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Introduction

In this thesis we consider particular sub-Riemannian structures that are obtained from other
sub-Riemannian structures with the presence of a magnetic field. The project was inspired by
an article of Richard Montgomery [Mon95|, and was structured following the approach and
methods of [ABB19].

Sub-Riemannian geometry. A sub-Riemannian structure on a smooth manifold M can be
regarded as a generalization of a Riemannian structure in which the degrees of freedom of the
velocity of a particle moving in the manifold is limited to a vector sub-bundle of the tangent
bundle, which is also called a distribution and denoted with D C T'M. The distribution is
endowed with a metric, the so called sub-Riemannian metric g,, which allows us to measure
length of admissible curves, i.e. curves tangent to the distribution.

Sub-Riemannian structures emerge naturally in the study of non-holonomic dynamical sys-
tems. For instance, consider a rolling-without-sliding disk on a plane or on a surface (e.g. the
wheel of a bike). It is clear that the wheel cannot translate in a direction orthogonal to its
plane. The configuration space is four dimensional (more precisely is locally diffeomorphic to
R? x T? ), however, the phase space is not eight but only six dimensional! In fact the velocities
are contained in a distribution of rank two. A crucial observation, which can be derived also
by practical experimentation, is that even if not all movements are admissible, all configura-
tions can be reached following admissible curves. We refer to this fundamental property by
saying that the distribution describing the system is bracket generating. We call step of the
distribution the number of successive brackets augmented by one needed in order to span all
the tangent space. If our structure is also analytic, this situation is the exact opposite to the
one in which distribution is involutive.

In the involutive case, by Frobenius theorem the dynamics is stuck in the integral leaf
tangent to the distribution. The opposite result for bracket generating distributions, is called
Rashewsky-Chow theorem, and states that we can fill an open neighborhood of any point by
moving always tangent to the distribution. The limit case in which the distribution is all the
tangent space, the Riemannian case, the bracket generating condition and the involutivity are
equivalent and the two theorems coincides; the integral leaf being diffeomorhic to a Riemannian
ball.

sub-Riemannian geodesics. Riemannian length minimizers are solutions of the geodesics
equation and hence are regular curves. We can see sub-Riemannian length minimizers or sub-
Riemannian geodesics, as constrained minima of the length, where the constraint is given by
the requirement that the candidate minimizer must be tangent to the distribution. Where
the constraint is regular, we find that minimizers are solution of differential equations, hence
they are regular curves. We call abnormal curves the ones for which this constraint is not
regular, and for them we need to check separately if they are actual minimizers. This is the
infinite dimensional version of what happens in finite dimension, when we minimize functions
restricted to a sub-manifold of the domain. In that case, where the given constraint is regular,
we apply the Lagrange multipliers rule (v.s. the geodesic equation), and where the manifold is
not regular, we shall check separately if in such points the function have actually a minimum.
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An important, difficult, problem is then to understand when abnormal minimizers are regular
curves or not, depending on the properties of the distribution.

Contents and Results. The underlying idea behind the thesis can be summarized in the
following general principle.

Principle. Given a sub-Riemannian manifold of dimension n and step s and a magnetic field on
it, we can construct a sub-Riemannian manifold of dimension n+1 and step greater or equal to
s+ 1. Moreover, the step is equal to s+ 1 exactly where the magnetic field is different from zero.

We are able to make this principle precise, and actually prove it, in the case in which the start-
ing sub-Riemannian manifold is a Riemannian manifold or a contact sub-Riemannian manifold.

In particular, in the first part of the thesis we show how to pass from a Riemannian surface M
(i.e. a sub-Riemannian manifold of step one) to a sub-Riemannian manifold C’f/f of step grater
or equal to two, by introducing a magnetic field 5 in M . This new space is realized as a real
line bundle over M . The sub-Riemannian metric is defined as the pull-back of the Riemannian
metric by the canonical projection of the bundle. We then prove both in coordinates and using
orthonormal frames that

Theorem. Normal sub-Riemannian length minimizers of C’]/\Z project into the trajectories of
charged particles in M subject to the Lorentz force, i.e. the images of curves o : [0,1] — M
that are solutions of the Newton equation

Vo = iz . (1)

This theorem is a particular case of a more general result present in [Mon90], but is here pre-
sented from a different viewpoint.

We verify that the step of C’f/[ is greater or equal to two, depending on the magnetic field,
and that when the magnetic field is nonzero, the step is exactly two. Moreover, we show that
when the magnetic field is a nonzero constant, C’]@ naturally carries a Lie group structure, iso-
morphic to the three dimensional Heisenberg group. In this case the normal sub-Riemannian
length minimizers have a clear geometric interpretation as lifts of solutions of an isoperimetric
problem.

In the following we generalize the construction of C’Z@ with M a Riemannian manifold of
any finite dimension. First, using the frames formalism we recover the well known Hamiltonian
description of Riemannian geodesics (1) and the minimal coupling principle (2).

Theorem. 1) If v :[0,1] — M is a geodesic, then it is the projection of a solution X : [0,1] —
T*M of the Hamiltonian system given by the kinetic energy H = 3, h?.

2) If v : [0,1] — M is the motion of a charged particle subject to a magnetic field 5 = dA,
then it is the projection of a solution A : [0,1] — T*M of the Hamiltonian system given by the
shifted kinetic energqy Ha = >, (h; + A;).

Using this result we are able two show that normal sub-Riemannian length minimizers of C’]@
projects into paths of charged particles.

In the second part of the thesis we consider the case in which M is a sub-Riemannian man-
ifold of step two, and we find significant differences with the Riemannian case, proving some
original results. Some of these results will be part of a research article that we plan to prepare
in collaboration with the thesis supervisors.



CONTENTS 7

In particular, we consider the Heisenberg group, which is a sub-Riemannian manifold of
contact type. The contact structure allows us to describe the magnetic fields using the Rumin
complex. With an original, explicit calculation, we show that the step of C’]@ is greater or
equal to three, and exactly three where the magnetic field is nonzero. We show that the choice
of a constant magnetic field leads to a sub-Riemannian structure of Engel type. In this case
we cannot find an equation analogous to 1, since the magnetic fields in a contact structure
contain second order derivatives of the potential, while in the Riemannian case, where we use
the standard exterior differential, we have only derivatives of order one.

The final goal is to give a description of abnormal curves of the sub-Riemannian structures
studied. It is known that abnormal curves of C]@, where M is a Riemannian surface, are all
contained in the zero locus of the magnetic field (see for example [ABB19]). More in general
we show that

Theorem. Given (M, D, gs) a three dimensional sub-Riemannian structure of rank 2, then all
abnormal curves belong to the Martinet set, i.e. the subset of M in which D*> C TM. Moreover
where such a set is a smooth sub-manifold S of M the abnormal curves contained in S are nice
if and only if D|,, is transversal to T,,S.

In other words the Martinet set for C’Z@ is given by the zero locus of the magnetic field, and S
by the points of this set in which d5 # 0.

We then consider the sub-Riemannian structure constructed from the three dimensional
Heisenberg group using a constant magnetic field and verify a well known fact (see again
[ABB19]) that there exists an abnormal curve passing through each point of it, which we shall
call Engel abnormal. When considering a generic magnetic field we show that its zero locus is
made of equilibrium points of the Engel abnormals. However inside such a locus, generically
there are no other abnormal curves. This shows in particular that the relation between the
abnormals and the zero locus of the magnetic field encountered when we introduce a magnetic
field in a Riemannian surface is lost in the case of a magnetic field in a contact structure.
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Chapter 1

Charged particle in a magnetic field

We begin by recalling the description of a charged particle in the three dimensional Euclidean
space with the presence of a magnetic field. By analogy we pass to the Euclidean plane and
then to a generic Riemannian surface. This not only allows us to fix some notation and termi-
nology, but also helps to build some intuition about the main ideas of the constructions in the
other sections. Next we introduce a way to pass from a given Riemannian surface to a three
dimensional space using the magnetic interaction. Finally we show the relation between Sub-
Riemannian length minimizers in this new space and the trajectories of charged particles with
a magnetic field in the starting surface. The chapter ends with a purely geometric description
of the minimizers which makes use of the Hamiltonian formalism.

1.1 Euclidean space

Lagrangian formulation. A charged particle in the three dimensional Euclidean space with
the presence of a magnetic field is subject to a force known as the Lorentz force. Using vector
notation (letters in bold), the dynamic is described by the Newton equation

mx(t) = g x(t) x B(x(t)) , (1.1)

where m is the mass of the particle, ¢ its electric charge, x(t) € R? is its position at time
t € R, x(t) € TxR? is its velocity at the same time, B € X(R?) is the magnetic field", and x
denotes the standard vector product of R3. We want to derive a Lagrangian description of this
dynamic. In order to do so, we look for a function £ : TR? ~ R3 x R* - R, (x,v) — L(x,V)
of the form

q&w:;mhw—vgwp (1.2)

where | - | is the norm induced by the standard scalar product in R? and V' : TR — R is called
the potential. We use Cartesian coordinates in R?, x — 2 = (2!, 22, 23)T and the induced fiber
coordinates in TR? | v — v = (v1,0%,v*)T with v = 09;, i = 1,2, 3. For simplicity we denote
the representative of the Lagrangian in coordinate and the Lagrangian in the same way (since
there is a global chart for TR3, this distinction is not fundamental). The Lagrangian is then

written as?

1 .
L(z,v) = imvzvi —V(z,v), (1.3)
and the Lagrange equations are
d oL oL ov . ov .. o0V
G I% o d) — T d) = miE 4+ C % g =123,
dt Ovt (@, 7) ozt (v, 3) = mi; + (%Jvzx + 8x11ﬂx oxt !

'We denote with X(M) the space of vector fields over a smooth manifold M.
2We are using Einstein notation for the sum, i.e. we understand sum for indices that appear both in an
upper and lower position at the same time.
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Since we do not want other terms proportional to the acceleration x apart from the one coming
from the kinetic term sm|v|?* = Lmu;v’, we make the following ansatz

V(z,v) = qAi(z)v" . (1.4)

In other words we want a potential that is linear in the velocities. In this way the Lagrange
equations become (we omit explicit dependencies)

d . , :
% (mvl- — qu) + q(@iAj)vj = mvz - q(ajA,)xl + q(@iAj)vJ =0.

Equivalently
mi; = q(0;4; — 0;A;)07 . (1.5)
We call §;;(z) := —(0;A;(x) — 0;A;(x)) the (components of the) magnetic 2-form. We can also
rearrange the RHS to recover the Lorentz force. To do so we simply define B;(x) := %55 "Bk ()
where 5{’9 is the Levi-Civita 3-symbol relative to the standard scalar product, and call it the
(components of the) magnetic 1-form. By the properties of this symbol we have also that
Bij = €% B. Then we get
mi; = —qBiv’ = —qeijkvj : (1.6)

Using the duality given by the scalar product we have
mi' = —qeszkvj = —qBxv) =qvxB). (1.7)

Finally we have fully recovered the Newton equation with the Lorentz force. To summarize
the relations introduced so far, we notice that the magnetic field B € X(R?) corresponds to a
closed 2-form 8 € A?(IR?) which is again related to a 1-form B € A'(R?) in the following way?

B =B
(o »

where x : A¥(R3) — A3F(R3) is the Hodge duality, and £ : AY(R3) — X(R?), is the sharp
isomorphism relative to the standard scalar product?. By definition of external differential we
also see that 3 = dA if we think A;, i = 1,2,3, to be the components of a 1-form A € A*(R?),
called the magnetic potential.

Hamiltonian formulation. We now compute the Hamiltonian and the Hamilton equations
for the previous system. The Hamiltonian is the Legendre transform of £ with respect to v.
As usual we denote the momenta with p € T:R3. Here p; := gfi = muv; — qA;, and hence
vi(p) = Bt 5o that

m )

oL ,
H(z,p) = 5 5 (@, 0(p))v'(p) = Lz, v(p)) =
) 1 ) )
= (mv; — qA;)v" — §mvivl + qgA" =
v=u(p)
1 i _ S (pi + q4;)?
=gmu| = e

v=v(p) i=1

3For a more detailed and relativistic treatment of electromagnetism using differential forms see [Frall] section
7.2.

4In a three dimensional Riemannian manifold with metric g, in the case k = 1 we define xB := iygvol,(R?)
with § and vol, (R?) the sharp isomorphism and the volume form relative to the metric g respectively.
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The Hamilton equations are

op; m
paH _ _q(pj+qu)% ’ (1.9)

Di = =54 = m Ox?

{j:i _ oH _ p'tqAl

Remark. We notice how the gauge invariance of the Lagrange equations is guaranteed by the
fact that under a gauge transformation of the potential, A; — A; + 0;f, with f : x — f(x), of
class C%(R?), the Lagrangian is simply shifted by a total derivative. Indeed, along a curve z(t)
with v(t) = ()

: : i : daf
L(x(t), 2(t)) = L{(t), &(1)) + q(0:f (2(1)))2"(t) = L(z(t), 2(t)) + ¢ (2(1)) -
In the Hamiltonian description on the contrary, the gauge transformation changes definitely

the equations 1.9 . Nevertheless we have the following result.

Proposition. Let H, be the Hamiltonian of a charged particle in the presence of a magnetic
potential A and let A — A + df be a gauge transformation with f € C2. Then there exists a
canonical transformation® such that the Hamilton equations relative to H . q 7 are the same of
the ones of Hy.

Proof. We want to find a canonical transformation (p, q) — ¥(p, q) such that H q00 ' = Ha.
It is clear that we shall choose the shift in the momenta (2%, p;) — (2%, p; + q0; f). We only need
to check if this transformation is canonical, hence we want to verify if the Jacobian of the shift,
M (z,p), which is given by

I O3
M(z,p) = <quSSx(f) H3>

where (Hess,(f));; = 9,0, is the Hessian of f with respect to z, is symplectic, i.e. if
M(z,p) JsM (z,p) = Js  V(z,p) € R®* x R®

with Jg the symplectic unit in six dimensions. Performing the row-by-column multiplication
we get the condition

<]I3 (qussm(f))T> (@3 ]I3> < I3 @3) B
(O I —I3 O3) \¢qHess,(f) TI3)

:<q (Hess. (/) :HiHessx(f))T) g)i):(?fg g;g) Vi €R, (1.10)

in other words 9;0;f — 9;0;f = 0, which is satisfied if f € C*(R?).
]

We have hence seen that invariance of Hamilton equations under a gauge transformation is
recovered via a canonical transformation involving only the momenta. Moreover with a similar
computation as the one done in the proof we see that also the shift p +— p + II where II is
a closed 1-form is canonical. Indeed a slight modification of the computation 1.10 gives the
relation 8111] - 0]1_[1 = (dH)Z] =0.

5A canonical transformation for an Hamiltonian system is a coordinate transformation (P, 4) = ¥(p,q) that
brings the Hamilton equations for H(p, q) into the ones of H(p,q) :== H(V~(p,q)) .
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1.2 From flat to curved

Charged particle in the Euclidean plane. We now consider a particle in the two dimen-
sional Euclidean plane. We define a Lagrangian of the same type of before (locally, directly in
coordinates), where we put m = 1 = ¢ for convenience

1 ) )
L(z,v) = ivz-vZ — Ai(z)',  (z,v) € TR* . (1.11)
The Lagrange equations have the same form of the previous ones
O + Bijv? =0 (1.12)

The only difference is that now we cannot represent the magnetic 2-form as a tangent vector,
as it happened in the three dimensional case. We notice however that the vector representation
is accidental and do not reflect any fundamental property of the magnetic interaction, which
emerges naturally as a 2-form in the theory of electromagnetism considered as a gauge theory
(see [Blel3] Chapters 1 and 2, and also [Frall] section 7.2).

For later convenience we recall that in dimension two there is a correspondence between 2-
forms and functions. If B = Bjpdz! A dz? € A?(R?) we denote with b := Bj, € C*(R?) the

corresponding function.

Curvature and magnetic field. Consider a piece-wise smooth curve in the Euclidean plane
o :[0,1] — R2. Whenever o has nonzero speed we can find a unit tangent vector, namely
7(t) == 29 Moreover it is easily verified that the vector 7(t) is orthogonal to 7(t) at any

T e®l
time. We define the first principal curvature to be the quantity

_ 7@
K0 = ol (1.13)

First of all we notice that this ratio is independent of the reparametrization of the time. If we
use the arc parameter s we have W‘ = 1 and hence £(s) = 9Z(s) . We also recall that the
curvature has a clear geometric interpretation: it is the inverse of the ray of the circumference

that best approximate the curve at the point o(t), called the osculating circle.

Going back to the dynamics of a charged particle in the plane we observe that the modulus of
the velocity is a constant of motion (kinetic energy is conserved). Explicitly

d ‘ o
—uv' = 200" = =25;;070" =0 . (1.14)
dt

So up to a constant factor the time is the arc parameter, say t = As. After taking the Euclidean

norm of both sides of the Lagrange equations 1.12, we finally obtain the relation
k(t) = Ab(z(t))] - (1.15)

This relation tells us that if the magnetic field is constant the solutions are curves with constant
curvature i.e. straight lines or arcs of circles. We also notice that the constant A is related to

the kinetic energy F = %vivi as A = \/% So higher is the energy less is the curvature.

Charged particle in a Riemannian surface. Consider now the case of a Riemannian
surface (M,g) with ¢ a Riemannian metric. In local coordinates, the kinetic term in the
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Lagrangian (1.20) will now contain the metric coefficients while the magnetic potential should
be thought as 1-form which is defined only locally®. We have

L(z,v) = ;gij ()i — Ai(z)o’ . (1.16)

Computing the Lagrange equations for the kinetic part we have
1 -k ik ik -k 1
B (29ik95 + 20,927 2" — 09’ & ) = gid"” + 3 (0;9ik + Okgij — 0igjk) -
For the potential, as before, we find 3;;47. Finally
gikT" + 5( i Gike + Okgij — Oigjn )" 2 + Bud™ =0 .

Multiplying by the inverse metric ¢™ both sides we get
hi

Y ki L hin
&+ 5 (039 + Ongis — Digin) i’ + g Bui® = 0.

We recognize the that the quantities in parenthesis are the Christoffel symbols (I'};) of the
Levi-Civita connection of the metric g. Hence we can write

B+ Thal it + g Bpd® = 0. (1.17)

In terms of covariant derivative and internal multiplication” we can write these equations in a
purely geometric, hence global, way

Vid = 4i:3 . (1.18)

Since energy is still conserved, we are parametrizing with constant multiples of the arc param-
eter s, say again ¢t = As, hence, taking the g-norm in both sides, we recover a more general
version of our previous result on the first principal curvature 1.15

rg(t) = Alb(z ()] , (1.19)

where k, is now the geodesic curvature®, that coincides with the former if the metric is flat.

1.3 A three dimensional space

Three dimensional dynamics. Consider a piece-wise smooth curve o : [0,1] — M in a
Riemannian surface (M, g) with a magnetic 2-form 3 € A?(M), which is contained in a open
subset U C M. In U we have a magnetic potential A € A'(U) for 3, and for a given point
O = 0(0) € U we define for all ¢ € [0, 1] the real quantity

A1) = /o o (1.20)

6See again [Blel13] paragraph 1.2.7.

"Given a vector field X € X(M) we define the internal multiplication or contraction by X, as the map
ix : AF(M) — A=Y (M), w s ixw, by (ixw)(Yi, -, Yeo1) = w(X, Yy, , Y ) forall Yi,--- Yy € X(M).

8Given a smooth curve o : [0,1] — M in a Riemannian manifold (M, g), we define its geodesic curvature

with respect to g at the point o(t) as kg4(t) == % where | - |4 is the norm induced by g.
g
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The curve 7 := (o, z) takes values in the trivial bundle U x R which we equip with the canonical
projection 7 : U X R — U, (m, z) — m. Using an orthonormal frame e; » in U we can express
the velocity of v as

J(t) = u' (t)er (o (1) + u?(t)ex(0 (1)) + Alow (6(1))0: (1.21)

where u'? : [0,1] — R are the components of & with respect to the frame e; 5 in order, because

o = m(v) implies ¢ = m,%. We recognize that the curve v is always tangent to the distribution®

D|(m,z) = span({X1(m, z), Xa(m, 2)}) with (m, z) € U x R and X; 5 € X(U x R) given by
Xl(m, Z) = 61(771) + A|m(el(m))8z (1 22)
Xo(m, z) := ez(m) + Al;n(e2(m))0,

The rank of D is always equal to two, so the distribution defines a field of planes in the
bundle. We now check if this distribution is bracket generating. If [e1, es] = cle; + c?ey, with
ch? € C*(M), we have

(X1, Xo] = [e1 + A(e1)0,, ea + A(e)0,] = [e1, ea] + (e1(A(es)) — ea(Aler))) O, -

By the remarkable formula by which any 1-form 7 satisfies d7(X,Y) = X (7(Y)) = Y(7(X)) —
7([X,Y]), with X, Y vector fields, and recalling that 5 = dA, we can express the preceding Lie
bracket as

(X1, Xo] = cler + c®ex + dA(ey, €9)0, + ' A(e1)d, + *A(e2)d. = ' X1 + Xy + B(e1, €2)0,

Moreover, using the dual frame of e;, call it p'?, we see that dA = 8 = bu! A p? for some
b e C>®U), and we can write

[X1, XQ] = Cle + 02X2 + b@z . (123)

We conclude that D is bracket generating at (m, z) whenever b(m) # 0. We can finally complete
the frame {X;, Xy} to a frame in the product using 0, =: Xj.
It is a remarkable fact that we can see the distribution D as the kernel of a 1-form in the
bundle, namely

a=dz—71"Aec AN (r'(U)) . (1.24)

In the following we will see that this 1-form can be defined ‘in the large’.

Globalization. In the preceding paragraph we have seen that the dynamic 1.20 brings (‘lifts’)
us into a trivial bundle equipped with a certain distribution D described by 1.22 or 1.24. It
is a natural question to ask in what space the former dynamic takes place in the large, i.e. if
we escape from U. Guided by the form of 1.24, it is natural to think that this space can be
constructed by gluing together the various products U x R considered above. To construct
such a space we remark that contrary to the magnetic potential A, the magnetic field 5 is a
globally defined closed 2-form on M 0. If A is a potential in the open subset U C M and A
is another potential in another open subset V' C M, in the intersection U NV we must have
dA = g = dA. Suppose in particular that A — A = dS with S € C*(U N V). Then we can

9By a rank-k distribution we mean a sub-bundle of the tangent bundle, i.e. a collection | | D,,, with
D,, a k-dimensional subspace of T, M for all m € M.
10 An explanation of this fact, which is valid for abelian gauge theories as electromagnetism, is given in [Ble13]

paragraph 1.2.7 and 2.2.16 and [Frall] section 16.4.

meM
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construct the transition functions of the bundle as follows. If m € U NV we say that the two
fiber coordinates (m, z) and (m, Z) correspond to the same point in the bundle if and only if

z2=2%4+9(m) . (1.25)

In this way we can globally define a 1-form in the bundle starting from o € A' (7~ (U NV))
defined as a := dz — 7*A. Indeed, in a different trivialization we have & := dzZ — 7* A, but

-—rmA=di—rm" A+ 1T A=di +7"dS — 7" A =
dz+71"8)—rm"A=dz—1m"A =«

@ (1.26)

In conclusion, we were able to construct a nontrivial line bundle, that we denote as C']@, with
T C’]@ — M locally equal to the canonical projection, equipped with a globally defined 1-form
a € AI(C]@). We further point out an interesting fact, namely that even if 5 may be not
globally exact, 7% is! Indeed

da=d(dz —7"A) = —dr"A = —n"dA = —7"( . (1.27)

Remark. Notice that the globalization procedure needs the difference A — A to be exact,
otherwise our construction is only local. A last important remark is about topology. Depending
on the cohomology class of the magnetic 2-form, the topology of the fibers of Cf/[ changes'!.

1.4 Sub-Riemannian structure

Previously, thanks to the introduction of a magnetic 2-form 8 € A?(M) in a Riemannian surface
(M, g), we were able to construct a line bundle over it 7 : C'y; — M naturally endowed with
a l-form a € Al(C’]@), hence with a rank-2 distribution D C TC’IL\Z7 which was proven to be
bracket generating wherever the magnetic 2-form is nonzero. We can give to the bundle C}@,
together with D, a Sub-Riemannian structure by introducing a metric in the distribution. We
denote such a structure with the triplet (C’]@,D, gs), where g5 denotes the Sub-Riemannian
metric defined via the metric on the base as

Gslz (U, V) = Glr() (meu, M) x € Y, u,v e D)y, C T,C% . (1.28)
Notice that X, of 1.22 are orthonormal with respect to gs, i.e. g¢s(X;, X;) = 65, i = 1,2.

It is a natural question to ask if there exists length minimizers among curves tangent to the
distribution (admissible curves), joining two distinct points x, x5 € C]@, in the following sense

min{l,[y] : 8y = {z1, 22} € C%y, 7 € D|,}, (1.29)

with 7 : [0,1] — C%; a piece-wise smooth curve and

Lh) = [ VoGO, 0) d (1.30)

The quantity [,[7] is called the Sub-Riemannian length of ~.

HSee comment in [VWA13] appendix 4, paragraph L, where the construction of 01[\34 is performed using as
magnetic 2-form a symplectic form. The construction made in the reference is a special case of the present one.
The exact relation between the two will be studied later.
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Sub-Riemannian length minimizers in C]@. We will develop two strategies to find min-
imizers. The first will use coordinates and will allow us to make direct connection with the
study made in section 1.2. The other strategy will be developed in the next section because of
its generality and fundamental geometric meaning.

Coordinate approach. Since our study is local, we use coordinates in M so that we express the
metric with its coefficients g = g;;dz'dz?, and also A = A;dz’ and ¢ = ¢'0;, with i = 1,2.
By definition we can express the Sub-Riemannian length of  : [0,1] — C%; as (like before
o=m(v))

Lhl = [ oG A0) dt = [ ol 6(0),0(0) d =

| (1.31)
- [ o a

Minimizing the Sub-Riemannian length [ [-] between admissible curves, by 1.20, is equivalent
to minimize the Riemannian length [[-] between curves on the base M subject to the integral
constraint

| " Ao ()6 (1) dt = const. — =(1) | (1.32)

where (o(t), z(t)) = v(t). We know that free length minimizers in a Riemannian manifold have
constant speed!?, moreover the integral constraint is parametrization independent, hence, by
Holder inequality such minimizers are equivalently energy minimizers, i.e. they minimize the
functional 1 [ gloi)(6(2),&(t)) dt . Our integral constraint is regular whenever dA = 3 # 0,
indeed, by computing the variational derivative of 1.32 with respect to ¢ we get the condition

J

Soi

[ Ao ()5 (1) dt = (0:; - 0,467 = 5367 #0.
In the regular case, by the Lagrange multipliers rule we finally get the constrained Euler-

Lagrange equations for o.

5 1 1
oot 2 Jo

gij(a(t))o'e? dt = A 5(; /0 ' Ai(a(t))o'(t) dt . (1.33)

We further notice that the RHS is parametrization independent while the LHS is homogeneous
of degree one in the velocities. This allows us to discard A. Having said this there is no more
work to do in fact, since we have already computed Lagrange equations for both the members
and the result is again equation 1.17.

In conclusion the problem of finding Sub-Riemannian length minimizers of (Cf@, D, gs) is equiv-
alent to the problem of finding the trajectories of a charged particle with the presence of a
magnetic 2-form in the Riemannian surface (M, g) downstairs studied in section 1.2.

1.5 Hamiltonian description of Sub-Riemannian length
minimizers

Up to now we have seen that Sub-Riemannian length minimizers in C']@ project into solutions of
constrained Euler-Lagrange equations that are the ones of a charged particle with the presence

12The length functional does not depend explicitly on the time, hence, by Noether theorem we have a conserved
quantity which is the norm of the velocity, i.e. the Lagrangian itself.
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of a magnetic 2-form in M. This description made inevitably use of coordinates in C’]@. We
now want to give a purely geometric description of such minimizers, making use of the natural
symplectic structure!® of T*C’]@. In the following 7 : T*CI[\Z — Cf/[ is the canonical projection
from the cotangent bundle. No confusion should arise since we wont use the bundle structure
of C’J/\Z except at the very end. This entire section retrace slavishly chapter 4 of [ABB19], in
particular section 4.4.

From what we have seen C]@ is naturally endowed with a 1-form «a € AI(C’]@). This form defines
a distribution D C T'C%, given by D|, := ker(al,), for all 2 € C%,. Such a distribution was
spanned by the two vector fields X, € X(C%;) described in 1.22 that we completed to a frame
in TC]@ with X3. We can write the velocity of an admissible curve v : [0, 1] — C]’[\Z, i.e. a curve
always tangent to D, with two controls u? : [0,1] — R as

H(t) = u' () Xi(v(1) = w' () X1 (v(1) +w* () Xa(r(1), tE[0,1]. (1.34)

We now want to define a dynamic in the cotangent bundle. To do so we notice that one can
naturally define three functions in T*C]@, namely h; : T*C}@ —-R,7=1,2,3, as

hi(A) = A(Xi(7(A))) (1.35)

where we stress that now 7 : T*C]@ — C’Z@ is the canonical projection. It is important to
remark that these are linear function on the fibers in the sense that for A\, p € 771(2), = € C]@,
we have that for all a,b € R

hi(aX 4 bp) = ah;(\) + bh;(p) .

The linear independence of X, 55 implies that hy 3 define a fiber coordinate system in T*C'y,,
i.e. we can represent points as (z, hy, ha, hg) € T*C}@, T € C]’[\Z, without using coordinates in
the base. In more precise words we are using the trivialization of T*Cf/[ which is the dual of
the one induced in TC’]@ by the choice of the vector fields X;’s. We now define a new function
H T*C’]’(\Z — R, called the Sub-Riemannian Hamiltonian, as

H(N) = S070) + 0V) (1.36)

Using the canonical symplectic form on T*Cﬁ, we can define the Hamiltonian vector field
Xy € X(T*CY,) associated with H
Xy :=tdH . (1.37)

We warn that here § : A*(T *C’]@) — %(T*C’]@) is the duality induced by the symplectic form w,
and not by a Riemannian metric. This vector field defines a dynamic in the cotangent bundle
that is described by the Hamilton equations

A= Xy . (1.38)
We can easily verify (even easier computation after a quick switch to coordinates) that
(dm)|x (Xu(N) = BN Xi(7(N) € TryCly i=1,2. (1.39)

Here it comes the crucial point. We first notice that the projection of the solutions of the
Hamilton equations for H are admissible curves. It turns out (see [ABB19] chapter 4, section

13In every cotangent bundle T*M, M a smooth manifold, there exists the so called tautological or Liouville
1-form § € AY(T*M) given by 0]5(€) := \(m.&), for all A € T*M and & € T\(T*M), with 7 : T*M — M the
canonical projection. The symplectic form is then given by w := d6.

4Contrary to the Riemannian case there is a sign ambiguity due to the skew symmetry of w. We make a
choice of sign defining dH = —ix,w.
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4.3, theorem 4.20) that these projections are also length minimizers. This means that if ) is a
solution of 1.38, and we denote with @’ : [0, 1] — R, 7 = 1,2 the controls of a length minimizer
~ = m(A), we shall have that

w;(t) = hi(A\(t)) Vtelo,1], i=1,2. (1.40)

Consequently, the next step is to look at the dynamic on the fibers to get the evolution of
the h;’s. To simplify computations we introduce the Poisson brackets, {-,-} : C®(T*CY,) x
Co(T*CY,) — CX(T*CY)), (f,9) — {f,g9} = w(X}, X,), with X;, the Hamiltonian vector
fields associated with f, g respectively. We recall that the Lie derivative along the flux of an
Hamiltonian vector field X of a function a € C®(T*CY,), is given in terms of the Poisson
brackets by @ = {H, a}. Since the Poisson brackets act like a derivation on both arguments we
can easily write the dynamics on the fibers (i = 1, 2)

hl = {H7 h’l} == %{hlhzv h’l} == {h27 hl}hZ
ho ={H, hy} = %{hih", ho} = {hy, ho}hy (1.41)
hs = {H, hs} = %{hihi, hs} = {h1, hs}hy + {ho, hg}ths .

We now recall the following nontrivial fact. Given a function of the type 1.35, a()\) :=
A(X (m()N)), for some X € X(C%,), we have 7, X, = X. To show this we suppose to be able to
find X € X(T*C%,) such that m,X = X. As a consequence we can express the function a in
terms of the Liouville 1-form 6 as

a(A) = MX ((X))) = Ol (X () -
By the homotopy formula Ly =ig od + doig, we have
da=d(igh)=Lg0—igw.
Consequently, if we can find a X s.t. L 0 = 0 we obtain what we look for
X=X,.

We finally observe that such a field X always exists. We only need to consider the cotangent
lift of X. A classical result'® tells us that cotangent lifts of flows of vector fields in the base
manifold are symplectomorphism in the cotangent bundle. In fact, for these lifts we have that
not only the symplectic form is invariant but also the Liouville form is. This implies that the
Lie derivative of 6 along the flow of the cotangent lift is zero. In particular we have hence
shown that X; = 7, X}, forv=1,2,3.

To compute explicitly the equations on the fibers we also need to recall the following Lie
algebras homomorphism (C®(T*C%,), {-,-}) ~ (X, (T*C%,),[-,"]), where X,, denotes the space
of Hamiltonian vector fields, given by

[Xava] - X{a,b} )

In the present case

{I, Ba}(N) = AT Xty pap) = N (X, Xoa])) = MlmeXom mXia) =)
= A([X1, Xa]) = Me' X + X+ bX3) = (M) + 2ha(A) + bhs(\) | |
and
iy} (0) = M Xinoop) = AT(Xiss X)) = Ml Koo m X)) =)

= M[Xi, X3]) = M0) =0 .

15See for example [AMOS] theorem 3.2.12.
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Finally, combining 1.41 with 1.42 and 1.43, we have the explicit expression for the equations
in the fibers )
hl = —(Clhl + 02h2 + bhg)hg

hg = (Clhl -+ C2h2 + bhg)hl (144)

thO.

Equivalence between Hamiltonian and coordinate approach. Observe that, since H
is conserved, we can restrict to the cylinder h? + h3 = 1, and introduce cylindrical coordinates
(9, h3) € S' x R, such that

hy = cos(¥)
hy = sin(V) (1.45)
h3 = h3 .

After changing variables according to 1.45, the system in the fibers 1.44 becomes

0 = ¢t cos(¥) + sin(9) + bhs
hg - O .

Consequently, on the base C’]@ we have
i =1\ =m Xy = h'X; = cos(9) X, + sin(9) X, .

To make contact with the coordinate approach we reintroduce the fibered coordinates in C’]@
that we used in the previous section, in which X; = e; + A(e1)d,, i = 1,2, and the projection
x = (m, z) — m. The projection of v on the base of C’]@, that we called o, solves the equation

o = cos(V)er + sin(d)es .

Notice that |o], = 1, so we are parametrizing with arc parameter and hence we can regard the
motion (o, ) as a motion in SM, where SM is the sphere bundle!® over M. We can define a

connection over it with a s' ~ R-valued 1-form on SM. Denoting the canonical projection of
SM as w, : SM — M we set

7i=dd + 7w (ap’) € AY(SM,s") ~ AY(SM), i=1,2,

where ¢ is the coordinate on the fibers, pu'? is the dual basis to e;, and a;o € C®(M).
Among all possible connections we choose the Levi-Civita one!”, which corresponds to the
choice a; = —c! and ay = —c®>. We verify that in absence of the magnetic form, i.e. when
b =0, we have that ¢ is a geodesic, indeed

|7 ((6,9)7) = ' cos(d) + ¢ sin(d) + a1 cos(I) + azsin(d) =0 .

As a consequence, the geodesic curvature with a nonzero b is (set hy = const. = 1)

g (t) = |7l otey00)r (6(8), D)) = [ba ()] - (1.46)

YOSM = ||,cp{v € TwM : |u|g = 1}. When M is 2-dimensional, SM has the structure of a principal
bundle with base M and fiber St.

17See [ST15] chapter 7 section 7.1 or [ABB19] chapter 1 section 1.2. For a brief treatment of these topics see
Appendix A.
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Chapter 2

The Heisenberg group

In this chapter we apply the constructions made in the previous one to a particular case. More
precisely we will introduce a constant magnetic 2-form on the Euclidean plane (R?,-) and we
will see that the bundle C£2 will be globally diffeomorphic to R3. From the 1-form « defined in
1.24, whose kernel constitute a distribution in the new space, we derive a Lie group structure
on ng. This is recognized to be the three dimensional Heisenberg group Hs. After a simple
generalization, we describe the length minimizers of a particular Sub-Riemannian structure on
Hj3 using the Hamiltonian formalism of section 1.5.

2.1 Euclidean plane with constant magnetic 2-form

The Heisenberg algebra. Consider the Euclidean plane described by Cartesian coordinates
x'? with the magnetic 2-form given by 3 = da!' A dz?. This form admits an entire class of
primitives between which we choose

A= ;(xlde — z?dz?) . (2.1)

C5, is now the trivial bundle R? x R 3 (z,2) = (¢',22,2) € R®, with projection 7(z,z) = z,
equipped with the form

1
a:=dz—71"A=dz — i(xldxz — z?dz?) . (2.2)
The kernel of « is spanned by the distribution D in 1.22 that now is given by

Xl(l’, Z) = 81 + Al(.flf)az
Xo(z, z) := Oy + As(2)0,

In the present case we have
[XhXQ] = (31142 - a2141)az = f120. = 0. =: X3 .

In conclusion D is bracket generating and, together with X3, verifies the Heisenberg algebra

(X1, X5] =0
[Xa, X3] =0 (2.4)
[Xl,XQ] = X3 .

We remark that a different choice of the magnetic potential A would lead to a different .
However, shifting the fiber coordinate z as prescribed by 1.25, we recover the same distribution.

21
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The Heisenberg group. In the previous paragraph we ended up with a bracket generating
distribution that solves a particular algebra, the Heisenberg algebra. The Rashewski-Chow
theorem (in its global version, see [ABB19] chapter 3 section 3.2, theorem 3.31) tells us that
following curves tangent to this distribution we can fill all R3. Being connected and simply
connected, by Lie theorem (see for example [FC30] chapter IT section 21, ’Le troisiéme théoréme
fondamental de S. Lie’), this R? is a Lie group isomorphic to the three dimensional Heisenberg
group Hjs. From the flows of the vector fields spanning the distribution we can recover the group
multiplication law. Denoting the fluxes as ®%i : R x Hy — Hy, (t;, ) — ®Yi(t;, 2) =: &, (),
for i = 1,2,3 we have (setting b = 1)

%t g
(I)}fl ($) = (Q?l + tl,x2,a:3 + 21> 5

1 T
Tt
<x1,x2+t2,x3—22> ,

T
3 (z) = (xl,x2,x3 + tg) :

% (x)

Regarding the t;’s as the coordinates of a point in the group (t1,t,t3) «» (y', 32, v*)T =y € Hs,
we reconstruct the group multiplication as follows. Given z,y € Hjs the group operation is

yl $1 ZL‘l + yl
y.r = yi : xi = z? Jr(gfl o
: 3, .3, (@®y'-=z

This is actually the operation defining the Lie group structure of Hs. There is also a three
dimensional matrix representation of the Heisenberg group obtained via the following identifi-
cation

at 1 b 2+ Jata?
r=z2]l< [0 1 x?
x3 0 0 1

The group multiplication then simply corresponds to the raw-by-column matrix multiplication.
Higher odd-dimensional Heisenberg groups are define with an analogous multiplication in R?"+!,
n > 0 natural, and denoted as Hly,, ;.

2.2 The symplectic R?*" and Hy,;

Contactification. We notice that the procedure of constructing C’f/f from a manifold M per-
formed in section 1.3 contains the case in which we have a symplectic manifold (M,w), where
w plays the role of a (non degenerate) magnetic field § = —w. Analogously to the magnetic
2-form the symplectic form admits a primitive (locally defined), i.e. the Liouville 1-form 6
which is the opposite of the magnetic potential A. The form a := dz — 1A = dz 4+ 7% will
have the property that da is non degenerate when restricted to the kernel of o because of the
non degeneracy condition on w due to the symplectic structure (see equation 1.27). We refer
to this property by saying that C’]@ admits a contact structure given by the contact form o and
denote it as (C%,, ). For this reason (C};, a) is called contactification! of (M, w).

1See again [VWA13] appendix 4 paragraph L. Now the relation with our construction of C]@ should be
manifest. Here in particular, different potentials, i.e. Liouville 1-forms, always differ by an exact form, that is
the differential of the generating function of the canonical transformation that brings the two potentials one
into the other.
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Remark. From this perspective the construction of section 1.3 can be seen as a generalization
of the contactification where we relax the hypothesis on the non degeneracy of w, using instead
of a symplectic form a generic closed 2-form representing the magnetic field, the potentials of
which are related by gauge transformations. Note that apart from the symplectic case, the
structure on C']@ Is not contact.

The group H,,,; as contactification. We consider the symplectic R?". Using Darboux
coordinates (p;, ¢'), with i = 1,--- , n, the contact form can be chosen as

1 ) ,
a=dz+ E(pz-dqZ — ¢'dp;) € AY(C; ~R*™ x R) |

where § = 1(pidg’ — ¢'dp;) is the Liouville 1-form that gives the symplectic form w = df =
dp; Adg'. The kernel of « is then spanned by the distribution described by the 2n vector fields?

inCy (i=1,---,n)
i._ 0 )
{X = T 50s

. 0 pi O
Y;'_qu 2 9z °

After an easy computation we see these vector fields, together with Z := %, solves the Hy, 1
algebra

[Yj’ X Z] = 5; Z

(X', Z]=0

Y;,Z]=0.

Following the same procedure of section 2.1 we can recover the entire group Hay, ;.
In conclusion the (2n + 1)-dimensional Heisenberg group can be realized as the contactification
of the symplectic R?" for all n > 0 natural.

2.3 Sub-Riemannian structure on the Heisenberg group

Up to now we obtained the Heisenberg group Hj from a constant magnetic 2-form in the
Euclidean plane. This group carries naturally a contact structure described by a bracket gen-
erating distribution D of rank two spanned by the vector fields defined in equations 2.3. We
can give to the Heisenberg group, together with this distribution, a Sub-Riemannian structure
by introducing a metric in D. We denote such a structure with the triplet (Hs, D, g;), where
gs denotes the Sub-Riemannian metric defined as

Js|z(u,v) := (mau) - (mev) (2.5)

with z € H3, 7 : Hy — R? u,v € D|, C T,H3, and *-’ the Euclidean scalar product in the
plane.

Sub-Riemannian length minimizers. We follow the Hamiltonian approach developed in
section 1.5. Using the Hamilton equations in the fibers 1.41 and the Heisenberg algebra 2.4, we
compute the Poisson brackets using the same strategy of before (see equations 1.42 and 1.43).
We get (keeping track of the magnetic field b := 15 = 1 for clarity)

hi = —bhsh;
hg — bhghl (26)
;13 - 0 .

2We simply generalize the definition 2.3 using A = —#.
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Since energy is conserved we again restrict to the cylinder h?+h3 = 1, and introduce cylindrical
coordinates as before (see 1.45). The Hamilton equations 2.6 become

4 = cos() X7 + sin(V) Xy

ﬁ:bhg
hy =0 .

Integrating the fiber part of the system we get the solutions (choose hsy = const. = 1),

I(t) =bt+ ¢
h3:17

with ¢ an integration constant, that we put equal to zero in the following. In the base we have
that

= cos(bt) X, (7(1)) + sin(b) Xa (4(2))
Using the coordinates in Hj that we used in the previous paragraphs, in which X; = 0; + A;0.,
i = 1,2, and the projection (z!, 22, 2) — (2!, 2?). On the plane (z', 2?) for the projection of v,
that we called o, we get the equations

{dl = cos(bt)

62 = sin(bt) .
Notice that |6 = 1, so we are parametrizing with arc parameter, so, finally

r(t) = ()] = lo(a(®)] - (2.7)

With this equation we recovered the result 1.15, i.e. we have shown that projections of Sub-
Riemannian length minimizers are the trajectories of a charged particle in the Euclidean plane
subject to a constant magnetic field. These curves are then curves with constant principal
curvature, hence straight lines or arcs of circles.

Finally we remark that since in the Heisenberg case the magnetic field is constant and nonzero,
there cannot be abnormal minimizers!

Isoperimetric problem. It is noteworthy the fact that in the Heisenberg case the problem
of finding Sub-Riemannian length minimizers can be rephrased as an isoperimetric problem.
Indeed the constraint 1.20 for the present choice of the magnetic potential 2.1, can be written
as

1
/ A+k= / dA = / —d(x'da® — 2°dzt) = / dz' A da? =: Vol(X) = const. ,  (2.8)
o ([0,1]) by s 2 b

where k is a constant due to the integration of A along the segment ¢ : [0,1] — R? ¢ —
g(0) + (t —1)(e(0) — (1)), 0¥ = ([0, 1]) + <([0, 1]), in the sense of simplicial complexes, and
Vol(X) is the (oriented) area of ¥ C R?. On the other hand, the functional we want to minimize
is the Euclidean length of . In conclusion we are looking for planar curves with minimal length,
between the ones that with the segment ¢([0, 1]) enclose a fixed area. This problem is in some
sense dual to the classical Dido problem where we want to find closed planar curves with fixed
length enclosing the maximal area.



Chapter 3

Magnetic forms and Sub-Riemannian
manifiolds

We study the effect of introducing a magnetic form in a Sub-Riemannian manifold, starting
from the Riemannian case. In this way we generalize what we have seen in the previous chapter
for Riemannian surfaces. In the last section we treat the Sub-Riemannian case and we will see
how the Sub-Riemannian structure interacts with the magnetic field. In particular, in the
contact case this interaction leads to the notion of the Rumin complex.

3.1 Hamiltonian description of geodesics

We start with a brief treatment of some topics in symplectic geometry useful for the next para-
graphs, where we prove that the Riemannian geodesics of (M, g) can be seen as the projection
on M of the solutions of an Hamiltonian system in 7M.

Fiber-homogeneous functions on 7*M. Consider the cotangent bundle T*M of an n-
dimensional manifold M, with projection w : T*M — M. T*M is naturally endowed with the
Liouville 1-form 6 € A'(T*M) whose differential gives the symplectic form ¢ := df. On T*M
operates the group of dilatations, i.e. the multiplicative R, in the following way. § : RxT*M —
™M

d(a, ) :==a\,

where (a))(v) := a A(v) for all v € T;(\)M, a € R. We also denote as 9, : T*M — T*M the
fiber-preserving map d,(\) := d(a, A). We are now able to define fiber homogeneous functions
on T"M.
Definition. We say that H € C*°(T*M) is homogeneous of degree k in the fibers if and only if
6)H =ad"H .
We have the following characterization.
Theorem. A function H € C*°(T*M) is homogeneous of degree k if and only if
kH =ix,0 ,

where X is the Hamiltonian vector field associated with H.

25
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Proof. We prove this using Darboux coordinates. Let (p;,¢‘), ¢ = 1,---,n be Darboux co-
ordinates in M. A point A\ € T*M can then be expressed using the frame {dq'},—;.. , as
A= pidqi\w( A=¢- We denote H and its representative in coordinates in the same way. Hence

9
oq? .

OH . 9H
) pin—(p,q)0; = pi o, (,q)

ixaf() = M X (r(V) = pidg’] (g;j<p, ) o

Now, by Euler theorem on homogeneous functions we conclude

OH

ZXIJQ()‘) bi— 8]3

(p,q) = kH(p,q) = kH(X) .
0

We can also refer to fiber-homogeneous functions as tautological functions because of the form
of the expression kH = iy, 0. The following proposition is rather obvious (think in coordinates).

Proposition. Let H € C*°(T*M) be a fiber-homogeneous function of degree one. Then the flow
of the Hamiltonian vector field Xy preserves the Liouville 1-form.

Proof. By the homotopy formula
dH = d(zXHG) = LXHQ — iXHU = LXHQ + dH s
hence Lx,0 = 0. [

The same computation shows us that for a homogeneous function of degree k we have
Lx,0=(k—-1)dH . (3.1)

We also have the following remarkable theorem concerning the Poisson brackets between ho-
mogeneous functions.

Theorem. Let f,g € C®(T*M) be fiber-homogeneous functions of degree h, k respectively.
Then the Poisson bracket {f, g} is a fiber-homogeneous function of degree h + k — 1.

Proof. We need to prove that (h +k — 1){f, g} =ix ,0. We have
ix(; 00 = ix,x,00 = Lx,ix,0 —ix,Lx;0 = kLx g — (h — 1)ix,df =

—(h+k=1Ddf(Xy) = (h+k=1){f, 9}

In the second equality we used a standard identity and in the third equation 3.1. For the
remaining equalities we simply used the definition of Hamiltonian vector field and of Poisson
bracket. O

We will use in particular the case where both the functions are homogeneous of degree one, in
which case

{f.9} =ix,,0 (3.2)
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Symplectic formalism using frames. Let {X;, -+, X,,} bea frame of M, and {p',--- , u"}
its dual. We define a linear function for each of the X;’s, namely h; : T*M — R as

hi(\) = A(Xi(m(N), A€ T*M .

As already noticed in section 1.5, these functions are coordinates in the fibers of the bundle.
We also remark that from the treatment of the previous paragraph, since these functions are
fiber-linear, hence fiber-homogeneous of degree one, we can write them in the tautological form

hi =ix, 0 . (3.3)
We also observe that from the definition of the Liouville 1-form, we have
TuXp, = X . (3.4)
The coordinates h;’s locally define a splitting in T'(7* M) described point-wise as
TNT*M) =T )yM © Ta(T;,yM), AXeT*M . (3.5)

Observe that in this way 7, becomes the canonical projection on the first addend of 3.5.
Consequently, a section of T'(T* M) can be described using sections of T'M and T(T; ) M) ~ R*"
as

, 0
D
T —H}ahi

where z',v; € C®(T*M) and {aihi}i:la“wn are the coordinate sections of the second addend!.
Similarly we can represent forms on 7*M using the dual basis {u', -+, u", dhy, -+ ,dh,}.

For example we have § = h;u. Indeed, since we can write ¢ = ﬁjuj for some ﬁj, using the
tautological formula 3.3, h; = ix, 0 = hipt*(X;) = hydF = hj.

We end this paragraph with a useful expression for the symplectic form and an immediate
corollary.

Proposition. Using the dual basis {u', -+, u",dhy,--- ,dh,}, we can write the symplectic form
o as

o=dh; N — §cghk wA (3.6)
where ¢}; € C*°(M) are defined by [X;, X;] = ¢}, Xp.

Proof. By definition
o=d0 =d(h;p’) = dh; A + hdp? .

Using a remarkable formula
dp? (X, Xy,) = Xi(p (X)) — Xi(p! (X3)) — 1 ([Xi, X3]) =

= Xi(67) — Xk (6]) — 1 ([ X, Xa]) = 4 (ch X0) = ¢ -
Finally
A T
o = dhy At = Shicy it At

!Beware that although the X;’s are sections of TM, 2'X; are not. Similarly for the %’s.
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In this way we can find the following expression for the Xj,’s.

Proposition. Using the frame of T'(T*M) given by { Xy, -, X,, 8%1, e %} we have

0
Xp, = X; + hy—— . 3.7
hi + ¢l an, (3.7)
Proof. We can use the explicit expression of the sharp isomorphism induced by o, the so called

Poisson tensor, and then the result is manifest. Alternatively we notice that we can express
the fiber part of the Hamilton equations using the Poisson brackets. We have

, 0
Xhi = fL‘]Xj + Uj% s
J

with 27 and v; to be determined. The 27 are fixed by the condition 7, X, = Xj, so 27 = §/.
For the fiber part we have .
vj = hj = {hi, h;} .
By equation 3.2, we have
{h’i7 hj} = Z.X{hiyhj}e = i[thth]e = hkluk([X“XJ]) = hkcfj :
]

The Riemannian Hamiltonian. Let g be a Riemannian metric on M and {X;};—1... , be an
orthonormal frame with dual frame {u'};—;... ,. We want to define a dynamic in the cotangent

bundle that will return us the geodesics in the base. To do so we introduce the Riemannian
Hamiltonian H : T*M — R as

HO) = 3aleiy (Z BN Xilr (V). ihjmxjw») . (39

j=1
Using the orthonormality condition on the X;’s we get the expression

1 n
HQ) =52 (h(N)” - (3.9)
i=1
We easily verify that dH = Y1 ; h;dh;, hence, by linearity of the sharp isomorphism (the one
of o) we get

Xy =Y hXp, . (3.10)
i=1
Moreover using expression 3.7, we can write
" 0
Xg=> h|X;+Eh—1| . 3.11
" ; < e kﬁhj) (3.1)

By equation 3.4, Hamilton equations A = Xy project in the base giving? (define v := 7()\))

n
Y =mAN=mXy = Zthj .

j=1
The functions h;’s are hence the components of the velocity of the projections of solutions of
the Hamilton equations in 7*M into the base manifold M with respect to the orthonormal
frame { X}z n.
We finally need to verify that v with 4 = 7, Xy is geodetic. Contrary to the two dimensional
Riemannian case we cannot exploit the principal bundle structure of the sphere bundle over
M. Instead we need to work in the whole T'M and use affine connections.

2Beware that m. X is not a vector field on M.
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The geodesics equation. We need to verify if the projection on M of a solution of the
equation A = X, denoted with ¥ = 7, Xy = 37, h; Xj, is a geodesic, i.e. if we have V55 = 0,
where V is the Levi-Civita connection of g. We obtain

Vi =3 Vi, X; = (hj +3 F{khkhi> X; . (3.12)
1,7 7,] k=1
But hj = > ik=1 cfjhkhi, hence
Vii = (f + T%) hehiX; . (3.13)
1,7,k

Now we use the properties of the Levi-Civita connection coefficients® to get the final result.
(cf; + D) hahy = (OF, = T8 + T hih; = (=T, — T% + T hih; = —Thhih; = 0 .

In conclusion
Vivy=0.

3.2 Magnetic forms in a Riemannian manifold

We now introduce a magnetic field in a Riemannian manifold (M, g) and compute the Hamilton
equations corresponding to the Riemannian Hamiltonian, which now become shifted by the
magnetic potential.

The shifted Hamiltonian. Let 8 € A*(M) be a magnetic field, with local potential A €
A (U), U € M open subset. With orthonormal frames we can write the Riemannian Hamilto-
1

nian as 5 >0 hjz. Using the tautological definition of h; 3.3, we can regard the introduction

of A as a shift in 6, namely

00 :=0+7"A .

In this way we recover the usual shift in the momenta h; — h; = h; + A;. Indeed

hy = ix, 0 = hy + 7" (A(Xy,)) = by + 7" (A(m.X,)) = by + 77 (A(X;)) = by + 74, .

Since we always use the splitting 3.5, in the following we simply write A instead of 7*A.
In conclusion the new shifted Hamiltonian becomes

H= ;f:(hj + Aj)? . (3.14)

=1

The Hamilton equations. We need to compute X. Obviously dH = >%_, (h; + A;)(dh; +
dA;), and by linearity of the sharp isomorphism of o, that we denote as f,, we have

X =30y + A7) (X + fodA;) (3.15)

J=1

From a simple computation, making use of the expression of o found previously, we have that

ot = —%]» Moreover dA4; = (X;(4;) + CZAk + Bi;) 1. So, equation 3.15 becomes
- 0
Xy = Z(hg + Aj) (Xj + <C§z(hk + Ar) — X;(4;) — @j) (9h> : (3.16)
Jj=1 %

3We have recalled them in Appendix B.
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Equations on the base. We now compute V4%, where here y = 7. Xy = 37, (h; + 4;) X;.
Using 3.16, have

n

> Vinsanx,(hj+ A)X; = > (hi + A) Vi, (b + Aj)X; =

i,j=1 tj=1
=3 ((hj FA) (i + A (b + Awrzk) X;=
i,j=1 k=1

=y <—Aj + Bij(hi + Ad) + A + 3 (ks + Th) (hy + Ag) (hy, + Ak)> X; =
i,j=1 k=1
Z (Bij(hi + Ai) X

In the last passage we used the properties of the Levi-Civita connection coefficients. Finally we
recovered the result obtained in the first chapter, where we used coordinates and the variational
approach

n

v"y’.}/ = Z (Bzy’yz) ﬂgl’yﬂ (317)
ij=1
In this last equation we used the sharp isomorphism of g, denoted as 4, that for orthonormal
frames is simply 6%.

3.3 Sub-Riemannian Geodesics of C’]@

We start by observing that our treatment of section 1.3 does not involve the dimension of the
Riemannian surface. Therefore we can apply the construction of C’f\z to a Riemannian manifold
(M, g) of any finite dimension n € N. Again, the possibility of globalizing the trivial bundle
structure depends on the topology of M. We can forget about this problems if we limit ourselves
to study the local properties of the construction. Since this is the case for now, we still denote
the bundle we define as C}; regardless of its global existence. Let 3 € A%(M) be a magnetic
2-form with potential A € A'(U) in the open subset U C M. We consider a piece-wise smooth
curve 7 : [0,1] — U, and define a dynamic in U x R as we did with 1.20, i.e. we set

2(t ::/ A,
) 7([0,8])
and A(t) := (y(t),2(t)) € U xR for all t € [0,1]. Using the splitting T(U x R) = TU & TR and

an orthonormal frame of M, {X,---, X, }, we have that
A(t) = (3(1), 2(8)) = w' (1) Xi((£) + Ay (())0- |
where u’ : [0,1] - R, i = 1,---,n, are piece-wise smooth functions. The curve A : [0,1] —

U x R is always tangent to the distribution D C T'(U x R) described by the vector fields
T,= X+ AX)0, i=1,-,n. (3.18)

Clearly the distribution has constant rank equal to n, and we easily verify wherever it is bracket
generating. Using the same computations of section 1.3 we obtain

(T, Ty = [Xi, X5 + A([X3, X;])0. + dA(XG, X;) = ey T + B0 (3.19)

where ¢j; € C*(M). This means that if one of the f;; is non zero the distribution is bracket
generating. This is the n-dimensional analogue of 1.23. In the following we denote T, := 0.
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Sub-Riemannian geodesics. We consider the Sub-Riemannian metric given by
Gsla (U, V) i = glr@) (mu, mv) x € C%, u,ve D], CT,C¥ . (3.20)

which is the essentially 1.28 in the n-dimensional case. Following the approach of section 1.5
we define the Sub-Riemannian Hamiltonian H, analogously to 1.36, i.e. we set

HS:Eth,
2i:1

with h; € COO(T*C’J@), ¢t =1,---,n the fiber linear function on T*C’]@ corresponding to 7;. We
also denote with h, the fiber linear function relative to 7,. The fiber part of the Hamilton
equations is then

{hi = {H,, hi} = S5 {hy, hith; = X0, chihjhg + Bjihih. (3.21)

he ={Hs, h.} =7 {hj, h.}h; =0 .
If we consider the projection of the system on U which is given by (t) = >, h;X;, and

compute the covariant derivative along ~ relative to the Levi-Civita connection of g, using 3.12
we have

Vi =) <hj +> F{khkhi> X; . (3.22)
i k=1
From this equation, thanks to 3.21 we obtain
Vid =3 (e + T%) hehiX; + 3 Bijhih.X; . (3.23)
6.4,k i

Now, as we already know, the parenthesis in the first addend is zero by the properties of the
Levi-Civita connection coefficients and h, is a constant that we can fix to be equal to one, hence

Viy = Z(ﬁijhz‘)Xa‘ = flg248 .

Finally we were able to show that as in the case of Riemannian surfaces the Sub-Riemannian
(normal) geodesics of C’]@ projects into the trajectories of charged particles in M with the
presence of a magnetic field.

3.4 Magnetic forms in a Sub-Riemannian manifold

We pass now to the general Sub-Riemannian case, where we are given a distribution D C T'M
and a Sub-Riemannian metric g;. In the following £ < n = dim(M) will be the (constant)
rank of D that we consider to be spanned by {Xi, -, X} C X(M) orthonormal frame with
respect to gs.

The Sub-Riemannian Hamiltonian. Like in the previous section, we consider tautological
functions
hj:ixhjﬁ j=1,--- k.

Observe that these are coordinates on the fibers of the dual distribution D* C T*M.
Next we define the Sub-Riemannian Hamiltonian as

HL() = by (Z B (N)X,(x (V). Zhj<A>Xj<w<A>>) . (3.24)

J=1 J=1
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Using the orthonormality of the X;’s, we recover the expression of the previous chapters

HL0) = 5 S () (3.25)

i=1

Equivalent magnetic potentials. We introduce a magnetic form 3 € A?(M), with local
magnetic potential A € A'(U), U C M open subset. Suppose also that the distribution D is
described as the kernel of n — k 1-forms {a, -+ , a1} C A'(M). We say that D is described
by the Pfaffian equations
a1 = 0
(3.26)
Ap—f = 0.

As in the Riemannian case, we interpret the introduction of a magnetic form as a shift in the
h;’s given by )
O—0=0+7"A.

However now we have a redundance, because if we shift A with any of the a;’s nothing changes,
and we are left with the same Hamiltonian. Explicitly, for all ¢ =1,--- ,n — k we have

ix,, (07 (At a)) = by + Ay + 7 (@(X)) = hy + Ay =i, (0+7°A) .

In conclusion we should consider magnetic potentials up to the equivalence relation induced by
the shifting with the «;’s '
A=A+ floy 1=1,---,n—Fk, (3.27)

with f* € C>(M).

The Rumin complex. In the case in which the distribution has rank n — 1, i.e. we are
given a single 1-form «, which we suppose to be also contact, we can construct from the set of
equivalent magnetic potentials a differential complex, the Rumin complex, whose cohomology
is equal to the De Rham cohomology of the manifold M. Here we present the general construc-
tion following [Rum94] and the next chapter we will describe it for the contact structure given
by 2.2 in the three dimensional Heisenberg group.

Let (M,a) be a (2n + 1)-dimensional contact manifold, with contact form «. We denote as
A (M) := @™ A¥(M) the graded algebra of differential forms on M. We define the ideal
(with respect to the exterior multiplication)

(M) :={anf+daNry : B,yve A" (M)}, (3.28)
and the annihilator
TM)={weA" (M) : ahnw=0=daAw}. (3.29)

Notice that none of these sets depends on the normalization of the contact form « and that
if w € Z* (respectively w € J*(M)) then also dw € Z*(M) (dw € J*(M)). This means that
the exterior differential induces an operator d, : A*(M)/Z*(M) — A*(M)/Z*(M), i.e. for
every i = 1,--- ,2n+ 1, d, : AY(M)/Z"(M) — A (M)/Z(M). From the symplecticity of
da a classical result tells us that the exterior multiplication by da, which we now regard as a
mapping of horizontal forms* of degree k to horizontal forms of degree k + 2, is surjective for

4We recall that horizontal k-forms are forms that depends only on the contact distribution D := ker(a). We
recognize that these k-forms are the sections of the k" exterior power of the sub-bundle D* C T*M. We denote
such space of sections as A* (M).
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every k > n— 1 and injective for k < n—1. From this fact it follows that A*(M)/Z*(M) = {0}
for k > n+1and J*(M) = {0} for k < n. We can finally state (without proving) the following
result.

Proposition. Tt exists a differential operator D : A™(M)/Z"(M) — J"™*! such that the sequence
{0} — R — C®(M) 22 AYM)/ZH(M) 22 - o A (M) /(M) 2

D da da da
= jn—I—l Moy L Gy j2n+1 oy {O}

is exact and its cohomology coincides with the De Rham cohomology of M.

Remark. Notice that Z'(M) = span(a), hence we recover the symmetry 3.27 present in the
Sub-Riemannian Hamiltonian.

Description of D. We now describe the differential operator D and verify its cohomological
properties, i.e. that d, o D =0 and D od, = 0. Always following [Rum94], we have

Proposition. Given ¢ € A(M) an horizontal n-form, it exists a unique lift ¢ € A"(M) such
that dp € J"(M).

Proof. Let ¢ € A"(M) be any lift of . We then look for 3 € A" *(M) such that if ¢ =
@ + a A B we have dp € J""(M). In particular dp = dp + da A B — a A dS. Hence
aNdp =aA (dp+daAp) =0 if and only if the second factor is zero on D, i.e if and only
if (da A B)|p = —(dp)|p. Since for n — 1 the homomorphism given by exterior multiplication
by (da)|p is an isomorphism A"~1(M) ~ A™*1(M), this last equation has a unique solution.
On the other hand da A dp = d(a A d@p) = 0 by what we have just found. In conclusion
dg € T (M), 0

We further notice that since A7 (M) ~ A"(M)/{aAB : € A" 1 (M)}, then A*(M)/I"(M) ~
AM(M)/{danB : B € A"3(M)}. We can now state the following proposition.

Proposition. The operator D : A?(M) — J"(M) defined by Dy := dg pass to the quotient
with respect to {da A8 : B € A" 2(M)}. Therefore we set D[y] := Dy, having ¢ € A"(M)
and [p] € A"(M)/Z"(M) the corresponding equivalence class.

Proof. Let (da A B)P be the horizontal part® of da A 3. We clearly have d(da A 3 —a AdfB) =
0 € J"(M). By our previous proposition this means that da A §—aAdf is the unique lift of
(da A B)P to A™(M). Consequently, by definition, D((da A )P) = d(daAf—aAdB) =0. O

We now show the local exactness of the Rumin complex for n and n+1. We adopt the shorthand
notation for the quotients A*(M)/Z*(M) =: QF(M), with k=1,--- 2n + 1.

If o € Q"(M) is such that Dy = 0, then by taking the unique lift @ € A™(M), we have
Dy = dp = 0. Consequently there exist, locally, 3 € A""'(M) such that ¢ = dfB. But
the exterior differential pass to the quotient with respect to Z" (M), hence ¢ = d,[f] with
(8] € Q"~1(M), the equivalence class of 3.

Let now ¢ € J"" (M) such that d,p = 0. Taking a representative ¢ € A"*1(M), we have
d@ = 0. Therefore, locally, there exists § € A"(M) such that ¢ = df. Passing to the quotient
in this last equation we get ¢ = D[f], where again [5] € Q"(M) is the equivalence class of 3.

5Given a k-form ¢ € A¥(M), and D := ker(a) C TM, the horizontal (contact) distribution,
P (Xq,-, Xy) == o(XP, -+, XP), where XP is the component of X; € X(M) along D, is the horizon-
tal part of ¢. This means that ¢ € A¥(M).
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Chapter 4

Magnetic forms in the Heisenberg
group

In this chapter we describe the Rumin complex for the three dimensional Heisenberg group
H, using the general construction made in the previous chapter. Next we construct the space
ng by introducing a magnetic 2-form 3 € Q*(Hs). In the following, we study the particular

case of a constant magnetic 2-form that will make Cﬁs a four dimensional Engel-type group.
This new space we endow with a Sub-Riemannian structure and we study its Sub-Riemannian
length minimizers, giving a geometric interpretation of them.

4.1 The Rumin complex in Hj
We consider the Heisenberg group Hjs with the contact structure given by
1
o :=dz+ i(ydx —zdy) , (4.1)

which is the same of 2.2, with the renaming 2! = x and 22 = y. The horizontal distribution,
given by the kernel of «a, is spanned by the vector fields 2.3 that we recall here for convenience

— — ¥
X =030 (4.2)
Y =9, + 20, .

As already remarked in the Sub-Riemannian case the possible magnetic potentials that we can
introduce, that in principle can be any 1-form A € AY(U), U C Hs open, are redundant. We
shall consider instead

A e QY U) = AY(U)/span{a} , (4.3)

in the sense that A, A € A'(U) are equivalent if and only if A — A = fa, with f € C=(U).
Thanks to this symmetry we have
Proposition. Let a = dz + %(ydx — xdy). Then

QYU) = span{dz,dy} .

Proof. The set of 1-forms {dz,dy,a} C A*(U) provides a basis for T* U forall m € U, hence a
generic form A € A'(U) can be written as

A=A dz+Ady + Ay,
for suitable A,, A,, A, € C=(U). But by definition of Q'(U), A:= A — Aya = A,dz + A,dy is
equivalent to A. n

35
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In order to pass from functions on U to Q' (U) we can define the following first order differential
operator acting on C*(U)

da(f) == X(f)de — Y (f)dy . (4.4)

We notice that d,f = df mod(«), indeed df = df — (0,f)a, i.e. the exterior differential
passes to the quotient. The operator d,, is therefore the one defined in the Rumin complex.
Since {dz, dy, a} C A*(U) gives a frame for T*U we can use the 2-forms {dz A o, dy A o, dz A
dy} € A*(U) to express a generic 2-form 3 € A%*(U) as

B = Bedz Aa+ B,dy Ao+ bydr Ady .

Following the general construction of the Rumin complex, the non trivial 2-forms that we have
to consider are Q*(H3) = span{dz A o,dy A a}. In this way we are able to characterize the
magnetic fields in a way that reflects the degeneracy of the potentials, i.e. the underlying con-
tact distribution. Using the construction of D of the Rumin complex for the contact structure
4.1 in Hs we have

Proposition. Given A € Q! (Hj) the unique lift A € A'(Hs) such that dA € J?(H;) = Q*(Hs) =
span{dz A a,,dy A a} is given by A = A + fa with

f=X(4,) - Y(4,) .
Furthermore we have
DA = D(A.dx + Aydy) :=dA = B, dz Aa+ By,dy Aa (4.5)
with

(4.6)

By =Y (X(4,) —Y(4)) — Z(Ay)

Proof. We can compute f from the condition a AdA = 0. We have dA = dA+df Aa+ fda, so
we consider the equation a A (dA+ fda) = 0, which is satisfied if and only if (dA+ fda)|p = 0.
Then we simply need to solve f(da)|p = —(dA)|p for f € C*(Hjs). Recalling that on D it is
a=0,ie dz=gdy — §dz we get

fdz ANdy = (0,4, — 0,A,)dx ANdy + 0,A,dz Adx + 0,A,dz A dy =

- <8$Ay — 0,4, — Yo.4, - ";aZAm) dz Ady =
= (X(4y) - Y(A;))dz Ady ,

which is what we looked for.
Recalling that for any function g € C*(Hjs) it is dg = X (g)dz + Y (¢)dy + (0.9)a, we are now
in a position to prove 4.5.

DA:=dA=dA+df Aha+ fda=dA+ X(f)dz Aa+Y(f)dy Aa+ fda =
= (0,4, — 0,A; — fldz Ndy + 0, A, dz ANde + 0, Ay dz ANdy + X (f)dz Aa+ Y (f)dy Aa =
= (;@Am + gaZAy) de ANdy + 0,A,dz ANdx + 0, Ay dz Ady + X(f)de Aa+ Y (f)dyha =

= (X(f) = Z(Aa))dz Aa+ (Y(f) = Z(Ay))dy Aa .

This is exactly our claim.
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Even if we already proved this in general in the previous chapter, we show that the differential
operator D satisfies the cohomological property

Dod, =0 . (4.7)
A simple computation proves this fact. Indeed, for all f € C>°(U) we have
D(dof) = DX(f)dx + Y (f)dy) = (X(X(Y(f)) = Y(X([))) — Z(X(f)))dz A o+

+(Y(X(Y(f)) = Y(X() = 2V (£)dy A a = (X([X,Y](f)) = Z(X(f)))dz A a+
+Y([XY]() = 2V (N)dy A e = (X, Z1(f))de Aa+ (Y, Z](f))dy A =0

Notice that we used only the definitions of d, and D and the Heisenberg algebra 2.4.

Finally the closed three forms are clearly spanned by the volume form a Ada, and are obtained
from Q?(U) with the standard exterior differential. Even in this case the cohomological property
d oD = 0 is straightforward to prove since d(dz A @) = —dz A da = dz Adx Ady = 0 and
similarly for d(dy A @) = dy Adx Ady = 0.

In conclusion the Rumin complex for Hjs is then given by the following short exact sequence.

{0} — > Cc®U) —2=— Q' U) —2— Q2(U) —L— 3(U) ——— {0}

Equivalent potentials. The cohomological property D od, = 0 implies that we can further
restrict to potentials of the type A = ady, with a € C*°(Hj3). Indeed let us consider A := A+d,g,
g € C*(Hj3), which satisfies DA = D(A + dng) = DA. We have that

A= (A, + X(g))de + (4, +Y(9))dy ,

and consequently we can find g such that

having a = A, + Y (g).

4.2 A four dimensional space

A four dimensional dynamic. Let 8 € Q*(H3) a magnetic field, and let A € Q'(Hj) be a
potential for g, i.e. f = DA. Following the procedure of section 1.3 we consider a piece-wise
smooth curve v : [0,1] — Hs, with the difference that here we ask v to be admissible, i.e.
J(t) € ker(a|yq)) for all t € [0,1]. This means that

V() = ua ()X (7(1) + uy ()Y (7(2)) (4.9)

with u,, u, : [0,1] — R controls.
We then define a real quantity

w(t) = L o (4.10)

In complete analogy with section 1.3 we study the dynamic in the bundle Hy x R ~ R* given
by A(t) := (y(t), w(t)). The velocity of A is then

A1) = ua (DX (1(8)) +uy ()Y (7(1)) + Al (7)) D - (4.11)
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We notice that the curve A\ can be seen as a curve tangent to a rank-2 distribution D in TR*
which is defined by the vector fields

{T1 = X + A(X)d, (1)

Ty =Y + A(Y)d, ,

where the sum refers to the canonical splitting T'(Hs x R) ~ TH3 & TR. In this way we can
rewrite 4.11 as

Alt) = wr(OTLAWD) + u2(DTH(AD)) . (4.13)

where we simply renamed the controls u, = u; and u, = uy. Finally we remark that the
distribution D = span({T1,T>}) C TR*, can also be seen as the kernel of the Pfaffian equations

a=0 (4.14)
dw—-—A=0.

Bracket generating condition. We want to study wherever D is bracket generating. We
start from the first Lie bracket.

11, Ty = [X + A(X)0w, Y + A(Y)0,] = [ X, Y]+ (X(A(Y)) — Y(A(X))) Oy -
Using the Heisenberg algebra 2.4 (renaming X3 = 0, =: Z) we get
1, T3] = Z + (X(A(Y)) = Y(A(X))) O
and using a shorthand notation for the coefficient of 0,, we write
11, Ty = Z + Bo, . (4.15)

We call Ty := [T3,T,] and compute the next bracket [17,T3] =: Ty. Using again 2.4, and 4.15
just found

[T1, T3] = [X + A(X)O0y, Z + By = [X, Z] + (X(B) — Z(A(X))) 0w = (X(B) — Z(A(X))) Oy -
We summarize the four vector fields that we have found so far

Ty =X + A(X)0,

To=Y + A(Y)0,

15 = Z + Bo,

Ty = (X(B) — Z(A(X))) Ou -

(4.16)

From the explicit expressions 4.16 we see that this distribution has at least rank equal to three.
However the step can be greater than 3. In fact, using the coordinate frame {0,,d,, 0,0, } the
condition for the T;’s to be independent comes from the equation

10 Y A(X)
01 +2 A(Y) B .

det | o 5 = (X(B) - Z(A(X))) = 8. =0. (4.17)
00 0 (X(B)-ZAX))

This condition is also gauge invariant, i.e. it does not depend on the choice of the potential
A. We verify this immediately. Given A := A 4 d,g a different potential for 8 the horizontal
vector fields change as
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T =X+ (A+dag)(X)0yw = X + (A + X (9))0w
Ty =Y+ (A+dag)(Y)0w =Y + (A, + Y(9)) 0w,

In this way we obtain

11,15 = Z + (B+ Z(g9))0w

The second order bracket is therefore

[T, [T, To]] = [X + (As + X(9)) 0w, Z + (B+ Z(9))0u] =

= (X(B) — Z(A:) — Z(X(9)) + X(Z(9)))0w = (B + [X, 2](9)) 0w = B20u

In this way the condition 4.17 for D to be bracket generating is again 3, # 0. Now, if 8, = 0 we
shall consider instead of Ty, the vector field T5 := [Ty, T3] = [T3, [T1, T2]]- In this case, repeating
the computation 4.17 with Ty in place of T we obtain that {T7,T5,T3,T5} are independent if
and only if

Y(B) ~ Z(A(Y)) = 8, £ 0.,

We have hence proved the following.

Proposition. The magnetic 2-form = DA # 0, A € Q'(Hsy), if and only if D = span({T},T»}),
given by 4.12, has step equal to three.

Remark. Similarly to the Heisenberg case, in which the Sub-Riemannian structure has step
two as long as the magnetic 2-form 8 # 0 € A%(R?), in the Engel case, to have step three,
we obtain the condition § # 0 € Q?(Hj;). In this sense we can say that the Rumin complex
provides the appropriate description of the magnetic fields in a contact structure, in order to
extend its relation with the step of the distribution of C’fm

Constant magnetic field. We are now interested in a particular class of magnetic fields,
namely the ones of the type
f=bdrANa, (4.18)

with b € R a constant'. We can easily verify that a candidate potential for such a field is given
by the form

b
A= idy (4.19)
In this case the vector fields 4.16 become

T, =X
Ty=Y +

? Ty 0 (4.20)
T3 =7 + bxa
Ty = b0y,

From the previous proposition we know that if b # 0 the distribution D = span({7},T>}) C TR*
is bracket generating, hence we can fill all R* following admissible curves.

Notice that these type of fields are constant multiples of one of the generators of Q2(U), and hence we shall
call them ’constant’. The general linear combination with constant coefficients of the generators can be brought
to the form 4.18 with a suitable rotation in the space of the coefficients.
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The elements T;’s of the algebra 4.20 satisfy the following property, called the Engel property
i.e. that for all 4,7 = 1,2, 3,4, there exist k;; € N such that

(adg, o - 0 adg)(T}) = ady (Tj) = 0, (4.21)
k;j-times
where ady (+) := [Y, ] is another notation for the Lie brackets®>. The Lie group associated with

the Lie algebra 4.20 is therefore an Engel group that we denote as E;. It is also easy to see
that E, is also a Carnot group.

We finally notice that in this case the space C’ﬁ3, which is simply R*, cannot be endowed with
a contact structure’.

The group operation. Starting from the Engel algebra 4.20 we can recover the group multi-
plication law as we did in section 2.1 for the Heisenberg group. Computing all possible brackets

we find
[T1, T3] = T3

[Th, T3] = T, (4.22)
(10, T4 = [To, T3] = [Ts, Ta] = [Ts, Ta] = 0 .

We shall exploit the surgectivity of the exponential map exp : Lie(E;) — Ey4, i.e. we suppose
every element g € E4 can be written as exponential of a suitable element in the Lie algebra

g =exp(T) = exp(aTy + bTy + ¢T3 + dTy) ,

where a,b, ¢, d are the coordinates of T" € Lie(E,) with respect to the base given by the T;’s.
For another element g € E4 we shall write analogously

G =exp(T) = exp(aly + bTy + &T5 + dT}) .

Now, if G is a k-dimensional Lie group, it can be shown that given a basis {e;};—1 .. x of
g := Lie(G), the correspondence G — R” given by exp(x'e;) — (x',---  2%) is a local diffeo-
morphism. Using these coordinates we can find the group operation using the Baker-Campbell-
Hausdorff formula as follows. This formula says that in a (connected and simply connected)

Lie group G we have for all X,Y € g the identity

exp(X) exp(Y) = exp (X +Y + ;[X, Y]+ 112 (X, [X,Y] = [V [X, Y])) + - ) ,

where the dots indicates higher brackets that we do not need since for the present algebra they
all vanish. Consequently, to obtain the product ¢g in coordinates, we shall first compute

[aTy + bTy + Ty + dTy, aTy + bTy + ¢T3 + dTy) =
= [aTy + bTy + ¢T3, aTy + bTy + T3] =
= (ab — ab)[Ty, Ty] + (aé — ac) [Ty, Ts] = ATy + BT, ,

where we introduced a shorthand notation for the coefficients of T3 and 7. Next we consider
the double brackets

[aT1 -+ bTQ + CT3 + dT4, .AT3 + BT4] = [CLTl, .ATg] = CL.AT4 s

2The notation comes from the fact that ad : g — End(g), Y ~ ady, is the differential at the identity of the
adjoint action Ad : G — End(g), g — Ady. We recall that Ad, : g — g is the differential at the identity of the
conjugation by g € G, i.e. of the map Cy : G — G, h— Ry-1(Lyh) = ghg™" .

3The non degeneracy condition on the exterior differential of the form dw — A cannot be satisfied when the
dimension of the manifold is even.
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and
[aTy + 0Ty + ¢Ty + dTy, ATy + BTy = [aT), ATs] = a AT .

In conclusion

9g = exp(aTy + b1y + ¢T3 + dT}y) exp(aT + bTy + 15 + JT4) =

_exp<(a+a)T1+(b+l§)T2+ [(c—l—é)—l—'ﬂ Ts + [(d+ci)+l;+“4(a12_d)] T4> .

We have finally recovered the group multiplication law in E,4 in local coordinates

—~
B
o
o
U
~—
|
~—~
o
™
U
N~—
|
|

4.3 Sub-Riemannian structure on E,

We can endow E; ~ R? together with the distribution D = span({Ty,T5}), with a Sub-
Riemannian structure starting from the the one of Hj described in section 2.3, i.e. the one
defined by the Sub-Riemannian metric 2.5. Let 7, : R* ~ H3 x R — Hj; be the canonical
projection (m,w) + m,(m,w) = m, and 7, : Hy — R?, my(x,y,2) — (x,y) the projection of
section 2.3. We consider the composition 7 := 7, o m,, and we define a Sub-Riemannian metric
on D as

Js|a(u, v) := (meu) - (me0) (4.23)

with A € R, u,v € D|y C Th\R*, and -’ is again the Euclidean scalar product in the plane. In
other words the Sub-Riemannian metric 4.23 just defined is 2.5 pulled back with m,. As usual
we denote the Sub-Riemannian manifold R* with the distribution D and the Sub-Riemannian
metric g, with the triplet (R, D, g,).

Normal length minimizers. We now study the length minimizers of (R*, D, g,) using the
Hamiltonian formalism of section 1.5. The phase space is now T*R* ~ R8, with 7 : R® — R4
the canonical projection, and the Sub-Riemannian Hamiltonian is

HL(€) = 5 (M) + 1) | (4.24)

with h;(€) = &(7.T3), i = 1,2,3,4 and £ € RS, the fiber-linear functions that we use as
coordinates in the fibers of the cotangent bundle. We compute the fiber part of the Hamilton
equations using the properties of the Poisson brackets

hi = {Hy, h1} = {ha, h1}he

712 - {Hs7 hz} = {hh hz}h1

hs = {H,, h3} = {h1, hs}hy + {hs, hs}hs
hy = {H,, ha} = {hy, ha}hy + {ho, hydhs .

(4.25)

Moreover we know from previous computations (see 1.42) that

{hi, hi}(€) = &([T5, T5))
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and from 4.22 we have

hy = —hshy
hy = hahy (4.26)
hs = hy '
hy =0

Again the Hamiltonian is constant along the solutions of the Hamilton equations. We can then
restrict to the cylinder h? + h3 = 1 and use the change of coordinates 1.45 while leaving hy
unaltered. The system 4.26 reduces to

19 - h3
hs = hy (4.27)
hy=0.

We know that the Hamiltonian vector field of 4.24 project into R* producing the dynamic
\ = 7. Xg, = h'X;. In our case \ = cos()17 + sin(¥)Ty. From the structure of 77 and Ty we
can easily see that the projections of normal minimizers into the plane 7(R?*) = R? (recall that
m(x,y, z,w) = (m, o my)(z,y,z,w) = (x,y)) are again arcs of circles, i.e. curves with constant
principal curvature.

Centroid problem. From the variational viewpoint the problem of finding Sub-Riemannian
length minimizers of (R, D, g,) as above is equivalent to the problem of finding the Euclidean
length minimizers in the plane 7(R*) ~ R? with two additional constraints. Indeed by defini-
tion, the Sub-Riemannian length [, of an admissible curve A : [0,1] — R* is

/JgSIA ) dt = /\/7r T A()) dt . (4.28)

Calling ¢ := 7(\) we have

- /01 Voo dt=1(o), (4.29)

where [ is the Euclidean length of o. Furthermore, since A is admissible we also have that its
projection 7, (A) =: ~y satisfies the condition 4.10, i.e.

/01 Aly (3(t)) dt = w(1) = const.

In our case A = %dy7 so that using 4.9, we find A(Y) = A(u, X + u,Y) = %uy. Now,
since m,(y) = o we have that ¢, = u,, and then the constraint on A 4.10 is equivalent to the

constraint on o given by
1 ho?
/0 ey dt = (1) (4.30)

Moreover, we have already seen that the condition on v to be admissible is equivalent to the
constraint on o given by 1.32 that we recall here

| (006, () — 0y (6a(1)) At = (1) | (431)

Apart from constant integrations along the segment o(0)o(1) we can use Stokes theorem to
describe such constraints as double integrals over the bounded subset Y of the plane, whose
boundary is given by ¢ and the segment o(0)o(1). We finally get the conditions

{fzxdx/\dyzkl

4.32
fZ dz A dy = kQ ) ( )
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with kq, ko real constants. Geometrically, the first condition says that we are fixing the product
of the area of ¥ times the coordinate of the centroid along x. But since by the second integral

condition we are also fixing the area of 3, we are restricting to curves that enclose a fixed area

equal to ko, and have the centroid lying on the line z = %
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Chapter 5

Abnormal curves

In this chapter we give a description of abnormal curves arising from the sub-Riemannian struc-
tures studied in the previous chapters. After some generalities about abnormals we concentrate
on the case of distributions of growth vector (2,3) and (2, 3,4), which are the ones that arises
from the construction of C}; when we use a constant magnetic field. After that we take the
magnetic field to be generic and describe the effect on abnormal curves.

5.1 Sub-Riemannian length minimizers

Let (M, D, gs) be a sub-Riemannian manifold and k£ € N the constant rank of D. The problem
of finding a length minimizer between two points P, Q) € M, called a sub-Riemannian geodesic
connecting P to @, is expressed as the problem of finding the

min{l;[y] s.t. v € L*([0,1], M), v(0) = P, (1) = Q, #(t) € D], Vt € [0,1]} , (5.1)

with

Lh) = [ VoGO, 30) d 52

Clearly, since ¥ exists almost everywhere in [0, 1], where it does not, the condition §(t) € Dl
is considered to be satisfied. We suppose that both the points are contained in an open subset
U C M where there we choose an orthonormal frame for D, {X;};—1 .. x. In this way we can

write 4 using u’ € L*([0,1],R), i =1,--- , k, controls

Y(t) = u'(H)Xi(v (1)) - (5.3)
The length functional then becomes a functional over the space of controls. Denoting compre-
hensively the controls as u := (u!,--- ,u¥) € L?([0,1],R¥), we have

L) = [ Voo (X G w000 = [ i@ de =Tl (64

Notice that since the constraint on v and [ are parametrization independent, (by Holder in-
equality) the length minimizers are energy minimizers, i.e. they minimize the energy functional

Sl =y [ o G0 30) dt =3 [ ui(eyute) at = &Ll (5.5)

We can readily compute the differential at u of the energy functional

(AE)u() = [ wi(t) dt | (5.6)

for all variation (tangent vector) v € T, L*([0, 1], R*) ~ L?([0, 1], R¥).

45
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Endpoint map. We now want to write explicitly the constraint on + as a constraint on
the controls. If u € L%([0,1],R*) is a control we denote as v, € L*([0,1], M) the solution of
4 = u'X; starting from P € U.

Definition. The t-point map based on P € U is the map E% : L*([0, 1], RF) — M, u s v,(t),
with ¢ € [0, 1]. In particular we call the endpoint map based on P, the 1-point map and denote
it simply as Ep := E}.

Differential of the Endpoint map. The following proposition tells us how to compute the
differential of the endpoint map.

Proposition. Let Ep : L*([0,1],R¥) — M be the endpoint map relative to the distribution
D = span({Xy, -, X }) then its differential at u applied to the ‘tangent vector’ v at u is equal
to

1
(@BR)(w) = [ ((@0).X7) b dt (5.7)
where @}, is the flow of X* = v’X; and X" = v'X.

Proof. See [ABB19], sub-section 8.1.1. O

Lagrange multipliers. We state a fairly general theorem about critical points. Let F': {2 —
M and f : Q@ — R be differentiable functions, 2 and M being manifolds (possibly infinite
dimensional).

Theorem. Given m € M, if u is a minimum (or a maximum) for the function f|p-1(,,), then
there exists a nonzero (A, v) € T M x R such that

Al(dF)|u(v)) + v(df)]u(v) =0, (5-8)

for all v € T,€).
We distinguish between two different situations.

Definition. We call v a minimum of f|z-1(,,) normal iff rank ((dF")|,) = dim(M) and (df)|. # 0.
We call a minimum (strictly) abnormal iff rank ((dF')|,) < dim(M) and (df)]|., # 0.

The normal case correspond to the usual Lagrange multipliers rule in Analysis. In that case
there is a co-vector (A,v), with v # 0, such that 5.8 is satisfied. In the abnormal case
instead the solution to 5.8 is given by (A;,0), ¢ = 1,---  corank ((dF')|,) = r, such that
span({Ay, -+, A }) =~ coker ((dF)|,). We can now prove the following,.

Theorem. If ~y, is a sub-Riemannian length minimizer of (M, D, gs), connecting ~,(0) = P and
(1) = @, then one of the following relations holds ((N) stands for normal minimizer and (A)
for abnormal minimizer)

(N) hi(t) = (M) Xi(W(t))) = wilt) (5.9)
(A) hi(t)=0, (5.10)
where A, (t) € T M for all t € [0, 1].
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Proof. We only need to consider the Lagrange multipliers rule 5.8 (i.e. the constrained Euler-
Lagrange equations) for & and Ep, which thanks to 5.6 and 5.7, give us for \q € THM,
veR

Ael(®f1)Xi)lQ) = —vui(t) , (5.11)

or equivalently,
(A1) Al Xi(nu(1)) = —vu(t) - (5.12)
Setting A\, (t) := (d@ﬁl)uf(t))@, in the normal case we can choose v = —1 and get the desired

result (N). In the abnormal case we have v = 0, hence also (A) easily follows. Moreover, observe
that the transposed differential (d®},)|™" defines a flow in T*M, (X, t) — (d@;"l)gg\))\, which
corresponds to the (time dependent) vector field u'X},, i.e. the cotangent lift of the (time
dependent) vector field u'X;. O

Normal minimizers. The following theorem tells us that normal minimizers are projection
of an Hamiltonian system on T*M, 7 : T*M — M.

Theorem. (Normal extremals.) Let 7y, : [0,1] — M be a normal length minimizer of (M, D, g;),
parametrized with constant speed. Then there exists a curve A, : [0,1] — T*M, such that
(M) = 74 and

M = Xu,

with H, the Sub-Riemannian Hamiltonian of g4, which is given by .

HL(3) = by (Z hj<A>Xj<w<A>>,Zhj<A>Xj<w<A>>) , (5.13)

J=1

having h;(A) = (M| X;(w(N))) for all A € T*M.

Proof. We have already shown that the cotangent lift the flow of a vector field X; € X(M)
is the flow of the Hamiltonian vector field associated with h;(\) = (A|X;(7()A))). This means
that, if (t), = u’(t)X;(7(t)), then A\, (t) = u'(t) Xy, (A(t)), but since v, is a normal minimizer,
ui(t) = hi(M(t)), hence A\, = h’X,,. On the other hand, since the X;’s are orthonormal
H = $h'h; and the Hamilton equations become A= Xy =hX,,. O

5.1.1 Step of a distribution

We always suppose the distribution D C T'M to be bracket generating at all points of M.
This means that taking a sufficiently high number N of brackets we obtain enough linearly
independent vector fields to span TM. Given F := {Xy,--- , Xy} C X(M), k > rank(D), a
family of vector fields describing D, we define the following subspace of T}, M

Lie)y (F) := span ({{Xi,, -+, [Xi, ,, X, JIm) : me M, X, e F, n<N}),  (5.14)

n—17
and call the step of D at m € M the minimum integer s(m) such that Lie2™(F) = T,, M.
By convention we set Lie} (F) := D|,,. Clearly the step can vary with m. It is also useful to
record the progression in the dimension of Lie)) () when N varies and fixing m. We define the
growth vector at m € M as the vector (ki(m),ka(m), -, ksm)), where k; := dim(Lie/, (F)).
This means that k; = rank(D) and k() = dim(M).

Proposition. The integers k; do not depend on the family F = {Xy, -+ , Xy} C X(M) describing
D.
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Proof. Locally, in an open U C M, k = rank(D). Start by considering ky. We have [X;, X;] =
c?th + SZ-Yh, where Y, € X(M), h = 1,--- ,corank(D), complete F to a frame for T'M. Let
{Xl, e ,Xk} be another frame describing D. Then we have

Xi(m) = a](m)X;(m) ,

with a! € C®(M) giving the coefficients of a linear invertible map a(m) € GL4(R) at every

m € M. Computing the bracket using the new fields we get
[XZ-,)N(]-] = [aﬁXl,a;’Xh] = aia?[Xl,Xh] mod(D) = aﬁa?s%Ym mod(D) = 85 Ym mod(D) .

Now, since a is invertible, s = 0 if and only if sj; = 0. This means that there exists [ and
h such that sjy # 0, i.e. kg = k+ 1 if and only if there exist ¢ and j such that s} # 0, i.e.

ko = k + 1. We conclude that ky = ky. The equivalence of higher order brackets conditions is
similar. ]

The previous proposition tells us that Lie)) (F) does not depend on the set F = {X1,---, X;},
and that is equivalent to the following geometric definition. Let Xp(M) be the set of sections
of TM taking values in D. Then we could set

Liep (D) = span ([Xi,, -+, [X;, ,, X;][(m) : m e M, X;, € Xp(M), n < N}) , (5.15)

which we shorten as Lie)) (D) := (adbS"SND>

, without mentioning any frame.
m

5.2 Abnormal curves

It is easy to show that the zero level set of the sub-Riemannian Hamiltonian H;'(0) is a
(2n — k)-dimensional submanifold of T*M which can be seen as the sub-bundle given by the
annihilator D+ C T*M of the distribution D C TM

D' := || D'm, (5.16)
meM
with
Dt i={peTiM : (p|X;(m)), i=1,--- Kk} . (5.17)

In other words, if the distribution is described by the Pfaffian equations

al =0
(5.18)
an—k’ =0 ,
with o/ € AY(M), j=1,--- ,n — k, we have
D+ =span({a',-- ,a"F}) . (5.19)

The structure of D+ is made clear by expressing the symplectic form in terms of the frame
{ut, -+ pk} dual to { X1, -+, Xi.} and {ay, -+, *} dual to {7, -+, Y, }. Again denoting
as h; the coordinates induced by the X;’s and k; the ones induced by the Y}’s from section 3.1
we have

o =dh; A p' + hidp’ + dk; A o + kyda? (5.20)

hence ' .
O'|DJ_ = C”CJ Aol + ]deO{J . (521)
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From condition 5.10, abnormal curves belong to the subset D+ C T*M. We can further char-
acterize them as follows.

Theorem. Let 7, : [0,1] — M be an abnormal curve of (M, D, g;). Then there exists a Lipschitz
curve A, : [0,1] — D+ C T*M such that 7(\,) = v, and

Ay € ker(o|pe) (5.22)

Proof. Given an abnormal ~, with u Lipschitz controls, the previous theorem tells us that there
exits a Lipschitz curve A, : [0, 1] — D% solution of

Ay = u' (1) X, (Au(t)) -

The tangent space to D+ at A € D™ is given by

T\D* = ﬂker ((dh;) ﬂker(th ) Span (Xn (M),

=1 i=1

IIDw

where the superscript ‘§” denotes the orthogonal with respect to . Consequently we obtain

N 5
o) = (D) = ( () spanC6, )] = span( X0+ X0, ).

i=1

This allows us to conclude that A, € ker(o|ps).

The previous theorem states that abnormal curves! live in the set
Char(D) := {\ € D : ker ((o|p.)|s) # {0}} . (5.23)

We also observe that being A an abnormal, from h;(A(t)) =0 for allt € [0,1] and i = 1,--- , k,
we obtain

0= ihz(k(t)) = (dhi) o (A1) =/ (£)(dha) [a) (Xn, (A(E) = @' ($){hy, hi}(A®)) . (5.24)

Hence defining the map H : D+ — Skew(k, R)
Hij(A) = {ha, b} (N, (5.25)

we get that
Char(D) = {\ € D* : det(H()\)) = 0} . (5.26)

We immediately notice that if the rank of the distribution is odd, then Char(D) = D*. In the
even case instead, we can write the determinant of # as the square of its Pfaffian Pf(). In this
way Char(D) = D+ N (Pf(H)™!) (0), which whenever d(Pf(#))|, is nonzero, is a (2n — k — 1)-

dimensional sub-manifold of T*M.

1We should call A (abnormal) and v = m(\) (abnormal curve or abnormal trajectory) differently, however
since their meaning is clear we use the same name for both the objects.
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Abnormals and corank-1 distributions. Let D C T'M be a rank-(n — 1) distribution.
Suppose that S; C M is the set in which the distribution have step greater than two (in other
words the points in which the distribution is involutive), i.e.

Sy :={meM : D*,, CT,,M}. (5.27)

If D = span({Xy,---,X,_1}), we can find a frame of TM by adding a suitable vector field

Y € X(M). Thanks to the proposition of section 1.1 we can describe Sy as the zero level set of

W—léﬁ functions s;;. Indeed if

D? = span({ Xy, -, Xpo1,512Y,  Smeym-1)Y }) (5.28)
where the functions s;; are defined by the Lie brackets
(X, Xj] = o, X + 53,V (5.29)
withl <i<j<n—1and1<k<n-—1, wecan write Sy as
So={meM : sj(m)=0,1<i<j<n-—1}. (5.30)
Computing the next order brackets we get
(X, [Xi, X5)] = [Xk, ;X0 + 83;Y] = Xi(s55)Y mod(D) . (5.31)

This allows us to give a geometric description of the points in which the step is greater than
three. Indeed setting

Ss:={meM : D3, Cc T,,M}, (5.32)
we have that
Sy={meM : (dsij)|m(Xk(m)) =0, 1 <i<j<n—-1 1<k<n-—1}, (5.33)
in other words
Ss={meM : D|, C(dsij)|m, 1 <i<j<n-—1}. (5.34)

Since s;; are smooth functions, apart from a discrete set of points, S5 is a smooth sub-manifold
(n—1)(n—2)

5 , and

TnSy= () ker((dsij)lm)

1<i<j<n—1

of co-dimension

so S3 is the set of points of M in which D is tangent to S;. We also see from 5.31 that in
2

general S; have co-dimension w, so the co-dimension of Sy N S; is M

In this case H; = {hi, hj}|pr = (e + sijhy)|pe = sijhy, where hy(X) := (A]Y (w(X))). From

this it follows that admissible curves inside S, are abnormals. Moreover it is rather clear that

the converse is not always true. More precisely, curves in S5 belong to the co-isotropic part of

Char(D).

Remark. This type of distribution is the one arising from the construction of C]@ when M is a
n-dimensional Riemannian manifold. The role of the functions s;; is played by the components
of the magnetic field §;;. A naive dimensional counting tells us that, since the magnetic field
does not depend on the vertical coordinate of C’J/\i], the co-dimension of S5 is equal to "(n;l),
so the only non trivial dimensions of the manifold are n = 2,3. For a magnetic field in a
Riemannian surface we obtain a surface in C]@, for a magnetic field in a three dimensional
Riemannian manifold we obtain a line in C’J[\Z. In the first case the distribution is generically

transversal to the surface, in the second the distribution is skew with respect to the lines.




5.3. ABNORMALS OF RANK-2 DISTRIBUTIONS. 51

Contact distributions. Suppose now that the sub-Riemannian structure is of contact type.
This means that D = ker(a), and a € A'(M) the contact form, is such that (da)|p is non
degenerate. From a remarkable formula we also get that

do(X;, X;) = Xi((a] X)) = X;((a] X)) = (][ X, Xj]) = —sij{alY) = —sij fhy = [H;i, (5.35)

for a non zero f € C°>°(M). In other words —(da)|p = fH. But then det(H) # 0, so
Char(D) = ), and there cannot be abnormals. We summarize what just found into a theorem.

Theorem. Let (M, D, gs) be a sub-Riemannian structure of contact type. Then there are no
abnormal curves.

5.3 Abnormals of rank-2 distributions.

We now address the case in which we are given a rank-2 distribution, that is locally described
by two vector fields X5 € X(M). It will be useful to define a particular type of abnormal
extremals.

Definition. An abnormal X : [0,1] — D% is called a nice abnormal iff

A(t) € (Dﬂm(t)))l \ (Di)’!vru(t»)L vt € [0,1] . (5.36)

Proposition. Along a nice abnormal of a rank-2 sub-Riemannian structure we have that his :=
{h1,h2} = 0 (Goh condition) and (hy112A(%), hao1 (A(t)) # 0, for all t € [0, 1], where hyjy =
{hi,{h1, ho}} and hogy := {ha, {ha, hi}}.

Proof. For the first part, since along an abnormal A, for ¢ = 1,2, h; = 0, we have that

d

%hz(k) = (th]uJXhJ> = Uj{hi, hj} = Hjiuj =0.

Since u # 0, it must be det(H) = hi, =0, i.e. hyp = 0.

Let now hi12(A(t)) = 0 for some ¢ € [0,1]. But then 0 = (\(¢)|[ X1, [X1, Xo]](7(A(t)))). The
same computation goes for hooy, and hence at least one of the two quantities must be nonzero,
otherwise A(t) € (D3| (aw))* O

The following theorem tells us that nice abnormals are (reparametrizations of) solutions of an
Hamiltonian system, hence are regular curves.

Theorem. Let A : [0,1] — D+ be an abnormal of a rank-2 sub-Riemannian structure. Then A
is nice if and only if it is a reperametrization of a solution of the Hamiltonian system

A(t) = Xu(A)) (5.37)

with initial datum A(0) € (D?ywo)))l \ (D3|W(A(0)))L, and where H = {hy, {ho, 1} }h1 +
{h1,{h1, ho} }ho = hoo1hy + hiihs.

Proof. See [ABB19], theorem 12.30 page 425. O
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5.3.1 Rank-2 distribution in dimension 3.

Let [X1, X3] = sY mod(D), so that Sy = {m € M : s(m) = 0}. Given A an abnormal curve,
the condition {hy, ha}(N\) = 0 leads to

{h1, ha}(A) = (A[X1, Xo](m(A))) = (Als(m(X)Y (w(A))) = s(m(A)hs(A) , (5.38)

where h3 is the dual coordinate of Y. Since h3 cannot be zero, it must be s(m(\)) = 0, hence
all abnormals are contained in Sy C M, which is called the Martinet set.

Consider the next brackets [Xg, [X1, Xo]] = Xik(s)Y mod(D). Always from the condition
{h1,ho} =0 we get
d

Sha()) = (dhya|A) = uF{hy, {h1, ha}}(N) = P hya(N) = 0, (5.39)

but we have that
hi12(A) = (Al[ Xk, [X71, Xo]]) = (ds|Xp) (7 (A))ha(A) -

In conclusion, since hg(A) # 0, we have necessarily that
(ds|u* X;,) (m(N) =0, (5.40)

in other words % = m,\ = v* X}, € T'S,. Condition 5.39 allows us to find the right control by
setting

L(t) = haar (A(¢
UQ( ) 221(A(t)) (5.41)
On the other hand the Hamiltonian vector field 5.37, restricted to D+ is
(Xm)|pr = h11aXn, + hoo1 X, (5.42)

This means that the projection v = w(\) on M satisfies
¥ =hieXo + hon Xy =V, (5.43)

which exactly the vector field that we just found as the intersection D N TS;. Observe also
that if y(t) € S5 we have hjja = hag; = 0, hence there would be an equilibrium.

Furthermore we can see that V' has zero divergence? at points of S3. Consider {u', u?, y3 =
a} € AY(M) the dual basis of {X;, Xy, X3 :=Y} C X(M). Since Ly, 1/ = ix,dy’, we see that
if [X;, X;] = ¢; X, then dp* = cf;u* A p?. Moreover, since da = bu' A p? for some function
b e C®(M), we have

Ly(pt Ap® A ) = (Lypt) A p? A’ 4 it A (Lyp?) A p® = erplhaan — Paag) (1 A p? A i)

This means that div(V) = cly(hae1 — hi12), so in conclusion (div(V))|s, = 0. The zero diver-
gence condition implies that the trace of the linearization of the system 4 = V around the
equilibria is zero. This means that the eigenvalues are either real (hyperbolic equilibrium) or
purely imaginary (a center). The non linear contributions then turns centers into focuses, but
leave the hyperbolic equilibria qualitatively the same (Grobman-Hartman theorem).

This results are applicable to the sub-Riemannian structure of C’fj made in Chapter 1, where
M was a Riemannian surface and § a magnetic field in it. The Martinet set here corresponds
to the zero locus of the magnetic field {(m,z) € Cy, : B(m) = 0}. If b € C®(M) denotes the
component of the magnetic field the nice abnormal extremal contained in the regular part of
the Martinet set is solution of the system

¥ = X1(b) Xy — Xa(b) X, .

2Given w volume form for M the divergence div(X) € C*°(M) of a vector field X is defined by the relation
Lxw = (div(X))w.
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5.3.2 Rank-2 distribution in dimension 4.

Let D = span({X1, Xo}) C TM. We can complete { X1, X3} to a frame for T M by adding two
independent vector fields Y; and Y5. The first bracket will be

(X1, Xo] = 1Y) + s2Ys mod(D)

where s15 € C*(M). We denote with ko the coordinates induced on the fibers of T*M by
Yio, ie. ki(A) := (A\lYi(w(N))), i = 1,2. Consequently we expect that the points m in which
(D?)|,, = D|,, belong to a sub-manifold of dimension two.

To simplify the notation we write [X;, X;| = cijk —l—sijk, with 7, j, k = 1,2. The next brackets
are given by

(X, [Xi, X5)) = [X, 5 X + s3] = (Xk(sgj) + s?jr;h) Y; mod(D) , (5.44)
where rl, € C>®(M) are defined by [X}, Y] = i, ¥; mod(D).

Growth vector (2, 3, ..., 3, 4). We consider first the equiregular case, in which the growth
vector is forced to be (2,3,4). This means that Y (m) := s;(m)Yi(m) + s2(m)Ya(m) # 0 for
all m € M. Up to a change of frame we can always set Y; := Y and then we can complete
{X1, X5, Y} to a frame of TM by adding an independent vector field Z € X(M). The second
order brackets become

(X4, [X1, Xo]] = [Xi, Y mod(D)] =r,Z mod(D?) (5.45)

where 715 € C*(M). As a consequence, the set of points m € M at which (D?)|,,, € (D?)],,
is again given by a sub-manifold of dimension two. This is exactly the case encountered in
Chapter 4 when we introduced a magnetic field in the Heisenberg group. In particular the
functions 7 o correspond to the components of the magnetic field b, ,. When the magnetic field
is a non zero constant, we then obtain the Engel distribution, and the growth vector is (2,3, 4).

Consider an abnormal curve A : [0,1] — Dt having A = w'X,,, i = 1,2. The Goh conditions
tell us that if [ X7, X5] =Y mod(D), we have

0= hia(A) = (A[X1, Xo](m(A))) = (MY (w(X))) = k1(A) (5.46)

where k; is the dual coordinate induced on the fibers of 7*M by Y. Contrary to the co-rank
one distribution case, here k1(A) = 0 is a non trivial solution since ka(\) := (A Z(7(N))) is free.
In order to find the controls of the abnormal curve we observe that

0= k(N = (dky|u' X)) = u{ky, hi}(\) (5.47)
Now, form 5.45 we obtain
{k1, hit(A) = A[[X1, Xo], Xi]) = =ri(m(A)(A[Z) =2 —ri(m(A))Ra(A)

and since ky # 0 we see that 5.47 is satisfied as long as

{ul(t) = ry(m(A(t))) (5.48)

The unique abnormal of an Engel type distribution, where at least one of the r;’s is nonzero, is
therefore nice. Moreover, since there are no restrictions on the base, there is an Engel abnormal
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passing through each point of M. Notice in particular that if 7, = 0, and ry # 0, the abnormal
trajectory is generated by the flow of X; and vice versa if r = 0, and r; # 0 the abnormal
is generated by the flow of X5. In a more intrinsic way we see that the abnormal curve is
generated by the flow of the vector field X € D such that [X, D?] = 0 mod(D?).

In the case in which ry = r, = 0, i.e. in the zero locus of the magnetic field, the Engel abnormal
becomes an equilibrium point. As we said previously, apart from a disctete set of points, this
set is a sub-manifold of dimension two S, and since the distribution has rank two we expect
the intersection D NT'S to be generically empty. It follows that the only abnormal curves that
project inside & are the equilibria of the abnormal specified by 5.48.

Abnormal of the Engel distribution. Consider the case of a constant magnetic field
studied in Chapter 4 which give rise to the Engel distribution. We recall here the vector fields
of the distribution

=X
b2 (5.49)
T2 =Y + %aw )
where X and Y are the vector fields of the Heisenberg structure 2.3
X =0,— %0,
2 (5.50)
Y =0,+350. .
The second order bracket gives
Ty, 11, T3]] = 0,
[ 17[ 1, 2]] (551)
[T27 [T17T2]] == 0 )

which corresponds to a magnetic field § = dx Aa. The Engel abnormal is then a reparametriza-

tion of a solution of y = Ty = -9, — 50, — %Qc%, i.e. a straight line
x(t) = xo
) =yo—t
y(t) =10 . (5.52)
2(t) =z — 7725
w(t) = wy — Pt ,

with (2o, Yo, 20, wo) € R* initial datum.

In the following we consider non trivial magnetic fields coming from physical models, namely
the monopole and the dipole.

Magnetic monopole. We now consider the magnetic potential of a magnetic monopole.
We start by rephrasing the description of forms using a cylindrical coordinate system in Hs,
(x,y,2) = (r,,z). In these coordinates we use the frame {dr, rdy, a}, where now the contact
form 2.2 is written as a = dz — gdgp. The dual frame of {dr,rdy,a} is given by {R,®, 7}
with

R:=0,
P — 3799 + % (5.53)
Z =0,

Its is straightforward to check that this frame is orthonormal with respect to the flat metric
2.5 of H3. The Rumin complex can be described as Q'(Hjz) = span({dr,rde}), Q*(H;) =



5.3. ABNORMALS OF RANK-2 DISTRIBUTIONS. 95

span({dr A a,rdp A a}) and Q3(H;) = span{a A da}. We also have an expression for the
operator D in these coordinates.

Proposition. Given A € Q'(Hs), with A = A, dr + A, rdp, we have

DA = (R(vy) — Z(A))dr Na+ ((y) — Z(Ay))rde A ac (5.54)
where
- R(T:w —B(A,) . (5.55)

Proof. See [Cas+21], proposition 4.1. The proof is completely analogous to the one of the
proposition at page 36. O

We further notice that the closure of the magnetic field implies that its components are not
independent. We have indeed the following proposition.

Proposition. Given 8 € Q*(Hj), with 8 = DA and 8 = B.dr A a + B,rde A a, we have

Bo(r, 0, 2) = /0 CO(8,)(F, 0, 2)F dF . (5.56)

Proof. See again [Cas+21], proposition 4.2. ]

Notice that from 5.56 it follows that if the magnetic field depends only on the radial coordinate,
we have 3, = 0. In this case the zero locus of the magnetic field is generically a co-dimension
one sub-manifold of E,.

The horizontal distribution in the Heisenberg group (see 2.3) is spanned by R and ®. If § = DA,
and A = A,dr + A, rdyp, the Horizontal distribution of Cﬁ:ﬂ is spanned by

{T1 = R+ A(R)D, = R+ A0, (557

Ty =&+ A(®)D, = P+ AD, .

The first bracket is given by
A
(T3, T5) = (R Ay, @4 A,00) = [R, @)+ (R(A,) = B(4.))00 = [R, 8]+ (7= 2 ) 0. (5.58)

As we already proved in general, from this expression we see that the growth vector of Cﬁg is
of type (2,3,---,4). Observe also that since R and ® are not L-invariant, {R, ®, Z} do not
solve the Heisenberg algebra. The next bracket is given by the following expression

A
73 (T3 Tel) = (R 1R, @)+ (RG) = R(52) = [R.@)(A,) ) 0 (5.59)
Since we have [R, 9] = —‘2—“5 % and [R, R, ®]] = 2%, we can compute the step by looking at
the following determinant
1 0 0 A
0 + 43 A, _B C A,
det 0o -4 L B =t T s (5.60)
0o % 0 C.
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where we used a shorthand notation for the coefficients of d,,. With a bit of work we can rewrite
this determinant in a more meaningful way:.
B C A A R 1 A 1/0 0, A
Po A SO Lg(A) 1(% 0y A
r

rZ2 73 72 73 r r

= 2R - 2+ 5 (% + 5 ) a0 - Rt - G4 -

22
B 5; + :2 (P(A,) — R(A,) + R(A,) — ®(A,)) = 6[ :

As it happened in the case of L-invariant frames the step depends on the component of the
magnetic field. However in this case the second order bracket does not involve directly the
magnetic field (confront 5.59 with 4.16). The other second order bracket is given by

(T3, [T, T»]] = [Cb + Aydu, [R, ®] + (7 - ?) aw] _

o(4,) | (4,)

r r

= [D, [R, D]] + (@(7) - = Z(A<p)> Ow = B0 -

The the second bracket is independent if and only if the following determinant is non zero.

1 0 0 A,
0 L 45 Ao | _ b
00 0 B,.

We have then recovered our previous result on the step of the distribution D = span({T},T>})
in Cﬁg, i.e. that the step is strictly greater than 3 if and only if 5 # 0.

We now consider the following scalar potential of a magnetic monopole in Hj

1
the standard magnetic 1-form being B := dV = — \/r’;cj:zzg — \/réizzzp, = —Td’”;rifdz, where p? =

r?2 + z2. Since we are looking for a magnetic potential we shall compute first the standard
magnetic 2-form xB. In cylindrical coordinates we have

(*B)ij = TgijkBk = T(&ijTBr + €Z‘szz) s

hence
2

*B = %dz/\dgp— z—gdr/\dgo .
P P
It is easy to see that the magnetic potential A, such that dA = xB is given by

=y
e

A:

We can now express A in terms of the generators of Q' (Hj) as A = A,dr + A,rdp = %rd@,
and compute the magnetic field according to Rumin as § = DA. We have v = —p%, then

z 3rz
67‘:87’<_p3> :Fv
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Oy 10, z 2\ _ rt+2
w= () ()2 (5) =

As a consequence, except for the origin, which is outside the coordinate system, the magnetic
field is non zero, hence the growth vector is (2,3,4). Moreover, the only abnormal curves are
Engel abnormals.

and

Dipole-like magnetic potential. We consider now the potential of a magnet in Hs lying
in the (z,y) plane. If the dipole moment is m € H3, the vector potential A € X(H;) at x € Hj

is given by
m X X
A ="5p

where the bold letters denotes three dimensional vectors and “x” stands for the standard
vector product in R3. Referring to the Cartesian coordinates of Hs, (x,vy, z), we assume that
m = (1,0,0), and hence, the potential is

(5.63)

_ydz  zdy
where r := |x|. This potential is equivalent modulo the contact form « (see 4.1) to the form

24 —922)d
Y fv+($y z)dy

A=—
23 23

(5.65)

We can compute the magnetic field according to Rumin 3 = §,dz A a + B,dy A a. From 4.6

we have oy (X (<y2—2>) v (—;)> 7 (_;> _
(e ) (32) 1)+ ) -

— (6yX +122) (21703> + ((oy — 22)X + XY (;ﬁ)) .

For 3, we get

s (s (52 o () ()
1

o (25 () ) o202 () -

3 1 9<,9 1
=5t ((6yY + (xy — 22)2)) (%3) + ((;By —22)YX +yY ) <27"3> :
Notice that by neglecting the inverse cubic term we obtain again the Engel distribution. After

a long computation we get

3
B = g7 (=24aty + 2% — 2y’ (4 + %) + dwy(—1 +y%)2" = 24 +y(=1+T))2(y" + 2°)—

—2%y(24y* + 1(—=16 +y*) — 2(— 16+ y + 3y°) 2 + 24y2?) + 2y (y* + 202 (—2y +22) — dy* (=5 +2?)))
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We obtain equally complicated expression for the other component. This makes the computa-
tion of the Engel abnormal not very enlightening.

Remark. The expression of the magnetic potential for the monopole and the dipole are in
contrast with the metric structure of Hs. We shall instead use for the monopole a potential like
1

since it has the property of being homogeneous under the natural dilation in Hs, (z,y,2) —
(ex, ey, €22).

Vir,z) =



Appendix A

Principal connections

Let 7 : P — M be a principal bundle with base M and characteristic fiber a Lie group G. The
projection defines a distribution in T'P called the vertical distribution V' as

V=||V,=|]ke(m]|,) CTP.

peP peP

Definition. A connection on P is a distribution H C TP, called an horizontal distribution,
such that
TP=HoV,

in the sense that T,P = H, ® V), for all p € P and that is equivariant with respect to the right
translations R,(p) = pg of P, i.e.
Hypg = Ry, Hyp -

We shall give two other equivalent definitions of a principal connection.

Definition. A connection on P is a g-valued 1-form on P called the connection 1-form, i.e. a
certain w € A'(P,g) such that

Ryw=Adg-10ow Vgei,

and brings the vector fields of the right actions to their generators in the Lie algebra
Wl(Xe(p) =€ Vpe P

with Xe(p) 1= g Rexp(ie) (P)|i=o = G0 exp(tE)]i=o.

Definition. A connection on P is a correspondence between the local trivializations Ty
7Y U) — U x G of P and g-valued 1-forms on U open subset of M. If wy € AY(U,g)
corresponds to Ty and wy € AY(V, g) to Ty, in the intersection U NV we have the compatibility
relation

wvlp(v) = ((L

where m = 7(p) € UNV, and gyy € C(UNV,G) is the transition function between the two
trivializations.

o) 0 (g0v)) (0) + (Ady-t (o 0 wul,) () Vo € T(UNV),

-1
Juv

Remark. It can be shown that the three definitions just given are in fact equivalent. It is
customary in Physics to call the locally defined 1-forms wy the potentials. The reason for this
is that, at least for G Abelian, the exterior differentials of these forms lead to a globally defined
2-form F' € A?(M,g) called the field strength, which is an observable field. Important is the
case of Electromagnetism in which M is the Minkowski 4-dimensional space-time and G' = S!.

29
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In this case F' contains the Electric and Magnetic fields.

We notice that it is clear, mostly from the first definition, that there is an isomorphism between
H and T'M. This comes from the definition of ‘H and that 7 is a submersion. Secondly, if
w € AY(P,g), we have that ker(w) ~ H ~ TM. We finally observe that the relation between
the local potentials wy and a connection 1-form w can be established using the local sections.
If sy : U — P is a local section we can take wy := sj;w as local potential.

Curvature of a principal connection. We define the following operation

Definition. Let ¢ € AY(P,g), v € M(P,g), we define [p, 1] € A'(P, g) through the relation

1 o
S (Do Xy Ko@) Y Xogrnys s Xoap)]

[0, ) ( X1, -+, Xigj) = FTT
UJ* pes(iti)

where &(i + j) is the permutation group of i + j elements, |o| the sign of the permutation o,
Xi--+,Xitj € X(P), and the bracket on the RHS is the Lie bracket of g.

We turn our attention back to the splitting defined by the choice of a connection TP =H ® V.
We can then uniquely write every vector field X € X(P) as the sum of its vertical and horizontal
components

X(p) = XY(p) + X (p), X'(p) €V, X" (p) EH, .

Consequently we have that m,(XY) = 0 and if w is the connection 1-form w(X*) = 0. We can
therefore define horizontal differential forms as follows.

Definition. Let ¢ € AY(P,g). The horizontal part of ¢ is the form " € AY(P,g) defined
through the relation
@H(Xla e, X)) = QO(XZ{> T 7XH) :

(2

Definition. Let H C TP be a connection on P. The exterior covariant derivative of a form
¢ € N(P,g) relative to the connection H is the form V*p € A™1(P, g) defined as

V% = (dp)™ .

If the connection H is specified by the connection 1-form w, we use also the notation V¢ := V7.
In the case only one connection is considered we will omit the superscript.

We are now in the position to define the curvature of a principal connection.

Definition. The curvature of a principal connection 1-form w, denoted as Q“ is the exterior
covariant derivative relative to the connection itself of w, i.e.

QY :=V¥we AN (Pyg) .

Theorem. (Structural equation) If w is a connection 1-form on a principal bundle, we have the
following identity

1
QY =V =dw + i[w,w] :

Notice that in the Abelian case the covariant derivative coincides with the exterior differential,
as it happens in Electromagnetism.
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The circle bundle on a surface. If we consider a Riemannian surface M, we can construct
the circle bundle over it as the collection of tangent vectors with unitary length with respect
to the Riemannian metric. We denote this set as SM. This space has the structure of a
principal bundle 7 : SM — M with base M and characteristic fiber the Abelian Lie group
S'. Let {e1,es2} be an orthonormal frame for TM over the open subset U C M. The two
sections defines a local trivialization of SM as follows. Given s € 771(U) we can then write it
as (m(s) = m)

s = cos(¥(m))e; + sin(P(m))es ,
where ¥ : U — S! is a uniquely determined function. The local trivialization of T'S over U is the
map Ty : 7 1 (U) — U x S', s — (m,¥(m)). The right translations by S' are simply rotation
of the frame, i.e. R,s = sa is such that in the trivialization of before Ty (sa)) = (m, 9 + «).
A connection over SM is a Lie algebra valued one form over SM. Since the Lie algebra of S!
is diffeomorphic to R, we can consider ordinary 1-forms in A*(SM).
We denote with V' € X(SM) the (locally defined) generator of the vertical distribution ker (),
and consider a connection 7 € AY(SM). There exists a unique horizontal lift of vector fields on
the base M, in particular we denote as {Ej, Ey} the horizontal lift of the orthonormal frame
{e1,e2}. We recall that by this we mean that for i = 1,2 we have

{:?:60 (5.66)

We choose a suitable normalization such that 7(V') = 1. This means that in local coordinates
V = 0y and 79 = 1. Observe that {Ey, E2,V'} is now a frame on SM. Next we consider the
brackets

[Ey, Ey] = ¢ By + CoFy + 0V | (5.67)

where ¢, ¢, v € C*°(SM). Using 5.66 we have
T ([B1, B]) = [ Br, m ] = [e1, ea] = cre; + caen
and on the other hand, by 5.67
o[ F1, Bo] = &1 By + Comi By + vm,V = 1eg + Coey .
Consequently ¢; = ¢; and ¢ = ¢o. Finally we can write
[Ey, Eq] = 1By + coFy + 0V (5.68)
We now define for i = 1,2 the following forms® w; € A'(SM) through the relation
wi(X) = g(mX,e) , (5.69)

for all X € X(SM). Notice that w;(X) is the component of 7, X along the vector field e; with
respect the metric g. One possible way to define the Levi-Civita connection in a circle bundle
is the following (see [ST15] chapter 7 section 7.2).

Theorem. There is a unique principal connection 7 € A'(SM), called the Levi-Civita connection
relative to the metric g, such that

(5.70)

dw; =7 A wy
dw2:—7/\w1 .

H

3These are horizontal forms in the sense that w; = w*, with H := ker(7) the chosen connection. Using the

dual frame of {e1,ex}, {u', u?} we can express them as w; = 7*u'.
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From these conditions we can compute 7 using the frame of T7*SM given by {w;,ws,dd}. On
the one hand we have for i = 1,2

dw;(E1, Bp) = By (wi(Es)) — Ea(wi(E1)) — wi([Er, Ea]) =

= E1(6i2) — E2(0i1) —wi(c1 By + 2By + V) = —c1041 — €ain -
The RHS of equations 5.70 returns for i = 1, 2

(=1 (1 Aw;) (B1, By) = (—1)" (116i2 — T2031)

T =— —C1
To — —C2 .

In conclusion The Levi-Civita connection can be written as

Equations then 5.70 lead to

7 =d9¥ — cqw; — cows
or using the dual frame {u!, u*} we get
r=dY — i, (5.71)

which is the form used in the first chapter section 1.5.

Curvature. Since S! is abelian, from the structural equation we see that the curvature two
form is Q7 = dr + 3[r,7] = dr = —d¢; A 7' — ¢w*dp’. But we have just proved that
du' = —(c16i1 + codp)pt A p? = —c;put A p®. On the other hand the ¢;’s are functions on M,
hence d¢; = e;(¢;)m* 1 so that at the end we arrive at the expression

Qr =— (61(62) —ey(c1) — & — c%) (' A p?) . (5.72)

In the present case of a Riemannian surface the curvature form has only one component that
can be shown to be precisely the opposite of the Gaussian curvature of the surface. The same
expression is found for example in [ABB19] chapter 4 section 4.4.



Appendix B

Affine connections on a vector bundle

Let m : E — M be a vector bundle of rank k with base M of dimension n. The projection
defines a distribution in TFE, called vertical distribution, that is the subset

V= || ker (m|.) CTE .

eeE

Definition. A connection in F is a distribution H C T'F, called the horizontal distribution,
such that

TE=HoV.

Theorem. For all X € X(M) there exists a unique Vy € X(F) such that 7.Vx = X and Vy is
horizontal, i.e. takes values in H. We call the operator V : X(M) — X(E) the horizontal lift.

Proof. Since 7 is by hypothesis a submersion and H is a connection, 7, is an isomorphism
between H and T'M. O

With a slight abuse of notation we can then regard H as the image of TM via V., i.e.
H = V(TM). The notion of a connection naturally produce the notion of parallel transport
of sections of E along curves in the base. Indeed a section of E along a curve v : [0,1] — M,
i.e. amap V :[0,1] — E such that 7(V(t)) = ~y(¢) for all ¢ € [0, 1], will be said to be parallel
transported if and only if V(t) € H for all t € [0, 1].

A natural question arise about whether the horizontal distribution is involutive or not. To
measure how much H fails to be involutive, we define the following object.

Definition. Let V : X(M) — X(E) be a connection. We define the Riemannian curvature
tensor via

R(X,Y) = [Vx,Vy] — Vixy] € X(E), X,Y € X(M) .

Observe that Vxy) is the horizontal part of [Vx, Vy], and hence R(X,Y) is the remaining
vertical part. We also remark that R(-,-) is a skew-symmetric covariant tensor taking values in
X(FE) since it is C°°(M)-linear and skewsymmetric in the arguments. * We end this paragraph

stating the following theorem, which is a direct consequence of Frobenius theorem applied to
the distribution H C TE.

Theorem. The horizontal distribution H is integrable if and only if the curvature tensor vanish.

4Regarding V as a 1-form on M, taking values in X(E), we can regard R a 2-form with values in X(E).

63



64 CHAPTER 5. ABNORMAL CURVES

The cotangent bundle. We consider the case in which £ = T*M. In this case we can use
the splitting 3.5 and express Vi, in the following way

0

in:Xi“'Fij%a
j

where I';; € C*°(T*M) measure how the horizontal subspace is immersed in 7'(7*M) with re-
spect the present splitting.
From the linear structure of the bundle we have the following fact.

Proposition. Thanks to the linear structure on the fibers we have

0
Vi, = X+ Thhys —
Ty

where Ffj € C*(M) are called the connection coefficient in the chosen frame.
We are now able to define the covariant differentiation of a section of T'M.

Definition. Let X,Y € X(M). We call the covariant derivative of X with respect to Y the
unique Z € X(M) such that

AMZ(m(N) =VxAY(r(N)) YAXeT* M.
Proposition. Using the frame {X;};— .. , we have
VX =T5X, .
Moreover for a generic vector field X = z?X; we have the following Leibniz rule
V! X = Xi(a!) + 27V, X; = (Xi(a") + Tha’) X .

Proof. By previous results

0
= X, +TEh— .
v, MRy
Moreover we have A\(X;(m()))) = h;. Then the result easily follows. O

Being able to differentiate functions and vector fields we can now extend the covariant deriva-
tive to all tensor fields over M. In particular we are interested to derive forms. To do so we
use the Leibniz rule.

Definition. Let XY € X(M) and o € A'(M) we define the covariant derivative along X of o,
denoted as Vxa € A (M), through the following identity (Leibniz rule)

Vx(aY))=(Vxa)(Y)+ a(VxY) .
Proposition. Using the dual frames {X;}i—;... , and {u'}i=;... , we have
V! = —Tjp* .
Furthermore for a generic form a = a;u’ we have
Vx,a= (Xi(ozk) — ngocj) T
Proof. We use the Leibniz rule
(Vxit!)(Xi) = Vi, (1 (Xi)) = 17 (V. Xi) = Vi, (6]) = T3p8] = =T .

Again is trivial to check the result for generic forms. O]
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The Levi-Civita connection. Between all connections we choose the only one compatible
with the Riemannian structure and torsion free, in the sense specified in the following.

Definition. We define the torsion of an affine connection V to be the map 7" : X(M) x X(M) —
X(M) defined by the relation

AT, Y) (@) = ol (Vx (), Yy (V) ¥ X, Y € X(M), YA€ T°M ,
where o is the symplectic form of T M.

Remark. Observe that T measures whether the horizontal distribution is Lagrangian® or not.

Definition. An affine connection V is said to be compatible with the metric g if and only if
Vxg=0 VXeX(M),
i.e. if the covariant derivatives along all vector fields of the metric tensor vanish.

Remark. Observe that the compatibility with the metric implies that V is also compatible with
the duality induced by the metric, i.e. Vyxfa ={Vya for X € X(M) and a € A (M).

Theorem.(Levi-Civita) Let (M, g) be a Riemannian manifold. There exists a unique affine con-
nection over T*M that is at the same time compatible with the metric and has zero torsion.

We do not prove the theorem, but recall a corollary to perform computations.

Corollary. 1f V is the Levi-Civita connection relative to the metric g, and {X;};—1 .., is an
orthonormal frame with [X;, X;] = ¢f; Xj, we have.

gk — Ltk = Cik s
and also
i k

Proof. The first condition comes from the fact that V has zero torsion and the second from
the compatibility with the metric. They are in fact simply the conditions above mentioned,
expressed with the orthonormal frames. O

A distribution D C T(T*M) of dimension n is said to be Lagrangian iff o|p = 0.



66

CHAPTER 5. ABNORMAL CURVES



Bibliography

[FC30]

[Mon90]

[Rum94|

[Mon95]

[AMOS]

[Frall]

[Ble13]

[VWA13]

[ST15]

[ABB19]

[Cas+21]

Académie des sciences (France) and E. Cartan. La théorie des groupes finis et con-
tinus et l'analysis situs. Memorial des sciences mathématiques. Gauthier-Villars et
cie, 1930. URL: https://books.google.it/books?id=nv8SAQAAMAAJ.

R. Montgomery. “Isoholonomic problems and some applications”. In: Communica-
tions in Mathematical Physics 128.3 (1990), pp. 565-592. DOI: cmp/11041805309.
URL: https://doi.org/.

Michel Rumin. “Formes différentielles sur les variétés de contact”. In: Journal of
Differential Geometry 39.2 (1994), pp. 281-330. pOI: 10.4310/ jdg/1214454873.
URL: https://doi.org/10.4310/jdg/1214454873.

Richard Montgomery. “Hearing the zero locus of a magnetic field”. In: Communi-
cations in Mathematical Physics 168.3 (1995), pp. 651-675. DOI: cmp/1104272494.
URL: https://doi.org/.

R. Abraham and J.E. Marsden. Foundations of Mechanics. AMS Chelsea publishing.
AMS Chelsea Pub./American Mathematical Society, 2008. 1SBN: 9780821844380.
URL: https://books.google.it/books?id=YAEKBAAAQBAJ.

T. Frankel. The Geometry of Physics: An Introduction. Cambridge University Press,
2011. 1sBN: 9781139505611. URL: https://books.google.it/books?id=gXvHCiU1CgUC.

D. Bleecker. Gauge Theory and Variational Principles. Dover Books on Mathemat-
ics. Dover Publications, 2013. 1SBN: 9780486151878. URL: https://books.google.
it/books?id=SFLCAgAAQBAJ.

K. Vogtmann, A. Weinstein, and V.I. Arnol’d. Mathematical Methods of Classi-
cal Mechanics. Graduate Texts in Mathematics. Springer New York, 2013. 1SBN:
9781475720631. URL: https://books.google.it/books?id=50Q1BQAAQBAJ.

.M. Singer and J.A. Thorpe. Lecture Notes on Elementary Topology and Geometry.
Undergraduate Texts in Mathematics. Springer New York, 2015. 1SBN: 9781461573470.
URL: https://books.google.it/books?id=8u7LCQAAQBAJ.

A. Agrachev, D. Barilari, and U. Boscain. A Comprehensive Introduction to Sub-
Riemannian Geometry. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2019. I1SBN: 9781108476355. URL: https://books . google.it/
books?id=nYKODwAAQBAJ.

Biagio Cassano et al. Horizontal magnetic fields and improved Hardy inequalities in
the Heisenberg group. 2021. arXiv: 2110.13775 [math.SP].

67



