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Introduction

In this thesis we consider particular sub-Riemannian structures that are obtained from other
sub-Riemannian structures with the presence of a magnetic field. The project was inspired by
an article of Richard Montgomery [Mon95], and was structured following the approach and
methods of [ABB19].

Sub-Riemannian geometry. A sub-Riemannian structure on a smooth manifold M can be
regarded as a generalization of a Riemannian structure in which the degrees of freedom of the
velocity of a particle moving in the manifold is limited to a vector sub-bundle of the tangent
bundle, which is also called a distribution and denoted with D ⊂ TM . The distribution is
endowed with a metric, the so called sub-Riemannian metric gs, which allows us to measure
length of admissible curves, i.e. curves tangent to the distribution.

Sub-Riemannian structures emerge naturally in the study of non-holonomic dynamical sys-
tems. For instance, consider a rolling-without-sliding disk on a plane or on a surface (e.g. the
wheel of a bike). It is clear that the wheel cannot translate in a direction orthogonal to its
plane. The configuration space is four dimensional (more precisely is locally diffeomorphic to
R2 ×T2 ), however, the phase space is not eight but only six dimensional! In fact the velocities
are contained in a distribution of rank two. A crucial observation, which can be derived also
by practical experimentation, is that even if not all movements are admissible, all configura-
tions can be reached following admissible curves. We refer to this fundamental property by
saying that the distribution describing the system is bracket generating. We call step of the
distribution the number of successive brackets augmented by one needed in order to span all
the tangent space. If our structure is also analytic, this situation is the exact opposite to the
one in which distribution is involutive.

In the involutive case, by Frobenius theorem the dynamics is stuck in the integral leaf
tangent to the distribution. The opposite result for bracket generating distributions, is called
Rashewsky-Chow theorem, and states that we can fill an open neighborhood of any point by
moving always tangent to the distribution. The limit case in which the distribution is all the
tangent space, the Riemannian case, the bracket generating condition and the involutivity are
equivalent and the two theorems coincides; the integral leaf being diffeomorhic to a Riemannian
ball.

sub-Riemannian geodesics. Riemannian length minimizers are solutions of the geodesics
equation and hence are regular curves. We can see sub-Riemannian length minimizers or sub-
Riemannian geodesics, as constrained minima of the length, where the constraint is given by
the requirement that the candidate minimizer must be tangent to the distribution. Where
the constraint is regular, we find that minimizers are solution of differential equations, hence
they are regular curves. We call abnormal curves the ones for which this constraint is not
regular, and for them we need to check separately if they are actual minimizers. This is the
infinite dimensional version of what happens in finite dimension, when we minimize functions
restricted to a sub-manifold of the domain. In that case, where the given constraint is regular,
we apply the Lagrange multipliers rule (v.s. the geodesic equation), and where the manifold is
not regular, we shall check separately if in such points the function have actually a minimum.
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An important, difficult, problem is then to understand when abnormal minimizers are regular
curves or not, depending on the properties of the distribution.

Contents and Results. The underlying idea behind the thesis can be summarized in the
following general principle.

Principle. Given a sub-Riemannian manifold of dimension n and step s and a magnetic field on
it, we can construct a sub-Riemannian manifold of dimension n+1 and step greater or equal to
s+1. Moreover, the step is equal to s+1 exactly where the magnetic field is different from zero.

We are able to make this principle precise, and actually prove it, in the case in which the start-
ing sub-Riemannian manifold is a Riemannian manifold or a contact sub-Riemannian manifold.

In particular, in the first part of the thesis we show how to pass from a Riemannian surface M
(i.e. a sub-Riemannian manifold of step one) to a sub-Riemannian manifold Cβ

M of step grater
or equal to two, by introducing a magnetic field β in M . This new space is realized as a real
line bundle over M . The sub-Riemannian metric is defined as the pull-back of the Riemannian
metric by the canonical projection of the bundle. We then prove both in coordinates and using
orthonormal frames that

Theorem. Normal sub-Riemannian length minimizers of Cβ
M project into the trajectories of

charged particles in M subject to the Lorentz force, i.e. the images of curves σ : [0, 1] → M
that are solutions of the Newton equation

∇σ̇σ̇ = ♯iσ̇β . (1)

This theorem is a particular case of a more general result present in [Mon90], but is here pre-
sented from a different viewpoint.

We verify that the step of Cβ
M is greater or equal to two, depending on the magnetic field,

and that when the magnetic field is nonzero, the step is exactly two. Moreover, we show that
when the magnetic field is a nonzero constant, Cβ

M naturally carries a Lie group structure, iso-
morphic to the three dimensional Heisenberg group. In this case the normal sub-Riemannian
length minimizers have a clear geometric interpretation as lifts of solutions of an isoperimetric
problem.

In the following we generalize the construction of Cβ
M with M a Riemannian manifold of

any finite dimension. First, using the frames formalism we recover the well known Hamiltonian
description of Riemannian geodesics (1) and the minimal coupling principle (2).

Theorem. 1) If γ : [0, 1] → M is a geodesic, then it is the projection of a solution λ : [0, 1] →
T ∗M of the Hamiltonian system given by the kinetic energy H = ∑

i h
2
i .

2) If γ : [0, 1] → M is the motion of a charged particle subject to a magnetic field β = dA,
then it is the projection of a solution λ : [0, 1] → T ∗M of the Hamiltonian system given by the
shifted kinetic energy HA = ∑

i(hi + Ai)2.

Using this result we are able two show that normal sub-Riemannian length minimizers of Cβ
M

projects into paths of charged particles.

In the second part of the thesis we consider the case in which M is a sub-Riemannian man-
ifold of step two, and we find significant differences with the Riemannian case, proving some
original results. Some of these results will be part of a research article that we plan to prepare
in collaboration with the thesis supervisors.
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In particular, we consider the Heisenberg group, which is a sub-Riemannian manifold of
contact type. The contact structure allows us to describe the magnetic fields using the Rumin
complex. With an original, explicit calculation, we show that the step of Cβ

M is greater or
equal to three, and exactly three where the magnetic field is nonzero. We show that the choice
of a constant magnetic field leads to a sub-Riemannian structure of Engel type. In this case
we cannot find an equation analogous to 1, since the magnetic fields in a contact structure
contain second order derivatives of the potential, while in the Riemannian case, where we use
the standard exterior differential, we have only derivatives of order one.

The final goal is to give a description of abnormal curves of the sub-Riemannian structures
studied. It is known that abnormal curves of Cβ

M , where M is a Riemannian surface, are all
contained in the zero locus of the magnetic field (see for example [ABB19]). More in general
we show that

Theorem. Given (M,D, gs) a three dimensional sub-Riemannian structure of rank 2, then all
abnormal curves belong to the Martinet set, i.e. the subset of M in which D2 ⊂ TM . Moreover
where such a set is a smooth sub-manifold S of M the abnormal curves contained in S are nice
if and only if D|m is transversal to TmS.

In other words the Martinet set for Cβ
M is given by the zero locus of the magnetic field, and S

by the points of this set in which dβ ̸= 0.
We then consider the sub-Riemannian structure constructed from the three dimensional

Heisenberg group using a constant magnetic field and verify a well known fact (see again
[ABB19]) that there exists an abnormal curve passing through each point of it, which we shall
call Engel abnormal. When considering a generic magnetic field we show that its zero locus is
made of equilibrium points of the Engel abnormals. However inside such a locus, generically
there are no other abnormal curves. This shows in particular that the relation between the
abnormals and the zero locus of the magnetic field encountered when we introduce a magnetic
field in a Riemannian surface is lost in the case of a magnetic field in a contact structure.
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Chapter 1

Charged particle in a magnetic field

We begin by recalling the description of a charged particle in the three dimensional Euclidean
space with the presence of a magnetic field. By analogy we pass to the Euclidean plane and
then to a generic Riemannian surface. This not only allows us to fix some notation and termi-
nology, but also helps to build some intuition about the main ideas of the constructions in the
other sections. Next we introduce a way to pass from a given Riemannian surface to a three
dimensional space using the magnetic interaction. Finally we show the relation between Sub-
Riemannian length minimizers in this new space and the trajectories of charged particles with
a magnetic field in the starting surface. The chapter ends with a purely geometric description
of the minimizers which makes use of the Hamiltonian formalism.

1.1 Euclidean space
Lagrangian formulation. A charged particle in the three dimensional Euclidean space with
the presence of a magnetic field is subject to a force known as the Lorentz force. Using vector
notation (letters in bold), the dynamic is described by the Newton equation

mẍ(t) = q ẋ(t) × B(x(t)) , (1.1)
where m is the mass of the particle, q its electric charge, x(t) ∈ R3 is its position at time
t ∈ R, ẋ(t) ∈ Tx(t)R3 is its velocity at the same time, B ∈ X(R3) is the magnetic field1, and ×
denotes the standard vector product of R3. We want to derive a Lagrangian description of this
dynamic. In order to do so, we look for a function L : TR3 ≃ R3 × R3 → R, (x,v) 7→ L(x,v)
of the form

L(x,v) = 1
2m||v||2 − V (x,v) , (1.2)

where || · || is the norm induced by the standard scalar product in R3 and V : TR3 → R is called
the potential. We use Cartesian coordinates in R3, x 7→ x = (x1, x2, x3)T and the induced fiber
coordinates in TR3 , v 7→ v = (v1, v2, v3)T with v = vi∂i, i = 1, 2, 3. For simplicity we denote
the representative of the Lagrangian in coordinate and the Lagrangian in the same way (since
there is a global chart for TR3, this distinction is not fundamental). The Lagrangian is then
written as2

L(x, v) = 1
2mv

ivi − V (x, v) , (1.3)

and the Lagrange equations are
d

dt

∂L
∂vi

(x, ẋ) − ∂L
∂xi

(x, ẋ) = mẍi + ∂V

∂vjvi
ẍj + ∂V

∂xjvi
ẋj − ∂V

∂xi
= 0 i = 1, 2, 3 .

1We denote with X(M) the space of vector fields over a smooth manifold M .
2We are using Einstein notation for the sum, i.e. we understand sum for indices that appear both in an

upper and lower position at the same time.
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Since we do not want other terms proportional to the acceleration ẍ apart from the one coming
from the kinetic term 1

2m||v||2 = 1
2mviv

i, we make the following ansatz

V (x, v) = qAi(x)vi . (1.4)

In other words we want a potential that is linear in the velocities. In this way the Lagrange
equations become (we omit explicit dependencies)

d

dt
(mvi − qAi) + q(∂iAj)vj = mv̇i − q(∂jAi)ẋi + q(∂iAj)vj = 0 .

Equivalently
mv̇i = q(∂jAi − ∂iAj)vj . (1.5)

We call βij(x) := −(∂jAi(x) − ∂iAj(x)) the (components of the) magnetic 2-form. We can also
rearrange the RHS to recover the Lorentz force. To do so we simply define Bi(x) := 1

2ε
jk
i βjk(x)

where εjk
i is the Levi-Civita 3-symbol relative to the standard scalar product, and call it the

(components of the) magnetic 1-form. By the properties of this symbol we have also that
βij = εk

ijBk. Then we get
mv̇i = −qβijv

j = −qεk
ijBkv

j . (1.6)
Using the duality given by the scalar product we have

mv̇i = −qεi
kjB

kvj = −q(B × v)i = q(v × B)i . (1.7)

Finally we have fully recovered the Newton equation with the Lorentz force. To summarize
the relations introduced so far, we notice that the magnetic field B ∈ X(R3) corresponds to a
closed 2-form β ∈ Λ2(R3) which is again related to a 1-form B ∈ Λ1(R3) in the following way3

B = ♯B

β = ⋆B ,
(1.8)

where ⋆ : Λk(R3) → Λ3−k(R3) is the Hodge duality, and ♯ : Λ1(R3) → X(R3), is the sharp
isomorphism relative to the standard scalar product4. By definition of external differential we
also see that β = dA if we think Ai, i = 1, 2, 3, to be the components of a 1-form A ∈ Λ1(R3),
called the magnetic potential.

Hamiltonian formulation. We now compute the Hamiltonian and the Hamilton equations
for the previous system. The Hamiltonian is the Legendre transform of L with respect to v.
As usual we denote the momenta with p ∈ T ∗

xR3. Here pi := ∂L
∂vi = mvi − qAi, and hence

vi(p) = pi+qAi

m
, so that

H(x, p) = ∂L
∂vi

(x, v(p))vi(p) − L(x, v(p)) =

= (mvi − qAi)vi − 1
2mviv

i + qAiv
i

∣∣∣∣∣
v=v(p)

=

= 1
2mviv

i

∣∣∣∣∣
v=v(p)

=
3∑

i=1

(pi + qAi)2

2m .

3For a more detailed and relativistic treatment of electromagnetism using differential forms see [Fra11] section
7.2.

4In a three dimensional Riemannian manifold with metric g, in the case k = 1 we define ⋆B := i♯Bvolg(R3)
with ♯ and volg(R3) the sharp isomorphism and the volume form relative to the metric g respectively.
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The Hamilton equations are ẋ
i = ∂H

∂pi
= pi+qAi

m

ṗi = − ∂H
∂xi = −q (pj+qAj)

m

∂Aj

∂xi

. (1.9)

Remark. We notice how the gauge invariance of the Lagrange equations is guaranteed by the
fact that under a gauge transformation of the potential, Ai 7→ Ai + ∂if , with f : x 7→ f(x), of
class C2(R3), the Lagrangian is simply shifted by a total derivative. Indeed, along a curve x(t)
with v(t) = ẋ(t)

L(x(t), ẋ(t)) 7→ L(x(t), ẋ(t)) + q(∂if(x(t)))ẋi(t) = L(x(t), ẋ(t)) + q
df

dt
(x(t)) .

In the Hamiltonian description on the contrary, the gauge transformation changes definitely
the equations 1.9 . Nevertheless we have the following result.

Proposition. Let HA be the Hamiltonian of a charged particle in the presence of a magnetic
potential A and let A 7→ A + df be a gauge transformation with f ∈ C2. Then there exists a
canonical transformation5 such that the Hamilton equations relative to HA+df are the same of
the ones of HA.

Proof. We want to find a canonical transformation (p, q) 7→ Ψ(p, q) such thatHA+df ◦Ψ−1 = HA.
It is clear that we shall choose the shift in the momenta (xi, pi) 7→ (xi, pi + q∂if). We only need
to check if this transformation is canonical, hence we want to verify if the Jacobian of the shift,
M(x, p), which is given by

M(x, p) =
(

I3 O3
qHessx(f) I3

)

where (Hessx(f))ij = ∂i∂jf is the Hessian of f with respect to x, is symplectic, i.e. if

M(x, p)TJ6M(x, p) = J6 ∀(x, p) ∈ R3 × R3 ,

with J6 the symplectic unit in six dimensions. Performing the row-by-column multiplication
we get the condition(

I3 (qHessx(f))T

O3 I3

)(
O3 I3
−I3 O3

)(
I3 O3

qHessx(f) I3

)
=

=
(
q
(
Hessx(f) − (Hessx(f))T

)
I3

−I3 O3

)
=
(
O3 I3
−I3 O3

)
∀x ∈ R3 , (1.10)

in other words ∂i∂jf − ∂j∂if = 0, which is satisfied if f ∈ C2(R3).

We have hence seen that invariance of Hamilton equations under a gauge transformation is
recovered via a canonical transformation involving only the momenta. Moreover with a similar
computation as the one done in the proof we see that also the shift p 7→ p + Π where Π is
a closed 1-form is canonical. Indeed a slight modification of the computation 1.10 gives the
relation ∂iΠj − ∂jΠi = (dΠ)ij = 0.

5A canonical transformation for an Hamiltonian system is a coordinate transformation (p̃, q̃) = Ψ(p, q) that
brings the Hamilton equations for H(p, q) into the ones of H̃(p̃, q̃) := H(Ψ−1(p̃, q̃)) .
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1.2 From flat to curved
Charged particle in the Euclidean plane. We now consider a particle in the two dimen-
sional Euclidean plane. We define a Lagrangian of the same type of before (locally, directly in
coordinates), where we put m = 1 = q for convenience

L(x, v) := 1
2viv

i − Ai(x)vi , (x, v) ∈ TR2 . (1.11)

The Lagrange equations have the same form of the previous ones

v̇i + βijv
j = 0 . (1.12)

The only difference is that now we cannot represent the magnetic 2-form as a tangent vector,
as it happened in the three dimensional case. We notice however that the vector representation
is accidental and do not reflect any fundamental property of the magnetic interaction, which
emerges naturally as a 2-form in the theory of electromagnetism considered as a gauge theory
(see [Ble13] Chapters 1 and 2, and also [Fra11] section 7.2).
For later convenience we recall that in dimension two there is a correspondence between 2-
forms and functions. If β = β12dx1 ∧ dx2 ∈ Λ2(R2) we denote with b := β12 ∈ C∞(R2) the
corresponding function.

Curvature and magnetic field. Consider a piece-wise smooth curve in the Euclidean plane
σ : [0, 1] → R2. Whenever σ has nonzero speed we can find a unit tangent vector, namely
τ(t) := σ̇(t)

||σ̇(t)|| . Moreover it is easily verified that the vector τ̇(t) is orthogonal to τ(t) at any
time. We define the first principal curvature to be the quantity

κ(t) := ||τ̇(t)||
||σ̇(t)|| . (1.13)

First of all we notice that this ratio is independent of the reparametrization of the time. If we
use the arc parameter s we have

∣∣∣∣∣∣dσ(t(s))
ds

∣∣∣∣∣∣ = 1 and hence κ(s) = dτ
ds

(s) . We also recall that the
curvature has a clear geometric interpretation: it is the inverse of the ray of the circumference
that best approximate the curve at the point σ(t), called the osculating circle.

Going back to the dynamics of a charged particle in the plane we observe that the modulus of
the velocity is a constant of motion (kinetic energy is conserved). Explicitly

d

dt
viv

i = 2v̇iv
i = −2βijv

jvi = 0 . (1.14)

So up to a constant factor the time is the arc parameter, say t = λs. After taking the Euclidean
norm of both sides of the Lagrange equations 1.12, we finally obtain the relation

κ(t) = λ|b(x(t))| . (1.15)

This relation tells us that if the magnetic field is constant the solutions are curves with constant
curvature i.e. straight lines or arcs of circles. We also notice that the constant λ is related to
the kinetic energy E = 1

2viv
i as λ = 1√

2E
. So higher is the energy less is the curvature.

Charged particle in a Riemannian surface. Consider now the case of a Riemannian
surface (M, g) with g a Riemannian metric. In local coordinates, the kinetic term in the
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Lagrangian (1.20) will now contain the metric coefficients while the magnetic potential should
be thought as 1-form which is defined only locally6. We have

L(x, v) = 1
2gij(x)vivj − Ai(x)vi . (1.16)

Computing the Lagrange equations for the kinetic part we have

1
2
(
2gikẍ

k + 2∂jgikẋ
jẋk − ∂igjkẋ

jẋk
)

= gikẍ
k + 1

2 (∂jgik + ∂kgij − ∂igjk) .

For the potential, as before, we find βijẋ
j. Finally

gikẍ
k + 1

2(∂jgik + ∂kgij − ∂igjk)ẋkẋj + βikẋ
k = 0 .

Multiplying by the inverse metric ghi both sides we get

ẍh + ghi

2 (∂jgik + ∂kgij − ∂igjk)ẋkẋj + ghiβikẋ
k = 0 .

We recognize the that the quantities in parenthesis are the Christoffel symbols (Γh
kj) of the

Levi-Civita connection of the metric g. Hence we can write

ẍi + Γi
jkẋ

jẋk + gijβjkẋ
k = 0 . (1.17)

In terms of covariant derivative and internal multiplication7 we can write these equations in a
purely geometric, hence global, way

∇ẋẋ = ♯iẋβ . (1.18)

Since energy is still conserved, we are parametrizing with constant multiples of the arc param-
eter s, say again t = λs, hence, taking the g-norm in both sides, we recover a more general
version of our previous result on the first principal curvature 1.15

κg(t) = λ|b(x(t))| , (1.19)

where κg is now the geodesic curvature8, that coincides with the former if the metric is flat.

1.3 A three dimensional space
Three dimensional dynamics. Consider a piece-wise smooth curve σ : [0, 1] → M in a
Riemannian surface (M, g) with a magnetic 2-form β ∈ Λ2(M), which is contained in a open
subset U ⊆ M . In U we have a magnetic potential A ∈ Λ1(U) for β, and for a given point
O = σ(0) ∈ U we define for all t ∈ [0, 1] the real quantity

z(t) :=
∫

σ([0,t])
A . (1.20)

6See again [Ble13] paragraph 1.2.7.
7Given a vector field X ∈ X(M) we define the internal multiplication or contraction by X, as the map

iX : Λk(M) → Λk−1(M), ω 7→ iXω, by (iXω)(Y1, · · · , Yk−1) := ω(X, Y1, · · · , Yk−1) for all Y1, · · · , Yk−1 ∈ X(M).
8Given a smooth curve σ : [0, 1] → M in a Riemannian manifold (M, g), we define its geodesic curvature

with respect to g at the point σ(t) as κg(t) := ||∇σ̇σ̇(t)||g

||σ̇(t)||g
where || · ||g is the norm induced by g.
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The curve γ := (σ, z) takes values in the trivial bundle U×R which we equip with the canonical
projection π : U × R → U , (m, z) 7→ m. Using an orthonormal frame e1,2 in U we can express
the velocity of γ as

γ̇(t) = u1(t)e1(σ(t)) + u2(t)e2(σ(t)) + A|σ(t)(σ̇(t))∂z , (1.21)

where u1,2 : [0, 1] → R are the components of σ̇ with respect to the frame e1,2 in order, because
σ = π(γ) implies σ̇ = π∗γ̇. We recognize that the curve γ is always tangent to the distribution9

D|(m,z) := span({X1(m, z), X2(m, z)}) with (m, z) ∈ U × R and X1,2 ∈ X(U × R) given byX1(m, z) := e1(m) + A|m(e1(m))∂z

X2(m, z) := e2(m) + A|m(e2(m))∂z

. (1.22)

The rank of D is always equal to two, so the distribution defines a field of planes in the
bundle. We now check if this distribution is bracket generating. If [e1, e2] = c1e1 + c2e2, with
c1,2 ∈ C∞(M), we have

[X1, X2] = [e1 + A(e1)∂z, e2 + A(e2)∂z] = [e1, e2] + (e1(A(e2)) − e2(A(e1))) ∂z .

By the remarkable formula by which any 1-form τ satisfies dτ(X, Y ) = X(τ(Y )) − Y (τ(X)) −
τ([X, Y ]), with X, Y vector fields, and recalling that β = dA, we can express the preceding Lie
bracket as

[X1, X2] = c1e1 + c2e2 + dA(e1, e2)∂z + c1A(e1)∂z + c2A(e2)∂z = c1X1 + c2X2 + β(e1, e2)∂z .

Moreover, using the dual frame of e1,2, call it µ1,2, we see that dA = β = bµ1 ∧ µ2 for some
b ∈ C∞(U), and we can write

[X1, X2] = c1X1 + c2X2 + b∂z . (1.23)

We conclude that D is bracket generating at (m, z) whenever b(m) ̸= 0. We can finally complete
the frame {X1, X2} to a frame in the product using ∂z =: X3.
It is a remarkable fact that we can see the distribution D as the kernel of a 1-form in the
bundle, namely

α := dz − π∗A ∈ Λ1(π−1(U)) . (1.24)

In the following we will see that this 1-form can be defined ‘in the large’.

Globalization. In the preceding paragraph we have seen that the dynamic 1.20 brings (‘lifts’)
us into a trivial bundle equipped with a certain distribution D described by 1.22 or 1.24. It
is a natural question to ask in what space the former dynamic takes place in the large, i.e. if
we escape from U . Guided by the form of 1.24, it is natural to think that this space can be
constructed by gluing together the various products U × R considered above. To construct
such a space we remark that contrary to the magnetic potential A, the magnetic field β is a
globally defined closed 2-form on M 10. If A is a potential in the open subset U ⊆ M and Ã
is another potential in another open subset V ⊆ M , in the intersection U ∩ V we must have
dA = β = dÃ. Suppose in particular that A − Ã = dS with S ∈ C∞(U ∩ V ). Then we can

9By a rank-k distribution we mean a sub-bundle of the tangent bundle, i.e. a collection
⊔

m∈M Dm, with
Dm a k-dimensional subspace of TmM for all m ∈ M .

10An explanation of this fact, which is valid for abelian gauge theories as electromagnetism, is given in [Ble13]
paragraph 1.2.7 and 2.2.16 and [Fra11] section 16.4.
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construct the transition functions of the bundle as follows. If m ∈ U ∩ V we say that the two
fiber coordinates (m, z) and (m, z̃) correspond to the same point in the bundle if and only if

z = z̃ + S(m) . (1.25)

In this way we can globally define a 1-form in the bundle starting from α ∈ Λ1(π−1(U ∩ V ))
defined as α := dz − π∗A. Indeed, in a different trivialization we have α̃ := dz̃ − π∗Ã, but

α̃ = dz̃ − π∗Ã = dz̃ − π∗Ã± π∗A = dz̃ + π∗dS − π∗A =
= d(z̃ + π∗S) − π∗A = dz − π∗A = α .

(1.26)

In conclusion, we were able to construct a nontrivial line bundle, that we denote as Cβ
M , with

π : Cβ
M → M locally equal to the canonical projection, equipped with a globally defined 1-form

α ∈ Λ1(Cβ
M). We further point out an interesting fact, namely that even if β may be not

globally exact, π∗β is! Indeed

dα = d(dz − π∗A) = −dπ∗A = −π∗dA = −π∗β . (1.27)

Remark. Notice that the globalization procedure needs the difference A − Ã to be exact,
otherwise our construction is only local. A last important remark is about topology. Depending
on the cohomology class of the magnetic 2-form, the topology of the fibers of Cβ

M changes11.

1.4 Sub-Riemannian structure
Previously, thanks to the introduction of a magnetic 2-form β ∈ Λ2(M) in a Riemannian surface
(M, g), we were able to construct a line bundle over it π : Cβ

M → M naturally endowed with
a 1-form α ∈ Λ1(Cβ

M), hence with a rank-2 distribution D ⊂ TCβ
M , which was proven to be

bracket generating wherever the magnetic 2-form is nonzero. We can give to the bundle Cβ
M ,

together with D, a Sub-Riemannian structure by introducing a metric in the distribution. We
denote such a structure with the triplet (Cβ

M , D, gs), where gs denotes the Sub-Riemannian
metric defined via the metric on the base as

gs|x(u, v) := g|π(x)(π∗u, π∗v) x ∈ Cβ
M , u, v ∈ D|x ⊂ TxC

β
M . (1.28)

Notice that X1,2 of 1.22 are orthonormal with respect to gs, i.e. gs(Xi, Xj) = δij, i = 1, 2.
It is a natural question to ask if there exists length minimizers among curves tangent to the
distribution (admissible curves), joining two distinct points x1, x2 ∈ Cβ

M , in the following sense

min{ls[γ] : ∂γ = {x1, x2} ⊂ Cβ
M , γ̇ ∈ D|γ} , (1.29)

with γ : [0, 1] → Cβ
M a piece-wise smooth curve and

ls[γ] :=
∫ 1

0

√
gs|γ(t)(γ̇(t), γ̇(t)) dt . (1.30)

The quantity ls[γ] is called the Sub-Riemannian length of γ.

11See comment in [VWA13] appendix 4, paragraph L, where the construction of Cβ
M is performed using as

magnetic 2-form a symplectic form. The construction made in the reference is a special case of the present one.
The exact relation between the two will be studied later.
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Sub-Riemannian length minimizers in Cβ
M . We will develop two strategies to find min-

imizers. The first will use coordinates and will allow us to make direct connection with the
study made in section 1.2. The other strategy will be developed in the next section because of
its generality and fundamental geometric meaning.

Coordinate approach. Since our study is local, we use coordinates in M so that we express the
metric with its coefficients g = gijdxidxj, and also A = Aidxi and σ̇ = σ̇i∂i, with i = 1, 2.
By definition we can express the Sub-Riemannian length of γ : [0, 1] → Cβ

M as (like before
σ = π(γ))

ls[γ] :=
∫ 1

0

√
gs|γ(t)(γ̇(t), γ̇(t)) dt =

∫ 1

0

√
g|σ(t)(σ̇(t), σ̇(t)) dt =

=
∫ 1

0

√
gij(σ(t))σ̇i(t)σ̇j(t) dt =: l[σ] .

(1.31)

Minimizing the Sub-Riemannian length ls[·] between admissible curves, by 1.20, is equivalent
to minimize the Riemannian length l[·] between curves on the base M subject to the integral
constraint ∫ 1

0
Ai(σ(t))σ̇i(t) dt = const. = z(1) , (1.32)

where (σ(t), z(t)) = γ(t). We know that free length minimizers in a Riemannian manifold have
constant speed12, moreover the integral constraint is parametrization independent, hence, by
Hölder inequality such minimizers are equivalently energy minimizers, i.e. they minimize the
functional 1

2
∫ 1

0 g|σ(t)(σ̇(t), σ̇(t)) dt . Our integral constraint is regular whenever dA = β ̸= 0,
indeed, by computing the variational derivative of 1.32 with respect to σ we get the condition

δ

δσi

∫ 1

0
Aj(σ(t))σ̇j(t) dt = (∂iAj − ∂jAi)σ̇j = βijσ̇

j ̸= 0 .

In the regular case, by the Lagrange multipliers rule we finally get the constrained Euler-
Lagrange equations for σ.

δ

δσi

1
2

∫ 1

0
gij(σ(t))σ̇iσ̇j dt = λ

δ

δσi

∫ 1

0
Ai(σ(t))σ̇i(t) dt . (1.33)

We further notice that the RHS is parametrization independent while the LHS is homogeneous
of degree one in the velocities. This allows us to discard λ. Having said this there is no more
work to do in fact, since we have already computed Lagrange equations for both the members
and the result is again equation 1.17.
In conclusion the problem of finding Sub-Riemannian length minimizers of (Cβ

M , D, gs) is equiv-
alent to the problem of finding the trajectories of a charged particle with the presence of a
magnetic 2-form in the Riemannian surface (M, g) downstairs studied in section 1.2.

1.5 Hamiltonian description of Sub-Riemannian length
minimizers

Up to now we have seen that Sub-Riemannian length minimizers in Cβ
M project into solutions of

constrained Euler-Lagrange equations that are the ones of a charged particle with the presence
12The length functional does not depend explicitly on the time, hence, by Noether theorem we have a conserved

quantity which is the norm of the velocity, i.e. the Lagrangian itself.
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of a magnetic 2-form in M . This description made inevitably use of coordinates in Cβ
M . We

now want to give a purely geometric description of such minimizers, making use of the natural
symplectic structure13 of T ∗Cβ

M . In the following π : T ∗Cβ
M → Cβ

M is the canonical projection
from the cotangent bundle. No confusion should arise since we wont use the bundle structure
of Cβ

M except at the very end. This entire section retrace slavishly chapter 4 of [ABB19], in
particular section 4.4.
From what we have seen Cβ

M is naturally endowed with a 1-form α ∈ Λ1(Cβ
M). This form defines

a distribution D ⊂ TCβ
M given by D|x := ker(α|x), for all x ∈ Cβ

M . Such a distribution was
spanned by the two vector fields X1,2 ∈ X(Cβ

M) described in 1.22 that we completed to a frame
in TCβ

M with X3. We can write the velocity of an admissible curve γ : [0, 1] → Cβ
M , i.e. a curve

always tangent to D, with two controls u1,2 : [0, 1] → R as

γ̇(t) = ui(t)Xi(γ(t)) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)), t ∈ [0, 1] . (1.34)

We now want to define a dynamic in the cotangent bundle. To do so we notice that one can
naturally define three functions in T ∗Cβ

M , namely hi : T ∗Cβ
M → R, i = 1, 2, 3, as

hi(λ) := λ(Xi(π(λ))) , (1.35)

where we stress that now π : T ∗Cβ
M → Cβ

M is the canonical projection. It is important to
remark that these are linear function on the fibers in the sense that for λ, ρ ∈ π−1(x), x ∈ Cβ

M ,
we have that for all a, b ∈ R

hi(aλ+ bρ) = ahi(λ) + bhi(ρ) .

The linear independence of X1,2,3 implies that h1,2,3 define a fiber coordinate system in T ∗Cβ
M ,

i.e. we can represent points as (x, h1, h2, h3) ∈ T ∗Cβ
M , x ∈ Cβ

M , without using coordinates in
the base. In more precise words we are using the trivialization of T ∗Cβ

M which is the dual of
the one induced in TCβ

M by the choice of the vector fields Xi’s. We now define a new function
H : T ∗Cβ

M → R, called the Sub-Riemannian Hamiltonian, as

H(λ) = 1
2(h2

1(λ) + h2
2(λ)) . (1.36)

Using the canonical symplectic form on T ∗Cβ
M , we can define the Hamiltonian vector field14

XH ∈ X(T ∗Cβ
M) associated with H

XH := ♯dH . (1.37)
We warn that here ♯ : Λ1(T ∗Cβ

M) → X(T ∗Cβ
M) is the duality induced by the symplectic form ω,

and not by a Riemannian metric. This vector field defines a dynamic in the cotangent bundle
that is described by the Hamilton equations

λ̇ = XH . (1.38)

We can easily verify (even easier computation after a quick switch to coordinates) that

(dπ)|λ (XH(λ)) = hi(λ)Xi(π(λ)) ∈ Tπ(λ)C
β
M i = 1, 2 . (1.39)

Here it comes the crucial point. We first notice that the projection of the solutions of the
Hamilton equations for H are admissible curves. It turns out (see [ABB19] chapter 4, section

13In every cotangent bundle T ∗M , M a smooth manifold, there exists the so called tautological or Liouville
1-form θ ∈ Λ1(T ∗M) given by θ|λ(ξ) := λ(π∗ξ), for all λ ∈ T ∗M and ξ ∈ Tλ(T ∗M), with π : T ∗M → M the
canonical projection. The symplectic form is then given by ω := dθ.

14Contrary to the Riemannian case there is a sign ambiguity due to the skew symmetry of ω. We make a
choice of sign defining dH = −iXH

ω.
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4.3, theorem 4.20) that these projections are also length minimizers. This means that if λ̄ is a
solution of 1.38, and we denote with ūi : [0, 1] → R, i = 1, 2 the controls of a length minimizer
γ̄ = π(λ̄), we shall have that

ūi(t) = hi(λ̄(t)) ∀t ∈ [0, 1], i = 1, 2 . (1.40)

Consequently, the next step is to look at the dynamic on the fibers to get the evolution of
the hi’s. To simplify computations we introduce the Poisson brackets, {·, ·} : C∞(T ∗Cβ

M) ×
C∞(T ∗Cβ

M) → C∞(T ∗Cβ
M), (f, g) 7→ {f, g} := ω(Xf , Xg), with Xf,g the Hamiltonian vector

fields associated with f, g respectively. We recall that the Lie derivative along the flux of an
Hamiltonian vector field XH of a function a ∈ C∞(T ∗Cβ

M), is given in terms of the Poisson
brackets by ȧ = {H, a}. Since the Poisson brackets act like a derivation on both arguments we
can easily write the dynamics on the fibers (i = 1, 2)

ḣ1 = {H, h1} = 1
2{hih

i, h1} = {h2, h1}h2

ḣ2 = {H, h2} = 1
2{hih

i, h2} = {h1, h2}h1

ḣ3 = {H, h3} = 1
2{hih

i, h3} = {h1, h3}h1 + {h2, h3}h2 .

(1.41)

We now recall the following nontrivial fact. Given a function of the type 1.35, a(λ) :=
λ(X(π(λ)), for some X ∈ X(Cβ

M), we have π∗Xa = X. To show this we suppose to be able to
find X̃ ∈ X(T ∗Cβ

M) such that π∗X̃ = X. As a consequence we can express the function a in
terms of the Liouville 1-form θ as

a(λ) = λ(X(π(λ))) = θ|λ(X̃(λ)) .

By the homotopy formula LX̃ = iX̃ ◦ d + d ◦ iX̃ , we have

da = d (iX̃θ) = LX̃θ − iX̃ω .

Consequently, if we can find a X̃ s.t. LX̃θ = 0 we obtain what we look for

X̃ = Xa .

We finally observe that such a field X̃ always exists. We only need to consider the cotangent
lift of X. A classical result15 tells us that cotangent lifts of flows of vector fields in the base
manifold are symplectomorphism in the cotangent bundle. In fact, for these lifts we have that
not only the symplectic form is invariant but also the Liouville form is. This implies that the
Lie derivative of θ along the flow of the cotangent lift is zero. In particular we have hence
shown that Xi = π∗Xhi

for i = 1, 2, 3.
To compute explicitly the equations on the fibers we also need to recall the following Lie
algebras homomorphism (C∞(T ∗Cβ

M), {·, ·}) ≃ (Xω(T ∗Cβ
M), [·, ·]), where Xω denotes the space

of Hamiltonian vector fields, given by

[Xa, Xb] = X{a,b} ,

In the present case

{h1, h2}(λ) = λ(π∗X{h1,h2}) = λ(π∗([Xh1 , Xh2 ])) = λ([π∗Xh1 , π∗Xh2 ]) =
= λ([X1, X2]) = λ(c1Xi + c2X2 + bX3) = c1h1(λ) + c2h2(λ) + bh3(λ) ,

(1.42)

and
{hi, h3}(λ) = λ(π∗X{hi,h3}) = λ(π∗([Xhi

, Xh3 ])) = λ([π∗Xhi
, π∗Xh3 ]) =

= λ([Xi, X3]) = λ(0) = 0 .
(1.43)

15See for example [AM08] theorem 3.2.12.
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Finally, combining 1.41 with 1.42 and 1.43, we have the explicit expression for the equations
in the fibers 

ḣ1 = −(c1h1 + c2h2 + bh3)h2

ḣ2 = (c1h1 + c2h2 + bh3)h1

ḣ3 = 0 .
(1.44)

Equivalence between Hamiltonian and coordinate approach. Observe that, since H
is conserved, we can restrict to the cylinder h2

1 + h2
2 = 1, and introduce cylindrical coordinates

(ϑ, h3) ∈ S1 × R, such that 
h1 = cos(ϑ)
h2 = sin(ϑ)
h3 = h3 .

(1.45)

After changing variables according to 1.45, the system in the fibers 1.44 becomesϑ̇ = c1 cos(ϑ) + c2 sin(ϑ) + bh3

ḣ3 = 0 .

Consequently, on the base Cβ
M we have

γ̇ := π∗λ̇ = π∗XH = hiXi = cos(ϑ)X1 + sin(ϑ)X2 .

To make contact with the coordinate approach we reintroduce the fibered coordinates in Cβ
M

that we used in the previous section, in which Xi = ei + A(e1)∂z, i = 1, 2, and the projection
x = (m, z) 7→ m. The projection of γ on the base of Cβ

M , that we called σ, solves the equation

σ̇ = cos(ϑ)e1 + sin(ϑ)e2 .

Notice that ||σ̇||g = 1, so we are parametrizing with arc parameter and hence we can regard the
motion (σ, σ̇) as a motion in SM , where SM is the sphere bundle16 over M . We can define a
connection over it with a s1 ≃ R-valued 1-form on SM . Denoting the canonical projection of
SM as πs : SM → M we set

τ := dϑ+ π∗
s(aiµ

i) ∈ Λ1(SM, s1) ≃ Λ1(SM), i = 1, 2 ,

where ϑ is the coordinate on the fibers, µ1,2 is the dual basis to e1,2, and a1,2 ∈ C∞(M).
Among all possible connections we choose the Levi-Civita one17, which corresponds to the
choice a1 = −c1 and a2 = −c2. We verify that in absence of the magnetic form, i.e. when
b = 0, we have that σ is a geodesic, indeed

τ |(σ,ϑ)T ((σ̇, ϑ̇)T ) = c1 cos(ϑ) + c2 sin(ϑ) + a1 cos(ϑ) + a2 sin(ϑ) = 0 .

As a consequence, the geodesic curvature with a nonzero b is (set h3 = const. = 1)

κg(t) :=
∣∣∣τ |(σ(t),ϑ(t))T ((σ̇(t), ϑ̇(t))T )

∣∣∣ = |b(σ(t))| . (1.46)

16SM :=
⊔

m∈M {v ∈ TmM : ||v||g = 1}. When M is 2-dimensional, SM has the structure of a principal
bundle with base M and fiber S1.

17See [ST15] chapter 7 section 7.1 or [ABB19] chapter 1 section 1.2. For a brief treatment of these topics see
Appendix A.
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Chapter 2

The Heisenberg group

In this chapter we apply the constructions made in the previous one to a particular case. More
precisely we will introduce a constant magnetic 2-form on the Euclidean plane (R2, ·) and we
will see that the bundle Cβ

R2 will be globally diffeomorphic to R3. From the 1-form α defined in
1.24, whose kernel constitute a distribution in the new space, we derive a Lie group structure
on Cβ

R2 . This is recognized to be the three dimensional Heisenberg group H3. After a simple
generalization, we describe the length minimizers of a particular Sub-Riemannian structure on
H3 using the Hamiltonian formalism of section 1.5.

2.1 Euclidean plane with constant magnetic 2-form
The Heisenberg algebra. Consider the Euclidean plane described by Cartesian coordinates
x1,2 with the magnetic 2-form given by β = dx1 ∧ dx2. This form admits an entire class of
primitives between which we choose

A := 1
2(x1dx2 − x2dx1) . (2.1)

Cβ
R2 is now the trivial bundle R2 × R ∋ (x, z) = (x1, x2, z) ∈ R3, with projection π(x, z) = x,

equipped with the form

α := dz − π∗A = dz − 1
2(x1dx2 − x2dx1) . (2.2)

The kernel of α is spanned by the distribution D in 1.22 that now is given byX1(x, z) := ∂1 + A1(x)∂z

X2(x, z) := ∂2 + A2(x)∂z

(2.3)

In the present case we have

[X1, X2] = (∂1A2 − ∂2A1)∂z = β12∂z = ∂z =: X3 .

In conclusion D is bracket generating and, together with X3, verifies the Heisenberg algebra
[X1, X3] = 0
[X2, X3] = 0
[X1, X2] = X3 .

(2.4)

We remark that a different choice of the magnetic potential A would lead to a different α.
However, shifting the fiber coordinate z as prescribed by 1.25, we recover the same distribution.

21
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The Heisenberg group. In the previous paragraph we ended up with a bracket generating
distribution that solves a particular algebra, the Heisenberg algebra. The Rashewski-Chow
theorem (in its global version, see [ABB19] chapter 3 section 3.2, theorem 3.31) tells us that
following curves tangent to this distribution we can fill all R3. Being connected and simply
connected, by Lie theorem (see for example [FC30] chapter II section 21, ’Le troisième théorème
fondamental de S. Lie’), this R3 is a Lie group isomorphic to the three dimensional Heisenberg
group H3. From the flows of the vector fields spanning the distribution we can recover the group
multiplication law. Denoting the fluxes as ΦXi : R × H3 → H3, (ti, x) 7→ ΦXi(ti, x) =: ΦXi

ti
(x),

for i = 1, 2, 3 we have (setting b = 1)

ΦX1
t1 (x) =

(
x1 + t1, x

2, x3 + x2t1
2

)T

,

ΦX2
t2 (x) =

(
x1, x2 + t2, x

3 − x1t2
2

)T

,

ΦX3
t3 (x) =

(
x1, x2, x3 + t3

)T
.

Regarding the ti’s as the coordinates of a point in the group (t1, t2, t3) ↔ (y1, y2, y3)T = y ∈ H3,
we reconstruct the group multiplication as follows. Given x, y ∈ H3 the group operation is

y.x =

y
1

y2

y3

 .
x

1

x2

x3

 :=

 x1 + y1

x2 + y2

x3 + y3 + (x2y1−x1y2)
2

 .

This is actually the operation defining the Lie group structure of H3. There is also a three
dimensional matrix representation of the Heisenberg group obtained via the following identifi-
cation

x =

x
1

x2

x3

 ↔

1 x1 x3 + 1
2x

1x2

0 1 x2

0 0 1

 .

The group multiplication then simply corresponds to the raw-by-column matrix multiplication.
Higher odd-dimensional Heisenberg groups are define with an analogous multiplication in R2n+1,
n > 0 natural, and denoted as H2n+1.

2.2 The symplectic R2n and H2n+1

Contactification. We notice that the procedure of constructing Cβ
M from a manifold M per-

formed in section 1.3 contains the case in which we have a symplectic manifold (M,ω), where
ω plays the role of a (non degenerate) magnetic field β = −ω. Analogously to the magnetic
2-form the symplectic form admits a primitive (locally defined), i.e. the Liouville 1-form θ
which is the opposite of the magnetic potential A. The form α := dz − π∗A = dz + π∗θ will
have the property that dα is non degenerate when restricted to the kernel of α because of the
non degeneracy condition on ω due to the symplectic structure (see equation 1.27). We refer
to this property by saying that Cβ

M admits a contact structure given by the contact form α and
denote it as (Cβ

M , α). For this reason (Cβ
M , α) is called contactification1 of (M,ω).

1See again [VWA13] appendix 4 paragraph L. Now the relation with our construction of Cβ
M should be

manifest. Here in particular, different potentials, i.e. Liouville 1-forms, always differ by an exact form, that is
the differential of the generating function of the canonical transformation that brings the two potentials one
into the other.
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Remark. From this perspective the construction of section 1.3 can be seen as a generalization
of the contactification where we relax the hypothesis on the non degeneracy of ω, using instead
of a symplectic form a generic closed 2-form representing the magnetic field, the potentials of
which are related by gauge transformations. Note that apart from the symplectic case, the
structure on Cβ

M is not contact.

The group H2n+1 as contactification. We consider the symplectic R2n. Using Darboux
coordinates (pi, q

i), with i = 1, · · · , n, the contact form can be chosen as

α = dz + 1
2(pidqi − qidpi) ∈ Λ1(Cβ

M ≃ R2n × R) ,

where θ = 1
2(pidqi − qidpi) is the Liouville 1-form that gives the symplectic form ω = dθ =

dpi ∧dqi. The kernel of α is then spanned by the distribution described by the 2n vector fields2

in Cβ
M (i = 1, · · · , n) X

i := ∂
∂pi

+ qi

2
∂
∂z

Yi := ∂
∂qi − pi

2
∂
∂z
.

After an easy computation we see these vector fields, together with Z := ∂
∂z

, solves the H2n+1
algebra 

[Yj, X
i] = δi

jZ

[X i, Z] = 0
[Yi, Z] = 0 .

Following the same procedure of section 2.1 we can recover the entire group H2n+1.
In conclusion the (2n+ 1)-dimensional Heisenberg group can be realized as the contactification
of the symplectic R2n for all n > 0 natural.

2.3 Sub-Riemannian structure on the Heisenberg group
Up to now we obtained the Heisenberg group H3 from a constant magnetic 2-form in the
Euclidean plane. This group carries naturally a contact structure described by a bracket gen-
erating distribution D of rank two spanned by the vector fields defined in equations 2.3. We
can give to the Heisenberg group, together with this distribution, a Sub-Riemannian structure
by introducing a metric in D. We denote such a structure with the triplet (H3, D, gs), where
gs denotes the Sub-Riemannian metric defined as

gs|x(u, v) := (π∗u) · (π∗v) , (2.5)

with x ∈ H3, π : H3 → R2, u, v ∈ D|x ⊂ TxH3, and ’·’ the Euclidean scalar product in the
plane.

Sub-Riemannian length minimizers. We follow the Hamiltonian approach developed in
section 1.5. Using the Hamilton equations in the fibers 1.41 and the Heisenberg algebra 2.4, we
compute the Poisson brackets using the same strategy of before (see equations 1.42 and 1.43).
We get (keeping track of the magnetic field b := β12 = 1 for clarity)

ḣ1 = −bh3h2

ḣ2 = bh3h1

ḣ3 = 0 .
(2.6)

2We simply generalize the definition 2.3 using A = −θ.
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Since energy is conserved we again restrict to the cylinder h2
1 +h2

2 = 1, and introduce cylindrical
coordinates as before (see 1.45). The Hamilton equations 2.6 become

γ̇ = cos(ϑ)X1 + sin(ϑ)X2

ϑ̇ = bh3

ḣ3 = 0 .

Integrating the fiber part of the system we get the solutions (choose h3 = const. = 1),ϑ(t) = bt+ c

h3 = 1 ,

with c an integration constant, that we put equal to zero in the following. In the base we have
that

γ̇ = cos(bt)X1(γ(t)) + sin(bt)X2(γ(t)) .

Using the coordinates in H3 that we used in the previous paragraphs, in which Xi = ∂i +Ai∂z,
i = 1, 2, and the projection (x1, x2, z) 7→ (x1, x2). On the plane (x1, x2) for the projection of γ,
that we called σ, we get the equationsσ̇1 = cos(bt)

σ̇2 = sin(bt) .

Notice that ||σ̇|| = 1, so we are parametrizing with arc parameter, so, finally

κ(t) = ||σ̈(t)|| = |b(σ(t))| . (2.7)

With this equation we recovered the result 1.15, i.e. we have shown that projections of Sub-
Riemannian length minimizers are the trajectories of a charged particle in the Euclidean plane
subject to a constant magnetic field. These curves are then curves with constant principal
curvature, hence straight lines or arcs of circles.
Finally we remark that since in the Heisenberg case the magnetic field is constant and nonzero,
there cannot be abnormal minimizers!

Isoperimetric problem. It is noteworthy the fact that in the Heisenberg case the problem
of finding Sub-Riemannian length minimizers can be rephrased as an isoperimetric problem.
Indeed the constraint 1.20 for the present choice of the magnetic potential 2.1, can be written
as ∫

σ([0,1])
A+ k =

∫
Σ

dA =
∫

Σ

1
2d(x1dx2 − x2dx1) =

∫
Σ

dx1 ∧ dx2 =: Vol(Σ) = const. , (2.8)

where k is a constant due to the integration of A along the segment ς : [0, 1] → R2, t 7→
σ(0) + (t− 1)(σ(0) − σ(1)), ∂Σ = σ([0, 1]) + ς([0, 1]), in the sense of simplicial complexes, and
Vol(Σ) is the (oriented) area of Σ ⊂ R2. On the other hand, the functional we want to minimize
is the Euclidean length of σ. In conclusion we are looking for planar curves with minimal length,
between the ones that with the segment ς([0, 1]) enclose a fixed area. This problem is in some
sense dual to the classical Dido problem where we want to find closed planar curves with fixed
length enclosing the maximal area.



Chapter 3

Magnetic forms and Sub-Riemannian
manifiolds

We study the effect of introducing a magnetic form in a Sub-Riemannian manifold, starting
from the Riemannian case. In this way we generalize what we have seen in the previous chapter
for Riemannian surfaces. In the last section we treat the Sub-Riemannian case and we will see
how the Sub-Riemannian structure interacts with the magnetic field. In particular, in the
contact case this interaction leads to the notion of the Rumin complex.

3.1 Hamiltonian description of geodesics
We start with a brief treatment of some topics in symplectic geometry useful for the next para-
graphs, where we prove that the Riemannian geodesics of (M, g) can be seen as the projection
on M of the solutions of an Hamiltonian system in T ∗M .

Fiber-homogeneous functions on T ∗M . Consider the cotangent bundle T ∗M of an n-
dimensional manifold M , with projection π : T ∗M → M . T ∗M is naturally endowed with the
Liouville 1-form θ ∈ Λ1(T ∗M) whose differential gives the symplectic form σ := dθ. On T ∗M
operates the group of dilatations, i.e. the multiplicative R, in the following way. δ : R×T ∗M →
T ∗M

δ(a, λ) := aλ ,

where (aλ)(v) := a λ(v) for all v ∈ Tπ(λ)M , a ∈ R. We also denote as δa : T ∗M → T ∗M the
fiber-preserving map δa(λ) := δ(a, λ). We are now able to define fiber homogeneous functions
on T ∗M .

Definition. We say that H ∈ C∞(T ∗M) is homogeneous of degree k in the fibers if and only if

δ∗
aH = akH .

We have the following characterization.

Theorem. A function H ∈ C∞(T ∗M) is homogeneous of degree k if and only if

kH = iXH
θ ,

where XH is the Hamiltonian vector field associated with H.

25
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Proof. We prove this using Darboux coordinates. Let (pi, q
i), i = 1, · · · , n be Darboux co-

ordinates in M . A point λ ∈ T ∗M can then be expressed using the frame {dqi}i=1,··· ,n as
λ = pidqi|π(λ)=q. We denote H and its representative in coordinates in the same way. Hence

iXH
θ(λ) := λ(π∗XH(π(λ))) = pidqi|q

∂H
∂pj

(p, q) ∂

∂qj

∣∣∣∣∣
q

 = pi
∂H

∂pj

(p, q)δi
j = pi

∂H

∂pi

(p, q) .

Now, by Euler theorem on homogeneous functions we conclude

iXH
θ(λ) = pi

∂H

∂pi

(p, q) = kH(p, q) = kH(λ) .

We can also refer to fiber-homogeneous functions as tautological functions because of the form
of the expression kH = iXH

θ. The following proposition is rather obvious (think in coordinates).

Proposition. Let H ∈ C∞(T ∗M) be a fiber-homogeneous function of degree one. Then the flow
of the Hamiltonian vector field XH preserves the Liouville 1-form.

Proof. By the homotopy formula

dH = d(iXH
θ) = LXH

θ − iXH
σ = LXH

θ + dH ,

hence LXH
θ = 0.

The same computation shows us that for a homogeneous function of degree k we have

LXH
θ = (k − 1)dH . (3.1)

We also have the following remarkable theorem concerning the Poisson brackets between ho-
mogeneous functions.

Theorem. Let f, g ∈ C∞(T ∗M) be fiber-homogeneous functions of degree h, k respectively.
Then the Poisson bracket {f, g} is a fiber-homogeneous function of degree h+ k − 1.

Proof. We need to prove that (h+ k − 1){f, g} = iX{f,g}θ. We have

iX{f,g}θ = i[Xf ,Xg ]θ = LXf
iXgθ − iXgLXf

θ = kLXf
g − (h− 1)iXgdf =

= −(h+ k − 1)df(Xg) = (h+ k − 1){f, g} .

In the second equality we used a standard identity and in the third equation 3.1. For the
remaining equalities we simply used the definition of Hamiltonian vector field and of Poisson
bracket.

We will use in particular the case where both the functions are homogeneous of degree one, in
which case

{f, g} = iX{f,g}θ . (3.2)
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Symplectic formalism using frames. Let {X1, · · · , Xn} be a frame of M , and {µ1, · · · , µn}
its dual. We define a linear function for each of the Xi’s, namely hi : T ∗M → R as

hi(λ) := λ(Xi(π(λ))), λ ∈ T ∗M .

As already noticed in section 1.5, these functions are coordinates in the fibers of the bundle.
We also remark that from the treatment of the previous paragraph, since these functions are
fiber-linear, hence fiber-homogeneous of degree one, we can write them in the tautological form

hi = iXhi
θ . (3.3)

We also observe that from the definition of the Liouville 1-form, we have

π∗Xhi
= Xi . (3.4)

The coordinates hi’s locally define a splitting in T (T ∗M) described point-wise as

Tλ(T ∗M) ≃ Tπ(λ)M ⊕ Tλ(T ∗
π(λ)M), λ ∈ T ∗M . (3.5)

Observe that in this way π∗ becomes the canonical projection on the first addend of 3.5.
Consequently, a section of T (T ∗M) can be described using sections of TM and T (T ∗

π(λ)M) ≃ R2n

as
V = xiXi + vi

∂

∂hi

,

where xi, vi ∈ C∞(T ∗M) and { ∂
∂hi

}i=1,··· ,n are the coordinate sections of the second addend1.
Similarly we can represent forms on T ∗M using the dual basis {µ1, · · · , µn, dh1, · · · , dhn}.
For example we have θ = hjµ

j. Indeed, since we can write θ = h̃jµ
j for some h̃j, using the

tautological formula 3.3, hj := iXhj
θ = h̃kµ

k(Xj) = h̃kδ
k
j = h̃j.

We end this paragraph with a useful expression for the symplectic form and an immediate
corollary.

Proposition. Using the dual basis {µ1, · · · , µn, dh1, · · · , dhn}, we can write the symplectic form
σ as

σ = dhj ∧ µj − 1
2c

k
ijhk µ

i ∧ µj , (3.6)

where ck
ij ∈ C∞(M) are defined by [Xi, Xj] = ck

ijXk.

Proof. By definition
σ = dθ = d(hjµ

j) = dhj ∧ µj + hjdµj .

Using a remarkable formula

dµj(Xi, Xk) = Xi(µj(Xk)) −Xk(µj(Xi)) − µj([Xi, Xk]) =

= Xi(δj
k) −Xk(δj

i ) − µj([Xi, Xk]) = µj(cl
kiXl) = cj

ki .

Finally
σ = dhj ∧ µj − 1

2hjc
j
ik µ

i ∧ µk .

1Beware that although the Xi’s are sections of TM , xiXi are not. Similarly for the ∂
∂hi

’s.
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In this way we can find the following expression for the Xhi
’s.

Proposition. Using the frame of T (T ∗M) given by {X1, · · · , Xn,
∂

∂h1
, · · · ∂

∂hn
} we have

Xhi
= Xi + ck

ijhk
∂

∂hj

. (3.7)

Proof. We can use the explicit expression of the sharp isomorphism induced by σ, the so called
Poisson tensor, and then the result is manifest. Alternatively we notice that we can express
the fiber part of the Hamilton equations using the Poisson brackets. We have

Xhi
= xjXj + vj

∂

∂hj

,

with xj and vj to be determined. The xj are fixed by the condition π∗Xhi
= Xi, so xj = δj

i .
For the fiber part we have

vj = ḣj = {hi, hj} .
By equation 3.2, we have

{hi, hj} = iX{hi,hj }θ = i[Xhi
,Xhj

]θ = hkµ
k([Xi, Xj]) = hkc

k
ij .

The Riemannian Hamiltonian. Let g be a Riemannian metric on M and {Xi}i=1··· ,n be an
orthonormal frame with dual frame {µi}i=1,··· ,n. We want to define a dynamic in the cotangent
bundle that will return us the geodesics in the base. To do so we introduce the Riemannian
Hamiltonian H : T ∗M → R as

H(λ) := 1
2g|π(λ)

 n∑
i=1

hi(λ)Xi(π(λ)),
n∑

j=1
hj(λ)Xj(π(λ))

 . (3.8)

Using the orthonormality condition on the Xi’s we get the expression

H(λ) = 1
2

n∑
i=1

(hi(λ))2 . (3.9)

We easily verify that dH = ∑n
i=1 hidhi, hence, by linearity of the sharp isomorphism (the one

of σ) we get

XH =
n∑

i=1
hiXhi

. (3.10)

Moreover using expression 3.7, we can write

XH =
n∑

i=1
hi

(
Xi + ck

ijhk
∂

∂hj

)
. (3.11)

By equation 3.4, Hamilton equations λ̇ = XH project in the base giving2 (define γ := π(λ))

γ̇ = π∗λ̇ = π∗XH =
n∑

j=1
hjXj .

The functions hi’s are hence the components of the velocity of the projections of solutions of
the Hamilton equations in T ∗M into the base manifold M with respect to the orthonormal
frame {Xi}i=1··· ,n.
We finally need to verify that γ with γ̇ = π∗XH is geodetic. Contrary to the two dimensional
Riemannian case we cannot exploit the principal bundle structure of the sphere bundle over
M . Instead we need to work in the whole TM and use affine connections.

2Beware that π∗XH is not a vector field on M .
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The geodesics equation. We need to verify if the projection on M of a solution of the
equation λ̇ = XH , denoted with γ̇ = π∗XH = ∑n

j=1 hjXj, is a geodesic, i.e. if we have ∇γ̇ γ̇ = 0,
where ∇ is the Levi-Civita connection of g. We obtain

∇γ̇ γ̇ =
n∑
i,j

∇hiXi
hjXj =

n∑
i,j

(
ḣj +

n∑
k=1

Γj
ikhkhi

)
Xj . (3.12)

But ḣj = ∑n
i,k=1 c

k
ijhkhi, hence

∇γ̇ γ̇ =
n∑

i,j,k

(
ck

ij + Γj
ik

)
hkhiXj . (3.13)

Now we use the properties of the Levi-Civita connection coefficients3 to get the final result.

(ck
ij + Γj

ik)hihk = (Γk
ij − Γk

ji + Γj
ik)hkhi = (−Γj

ik − Γk
ji + Γj

ik)hkhi = −Γk
jihkhi = 0 .

In conclusion
∇γ̇ γ̇ = 0 .

3.2 Magnetic forms in a Riemannian manifold
We now introduce a magnetic field in a Riemannian manifold (M, g) and compute the Hamilton
equations corresponding to the Riemannian Hamiltonian, which now become shifted by the
magnetic potential.

The shifted Hamiltonian. Let β ∈ Λ2(M) be a magnetic field, with local potential A ∈
Λ1(U), U ⊆ M open subset. With orthonormal frames we can write the Riemannian Hamilto-
nian as 1

2
∑n

j=1 h
2
j . Using the tautological definition of hj 3.3, we can regard the introduction

of A as a shift in θ, namely
θ 7→ θ̃ := θ + π∗A .

In this way we recover the usual shift in the momenta hj 7→ h̃j = hj + Aj. Indeed

h̃j = iXhj
θ̃ = hj + π∗(A(Xhj

)) = hj + π∗(A(π∗Xhj
)) = hj + π∗(A(Xj)) = hj + π∗Aj .

Since we always use the splitting 3.5, in the following we simply write A instead of π∗A.
In conclusion the new shifted Hamiltonian becomes

H = 1
2

n∑
j=1

(hj + Aj)2 . (3.14)

The Hamilton equations. We need to compute XH . Obviously dH = ∑n
j=1(hj +Aj)(dhj +

dAj), and by linearity of the sharp isomorphism of σ, that we denote as ♯σ, we have

XH =
n∑

j=1
(hj + Aj)(Xhj

+ ♯σdAj) . (3.15)

From a simple computation, making use of the expression of σ found previously, we have that
♯σµ

j = − ∂
∂hj

. Moreover dAj = (Xj(Ai) + ck
ijAk + βij)µi. So, equation 3.15 becomes

XH =
n∑

j=1
(hj + Aj)

(
Xj +

(
ck

ji(hk + Ak) −Xj(Ai) − βij

) ∂

∂hi

)
. (3.16)

3We have recalled them in Appendix B.
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Equations on the base. We now compute ∇γ̇ γ̇, where here γ̇ = π∗XH = ∑n
j=1(hj +Aj)Xj.

Using 3.16, have
n∑

i,j=1
∇(hi+Ai)Xi

(hj + Aj)Xj =
∑

i,j=1
(hi + Ai)∇Xi

(hj + Aj)Xj =

=
n∑

i,j=1

(
(ḣj + Ȧj) +

n∑
k=i

(hi + Ai)(hk + Ak)Γj
ik

)
Xj =

=
n∑

i,j=1

(
−Ȧj + βij(hi + Ai) + Ȧj +

n∑
k=1

(ck
ij + Γj

ik)(hi + Ai)(hk + Ak)
)
Xj =

=
n∑

i,j=1
(βij(hi + Ai))Xj .

In the last passage we used the properties of the Levi-Civita connection coefficients. Finally we
recovered the result obtained in the first chapter, where we used coordinates and the variational
approach

∇γ̇ γ̇ =
n∑

i,j=1
(βij γ̇i)Xj = ♯giγ̇β . (3.17)

In this last equation we used the sharp isomorphism of g, denoted as ♯g, that for orthonormal
frames is simply δij.

3.3 Sub-Riemannian Geodesics of Cβ
M

We start by observing that our treatment of section 1.3 does not involve the dimension of the
Riemannian surface. Therefore we can apply the construction of Cβ

M to a Riemannian manifold
(M, g) of any finite dimension n ∈ N. Again, the possibility of globalizing the trivial bundle
structure depends on the topology of M . We can forget about this problems if we limit ourselves
to study the local properties of the construction. Since this is the case for now, we still denote
the bundle we define as Cβ

M regardless of its global existence. Let β ∈ Λ2(M) be a magnetic
2-form with potential A ∈ Λ1(U) in the open subset U ⊆ M . We consider a piece-wise smooth
curve γ : [0, 1] → U , and define a dynamic in U × R as we did with 1.20, i.e. we set

z(t) :=
∫

γ([0,t])
A ,

and λ(t) := (γ(t), z(t)) ∈ U ×R for all t ∈ [0, 1]. Using the splitting T (U ×R) = TU ⊕TR and
an orthonormal frame of M , {X1, · · · , Xn}, we have that

λ̇(t) = (γ̇(t), ż(t)) = ui(t)Xi(γ(t)) + Aγ(t)(γ̇(t))∂z ,

where ui : [0, 1] → R, i = 1, · · · , n, are piece-wise smooth functions. The curve λ : [0, 1] →
U × R is always tangent to the distribution D ⊂ T (U × R) described by the vector fields

Ti := Xi + A(Xi)∂z i = 1, · · · , n . (3.18)

Clearly the distribution has constant rank equal to n, and we easily verify wherever it is bracket
generating. Using the same computations of section 1.3 we obtain

[Ti, Tj] = [Xi, Xj] + A([Xi, Xj])∂z + dA(Xi, Xj) = ck
ijTk + βij∂z , (3.19)

where ck
ij ∈ C∞(M). This means that if one of the βij is non zero the distribution is bracket

generating. This is the n-dimensional analogue of 1.23. In the following we denote Tz := ∂z.
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Sub-Riemannian geodesics. We consider the Sub-Riemannian metric given by

gs|x(u, v) := g|π(x)(π∗u, π∗v) x ∈ Cβ
M , u, v ∈ D|x ⊂ TxC

β
M . (3.20)

which is the essentially 1.28 in the n-dimensional case. Following the approach of section 1.5
we define the Sub-Riemannian Hamiltonian Hs analogously to 1.36, i.e. we set

Hs = 1
2

n∑
i=1

h2
i ,

with hi ∈ C∞(T ∗Cβ
M), i = 1, · · · , n the fiber linear function on T ∗Cβ

M corresponding to Ti. We
also denote with hz the fiber linear function relative to Tz. The fiber part of the Hamilton
equations is thenḣi = {Hs, hi} = ∑n

j=1{hj, hi}hj = ∑n
j=1 c

k
jihjhk + βjihjhz

ḣz = {Hs, hz} = ∑n
j=1{hj, hz}hj = 0 .

(3.21)

If we consider the projection of the system on U which is given by γ̇(t) = ∑n
i=1 hiXi, and

compute the covariant derivative along γ relative to the Levi-Civita connection of g, using 3.12
we have

∇γ̇ γ̇ =
n∑
i,j

(
ḣj +

n∑
k=1

Γj
ikhkhi

)
Xj . (3.22)

From this equation, thanks to 3.21 we obtain

∇γ̇ γ̇ =
n∑

i,j,k

(
ck

ij + Γj
ik

)
hkhiXj +

∑
i,j

βijhihzXj . (3.23)

Now, as we already know, the parenthesis in the first addend is zero by the properties of the
Levi-Civita connection coefficients and hz is a constant that we can fix to be equal to one, hence

∇γ̇ γ̇ =
∑
i,j

(βijhi)Xj = ♯giγ̇β .

Finally we were able to show that as in the case of Riemannian surfaces the Sub-Riemannian
(normal) geodesics of Cβ

M projects into the trajectories of charged particles in M with the
presence of a magnetic field.

3.4 Magnetic forms in a Sub-Riemannian manifold
We pass now to the general Sub-Riemannian case, where we are given a distribution D ⊂ TM
and a Sub-Riemannian metric gs. In the following k ≤ n = dim(M) will be the (constant)
rank of D that we consider to be spanned by {X1, · · · , Xk} ⊂ X(M) orthonormal frame with
respect to gs.

The Sub-Riemannian Hamiltonian. Like in the previous section, we consider tautological
functions

hj = iXhj
θ j = 1, · · · , k .

Observe that these are coordinates on the fibers of the dual distribution D∗ ⊂ T ∗M .
Next we define the Sub-Riemannian Hamiltonian as

Hs(λ) := 1
2gs|π(λ)

 k∑
j=1

hj(λ)Xj(π(λ)),
k∑

j=1
hj(λ)Xj(π(λ))

 . (3.24)
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Using the orthonormality of the Xi’s, we recover the expression of the previous chapters

Hs(λ) = 1
2

k∑
j=1

(hj(λ))2 . (3.25)

Equivalent magnetic potentials. We introduce a magnetic form β ∈ Λ2(M), with local
magnetic potential A ∈ Λ1(U), U ⊆ M open subset. Suppose also that the distribution D is
described as the kernel of n− k 1-forms {α1, · · · , αn−k} ⊂ Λ1(M). We say that D is described
by the Pfaffian equations 

α1 = 0
...

αn−k = 0 .
(3.26)

As in the Riemannian case, we interpret the introduction of a magnetic form as a shift in the
hj’s given by

θ 7→ θ̃ = θ + π∗A .

However now we have a redundance, because if we shift A with any of the αi’s nothing changes,
and we are left with the same Hamiltonian. Explicitly, for all i = 1, · · · , n− k we have

iXhj
(θ + π∗(A+ αi)) = hj + Aj + π∗(αi(Xj)) = hj + Aj = iXhj

(θ + π∗A) .

In conclusion we should consider magnetic potentials up to the equivalence relation induced by
the shifting with the αi’s

A 7→ A+ f iαi i = 1, · · · , n− k , (3.27)
with f i ∈ C∞(M).

The Rumin complex. In the case in which the distribution has rank n − 1, i.e. we are
given a single 1-form α, which we suppose to be also contact, we can construct from the set of
equivalent magnetic potentials a differential complex, the Rumin complex, whose cohomology
is equal to the De Rham cohomology of the manifold M . Here we present the general construc-
tion following [Rum94] and the next chapter we will describe it for the contact structure given
by 2.2 in the three dimensional Heisenberg group.

Let (M,α) be a (2n + 1)-dimensional contact manifold, with contact form α. We denote as
Λ∗(M) := ⊕2n+1

k=0 Λk(M) the graded algebra of differential forms on M . We define the ideal
(with respect to the exterior multiplication)

I∗(M) := {α ∧ β + dα ∧ γ : β, γ ∈ Λ∗(M)} , (3.28)

and the annihilator

J ∗(M) := {ω ∈ Λ∗(M) : α ∧ ω = 0 = dα ∧ ω} . (3.29)

Notice that none of these sets depends on the normalization of the contact form α and that
if ω ∈ I∗ (respectively ω ∈ J ∗(M)) then also dω ∈ I∗(M) (dω ∈ J ∗(M)). This means that
the exterior differential induces an operator dα : Λ∗(M)/I∗(M) → Λ∗(M)/I∗(M), i.e. for
every i = 1, · · · , 2n + 1, dα : Λi(M)/I i(M) → Λi+1(M)/I i+1(M). From the symplecticity of
dα a classical result tells us that the exterior multiplication by dα, which we now regard as a
mapping of horizontal forms4 of degree k to horizontal forms of degree k + 2, is surjective for

4We recall that horizontal k-forms are forms that depends only on the contact distribution D := ker(α). We
recognize that these k-forms are the sections of the kth exterior power of the sub-bundle D∗ ⊆ T ∗M . We denote
such space of sections as Λk

α(M).
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every k ≥ n− 1 and injective for k ≤ n− 1. From this fact it follows that Λk(M)/Ik(M) = {0}
for k ≥ n+1 and J k(M) = {0} for k ≤ n. We can finally state (without proving) the following
result.

Proposition. It exists a differential operator D : Λn(M)/In(M) → J n+1 such that the sequence

{0} −→ R −→ C∞(M) dα−→ Λ1(M)/I1(M) dα−→ · · · dα−→ Λn(M)/In(M) D−→

D−→ J n+1 dα−→ · · · dα−→ J 2n+1 dα−→ {0}

is exact and its cohomology coincides with the De Rham cohomology of M .

Remark. Notice that I1(M) = span(α), hence we recover the symmetry 3.27 present in the
Sub-Riemannian Hamiltonian.

Description of D. We now describe the differential operator D and verify its cohomological
properties, i.e. that dα ◦ D = 0 and D ◦ dα = 0. Always following [Rum94], we have

Proposition. Given φ ∈ Λn
α(M) an horizontal n-form, it exists a unique lift φ̃ ∈ Λn(M) such

that dφ̃ ∈ J n+1(M).

Proof. Let φ̄ ∈ Λn(M) be any lift of φ. We then look for β ∈ Λn−1
α (M) such that if φ̃ =

φ̄ + α ∧ β we have dφ̃ ∈ J n+1(M). In particular dφ̃ = dφ̄ + dα ∧ β − α ∧ dβ. Hence
α ∧ dφ̃ = α ∧ (dφ̄ + dα ∧ β) = 0 if and only if the second factor is zero on D, i.e if and only
if (dα ∧ β)|D = −(dφ̄)|D. Since for n − 1 the homomorphism given by exterior multiplication
by (dα)|D is an isomorphism Λn−1

α (M) ≃ Λn+1
α (M), this last equation has a unique solution.

On the other hand dα ∧ dφ̃ = d(α ∧ dφ̃) = 0 by what we have just found. In conclusion
dφ̃ ∈ J n+1(M).

We further notice that since Λn
α(M) ≃ Λn(M)/{α∧β : β ∈ Λn−1(M)}, then Λn(M)/In(M) ≃

Λn
α(M)/{dα ∧ β : β ∈ Λn−2(M)}. We can now state the following proposition.

Proposition. The operator D̃ : Λn
α(M) → J n+1(M) defined by D̃φ := dφ̃ pass to the quotient

with respect to {dα ∧ β : β ∈ Λn−2(M)}. Therefore we set D[φ] := D̃φ, having φ ∈ Λn
α(M)

and [φ] ∈ Λn(M)/In(M) the corresponding equivalence class.

Proof. Let (dα ∧ β)D be the horizontal part5 of dα ∧ β. We clearly have d(dα ∧ β − α ∧ dβ) =
0 ∈ J n+1(M). By our previous proposition this means that dα∧β−α∧dβ is the unique lift of
(dα∧β)D to Λn(M). Consequently, by definition, D̃((dα∧β)D) = d(dα∧β−α∧ dβ) = 0.

We now show the local exactness of the Rumin complex for n and n+1. We adopt the shorthand
notation for the quotients Λk(M)/Ik(M) =: Ωk(M), with k = 1, · · · , 2n+ 1.
If φ ∈ Ωn(M) is such that Dφ = 0, then by taking the unique lift φ̃ ∈ Λn(M), we have
Dφ = dφ̃ = 0. Consequently there exist, locally, β ∈ Λn−1(M) such that φ̃ = dβ. But
the exterior differential pass to the quotient with respect to In−1(M), hence φ = dα[β] with
[β] ∈ Ωn−1(M), the equivalence class of β.
Let now φ ∈ J n+1(M) such that dαφ = 0. Taking a representative φ̃ ∈ Λn+1(M), we have
dφ̃ = 0. Therefore, locally, there exists β ∈ Λn(M) such that φ̃ = dβ. Passing to the quotient
in this last equation we get φ = D[β], where again [β] ∈ Ωn(M) is the equivalence class of β.

5Given a k-form φ ∈ Λk(M), and D := ker(α) ⊂ TM , the horizontal (contact) distribution,
φD(X1, · · · , Xk) := φ(XD

1 , · · · , XD
k ), where XD

i is the component of Xi ∈ X(M) along D, is the horizon-
tal part of φ. This means that φD ∈ Λk

α(M).
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Chapter 4

Magnetic forms in the Heisenberg
group

In this chapter we describe the Rumin complex for the three dimensional Heisenberg group
H3, using the general construction made in the previous chapter. Next we construct the space
Cβ

H3 by introducing a magnetic 2-form β ∈ Ω2(H3). In the following, we study the particular
case of a constant magnetic 2-form that will make Cβ

H3 a four dimensional Engel-type group.
This new space we endow with a Sub-Riemannian structure and we study its Sub-Riemannian
length minimizers, giving a geometric interpretation of them.

4.1 The Rumin complex in H3

We consider the Heisenberg group H3 with the contact structure given by

α := dz + 1
2(ydx− xdy) , (4.1)

which is the same of 2.2, with the renaming x1 = x and x2 = y. The horizontal distribution,
given by the kernel of α, is spanned by the vector fields 2.3 that we recall here for convenienceX = ∂x − y

2∂z

Y = ∂y + x
2∂z .

(4.2)

As already remarked in the Sub-Riemannian case the possible magnetic potentials that we can
introduce, that in principle can be any 1-form A ∈ Λ1(U), U ⊆ H3 open, are redundant. We
shall consider instead

A ∈ Ω1(U) := Λ1(U)/span{α} , (4.3)
in the sense that A, Ã ∈ Λ1(U) are equivalent if and only if A − Ã = fα, with f ∈ C∞(U).
Thanks to this symmetry we have

Proposition. Let α = dz + 1
2(ydx− xdy). Then

Ω1(U) = span{dx, dy} .

Proof. The set of 1-forms {dx, dy, α} ⊂ Λ1(U) provides a basis for T ∗
mU forall m ∈ U , hence a

generic form A ∈ Λ1(U) can be written as

A = Axdx+ Aydy + Aαα ,

for suitable Ax, Ay, Aα ∈ C∞(U). But by definition of Ω1(U), Ã := A−Aαα = Axdx+Aydy is
equivalent to A.

35



36 CHAPTER 4. MAGNETIC FORMS IN THE HEISENBERG GROUP

In order to pass from functions on U to Ω1(U) we can define the following first order differential
operator acting on C∞(U)

dα(f) := X(f)dx− Y (f)dy . (4.4)
We notice that dαf = df mod(α), indeed dαf = df − (∂zf)α, i.e. the exterior differential
passes to the quotient. The operator dα is therefore the one defined in the Rumin complex.
Since {dx, dy, α} ⊂ Λ1(U) gives a frame for T ∗U we can use the 2-forms {dx ∧ α, dy ∧ α, dx ∧
dy} ⊂ Λ2(U) to express a generic 2-form β ∈ Λ2(U) as

β = βxdx ∧ α + βydy ∧ α + bαdx ∧ dy .

Following the general construction of the Rumin complex, the non trivial 2-forms that we have
to consider are Ω2(H3) = span{dx ∧ α, dy ∧ α}. In this way we are able to characterize the
magnetic fields in a way that reflects the degeneracy of the potentials, i.e. the underlying con-
tact distribution. Using the construction of D of the Rumin complex for the contact structure
4.1 in H3 we have

Proposition. Given A ∈ Ω1(H3) the unique lift Ã ∈ Λ1(H3) such that dÃ ∈ J 2(H3) = Ω2(H3) =
span{dx ∧ α, dy ∧ α} is given by Ã = A+ fα with

f = X(Ay) − Y (Ax) .

Furthermore we have

DA = D(Axdx+ Aydy) := dÃ = βxdx ∧ α + βydy ∧ α , (4.5)

with βx := X(X(Ay) − Y (Ax)) − Z(Ax)
βy := Y (X(Ay) − Y (Ax)) − Z(Ay)

(4.6)

Proof. We can compute f from the condition α∧dÃ = 0. We have dÃ = dA+df ∧α+fdα, so
we consider the equation α∧ (dA+fdα) = 0, which is satisfied if and only if (dA+fdα)|D = 0.
Then we simply need to solve f(dα)|D = −(dA)|D for f ∈ C∞(H3). Recalling that on D it is
α = 0, i.e. dz = x

2 dy − y
2dx we get

fdx ∧ dy = (∂xAy − ∂yAx)dx ∧ dy + ∂zAxdz ∧ dx+ ∂zAydz ∧ dy =

=
(
∂xAy − ∂yAx − y

2∂zAy − x

2∂zAx

)
dx ∧ dy =

= (X(Ay) − Y (Ax))dx ∧ dy ,
which is what we looked for.
Recalling that for any function g ∈ C∞(H3) it is dg = X(g)dx+ Y (g)dy + (∂zg)α, we are now
in a position to prove 4.5.

DA := dÃ = dA+ df ∧ α + fdα = dA+X(f)dx ∧ α + Y (f)dy ∧ α + fdα =

= (∂xAy − ∂yAx − f)dx ∧ dy + ∂zAxdz ∧ dx+ ∂zAydz ∧ dy +X(f)dx ∧ α + Y (f)dy ∧ α =

=
(
x

2∂zAx + y

2∂zAy

)
dx ∧ dy + ∂zAxdz ∧ dx+ ∂zAydz ∧ dy +X(f)dx ∧ α + Y (f)dy ∧ α =

= (X(f) − Z(Ax))dx ∧ α + (Y (f) − Z(Ay))dy ∧ α .

This is exactly our claim.
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Even if we already proved this in general in the previous chapter, we show that the differential
operator D satisfies the cohomological property

D ◦ dα = 0 . (4.7)

A simple computation proves this fact. Indeed, for all f ∈ C∞(U) we have

D(dαf) = D(X(f)dx+ Y (f)dy) = (X(X(Y (f)) − Y (X(f))) − Z(X(f)))dx ∧ α+

+(Y (X(Y (f)) − Y (X(f))) − Z(Y (f)))dy ∧ α = (X([X, Y ](f)) − Z(X(f)))dx ∧ α+

+(Y ([X, Y ](f)) − Z(Y (f)))dy ∧ α = ([X,Z](f))dx ∧ α + ([Y, Z](f))dy ∧ α = 0 .

Notice that we used only the definitions of dα and D and the Heisenberg algebra 2.4.
Finally the closed three forms are clearly spanned by the volume form α∧dα, and are obtained
from Ω2(U) with the standard exterior differential. Even in this case the cohomological property
d ◦ D = 0 is straightforward to prove since d(dx ∧ α) = −dx ∧ dα = dx ∧ dx ∧ dy = 0 and
similarly for d(dy ∧ α) = dy ∧ dx ∧ dy = 0.
In conclusion the Rumin complex for H3 is then given by the following short exact sequence.

{0} C∞(U) Ω1(U) Ω2(U) Ω3(U) {0}dα D d

Equivalent potentials. The cohomological property D ◦ dα = 0 implies that we can further
restrict to potentials of the type A = ady, with a ∈ C∞(H3). Indeed let us consider Ã := A+dαg,
g ∈ C∞(H3), which satisfies DÃ = D(A+ dαg) = DA. We have that

Ã = (Ax +X(g))dx+ (Ay + Y (g))dy ,

and consequently we can find g such that

Ax +
(
∂x − y

2∂z

)
g = 0 , (4.8)

having a = Ay + Y (g).

4.2 A four dimensional space
A four dimensional dynamic. Let β ∈ Ω2(H3) a magnetic field, and let A ∈ Ω1(H3) be a
potential for β, i.e. β = DA. Following the procedure of section 1.3 we consider a piece-wise
smooth curve γ : [0, 1] → H3, with the difference that here we ask γ to be admissible, i.e.
γ̇(t) ∈ ker(α|γ(t)) for all t ∈ [0, 1]. This means that

γ̇(t) = ux(t)X(γ(t)) + uy(t)Y (γ(t)) , (4.9)

with ux, uy : [0, 1] → R controls.
We then define a real quantity

w(t) :=
∫

γ([0,t])
A. (4.10)

In complete analogy with section 1.3 we study the dynamic in the bundle H3 × R ≃ R4 given
by λ(t) := (γ(t), w(t)). The velocity of λ is then

λ̇(t) = ux(t)X(γ(t)) + uy(t)Y (γ(t)) + A|γ(t)(γ̇(t))∂w . (4.11)
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We notice that the curve λ can be seen as a curve tangent to a rank-2 distribution D in TR4

which is defined by the vector fieldsT1 := X + A(X)∂w

T2 := Y + A(Y )∂w ,
(4.12)

where the sum refers to the canonical splitting T (H3 × R) ≃ TH3 ⊕ TR. In this way we can
rewrite 4.11 as

λ̇(t) = u1(t)T1(λ(t)) + u2(t)T2(λ(t)) , (4.13)
where we simply renamed the controls ux = u1 and uy = u2. Finally we remark that the
distribution D = span({T1, T2}) ⊂ TR4, can also be seen as the kernel of the Pfaffian equationsα = 0

dw − A = 0 .
(4.14)

Bracket generating condition. We want to study wherever D is bracket generating. We
start from the first Lie bracket.

[T1, T2] = [X + A(X)∂w, Y + A(Y )∂w] = [X, Y ] + (X(A(Y )) − Y (A(X))) ∂w .

Using the Heisenberg algebra 2.4 (renaming X3 = ∂z =: Z) we get

[T1, T2] = Z + (X(A(Y )) − Y (A(X))) ∂w ,

and using a shorthand notation for the coefficient of ∂w we write

[T1, T2] = Z + B∂w . (4.15)

We call T3 := [T1, T2] and compute the next bracket [T1, T3] =: T4. Using again 2.4, and 4.15
just found

[T1, T3] = [X +A(X)∂w, Z + B∂w] = [X,Z] + (X(B) − Z(A(X))) ∂w = (X(B) − Z(A(X))) ∂w .

We summarize the four vector fields that we have found so far
T1 = X + A(X)∂w

T2 = Y + A(Y )∂w

T3 = Z + B∂w

T4 = (X(B) − Z(A(X))) ∂w .

(4.16)

From the explicit expressions 4.16 we see that this distribution has at least rank equal to three.
However the step can be greater than 3. In fact, using the coordinate frame {∂x, ∂y, ∂z, ∂w} the
condition for the Ti’s to be independent comes from the equation

det


1 0 −y

2 A(X)
0 1 +x

2 A(Y )
0 0 1 B
0 0 0 (X(B) − Z(A(X)))

 = (X(B) − Z(A(X))) = βx = 0 . (4.17)

This condition is also gauge invariant, i.e. it does not depend on the choice of the potential
A. We verify this immediately. Given Ã := A + dαg a different potential for β the horizontal
vector fields change as
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T1 := X + (A+ dαg)(X)∂w = X + (Ax +X(g))∂w

T2 := Y + (A+ dαg)(Y )∂w = Y + (Ay + Y (g))∂w,

In this way we obtain

[T1, T2] = Z + (B + Z(g))∂w .

The second order bracket is therefore

[T1, [T1, T2]] = [X + (Ax +X(g))∂w, Z + (B + Z(g))∂w] =

= (X(B) − Z(Ax) − Z(X(g)) +X(Z(g)))∂w = (βx + [X,Z](g))∂w = βx∂w .

In this way the condition 4.17 for D to be bracket generating is again βx ̸= 0. Now, if βx = 0 we
shall consider instead of T4, the vector field T5 := [T2, T3] = [T2, [T1, T2]]. In this case, repeating
the computation 4.17 with T5 in place of T4 we obtain that {T1, T2, T3, T5} are independent if
and only if

Y (B) − Z(A(Y )) = βy ̸= 0 .

We have hence proved the following.

Proposition. The magnetic 2-form β = DA ̸= 0, A ∈ Ω1(H3), if and only if D = span({T1, T2}),
given by 4.12, has step equal to three.

Remark. Similarly to the Heisenberg case, in which the Sub-Riemannian structure has step
two as long as the magnetic 2-form β ̸= 0 ∈ Λ2(R2), in the Engel case, to have step three,
we obtain the condition β ̸= 0 ∈ Ω2(H3). In this sense we can say that the Rumin complex
provides the appropriate description of the magnetic fields in a contact structure, in order to
extend its relation with the step of the distribution of Cβ

M .

Constant magnetic field. We are now interested in a particular class of magnetic fields,
namely the ones of the type

β = b dx ∧ α , (4.18)

with b ∈ R a constant1. We can easily verify that a candidate potential for such a field is given
by the form

A = bx2

2 dy . (4.19)

In this case the vector fields 4.16 become
T1 = X

T2 = Y + bx2

2 ∂w

T3 = Z + bx∂w

T4 = b∂w .

(4.20)

From the previous proposition we know that if b ̸= 0 the distribution D = span({T1, T2}) ⊂ TR4

is bracket generating, hence we can fill all R4 following admissible curves.
1Notice that these type of fields are constant multiples of one of the generators of Ω2(U), and hence we shall

call them ’constant’. The general linear combination with constant coefficients of the generators can be brought
to the form 4.18 with a suitable rotation in the space of the coefficients.
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The elements Ti’s of the algebra 4.20 satisfy the following property, called the Engel property
i.e. that for all i, j = 1, 2, 3, 4, there exist kij ∈ N such that

(adTi
◦ · · · ◦ adTi︸ ︷︷ ︸
kij-times

)(Tj) = adkij

Ti
(Tj) = 0 , (4.21)

where adY (·) := [Y, ·] is another notation for the Lie brackets2. The Lie group associated with
the Lie algebra 4.20 is therefore an Engel group that we denote as E4. It is also easy to see
that E4 is also a Carnot group.
We finally notice that in this case the space Cβ

H3 , which is simply R4, cannot be endowed with
a contact structure3.

The group operation. Starting from the Engel algebra 4.20 we can recover the group multi-
plication law as we did in section 2.1 for the Heisenberg group. Computing all possible brackets
we find 

[T1, T2] = T3

[T1, T3] = T4

[T1, T4] = [T2, T3] = [T2, T4] = [T3, T4] = 0 .
(4.22)

We shall exploit the surgectivity of the exponential map exp : Lie(E4) → E4, i.e. we suppose
every element g ∈ E4 can be written as exponential of a suitable element in the Lie algebra

g = exp(T ) = exp(aT1 + bT2 + cT3 + dT4) ,

where a, b, c, d are the coordinates of T ∈ Lie(E4) with respect to the base given by the Ti’s.
For another element g̃ ∈ E4 we shall write analogously

g̃ = exp(T̃ ) = exp(ãT1 + b̃T2 + c̃T3 + d̃T4) .

Now, if G is a k-dimensional Lie group, it can be shown that given a basis {ei}i=1,··· ,k of
g := Lie(G), the correspondence G → Rk given by exp(xiei) 7→ (x1, · · · , xk) is a local diffeo-
morphism. Using these coordinates we can find the group operation using the Baker-Campbell-
Hausdorff formula as follows. This formula says that in a (connected and simply connected)
Lie group G we have for all X, Y ∈ g the identity

exp(X) exp(Y ) = exp
(
X + Y + 1

2[X, Y ] + 1
12 ([X, [X, Y ] − [Y, [X, Y ]]) + · · ·

)
,

where the dots indicates higher brackets that we do not need since for the present algebra they
all vanish. Consequently, to obtain the product gg̃ in coordinates, we shall first compute

[aT1 + bT2 + cT3 + dT4, ãT1 + b̃T2 + c̃T3 + d̃T4] =

= [aT1 + bT2 + cT3, ãT1 + b̃T2 + c̃T3] =
= (ab̃− ãb)[T1, T2] + (ac̃− ãc)[T1, T3] = AT3 + BT4 ,

where we introduced a shorthand notation for the coefficients of T3 and T4. Next we consider
the double brackets

[aT1 + bT2 + cT3 + dT4,AT3 + BT4] = [aT1,AT3] = aAT4 ,

2The notation comes from the fact that ad : g → End(g), Y 7→ adY , is the differential at the identity of the
adjoint action Ad : G → End(g), g 7→ Adg. We recall that Adg : g → g is the differential at the identity of the
conjugation by g ∈ G, i.e. of the map Cg : G → G, h 7→ Rg−1(Lgh) = ghg−1 .

3The non degeneracy condition on the exterior differential of the form dw − A cannot be satisfied when the
dimension of the manifold is even.
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and
[ãT1 + b̃T2 + c̃T3 + d̃T4,AT3 + BT4] = [ãT1,AT3] = ãAT4 .

In conclusion

gg̃ = exp(aT1 + bT2 + cT3 + dT4) exp(ãT1 + b̃T2 + c̃T3 + d̃T4) =

= exp
(

(a+ ã)T1 + (b+ b̃)T2 +
[
(c+ c̃) + A

2

]
T3 +

[
(d+ d̃) + B

2 + A(a− ã)
12

]
T4

)
.

We have finally recovered the group multiplication law in E4 in local coordinates

(a, b, c, d)T. (ã, b̃, c̃, d̃)T =
(
a+ ã, b+ b̃, c+ c̃+ (ab̃− ãb)

2 , d+ d̃+ ac̃− ãc

2 + (a− ã)(ab̃− ãb)
12

)T

,

for (a, b, c, d)T , (ã, b̃, c̃, d̃)T ∈ R4.

4.3 Sub-Riemannian structure on E4

We can endow E4 ≃ R4, together with the distribution D = span({T1, T2}), with a Sub-
Riemannian structure starting from the the one of H3 described in section 2.3, i.e. the one
defined by the Sub-Riemannian metric 2.5. Let πw : R4 ≃ H3 × R → H3 be the canonical
projection (m,w) 7→ πw(m,w) = m, and πz : H3 → R2, π2(x, y, z) 7→ (x, y) the projection of
section 2.3. We consider the composition π := πz ◦ πw and we define a Sub-Riemannian metric
on D as

gs|λ(u, v) := (π∗u) · (π∗v) , (4.23)

with λ ∈ R4, u, v ∈ D|λ ⊂ TλR4, and ’·’ is again the Euclidean scalar product in the plane. In
other words the Sub-Riemannian metric 4.23 just defined is 2.5 pulled back with πw. As usual
we denote the Sub-Riemannian manifold R4 with the distribution D and the Sub-Riemannian
metric gs with the triplet (R4, D, gs).

Normal length minimizers. We now study the length minimizers of (R4, D, gs) using the
Hamiltonian formalism of section 1.5. The phase space is now T ∗R4 ≃ R8, with π̄ : R8 → R4

the canonical projection, and the Sub-Riemannian Hamiltonian is

Hs(ξ) = 1
2
(
h2

1(ξ) + h2
2(ξ)

)
, (4.24)

with hi(ξ) := ξ(π̄∗Ti), i = 1, 2, 3, 4 and ξ ∈ R8, the fiber-linear functions that we use as
coordinates in the fibers of the cotangent bundle. We compute the fiber part of the Hamilton
equations using the properties of the Poisson brackets

ḣ1 = {Hs, h1} = {h2, h1}h2

ḣ2 = {Hs, h2} = {h1, h2}h1

ḣ3 = {Hs, h3} = {h1, h3}h1 + {h2, h3}h2

ḣ4 = {Hs, h4} = {h1, h4}h1 + {h2, h4}h2 .

(4.25)

Moreover we know from previous computations (see 1.42) that

{hi, hj}(ξ) = ξ([Ti, Tj]) ,
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and from 4.22 we have 
ḣ1 = −h3h2

ḣ2 = h3h1

ḣ3 = h4

ḣ4 = 0 .

(4.26)

Again the Hamiltonian is constant along the solutions of the Hamilton equations. We can then
restrict to the cylinder h2

1 + h2
2 = 1 and use the change of coordinates 1.45 while leaving h4

unaltered. The system 4.26 reduces to 
ϑ̇ = h3

ḣ3 = h4

ḣ4 = 0 .
(4.27)

We know that the Hamiltonian vector field of 4.24 project into R4 producing the dynamic
λ̇ = π̄∗XHs = hiXi. In our case λ̇ = cos(ϑ)T1 + sin(ϑ)T2. From the structure of T1 and T2 we
can easily see that the projections of normal minimizers into the plane π(R4) = R2 (recall that
π(x, y, z, w) = (πz ◦ πw)(x, y, z, w) = (x, y)) are again arcs of circles, i.e. curves with constant
principal curvature.

Centroid problem. From the variational viewpoint the problem of finding Sub-Riemannian
length minimizers of (R4, D, gs) as above is equivalent to the problem of finding the Euclidean
length minimizers in the plane π(R4) ≃ R2 with two additional constraints. Indeed by defini-
tion, the Sub-Riemannian length ls of an admissible curve λ : [0, 1] → R4 is

ls(λ) =
∫ 1

0

√
gs|λ(t)(λ̇(t), λ̇(t)) dt =

∫ 1

0

√
(π∗λ̇(t)) · (π∗λ̇(t)) dt . (4.28)

Calling σ := π(λ) we have
ls(λ) =

∫ 1

0

√
σ̇ · σ̇ dt = l(σ) , (4.29)

where l is the Euclidean length of σ. Furthermore, since λ is admissible we also have that its
projection πw(λ) =: γ satisfies the condition 4.10, i.e.∫ 1

0
A|γ(t)(γ̇(t)) dt = w(1) = const.

In our case A = bx2

2 dy, so that using 4.9, we find A(γ̇) = A(uxX + uyY ) = bx2

2 uy. Now,
since πz(γ) = σ we have that σ̇y = uy, and then the constraint on λ̇ 4.10 is equivalent to the
constraint on σ given by ∫ 1

0

bσ2
x

2 σ̇y dt = w(1) . (4.30)

Moreover, we have already seen that the condition on γ to be admissible is equivalent to the
constraint on σ given by 1.32 that we recall here

1
2

∫ 1

0
(σx(t)σ̇y(t) − σy(t)σ̇x(t)) dt = γ(1) . (4.31)

Apart from constant integrations along the segment σ(0)σ(1) we can use Stokes theorem to
describe such constraints as double integrals over the bounded subset Σ of the plane, whose
boundary is given by σ and the segment σ(0)σ(1). We finally get the conditions

∫
Σ xdx ∧ dy = k1∫
Σ dx ∧ dy = k2 ,

(4.32)
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with k1, k2 real constants. Geometrically, the first condition says that we are fixing the product
of the area of Σ times the coordinate of the centroid along x. But since by the second integral
condition we are also fixing the area of Σ, we are restricting to curves that enclose a fixed area
equal to k2, and have the centroid lying on the line x = k1

k2 .
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Chapter 5

Abnormal curves

In this chapter we give a description of abnormal curves arising from the sub-Riemannian struc-
tures studied in the previous chapters. After some generalities about abnormals we concentrate
on the case of distributions of growth vector (2, 3) and (2, 3, 4), which are the ones that arises
from the construction of Cβ

M when we use a constant magnetic field. After that we take the
magnetic field to be generic and describe the effect on abnormal curves.

5.1 Sub-Riemannian length minimizers
Let (M,D, gs) be a sub-Riemannian manifold and k ∈ N the constant rank of D. The problem
of finding a length minimizer between two points P,Q ∈ M , called a sub-Riemannian geodesic
connecting P to Q, is expressed as the problem of finding the

min{ls[γ] s.t. γ ∈ L2([0, 1],M), γ(0) = P, γ(1) = Q, γ̇(t) ∈ D|γ(t) ∀t ∈ [0, 1]} , (5.1)

with
ls[γ] :=

∫ 1

0

√
gs|γ(t)(γ̇(t), γ̇(t)) dt . (5.2)

Clearly, since γ̇ exists almost everywhere in [0, 1], where it does not, the condition γ̇(t) ∈ D|γ(t)
is considered to be satisfied. We suppose that both the points are contained in an open subset
U ⊆ M where there we choose an orthonormal frame for D, {Xi}i=1,··· ,k. In this way we can
write γ̇ using ui ∈ L2([0, 1],R), i = 1, · · · , k, controls

γ̇(t) = ui(t)Xi(γ(t)) . (5.3)
The length functional then becomes a functional over the space of controls. Denoting compre-
hensively the controls as u := (u1, · · · , uk) ∈ L2([0, 1],Rk), we have

ls[γ] =
∫ 1

0

√
gs|γ(t)(ui(t)Xi (γ(t)), uj(t)Xj(γ(t))) dt =

∫ 1

0

√
ui(t)ui(t) dt =: l̃s[u] . (5.4)

Notice that since the constraint on γ and ls are parametrization independent, (by Hölder in-
equality) the length minimizers are energy minimizers, i.e. they minimize the energy functional

Es[γ] := 1
2

∫ 1

0
gs|γ(t) (γ̇(t), γ̇(t)) dt = 1

2

∫ 1

0
ui(t)ui(t) dt =: Ẽs[u] . (5.5)

We can readily compute the differential at u of the energy functional

(dEs)|u(v) =
∫ 1

0
ui(t)vi(t) dt , (5.6)

for all variation (tangent vector) v ∈ TuL
2([0, 1],Rk) ≃ L2([0, 1],Rk).

45
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Endpoint map. We now want to write explicitly the constraint on γ as a constraint on
the controls. If u ∈ L2([0, 1],Rk) is a control we denote as γu ∈ L2([0, 1],M) the solution of
γ̇ = uiXi starting from P ∈ U .

Definition. The t-point map based on P ∈ U is the map Et
P : L2([0, 1],Rk) → M , u 7→ γu(t),

with t ∈ [0, 1]. In particular we call the endpoint map based on P , the 1-point map and denote
it simply as EP := E1

P .

Differential of the Endpoint map. The following proposition tells us how to compute the
differential of the endpoint map.

Proposition. Let EP : L2([0, 1],Rk) → M be the endpoint map relative to the distribution
D = span({X1, · · · , Xk}) then its differential at u applied to the ‘tangent vector’ v at u is equal
to

(dEP )|u(v) =
∫ 1

0

(
(Φu

t,1)∗X
v
t

)
|γu(1) dt , (5.7)

where Φu
t,1 is the flow of Xu = uiXi and Xv = viXi.

Proof. See [ABB19], sub-section 8.1.1.

Lagrange multipliers. We state a fairly general theorem about critical points. Let F : Ω →
M and f : Ω → R be differentiable functions, Ω and M being manifolds (possibly infinite
dimensional).

Theorem. Given m ∈ M , if u is a minimum (or a maximum) for the function f |F −1(m), then
there exists a nonzero (λ, ν) ∈ T ∗

mM × R such that

⟨λ|(dF )|u(v)⟩ + ν(df)|u(v) = 0 , (5.8)

for all v ∈ TuΩ.

We distinguish between two different situations.

Definition. We call u a minimum of f |F −1(m) normal iff rank ((dF )|u) = dim(M) and (df)|u ̸= 0.
We call a minimum (strictly) abnormal iff rank ((dF )|u) < dim(M) and (df)|u ̸= 0.

The normal case correspond to the usual Lagrange multipliers rule in Analysis. In that case
there is a co-vector (λ, ν), with ν ̸= 0, such that 5.8 is satisfied. In the abnormal case
instead the solution to 5.8 is given by (λi, 0), i = 1, · · · , corank ((dF )|u) = r, such that
span({λ1, · · · , λr}) ≃ coker ((dF )|u). We can now prove the following.

Theorem. If γu is a sub-Riemannian length minimizer of (M,D, gs), connecting γu(0) = P and
γu(1) = Q, then one of the following relations holds ((N) stands for normal minimizer and (A)
for abnormal minimizer)

(N) hi(t) := ⟨λu(t)|Xi(γu(t))⟩ = ui(t) , (5.9)

(A) hi(t) ≡ 0 , (5.10)

where λu(t) ∈ T ∗
γu(t)M for all t ∈ [0, 1].
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Proof. We only need to consider the Lagrange multipliers rule 5.8 (i.e. the constrained Euler-
Lagrange equations) for Es and EP , which thanks to 5.6 and 5.7, give us for λQ ∈ T ∗

QM ,
ν ∈ R

⟨λQ|(Φu
t,1)∗Xi)|Q⟩ = −νui(t) , (5.11)

or equivalently,
⟨(dΦu

t,1)|−T
γu(t)λQ|Xi(γu(t))⟩ = −νui(t) . (5.12)

Setting λu(t) := (dΦu
t,1)|−T

γu(t)λQ, in the normal case we can choose ν = −1 and get the desired
result (N). In the abnormal case we have ν = 0, hence also (A) easily follows. Moreover, observe
that the transposed differential (dΦu

t,1)|−T defines a flow in T ∗M , (λ, t) 7→ (dΦu
t,1)|−T

π(λ)λ, which
corresponds to the (time dependent) vector field uiXhi

, i.e. the cotangent lift of the (time
dependent) vector field uiXi.

Normal minimizers. The following theorem tells us that normal minimizers are projection
of an Hamiltonian system on T ∗M , π : T ∗M → M .

Theorem. (Normal extremals.) Let γu : [0, 1] → M be a normal length minimizer of (M,D, gs),
parametrized with constant speed. Then there exists a curve λu : [0, 1] → T ∗M , such that
π(λu) = γu and

λ̇u = XHs ,

with Hs the Sub-Riemannian Hamiltonian of gs, which is given by .

Hs(λ) := 1
2gs|π(λ)

 k∑
j=1

hj(λ)Xj(π(λ)),
k∑

j=1
hj(λ)Xj(π(λ))

 , (5.13)

having hi(λ) = ⟨λ|Xi(π(λ))⟩ for all λ ∈ T ∗M .

Proof. We have already shown that the cotangent lift the flow of a vector field Xi ∈ X(M)
is the flow of the Hamiltonian vector field associated with hi(λ) = ⟨λ|Xi(π(λ))⟩. This means
that, if γ̇(t)u = ui(t)Xi(γ(t)), then λ̇u(t) = ui(t)Xhi

(λ(t)), but since γu is a normal minimizer,
ui(t) = hi(λu(t)), hence λ̇u = hiXhi

. On the other hand, since the Xi’s are orthonormal
H = 1

2h
ihi and the Hamilton equations become λ̇ = XH = hiXhi

.

5.1.1 Step of a distribution
We always suppose the distribution D ⊂ TM to be bracket generating at all points of M .
This means that taking a sufficiently high number N of brackets we obtain enough linearly
independent vector fields to span TM . Given F := {X1, · · · , Xk} ⊂ X(M), k ≥ rank(D), a
family of vector fields describing D, we define the following subspace of TmM

LieN
m(F) := span

(
{[Xi1 , · · · , [Xin−1 , Xin ]](m) : m ∈ M, Xij

∈ F , n ≤ N}
)
, (5.14)

and call the step of D at m ∈ M the minimum integer s(m) such that Lies(m)
m (F) = TmM .

By convention we set Lie1
m(F) := D|m. Clearly the step can vary with m. It is also useful to

record the progression in the dimension of LieN
m(F) when N varies and fixing m. We define the

growth vector at m ∈ M as the vector (k1(m), k2(m), · · · , ks(m)), where kj := dim(Liej
m(F)).

This means that k1 = rank(D) and ks(m) = dim(M).

Proposition. The integers kj do not depend on the family F = {X1, · · · , Xk} ⊂ X(M) describing
D.
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Proof. Locally, in an open U ⊂ M , k = rank(D). Start by considering k2. We have [Xi, Xj] =
ch

ijXh + sh
ijYh, where Yh ∈ X(M), h = 1, · · · , corank(D), complete F to a frame for TM . Let

{X̃1, · · · , X̃k} be another frame describing D. Then we have

X̃i(m) = aj
i (m)Xj(m) ,

with aj
i ∈ C∞(M) giving the coefficients of a linear invertible map a(m) ∈ GLk(R) at every

m ∈ M . Computing the bracket using the new fields we get

[X̃i, X̃j] = [al
iXl, a

h
jXh] = al

ia
h
j [Xl, Xh] mod(D) = al

ia
h
j s

m
lhYm mod(D) = s̃m

ijYm mod(D) .

Now, since a is invertible, s̃m
ij = 0 if and only if sm

lh = 0. This means that there exists l and
h such that sm

lh ̸= 0, i.e. k2 = k + 1 if and only if there exist i and j such that s̃m
ij ̸= 0, i.e.

k̃2 = k + 1. We conclude that k2 = k̃2. The equivalence of higher order brackets conditions is
similar.

The previous proposition tells us that LieN
m(F) does not depend on the set F = {X1, · · · , Xk},

and that is equivalent to the following geometric definition. Let XD(M) be the set of sections
of TM taking values in D. Then we could set

LieN
m(D) := span

(
[Xi1 , · · · , [Xin−1 , Xin ]](m) : m ∈ M, Xij

∈ XD(M), n ≤ N}
)
, (5.15)

which we shorten as LieN
m(D) :=

(
ad1≤n≤N

D D
)∣∣∣

m
, without mentioning any frame.

5.2 Abnormal curves
It is easy to show that the zero level set of the sub-Riemannian Hamiltonian H−1

s (0) is a
(2n − k)-dimensional submanifold of T ∗M which can be seen as the sub-bundle given by the
annihilator D⊥ ⊂ T ∗M of the distribution D ⊂ TM

D⊥ :=
⊔

m∈M

D⊥|m , (5.16)

with
D⊥|m := {p ∈ T ∗

mM : ⟨p|Xi(m)⟩, i = 1, · · · , k} . (5.17)
In other words, if the distribution is described by the Pfaffian equations

α1 = 0
...

αn−k = 0 ,
(5.18)

with αj ∈ Λ1(M), j = 1, · · · , n− k, we have

D⊥ = span({α1, · · · , αn−k}) . (5.19)

The structure of D⊥ is made clear by expressing the symplectic form in terms of the frame
{µ1, · · · , µk} dual to {X1, · · · , Xk} and {α1, · · · , αn−k} dual to {Y1, · · · , Yn−k}. Again denoting
as hi the coordinates induced by the Xi’s and kj the ones induced by the Yj’s from section 3.1
we have

σ = dhi ∧ µi + hidµi + dkj ∧ αj + kjdαj , (5.20)
hence

σ|D⊥ = dkj ∧ αj + kjdαj . (5.21)
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From condition 5.10, abnormal curves belong to the subset D⊥ ⊂ T ∗M . We can further char-
acterize them as follows.

Theorem. Let γu : [0, 1] → M be an abnormal curve of (M,D, gs). Then there exists a Lipschitz
curve λu : [0, 1] → D⊥ ⊆ T ∗M such that π(λu) = γu and

λ̇u ∈ ker(σ|D⊥) (5.22)

Proof. Given an abnormal γu with u Lipschitz controls, the previous theorem tells us that there
exits a Lipschitz curve λu : [0, 1] → D⊥ solution of

λ̇u = ui(t)Xhi
(λu(t)) .

The tangent space to D⊥ at λ ∈ D⊥ is given by

TλD
⊥ =

k⋂
i=1

ker ((dhi)|λ) =
k⋂

i=1
ker

(
(iXhi

σ)|λ
)

=
k⋂

i=1
(span(Xhi

(λ)))§ ,

where the superscript ‘§’ denotes the orthogonal with respect to σ. Consequently we obtain

ker(σ|D⊥) := (TD⊥)§ =
(

k⋂
i=1

(span(Xhi
(λ)))§

)§

= span({Xh1 , · · · , Xhk
}) .

This allows us to conclude that λ̇u ∈ ker(σ|D⊥).

The previous theorem states that abnormal curves1 live in the set

Char(D) := {λ ∈ D⊥ : ker ((σ|D⊥)|λ) ̸= {0}} . (5.23)

We also observe that being λ an abnormal, from hi(λ(t)) = 0 for all t ∈ [0, 1] and i = 1, · · · , k,
we obtain

0 = d

dt
hi(λ(t)) = (dhi)|λ(t)(λ̇(t)) = uj(t)(dhi)|λ(t)(Xhj

(λ(t)) = ui(t){hj, hi}(λ(t)) . (5.24)

Hence defining the map H : D⊥ → Skew(k,R)

Hij(λ) := {hi, hj}(λ), (5.25)

we get that
Char(D) = {λ ∈ D⊥ : det(H(λ)) = 0} . (5.26)

We immediately notice that if the rank of the distribution is odd, then Char(D) = D⊥. In the
even case instead, we can write the determinant of H as the square of its Pfaffian Pf(H). In this
way Char(D) = D⊥ ∩ (Pf(H)−1) (0), which whenever d(Pf(H))|λ is nonzero, is a (2n− k − 1)-
dimensional sub-manifold of T ∗M .

1We should call λ (abnormal) and γ = π(λ) (abnormal curve or abnormal trajectory) differently, however
since their meaning is clear we use the same name for both the objects.
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Abnormals and corank-1 distributions. Let D ⊂ TM be a rank-(n − 1) distribution.
Suppose that S2 ⊆ M is the set in which the distribution have step greater than two (in other
words the points in which the distribution is involutive), i.e.

S2 := {m ∈ M : D2|m ⊂ TmM} . (5.27)

If D = span ({X1, · · · , Xn−1}), we can find a frame of TM by adding a suitable vector field
Y ∈ X(M). Thanks to the proposition of section 1.1 we can describe S2 as the zero level set of
(n−1)(n−2)

2 functions sij. Indeed if

D2 = span({X1, · · · , Xn−1, s12Y, · · · , s(n−2)(n−1)Y }) , (5.28)

where the functions sij are defined by the Lie brackets

[Xi, Xj] = ck
ijXk + sijY , (5.29)

with 1 ≤ i < j ≤ n− 1 and 1 ≤ k ≤ n− 1, we can write S2 as

S2 = {m ∈ M : sij(m) = 0, 1 ≤ i < j ≤ n− 1} . (5.30)

Computing the next order brackets we get

[Xk, [Xi, Xj]] = [Xk, c
l
ijXl + sijY ] = Xk(sij)Y mod(D) . (5.31)

This allows us to give a geometric description of the points in which the step is greater than
three. Indeed setting

S3 := {m ∈ M : D3|m ⊂ TmM} , (5.32)
we have that

S3 = {m ∈ M : (dsij)|m(Xk(m)) = 0, 1 ≤ i < j ≤ n− 1, 1 ≤ k ≤ n− 1} , (5.33)

in other words
S3 = {m ∈ M : D|m ⊆ (dsij)|m, 1 ≤ i < j ≤ n− 1} . (5.34)

Since sij are smooth functions, apart from a discrete set of points, S2 is a smooth sub-manifold
of co-dimension (n−1)(n−2)

2 , and

TmS2 =
⋂

1≤i<j≤n−1
ker ((dsij)|m) ,

so S3 is the set of points of M in which D is tangent to S2. We also see from 5.31 that in
general S3 have co-dimension (n−1)2(n−2)

2 , so the co-dimension of S2 ∩ S3 is n(n−1)(n−2)
2 .

In this case Hij = {hi, hj}|D⊥ = (ck
ijhk + sijhy)|D⊥ = sijhy, where hy(λ) := ⟨λ|Y (π(λ))⟩. From

this it follows that admissible curves inside S2 are abnormals. Moreover it is rather clear that
the converse is not always true. More precisely, curves in S2 belong to the co-isotropic part of
Char(D).

Remark. This type of distribution is the one arising from the construction of Cβ
M when M is a

n-dimensional Riemannian manifold. The role of the functions sij is played by the components
of the magnetic field βij. A naive dimensional counting tells us that, since the magnetic field
does not depend on the vertical coordinate of Cβ

M , the co-dimension of S2 is equal to n(n−1)
2 ,

so the only non trivial dimensions of the manifold are n = 2, 3. For a magnetic field in a
Riemannian surface we obtain a surface in Cβ

M , for a magnetic field in a three dimensional
Riemannian manifold we obtain a line in Cβ

M . In the first case the distribution is generically
transversal to the surface, in the second the distribution is skew with respect to the lines.
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Contact distributions. Suppose now that the sub-Riemannian structure is of contact type.
This means that D = ker(α), and α ∈ Λ1(M) the contact form, is such that (dα)|D is non
degenerate. From a remarkable formula we also get that

dα(Xi, Xj) = Xi(⟨α|Xj⟩) −Xj(⟨α|Xi⟩) − ⟨α|[Xi, Xj]⟩ = −sij⟨α|Y ⟩ = −sijfhy = fHji , (5.35)

for a non zero f ∈ C∞(M). In other words −(dα)|D = fH. But then det(H) ̸= 0, so
Char(D) = ∅, and there cannot be abnormals. We summarize what just found into a theorem.

Theorem. Let (M,D, gs) be a sub-Riemannian structure of contact type. Then there are no
abnormal curves.

5.3 Abnormals of rank-2 distributions.
We now address the case in which we are given a rank-2 distribution, that is locally described
by two vector fields X1,2 ∈ X(M). It will be useful to define a particular type of abnormal
extremals.

Definition. An abnormal λ : [0, 1] → D⊥ is called a nice abnormal iff

λ(t) ∈
(
D2|π(λ(t))

)⊥
\
(
D3|π(λ(t))

)⊥
∀t ∈ [0, 1] . (5.36)

Proposition. Along a nice abnormal of a rank-2 sub-Riemannian structure we have that h12 :=
{h1, h2} ≡ 0 (Goh condition) and (h112λ(t), h221(λ(t)) ̸= 0, for all t ∈ [0, 1], where h112 :=
{h1, {h1, h2}} and h221 := {h2, {h2, h1}}.

Proof. For the first part, since along an abnormal λ, for i = 1, 2, hi ≡ 0, we have that

d

dt
hi(λ) = ⟨dhi|ujXhj

⟩ = uj{hi, hj} = Hjiu
j ≡ 0 .

Since u ̸= 0, it must be det(H) = h2
12 = 0, i.e. h12 = 0.

Let now h112(λ(t)) = 0 for some t ∈ [0, 1]. But then 0 = ⟨λ(t)|[X1, [X1, X2]](π(λ(t)))⟩. The
same computation goes for h221, and hence at least one of the two quantities must be nonzero,
otherwise λ̇(t) ∈ (D3|π(λ(t)))⊥.

The following theorem tells us that nice abnormals are (reparametrizations of) solutions of an
Hamiltonian system, hence are regular curves.

Theorem. Let λ : [0, 1] → D⊥ be an abnormal of a rank-2 sub-Riemannian structure. Then λ
is nice if and only if it is a reperametrization of a solution of the Hamiltonian system

λ̇(t) = XH(λ(t)) , (5.37)

with initial datum λ(0) ∈
(
D2|π(λ(0))

)⊥
\
(
D3|π(λ(0))

)⊥
, and where H = {h2, {h2, h1}}h1 +

{h1, {h1, h2}}h2 = h221h1 + h112h2.

Proof. See [ABB19], theorem 12.30 page 425.
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5.3.1 Rank-2 distribution in dimension 3.
Let [X1, X2] = sY mod(D), so that S2 = {m ∈ M : s(m) = 0}. Given λ an abnormal curve,
the condition {h1, h2}(λ) ≡ 0 leads to

{h1, h2}(λ) = ⟨λ|[X1, X2](π(λ))⟩ = ⟨λ|s(π(λ))Y (π(λ))⟩ = s(π(λ))h3(λ) , (5.38)
where h3 is the dual coordinate of Y . Since h3 cannot be zero, it must be s(π(λ)) = 0, hence
all abnormals are contained in S2 ⊂ M , which is called the Martinet set.

Consider the next brackets [Xk, [X1, X2]] = Xk(s)Y mod(D). Always from the condition
{h1, h2} ≡ 0 we get

d

dt
h12(λ) = ⟨dh12|λ̇⟩ = uk{hk, {h1, h2}}(λ) = ukhk12(λ) ≡ 0 , (5.39)

but we have that
hk12(λ) = ⟨λ|[Xk, [X1, X2]]⟩ = ⟨ds|Xk⟩(π(λ))h3(λ) .

In conclusion, since h3(λ) ̸= 0, we have necessarily that
⟨ds|ukXk⟩(π(λ)) ≡ 0 , (5.40)

in other words γ̇ = π∗λ̇ = ukXk ∈ TS2. Condition 5.39 allows us to find the right control by
setting u1(t) = h221(λ(t))

u2(t) = h112(λ(t)) .
(5.41)

On the other hand the Hamiltonian vector field 5.37, restricted to D⊥ is
(XH)|D⊥ = h112Xh2 + h221Xh1 . (5.42)

This means that the projection γ = π(λ) on M satisfies
γ̇ = h112X2 + h221X1 =: V , (5.43)

which exactly the vector field that we just found as the intersection D ∩ TS2. Observe also
that if γ(t) ∈ S3 we have h112 = h221 = 0, hence there would be an equilibrium.
Furthermore we can see that V has zero divergence2 at points of S3. Consider {µ1, µ2, µ3 :=
α} ⊂ Λ1(M) the dual basis of {X1, X2, X3 := Y } ⊂ X(M). Since LXi

µj = iXi
dµj, we see that

if [Xi, Xj] = ck
ijXk then dµk = ck

ijµ
i ∧ µj. Moreover, since dα = bµ1 ∧ µ2 for some function

b ∈ C∞(M), we have
LV (µ1 ∧ µ2 ∧ µ3) = (LV µ

1) ∧ µ2 ∧ µ3 + µ1 ∧ (LV µ
2) ∧ µ3 = c1

12(h221 − h112)(µ1 ∧ µ2 ∧ µ3)
This means that div(V ) = c1

12(h221 − h112), so in conclusion (div(V ))|S3 = 0. The zero diver-
gence condition implies that the trace of the linearization of the system γ̇ = V around the
equilibria is zero. This means that the eigenvalues are either real (hyperbolic equilibrium) or
purely imaginary (a center). The non linear contributions then turns centers into focuses, but
leave the hyperbolic equilibria qualitatively the same (Grobman-Hartman theorem).

This results are applicable to the sub-Riemannian structure of Cβ
M made in Chapter 1, where

M was a Riemannian surface and β a magnetic field in it. The Martinet set here corresponds
to the zero locus of the magnetic field {(m, z) ∈ Cβ

M : β(m) = 0}. If b ∈ C∞(M) denotes the
component of the magnetic field the nice abnormal extremal contained in the regular part of
the Martinet set is solution of the system

γ̇ = X1(b)X2 −X2(b)X1 .
2Given ω volume form for M the divergence div(X) ∈ C∞(M) of a vector field X is defined by the relation

LXω = (div(X))ω.
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5.3.2 Rank-2 distribution in dimension 4.
Let D = span({X1, X2}) ⊂ TM . We can complete {X1, X2} to a frame for TM by adding two
independent vector fields Y1 and Y2. The first bracket will be

[X1, X2] = s1Y1 + s2Y2 mod(D) ,

where s1,2 ∈ C∞(M). We denote with k1,2 the coordinates induced on the fibers of T ∗M by
Y1,2, i.e. ki(λ) := ⟨λ|Yi(π(λ))⟩, i = 1, 2. Consequently we expect that the points m in which
(D2)|m = D|m belong to a sub-manifold of dimension two.

To simplify the notation we write [Xi, Xj] = ck
ijXk +sk

ijYk, with i, j, k = 1, 2. The next brackets
are given by

[Xk, [Xi, Xj]] = [Xk, c
h
ijXh + sh

ijYh] =
(
Xk(sl

ij) + sh
ijr

l
kh

)
Yl mod(D) , (5.44)

where rl
kh ∈ C∞(M) are defined by [Xk, Yh] = rl

khYl mod(D).

Growth vector (2, 3, ..., 3, 4). We consider first the equiregular case, in which the growth
vector is forced to be (2, 3, 4). This means that Y (m) := s1(m)Y1(m) + s2(m)Y2(m) ̸= 0 for
all m ∈ M . Up to a change of frame we can always set Y1 := Y and then we can complete
{X1, X2, Y } to a frame of TM by adding an independent vector field Z ∈ X(M). The second
order brackets become

[Xk, [X1, X2]] = [Xk, Y mod(D)] = rkZ mod(D2) , (5.45)

where r1,2 ∈ C∞(M). As a consequence, the set of points m ∈ M at which (D3)|m ⊆ (D2)|m
is again given by a sub-manifold of dimension two. This is exactly the case encountered in
Chapter 4 when we introduced a magnetic field in the Heisenberg group. In particular the
functions r1,2 correspond to the components of the magnetic field bx,y. When the magnetic field
is a non zero constant, we then obtain the Engel distribution, and the growth vector is (2, 3, 4).

Consider an abnormal curve λ : [0, 1] → D⊥, having λ̇ = uiXhi
, i = 1, 2. The Goh conditions

tell us that if [X1, X2] = Y mod(D), we have

0 ≡ h12(λ) = ⟨λ|[X1, X2](π(λ))⟩ = ⟨λ|Y (π(λ))⟩ = k1(λ) , (5.46)

where k1 is the dual coordinate induced on the fibers of T ∗M by Y . Contrary to the co-rank
one distribution case, here k1(λ) ≡ 0 is a non trivial solution since k2(λ) := ⟨λ|Z(π(λ))⟩ is free.
In order to find the controls of the abnormal curve we observe that

0 ≡ k̇1(λ) = ⟨dk1|uiXhi
⟩ = ui{k1, hi}(λ) . (5.47)

Now, form 5.45 we obtain

{k1, hi}(λ) = ⟨λ|[[X1, X2], Xi]⟩ = −ri(π(λ))⟨λ|Z⟩ =: −ri(π(λ))k2(λ) ,

and since k2 ̸= 0 we see that 5.47 is satisfied as long asu1(t) = r2(π(λ(t)))
u2(t) = −r1(π(λ(t))) .

(5.48)

The unique abnormal of an Engel type distribution, where at least one of the ri’s is nonzero, is
therefore nice. Moreover, since there are no restrictions on the base, there is an Engel abnormal
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passing through each point of M . Notice in particular that if r1 = 0, and r2 ̸= 0, the abnormal
trajectory is generated by the flow of X1 and vice versa if r2 = 0, and r1 ̸= 0 the abnormal
is generated by the flow of X2. In a more intrinsic way we see that the abnormal curve is
generated by the flow of the vector field X ∈ D such that [X,D2] = 0 mod(D2).

In the case in which r1 = r2 = 0, i.e. in the zero locus of the magnetic field, the Engel abnormal
becomes an equilibrium point. As we said previously, apart from a disctete set of points, this
set is a sub-manifold of dimension two S, and since the distribution has rank two we expect
the intersection D ∩ TS to be generically empty. It follows that the only abnormal curves that
project inside S are the equilibria of the abnormal specified by 5.48.

Abnormal of the Engel distribution. Consider the case of a constant magnetic field
studied in Chapter 4 which give rise to the Engel distribution. We recall here the vector fields
of the distribution T1 = X

T2 = Y + bx2

2 ∂w ,
(5.49)

where X and Y are the vector fields of the Heisenberg structure 2.3X = ∂x − y
2∂z

Y = ∂y + x
2∂z .

(5.50)

The second order bracket gives [T1, [T1, T2]] = ∂w

[T2, [T1, T2]] = 0 ,
(5.51)

which corresponds to a magnetic field β = dx∧α. The Engel abnormal is then a reparametriza-
tion of a solution of γ̇ = −T2 = −∂y − x

2∂z − x2

2 ∂w, i.e. a straight line


x(t) = x0

y(t) = y0 − t

z(t) = z0 − x0
2 t

w(t) = w0 − x2
0

2 t ,

(5.52)

with (x0, y0, z0, w0) ∈ R4 initial datum.

In the following we consider non trivial magnetic fields coming from physical models, namely
the monopole and the dipole.

Magnetic monopole. We now consider the magnetic potential of a magnetic monopole.
We start by rephrasing the description of forms using a cylindrical coordinate system in H3,
(x, y, z) 7→ (r, φ, z). In these coordinates we use the frame {dr, rdφ, α}, where now the contact
form 2.2 is written as α = dz − r2

2 dφ. The dual frame of {dr, rdφ, α} is given by {R,Φ, Z}
with 

R := ∂r

Φ := ∂φ

r
+ r∂z

2
Z := ∂z .

(5.53)

Its is straightforward to check that this frame is orthonormal with respect to the flat metric
2.5 of H3. The Rumin complex can be described as Ω1(H3) = span({dr, rdφ}), Ω2(H3) =
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span({dr ∧ α, rdφ ∧ α}) and Ω3(H3) = span{α ∧ dα}. We also have an expression for the
operator D in these coordinates.

Proposition. Given A ∈ Ω1(H3), with A = Ardr + Aφrdφ, we have

DA = (R(γ) − Z(Ar))dr ∧ α + (Φ(γ) − Z(Aφ))rdφ ∧ α , (5.54)

where
γ := R(rAφ)

r
− Φ(Ar) . (5.55)

Proof. See [Cas+21], proposition 4.1. The proof is completely analogous to the one of the
proposition at page 36.

We further notice that the closure of the magnetic field implies that its components are not
independent. We have indeed the following proposition.

Proposition. Given β ∈ Ω2(H3), with β = DA and β = βrdr ∧ α + βφrdφ ∧ α, we have

βφ(r, φ, z) =
∫ r

0
Φ(βr)(r̃, φ, z)r̃ dr̃ . (5.56)

Proof. See again [Cas+21], proposition 4.2.

Notice that from 5.56 it follows that if the magnetic field depends only on the radial coordinate,
we have βφ ≡ 0. In this case the zero locus of the magnetic field is generically a co-dimension
one sub-manifold of E4.

The horizontal distribution in the Heisenberg group (see 2.3) is spanned by R and Φ. If β = DA,
and A = Ardr + Aφrdφ, the Horizontal distribution of Cβ

H3 is spanned byT1 := R + A(R)∂w = R + Ar∂w

T2 := Φ + A(Φ)∂w = Φ + Aφ∂w .
(5.57)

The first bracket is given by

[T1, T2] = [R+Ar∂w,Φ+Aφ∂w] = [R,Φ]+(R(Aφ)−Φ(Ar))∂w = [R,Φ]+
(
γ − Aφ

r

)
∂w . (5.58)

As we already proved in general, from this expression we see that the growth vector of Cβ
H3 is

of type (2, 3, · · · , 4). Observe also that since R and Φ are not L-invariant, {R,Φ, Z} do not
solve the Heisenberg algebra. The next bracket is given by the following expression

[T1, [T1, T2]] = [R, [R,Φ]] +
(
R(γ) −R

(
Aφ

r

)
− [R,Φ](Ar)

)
∂w . (5.59)

Since we have [R,Φ] = −∂φ

r2 + ∂z

2 and [R, [R,Φ]] = 2∂φ

r3 , we can compute the step by looking at
the following determinant

det


1 0 0 Ar

0 1
r

+ r
2 Aφ

0 − 1
r2

1
2 B

0 2
r3 0 C .

 = B
r2 + C

r
− Aφ

r3 , (5.60)
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where we used a shorthand notation for the coefficients of ∂w. With a bit of work we can rewrite
this determinant in a more meaningful way.

B
r2 + C

r
− Aφ

r3 = γ

r2 − Aφ

r3 + R(γ)
r

− 1
r
R
(
Aφ

r

)
+ 1
r

(
∂φ

r2 − ∂z

2

)
(Ar) − Aφ

r3 =

= 1
r

(R(γ) − Z(Ar)) + 1
r2

((
∂φ

r2 + ∂z

2

)
(Ar) −R(Aφ) − Aφ

r
+ γ

)
=

= βr

r
+ 1
r2 (Φ(Ar) −R(Aφ) +R(Aφ) − Φ(Ar)) = βr

r
.

As it happened in the case of L-invariant frames the step depends on the component of the
magnetic field. However in this case the second order bracket does not involve directly the
magnetic field (confront 5.59 with 4.16). The other second order bracket is given by

[T2, [T1, T2]] =
[
Φ + Aφ∂w, [R,Φ] +

(
γ − Aφ

r

)
∂w

]
=

= [Φ, [R,Φ]] +
(

Φ(γ) − Φ(Aφ)
r

+ Φ(Aφ)
r

− Z(Aφ)
)
∂w = βφ∂w .

The the second bracket is independent if and only if the following determinant is non zero.

det


1 0 0 Ar

0 1
r

+ r
2 Aφ

0 − 1
r2

1
2 B

0 0 0 βφ .

 = βφ

r
. (5.61)

We have then recovered our previous result on the step of the distribution D = span({T1, T2})
in Cβ

H3 , i.e. that the step is strictly greater than 3 if and only if β ̸= 0.

We now consider the following scalar potential of a magnetic monopole in H3

V (r, z) = 1√
r2 + z2

, (5.62)

the standard magnetic 1-form being B := dV = − rdr√
r2+z23 − zdz√

r2+z23 = − rdr+zdz
ρ3 , where ρ2 =

r2 + z2. Since we are looking for a magnetic potential we shall compute first the standard
magnetic 2-form ⋆B. In cylindrical coordinates we have

(⋆B)ij = rεijkB
k = r(εijrB

r + εijzB
z) ,

hence
⋆B = r2

ρ3 dz ∧ dφ− zr

ρ3 dr ∧ dφ .

It is easy to see that the magnetic potential A, such that dA = ⋆B is given by

A = zdφ
ρ

.

We can now express A in terms of the generators of Ω1(H3) as A = Ardr + Aφrdφ = z
rρ
rdφ,

and compute the magnetic field according to Rumin as β = DA. We have γ = − z
ρ3 , then

βr = ∂r

(
− z

ρ3

)
= 3rz

ρ5 ,
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and

βφ =
(
∂φ

r
+ r∂z

2

)(
− z

ρ3

)
− ∂z

(
z

rρ

)
= −r4 + 2z4

2rρ5 .

As a consequence, except for the origin, which is outside the coordinate system, the magnetic
field is non zero, hence the growth vector is (2, 3, 4). Moreover, the only abnormal curves are
Engel abnormals.

Dipole-like magnetic potential. We consider now the potential of a magnet in H3 lying
in the (x, y) plane. If the dipole moment is m ∈ H3, the vector potential A ∈ X(H3) at x ∈ H3
is given by

A(x) = m × x
||x||3

, (5.63)

where the bold letters denotes three dimensional vectors and “×” stands for the standard
vector product in R3. Referring to the Cartesian coordinates of H3, (x, y, z), we assume that
m = (1, 0, 0), and hence, the potential is

A = ydz
r3 − zdy

r3 , (5.64)

where r := ||x||. This potential is equivalent modulo the contact form α (see 4.1) to the form

A = −y2dx
2r3 + (xy − 2z)dy

2r3 (5.65)

We can compute the magnetic field according to Rumin β = βxdx ∧ α + βydy ∧ α. From 4.6
we have

βx = X

(
X

(
(xy − 2z)

2r3

)
− Y

(
− y2

2r3

))
− Z

(
− y2

2r3

)
=

= X
((

(xy − 2z)X + y2Y
)( 1

2r3

)
+ 2y
r3

)
+ y2Z

( 1
2r3

)
=

= (6yX + y2Z)
( 1

2r3

)
+
(
(xy − 2z)X2 + y2XY

)( 1
2r3

)
.

For βy we get

βy = Y

(
X

(
(xy − 2z)

2r3

)
− Y

(
− y2

2r3

))
− Z

(
(xy − 2z)

2r3

)
=

= Y
((

(xy − 2z)X + y2Y
)( 1

2r3

)
+ 2y
r3

)
+ (xy − 2z)Z

( 1
2r3

)
+ 1
r3 =

= 3
r3 + ((6yY + (xy − 2z)Z))

( 1
2r3

)
+
(
(xy − 2z)Y X + y2Y 2

)( 1
2r3

)
.

Notice that by neglecting the inverse cubic term we obtain again the Engel distribution. After
a long computation we get

βx = 3
8r7 (−24x4y + x3y3 − xy3(4 + y2) + 4xy(−1 + y2)z2 − 2(−4 + y(−1 + 7y))z(y2 + z2)−

−x2y(24y2 +x(−16+y2)−2(−16+y+3y2)z+24yz2)+xy(y4 +20z(−xy+2z)−4y2(−5+z2)))
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We obtain equally complicated expression for the other component. This makes the computa-
tion of the Engel abnormal not very enlightening.

Remark. The expression of the magnetic potential for the monopole and the dipole are in
contrast with the metric structure of H3. We shall instead use for the monopole a potential like

V (r, z) = 1√
r4 + z2

,

since it has the property of being homogeneous under the natural dilation in H3, (x, y, z) 7→
(ϵx, ϵy, ϵ2z).



Appendix A

Principal connections
Let π : P → M be a principal bundle with base M and characteristic fiber a Lie group G. The
projection defines a distribution in TP called the vertical distribution V as

V =
⊔

p∈P

Vp =
⊔

p∈P

ker(π∗|p) ⊂ TP .

Definition. A connection on P is a distribution H ⊂ TP , called an horizontal distribution,
such that

TP = H ⊕ V ,

in the sense that TpP = Hp ⊕ Vp, for all p ∈ P and that is equivariant with respect to the right
translations Rg(p) = pg of P , i.e.

Hpg = Rg∗Hp .

We shall give two other equivalent definitions of a principal connection.

Definition. A connection on P is a g-valued 1-form on P called the connection 1-form, i.e. a
certain ω ∈ Λ1(P, g) such that

R∗
gω = Adg−1 ◦ ω ∀g ∈ G ,

and brings the vector fields of the right actions to their generators in the Lie algebra

ω|p(Xξ(p)) = ξ ∀p ∈ P ,

with Xξ(p) := d
dt
Rexp(tξ)(p)|t=0 = d

dt
p exp(tξ)|t=0.

Definition. A connection on P is a correspondence between the local trivializations TU :
π−1(U) → U × G of P and g-valued 1-forms on U open subset of M . If ωU ∈ Λ1(U, g)
corresponds to TU and ωV ∈ Λ1(V, g) to TV , in the intersection U ∩V we have the compatibility
relation

ωV |p(v) =
(
(Lg−1

UV (m))∗ ◦ (gUV )∗
)

(v) +
(
Adg−1

UV (m) ◦ ωU |p
)

(v) ∀v ∈ Tm(U ∩ V ) ,

where m = π(p) ∈ U ∩ V , and gUV ∈ C∞(U ∩ V,G) is the transition function between the two
trivializations.

Remark. It can be shown that the three definitions just given are in fact equivalent. It is
customary in Physics to call the locally defined 1-forms ωU the potentials. The reason for this
is that, at least for G Abelian, the exterior differentials of these forms lead to a globally defined
2-form F ∈ Λ2(M, g) called the field strength, which is an observable field. Important is the
case of Electromagnetism in which M is the Minkowski 4-dimensional space-time and G = S1.

59



60 CHAPTER 5. ABNORMAL CURVES

In this case F contains the Electric and Magnetic fields.

We notice that it is clear, mostly from the first definition, that there is an isomorphism between
H and TM . This comes from the definition of H and that π is a submersion. Secondly, if
ω ∈ Λ1(P, g), we have that ker(ω) ≃ H ≃ TM . We finally observe that the relation between
the local potentials ωU and a connection 1-form ω can be established using the local sections.
If sU : U → P is a local section we can take ωU := s∗

Uω as local potential.

Curvature of a principal connection. We define the following operation

Definition. Let φ ∈ Λi(P, g), ψ ∈ Λj(P, g), we define [φ, ψ] ∈ Λ1(P, g) through the relation

[φ, ψ](X1, · · · , Xi+j) := 1
i!j!

∑
σ∈S(i+j)

(−1)|σ|[φ(Xσ(1), · · · , Xσ(i)), ψ(Xσ(i+1), · · · , Xσ(i+j))] ,

where S(i + j) is the permutation group of i + j elements, |σ| the sign of the permutation σ,
X1 · · · , Xi+j ∈ X(P ), and the bracket on the RHS is the Lie bracket of g.

We turn our attention back to the splitting defined by the choice of a connection TP = H ⊕ V .
We can then uniquely write every vector field X ∈ X(P ) as the sum of its vertical and horizontal
components

X(p) = XV(p) +XH(p), XV(p) ∈ Vp, X
H(p) ∈ Hp .

Consequently we have that π∗(XV) = 0 and if ω is the connection 1-form ω(XH) = 0. We can
therefore define horizontal differential forms as follows.

Definition. Let φ ∈ Λi(P, g). The horizontal part of φ is the form φH ∈ Λi(P, g) defined
through the relation

φH(X1, · · · , Xi) := φ(XH
1 , · · · , XH

i ) .

Definition. Let H ⊂ TP be a connection on P . The exterior covariant derivative of a form
φ ∈ Λi(P, g) relative to the connection H is the form ∇Hφ ∈ Λi+1(P, g) defined as

∇Hφ := (dφ)H .

If the connection H is specified by the connection 1-form ω, we use also the notation ∇ω := ∇H.
In the case only one connection is considered we will omit the superscript.

We are now in the position to define the curvature of a principal connection.

Definition. The curvature of a principal connection 1-form ω, denoted as Ωω is the exterior
covariant derivative relative to the connection itself of ω, i.e.

Ωω := ∇ωω ∈ Λ2(P, g) .

Theorem. (Structural equation) If ω is a connection 1-form on a principal bundle, we have the
following identity

Ωω := ∇ωω = dω + 1
2[ω, ω] .

Notice that in the Abelian case the covariant derivative coincides with the exterior differential,
as it happens in Electromagnetism.
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The circle bundle on a surface. If we consider a Riemannian surface M , we can construct
the circle bundle over it as the collection of tangent vectors with unitary length with respect
to the Riemannian metric. We denote this set as SM . This space has the structure of a
principal bundle π : SM → M with base M and characteristic fiber the Abelian Lie group
S1. Let {e1, e2} be an orthonormal frame for TM over the open subset U ⊂ M . The two
sections defines a local trivialization of SM as follows. Given s ∈ π−1(U) we can then write it
as (π(s) = m)

s = cos(ϑ(m))e1 + sin(ϑ(m))e2 ,

where ϑ : U → S1 is a uniquely determined function. The local trivialization of TS over U is the
map TU : π−1(U) → U × S1, s 7→ (m,ϑ(m)). The right translations by S1 are simply rotation
of the frame, i.e. Rαs = sα is such that in the trivialization of before TU(sα) = (m,ϑ+ α).
A connection over SM is a Lie algebra valued one form over SM . Since the Lie algebra of S1

is diffeomorphic to R, we can consider ordinary 1-forms in Λ1(SM).
We denote with V ∈ X(SM) the (locally defined) generator of the vertical distribution ker(π∗),
and consider a connection τ ∈ Λ1(SM). There exists a unique horizontal lift of vector fields on
the base M , in particular we denote as {E1, E2} the horizontal lift of the orthonormal frame
{e1, e2}. We recall that by this we mean that for i = 1, 2 we haveτ(Ei) = 0

π∗Ei = ei .
(5.66)

We choose a suitable normalization such that τ(V ) = 1. This means that in local coordinates
V = ∂ϑ and τϑ = 1. Observe that {E1, E2, V } is now a frame on SM . Next we consider the
brackets

[E1, E2] = c̃1E1 + c̃2E2 + vV , (5.67)
where c̃1, c̃2, v ∈ C∞(SM). Using 5.66 we have

π∗([E1, E2]) = [π∗E1, π∗E2] = [e1, e2] = c1ei + c2e2 ,

and on the other hand, by 5.67

π∗[E1, E2] = c̃1π∗E1 + c̃2π∗E2 + vπ∗V = c̃1e1 + c̃2e2 .

Consequently c̃1 = c1 and c̃2 = c2. Finally we can write

[E1, E2] = c1E1 + c2E2 + vV (5.68)

We now define for i = 1, 2 the following forms3 ωi ∈ Λ1(SM) through the relation

ωi(X) := g(π∗X, ei) , (5.69)

for all X ∈ X(SM). Notice that ωi(X) is the component of π∗X along the vector field ei with
respect the metric g. One possible way to define the Levi-Civita connection in a circle bundle
is the following (see [ST15] chapter 7 section 7.2).

Theorem. There is a unique principal connection τ ∈ Λ1(SM), called the Levi-Civita connection
relative to the metric g, such that dω1 = τ ∧ ω2

dω2 = −τ ∧ ω1 .
(5.70)

3These are horizontal forms in the sense that ωi = ωH
i , with H := ker(τ) the chosen connection. Using the

dual frame of {e1, e2}, {µ1, µ2} we can express them as ωi = π∗µi.
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From these conditions we can compute τ using the frame of T ∗SM given by {ω1, ω2, dϑ}. On
the one hand we have for i = 1, 2

dωi(E1, E2) = E1(ωi(E2)) − E2(ωi(E1)) − ωi([E1, E2]) =

= E1(δi2) − E2(δi1) − ωi(c1E1 + c2E2 + vV ) = −c1δi1 − c2δi2 .

The RHS of equations 5.70 returns for i = 1, 2

(−1)i (τ ∧ ωi) (E1, E2) = (−1)i (τ1δi2 − τ2δi1) .

Equations then 5.70 lead to τ1 = −c1

τ2 = −c2 .

In conclusion The Levi-Civita connection can be written as

τ = dϑ− c1ω1 − c2ω2 ,

or using the dual frame {µ1, µ2} we get

τ = dϑ− ciπ
∗µi , (5.71)

which is the form used in the first chapter section 1.5.

Curvature. Since S1 is abelian, from the structural equation we see that the curvature two
form is Ωτ = dτ + 1

2 [τ, τ ] = dτ = −dci ∧ π∗µi − ciπ
∗dµi. But we have just proved that

dµi = −(c1δi1 + c2δi2)µ1 ∧ µ2 = −ciµ
1 ∧ µ2. On the other hand the ci’s are functions on M ,

hence dci = ej(ci)π∗µj so that at the end we arrive at the expression

Ωτ = −
(
e1(c2) − e2(c1) − c2

1 − c2
2

)
π∗(µ1 ∧ µ2) . (5.72)

In the present case of a Riemannian surface the curvature form has only one component that
can be shown to be precisely the opposite of the Gaussian curvature of the surface. The same
expression is found for example in [ABB19] chapter 4 section 4.4.



Appendix B

Affine connections on a vector bundle
Let π : E → M be a vector bundle of rank k with base M of dimension n. The projection
defines a distribution in TE, called vertical distribution, that is the subset

V :=
⊔

e∈E

ker (π∗|e) ⊂ TE .

Definition. A connection in E is a distribution H ⊂ TE, called the horizontal distribution,
such that

TE = H ⊕ V .

Theorem. For all X ∈ X(M) there exists a unique ∇X ∈ X(E) such that π∗∇X = X and ∇X is
horizontal, i.e. takes values in H. We call the operator ∇ : X(M) → X(E) the horizontal lift.

Proof. Since π is by hypothesis a submersion and H is a connection, π∗ is an isomorphism
between H and TM .

With a slight abuse of notation we can then regard H as the image of TM via ∇, i.e.
H = ∇(TM). The notion of a connection naturally produce the notion of parallel transport
of sections of E along curves in the base. Indeed a section of E along a curve γ : [0, 1] → M ,
i.e. a map V : [0, 1] → E such that π(V (t)) = γ(t) for all t ∈ [0, 1], will be said to be parallel
transported if and only if V̇ (t) ∈ H for all t ∈ [0, 1].
A natural question arise about whether the horizontal distribution is involutive or not. To
measure how much H fails to be involutive, we define the following object.

Definition. Let ∇ : X(M) → X(E) be a connection. We define the Riemannian curvature
tensor via

R(X, Y ) := [∇X ,∇Y ] − ∇[X,Y ] ∈ X(E), X, Y ∈ X(M) .

Observe that ∇[X,Y ] is the horizontal part of [∇X ,∇Y ], and hence R(X, Y ) is the remaining
vertical part. We also remark that R(·, ·) is a skew-symmetric covariant tensor taking values in
X(E) since it is C∞(M)-linear and skewsymmetric in the arguments. 4 We end this paragraph
stating the following theorem, which is a direct consequence of Frobenius theorem applied to
the distribution H ⊂ TE.

Theorem. The horizontal distribution H is integrable if and only if the curvature tensor vanish.

4Regarding ∇ as a 1-form on M , taking values in X(E), we can regard R a 2-form with values in X(E).
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The cotangent bundle. We consider the case in which E = T ∗M . In this case we can use
the splitting 3.5 and express ∇Xi

in the following way

∇Xi
= Xi + Γij

∂

∂hj

,

where Γij ∈ C∞(T ∗M) measure how the horizontal subspace is immersed in T (T ∗M) with re-
spect the present splitting.
From the linear structure of the bundle we have the following fact.

Proposition. Thanks to the linear structure on the fibers we have

∇Xi
= Xi + Γk

ijhk
∂

∂hj

,

where Γk
ij ∈ C∞(M) are called the connection coefficient in the chosen frame.

We are now able to define the covariant differentiation of a section of TM .

Definition. Let X, Y ∈ X(M). We call the covariant derivative of X with respect to Y the
unique Z ∈ X(M) such that

λ(Z(π(λ))) = ∇Xλ(Y (π(λ))) ∀ λ ∈ T ∗M .

Proposition. Using the frame {Xi}i=1,··· ,n we have

∇Xi
Xj = Γk

ijXk .

Moreover for a generic vector field X = xiXi we have the following Leibniz rule

∇Xi
xjXj = Xi(xj) + xj∇Xi

Xj =
(
Xi(xk) + Γk

ijx
j
)
Xk .

Proof. By previous results
∇Xi

= Xi + Γk
ijhk

∂

∂hj

.

Moreover we have λ(Xj(π(λ))) = hj. Then the result easily follows.

Being able to differentiate functions and vector fields we can now extend the covariant deriva-
tive to all tensor fields over M . In particular we are interested to derive forms. To do so we
use the Leibniz rule.

Definition. Let X, Y ∈ X(M) and α ∈ λ1(M) we define the covariant derivative along X of α,
denoted as ∇Xα ∈ Λ1(M), through the following identity (Leibniz rule)

∇X(α(Y )) = (∇Xα)(Y ) + α(∇XY ) .

Proposition. Using the dual frames {Xi}i=1,··· ,n and {µi}i=1,··· ,n we have

∇Xi
µj = −Γj

ikµ
k .

Furthermore for a generic form α = αiµ
i we have

∇Xi
α =

(
Xi(αk) − Γj

ikαj

)
µk .

Proof. We use the Leibniz rule

(∇Xi
µj)(Xk) = ∇Xi

(µj(Xk)) − µj(∇Xi
Xk) = ∇Xi

(δj
k) − Γl

ikδ
j
l = −Γj

ik .

Again is trivial to check the result for generic forms.
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The Levi-Civita connection. Between all connections we choose the only one compatible
with the Riemannian structure and torsion free, in the sense specified in the following.

Definition. We define the torsion of an affine connection ∇ to be the map T : X(M)×X(M) →
X(M) defined by the relation

λ(T (X, Y )(π(λ))) = σ|λ(∇X(λ),∇Y (λ)) ∀ X, Y ∈ X(M), ∀λ ∈ T ∗M ,

where σ is the symplectic form of T ∗M .

Remark. Observe that T measures whether the horizontal distribution is Lagrangian5 or not.

Definition. An affine connection ∇ is said to be compatible with the metric g if and only if

∇Xg = 0 ∀ X ∈ X(M) ,

i.e. if the covariant derivatives along all vector fields of the metric tensor vanish.

Remark. Observe that the compatibility with the metric implies that ∇ is also compatible with
the duality induced by the metric, i.e. ∇X♯α = ♯∇Xα for X ∈ X(M) and α ∈ Λ1(M).

Theorem.(Levi-Civita) Let (M, g) be a Riemannian manifold. There exists a unique affine con-
nection over T ∗M that is at the same time compatible with the metric and has zero torsion.

We do not prove the theorem, but recall a corollary to perform computations.

Corollary. If ∇ is the Levi-Civita connection relative to the metric g, and {Xi}i=1,··· ,n is an
orthonormal frame with [Xi, Xj] = ck

ijXk, we have.

Γi
jk − Γi

kj = ci
jk ,

and also
Γi

jk = −Γk
ji .

Proof. The first condition comes from the fact that ∇ has zero torsion and the second from
the compatibility with the metric. They are in fact simply the conditions above mentioned,
expressed with the orthonormal frames.

5A distribution D ⊂ T (T ∗M) of dimension n is said to be Lagrangian iff σ|D = 0.
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