vector and symmetric tensor modes
from the scalar modes simply by setting

Q(0) = −1

k
∇Q(0) , (2.16)

Q
(0)
ij =

1

k2

(
∇i∇j − 1

3
γij∆

)
Q(0) =

(
1

k2
∇i∇j +

1

3
γij
)
Q(0) , (2.17)

remembering 2.13. One can also construct tensors from vector modes,

Q
(1)
ij =

1

k

(
∇iQ(1)

j +∇j Q(1)
i

)
. (2.18)

Perturbing the metric. As we’ve pointed out before, the three types of perturbations
totally decouple dynamically and may be studied independently; furthermore, due to the
homogeneity and isotropy of the 3-dimensional subspace, the expansion coefficients of
harmonic functions with different eigenvalues don’t mix, so there is no need to sum over
the eigenvalues. Let us now perturb the metric 2.1, and call the perturbed metric g̃µν such
that

g̃µν = gµν + hµν , (2.19)

and look at the different modes separately.
We know that by a spatial coordinate transformation, the components g00, g0j and gij of
the metric tensor transform as scalar, vector and tensor quantities respectively. then in
all generality we may write:

g̃00 =− a2
(

1 + 2AQ(0)
)
,

g̃0j =− a2
(
BQ

(0)
j +B(1)Q

(1)
j

)
,

g̃ij =− a2
(
γij + 2HLQ

(0) γij + 2HT Q
(0)
ij + 2H

(1)
T Q

(1)
ij + 2H

(2)
T Q

(2)
ij

)
.

(2.20)

We may interpret the functions of time A, B, B(1), HL, HT , H
(1)
T , H

(2)
T as amplitudes of

the perturbation. Specifically, A is the amplitude of perturbation in the ratio of proper-
and coordinate- time distance between two neighbouring constant time hypersurfaces. B,
B(1) may be seen as amplitudes associated with a perturbation in the rate of deviation of
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a constant space-coordinate line from a line normal to a constant time hypersurface. HL

is the amplitude of perturbation of a unit spatial volume; and finally HT , H
(1)
T and H

(2)
T

are amplitudes related to the distortion of each constant time hypersurface.

A clever gauge choice will considerably simplify 2.20 and make matters easier to handle.
As mentioned in the Introduction to this chapter, perturbation theory on curved spaces
suffers from gauge ambiguities - we won’t concern ourselves with the details and will make
a typical gauge choice: the Newtonian gauge, which leaves us with [17]:

A ≡ Ψ , B = 0 , B(1) ≡ −V ,

HL ≡ Φ , HT = 0 = H
(1)
T , H

(2)
T ≡ H .

(2.21)

Then, reconstructing hµν , we see that in the Newtonian gauge we have

hµν = −2 a2


Ψ 0 0 0
0

0 Φγ
0

Q(0) + a2 V


0 Q(1)

TQ(1) 0

+

−2 a2H
(0)
T


0 0 0 0
0

0 Q(2)

0

 ,

(2.22)

where we’ve decomposed the perturbation into its three different modes, scalar, vector
and tensor. When the metric on the 3-dimensional subspace is simply γ ≡ 1, we see that
the scalar contribution is purely diagonal, the vector contribution only disturbs the g̃0i,
g̃i0 terms, and the tensor mode the spatial g̃ij part.

Perturbing the energy-momentum tensor. Let us see, for the sake of completeness,
what happens to the right hand side of Einstein’s equations, and then relate this to what
we’ve seen above. Using the same framework as before, we may decompose a general
energy-momentum tensor Tµν into scalar, vector and tensor eigenmodes:

T00 =ρ ,

T0i =k̂i v + ωi ,

Tij =p δij +

(
k̂i k̂j +

1

3
δij

)
Π(0) +

(
k̂i Π

(1)
j + k̂j Π

(1)
i

)
+ Π

(2)
ij ,

(2.23)

with
k̂ · ω = 0 , k̂ ·Π(1) = 0 , k̂i Π

(2)
ij = 0 , Tr(Π(2)) = 0 . (2.24)

There are four scalar quantities: the energy density ρ, the scalar velocity v, the isotropic
pressure p and the scalar anisotropic stress Π(0). Two vectors: the vorticity ω and the
vector anisotropic stress Π(1). Lastly, there is one tensor quantity Π(2) which is the tensor
(traceless) contribution to the anisotropic stress.
We refer the reader to the Kodama-Sasaki review [14], and report only the final result
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for a perturbed energy-momentum tensor Tµν , in the Newtonian gauge. For the scalar
perturbations we have:

T̃ 0
0 =− ρ (1 + δρ(0)Q(0)) ,

T̃ 0
j =(ρ+ p) δv(0)Q

(0)
j ,

T̃ i j =p (δi j + δp(0) δi j + δΠ(0)Q
(0) i

j) ,

(2.25)

where the δ quantities are perturbations of the defining variables of the unperturbed Tµν ,
and are related to the scalar mode simply by some coefficients,

δρ(0) = a(0)Q(0) , δv(0) = b(0)Q(0) , δp(0) = c(0)Q(0) , δΠ(0) = d(0)Q(0) . (2.26)

The same may be obtained for the vector perturbations:

T̃ 0
0 =− ρ ,

T̃ 0
j =(ρ+ p) (δv(1) + V )Q

(1)
j ,

T̃ j0 =− (ρ+ p) δv(1)Q(1) j ,

T̃ i j =p (δij + δΠ(1)Q
(1) i

j) ;

(2.27)

and tensor:

T̃ 0
0 =− ρ ,

T̃ 0
j =0 = T̃ j0

T̃ i j =p (δij + δΠ(2)Q
(2) i

j) .

(2.28)

2.3 Possible Sources of Vector Perturbations in the Uni-
verse

In general, to source a vector type perturbation in the metric describing our Universe
we need to perturb matter (i.e. energy) in such a way that the vector modes Q(1) are
excited. At second order, scalar density perturbations will do the trick; also bulk flows of
energy will produce vector perturbations in spacetime, while gravity waves only generate
tensor perturbations. These are of course interesting to study, as they give us insight on
early structure formation, but we have precious little data which may be retraced to such
sources.
Bulk flows will be the result of significant peculiar velocities associated to energy overden-
sities. These flows will be characterised principally by the preferential direction of motion,
which we may imagine would produce a dipole-like disturbance in spacetime. To be at all
physically relevant, these velocities would have to be close to relativistic, otherwise the
scalar contribution given by the mass distribution would largely overshadow the vector
part; a possible example of bulk flow could be free-streaming relativistic neutrinos.

At first order, topological defects such as cosmic strings may excite vector modes in
the metric [11]; they arise when a complex field exits a false vacuum and rolls down to a
global one after a symmetry breaking phase transition. These macroscopic strings carry
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energy and momentum, and thus necessarily perturb spacetime. These perturbations may
be traced back to line-like discontinuities in the Cosmic Microwave Background tempera-
ture, via the Kaiser-Stebbins effect [19]: the rapidly changing gravitational field of a string
lenses photon trajectories in its vicinity, leaving a particular print in the CMB. The vector-
induced signal is theorised to be an order of magnitude greater than the tensor-induced
one, so they are a prime source of vector perturbations.
For now, cosmic strings are purely theoretical objects and haven’t been observed - rota-
tions in CMB anisotropies would provide a candidate detection for these.

Let us look back at the decomposition 2.22, where, as a result of a careful gauge choice,
we had a very simple picture of what the different types of perturbations would do to a
spacetime metric. Notice how a vector type perturbation would give rise to off-diagonal,
mixed terms of the type g̃0i essentially generated by a vector Q(1). So, it seems reasonable
to assume that if we had a solution g?µν to Einstein’s equations, asymptotically flat and
describing a physical system, which may be written as a background metric gµν plus a
matrix like

h =


0 v

Tv 0

 , (2.29)

this could be considered to be a spacetime perturbed by a vector perturbation.
Reviewing the (few) known exact solutions to Einstein’s equations in vacuum, we realise
that there is a very simple metric which presents off-diagonal terms and which may be
interpreted as a vector perturbation of flat space: the Kerr-Neuman metric, which de-
scribes a spacetime with a rotating, spherically symmetric charge at the origin. Setting
the electromagnetic charge to 0, let us take a look at the structure of the Kerr metric to
convince ourselves that indeed it may be the result of a vector perturbation, and leave the
full review of the properties of the metric to Chapter 3.

The Kerr Metric as a Vector Perturbation. In order to investigate lensing effects
brought about by vector perturbations of spacetime, we take a closer look at one of the
simplest metrics which presents a vector-like component, namely the Kerr metric.
The Kerr metric in Boyer-Lindquist coordinates [20] (t, r, θ, φ) is of the form,

gµν Kerr =


gtt 0 0 gtφ

0 Σ(r,θ)
∆(r,θ) 0 0

0 0 Σ(r, θ) 0
gtφ 0 0 gφφ

 , (2.30)

where

∆(r) ≡ r2 − 2mr + a2 , Σ(r, θ) ≡ r2 + a2 cos2 θ ,

m is a parameter associated to the mass (energy) concentrated at the coordinate origin
and a is the mass-scaled angular momentum. Its inverse is also fairly simple to obtain,
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gµνKerr =


gtt 0 0 gtφ

0 ∆(r,θ)
Σ(r,θ) 0 0

0 0 1
Σ(r,θ) 0

gtφ 0 0 gφφ

 , (2.31)

and presents a similar structure. The explicit expressions for all the matrix entries are re-
ported in Appendix B, and they are all functions of (r, θ) only. At a glance, one may be led
to believe that as the metric presents a non-zero diagonal + a vector term Tv = (0, 0, gtφ)
off the diagonal, it is the result of a scalar + a vector perturbation. Let us see in what
sense this is the case.

First of all, supposing the system carries a small angular momentum compared to the
total mass, we may expand the metric to first order in a obtaining

gµν Kerr =


1− 2m

r 0 0 −m sin2 θ
r a

0
(
1− 2m

r

)−1
0 0

0 0 r2 0

−m sin2 θ
r a 0 0 r2 sin2 θ

+O(a2) . (2.32)

On the diagonal, we find the Schwarzschild metric in polar coordinates,

gµν Schw = diag(

(
1− 2m

r

)
,

(
1− 2m

r

)−1

, r2, r2 sin2 θ) ;

the off diagonal terms are of the type shown in 2.29, if we identify

v = −

 0
0

m sin2 θ
r

 a .

Both Schwarzschild and Kerr metrics are asymptotically flat, and may be viewed as
perturbations of flat Minkowski space, if the defining parameters are small. We see how we
may interpret the Schwarzschild spacetime as a scalar perturbation to Minkowski, when
m is small, and the Kerr spacetime as a purely vector perturbation of Schwarzschild, at
first order in a.
Expanding at higher orders in a we get second order terms in the diagonal of gµν Kerr;
these may be seen as a further scalar contribution to the perturbed spacetime.
Of course, neither the Schwarzschild nor the Kerr spacetime may model the Universe, so
comparing these to cosmological perturbations is slightly unorthodox. However, if we fix
a time t and consider small patches of sky, the same basic principles should hold.

Certainly, vector perturbations which may be described by the Kerr metric are only a
small part of all possible vector perturbations of spacetime. They are however an inter-
esting test case, and may be used to gauge the B-mode generated by a rotating compact
object - this is our ultimate objective.
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Chapter 3

Lensing in the Kerr Spacetime

3.1 Introduction and Formalism of the Kerr Metric

The Kerr solution of Einstein’s equations 1.2 in vacuum (Tµν = 0) was found by Roy
Kerr in 1963. It belongs to a 2−parameter family of solutions, (M, J) and thus describes
a rotating black hole with mass M and angular momentum J , and is both stationary
and axisymmetric [21]. Due to the uniqueness theorems, it is also the only solution to
Einstein’s equations which describes such a spacetime.
In Chapter 2, we’ve seen why we’re interested in this particular metric: it may be seen as
giving rise to a vector type perturbation of flat space, and as it is an exact solution to 1.2,
we find it may contain precious insight to the general topic of vector perturbations.

We shall first review the formalism of the Kerr spacetime we’ll be using throughout
the chapter, then carry out detailed calculations to derive an analytic lensing map around
the origin. Then, we’ll show what rotation generates in the distortion of the background,
and underline all interesting effects.

The explicit form of the Kerr metric is usually expressed in the Boyer-Lindquist Co-
ordinates (t, r, θ, φ) [22], which are related to Cartesian coordinates (x, y, z) as follows:

x =
√
r2 + a2 sin θ cosφ ,

y =
√
r2 + a2 sin θ sinφ ,

z =r cos θ ;

(3.1)

the metric is

ds2 =− ∆− a2 sin2 θ

Σ
dt2 +

Σ

∆
dr2 + Σ dθ2 +

(r2 + a2)2 −∆ a2 sin2 θ)

Σ
sin2 θ dφ2

+
4mar sin2 θ

Σ
dt dφ ,

(3.2)

∆(r) ≡ r2 − 2mr + a2 , Σ(r, θ) ≡ r2 + a2 cos2 θ . (3.3)

The Kerr metric depends on two parameters, the mass parameter of the black hole
m and the mass-scaled angular momentum a = J

m , as measured from infinity. Note that
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m = GM
c2

, but as we equate all constants to 1 throughout the chapter, c = 1 = G, we
will from now on simply refer to m as the mass; remember however that it has spatial
dimension.
At a glance, one can see that the Kerr spacetime is t-independent and thus is stationary,
and also φ-independent thus axisymmetric. It is not static, as it breaks the time-reversal
symmetry, but it is invariant under the simultaneous transformation of t→ −t, φ→ −φ;
this is not surprising, as time-reversing a rotating object produces an object rotating in
the opposite direction. It further depends on the two coordinates r and θ.

Let’s look at the interesting limits of the case:

• r → ∞: 3.2 is reduced to the Minkowski metric (in polar coordinates), hence the
Kerr spacetime is asymptotically flat.

• a→ 0, m 6= 0: 3.2 is reduced to the Schwarzschild metric 1.1; this is consistent with
the idea that as a rotating black hole slows down, it transitions continuously to a
static black hole.

• m → 0, a 6= 0: 3.2 is reduced to the Minkowski metric in spheroidal coordinates,
with radius ρ =

√
r2 + a2.

The Kerr metric also has interesting singularities: it diverges for ∆ = 0 and Σ = 0. A
computation of the Kretschmann scalar K = RαβγδR

αβγδ, explicitly [23]

K =
48m2

(r2 + a2 cos2 θ)6

(
r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

)
, (3.4)

shows that Σ = 0 is a true spacetime singularity, as it is satisfied by the conditions r = 0,
θ = π

2 which cause K to diverge; ∆ = 0 on the other hand is a coordinate singularity, and

its roots r± = m ±
√
m2 − a2 identify two distinct horizons of the black hole: the inner

horizon r− and the event horizon r+.

Equations of Motion. We derive the equations of motion for a Kerr null geodesic
xµ(λ) = (t(λ), r(λ), θ(λ), φ(τ)) just as we did for the Schwarzschild case, using the La-
grangian 1.3, the normalisation condition 1.8 and the conserved quantities of the spacetime.
To find these, we write down the killing vectors for Kerr,

kµt =


1
0
0
0

 , mµ =


0
0
0
1

 , (3.5)

and recognise that as in the Schwarzschild case the energy E 1.5 and the angular momen-
tum around the z axis L = mµẋ

µ are conserved. There is a third conserved quantity, the
Carter constant Q, which is not related to any isometry of the metric [21]. It is recovered
via the Hamilton-Jacobi approach; we won’t go through it explicitly - for details on the
derivation see Roy Carter’s argument in [24]. It may be written as [25]

Q = θ̇2 + cos2 θ

(
−a2E2 +

L2

sin2 θ

)
. (3.6)
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Given the definitions of E and L, we immediately find that

E = − (gtt ṫ+ gtφ φ̇) , L = gφφ φ̇+ gtφ ṫ , (3.7)

which reversed return

ṫ =
gφφE + gtφL

g2
tφ − gttgφφ

, φ̇ = −gtφE + gttL

g2
tφ − gttgφφ

; (3.8)

we can do the same with 3.6 to obtain

θ̇ = ±
√
Q+ E2a2 cos2 θ − L2ctan2θ

Σ(r, θ)
. (3.9)

The equation for r(λ) is simply obtained from the normalisation condition on the 4-
velocity:

ṙ = ±
√
−gttṫ

2 + gθθθ̇2 + gφφφ̇2 + 2gtφṫφ̇

grr
. (3.10)

These equations show how the geodesic motion depends on two coordinates, r and θ,
plus the three constants of motion E, L and Q which remain fixed throughout. We can
immediately make matters more simple by dividing these by a chosen constant, in our case
E, and reparametrising the affine parameter λ̂ ≡ Eλ to get (now writing out the terms
explicitly)

ˆ̇t =1 +
4mr (a2 − L̂+ r2)

∆(r)Σ(r, θ)
,

ˆ̇r =±

√
r4 − (Q̂− L̂2 − a2)r2 + 2m ((L̂− a)2 + Q̂)r − a2 Q̂

Σ(r, θ)
,

ˆ̇
θ =±

√
Q̂+ a2 cos2 θ − L̂2 ctan2θ

Σ(r, θ)
,

ˆ̇
φ =

2 amr + L̂(r2 − 2mr) csec2θ + a2L̂ctan2θ

∆(r)Σ(r, θ)
;

(3.11)

so now we only have two independent constants, namely L̂ = L
E and Q̂ = Q

E . Note that

the hat-dot notation implies d
dλ̂

, such that ˆ̇t = dt
dλ̂

. These are the equations of motion for
the null geodesic xµ which we will be using to work out the observable bend angle of a
light ray lensed by a rotating object.

It is hard to integrate analytically these equations directly and work out the trajectory
of a bent light ray. We will work in a particular regime to make matters a little simpler, the
quasi-equatorial regime: we constrain the motion to evolve close to the equatorial plane,
which is a uniquely defined plane due to the axisymmetric symmetry of the spacetime and
corresponds to the coordinate angle θ = π

2 . It will appear useful to change coordinates,
so that effectively the equatorial plane lies at a coordinate angle ζ = 0 and motion occurs
at perturbed values of the latter. In this new coordinate, the Kerr equations of motion
become
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ˆ̇t =1 +
4mr (a2 − L̂+ r2)

∆(r)Σ(r, ζ)
,

ˆ̇r =±

√
r4 − (Q̂− L̂2 − a2)r2 + 2m ((L̂− a)2 + Q̂)r − a2 Q̂

Σ(r, ζ)
,

ˆ̇
ζ =±

√
Q̂+ a2 sin2 ζ − L̂2 tan2 ζ

Σ(r, ζ)
,

ˆ̇
φ =

2 amr + L̂(r2 − 2mr) sec2 ζ + a2L̂ tan2 ζ

∆(r)Σ(r, ζ)
,

(3.12)

with Σ(r, ζ) = r2 + a2 sin2 ζ.

Note that this is a sensible constraint to impose, which doesn’t undermine the value
of this map. In fact, the equatorial plane is the plane on which the total bend angle α
is most appreciable, and as we are limiting ourselves to the case where the observer lies
on the equatorial plane, and the mass is rotating at sub-critical speed, the effects due to
rotation will be very small, so it makes sense to assess them where they are most visible.
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3.2 Light Bending in the Kerr Metric

Before we dive into the chapter, let us offer the reader an intuitive picture of what one
may expect to see when observing lensing around a compact object which is rotating, and
in what this case differs from lensing around an object which is not rotating and may be
described by the Schwarzschild metric. In Figure 3.1 we represent the same scenario in
both cases: light rays are emitted from a source at the same angle, but on opposite sides
of the optical axis; in Schwarzschild space (a) lensing is symmetric around the mass m,
whereas in Kerr (b) we have asymmetric lensing. This is due to the angular momentum J
of the mass, which breaks the symmetry of the spacetime and ‘pulls’ prograde rays towards
m, and ‘pushes’ retrograde rays away so that rays emitted at the same angle passing the
mass from different sides will have different paths and will cross the optical axis in different
points.

light source

m

(a) Schwarzschild

J

light source

m

(b) Kerr

Figure 3.1: A simple illustration of lensing in the two metrics mentioned above. Note
how rays which leave the light source at the same angle with the optical axis are bent
differently in the Kerr case, depending on what side of the axis they approach the lens.

We will obtain the bend angle and lens equation for a light ray gravitationally lensed
by a spherically symmetric, rotating compact object, in the the quasi-equatorial regime.
The recipe is the same as in Section 1.3, and follows the guidelines of [6] and [26]; as in
the Schwarzschild case, we are assuming that observer and light source lie in the asymp-
totically flat region, and don’t disturb the metric. Furthermore, we assume that the light
source doesn’t lie far off the equatorial plane, which is the plane horizontal to the angular
momentum, ~L.
The geometry is quite tricky, as a lensed photon’s trajectory doesn’t lie on a plane (θ̇ 6= 0).
Effectively, this means that the two tangents to the motion, at the observer and at the
light source, lie on separate planes in space and never meet. We will refer to the line
tangent to the motion at the observer as the outgoing line, and to the tangent at the
source as the ingoing line. The outgoing line intersects the lens plane in A, the ingoing
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line intersects the lens in B.

light source

m

observer

lense plane

DL

DLS

image plane

d
αver

αhor

ϕ

ϕs

ϑ

ϑs

eq
ua

to
ri
al

pl
an

e

outgoing line

ingoing line

A
B

Ψ

Figure 3.2: 3D view of lensing in the Kerr metric. To draw this diagram, it is essential
for the geometry to be asymptotically flat, and we may assume b � m such that we are
measuring angles in the flat region.

Looking at Figure 3.2, we list the angles of interest as follows:

• Image position: The position of the image is fixed by the two angles (ϑ, ϕ). ϑ is
the 2-dimensional angle subtended by the outgoing line and the optical axis x and
ϑ is its amplitude, ϕ is the angular position of A on the lens plane. We choose their
domains carefully: we set 0 < ϑ < π

2 , which spans only half of the image plane, but
we can easily recover the other half by flipping the sign of the angular momentum
J . The same goes for 0 < ϕ < π

2

• Source position: The position of the source is pinpointed by (ϑs, ϕs), which have
the domains: −π

2 < ϑs <
π
2 ; 0 < ϕs < 2π. ϑs quantifies the deviation of the

incoming line with respect to the optical axis direction and is the amplitude of ϑs,
ϕs quantifies the deviation of the incoming line with respect to the equatorial plane.
Effectively, the quasi-equatorial regime implies that ϕs is small.

• Bend angle: Since the motion does not occur on a plane, there is no physical angle
α as in the Schwarzschild case. Thus, we must project the incoming and outgoing
lines on the equatorial plane (xy) and vertical plane (xz), where they form the angles
αhor and αver respectively.
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To calculate the bend angles αhor and αver as functions of the observable angles (ϑ, ϕ),
we need to integrate the equations of motion 3.12 setting the appropriate boundary con-
ditions. Also, we rewrite L̂ and Q̂ as functions of (ϑ, ϕ) - much as we did for L

E in the
Schwarzschild case - by considering their values at infinity. We do this in full in Appendix
B, obtaining

L̂ = −DL sinϑ cosϕ , Q̂ = D2
L sin2 ϑ sin2 ϕ . (3.13)

In the quasi-equatorial regime, these reduce to

L̂ = s b cosϕ , Q̂ = b2 sin2 ϕ , (3.14)

where b ≡ DL sinϑ is the impact parameter just as in the Schwarzschild case; s is the
sign of the angular momentum, and is either +1 for prograde motion, or −1 for retrograde
motion. These will be immediately substituted in 3.12.

We proceed to work out the two components of the bend angle starting from the
equations of motion, in the quasi-equatorial regime.

3.2.1 Horizontal Bend Angle αhor

The horizontal component of the bend angle is obtained exactly as α in the Schwarzschild
case; in fact, the geometry in Figure 3.3 is the same as the one in Figure 1.5. The equation
for αhor is again

αhor = 2

∫ r0

∞

∣∣∣∣∣ φ̇ṙ
∣∣∣∣∣ dr − π ≡ ϑ1 + ϑs,1 , 1 (3.15)

where we need to substitute in 3.12 with the explicit terms 3.14. We have

φ̇

ṙ
= ± 2amr + br (−2m+ r) s cosϕ sec2 ζ + a2bs cosϕ tan2 θ

∆(r)
√
r (b2(2m− r) + r3 + a2(2m+ r))− ab (4mrs cosϕ+ ab sinϕ2)

.

To integrate this, we must resort to careful simplifications, which must maintain the
correct dependencies of the various quantities from the observable angles - this will become
of importance later, when we work out the distortion matrix D. As we are in the quasi-
equatorial regime, we may

– Expand around 0 to first order in the coordinate ζ, as we expect it to remain around
the equatorial value throughout the whole trajectory;

– Consider ϕ to be small, as we are only slightly off the equatorial plane;

– Consider a to be small, so we keep second order terms ϕ2, ζ2 and mixed terms ϕζ
only if they aren’t multiplied by a.

Thus, we’re left with

1Note: ϑs,1 may be negative, in which case ϑ1 > αhor.
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light source

m

observer

DL

DLS

image

A′

αhor

ϑ1

B′
dy

Ψ1

ϑs,1

V ′

h′

image plane

lens plane

Figure 3.3: View of the equatorial plane (i.e. the (xy) plane) of our set up. Note the
displacement triangle (dy, V

′) of base dy and vertex V ′. ϑ1 and ϑs,1 are the components
on this plane of the angles ϑ, ϑs respectively. These are in general 2-dimensional angles
in space, and their amplitudes are related to those of their projections as

tanϑ =
tanϑ1

cosϕ
, tanϑs =

tanϑs,1
cosϕs

. (3.16)

φ̇

ṙ
=
r1/2 (2 a sm− 2 bm cosϕ+ b r cosϕ)

∆
√
r3 + b2 (2mF2 − G r)

, (3.17)

where we’ve called

F ≡ 1− s
a

b
, G ≡ 1− a2

b2
, (3.18)

to shorten the expression. Note how the terms involving cos θ and tan θ don’t contribute
at first order, so the deflection on the equatorial plane only depends on the position r,
with a correction cosϕ given by the rise off the plane. This expression is effectively second
order in ϕ, as terms ϕ3 have been suppressed.
To perform the integration of 3.17 we first need to relate b and r0. We do this by solving
the equation of motion for r from 3.12; it is a cubic equation in r0 and has one real solution
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r0 =
2 b√

3

√
G cos

[
1

3
cos−1

(
−33/2 F2

G3/2

m

b

)]
, (3.19)

which Taylor expanded in m
b � 1 yields

r0 = b

(√
G− F2

G

(m
b

)
− 3F4

2G5/2

(m
b

)2
− 4F6

G4

(m
b

)3
− 105F8

8G11/2

(m
b

)4
+O

(m
b

)5
)

.

(3.20)
Next, we change the variable to x = r0

r and rewrite the expression as a function of x and
h = m

r0
, so

αhor = 2

∫ 1

0

2 a hx+ 2 b h x cosϕ− b cosϕ(
1− 2hx+

(
a
m

)2
h2 x2

) √
G (1− x2)− 2F2 h (1− x3)

dx− π .

Let us keep F and G as implicit functions of b for the time being, expand the integrand
in small h and integrate as we did in the Schwarzschild case with the help of Wolfram
Mathematica. Thus we obtain an expression for αhor as an expansion in h:

αhor =
[
a0 π + 4 a1 h− (4a2,1 + π a2,2) h

2 +O(h3)
]
, (3.21)

where

a0 =
cosϕ√

G
− 1 ,

a1 =
F2 cosϕ+ G− FG

G3/2
,

a2,1 =
F2 (F2 cosϕ+ G− FG)

G5/2
,

a2,2 =
G (3F2 + 2G)(1− F) + cosϕ

(
15
4 F4 − 1

2

(
a
m

)2
G2
)

G5/2
.

(3.22)

We want to write the bend angle as a series expansion in m
b , so we substitute 3.20 and

3.18 into 3.21 and re-expand in m
b to finally get

αhor = 4 cosϕ
(m
b

)
+

(
cosϕ

15π

4
+ 4 s

a

m
(1− 4 cosϕ)

)(m
b

)2
+

+

(
128

3
+ 5π s

a

m
(1− 3 cosϕ) + 4 cosϕ

( a
m

)2
)(m

b

)3
+O

((m
b

)4
)
.

(3.23)

This result agrees with with the Schwarzschild case 1.18, as the latter is recovered by
simply setting a = 0 and choosing the plane ϕ = 0 as the equatorial plane (choice which
one can and must make to recover the Schwarzschild series, as the angle α lies geometrically
on such plane).
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light source

m

observer

DL

DLS

image

αver

ϑ2

dz

Ψ2

ϑs,2

V ′′
h′′

image plane

lens plane

Figure 3.4: View of the vertical plane (i.e. the (xz) plane) of our set up. Note the
displacement triangle (dz, V

′′) of base dz and vertex V ′′. ϑ2 and ϑs,2 are the components
on this plane of the angles ϑ, ϑs respectively. Their amplitudes are related to the other
angles as

tanϑ2 = tanϑ sinϕ , tanϑs,2 = tanϑs sinϕs . (3.24)

3.2.2 Vertical Bend Angle αver

Obtaining the vertical component of the bend angle as an expansion in m
b is a little

involved, as we need to integrate equations of motion with explicit ζ dependence which
persists at first order. We follow the procedure in [26] and take the first order expansion

of
ˆ̇
θ in both ϕ and ζ:

ˆ̇
ζ = ± b

r2

√
ϕ2 − G ζ2 +O(2) ; (3.25)

then we write

dζ

dr
=

ˆ̇
ζ

ˆ̇r
= ± b

r2

√
ϕ2 − G ζ2√

1− b2

r2
G + 2mb2

r3
F2

= ± i(r)
√
ϕ2

G
− ζ2 , (3.26)
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where the denominator is simply the first order of ˆ̇r in ϕ, ζ, so

i(r) =
b
√
G√

r4 + b2 r (2mF2 − G r)
.

This leaves us with a differential equation for ζ which may be solved; specifically

ζ(r) =
ϕ√
G

sin (±I(r) + p) , I(r) =

∫ r

r0

i(r′) dr′ , (3.27)

where p is a constant of integration. We’re interested in the two asymptotic values of ζ (r
→ ∞), as we’re considering the source and the observer to be in the asymptotically flat
region of space:

ζ± =
ϕ√
G

sin (±I(∞) + p) ;

we can then eliminate p and relate the 2 asymptotic values to each other,

ζ− =
ϕ√
G

sin

[
−2 I(∞) + sin−1

(√
G

ϕ
ζ+

)]
. (3.28)

It is well motivated in [26] that ζ− ≡ ζi and ζ+ ≡ ζf , where ζi/f are the initial and final
values of the coordinate ζ respectively; furthermore, these are related to the observables
ϑ, ϕ, ϑs, ϕs such that:

sin ζi = sinϕs sinϑs ≈ ϕs sinϑs , sin ζf = sinϕ sinϑ ≈= ϕ sinϑ (3.29)

at first order in ϕ and ϕs. Putting this together with 3.28 we get ϕs as a function of ϕ,

ϕs =
ϕ√

G sinϑs
sin
[
−2 I(∞) + sin−1

(√
G sinϑ

)]
. (3.30)

From Figure 3.4 it is further clear that

αver = ϑ2 − ϑs,2 , (3.31)

where αver > 0 always, if we take ϑs,2 as shown in Figure 3.4 to be positive. In fact,
when ϑ2 ≡ ϑs,2 we have no deflection on the (xz) plane, and the case where ϑs,2 > ϑ2 is
nonphysical as it corresponds to the deflection of the light ray.
Then, we have all the ingredients necessary to derive αver as a result of the geometry and
the Kerr equations of motion, as soon as we solve the integral I(∞). The latter may be
written as an m

b series just like the integral in αhor - changing variable from r to x = r0
r ,

I(∞) =

∫ ∞
r0

b
√
G√

r4 − b2 G r2 + 2mb2F2 r
dr =

∫ 1

0

√
G√

G (1− x2)− 2F2 h (1− x3)
dx ,

where h = m
r0

again. We expand in h, integrate in x and write h as an m
b series, then

we collect terms to get

I(∞) =
π

2
+2

(m
b

)
+

(
15π

8
− 4 s

a

m

) (m
b

)2
+

(
64

3
− 15π s a

2m
+ 5

( a
m

)2
) (m

b

)3
+O

(m
b

)4
.

(3.32)
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Putting together 3.16, 3.24, 3.30, we finally get

αver = ϑ2 − atan (tanϕs tan(αhor − θ1))

≈ ϑ2 − atan

ϕ sin
[
−2 I(∞) + sin−1

(√
G sinϑ

)]
√
G cos (αhor − θ1)

 ,
(3.33)

where we have taken the first order expansion in ϕs.
This expression is essentially first order in ϕ, whereas our expression for αhor is second
order. This doesn’t worry us too much, as we’re working in the quasi-equatorial regime,
so invariably αver � αhor and its contribution will be less appreciable.

3.2.3 Image Position Ψ

As may be seen in Figure 3.2, the 2-dimensional angle Ψ pinpoints the position of the
image on the image plane with respect to the observer. Ultimately, we want to write Ψ as
a function of the observable angles, so as to work out both the true position of the source
and the distortion matrix D as depicted in 1.40. A straightforward geometrical argument
shows that the two components of Ψ, Ψ1 on the (xy) plane and Ψ2 on the (xz) plane,
depend on ϑ as follows:

tan Ψ1 = tanϑ1 − (
DLS

h′
+ qy)

dy
DS

,

tan Ψ2 = tanϑ2 − (
DLS

h′′
+ qz)

dz
DS

,

(3.34)

where qy and qz are the signs associated to dy, dz respectively:

qy =

{
+1, ϑ1 > ϑs,1

−1, ϑ1 < ϑs,1
, qz =

{
+1, ϑ2 > ϑs,2

−1, ϑ2 < ϑs,2
. (3.35)

The distances dy, h
′, dz, h

′′ are all positive definite; dy, dz are given through a lens equation
specific for lensing in a Kerr spacetime where the observer lies on the equatorial plane,
while h′, h′′ may be worked out through geometrical considerations. Let us address both
of these.

Lensing displacement in the Kerr spacetime. From [6] we take the expressions for
dy and dz, given as functions of the observable angles ϑ, ϕ and the angles associated to
the position of the source ϑs, ϕs. They’re obtained in detail within the Aazami paper
considering constants of motion in the asymptotically flat region; they are2

dy = DL sinϑ cosϕ

∣∣∣∣ 1

cosϑs
− 1

cosϑ

∣∣∣∣ , (3.36)

dz =

∣∣∣∣−DL tanϑ sinϕ+
DL sinϑ

1− sin2 ϑs sin2 ϕs
×(

cosϕ sinϑs tanϑs sinϕs cosϕs +

√
sin2 ϕ− sin2 ϑs sin2 ϕs

)∣∣∣∣ (3.37)

2Note: in paper [6] they allow dy and dz to have signs, and therefore omit the moduli.
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By inserting the expressions for ϑs (3.16, 3.24) and ϕs (3.30) we obtain the total displace-
ment as a function of observable angles (ϑ, ϕ).

It’s quite easy to verify that, switching off rotation, the displacement 1.25 for the
Schwarzschild case is recovered. In fact, the expression for dy is the same; as for dz,
setting a = 0 implies ϕs ≡ ϕ, so the parenthesis in 3.37 becomes

cos2 ϕ sin2 ϑs sinϕ− sinϕ cos2 ϑs
cosϑs

= sinϑ
1− sin2 ϑs sin2 ϕ

cosϑs
,

so dz reduces to

dz|a=0 = DL sinϑ sinϕ

(
1

cosϑs
− 1

cosϑ

)
,

which agrees with 1.25.

h′ and h′′. The heights h′ and h′′ of the two displacement triangles, (dy, V
′) and (dz, V

′′)
are key in the lens equations 3.34. We use the geometric rule for scalene triangles which
states that: given the angle β and its opposite side L, the ratio sinβ

L is constant throughout
the triangle. We also use the notion that sin(π/2 − β) = cosβ. Then we easily obtain a
formula for the heights, looking at the geometry in Figures 3.3 and 3.4:

h′ = dy
cosϑ1 cosϑs,1

sinαhor
, (3.38)

h′′ = dz
cosϑ2 cosϑs,2

sinαver
. (3.39)

Now, we have all the quantities in 3.34 as functions of observables. The last thing we need
to write down is the amplitude ϑ and ϕ as functions of the components of ϑ, ϑ1 and ϑ2,
since we’ll need to differentiate the lens equations in order to obtain the distortion matrix
D. These are simply

tanϕ =
tanϑ2

tanϑ1
, tanϑ =

tanϑ1

cosϕ
, (3.40)

where we may input the first equation in the second to get the explicit ϑ1,2 dependence
for ϑ.

Coding all this into a Wolfram Mathematica notebook, we get an analytical map
for quasi-equatorial gravitational lensing, as observed by an observer on the equatorial
plane.

3.2.4 Distortion matrix D: Image Shearing and Rotation

As a result of the previous sections, we have all the ingredients necessary to obtain
the distortion matrix Dij = ∂Ψi

∂ϑj
, which will be decomposed as in 1.40. We see that the

components of the shear field γ and the rotation field ρ are 3

γ1 =
1

2

(
∂Ψ2

∂ ϑ2
− ∂Ψ1

∂ ϑ1

)
, γ2 = −1

2

(
∂Ψ1

∂ ϑ2
+
∂Ψ2

∂ ϑ1

)
, (3.41)

3Note: we aren’t actually interested in the convergence field, as it is related to the mass distribution of
the lens which we are considering to be a point mass.
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ρ =
1

2

(
∂Ψ2

∂ ϑ1
− ∂Ψ1

∂ ϑ2

)
. (3.42)

The shear field is a complex spin-2 field, and may be written as [27]

γab = γ

(
cos 2ω sin 2ω
sin 2ω − cos 2ω

)
(3.43)

Thus, we can also characterise the shear field through its modulus, γ, and the rotation
angle ω; explicitly,

γ =
√
γ2

1 + γ2
2 , ω =

1

2
cos−1

(
γ1

γ

)
. (3.44)

These quantities are important, as it is straightforward to quantify the shear field’s dis-
torting action on an elliptic source as direct function of these. This works as follows: given
an ellipse E with major axis a and minor axis b, its ellipticity is defined as

ε =
a− b
a+ b

.

As stated in [8], at first order in ϑ the ellipticity (when κ ≈ 0) is just4

ε = γ . (3.45)

Furthermore, the action of the shear field leaves the total surface area A = π a b of E
invariant. Keeping this in mind, one can write down the new a′, b′ of the deformed E as
functions of the original ellipticity, a, b and γ. In the simplest case where E is a circle of
radius R, the deformation of E will transform a and b as:

a′ = R

√
1 + γ

1− γ , b′ = R

√
1− γ
1 + γ

. (3.46)

Then, the image will be rotated by an angle ω, with respect to the y axis.
The action of the rotation field ρ adds onto the shear angle ω, as shown in [28]. Effectively,
we may consider the asymmetric distortion matrix D as the product of a symmetric Ds
and a rotation matrix R,

R =

(
cos Φ sin Φ
− sin Φ cos Φ

)
,

which implies that the shear field gets rotated in every point by an angle Φ
2 , tan Φ = −ρ

(when κ = 0). So the total rotation X that an ellipse undergoes in every point of the sky
is X ≈ ω + ρ/2.

In the end, we have a Wolfram Mathematica code with explicit functions γ (ϑ, a,m),
ρ (ϑ, a,m) and γ (ϑ, a,m), ω (ϑ, a,m). We can test the code by inputting values of
(ϑ, a,m) and see how the functions behave, and in particular verify that as a → 0 we
see Schwarzschild-like behaviour. We can also draw a map of the sky and visualise the
distortion of elliptical background sources by a rotating compact mass.

4Note: this only holds in the weak lensing case, when |γ| � 1.
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3.3 Reality Check: Recovery of Schwarzschild and Numer-
ical Examples

In this Section, we implement the tools developed up to now and verify that the results
are compatible and coherent with what is expected. Throughout this whole section, the
distances DL and DLS are taken to be equal and DL = 100 Mpc.

3.3.1 On the Equatorial Plane

It is trivial yet instructive to compare our Kerr map to the Schwarzschild one in
Chapter 1 when the source lies on the equatorial plane. In fact, in this case the motion
occurs on a single plane, and both ϑ2 ≡ 0, ϕ ≡ 0. Then we can analytically compare 1.18
to 3.23, and see the contribution due to a:

αequ = 4
(m
b

)
+

(
15π

4
− 12 s

a

m

)(m
b

)2
+

(
128

3
− 10π s

a

m
+ 4

( a
m

)2
)(m

b

)3
+ ... .

(3.47)
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Figure 3.5: A plot of the bend angle α as a function of θ1 ∝ b in the case motion happens
on the equatorial plane, in three different cases: a = 0, which is the Schwarzschild case,
s > 0 and s < 0, which is equivalent to describing prograde and retrograde motion. We’ve
inputted m ∼ 1012M� as mass parameter5. Note: in the plot, a does not correspond to

the parameter a as it appears in 3.47, rather, it is a rescaled quantity: a = a
Rg
m , with

Rg ∼ 100 kpc. We will justify this rescaling in Chapter 4, when we look at a possible
application of this lensing map.

Evidently, at first order in a, αequ > αSchw when the sign of the angular momentum
is s < 0, which implies retrograde motion with respect to the travelling light ray, and vice
versa αequ < αSchw when s > 0, for prograde motion; see Figure 3.5.

5Remember: m = GM
c2

, c ≡ 1 ≡ g.
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3.3.2 Region of Validity

To make a proper use of the map we’ve constructed, it is essential to fully understand
its region of validity on the image plane, spanned by the angles (ϑ, ϕ), where ϑ is the
modulus of ϑ. For this discussion, we will use these angles and not (ϑ1, ϑ2) to make our
case.

First of all, consider the expansions we’ve done in Section 3.2: we’ve considered ϕ to
be small, which implies that we’ll be looking at a wedge of the sky. The map cannot be
used around the z axis, where ϕ→ π

2 .
We assess the error committed in our approximations by looking at the Schwarzschild
bend angle α, which we know very well, and comparing it to the bend angle we find by
setting a = 0. In other words, we compare the angle α calculated in Chapter 1, 1.18 to
the amplitude we get setting a = 0,

α̂|a=0 =
√
α2
hor|a=0 + α2

ver|a=0 . (3.48)

The Schwarzschild case is spherically symmetric, so the amplitude of the bend angle is
the same around the origin, at fixed impact parameter b. It may be decomposed on any
chosen orthogonal planes, and recalling the formalism we used in Chapter 1 and specifically
looking at Figure 1.6, we may fix an orthogonal base and call ϕ the rise of the motion
plane off of the (xy) plane. Thus, the physical bend angle α may be decomposed in its
horizontal and vertical components via multiplication by cosϕ, sinϕ in order; but the
amplitude itself is ϕ independent. Yet, we see that α̂|a=0 does not remain constant at
constant b, varying ϕ, as there is a spurious ϕ dependence in the components αhor and
αver. The approximation must break down at a certain order of ϕ, so

α̂|a=0 = α+ const.ϕn +O(ϕn+1) . (3.49)

Then we fix b and look at

ln

(
α̂|a=0

α
− 1

)
= n lnϕ+ const. ; (3.50)

performing a parametric plot with Wolfram Mathematica we find n ≈ 4. This agrees
with an expansion of the true components of α up to third order in ϕ, in fact we can write

α′hor = α cosϕ ≈ α
(

1− ϕ2

2
+ ...

)
,

α′ver = α sinϕ ≈ α
(
ϕ− ϕ3

6
+ ...

)
,

and take

α′ =
√

(α′hor)
2 + (α′ver)

2 ≈ α
√

1− ϕ4

12
≈ α

(
1− ϕ4

24

)
, (3.51)

where the second and third order terms in ϕ have cancelled out. Thus, we conclude that
our estimate of the total bend angle α is accurate up to fourth order in ϕ, and we will
choose our values of (ϑ1, ϑ2) accordingly when mapping out a wedge of the sky.
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3.3.3 The Point-Mass Model

To do a robust reality check and compare our results with literature, we first need
to choose a comparison model. So, we look at the canonical point-mass lens, which is
effectively a first order Schwarzschild lens, and constitutes a differentiable off-the-plane
map. In this case, the 2-dimensional deflection angle α is written out as a function of the
impact parameter b, which is in turn a function of the 2-dimensional observable angle ϑ
[29]:

α = 4m
b

|b|2 , b = DL ϑ . (3.52)

One can immediately see, comparing with 1.18, that this is just the extension in 3-
dimensional space of the first order expansion in m

b of the bend angle α calculated in
the Schwarzschild metric. Inserting 3.52 in the lens equation 1.29 one obtains an easy
expression for the image position Ψ as a function of ϑ,

Ψ = ϑ− ϑ2
E

ϑ

|ϑ|2 , ϑ2
E = 4m

DLS

DLDS
, (3.53)

where ϑE is known as the Einstein angle. The distortion matrix D is then simply,

D =

1 + ϑ2
E
ϑ21−ϑ22
|ϑ|4 2ϑ2

E
ϑ1 ϑ2
|ϑ|4

2ϑ2
E
ϑ1 ϑ2
|ϑ|4 1− ϑ2

E
ϑ21−ϑ22
|ϑ|4

 , (3.54)

so in this case we have

κ ≡ 0 , γ1 = −ϑ2
E

ϑ2
1 − ϑ2

2

|ϑ|4 , γ2 = 2ϑ2
E

ϑ1 ϑ2

|ϑ|4 , ρ ≡ 0 . (3.55)

We will use this as a reference and compare our results to this first order solution.

3.3.4 The Action of γ and ρ

We finally look at the effects of rotation on the distortion matrix D, and proceed to
map them out in the region of the sky our map is valid.
We choose unrealistic values for parameters (a, m) to enhance the effect of rotation on the
distorted background; we discuss possible physical values for these parameters in Chapter
4 where we treat the case of rotating galaxies.
The following plots have been produced using the Python package, making use of the
formulas relevant to the distortion of an elliptical source presented in subsection 3.2.4,
considering these sources to be circular.
Notice the differences between the plots of the action of the shear and shear + rotation
fields on the same patch of sky in the point mass and in the Kerr case, Figures 3.6 and
3.7 respectively: one can clearly see that in the Kerr case the shear field is asymmetrical
with respect to the z axis, and in particular weaker for retrograde rays, and stronger for
prograde rays, compared to the point mass case. The inputted mass parameter for these
plots is of course the same, to allow the comparison.
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Figure 3.6: We map the effect of the shear field generated by a point mass on a background
of circular sources, in a region of 5 square arcminutes on the sky. The effect is symmetric
and decreases rapidly with b. For this picture, we’ve used a value for the Einstein angle
of ϑE = 10−4 ∼ 10 arcsec, which corresponds to a mass of 5 · 1012M�.
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Figure 3.7: We take a region of 5 square arcminutes of the sky around a Kerr lens, and plot
the effect of distortion brought upon a grid of circular sources. To produce a substantial
effect, we input the values m = 5·1012M�, a = 0.015 (for a description of the a parameter,
see the caption of Figure 3.5). These are rather nonphysical values, but it is instructive
to produce an image with an effect visible to the naked eye. Note the asymmetry with
respect to the z axis: the modulus of the shear field is different depending on what side
the the light approaches the lens, and one may also notice slight changes of inclination in
the rotation angle. However, the effect of the shear field γ largely overshadows that of ρ,
so we will have a closer look at the latter. It’s important to point out that the distortion
which may be observed closest to the point mass is unrealistic: for such values of b, one
would expect also an overall arching of the image, as in an Einstein ring. Closer to the
lens, the weak lensing approximation breaks down as γ > 1.
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Figure 3.8: We plot out just the effect of the ρ field on a grid of vectors, to better visualise
its effect. Note how the effect is not axially symmetric with respect to z, and as such it
behaves just like a B-mode, described in Chapter 1.3. The values inputted for this plot
are m = 1012M�, a = 0.015.
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Figure 3.9: A representation of the action of ω on a field of vectors - extending the action
on the z axis by continuity. The parameters for this plot are a = 0.0015, m = 1012M�.
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The rotation angles ω and ρ. It is instructive to discuss the two angles which con-
tribute to image distortion, at fixed parameters. Effectively, ω quantifies the inclination
of the major axis of the distorted ellipse with respect to the y axis; as such, it is exactly
0 on the equatorial plane, π

4 along the diagonal (y = z, i.e. ϑ1 = ϑ2) and, if our map
were extendable, π

2 on the z axis. Extending the analysis to all four quadrants of the sky
around the lens, clearly ω may span [0, 2π] - see Figure 3.9. ρ, as explained at the end
of Chapter 3.2.4, is essentially the rotation angle (at first order in the observable angles)
which is to be added to ω in the presence of an asymmetric mode. We see that it is a
tiny contribution to ω in Figure 3.10.
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-1.2 ×10-8
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ϑ1

ρ ρ(a = 0.0001)

ρ(a = 0.0005)

ρ(a = 0.001)

Figure 3.10: A plot of ρ at different values of the rescaled rotation parameter a, keeping
the impact and mass parameters fixed (ϑ = 0.0003, m = 1012M�).

γ in Schwarzschild and Kerr. To check that the map behaves smoothly, we look at
the shear field in both cases, and interpret the action of the rotation represented by the
parameter a. Also, we verify that the modulus of the shear field γ is symmetric around
the origin when we shut off rotation.
One may see from Figure 3.11 that rotation modifies continuously the behaviour of the
two components of the shear field, γ1 and γ2. In particular, for positive a and in the first
quadrant6, we have less negative values for both γ1 and γ2, compared to the a = 0 case.
We remind the reader that the distorting action of the separate components of the shear
field is illustrated in Figure 1.8.

6The first quadrant is identified by ϑ1 > 0, ϑ2 > 0.
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Figure 3.11: Top: a comparative plot of the components of the shear field γ1, γ2 at fixed
values of ϑ2, m (ϑ2 = 10−6 rad for γ1, ϑ2 = 10−3 rad for γ2), varying ϑ1 respecting the
region of validity, in the two cases a = 0 (Schwarzschild) and a 6= 0 (Kerr). Bottom: a
plot of γ1, γ2 at fixed values of ϑ2, m (ϑ1 = 0.0003), varying ϑ2 respecting the region of
validity, in the two cases a = 0 and a 6= 0. m = 1012M� for all lines. The choice of all
parameters was made bearing in mind the interpretive value of the plots.
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0.5
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2.5

Figure 3.12: A density plot of the modulus of the shear field γ (ϑ, a = 0,m). Note the
radial symmetry; disregard the ϑ2 axis, which corresponds to the z axis: the map breaks
down along z, as we’ve discussed.
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ρ as a function of (a, m). We study the behaviour of the ρ field as a function of
rotation and mass, so as to get a better idea of what influences the asymmetric part of
the distortion matrix most.
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Figure 3.13: A plot of ρ as a function of the rescaled rotation parameter a, keeping
ϑ = (10−4, 10−6) rad, m = 1012M� fixed. Note the approximately linear behaviour in
the range of a we’ve selected.
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Figure 3.14: A plot of ρ as a function of the mass parameter m, keeping ϑ = (10−4, 10−6)
rad, a = 0.00015 fixed. Note the approximately linear behaviour in the range of m we’ve
selected. m is expressed in metres in this plot.

49



Gravitational Lensing by Vector Perturbations

50



Chapter 4

Discussion:
|B|
|E| for Rotating

Galaxies

4.1 Rotating Galaxies and the Kerr Metric

As mentioned in Chapter 3, the Kerr metric isn’t a static solution to Einstein’s equa-
tions 1.2 and thus Birkhoff’s theorem isn’t applicable to the spacetime it defines. This
implies that one may not in general describe the spacetime outside a rotating object with
such metric, as one could describe a static star with the Schwarzschild metric. However,
we have chosen to model rotating galaxies with the Kerr metric, well aware that this
approximation breaks down in certain regions of spacetime. Let us review the main fea-
tures of rotating galaxies, and then discuss the applicability of the Kerr metric to the case.

Rotating Galaxies. Rotating galaxies have an overall angular momentum, which is
a residual product of galaxy formation. A good example of rotating galaxies are spiral
galaxies such as the Milky Way: they are roughly in the shape of a flattened disk, as
the centrifugal force spreads the stars out on the equatorial plane. They are particularly
useful to us, as the equatorial plane is easy to spot and well defined (see Figure 4.1). Plus,
they are certainly not uncommon: in fact, they are the most widespread type of galaxy in
the overdense regions of the Universe.
The stars of the spiral disk travel in nearly circular orbits around the galactic centre, and
their velocity vc depends on their distance R from the galactic centre. A plot of vc(R) is
called a circular speed curve, and it is nearly constant for spiral galaxies, even for R well
beyond the Rg of the visible galaxy[30]; this implies the presence of a co-rotating dark
matter halo. Typical circular speeds are 200 < vc < 300 kms−1, but it must be noted
that the dark matter halo is somewhat slower than the luminous matter.
For a disk-like mass distribution,

vc,disk (R) =

√
GM(R)

R
;

adding the dark matter component, one must include a damping factor λ, such that

vc (R) = λ

√
GM(R)

R
,
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Figure 4.1: This Hubble image released on the 25/1/2016 shows spiral galaxy LO95
0313-192, which is located roughly one billion light-years away, on the left; on the right,
LOY2001 J031549.8-190623. Notice their spiral structure and thin disk shape.

(typically for a spiral galaxy one has λ ∼ 0.05, when including the effect of dark matter).
The fact that vc is empirically shown to be roughly constant gives information regarding
the mass distribution M(R).
To describe a spiral galaxy as a compact disk, we then need it’s maximum radius Rmax
and total mass M(Rmax), plus it’s angular momentum J which will depend on these and
the circular velocity. Up to form factors, J = RmaxM vc.

The main issue we encounter when describing a rotating galaxy through the Kerr
metric is that the galaxy is a large, spread out object with Rmax � RSchw, where RSchw =
2M G
c2
≡ 2M•. As we’ve done throughout Chapters 1 and 3, we assume that the impact

parameter b is much larger than the Schwarzschild radius; thus, we’re looking at a region
of space which is well away from the Kerr horizon, and we don’t expect it to be sensitive
to the difference in nature between a Kerr black hole and a spinning spiral galaxy.
The fact that a galaxy is significantly more spread out than a black hole also means that
its angular momentum may be much greater, at fixed mass. In fact, if we look at the
mass-scaled angular momentum a as it is defined for the Kerr metric,

a =
J

M•
=

J

2RSchw
,

we find that it isn’t a small parameter at all, and it makes no sense to look at first
order contributions to the bend angle in it. To use it properly and obtain an expansion
parameter, we should scale it by the radius of the galaxy Rg. In fact, if we take gtt of
the Kerr metric and expand it in 1

R , restricting it to the equatorial plane (θ = π
2 ) for

simplicity:
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gtt = −R
2 + a2 − 2M•R

R2 + a2
≈ −1 +

2M•
R
− 2 a2M•

R3
+ ... (4.1)

Then we see that the first Kerr contribution is of the order

a2M•
R3

=
( a
R

)2
(
M•
R

)
,

and sinceM• � Rg < R as discussed before, we can use ã = a
Rg

as an expansion parameter.

The Milky Way. In various simulations found in both the previous chapter and this
one we use Milky Way-like parameters. The values of mass and radius typically associated
to our own Galaxy are roughly

MMWay = 1012M� , RMWay = 100 kpc . (4.2)

The circular speed at solar radius R0 is well known to be

vc (R0) = 220± 15 kms−1 ; (4.3)

assuming the circular speed to be constant throughout the disk, we then input

vc,MWay = 200 kms−1 (4.4)

in our calculations. Lastly, we need the rescaled angular momentum parameter ã, which
is found to be

ãMWay = 0.0015 , (4.5)

inputting the quantities shown above. We’ve omitted error calculations in our simulations
as these are highly preliminary tests and are only meant to assess the order of magnitude
of the rotational effect, nothing more.

4.2 Measurability of E- and B- Modes of a Rotating Galaxy

Let us imagine we have a rotating lens, which produces a B-mode in the lensing pat-
tern of background light sources. It is useful to estimate what the magnitude of the signal
would be, and whether it would be at all discernible within present and/or future data.
The two main projects which may provide useful observations for our purposes are the
Planck space observatory and the Euclid space mission.

Planck is a space observatory which was operated by the European Space Agency
(ESA) from 2009 to 2013. Its objectives included high resolution detections of both the
total intensity and polarisation of primordial CMB anisotropies, surveys of the gravita-
tional lensing of the CMB, detection of active galactic nuclei (AGNs) and infrared sources,
plus a plethora of observations regarding our own Galaxy and Solar System [31]. Planck ’s
results exceeded expectations and data is available to use. Planck data is accurate enough
to investigate background shearing; however, we exclude that it may be useful to distin-
guish the rotation field from the shear field.
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Euclid is an exciting mission which has just recently passed it’s preliminary design
review, at the end of 2015, and is the natural continuation of Planck. Its primary goals
are measuring the effects of weak gravitational lensing, baryonic acoustic oscillations and
redshift-space distortion patterns in our Universe, so as to ultimately provide unprece-
dented quality data for the study of dark energy and dark matter [32]. The launch date
is planned in 2020, and run time will be 6 years.

Also, the Large Synoptic Survey Telescope (LSST) may provide precious data regard-
ing rotating lenses. LSST will be a wide field reflecting telescope, boasting the largest
digital camera ever constructed (3.2 gigapixel CCD) [33]. It will map the entire available
sky every few nights, delivering high definition images aimed for weak gravitational lens-
ing measurements in the deep sky, the detection of transient optical events (e.g. novae
and supernovae) and the general mapping of our Solar System and Galaxy. The telescope
is currently being constructed on Cerro Pachòn, a mountain in the Coquimbo Region,
Northern Chile; engineering completion is anticipated in 2019, and the run of the first
ten-year survey is expected to commence in January 2022.

Euclid Simulations. To gauge our possibilities, we look at simulations of the shear
power spectrum in the Euclid Definition Study Report [34]; see Figure 4.2 as an example.
In this case, the region with highest sensitivity is around an amplitude of 10−5 ∼ 10−4, with
a sigma of 0.5%. Going through a rapid back-of-the-envelope calculation, considering the
power spectrum to be roughly constant and averaging over the channels between l ∼ 103

and l ∼ 104, we estimate that according to the simulation for Euclid data in Figure 4.2
we could whittle down the sigma to 10−8.
The shear power spectrum will be proportional to the modulus of the shear field squared,
γ2, and the same goes for the ρ power spectrum, ρ2. For the latter to be distinguishable
from the former, we need ρ2 to be at least comparable to σγ2 . To check this, we take
the squared ratio of the amplitude of the rotation field ρ and the shear field γ obtained
through our map, inputting the parameters 4.2, 4.5 motivated above - a plotted example

may be seen in Figure 4.3. Let’s take ρ2

γ2
∼ 10−9 as a working value; then, multiplying by

the simulated shear power spectrum in Figure 4.2 we’d get a value for the rotation power
spectrum of ρ2 ∼ 10−14, which is utterly negligible compared to σγ2 ∼ 10−8 obtained
above.

Galaxy Stacking. We may be able to observe the lensing effect of galaxy rotation by
stacking data of similar sources to build a significant signal. There are numerous galaxy
catalogues where information such as mass, circular velocity and radius are stored; it is
worth while to check whether we have knowledge of enough galaxies that fit the bill in
order to stack them and observe a curl-like distortion.
Thanks to detailed spectroscopic analysis, it is possible to determine circular velocity and
orientation of a spiral galaxy. This is simply done by measuring the redshift of its stars,
on one side and the other of the rotation axis. We may consider future data from LSST
or Euclid : the former should photograph around 100 galaxies per square arcminute, the
latter about a third of this. Suppose a tenth of the galaxies in every square is a foreground
galaxy and acts as a lens, and the rest lie on the background. Then, around a lens a circle of
radius r (in arcminutes) will contain n = Nπr2 galaxies, where we take N = 100 for LSST.
The variance of the shear field γ, σγ , is dominated by the intrinsic ellipticity variance of
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the lensed sources, which is typically σe ≈ 0.3 [35]. We assume the σρ of the rotation field
to be roughly the same as σγ ; then, for a single lens we should be sensitive to perturbations
of order

σγ√
n
. By stacking the lensing data, we can refine this by a factor 1√

M
, where M is

the number of stacked lenses. Then roughly

σρ ∼
0.3

r
√
MNπ

.

One immediately realises that in order to get σρ of the order of ρgalaxy derivable with our
map, one would need to stack a considerably large amount of spiral galaxies, and one would
need to know beforehand their orientation - see Figure 4.4 as an example. These prereq-
uisites combined bring us to a deadlock: current resolutions are not sufficient to discern
the spiral structure of most galaxies and extrapolate their signed angular momentum.
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6. Performance 
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Euclid Consortium are involved in code development in two ways, (i) in-house simulations such the ones 
described in (Dobke et al., 2010; Meneghetti et al., 2009, 2011) and (ii) through the GRavitational lEnsing 
Accuracy Testing (GREAT) challenges (Bridle et al., 2009; Kitching et al, 2010).  
Effects of incomplete survey coverage: To verify the robustness of the requirements on the sky coverage and 
masking, simulations are used to generate realistic cosmological models and weak lensing maps are created 
from these models (Kiessling et al., 2011a, 2011b). These simulations cover a field-of-view of 100 square 
degrees and we simulate 100 independent lines of sight to generate a Monte Carlo suite of simulations, such 
that data covariances can be estimated. This analysis does not take into account methods that exist in the 
CMB (pseudo-Cl's for example) that can account for masking in the power spectrum analysis. We expect to 
implement these algorithms on Euclid data, and hence what is presented here is conservative. 

    
Figure 6.14: Left: Unmasked shear power spectrum and masked power spectra for a survey with 1, 2 and 3% masking. 
The lower panel shows the percentage difference between the unmasked and masked power spectra as compared with 
the theoretically expected power spectrum. The grey region shows the 1-sigma error on the unmasked power spectrum 
Right: Simulated shear field where the colour represents the matter over density at a particular position (red is more 
dense) and the small whisker lines represent the shear amplitude and direction at each position. The masked regions 
can be seen as small black circular patches 

Figure 6.14 shows an example of the simulation. The simulations are used to determine the impact of small, 
star masks, glitches and cosmic rays, on cosmic shear power spectra. Star masks are simulated by placing 
circular masks across the shear field with a random distribution of sizes less than or equal to 5 arcmin2, see 
Figure 6.14. Masking by up to 3% of the area does not bias the shear power spectrum by more than the error 
on the power spectrum. The amplitude of the difference between the masked and unmasked spectra is for 3% 
masked is always less than 2% over all scales which meets requirements for small masked areas less of less 
than 5 arcmin2 (see previous sections). This is a test of the effects of small area-loss. Large area loss (for 
example entire fields or chips missing) in the data simply acts to decrease number counts (the inter-chip and 
inter-field cosmic shear signal has a subdominant contribution to the dark energy FoM) and the requirement 
of less than 15% of the survey lost in this manner is also met (see previous sections). 
Expected Performance: Figure 6.15 provides the final expected performance by plotting realistic power 
spectra with associated error bars as expected from Euclid. Figure 6.15 shows an example of the auto-power 
(within a redshift bin) and cross-power (between bins) weak lensing tomographic power spectrum for 
realistic mock galaxy shear catalogues generated from dark matter-only N-body simulations (Kiessling et al., 
2011). The reconstructed power spectrum from simulations described above (including a realistic level of 
shot noise) is compared with the input power spectrum from theory. The figure shows that the signal is 
modelled accurately as a function of redshift. The power spectrum is recovered to sub-percent accuracy over 
signal-dominated scales and the integrated mean difference between the true and recovered power is σ2

sys < 
10-7, which meets the requirements discussed in Section 3. At small scales the shot noise in the simulations 
begins to dominate – this is not a limitation of the technique and higher resolution simulations will enable the 
reconstruction over fully non-linear scales. 

Figure 4.2: Simulated unmasked shear power spectrum and masked power spectra for
a survey, drawn from the Euclid Definition Study Report [34]. The masking method is
one of the tools developed by the Euclid collaboration to take into account the effect
of foreground stars, glitches and cosmic rays on the shear power spectrum. The lower
panel shows the percentage difference between the unmasked and masked power spectra
as compared with the theoretically expected power spectrum; the grey region shows the
1σ error on the unmasked power spectrum.
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Figure 4.3: A plot of the ratio
(
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)2
as a function of ϑ1 for different fixed ϕ, with the

following parameters: m = 1012M�, ã = 0.0015, Rg = 100Kpc. These are the parameters
associated to the Milky Way, previously motivated.
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Figure 4.4: A plot of the ρ field as a function of ϑ1 for different fixed r, with mass and
angular momentum parameters associated to the Milky Way.
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Chapter 5

Conclusions

We’ve successfully developed a differentiable lensing map in the Kerr spacetime, and
obtained expressions for the shear and rotation fields. This calculation has value in itself,
as an instructive result which doesn’t appear in the literature. The action of a Kerr-like
object on a background of circular sources is illustrated in Figures 3.7 and 3.8, where we’ve
used nonphysical parameters to enhance the effect, as it is very small. We’ve also verified
the trend of these fields with respect to the parameters of the case, (a, m).
We believe this to be a good example of the lensing effect induced by a vector perturba-
tion on a background of light sources. From a theoretical point of view, this is precious
information as there are few instances of lensing models by vector perturbations in the
literature.

We approximate rotating galaxies with the Kerr metric (well aware of the caveats
of the case), to estimate the possible effect these may have on background radiation.
Comparing our results with Euclid simulations, we find that it is highly unlikely to be
able to distinguish the rotation field from the shear field, and/or noise.
Thus, we conclude that the experimental applications of this map are as of now quite
limited, given the sensibility expectations for current and near-future experiments. We
await highly futuristic data to put this work to good use.
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Appendix A

Proof of Decomposition Theorem

Following Appendix B of [14], we outline the proof of the following theorem:

Th. A covariant linear differential equation of second order at most on the invariant
n-space Σ with intrinsic metric γij can be decomposed into mutually decoupled equations,
each of which contains only one type of components of the unknowns.

Before we proceed, let us recall the Riemann and Ricci tensors,

Ri jkm = ∇k Γi jm −∇m Γi jk + Γi kl Γ
l
jm − Γiml Γ

l
jk , (A.1)

Rij = Rl ilj ; (A.2)

let us remind the reader that the Riemann tensor A.1 is defined by

[∇i,∇j ] vk = Rl kij vl , (A.3)

and it contains all the information regarding curvature of the manifold it pertains to.
We will make use of the following relations valid for scalar functions f , vector functions
v, and tensor functions T , remembering ∆ = γij ∇i∇j :

(∇i∆−∆∇i) f = −Rij ∇j f , (A.4)

(∇i∆−∆∇i) vj = 2R k m
i j ∇k vm −Rik∇k vj + (∇k R k m

i j ) vm , (A.5)

(∇i∆−∆∇i)Tjk =2R m p
i j ∇m Tpk + 2R m p

i k ∇m Tjp −Rim∇m Tjk+
+ (∇mR m p

i k )Tjp + (∇mR m p
i j )Tpk .

(A.6)

Proof. All the scalar, vector and tensor quantities obtainable by operating differential
operators of the second order at most on f , v and symmetric T are the following:

Scalar:

f , ∇ · v ≡ ∆ v , γij T
ij ≡ t , ∆ t ,

∇i∇j
(
T ij − 1

n
γij t

)
≡ n− 1

n
(∆ + nk) ∆ s .

(A.7)
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Vector:

∇i f , vi ≡ viv +∇i v , ∆ vi ≡ ∆ viv +∇i [∆v + (n− 1) k v] ,

∇i t , ∇i ∆ t ,

∇j
(
T ij − 1

n
γij t

)
≡ [∆ + (n− 1) k]T iv +

n− 1

n
∇i (∆ + nk) s .

(A.8)

Tensor:

γij f ,

(
∇i∇j −

1

n
γij ∆

)
f , γij ∆ f ,

γij ∇k vk ≡ γij ∆v ,

∇i vj +∇j vi ≡ (∇i vvj +∇j vvi) + 2

(
∇i∇j −

1

n
γij ∆

)
v +

2

n
γij ∆v ,

T ij ≡ T ijt + (∇i T jv +∇j T iv) +

(
∇i∇j − 1

n
γij ∆

)
s+

1

n
t γij ,

γij t , γij ∆t , ∇i∇k T jk −
2

n
∇i∇j t

γij∇k∇m T km , ∆Tij .

(A.9)

As in Chapter 2, v and viv are respectively the scalar and vector component of v, (s, t),
Tv and Tt are the scalar, vector and tensor components of T .
In A.7 all the quantities are expressed in terms of the scalar components of the functions f ,
v, T . In A.8, the divergenceless vector parts derive from the divergenceless vector compo-
nents and the scalar parts from the scalar components of the original variables; this is be-
cause∇i ∆ vi = 0 when v is divergenceless (as may be seen using A.5). Similarly, the diver-
genceless traceless tensor parts, the divergenceless vector parts, and the scalar parts of all
the quantities in A.9 consist only of the corresponding components of the original variables,
respectively, since ∇i ∆T ij = 0 when T is traceless and ∇i T ij = 0 from A.6. This also
holds for any linear combination of A.7∼ A.8, so it is valid for any covariant linear differen-
tial equation of second order at most. This property then implies that the original equation
is naturally decomposed into equations containing only one type of components, as v, vv
vanish if v vanishes and s, t, Tv, Tt all vanish if T vanishes, as may be seen by inverting 2.7
and 2.9. 2
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Appendix B

Kerr metric terms and proofs

First of all, we transcribe the full expressions of the components of the Kerr metric in
Boyer-Lindquist coordinates:

gtt = −1 +
2mr

r2 + a2 cos2 θ
, (B.1)

gtφ = − 2amr sin2 θ

r2 + a2 cos2 θ
, (B.2)

gφφ = sin2 θ

(
a2 + r2 +

2a2mr sin2 θ

r2 + a2 cos2 θ

)
. (B.3)

For the inverse metric:

gtt = −a
4 + 2r4 + a2r(2m+ 3r) + a2

(
a2 + r(−2m+ r)

)
cos 2θ

(a2 + r(−2m+ r)) (a2 + 2r2 + a2 cos 2θ)
, (B.4)

gtφ = − 4amr

(a2 + r(−2m+ r)) (a2 + 2r2 + a2 cos 2θ)
, (B.5)

gφφ =
2
(
r(−2m+ r) + a2 cos θ2

)
csc θ2

(a2 + r(−2m+ r)) (a2 + 2r2 + a2 cos 2θ)
. (B.6)

These may be of use when going through our calculations, and should be held at hand.

Let us show how to rewrite the constants of the motion L (angular momentum around
z axis) and Q (Carter constant) used throughout Chapter 3 as functions of observable
angles. Following[6], we look at 3.12 in the asymptotically flat region, i.e. taking the
a,m→ 0 limit:

ˆ̇t = 1 , ˆ̇r = ±

√
r2 − Q̂− L̂2

r
,

ˆ̇
θ = ±

√
Q̂− L̂2 ctan2θ

r2
,

ˆ̇
φ =

L̂

r2 sin2 θ
. (B.7)

The three Cartesian coordinates of the line (x, y, z) can be written as functions of the
observable angles (ϑ, ϕ) and the reparametrised affine parameter λ̂1 as follows:

1Note: λ̂ has dimension of length.
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x (λ̂) =DL + (λ̂− λ̂O) cos ϑ ,

y (λ̂) =− (λ̂− λ̂O) sin ϑ cos ϕ ,

z (λ̂) =− (λ̂− λ̂O) sin ϑ sin ϕ ,

(B.8)

where λ̂O is the value of the affine parameter at the position of the observer. This means
that the affine parameter has domain

λ̂O −
DL

cos ϑ
≤ λ̂ ≤ λ̂O .

We convert to the spherical coordinates (r, ζ, φ) used in Chapter 3, and write down
coordinates and coordinate velocities:

r (λ̂) =

√
D2
L + (λ̂− λ̂O)2 + 2DL (λ̂− λ̂O) cos ϑ

ζ (λ̂) = sin−1

(
z (λ̂)

r (λ̂)

)
,

φ (λ̂) = tan−1

(
y (λ̂)

x (λ̂)

)
;

(B.9)

ˆ̇r (λ̂) =
(λ̂− λ̂O) +DL cos ϑ

r
,

ˆ̇
φ (λ̂) = − DL cos ϕ sin ϑ

D2
L + 2DL(λ− λO) cos ϑ+ (λ− λO)2 cos2 ϑ+ (λ− λO)2 cos2 ϕ sin2 ϑ

.

(B.10)

We evaluate the values of these at the observer’s position:

r (λ̂O) = DL , ζ (λ̂O) = 0 , ˆ̇r (λ̂O) = cos ϑ ,
ˆ̇
φ (λ̂O) = −sin ϑ cos ϕ

DL
.

(B.11)
Then, we calculate L̂ and Q̂ at λ̂ = λ̂O by substituting B.11 into B.7; remember, L̂ and
Q̂ are constants of the motion and as such are the same at any λ. We get

L̂ =
ˆ̇
φ r2 cos2 ζ

∣∣∣
λ̂=λ̂O

= −DL sin ϑ cos ϕ , (B.12)

Q̂ =
[
r2
(

1− ˆ̇r2
)] ∣∣∣

λ̂=λ̂O
= D2

L sin2 ϑ sin2 ϕ . (B.13)

These are the expressions for the two constants of motion used throughout Chapter 3.

Let us now hint at how to derive the Kerr lens equation, for equatorial observers.
We could just as well express Q and L in terms of the light ray at the position of the
source: Ls and Qs. The position of the source with respect to the black hole is pinpointed
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by the angles (B, X ), and the direction of the light ray at the source is defined by (ϑs, ϕs).
Then the three Cartesian components of the light ray at the source are

x (λ̂) =−DLS + (λ̂− λ̂s) cos ϑs , (B.14)

y (λ̂) =DS tan B cos X − (λ̂− λ̂s) sin ϑs cos ϕs , (B.15)

z (λ̂) =DS tan B sin X − (λ̂− λ̂s) sin ϑs sin ϕs , (B.16)

where λ̂s is the value of the affine parameter at the source position. Thus the affine
parameter range for the line segment is

λ̂s ≤ λ̂ ≤ λ̂s +
DLS

cos ϑs
.

Repeating the same procedure as before, we obtain

L̂s =−DS tan B cos X cos ϑs +DLS sin ϑs cos ϕs ,

Q̂s =D2
S (tan B sin X )2 (cos2 ϑs + sin2 ϑs cos2 ϕs)+

− 2DS tan B sin X sin ϑs sinϕs (DLS cos ϑs +DS tan B cos X sin ϑs cos ϕs)+

+ (D2
S (tan B cos X )2 +D2

LS) sin2 ϑs sin2 ϕs .

(B.17)

As they are constants of the motion, L̂s ≡ L̂ and Q̂s ≡ Q̂ from equations B.12 and B.13.
These conditions provide a quadratic equation in tan B sin X , which yields

tan B cos X =
DLS tan ϑs sin ϕs

DS
+

DL sin ϑ

DS

(
1− sin2 ϑs sin2 ϕs

) ·
·
[
cos ϕ sin ϑs tan ϑs sinϕs cos ϕs ±

√
sin2 ϕ− sin2 ϑs sin2 ϕs

]
.

(B.18)

We take the positive root as in the case of spherical symmetry only the positive root will
return the Schwarzschild case when ϕ ≡ ϕs. This may be rearranged to obtain the lens
equation in the Kerr case, much in the same way as we obtained the lens equation for
Schwarzschild.
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Appendix C

A little more about Kerr geometry

In Chapter 3, we analyse the geodesics of the Kerr metric but we don’t give a detailed
description of a Kerr black hole, as it is not our object of study. It is instructive however
to fully understand the geometry of this type of object, and specifically what happens
mathematically close to the origin.

2m

m2 - a2 cos2(theta) +m

m2 - a2 +m

- m2 - a2 +m

Figure C.1: An illustration of the interesting surfaces in the Kerr metric; dummy values
of m and a have been chosen. Note that r+ < 2m, so it is perfectly justified to consider
the limit b� rs ≡ 2m in our calculations.

As previously mentioned, the Kerr metric presents 2 coordinate singularities,
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r± = m±
√
m2 − a2 ,

which are called the inner (−) and outer (+) horizons. Although these are fixed radii,
when inputting them in the metric 3.2 one does not get the metric on the 2-sphere; we
represent them as spheres anyway in Figure C.1 for descriptive purposes.
There is another interesting value of r, which is θ-dependent: re = m+

√
m2 − a2 cos2 θ.

At r = re, the time killing vector kµt (recall it from 3.5) changes nature: at r > re it is
time-like, at r < re space-like. The region within re, where kµt is space-like, is called the
ergoregion and is physically very interesting, as its features enable the Penrose process
[36].
It’s also worth to mention that the inner horizon r− is effectively considered of scarce
physical interest, since as r → r− perturbations are infinitely blueshifted, which leads to
divergences in the curvature scalars [37].

All these interesting features of the Kerr metric pertain to a region of space r < 2m,
which we can consider to be the Schwarzschild radius associated to the Kerr black hole
(it has no physical meaning in itself, but it’s an easy reference parameter). In short, they
have no effect on the phenomena we’ve described, as we’ve operated in the b� 2m limit.
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