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Summary

Fixpoint equations and, more generally, systems of fixpoint equations are ubiqui-

tous in a number of formal verification tasks. This includes the model checking of

specification logics, like the 𝜇-calculus, and the check of behavioral equivalence,

like bisimilarity. Consequently, a recurring problem consists in conceiving and im-

plementing algorithms aimed at determining the solution of these systems. It has

been shown in the literature that a game-theoretic characterization of the solution

of equational systems can be given in terms of a parity game (a two-player, zero-

sum game), which is referred to as fixpoint game or powerset game. The game view

opens the way for the development of local algorithms for characterizing the solution

of such equation systems. Two classes of algorithms can be identified: global algo-

rithms, aimed at computing the full solution, by deciding the game for all positions,

and local algorithms, which instead aim at determining only some “component” of

the solution. For instance, in the case of the 𝜇-calculus, of could be interested in

checking whether a specific state enjoys or not a property, rather than determining

all states satisfying the property. Similarly, for bisimilarity checking one might be

interested in establishing whether two states are bisimilar, rather than computing

the full equivalence.

A local algorithm for solving a system fo fixpoint equations has been already pro-

posed, based on the local algorithm for parity games due to Stevens and Stirling.

In this thesis we explore the possibility of exploiting a different local algorithm for

parity games, due to Vöge and Jurdziński, based on local strategy iteration. The

idea is to start from arbitrary strategies for game players and progressively provide

a local solution for systems of fixpoint equations. We show how this algorithm can

be adapted to provide a local solution for systems of fixpoint equations. This is

non-trivial as it requires, in particular, to deal with a symbolic representation of

the moves of the game, and with a lazy generation of such symbolic moves. An im-

plementation in the language Rust is also provided, and a comparison is conducted

with other existing tools.
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1 Introduction

Systems of mixed least and greatest fixpoint equations over complete lattices are

very common in the field of formal analysis and particularly in the field of model

checking. A classic example is 𝜇-calculus [1], where liveness and safety properties

can be expressed using potentially nested least and greatest fixpoints of functions

over sets of states. Behavioral equivalences like many bisimilarities [2] can also be

defined as the greatest fixpoint of an appropriate function over the lattice of the

binary relations between states. Another example is Łukasiewicz 𝜇-calculus [3], a

version of 𝜇-calculus which combines deterministic and probabilistic behavior by

using continuous functions over the real numbers interval [0, 1]. Abstract interpre-

tation [4] also extensively uses fixpoints of functions over functions representing the

abstracted state of the program at various points.

It has thus been the focus of many papers in the literature to provide ways to solve

fixpoint equations. Most notably the Knaster-Tarski theorem [5] is a key result for

deriving the existence of fixpoints, including the uniqueness of a least and greatest

one, while Kleene iteration [6] gives a constructive way to compute them, albeit

generally not very efficient, by repeatedly applying the given function to the bot-

tom or top element. However the mixing of least and greatest fixpoint equations

into systems of fixpoint equations, while greatly increasing the expressiveness, also

complicates the search for the solution. This is the case for example in the 𝜇-calcu-

lus, where the use of nested fixpoints is equivalent to a system of mixed least and

greatest fixpoint equations.

In this thesis we will build upon the work in [7], which provides a way to character-

ize the solution of a system of mixed fixpoint equations over some complete lattice

through the use of the powerset game, a particular parity game, which in turn is a

kind of game where two players move a token on a directed graph with the winner

being decided by the parity of the vertices that are visited. Due to the nature of the

powerset game, the number of moves is linked to the powerset of the states, whose

size grows really quickly. It is thus necessary to represent them in a compact way,

by using symbolic moves, which also help reducing the number of moves to consider

by allowing to ignore “useless” ones. Symbolic moves are represented using logic

formulas, which can also be conveniently simplified when some position becomes

known to be winning for one player, thus further reducing the number of moves to

consider.

The powerset game can then be solved using existing parity games algorithms to

solve the problem, which can be classified as either global or local: global algorithms

aim to find the winners for all vertices of the graph, while local algorithms only

focus on specific vertices. We can observe that often the interest is in only one local
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characteristic of the solution, for example in the case of the 𝜇-calculus we might be

interested in whether a specific state satisfies a formula, rather than all the states

that do so. As such we will focus on a local approach, like the one experimented in

[8], rather than a global approach as in [9]. Many algorithms have been developed

for solving parity game, but for our work we will use a strategy iteration algorithm

[10], which works by iteratively improving a strategy for one player until it becomes

optimal according to the related play profiles. This is a global algorithm, but a local

variant based on it [11] has been developed, which works by solving subgames until

it can infer the winner on the full game.

Our main contribution is an adaptation of these algorithms for the powerset game.

This involved performing changes both to the powerset game and the local algorithm

in order to satisfy some assumptions that would otherwise not hold. For example

the strategy iteration algorithm assumes a so called “total” parity game, which the

powerset game is not guaranteed to be, so we found a way to convert an arbitrary

parity game to a “equivalent” total one, for some definition of “equivalent” we will

give. We also generalized the local algorithm to work on subgames defined by a

subset of the edges of the full game, rather than a subset of the vertices, due to the

powerset game lazily generating those edges. Then we provided a more flexible way

to simplify symbolic formulas while keeping track of which generated moves have

already been considered, which was needed due to the lazier way we generated such

moves. Our work also included some optimizations and improvements that became

possible thanks to solving this specific kind of game, for example by computing

the play profiles of the current strategy after expanding the subgame, which would

otherwise require an expensive step. On top of this we translated some of the pre-

viously mentioned problems to systems of fixpoint equations and the corresponding

symbolic formulas. These were then solved using our implementation, comparing

the results to the existing work in [8].

The goal will ultimately be showing that we can solve generic systems of mixed

fixpoint equations over some complete lattice, highlighting the flexibility of such

approach, and in a way that is faster than the existing approach, though we will

not be expecting performance to be necessarily competitive with state of the art

specialized solvers.

The rest of this thesis sections are organized as follows:

• Section 2 introduces all the theoretical notions which we will build up on. In

particular this includes the background needed to introduce systems of fixpoint

equations, parity games and the powerset game. It also includes an explanation

of 𝜇-calculus and bisimilarity, along with a way to convert them to instances we

can work with. Finally, it includes descriptions of the parity game algorithms

we will be adapting;
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• Section 3 explains how we adapted the given parity game algorithms to the

powerset game and also includes various optimizations that we found for these

particular instances;

• Section 4 presents the implementation of our algorithm, along with its design

choices and observations on its performance;

• Section 5 summarizes our contribution in this thesis along with possible future

improvements or extensions.
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2 Background

In this chapter we give an overview of the theoretical background used in the rest of

this thesis. We will first recap some basic notions on order theory with special focus

on (complete) lattices. Then we will define what a system of fixpoint equations over

complete lattices is and what is its solution, along with a number of related concepts

in order theory. We will then give a brief introduction to parity games and describe

how to characterize the solution of a system of fixpoint equations using a parity

game, with some care for efficiency issues. Finally we will introduce two algorithms

used to solve parity games which we will be exploiting later on.

2.1 Partial orders, lattices and monotone

functions

We start by defining what is a (complete) lattice and introducing some related

concepts. This will be fundamental for defining systems of fixpoint equations, as

their domain and codomain will be lattices. Moreover we are interested in least and

greatest fixpoints, which intrinsically require a concept of order.

Definition 2.1  (partial order, poset). Let 𝑋 a set. A partial order ⊑ is a binary

relation on 𝑋 which satisfies the following properties for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

• (Antisymmetry): if 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑥 then 𝑥 = 𝑦;
• (Reflexivity): 𝑥 ⊑ 𝑥;

• (Transitivity): if 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑧 then 𝑥 ⊑ 𝑧.
A partially ordered set (poset, for short) is a pair (𝑋, ⊑).
A common example of poset is (ℕ, ≤), the set of natural numbers, and ≤ is the

standard order relation.

Example 2.1  (Posets and Hasse diagrams). Posets can conveniently be visualized

using Hasse diagrams, like the ones in Figure 1. In such diagrams lines connecting

two elements represent the one on top being greater than the one on the bottom.

Lines that could be obtained by transitivity are instead left implicit due to the fact

that the diagram represents a valid poset.
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Figure 1: Hasse diagrams of five posets

Definition 2.2  (join and meet). Let (𝑋, ⊑) be a poset and 𝑆 ⊆ 𝑋. The meet (re-

spectively join) of 𝑆, written ⊓𝑆 (resp. ⊔𝑆), is the smallest (resp. greatest) element

of 𝑋 that is bigger (resp. smaller) or equal to every element in 𝑆. Formally:

• (Meet): ∀𝑠 ∈ 𝑆. 𝑠 ⊑ ⊓𝑆 and ∀𝑡 ∈ 𝑋. ∀𝑠 ∈ 𝑆. 𝑠 ⊑ 𝑡 ⇒ ⊓𝑆 ⊑ 𝑡
• (Join): ∀𝑠 ∈ 𝑆. ⊔𝑆 ⊑ 𝑠 and ∀𝑡 ∈ 𝑋. ∀𝑠 ∈ 𝑆. 𝑡 ⊑ 𝑠 ⇒ 𝑡 ⊑ ⊔𝑆

For example in Figure 1, in the poset 𝐿 the join between 𝑐 and 𝑑, that is ⊔{𝑐, 𝑑},

is 𝑏, while the join between 𝑎, 𝑐 and 𝑑 is ⊔{𝑎, 𝑐, 𝑑} = ⊤.

Meet and join do not always exist, for example in the poset 𝑃  the join between 𝑥
and 𝑦 does not exist because there is no element that is greater than both of them,

while in the poset 𝑄 the join between 𝑛 and 𝑚 does not exist because 𝑝, 𝑞 and ⊤ are all greater than both 𝑛 and 𝑚, but none of them is smaller than the others.

It can however be proven that when a join or meet exists, it is unique. For our

purposes we will however be interested in posets where meet and join always exists,

also commonly called lattices. The posets 𝑃  and 𝑄 are thus not lattices, while 𝐿, ℕ𝜔 and 𝔹 are all lattices.
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Definition 2.3  (complete lattice). Let (𝐿, ⊑) be a poset. It is also a lattice if meet

and join exist for every pair of elements, that is given 𝑥, 𝑦 ∈ 𝐿 both ⊓{𝑥, 𝑦} and ⊔{𝑥, 𝑦} are defined. It is a complete lattice if meet and join exist for every subset,

that is given 𝑆 ⊆ 𝐿 both ⊓𝑆 and ⊔𝑆 are defined.

Observe that every complete lattice 𝐿 has a smallest element, called the bottom el-

ement ⊥= ⊓ ∅, and a largest element, called the top element ⊤ = ⊔𝐿. In particular,

a complete lattice cannot be empty. For example in the three lattices in Figure 1

the top elements are ⊤, 𝜔 and 𝑡𝑟𝑢𝑒, while the bottom elements are ⊥, 0 and 𝑓𝑎𝑙𝑠𝑒,
respectively.

From now on we will work with complete lattices. For most examples we will how-

ever use finite lattices, which can be proved to always be complete lattices.

Lemma 2.1  (finite complete lattices). Let (𝐿, ⊑) be a finite lattice, that is a lattice

where 𝐿 is a finite set. Then it is also a complete lattice.

In Figure 1 both 𝐿 and 𝔹 are finite complete lattices. In particular 𝔹 is called the

boolean lattice, since it contains the two boolean literals 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 and its join

and meet operators are respectively the ∨ and ∧ logical operators. The ℕ𝜔 lattice is

instead an infinite complete lattice, since it contains all natural numbers equipped

with a top element 𝜔. Note that the plain set of natural numbers ℕ is not a complete

lattice because ⊔ℕ is not defined, while in ℕ𝜔 it is 𝜔.

Definition 2.4  (powerset). Let 𝑋 be a set. Its powerset, written 2𝑋, is the set of

all subsets of 𝑋, that is 2𝑋 = {𝑆 | 𝑆 ⊆ 𝑋}.
Example 2.2  (powerset lattice). Given a set 𝑋, the pair (2𝑋, ⊆) is a complete

lattice.

The ⊔ and ⊓ operations are respectively the union ∪ and intersection ∩ operations

on sets, while the ⊤ and ⊥ elements are respectively 𝑋 and ∅.

{𝑎, 𝑏, 𝑐}

{𝑎, 𝑏} {𝑎, 𝑐} {𝑏, 𝑐}

{𝑎} {𝑏} {𝑐}

∅

Figure 2: Hasse diagram of a powerset lattice
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When we will later characterize the solutions of a system of fixpoint equations it

will be convenient to consider a basis of the lattice involved. Intuitively a basis is a

subset of elements which allows to express any other element as a join of a subset

of such basis.

Definition 2.5  (basis). Let (𝐿, ⊑) be a lattice. A basis is a subset 𝐵𝐿 ⊆ 𝐿 such

that all elements 𝑙 ∈ 𝐿, 𝑙 = ⊔{𝑏 ∈ 𝐵𝐿 | 𝑏 ⊑ 𝑙}.
To give an example of a basis, consider the lattice 𝐿 in Figure 1. A basis for it

is the set 𝐵𝐿 = {𝑎, 𝑐, 𝑑}, where we can express the other elements with ⊥= ⊔ ∅, 𝑏 = ⊔{𝑐, 𝑑} and ⊤ = ⊔{𝑎, 𝑐, 𝑑} = ⊔{𝑎, 𝑐} = ⊔{𝑎, 𝑑}. Note that there may be more

than one way to obtain an element by joining a subset of a basis, as shown with ⊤. The boolean lattice 𝔹 instead admits the simple basis {𝑡𝑟𝑢𝑒}, since 𝑓𝑎𝑙𝑠𝑒 = ⊔ ∅
and 𝑡𝑟𝑢𝑒 = ⊔{𝑡𝑟𝑢𝑒}. Another basis that we will use often is the basis of a powerset

lattice, which we will now define.

Definition 2.6  (basis of powerset). Given a set 𝑋, a basis of the poset (2𝑋, ⊆) is
the set of singletons 𝐵2𝑋 = {{𝑥} | 𝑥 ∈ 𝑋}.
We now also define the concept of upward-closed set and upward-closure. This con-

cept will become important later on.

Definition 2.7  (upward-closed set). Let (𝑋, ⊑) be a poset and 𝑈 ⊆ 𝑋. 𝑈 is an

upward-closed set if ∀𝑥, 𝑦 ∈ 𝑋, if 𝑥 ∈ 𝑈 and 𝑥 ⊑ 𝑦 then 𝑦 ∈ 𝑈 .

Definition 2.8  (upward-closure). Let (𝐿, ⊑) be a lattice and 𝑙 ∈ 𝐿. The upward-

closure of 𝑙 is ↑𝑙 = {𝑙′ ∈ 𝐿 | 𝑙 ⊑ 𝑙′}.
It can be proven that the upward-closure of a set is an upward-closed set.

Definition 2.9  (fixpoint). Let (𝑋, ⊑) be a complete lattice and 𝑓 : 𝑋 → 𝑋 a func-

tion. Any element 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑥 is a fixpoint of 𝑓.

Given a function 𝑓 : 𝐿 → 𝐿 where (𝐿, ⊑) is a complete lattice, it is not guaranteed

that a fixpoint exists. However if we restrict ourself to monotone functions, then

by the Knaster-Tarski theorem [5] there exists at least one fixpoint. Moreover the

set of all fixpoints is also a complete lattice, which guarantees the existence and

uniqueness the least and greatest fixpoints.

Definition 2.10  (monotone function). Let (𝑋, ⊑) be a poset and 𝑓 : 𝑋 → 𝑋 a

function. We say that 𝑓 is monotone if ∀𝑥, 𝑦 ∈ 𝑋. 𝑥 ⊑ 𝑦 ⇒ 𝑓(𝑥) ⊑ 𝑓(𝑦)
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Theorem 2.1  (Knaster-Tarski [5]). Let (𝑋, ⊑) be a complete lattice and 𝑓 : 𝑋 →𝑋 a monotone function. The set of fixpoint of 𝑓 forms a complete lattice with respect

to ⊑.

The least fixpoint of 𝑓, written 𝜇𝑓, is the bottom element of such lattice, while the

greatest fixpoint of 𝑓, written 𝜈𝑓, is the top element.

Kleene iteration [6] also gives us a constructive way to obtain a least or greatest

fixpoint by repeatedly iterating a function starting from respectively the bottom or

top element of the lattice. In its most general form it may require a transfinite iter-

ation, though with some stronger hypothesis it can be relaxed to a regular, possibly

infinite, iteration, for example by requiring the function to be continuous instead

of just monotone. In our case we can limit ourselves to finite lattices, in which case

Kleene iteration can be shown to require only a finite amount of steps.

It should be noted however that it may not be efficient enough to compute a fixpoint

in such a way, because it may require too many iterations (potentially an infinite

amount in case of non-finite lattices) or because computing and representing the

full solution may require too much space, and we are interested only in some specific

characteristics of it.

Theorem 2.2  (Kleene iteration [6] for finite lattices). Let (𝑋, ⊑) be a finite lattice

and 𝑓 : 𝑋 → 𝑋 a monotone function. Consider the ascending chain ⊥⊑ 𝑓(⊥) ⊑𝑓(𝑓(⊥)) ⊑ ⋯ ⊑ 𝑓𝑛(⊥) ⊑ ⋯, it converges to 𝜇𝑓 in a finite amount of steps, that is

there exists a 𝑘 such that 𝜇𝑓 = 𝑓𝑘(⊥). Similarly 𝜈𝑓 = 𝑓𝑘(⊤) for some 𝑘.

2.2 Tuples

In order to define systems of fixpoint equations we will need to refer to multiple

equations/variables/values together, and to do that we will use 𝑛-tuples. We now

introduce some basic notions regarding tuples, along with some convenient notation

for referring to them or their elements and constructing new ones.

Definition 2.11  (set of 𝑛-tuples). Let 𝐴 be a set. Given 𝑛 ≥ 1 the set of 𝑛-tuples

of 𝐴, written 𝐴𝑛, is inductively defined as 𝐴0 = {()}, 𝐴1 = 𝐴 and 𝐴𝑛+1 = 𝐴 × 𝐴𝑛.

Notation 2.1  (𝑛-tuple). Let 𝐴𝑛 be a set of 𝑛-tuples. We will refer to its elements

using boldface lowercase letters, like 𝒂. Given 𝒂 ∈ 𝐴𝑛 we will refer to its 𝑖-th element

with the non-boldface 𝑎𝑖.

Notation 2.2  (concatenation). Let 𝒂𝟏, …, 𝒂𝒌 be either 𝑛-tuples or single elements

of 𝐴. The notation (𝒂𝟏, …, 𝒂𝒌) represents a 𝑛-tuple obtained by concatenating the
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elements in the tuples 𝒂𝟏, …, 𝒂𝒌. Single elements are considered as 1-tuples for this

purpose.

We will also often refer to intervals over natural numbers, typically in order to index

the elements of a tuple.

Notation 2.3  (range). We will refer to the set {1, …, 𝑛} with the shorthand 𝑛.

Given a poset 𝑋 we can extend its order to 𝑋𝑛 by having the ⊑∧ relation hold

for two tuples when the ⊑ relation holds for all the pair of elements. This is called

pointwise order, and we will use it often later on.

Definition 2.12  (pointwise order). Let (𝑋, ⊑) be a poset. The pointwise order ⊑∧
on 𝑋𝑛 is defined, for 𝒙, 𝒙′ ∈ 𝑋𝑛, by 𝒙 ⊑∧ 𝒙′ if ∀𝑖 ∈ 𝑛. 𝑥𝑖 ⊑ 𝑥′𝑖.
It can be proven that (𝑋𝑛, ⊑∧) is also a poset. Moreover if (𝑋, ⊑) is a (complete)

lattice then (𝑋𝑛, ⊑∧) is also a (complete) lattice, where ⊔𝑿 = (⊔𝑋1, ⊔𝑋2, …, ⊔𝑋𝑛)
and similarly for ⊓𝑿.

2.3 Systems of fixpoint equations

We will now define what is a system of fixpoint equations and what is its solution,

following the definition given in [7]. Intuitively this will be very similar to a nor-

mal system of equations, except for the fact that each equation is interpreted as

a fixpoint equation. Since there can be more than one fixpoint we will also need

to specify which kind of fixpoint the equation refers to, which we will do by using

respectively the symbols 𝜇 and 𝜈 in subscript after the equal sign to denote the fact

that we refer to the least or greatest fixpoint, respectively.

Definition 2.13  (system of fixpoint equation). Let (𝐿, ⊑) be a complete lattice. A

system of fixpoint equations 𝐸 over 𝐿 is a system of the following shape:

⎩{{
{⎨
{{{
⎧𝑥1 =𝜂1 𝑓1(𝑥1, …, 𝑥𝑛)

𝑥2 =𝜂2 𝑓2(𝑥1, …, 𝑥𝑛)
⋮𝑥𝑛 =𝜂𝑛 𝑓𝑛(𝑥1, …, 𝑥𝑛)

where ∀𝑖 ∈ 𝑛, 𝑓𝑖 : 𝐿𝑛 → 𝐿 is a monotone function and 𝑥𝑖 ranges over 𝐿. Each

subscript 𝜂𝑖 must be either 𝜇 or 𝜈, representing respectively a least or a greatest

fixpoint equation.

Notation 2.4  (system of fixpoint equations as tuple). The above system of fixpoint

equations can be written as 𝒙 =𝜼 𝒇(𝒙), where:

9



• 𝒙 = (𝑥1, …, 𝑥𝑛);
• 𝜼 = (𝜂1, …, 𝜂𝑛);
• 𝒇 = (𝑓1, …, 𝑓𝑛) but can also be seen as 𝒇 : 𝐿𝑛 → 𝐿𝑛 with 𝒇(𝑥1, …, 𝑥𝑛) =(𝑓1(𝑥1), …, 𝑓𝑛(𝑥𝑛)).

Notation 2.5  (empty system of fixpoint equations). A system of equations with

no equations or variables is conveniently written as ∅.

Definition 2.14  (substitution). Let (𝐿, ⊑) be a complete lattice and 𝐸 be a sys-

tem of 𝑛 fixpoint equations over 𝐿 and variables 𝑥𝑖 for 𝑖 ∈ 𝑛. Let 𝑗 ∈ 𝑛 and 𝑙 ∈𝐿. The substitution 𝐸[𝑥𝑗 ≔ 𝑙] is a new system of equation where the 𝑗-th equation

is removed and any occurrence of the variable 𝑥𝑗 in the other equations is replaced

with the element 𝑙.
We can now define the solution for a system of fixpoint equations recursively, start-

ing from the last variable, which is replaced in the rest of the system by a free

variable representing the fixed parameter. Then one obtains a parametric system

with one equation less. This is inductively solved and its solution, which is a func-

tion of the parameter, is replaced in the last equation. This produces a fixpoint

equation with a single variable, which can be solved to determine the value of the

last variable.

Definition 2.15  (solution). Let (𝐿, ⊑) be a complete lattice and 𝐸 be a system of𝑛 fixpoint equations over 𝐿 and variables 𝑥𝑖 for 𝑖 ∈ 𝑛. The solution of 𝐸 is 𝑠 =sol(𝐸), with 𝑠 ∈ 𝐿𝑛 inductively defined as follows:

sol(∅) = ()
sol(𝐸) = (sol(𝐸[𝑥𝑛 ≔ 𝑠𝑛]), 𝑠𝑛)

where 𝑠𝑛 = 𝜂𝑛(𝜆𝑥. 𝑓𝑛(sol(𝐸[𝑥𝑛 ≔ 𝑥]), 𝑥)).
Example 2.3  (solving a fixpoint system). Consider the following system of fixpoint

equations 𝐸 over the boolean lattice 𝔹:

{𝑥1 =𝜇 𝑥1 ∨ 𝑥2𝑥2 =𝜈 𝑥1 ∧ 𝑥2
To solve this system of fixpoint equations we apply the definition of its solution,

getting sol(𝐸) = (sol(𝐸[𝑥2 ≔ 𝑠2]), 𝑠2) with 𝑠2 = 𝜈(𝜆𝑥. sol(𝐸[𝑥2 ≔ 𝑥]) ∧ 𝑥). In order

to find 𝑠2 we will need to solve 𝐸[𝑥2 ≔ 𝑥], that is the system of the single fixpoint

equation 𝑥1 =𝜇 𝑥1 ∨ 𝑥 and parameterized over 𝑥. To do this we apply the definition

again, getting sol(𝐸[𝑥2 ≔ 𝑥]) = (sol(∅), 𝑠1) with 𝑠1 = 𝜇(𝜆𝑥′. 𝑥′ ∨ 𝑥). At this point

we have hit the base case with sol(∅), which is just (), while we can find 𝑠1 by

solving the given fixpoint equation, getting 𝑠1 = 𝑥 because 𝑥 is the smallest value
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that is equal to itself when joined with 𝑥. We thus get sol(𝐸[𝑥2 ≔ 𝑥]) = (𝑥), and

we are back to find 𝑠2, whose definition can now be simplified to 𝜈(𝜆𝑥. 𝑥 ∧ 𝑥). Thus

fixpoint equation can now be solved, getting 𝑠2 = 𝑡𝑟𝑢𝑒 because 𝑡𝑟𝑢𝑒 is the greatest

element of 𝔹 that also satisfies the given equation. Finally, we can get sol(𝐸[𝑥2 ≔𝑠2]) = 𝑠2 = 𝑡𝑟𝑢𝑒 by substituting 𝑠2 in place of 𝑥 in sol(𝐸[𝑥2 ≔ 𝑥]), and with this

we get sol(𝐸) = (𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒).
To recap, the steps performed were:

• sol(𝐸) = (sol(𝐸[𝑥2 ≔ 𝑠2]), 𝑠2) with 𝑠2 = 𝜈(𝜆𝑥. sol(𝐸[𝑥2 ≔ 𝑥]) ∧ 𝑥)
• sol(𝐸[𝑥2 ≔ 𝑥]) = (sol(∅), 𝑠1) with 𝑠1 = 𝜇(𝜆𝑥′. 𝑥′ ∨ 𝑥)
• solving 𝑠1 gives 𝑠1 = 𝑥
• solving 𝑠2 gives 𝑠2 = 𝜈(𝜆𝑥. 𝑥 ∧ 𝑥) = 𝑡𝑟𝑢𝑒
• sol(𝐸) = (𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒)

Notice that the way the solution of a system of fixpoint equations is defined de-

pends on the order of the equations. Indeed different orders can result in different

solutions.

Example 2.4  (different order of equations). Consider a system of equations 𝐸′
containing the same fixpoint equations as 𝐸 from Example 2.3, but with their or-

der swapped:

{𝑥1 =𝜈 𝑥1 ∧ 𝑥2𝑥2 =𝜇 𝑥1 ∨ 𝑥2
This time the steps needed will be the following:

• sol(𝐸′) = (sol(𝐸′[𝑥2 ≔ 𝑠2]), 𝑠2) with 𝑠2 = 𝜇(𝜆𝑥. sol(𝐸′[𝑥2 ≔ 𝑥]) ∨ 𝑥)
• sol(𝐸′[𝑥2 ≔ 𝑥]) = (sol(∅), 𝑠1) with 𝑠1 = 𝜈(𝜆𝑥′. 𝑥′ ∧ 𝑥)
• solving 𝑠1 gives 𝑠1 = 𝑥
• solving 𝑠2 gives 𝑠2 = 𝜇(𝜆𝑥. 𝑥 ∧ 𝑥) = 𝑓𝑎𝑙𝑠𝑒
• sol(𝐸′) = (𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒)

Notice that sol(𝐸) = (𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒) ≠ (𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒) = sol(𝐸′), meaning that the dif-

ferent order of the equations in the two systems does indeed influence the solution.

2.4 Applications

In this section we discus two classical verification problems, model checking behav-

ioral properties expressed in the 𝜇-calculus and checking behavioral equivalence

formalized as bisimilarity. We show that both can be seen as instances of the solu-

tion of a system of fixpoint equations.

2.4.1 𝜇-calculus

The 𝜇-calculus is a propositional modal logic extended with support for least and

greatest fixpoints. It was first introduced by Dana Scott and Jaco de Bakker and
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later developed by Dexter Kozen in [1]. Its main use is to help describing properties

of (labelled) transition systems to be verified.

Consider a labelled transition system over a set of states 𝕊, a set of actions 𝐴𝑐𝑡 and

a set of transitions → ⊆ 𝕊 × 𝐴𝑐𝑡 × 𝕊 (usually written 𝑠 →𝑎 𝑡 to mean (𝑠, 𝑎, 𝑡) ∈ →).

Also, let 𝑃𝑟𝑜𝑝 be a set of propositions and 𝑉 𝑎𝑟 be a set of propositional variables.

A 𝜇-calculus formula for such system is defined inductively in the following way,

where 𝐴 ⊆ 𝐴𝑐𝑡, 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑥 ∈ 𝑉 𝑎𝑟 and 𝜂 is either 𝜇 or 𝜈:

𝜑, 𝜓 ≔ 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 | 𝑝 | 𝑥 | 𝜑 ∨ 𝜓 | 𝜑 ∧ 𝜓 | [𝐴]𝜑 | ⟨𝐴⟩𝜑 | 𝜂𝑥. 𝜑
Example 2.5  (lack of deadlocks). For example the liveness property, or lack of

deadlocks, which expresses the fact that all reachable states can make at least one

transition, can be expressed with the formula 𝜈𝑥. ⟨𝐴𝑐𝑡⟩𝑡𝑟𝑢𝑒 ∧ [𝐴𝑐𝑡]𝑥. This can be

read as requiring a state 𝑠 to be able to make at least one transition, that is it satis-

fies ⟨𝐴𝑐𝑡⟩𝑡𝑟𝑢𝑒, and that after every single possible step transition the same property

should hold, that is it satisfies [𝐴𝑐𝑡]𝑥, where 𝑥 is equivalent to the initial formula.

Intuitively the fixpoint is extending the first requirement to any state reachable

after a number of transitions.

The semantics of a formula are given by the set of states that satisfy the formula

in an environment. Given 𝜌 : 𝑃𝑟𝑜𝑝 ∪ 𝑉 𝑎𝑟 → 2𝕊, we define:

⟦𝑡𝑟𝑢𝑒⟧𝜌 = 𝕊
⟦𝑓𝑎𝑙𝑠𝑒⟧𝜌 = ∅

⟦𝑝⟧𝜌 = 𝜌(𝑝)
⟦𝑥⟧𝜌 = 𝜌(𝑥)

⟦𝜑 ∨ 𝜓⟧𝜌 = ⟦𝜑⟧𝜌 ∪ ⟦𝜓⟧𝜌
⟦𝜑 ∧ 𝜓⟧𝜌 = ⟦𝜑⟧𝜌 ∩ ⟦𝜓⟧𝜌

⟦[𝐴]𝜑⟧𝜌 = {𝑠 ∈ 𝕊 | ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝕊. 𝑠 →𝑎 𝑡 ⇒ 𝑡 ∈ ⟦𝜑⟧𝜌}
⟦⟨𝐴⟩𝜑⟧𝜌 = {𝑠 ∈ 𝕊 | ∃𝑎 ∈ 𝐴, 𝑡 ∈ 𝕊. 𝑠 →𝑎 𝑡 ∧ 𝑡 ∈ ⟦𝜑⟧𝜌}
⟦𝜇𝑥. 𝜑⟧𝜌 = 𝜇𝑋. ⟦𝜑⟧𝜌[𝑥≔𝑋] = ⋂{𝑆 ⊆ 𝕊 | ⟦𝜑⟧𝜌[𝑥≔𝑆] ⊆ 𝑆}
⟦𝜈𝑥. 𝜑⟧𝜌 = 𝜈𝑋. ⟦𝜑⟧𝜌[𝑥≔𝑋] = ⋃{𝑆 ⊆ 𝕊 | 𝑆 ⊆ ⟦𝜑⟧𝜌[𝑥≔𝑆]}

We will thus say that a state 𝑠 satisfies a 𝜇-calculus formula 𝜑 if it is contained in

its semantics, that is if 𝑠 ∈ ⟦𝜑⟧𝜌0 , where 𝜌0 is initially irrelevant for all 𝑥 ∈ 𝑉 𝑎𝑟 and

with some fixed value for all 𝑝 ∈ 𝑃𝑟𝑜𝑝.

Intuitively the 𝜇 calculus enriches the common propositional logic with the modal

operators [_] and ⟨_⟩, often called respectively box and diamond, which require a

formula to hold for respectively all or any state reachable by the current state

through a transition with one of the given actions. On top of this fixpoints then

allow to express recursive properties, that is properties that hold on a certain state

and also on the states reached after certain sequences of transitions. This can be

used for example to propagate some requirements across any number of transitions.
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It is possible to translate 𝜇-calculus formulas into systems of fixpoint equations [12]

over 2𝕊, the powerset lattice of its states. Such system can be obtained by extracting

each fixpoint subformula into its own equation and replacing it with its variable,

assuming that no variable is used in multiple fixpoints. Since the order of equations

matter, outer fixpoints must appear later in the system of equations. It can be

shown that each function in the system is monotone, and so it always admits a

solution.

Example 2.6  (fixpoint equations for a 𝜇-calculus formula). For example the

formula 𝜇𝑥. ⟨𝐴𝑐𝑡⟩𝑥 ∨ (𝜈𝑦. [𝑎]𝑦 ∧ 𝑥) would be translated into the following system,

where for simplicity we used formulas instead of their semantics:

{𝑦 =𝜈 [𝑎]𝑦 ∧ 𝑥
𝑥 =𝜇 ⟨𝐴𝑐𝑡⟩𝑥 ∨ 𝑦

2.4.2 Bisimilarity

Bisimilarity [2] is a binary relation on states of a labelled transition system, where

two states are in the relation if they are indistinguishable by only looking at some

kind of behavior. We will focus on the strong bisimilarity ≅, where such behavior is

identified with the possible transitions from a state. Bisimilarity is usually defined

in terms of bisimulations, which are also binary relations on states. For the strong

bisimilarity the associated bisimulations 𝑅 have the following requirement:

Definition 2.16  (bisimulation). Let (𝕊, 𝐴𝑐𝑡, →) be a labelled transition system. A

relation 𝑅 ⊆ 𝕊 × 𝕊 is a bisimulation if for all 𝑠, 𝑡 ∈ 𝕊 the following holds:

(𝑠, 𝑡) ∈ 𝑅 ⇔ ⎩{⎨
{⎧∀𝑎, 𝑠′. 𝑠 →𝑎 𝑠′ ⇒ ∃𝑡′. 𝑡 →𝑎 𝑡′ ∧ (𝑠′, 𝑡′) ∈ 𝑅

∀𝑎, 𝑡′. 𝑡 →𝑎 𝑡′ ⇒ ∃𝑠′. 𝑠 →𝑎 𝑠′ ∧ (𝑠′, 𝑡′) ∈ 𝑅
Bisimilarity is then defined to be the largest bisimulation, that is the bisimulation

that contains all other bisimulations, or equivalently the union of all bisimulations.

Example 2.7  (fixpoint equations for a bisimilarity problem).

𝑣0

𝑣1 𝑣2

𝑣3

𝑎 𝑎

𝑏 𝑏

𝑢0

𝑢1

𝑢2

𝑎

𝑏

Figure 3: Example of a strong bisimilarity problem
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Consider for example the two labelled transition systems given above in Figure 3.

They are obviously different, but by only looking at the possible transitions it is

impossible to distinguish 𝑣0 from 𝑢0, hence they are bisimilar. It is instead possible

to distinguish 𝑣1 from 𝑢0, because the former can perform one transition with action𝑏 while the latter can only perform a transition with action 𝑎, and thus they are

not bisimilar.

For our purposes however there is an alternative formulation based on a greatest

fixpoint. We can in fact define the following function 𝐹 : 2𝕊×𝕊 → 2𝕊×𝕊 over the pow-

ersets of binary relations over between states:

𝐹(𝑅) = {(𝑠, 𝑡) ∈ 𝑅 | (∀𝑎, 𝑠′. 𝑠 →𝑎 𝑠′ ⇒ ∃𝑡′. 𝑡 →𝑎 𝑡′ ∧ (𝑠′, 𝑡′) ∈ 𝑅)
∧ (∀𝑎, 𝑡′. 𝑡 →𝑎 𝑡′ ⇒ ∃𝑠′. 𝑠 →𝑎 𝑠′ ∧ (𝑠′, 𝑡′) ∈ 𝑅)}

𝐹  can be thought as “refining” a relation by ensuring that the bisimulation property

holds for another step. This can be shown to be a monotonic operation, guarantee-

ing the existence of at least one fixpoint, including for our purposes the greatest

fixpoint. Bisimulations can then be seen as the post-fixpoints of 𝐹 , since for them

the bisimulation property always holds after any amount of steps and thus no pair

needs to be removed to make the property hold. Bisimilarity, being the greatest

bisimulation, is thus the greatest fixpoint of 𝐹 .

≅ = 𝜈𝑅. 𝐹(𝑅)
2.5 Parity games

Parity games [13, 14] are games with two players, typically denoted by 0 and 1

and referred as the existential and universal players, performed on directed graphs.

A token is placed in a position, represented by nodes, and the two players move

it along the edges of the graph. The set of nodes is partitioned in two sets and

the player that chooses the move is determined by the subset in which the node

for the current position is in. Each node is also associated with a priority, usually

represented by a natural number. A maximal sequence of positions visited in a game

is called a play. A play can be finite or infinite, depending on whether a position

with no moves is reached or not. In case of a finite play the player who cannot move

loses, otherwise if the play is infinite the priorities of the positions that are visited

infinitely many times are considered: if the largest one is even then player 0 wins,

otherwise player 1 is the winner. Players are also sometimes called ∃ and ∀ or ◊
and □ due to their meaning when using parity games in relation to 𝜇-calculus or

fixpoint equations.
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Example 2.8  (parity game). In Figure 4 we can see an example of a parity game

with 5 vertices. Circles represent vertices controlled by player 0 while squares rep-

resent vertices controlled by player 1. Each vertex is shown with its name and its

priority. The vertices have been divided in two groups based on the winner on the

vertices in them. The left one is winning for player 0 because from 𝑣0 it can always

go downwards to 𝑣1, from which the only possible response possible for player 1 is

to go back to 𝑣0. Player 0 can thus force such play in which the higher infinitely

visited priority is 2, hence the vertices are winning for player 0. In the right group

a similar situation happens where player 1 can force any play to go through vertex𝑣3 infinitely often and thus winning the game. Notice that the edges from 𝑣0 to 𝑣2
and from 𝑣2 to 𝑣1 are never a good choice for the players, since they lead from a

vertex that is winning for the player to one that is losing.

𝑣0 : 0

𝑣1 : 2

𝑣2 : 3

𝑣3 : 5

𝑣4 : 4

Figure 4: Example of a parity game

We will now introduce graphs and some convenient notation for them. Moreover

we will also need a formal notion for infinitely recurring elements in a sequence in

order to describe the winner of a parity game.

Notation 2.6  (graph, successors and predecessors). A simple graph is a pair (𝑉 , 𝐸) where 𝑉  is the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 ∖ {(𝑣, 𝑣) | 𝑣 ∈ 𝑉 } is the set of
edges. It is called finite if 𝑉  is finite.

Given 𝑢, 𝑣 ∈ 𝑉  we write 𝑢𝐸𝑣 if (𝑢, 𝑣) ∈ 𝐸, that is if the graph contains an edge

from 𝑢 to 𝑣. We also write 𝑢𝐸 to denote the set of successors of 𝑣 in 𝐺, i.e. {𝑣 ∈𝑉 | 𝑢𝐸𝑣}, and 𝐸𝑣 to denote the set of predecessors of 𝑣, i.e. {𝑢 ∈ 𝑉 | 𝑢𝐸𝑣}.
Definition 2.17  (sink vertices). Let 𝐺 = (𝑉 , 𝐸) be a graph. The set of sink vertices

is 𝑆𝐺 = {𝑣𝐸 = ∅}, that is the set of vertices without successors.
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Definition 2.18  (infinitely recurring elements). Let 𝜋 = 𝑣0𝑣1𝑣2… an infinite se-

quence of elements. We define inf(𝜋) as the set of infinitely recurring elements of 𝜋, that is inf(𝜋) = {𝑣 | ∀𝑛. ∃𝑖 ≥ 𝑛. 𝑣𝑖 = 𝑣}.
We can now introduce parity games, which consist of a graph partitioned into two

set of vertices, representing the positions controlled by each player, along with a

priority function.

Definition 2.19  (parity graph, parity game). A parity graph is a triple 𝐺 =(𝑉 , 𝐸, 𝑝) where (𝑉 , 𝐸) is a finite graph and 𝑝 : 𝑉 → ℕ is a so called priority func-

tion. A parity graph is a triple 𝐺 = (𝑉 , 𝐸, 𝑝). Let 𝑉  be partitioned into two sets 𝑉0
and 𝑉1. The tuple 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) is a parity game.

A particular game played on a parity game is called a play. Each play starts with the

token on a given vertex and proceeds by moving the token to one of the successors

of the current vertex, as chosen by the player controlling it. A play can eventually

reach a vertex which has no successors, in which case the player controlling that

vertex loses the play. Otherwise, the play can be infinite, in which case the winner

of the play is determined by the highest priority of the vertices that are visited

infinitely often: if that is even the winner is player 0, otherwise it is player 1.

Definition 2.20  (play). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game. A play in 𝐺
from a vertex 𝑣0 ∈ 𝑉0 ∪ 𝑉1 is a potentially infinite sequence 𝜋 = 𝑣0𝑣1… such that ∀𝑖. 𝑣𝑖𝐸𝑣𝑖+1. If the play is finite, that is 𝜋 = 𝑣0𝑣1…𝑣𝑛, then 𝑣𝑛 ∈ 𝑆𝐺 is required.

Definition 2.21  (winner of a play). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game and

let 𝜋 = 𝑣0𝑣1… be a play. The winner of 𝜋 is:

• if 𝜋 is finite, that is 𝜋 = 𝑣0𝑣1…𝑣𝑛 with 𝑣𝑛 ∈ 𝑉𝑖 then the winner is player 1 − 𝑖;
• if 𝜋 is infinite then consider max inf(𝑝(𝑣0)𝑝(𝑣1)…): if it is even the winner is

player 0, otherwise it is player 1.

From now on we will focus on a subclass of parity games, which for convenience we

will call bipartite parity games and total parity games. Bipartite parity games are

games whose graph is bipartite, forcing players to perfectly alternate their moves.

Total parity games instead require every vertex to have at least one successor, thus

forcing every play to be infinite.

The parity games we will generate will be bipartite by construction, though not

necessarily total. We will however mostly deal with total parity games since, as we

will show, we can convert any parity game to a “compatible” total parity game.

Definition 2.22  (bipartite parity game). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game.

It is called bipartite if the graph (𝑉0, 𝑉1, 𝐸) is bipartite, that is ∀𝑣 ∈ 𝑉𝑖. 𝑣𝐸 ∩ 𝑉𝑖 = ∅.
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Definition 2.23  (total parity game). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game. It is

called total if ∀𝑣 ∈ 𝑉0 ∪ 𝑉1. 𝑣 ∉ 𝑆𝐺, that is there is no sink vertex.

2.5.1 Strategies

By the well-known determinacy of parity games [13, 14] we know that each vertex

is winning for exactly one of the two players, that is that player can force every

play to be winning for them. Moreover it is known that the winning player also has

a so-called memoryless winning strategy, that is a way to choose the next vertex

in the play without considering the previous ones such that any resulting play is

winning for them. From now on we will focus only on strategies and plays induced

by strategies, as they are finite and easier to reason about.

Definition 2.24  (strategy). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game. A (memory-

less) strategy for player 𝑖 is a function 𝜎 : 𝑉𝑖 ∖ 𝑆𝐺 → 𝑉  such that ∀𝑣. 𝜎(𝑣) ∈ 𝑣𝐸.

Strategies for player 0 will usually be denoted by 𝜎 while those for player 1 by 𝜏 .

It is also worth mentioning that the domain of a strategy for player 𝑖 on a total

parity game will be exactly 𝑉𝑖, since the set of sink vertices 𝑆𝐺 will be empty.

Definition 2.25  (strategy induced instance). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game, 𝜎 be a strategy for player 0 and 𝜏 be a strategy for player 1. An instance of

the game 𝐺 induced by the strategies 𝜎 and 𝜏 is a tuple (𝐺, 𝜎, 𝜏).
Given a starting vertex 𝑣0 ∈ 𝑉0 ∪ 𝑉1, an instance also uniquely defines a play, called

an induced play, where if 𝑣𝑖 ∈ 𝑆𝐺 then the play is finite and stops at 𝑣𝑖, otherwise 𝑣𝑖+1 = 𝜎(𝑣𝑖) if 𝑣𝑖 ∈ 𝑉0 and 𝑣𝑖+1 = 𝜏(𝑣𝑖) if 𝑣𝑖 ∈ 𝑉1.
It can be proven that if an induced play is infinite then it will eventually reach a

cycle and repeatedly visit those vertices in the same order, that is the play will be

of the kind 𝑣0…𝑣𝑘𝑣𝑘+1…𝑣𝑛𝑣𝑘+1…𝑣𝑛….

Definition 2.26  (winning strategy). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game. A

strategy 𝜎𝑖 for player 𝑖 is called winning on vertex 𝑣 if for any strategy 𝜎1−𝑖 for the
opposing player, the induced play starting from vertex 𝑣 in the instance (𝐺, 𝜎0, 𝜎1)
is winning for player 𝑖.
Lemma 2.2  (determinacy of parity games). Given a parity game 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝),
for every vertex 𝑣 ∈ 𝑉0 ∪ 𝑉1 one and only one of the players can force a winning

play from 𝑣. The set of vertices 𝑉  can thus be partitioned in two winning sets 𝑊0 and 𝑊1 of the vertices where player 0 (resp. player 1) has a winning strategy

starting from vertices in that set.
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Example 2.9  (strategy). For example in the parity game in Figure 5 the winning

strategy, represented as whole lines, for player 0 on vertex 𝑣0 would be going to the

vertex 𝑣1, while for player 1 on vertex 𝑣2 it would be going to the vertex 𝑣3. For

all the other vertices the strategy is not relevant, since it will always be losing for

their controlling player, so it has not been displayed.

𝑣0 : 0

𝑣1 : 2

𝑣2 : 3

𝑣3 : 5

𝑣4 : 4

Figure 5: Example of a parity game along with its winning strategies

2.6 Game characterization of the solution of

systems of equations

2.6.1 Game definition

The solution of systems of fixpoint equations can be characterized using a parity

game [7], also called a powerset game. This characterization in particular allows

to determine whether some element of a basis is under the solution for one of the

variables of the system. This makes sense because in practice the actual solution of

the system may include lot of informations we are not interested about, for example

for the 𝜇-calculus it would include all the states that satisfy the given formula, while

we might be only interested in knowing whether one particular state is included, or

for bisimilarity it would include all pairs of processes that are bisimilar, when again

we are only interested in a single pair.

Definition 2.27  (powerset game). Let (𝐿, ⊑) be a complete lattice and 𝐵𝐿 a basis

of 𝐿. Let 𝐸 = 𝒙 =𝜼 𝒇(𝒙) be a system of 𝑛 fixpoint equations.

The powerset game is a parity game associated with 𝐸 defined as follows:

• the vertices for player 0 are 𝑉0 = 𝐵𝐿 × 𝑛 = {(𝑏, 𝑖) | 𝑏 ∈ 𝐵𝐿 ∧ 𝑖 ∈ 𝑛}
• the vertices for player 1 are 𝑉1 = (2𝐵𝐿)𝑛 = {(𝑋1, …, 𝑋𝑛) | 𝑋𝑖 ∈ 2𝐵𝐿}
• the moves from player 0 vertices are 𝐸(𝑏, 𝑖) = {𝑿 | 𝑿 ∈ (2𝐵𝐿)𝑛 ∧ 𝑏 ⊑ 𝑓𝑖(⊔𝑿)}
• the moves from player 1 vertices are 𝐴(𝑿) = {(𝑏, 𝑖) | 𝑖 ∈ 𝑛 ∧ 𝑏 ∈ 𝑋𝑖}
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• the priority function is defined such that:

‣ 𝑝(𝑿) = 0;
‣ 𝑝((𝑏, 𝑖)) is even if 𝜂𝑖 = 𝜈 and odd if 𝜂𝑖 = 𝜇;

‣ 𝑝((𝑏, 𝑖)) < 𝑝((𝑏′, 𝑗)) if 𝑖 < 𝑗.
Intuitively each vertex (𝑏, 𝑖), owned by player 0, represents the fact that the basis

element 𝑏 is under the 𝑖-th component of the solution. Its moves then are all the

possible assignments to the tuple of variables 𝒙. These are expressed as tuples of

subsets 𝑋1, …, 𝑋𝑛 of the basis, with the requirement that 𝑏 is under the result of 𝑓𝑖(⊔𝑋1, …, ⊔𝑋𝑛). Player 1 then can challenge player 0 by claiming that one of those

subsets contains an element of the basis that is not actually under the solution, and

this continues either infinitely or until one of the two players has no move possible.

The priority function is not fully specified, but it can be shown that there exist a

mapping to ℕ that satisfies the given order and partition into even/odd. An intu-

itive way would be to just list the priorities in order and give to map each of them

to the next available even or odd natural number.

It has been proven in [7] that such characterization is both correct and complete,

allowing us to solve generic systems of fixpoint equations with it.

Theorem 2.3  (correctness and completeness of the powerset game). Let 𝐸 be a

system of 𝑛 fixpoint equations over a complete lattice 𝐿 with solution 𝑠. For all 𝑏 ∈𝐵𝐿 and 𝑖 ∈ 𝑛, we have 𝑏 ⊑ 𝑠𝑖 if and only if the player 0 has a winning strategy on

the powerset game associated to 𝐸 starting from the vertex (𝑏, 𝑖).
Example 2.10  (game characterization). Consider for example the system of equa-

tions given in Example 2.3 over the boolean lattice 𝔹:

{𝑥1 =𝜇 𝑥1 ∨ 𝑥2𝑥2 =𝜈 𝑥1 ∧ 𝑥2
The corresponding game characterization would be the following:

[𝑡𝑟𝑢𝑒, 1]
1

[𝑡𝑟𝑢𝑒, 2]
2

({𝑡𝑟𝑢𝑒},∅)
0

(∅, {𝑡𝑟𝑢𝑒})
0

({𝑡𝑟𝑢𝑒}, {𝑡𝑟𝑢𝑒})
0

Figure 6: Example of a game characterization
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As before, elliptic vertices represent player 0 positions while rectangular vertices

represent player 1 positions. The priorities are now represented with the numbers

on the bottom center or right, while the non-dotted edges correspond to the winning

strategies.

The way this is obtained is by starting with the player 0 positions, which are the

ones we care about, since if one wanted to prove whether 𝑡𝑟𝑢𝑒 is under the solution

for 𝑥1 or 𝑥2 they would have to check whether [𝑡𝑟𝑢𝑒, 1] or [𝑡𝑟𝑢𝑒, 2] are winning or

not. From those vertices we then have the following moves:

𝐸(𝑡𝑟𝑢𝑒, 1) = { ({𝑡𝑟𝑢𝑒},∅), (∅, {𝑡𝑟𝑢𝑒}), ({𝑡𝑟𝑢𝑒}, {𝑡𝑟𝑢𝑒}) }
𝐸(𝑡𝑟𝑢𝑒, 2) = { ({𝑡𝑟𝑢𝑒}, {𝑡𝑟𝑢𝑒}) }

Note that the remaining position of player 1 (∅,∅) is not reachable, and thus was

omitted from the figure.

The game is ultimately won by player 0 on every position, since it can force every

play to go through the position [𝑡𝑟𝑢𝑒, 2] over and over. This position has the highest

priority, at 2, thus being the highest of every play, and since it is even it makes

player 0 the winner. Hence we can infer that 𝑡𝑟𝑢𝑒 ⊑ 𝑥∗1 and 𝑡𝑟𝑢𝑒 ⊑ 𝑥∗2, which implies𝑥∗1 = 𝑡𝑟𝑢𝑒 and 𝑥∗2 = 𝑡𝑟𝑢𝑒.
One can also see that swapping the equations would result in the same parity graph,

except for position [𝑡𝑟𝑢𝑒, 1] which now would have a higher odd priority than [𝑡𝑟𝑢𝑒, 2]. This makes the game losing for player 0 on all positions, since player 1 can

force every play to go through [𝑡𝑟𝑢𝑒, 1] and win. We thus get 𝑡𝑟𝑢𝑒 ⋢ 𝑥∗1 and 𝑡𝑟𝑢𝑒 ⋢𝑥∗2, which imply 𝑥∗1 = 𝑓𝑎𝑙𝑠𝑒 and 𝑥∗2 = 𝑓𝑎𝑙𝑠𝑒, like we already saw in Example 2.4.

2.6.2 Selections

In practice it is not convenient to consider all the possible moves for player 0. For

instance in Example 2.10 the move from [𝑡𝑟𝑢𝑒, 1] to ({𝑡𝑟𝑢𝑒}, {𝑡𝑟𝑢𝑒}) is never conve-

nient for player 0, since the moves to ({𝑡𝑟𝑢𝑒},∅) and (∅, {𝑡𝑟𝑢𝑒}) would give player

1 strictly less choices. In fact going from [𝑡𝑟𝑢𝑒, 2] to ({𝑡𝑟𝑢𝑒}, {𝑡𝑟𝑢𝑒}) would be a

losing move for player 0, and the only way to win is to go to (∅, {𝑡𝑟𝑢𝑒}). In general,

for player 0, it will be always convenient to play moves consisting of sets of elements

with limited cardinality and as small as possible in the order. We will now see a

formalization of this idea.

To start we will need to consider a new order, called Hoare preorder:

Definition 2.28  (Hoare preorder). Let (𝑃 , ⊑) be a poset. The Hoare preorder,

written ⊑𝐻 , is a preorder on the set 2𝑃  such that, ∀𝑋, 𝑌 ⊆ 𝑃 . 𝑋 ⊑𝐻 𝑌 ⇔ ∀𝑥 ∈𝑋. ∃𝑦 ∈ 𝑌 . 𝑥 ⊑ 𝑦.
We also consider the pointwise extension ⊑∧𝐻 of the Hoare preorder on the set (2𝐵𝐿)𝑛

, that is ∀𝑋, 𝑌 ∈ (2𝐵𝐿)𝑛, 𝑿 ⊑∧𝐻 𝒀 ⇔ ∀𝑖 ∈ 𝑛. 𝑋𝑖 ⊑𝐻 𝑌𝑖, and the upward-clo-
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sure with respect to it, that is given 𝑇 ⊆ (2𝐵𝐿)𝑛
 then ↑𝐻𝑇 = {𝑿 | ∃𝒀 ∈ 𝑇 ∧ 𝒀 ⊑∧𝐻𝑿}.

The idea will then be for player 0 to avoid playing a move 𝒀  if there exist another

move 𝑿 such that 𝑿 ⊏∧𝐻 𝒀 . More formally, it can be proven that any set of moves

whose upward-closure with respect to ⊑∧𝐻 is equal to 𝐸(𝑏, 𝑖) is equivalent to it for

the purpose of the game. That is, we can replace the moves for that player 0 position

and it would not change the winners compared to the original game. We call such

sets of moves selections, and a point of interest will be finding small selections in

order to reduce the size of the game.

Definition 2.29  (selection). Let (𝐿, ⊑) be a lattice. A selection is a function 𝜎 :(𝐵𝐿 × 𝑛) → 2(2𝐵𝐿)𝑚
 such that ∀𝑏 ∈ 𝐵𝐿, 𝑖 ∈ 𝑛. ↑𝐻𝜎(𝑏, 𝑖) = 𝐸(𝑏, 𝑖).

2.6.3 Logic for upward-closed sets

Ideally we would be interested in the least selection; this can be shown to always

exist in finite lattices, but not in infinite ones. Moreover when it exists it might be

exponential in size.

Example 2.11  (least selection may not exist). Consider for example the complete

lattice ℕ𝜔 seen in Figure 1, and consider a system of fixpoint equations with only

the equation 𝑥 =𝜇 𝑓(𝑥) where 𝑓(𝑛) = 𝑛 + 1 if 𝑛 ∈ ℕ and 𝑓(𝜔) = 𝜔. We will pick the

lattice itself as its basis and we will want to prove 𝜔 ⊑ 𝑥∗ with 𝑥∗ being the solution

of this equation. This will generate a powerset game starting from position 𝜔 with

moves 𝐸(𝜔), for which it can be shown that the move ℕ is winning for player 0. We

are however interested in selections for 𝐸(𝜔), and it can be shown that any {𝑋}
where 𝑋 ⊆ ℕ and 𝑋 is infinite is a valid selection for 𝐸(𝜔). In fact 𝜔 ⊑ 𝑓(⊔𝑋) can

only be satisfied if 𝑓(⊔𝑋) = 𝜔 and thus ⊔𝑋 = 𝜔, which is true for all and only the

infinite 𝑋. There are however infinitely many such sets, and there is no smallest

one, since it is always possible to get a smaller one by removing one element. Thus

there cannot be a smallest selection.

Example 2.12  (least selection can be exponential). The least selection can

be exponential with respect to the number of variables and basis size. Take

for example the function 𝑓(𝑥1, …, 𝑥2𝑛) = (𝑥1 ∨ 𝑥2) ∧ (𝑥3 ∨ 𝑥4) ∧ … ∧ (𝑥2𝑛−1 ∨ 𝑥2𝑛)
over the boolean lattice. The corresponding minimal selection would be {({𝑡𝑟𝑢𝑒},∅, {𝑡𝑟𝑢𝑒},∅, …), …, (∅, {𝑡𝑟𝑢𝑒},∅, {𝑡𝑟𝑢𝑒}, …)}, which lists all the ways to

satisfy each 𝑥2𝑖−1 ∨ 𝑥2𝑖 without making them both 𝑡𝑟𝑢𝑒, which is 2𝑛 and thus ex-

ponential in the number of variables. A similar construction can be made for the

basis size, by taking as domain the set of 𝑛-tuples over the boolean lattice.

For these reasons a logic for upward-closed sets is used to represent the 𝐸(𝑏, 𝑖) set
in a more compact way. Additionally this allows us to generate relative selections
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which are typically small, even if they are not the least ones. From now on we will

refer to formulas in such logic with “logic formulas”.

Definition 2.30  (logic for upward-closed sets). Let (𝐿, ⊑) be a complete lattice

and 𝐵𝐿 a basis of 𝐿. Given 𝑛 ∈ ℕ we define the following logic, where 𝑏 ∈ 𝐵𝐿 and𝑖 ∈ 𝑛:

𝜑 ≔ [𝑏, 𝑖] | ⋀
𝑘∈𝐾

𝜑𝑘 | ⋁
𝑘∈𝐾

𝜑𝑘

The formulas 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 are then implicitly defined as ∧𝑘∈ ∅ 𝜑𝑘 and ∨𝑘∈ ∅ 𝜑𝑘.

We now give the semantics of a logic formula, which consist in the set of moves that

the formula is representing. We will be interested in formulas whose semantics will

be equal to the set 𝐸(𝑏, 𝑖).
Definition 2.31  (logic formulas semantics). Let (𝐿, ⊑) be a complete lattice, 𝐵𝐿 a

basis of 𝐿, 𝑛 ∈ ℕ, 𝑖 ∈ 𝑛 and 𝜑 a logic formula. The semantics of 𝜑, that is the set

of player 1 vertices is represents, is a upward-closed set ⟦𝜑⟧ ⊆ (2𝐵𝐿)𝑛
 with respect

to ⊑∧𝐻 , define as follows:

⟦[𝑏, 𝑖]⟧ = {𝑿 | 𝑏 ∈ 𝑿𝑖}
⟦ ⋀
𝑘∈𝐾

𝜑𝑘⟧ = ⋂
𝑘∈𝐾

⟦𝜑𝑘⟧
⟦ ⋁
𝑘∈𝐾

𝜑𝑘⟧ = ⋃
𝑘∈𝐾

⟦𝜑𝑘⟧
Given a logic formula we can however define a generator for symbolic moves, which

is a selection for the set represented by the logic formula semantics. This will be

the set of moves that we will use in practice when solving the parity game.

Definition 2.32  (generator for symbolic moves). Let (𝐿, ⊑) be a complete lattice,𝐵𝐿 a basis of 𝐿, 𝑛 ∈ ℕ, 𝑖 ∈ 𝑛 and 𝜑 a logic formula. The moves generated by 𝜑,

written 𝑀(𝜑) are:
𝑀([𝑏, 𝑖]) = {𝑿} with 𝑋𝑖 = {𝑏} and ∀𝑗 ≠ 𝑖. 𝑋𝑗 = ∅

𝑀( ⋀
𝑘∈𝐾

𝜑𝑘) = {⋃ 𝑋 | 𝑋 ∈ ∏
𝑘∈𝐾

𝑀(𝜑𝑘)}
𝑀( ⋁

𝑘∈𝐾
𝜑𝑘) = ⋃

𝑘∈𝐾
𝑀(𝜑𝑘)

Another advantage of representing selections using such formulas is that they can be

simplified when it becomes known that some position [𝑏, 𝑖] for player 0 is winning or

losing. This corresponds to the assigning either true or false to the atom [𝑏, 𝑖] in the

formula and propagating that through the operators it is contained in. In the parity
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game this would translate to either removing some moves for player 0, due to them

being winning for player 1, or replacing ,moves for player 0 moves with a smaller

number of them that do not give player 1 the option to reach positions that are

winning for player 0. This is already exploited in the existing implementation of the

symbolic algorithm [8] to potentially remove lot of edges at once, thus simplifying

the game, while preserving the winners on all positions.

An alternative intuition for this logic is to see it as splitting the variables 𝑥𝑖 and

functions 𝑓𝑖 of the original system of equations into multiple 𝑥𝑖𝑏1 , 𝑥𝑖𝑏2 , … and 𝑓𝑖𝑏1 , 𝑓𝑖𝑏2 , …, with one for each element of the basis. Logic formulas then represent

these functions, while moves for an original position (𝑏, 𝑖) for player 0 can be seen

as partial assignments to the new boolean variables such that 𝑓𝑖𝑏(𝑥1𝑏1 , …) is true.

Finally, generating symbolic moves is equivalent to extracting approximately mini-

mal assignments from the formulas representing the functions. We will leave further

exploration of this topic to the future, but for our purposes it still provides a nice

intuition for how to define logic formulas for our implementations.

2.6.4 Translating 𝜇-calculus formulas

As seen in Section 2.4.1, 𝜇-calculus formulas can be translated into systems of fix-

point equations. The functions appearing in such systems can also be automatically

translated into logic formulas for upward-closed sets. Consider a system of fixpoint

equations generated by a 𝜇-calculus formula:

⎩{⎨
{⎧𝑥1 =𝜂1 𝜑1(𝑥1, …, 𝑥𝑛)

⋮𝑥𝑛 =𝜂𝑛 𝜑𝑛(𝑥1, …, 𝑛𝑛)
We need to define a logic formula representing the moves for player 0 for each ver-

tex (𝑏, 𝑖) for a basis element 𝑏 and a variable index 𝑖. Recall that the system of

equations is defined over 2𝕊, the powerset lattice of its states, while the basis is 𝐵2𝕊 ,
consisting of singletons, given in Definition 2.6. We thus need to define a formula for

each state 𝑠 and index 𝑖 such that the formula is true when the state 𝑠 satisfies the

formula 𝜑𝑖(𝒙∗), with 𝒙∗ representing the actual solution of the system. Moreover

we are allowed to refer to any vertex controlled by player 0 in this formula, which

is equivalent to being able to require that any another state 𝑠′ satisfies one of the

formulas 𝜑𝑗(𝒙∗).
We can then define the logic formula for the vertex (𝑠, 𝑖) as 𝐹(𝑠, 𝜑𝑖(𝑥1, …, 𝑥𝑛)),
where 𝐹  is in turn defined by structural induction on its second argument:
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𝐹(𝑠, 𝑡𝑟𝑢𝑒) = 𝑡𝑟𝑢𝑒
𝐹(𝑠, 𝑓𝑎𝑙𝑠𝑒) = 𝑓𝑎𝑙𝑠𝑒

𝐹(𝑠, 𝑝) = {𝑡𝑟𝑢𝑒 if 𝑠 ∈ 𝜌0(𝑝)
𝑓𝑎𝑙𝑠𝑒 if 𝑠 ∉ 𝜌0(𝑝)

𝐹(𝑠, 𝜓1 ∨ 𝜓2) = 𝐹(𝑠, 𝜓1) ∨ 𝐹(𝑠, 𝜓2)

𝐹(𝑠, 𝑥𝑖) = [𝑏, 𝑖]
𝐹 (𝑠, ⟨𝐴⟩𝜓) = ⋀

𝑎∈⟦𝐴⟧
⋀
𝑠→𝑎 𝑡

𝐹(𝑡, 𝜓)
𝐹(𝑠, [𝐴]𝜓) = ⋁

𝑎∈⟦𝐴⟧
⋁
𝑠→𝑎 𝑡

𝐹(𝑡, 𝜓)
𝐹(𝑠, 𝜓1 ∧ 𝜓2) = 𝐹(𝑠, 𝜓1) ∧ 𝐹(𝑠, 𝜓2)

It is interesting to note that the cases for ⟨𝐴⟩𝜓 and [𝐴]𝜓 are effectively taking the

respective semantics definition, which use universal and existential quantifiers, and

translating them to finite sequence of respectively conjunctions and disjunctions

between the elements that satisfy such quantifiers.

The definition also did not include fixpoint formulas since those were already been

removed when translating to a system of fixpoint equations.

2.6.5 Translating bisimilarity

Likewise for bisimilarity we have seen in Section 2.4.2 that it can be translated

to a fixpoint equation, which in turn can be seen as a system of a single fixpoint

equation. As with 𝜇-calculus formulas the domain is the powerset lattice 2𝕊×𝕊, and

thus its basis is 𝐵2𝕊×𝕊 , which can also be expressed as {{(𝑠1, 𝑠2)} | 𝑠1, 𝑠2 ∈ 𝕊}. Since

there is just one variable and equation we will only define 𝐹(𝑠1, 𝑠2), representing

the formula for the player 0 vertex ((𝑠1, 𝑠2), 1):
𝐹(𝑠1, 𝑠2) =

⎝⎜
⎜⎛

⎝⎜
⎜⎛ ⋀

𝑎∈𝐴𝑐𝑡
⋀

𝑠1→𝑎 𝑡1
⋁

𝑠2→𝑎 𝑡2
[(𝑡1, 𝑡2), 1]

⎠⎟
⎟⎞ ∧

⎝⎜
⎜⎛ ⋀

𝑎∈𝐴𝑐𝑡
⋀

𝑠2→𝑎 𝑡2
⋁

𝑠1→𝑎 𝑡1
[(𝑡1, 𝑡2), 1]

⎠⎟
⎟⎞

⎠⎟
⎟⎞

Example 2.13  (logic formulas for bisimilarity). For example the formulas for the

pair of states in the labelled transition systems shown in Figure 3 are the following:

𝐹(𝑣0, 𝑢0) = ([(𝑣1, 𝑢1), 1] ∧ [(𝑣2, 𝑢1), 1]) ∧ ([(𝑣1, 𝑢1), 1] ∨ [(𝑣2, 𝑢1), 1])
= [(𝑣1, 𝑢1), 1] ∧ [(𝑣2, 𝑢1), 1]

𝐹 (𝑣0, 𝑢1) = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑓𝑎𝑙𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣0, 𝑢2) = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣1, 𝑢0) = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑓𝑎𝑙𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣1, 𝑢1) = [(𝑣3, 𝑢2), 1] ∧ [(𝑣3, 𝑢2), 1] = [(𝑣3, 𝑢2), 1]
𝐹 (𝑣1, 𝑢2) = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣2, 𝑢0) = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑓𝑎𝑙𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣2, 𝑢1) = [(𝑣3, 𝑢2), 1] ∧ [(𝑣3, 𝑢2), 1] = [(𝑣3, 𝑢2), 1]
𝐹 (𝑣2, 𝑢2) = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝑓𝑎𝑙𝑠𝑒
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𝐹(𝑣3, 𝑢0) = 𝑡𝑟𝑢𝑒 ∧ 𝑓𝑎𝑙𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣3, 𝑢1) = 𝑡𝑟𝑢𝑒 ∧ 𝑓𝑎𝑙𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝐹(𝑣3, 𝑢2) = 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝑡𝑟𝑢𝑒

2.6.6 Translating parity games

It is known that parity games can also be translated to nested fixpoints [15], which

in turn are equivalent to systems of fixpoint equations. We will later use this fact

to generate simple problems for testing our implementation.

In particular, given a parity game 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) we can define a system of

fixpoint equations on the boolean lattice 𝔹, where 𝑡𝑟𝑢𝑒 represents a vertex being

winning for player 0 while 𝑓𝑎𝑙𝑠𝑒 is winning for player 1. Then for each vertex 𝑣 ∈𝑉0 ∪ 𝑉1 a variable 𝑥𝑣 will be defined along with the following equation:

𝑥𝑣 =𝜂 ⎩{⎨
{⎧⨆𝑢∈𝑣𝐸 𝑥𝑢 if 𝑣 ∈ 𝑉0

⨅𝑢∈𝑣𝐸 𝑥𝑢 if 𝑣 ∈ 𝑉1
with 𝜂 = {𝜈 if 𝑝(𝑣) even𝜇 if 𝑝(𝑣) odd

Intuitively, a vertex in 𝑉0 is winning for player 0 if any of its successors is also

winning for them, because they can choose to move to that successor and keep

winning. Meanwhile, a vertex in 𝑉1 is winning for player 0 if all its successors are

winning for them, because otherwise player 1 would have the option to move to any

successor that is not winning for player 0 and win.

The priority of vertices must however also be taken into account in order to deter-

mine the winner of infinite plays, which we can reduce to plays ending with a cycle.

If one happens the last equation corresponding to a vertex of the cycle will have

both 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 as fixpoint, and will thus decide the winner for the entire cycle,

hence why equations corresponding with vertices with higher priorities have to be

sorted last. The winner is then chosen by whether the fixpoint equation is a greatest

fixpoint or a least fixpoint: if it is a greatest fixpoint the solution will be 𝑡𝑟𝑢𝑒 and

player 0 will win, otherwise it will be 𝑓𝑎𝑙𝑠𝑒 and player 1 will win. This is the reason

why the fixpoint type was chosen according to the priority of the vertex: if it is even

then player 0 wins the cycle in the parity game and hence the equation must be a

greatest fixpoint, otherwise player 1 wins and the equation must be a least fixpoint.

These functions can be trivially converted to logic formulas. Notice that the atom (𝑡𝑟𝑢𝑒, 𝑖), where 𝑖 is the index of the equation with variable 𝑥𝑢, is true if and only if

the solution for 𝑥𝑢 is 𝑡𝑟𝑢𝑒, otherwise if the atom is false then the solution is 𝑓𝑎𝑙𝑠𝑒.
As such the equations of the system can be converted to logic formulas by replacing

each variable 𝑥𝑢 with the atom (𝑡𝑟𝑢𝑒, 𝑖), where 𝑖 is the index of variable the 𝑥𝑢,

each ⊔ with ∨ and each ⊓ with ∧.
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Example 2.14  (translation and logic formulas for a parity game). For example

the parity game in Figure 4 would be translated to the following system of fixpoint

equations:

⎩{{
{⎨
{{{
⎧𝑣0 =𝜈 𝑣1 ⊔ 𝑣2𝑣1 =𝜈 𝑣0𝑣2 =𝜇 𝑣1 ⊓ 𝑣3𝑣4 =𝜈 𝑣2 ⊔ 𝑣3𝑣3 =𝜇 𝑣4

Which can then be translated to the following formulas:

𝐹(𝑡𝑟𝑢𝑒, 1) = [𝑡𝑟𝑢𝑒, 2] ∨ [𝑡𝑟𝑢𝑒, 3]
𝐹 (𝑡𝑟𝑢𝑒, 2) = [𝑡𝑟𝑢𝑒, 1]
𝐹 (𝑡𝑟𝑢𝑒, 3) = [𝑡𝑟𝑢𝑒, 2] ∧ [𝑡𝑟𝑢𝑒, 5]
𝐹 (𝑡𝑟𝑢𝑒, 4) = [𝑡𝑟𝑢𝑒, 3] ∨ [𝑡𝑟𝑢𝑒, 5]
𝐹 (𝑡𝑟𝑢𝑒, 5) = [𝑡𝑟𝑢𝑒, 4]

2.7 Local strategy iteration

2.7.1 Strategy iteration

Strategy iteration [10] is one of the oldest algorithms that computes the winning sets

and the optimal strategies for the two players of a bipartite and total parity game.

The algorithm starts with a strategy for player 0 and repeats valuation phases,

during which it computes a play profile for each vertex, and improvement phases,

during which it uses such play profiles to improve the strategy. This continues un-

til the strategy can no longer be improved, at which point it is guaranteed to be

optimal.

We will start introducing some concepts that will help characterize how favorable

a vertex is for a given player. We will start by giving the definition of a relevance

ordering, which is a total order over the vertices where bigger vertices correspond

to bigger priorities. This will be important in determining which vertices are more

impactful on the winner of a play. We then define the sets of positive and negative

vertices, which are a different way to partition the set of vertices. In particular

the set of positive vertices contains vertices whose priority is even, and thus more

favorable to player 0, while the negative vertices will be those with odd priority. We

also introduce a reward ordering, which instead expresses how favorable to player

0 a vertex is. In particular a positive vertex has a bigger reward than a negative

one. Positive vertices are also more rewarding if they have a bigger priority, while

negative vertices are less rewarding in that case. Finally, the reward ordering is
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extended to sets of vertices, where the reward of the most relevant vertex decides

which set is more rewarding.

Definition 2.33  (relevance ordering). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game. A

relevance ordering < is a total order that extends the partial order induced by the 𝑝 function. In particular < is such that ∀𝑢, 𝑣. 𝑝(𝑢) < 𝑝(𝑣) ⇒ 𝑢 < 𝑣.
It should be noted that in general multiple relevance orderings can exist for a given

parity game, and usually an arbitrary one can be picked. The specific choice can

affect the efficiency, but it is currently unclear how different choices impact on effi-

ciency and if some heuristic can be devised to guide this choice.

Definition 2.34  (positive and negative vertices). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game. We define 𝑉+ = {𝑣 ∈ 𝑉 | 𝑝(𝑣) is even} and 𝑉− = {𝑣 ∈ 𝑉 | 𝑝(𝑣) is odd}.
Definition 2.35  (reward ordering). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game with a

relevance ordering <, and let 𝑣, 𝑢 ∈ 𝑉 . We write 𝑢 ≺ 𝑣 when 𝑢 < 𝑣 and 𝑣 ∈ 𝑉+ or 𝑣 < 𝑢 and 𝑢 ∈ 𝑉−.

𝑢 ≺ 𝑣 ⇔ (𝑢 < 𝑣 ∧ 𝑣 ∈ 𝑉+) ∨ (𝑣 < 𝑢 ∧ 𝑢 ∈ 𝑉−)
Definition 2.36  (reward ordering on sets). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game

with a relevance ordering < and let 𝑃 , 𝑄 ⊆ 2𝑉  be two different sets of vertices. We

write 𝑃 ≺ 𝑄 if the following holds:

𝑃 ≠ 𝑄 ∧ max<𝑃 Δ 𝑄 ∈ (𝑃 ∩ 𝑉−) ∪ (𝑄 ∩ 𝑉+)
Intuitively 𝑃 ≺ 𝑄 represents the reward for 𝑃  being less than the one for 𝑄. The

way this is determined is by looking at the vertices that are in either 𝑃  or 𝑄 but

not both, namely the symmetric set difference 𝑃 Δ 𝑄. The vertices that are in both

are ignored because they will equally contribute to the reward of the two sets. From

the symmetric difference it is then selected 𝑣 = max< 𝑃 Δ 𝑄, the greatest remaining

vertex according to the relevance ordering. Then 𝑃 ≺ 𝑄 holds when 𝑣 ∈ 𝑃  and 𝑣 ∈ 𝑉−, representing the situation where 𝑣 is not favorable to player 0 and thus

makes the reward of the left set worse, or when 𝑣 ∈ 𝑄 and 𝑣 ∈ 𝑉+, representing the

situation where 𝑣 is favorable to player 0 and thus makes the reward of the right

set better.

At the core of the algorithm there is the valuation phase computing the play profiles,

which helps understanding how favorable a play is for each player. Moreover an

ordering between play profiles is defined, with bigger values being more favorable to

player 0 and lower ones being more favorable to player 1. In particular play profiles

are based on three key values:
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• the most relevant vertex that is visited infinitely often, which we will refer to

as 𝑤, which directly correlates to the winner of the play;

• the vertices visited before 𝑤 that are more relevant than it;

• the number of vertices visited before 𝑤.

Recall that the game is total, thus every play is infinite, and plays induced by an

instance that are infinite always consists of a prefix followed by a cycle. Thus in

this case 𝑤 coincides with the most relevant vertex of the cycle that is reached in

a play.

Intuitively in this context the last two values are linked to the chances that changing

strategy would change either the value of 𝑤 or the cycle itself, thus more relevant

vertices before 𝑤 or a longer prefix are more beneficial for the losing player.

Definition 2.37  (play profile and valuation). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game with a relevance ordering < and 𝜋 = 𝑣0𝑣1… a play on 𝐺. Let 𝑤 = max< inf(𝜋)
be the most relevant vertex that is visited infinitely often in the play and 𝛼 = {𝑢 ∈𝑉 | ∃𝑖 ∈ 𝑁. 𝑣𝑖 = 𝑢 ∧ ∀𝑗 < 𝑖. 𝑣𝑗 ≠ 𝑤} be the set of vertices visited before the first oc-

currence of 𝑤. Let 𝑃 = 𝛼 ∩ {𝑣 ∈ 𝑉 | 𝑣 > 𝑤} and 𝑒 = |𝛼|. The play profile of the play𝜋 is the tuple (𝑤, 𝑃 , 𝑒).
Given an instance (𝐺, 𝜎, 𝜏) a valuation 𝜑 is a function that associates to each vertex

the play profile (𝑤, 𝑃 , 𝑒) of the play induced by the instance.

Given a valuation, we are then interested in determining whether a strategy for

player 0 is optimal. It can be shown [10] that if there exist a winning strategy for a

player then the optimal strategy is winning, otherwise it must be losing. The prob-

lem thus reduces to determining whether the current player 0 strategy is optimal,

and if not improve it until it is. This can be done by looking at the play profiles of

the successors of each vertex: if one of them is greater than the one of the successor

chosen by the current strategy then it is not optimal. In other words the optimal

strategy chooses the successor with the greatest play profile. If the strategy is not

optimal then a new strategy is determined by picking for each vertex the successor

with the greatest play profile. This will however change the optimal strategy for

player 1 and thus the valuation, which must be recomputed, leading to another

iteration. It has been shown in [10] that each new strategy “improves” upon the

previous one, and eventually this process will reach the optimal strategy. This can

however require 𝑂(Π𝑣∈𝑉0 out-deg(𝑣)) improvement steps in the worst case. Intu-

itively this is because each of the Π𝑣∈𝑉0 out-deg(𝑣) strategies for player 0 could end

up being considered.

Definition 2.38  (play profile ordering). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game

with a relevance ordering <, and (𝑢, 𝑃 , 𝑒) and (𝑣, 𝑄, 𝑓) be two play profiles. Then

we define:
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(𝑢, 𝑃 , 𝑒) ≺ (𝑣, 𝑄, 𝑓) ⇔
⎩{{
⎨{
{⎧ 𝑢 ≺ 𝑣∨ (𝑢 = 𝑣 ∧ 𝑃 ≺ 𝑄)∨ (𝑢 = 𝑣 ∧ 𝑃 = 𝑄 ∧ 𝑢 ∈ 𝑉− ∧ 𝑒 < 𝑓)

∨ (𝑢 = 𝑣 ∧ 𝑃 = 𝑄 ∧ 𝑢 ∈ 𝑉+ ∧ 𝑒 > 𝑓)
Theorem 2.4  (optimal strategies). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game with

a relevance ordering <, 𝜎 and 𝜏 be two strategies for respectively player 0 and 1

and 𝜑 a valuation function for (𝐺, 𝜎, 𝜏). The strategy 𝜎 is optimal against 𝜏 if ∀𝑢 ∈ 𝑉0. ∀𝑣 ∈ 𝑢𝐸. 𝜑(𝑣) ≼ 𝜑(𝜎(𝑢)). Dually, 𝜏 is optimal against 𝜎 if ∀𝑢 ∈ 𝑉1. ∀𝑣 ∈𝑢𝐸. 𝜑(𝜏(𝑢)) ≼ 𝜑(𝑣).
Finally, an algorithm is given in [10] to compute, given a strategy for player 0, an

optimal counter-strategy for player 1 along with a valuation for them.

1: function 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐻) 

2: for 𝑣 ∈ 𝑉  do

3: 𝜑(𝑣) =⊥
4: for 𝑤 ∈ 𝑉  (ascending order with respect to ≺) do

5: if 𝜑(𝑤) =⊥ then

6: 𝐿 = 𝑟𝑒𝑎𝑐ℎ(𝐻|{𝑣∈𝑉 | 𝑣≤𝑤}, 𝑤)
7: if 𝐸𝐻 ∩ {𝑤} × 𝐿 ≠ ∅ then

8: 𝑅 = 𝑟𝑒𝑎𝑐ℎ(𝐻, 𝑤)
9: 𝜑|𝑅 = 𝑠𝑢𝑏𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝐻|𝑅, 𝑤)
10: 𝐸|𝐻 = 𝐸|𝐻 ∖ (𝑅 × (𝑉 ∖ 𝑅))
11: return 𝜑
12:

13: function 𝑠𝑢𝑏𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(K, w) 

14: for 𝑣 ∈ 𝑉𝐾 do

15: 𝜑0(𝑣) = 𝑤
16: 𝜑1(𝑣) = ∅
17: for 𝑢 ∈ {𝑣 ∈ 𝑉𝐾 | 𝑣 > 𝑤} (descending order with respect to <) do

18: if 𝑢 ∈ 𝑉+ then

19: 𝑈 = 𝑟𝑒𝑎𝑐ℎ(𝐾|𝑉𝐾∖{𝑢}, 𝑤)
20: for 𝑣 ∈ 𝑉𝐾 ∖ 𝑈  do

21: 𝜑1(𝑣) = 𝜑1(𝑣) ∪ {𝑢}
22: 𝐸𝐾 = 𝐸𝐾 ∖ ((𝑈 ∪ {𝑢}) × (𝑉 ∖ 𝑈))
23: else  

24: 𝑈 = 𝑟𝑒𝑎𝑐ℎ(𝐾|𝑉𝐾∖{𝑤}, 𝑢)
25: for 𝑣 ∈ 𝑈  do

26: 𝜑1(𝑣) = 𝜑1(𝑣) ∪ {𝑢}
27: 𝐸𝐾 = 𝐸𝐾 ∖ ((𝑈 ∖ {𝑢}) × (𝑉 ∖ 𝑈))
28: if 𝑤 ∈ 𝑉+ then
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29: 𝜑2 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐾, 𝑤)
30: else  

31: 𝜑2 = 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐾, 𝑤)
32: return 𝜑
The algorithm works by determining from which vertices player 1 can force a play

to reach that vertex again, resulting in a cycle. This is done by considering the

vertices with lowest reward first, as those are the ones that are more favorable to

player 1. For each one that is found the algorithm then forces every vertex that

can reach it to do so, by removing the edges that would allow otherwise, and hence

fixing the 𝑤 component of their play profile. Then for this set of vertices it computes

the subvaluation, whose goal is to find the value of the optimal player 1 strategy for

them by minimizing the 𝑃  and 𝑒 components of the play profiles of these vertices.

In particular this step goes through each vertex that has a higher relevance than 𝑤
from the one with highest relevance to the one with lowest, which are exactly those

that will influence the 𝑃  component and its role in the play profile ordering. For

each of these, if they are favorable to player 0 then it will prevent all vertices that

can reach them before reaching 𝑤 from doing so, again by removing the edges that

would allow that. If instead they are favorable to player 1 then the algorithm will

force any vertex that can reach them before reaching 𝑤 to do so. Finally, depending

on whether 𝑤 is favorable to player 0 or not, to each vertex is forced the longest or

shortest path to reach 𝑤, thus fixing the 𝑒 component of the play profile. Ultimately

this will leave each vertex with only one outgoing edge, representing the strategy

for its controlling player.

It has been proven in [10] that this algorithm has a complexity of 𝑂(|𝑉 | × |𝐸|).
2.7.2 Local algorithm

The strategy improvement algorithm has the downside of requiring to visit the

whole graph. In some cases this might be an inconvenience, as the graph could be

very large but only a small portion may need to be visited to determine the winner

of a specific vertex of interest. For an extreme example, consider a disconnected

graph, in which case the winner of a vertex only depends on its connected compo-

nent and not on the whole graph.

The local strategy iteration algorithm [11] fills this gap by performing strategy it-

eration on a subgame, a parity game defined as a subgraph of the main game, and

providing a way to determine whether this is enough to infer the winner in the full

game. It may happen that the winner is not immediately decidable, in which case

the subgame would have to be expanded. To do this we will need to define what a

subgame is, how to expand it and what is the condition that decides the winner on

a vertex.
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Definition 2.39  (𝑈 -induced subgames). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game

and 𝑈 ⊆ 𝑉 . The 𝑈-induced subgame of 𝐺, written 𝐺|𝑈 , is a parity game 𝐺′ = (𝑉0 ∩𝑈, 𝑉1 ∩ 𝑈, 𝐸 ∩ (𝑈 × 𝑈), 𝑝|𝑈), where 𝑝|𝑈  is the function 𝑝 with domain restricted to𝑈 .

Definition 2.40  (partially expanded game). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game and 𝐺′ = 𝐺|𝑈  a subgame of 𝐺. If 𝐺′ is still a total parity game it is called a

partially expanded game.

Given a partially expanded game, two optimal strategies and its winning sets, the

local algorithm has to decide whether vertices winning for a player in this subgame

are also winning in the full game. Recall that a strategy is winning for a player 𝑖 if any strategy for the opponent results in an induced play that is winning for 𝑖.
However the fact that plays are losing in the subgame does not necessarily mean

that all plays in the full game will be losing too, as they might visit vertices not

included in the subgame. Intuitively, the losing player might have a way to force a

losing play for them to reach one of the vertices outside the subgame, called the 𝑈-

exterior of the subgame, and thus lead to a play that is not possible in the subgame.

The set of vertices that can do this is called the escape set of the subgame, and for

such vertices no conclusions can be made. For the other vertices instead the winner

in the subgame is also the winner in the full game and they constitute the definitely

winning sets.

Definition 2.41  (𝑈 -exterior). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game and 𝐺|𝑈  a

subgame of 𝐺. The 𝑈-exterior of a vertex 𝑣 ∈ 𝑈 , also written 𝐷𝐺(𝑈, 𝑣), is the set
of its that successors that are not themselves in 𝑈 . That is, 𝐷𝐺(𝑈, 𝑣) = 𝑣𝐸 ∩ (𝑉 ∖𝑈). The 𝑈-exterior of of the subgame 𝐺|𝑈  is instead the union of all 𝑈-exteriors of

its vertices, that is:

𝐷𝐺(𝑈) = ⋃
𝑣∈𝑈

𝑣𝐸 ∩ (𝑉 ∖ 𝑈)
In order to define the concept of escape set we will use the notion of strategy re-

stricted edges. These are needed because we are interested in plays that are losing

for a player, and to do that we have to restrict the moves of the opposing player to

the ones represented by its optimal strategy.

Definition 2.42  (strategy restricted edges). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game

and 𝜎 a strategy for player 𝑖 in 𝐺. The set of edges restricted to the strategy 𝜎 is 𝐸𝜎 = {(𝑢, 𝑣) | 𝑢 ∈ 𝑉𝑖 ⇒ 𝜎(𝑢) = 𝑣}.
Definition 2.43  (escape set). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game, 𝑈 ⊆ 𝑉  and𝐺|𝑈  the induced subgame of 𝐺. Let 𝐿 = (𝐺|𝑈 , 𝜎, 𝜏) be an instance of the subgame.
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Let 𝐸∗𝜎 (resp. 𝐸∗𝜏) be the transitive-reflexive closure of 𝐸𝜎 (resp. 𝐸𝜏). The escape

set for player 0 (resp. 1) from vertex 𝑣 ∈ 𝑈 is the set 𝐸0𝐿(𝑣) = 𝑣𝐸∗𝜎 ∩ 𝐷𝐺(𝑈) (resp.𝐸1𝐿(𝑣) = 𝑣𝐸∗𝜏 ∩ 𝐷𝐺(𝑈)).
Definition 2.44  (definitive winning set). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game,𝑈 ⊆ 𝑉  and 𝐺|𝑈  the induced subgame of 𝐺. Let 𝐿 = (𝐺|𝑈 , 𝜎, 𝜏) be an instance of

the subgame with 𝜎 and 𝜏 optimal strategies, and let 𝜑 be the valuation for this

instance. The definitive winning sets 𝑊 ′0(𝐿) and 𝑊 ′1(𝐿) are defined as follows:

𝑊 ′0(𝐿) = {𝑣 ∈ 𝑈 | 𝐸1𝐿(𝑣) = ∅ ∧ (𝜑(𝑣))1 ∈ 𝑉+}
𝑊 ′1(𝐿) = {𝑣 ∈ 𝑈 | 𝐸0𝐿(𝑣) = ∅ ∧ (𝜑(𝑣))1 ∈ 𝑉−}

In practice we will however not compute the full escape sets, but instead we will

find for which vertices they are empty. We can do this by considering all the vertices

in 𝑈𝑖 that can reach vertices in the unexplored part of the game. Then we compute

the set of vertices that can reach said vertices when the edges are restricted accord-

ing to the strategy for player 1 − 𝑖. This will result in the set of all vertices which

have a non-empty escape set, so we just need to consider their complement when

computing the definitive winning sets.

Lemma 2.3  (definitive winning set soundness). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game and 𝐺|𝑈  a subgame of 𝐺 with an instance 𝐿 = (𝐺, 𝜎, 𝜏). Then 𝑊 ′0(𝐿) ⊆ 𝑊0
and 𝑊 ′1(𝐿) ⊆ 𝑊1.
As previously mentioned, if the winner of a vertex cannot be determined in a sub-

game, that is the vertex is not in a definitive winning set, then the subgame must

be expanded to a larger subgame, which is then solved, repeating the process.

Given a partially expanded game 𝐺|𝑈 , the expansion process starts by selecting new

vertices in the 𝑈 -exterior to include in the set 𝑈 , creating a new set 𝑈 ′. However 𝐺|𝑈′ might not be a total parity game, so the expansion process must continue

to include new vertices in 𝑈 ′ until the 𝑈 ′-induced subgame becomes total. More

formally, an expansion scheme is made up of a primary expansion function 𝜀1 and

a secondary expansion function 𝜀2, and the new subgame will be decided through

a combination of them. In particular the primary expansion function will select a

non-empty set of vertices in the 𝑈 -exterior to add to the current game, while the

secondary expansion function will be used to recursively select elements from the 𝑈 -exterior of new vertices until the game becomes total.

Definition 2.45  (expansion scheme). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game and𝐺|𝑈  a subgame of 𝐺. An expansion scheme is a pair of functions 𝜀1 : 2𝑉 → 2𝑉  and𝜀2 : 2𝑉 × 𝑉 → 2𝑉  such that:
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• ∅ ⊊ 𝜀1(𝑈) ⊆ 𝐷𝐺(𝑈)
• ∀𝑣 ∈ 𝑈. 𝜀2(𝑈, 𝑣) ⊆ 𝐷𝐺(𝑈, 𝑣)
• ∀𝑣 ∈ 𝑈. 𝑣𝐸 = 𝐷𝐺(𝑈, 𝑣) ⇒ 𝜀2(𝑈, 𝑣) ≠ ∅

The expansion is then computed by first applying 𝜀1 to get the set of new vertices,

and then by inductively applying 𝜀2 to each new vertex until there is no new vertex

produced:

Expand(𝑈) = Expand2(𝑈, 𝜀1(𝑈))
Expand2(𝑈, 𝐴) = {𝑈 if 𝐴 = ∅

Expand2(𝑈 ∪ 𝐴, ⋃𝑣∈𝐴 𝜀2(𝑈 ∪ 𝐴, 𝑣)) otherwise
Two expansion schemes are provided in [11], a symmetric scheme and an asymmet-

ric scheme.

Both start by expanding the game to one of the vertices in the escape set of the

vertex of interest 𝑣∗ for the currently losing player 𝑖 on it. Formally, 𝜀1(𝑈) = {𝑤}
for some 𝑤 ∈ 𝐸𝑖𝐿(𝑣∗) where 𝑝((𝜑(𝑣∗))1) mod 2 ≡ 1 − 𝑖. The idea is that player 𝑖 has

the ability to force a play from 𝑣∗ to reach the new vertex, which might be winning

for them and thus could change the winner on 𝑣∗ in the new subgame. On the other

hand if that does not happen then the escape set of 𝑣∗ for player 𝑖 might reduce,

eventually becoming empty and thus making 𝑣∗ definitely winning for player 1 − 𝑖.
The two expansion schemes differ however in the secondary expansion function.

Both choose not to expand any new vertex if the just expanded vertex already has a

successor in the current subgame, as doing otherwise may be wasteful. However the

symmetric scheme chooses to expand only one of the successors, that is 𝜀2(𝑈, 𝑣) ={𝑤} for some 𝑤 ∈ 𝑣𝐸. Instead the asymmetric scheme performs a different choice

depending on whether 𝑣 is controlled by player 0 or 1. If it is controlled by player 1

it chooses to expand all the 𝑈 -exterior of 𝑣, that is 𝜀2(𝑈, 𝑣) = 𝐷𝐺(𝑈, 𝑣) if 𝑣 ∈ 𝑉1,
otherwise if it is controlled by player 0 it chooses to expand only one successor like

in the symmetric scheme, that is 𝜀2(𝑈, 𝑣) = {𝑤} for some 𝑤 ∈ 𝑣𝐸 if 𝑣 ∈ 𝑉0.
Intuitively, the symmetric scheme makes no assumption about the winner and ex-

pands vertices for both players in the same way. Instead the asymmetric scheme

assumes that player 0 will win, and thus tries to expand more vertices controlled

by player 1 in order to reduce its escape set. Ultimately there are different tradeoffs

involved, since the symmetric scheme expands relatively few vertices and thus may

require solving more subgames, while the asymmetric scheme is eager, but in doing

so it might expand to larger subgames that could otherwise be avoided.

Finally, the algorithm performs an initial expansion to get a total subgame that

includes the vertex of interest. Then it repeatedly solves the current subgame, using

an 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 subroutine, until the vertex 𝑣∗ becomes definitely winning for either
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player, and expands it, using an 𝑒𝑥𝑝𝑎𝑛𝑑 subroutine, when no conclusion can be

made on it.

1: function 𝑙𝑜𝑐𝑎𝑙-𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦-𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐺, 𝑣∗) 
2: 𝑈 = 𝑒𝑥𝑝𝑎𝑛𝑑({𝑣∗})
3: 𝜎 = arbitrary player 0 strategy on 𝐺|𝑈
4: 𝜏 = optimal player 1 strategy against 𝜎 on 𝐺|𝑈
5: 𝐿 = (𝐺, 𝜎, 𝜏)
6: while 𝑣∗ ∉ 𝑊0(𝐿) ∪ 𝑊1(𝐿) do

7: if 𝜎 is improvable w.r.t 𝐿 then

8: 𝐿 = 𝑖𝑚𝑝𝑟𝑜𝑣𝑒(𝐿)
9: else  

10: 𝐿 = 𝑒𝑥𝑝𝑎𝑛𝑑(𝐿)
11: return 𝜎, 𝜏, 𝑊0(𝐿), 𝑊1(𝐿)
The complexity of the algorithm depends on the specific expansion scheme used.

For the two expansion schemes provided it has been proven in [11] that the asym-

metric scheme will require at most 𝑂(|𝑉 ||𝑉0|) iterations, while the symmetric one

will require at most 𝑂(|𝑉 | ⋅ |𝑉 ||𝑉0|).
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3 Symbolic local algorithm

3.1 Adapting the algorithm

Our goal will be to adapt and improve the local strategy iteration algorithm to

solve systems of fixpoint equations expressed as parity games using the symbolic

formulation.

3.1.1 Handling finite plays

The parity game formulation of a system of fixpoint equations admits positions

where a player has no available moves, namely it is not a total parity game. However

the strategy improvement algorithm requires a total parity game, so we need to

convert a generic parity game into a “compatible” total parity game that can be

handled by it, for some definition of “compatible.

The way we do this transformation is by extending the parity game, inserting aux-

iliary vertices that will be used as successors for those vertices that do not have

one. We call this the extended total parity game, for short extended game, since it

extends the original parity game to make it total. In particular we will add two

vertices 𝑤0 and 𝑤1 representing vertices that are both controlled by and winning for

respectively player 0 and 1. The vertices 𝑤0 and 𝑤1 will in turn also need successors,

and these will be respectively 𝑙1 and 𝑙0, representing vertices that are controlled by

and losing for respectively player 1 and 0. Likewise, the vertices 𝑙0 and 𝑙1 will need

at least one successor, at that will be respectively 𝑤1 and 𝑤0. The vertices 𝑤0 and𝑙1 will thus form a forced cycle, as well as 𝑤1 and 𝑙0. This, along with priorities

chosen as favorable for the player that should win these cycles, will guarantee that

the winner will actually be the expected one. Then, vertices that have no successors

in the general game, meaning they are losing for the player controlling them, in the

game will have as successor 𝑤0 or 𝑤1, that is controlled by and winning for the

opposing player.

Definition 3.1  (extended total parity game). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game. The extended total parity game of 𝐺 is the parity game 𝐺′ = (𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝′)
where:

• 𝑉 ′0 = 𝑉0 ∪ {𝑤0, 𝑙0}
• 𝑉 ′1 = 𝑉1 ∪ {𝑤1, 𝑙1}
• 𝐸′ = 𝐸 ∪ {(𝑣, 𝑤𝑖) | 𝑖 ∈ {0, 1} ∧ 𝑣 ∈ 𝑉1−𝑖 ∧ 𝑣 ∈ 𝑆𝐺}

∪ {(𝑤0, 𝑙1), (𝑙1, 𝑤0), (𝑤1, 𝑙0), (𝑙0, 𝑤1)}
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• 𝑝′(𝑣) =
⎩{{⎨
{{⎧𝑝(𝑣) if 𝑣 ∈ 𝑉0 if 𝑣 ∈ {𝑤0, 𝑙1}1 if 𝑣 ∈ {𝑤1, 𝑙0}

We now want to prove that this new parity game is “compatible” with the original

one, for a suitable definition of “compatible”. In particular for our purposes we are

interested that in the new game the winner for vertices which were already in the

old game remains unchanged.

Definition 3.2  (compatible parity games). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) and 𝐺′ =(𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝′) be two parity games with 𝑉𝑖 ⊆ 𝑉 ′𝑖 . Let 𝑊0 and 𝑊1 be the winning

sets for 𝐺 and 𝑊 ′0 and 𝑊 ′1 the winning sets for 𝐺′. We say that 𝐺′ is compatible

with 𝐺 if 𝑊0 ⊆ 𝑊 ′0 and 𝑊1 ⊆ 𝑊 ′1.

Definition 3.3  (extended strategies). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game and𝐺′ = (𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝′) be the extended game from 𝐺. Let 𝜎 a strategy on 𝐺 for player𝑖. We say that 𝜎 induces the following extended strategy 𝜎′ on 𝐺′:

𝜎′(𝑣) =
⎩{{
{⎨
{{{
⎧𝜎(𝑣) if 𝑣 ∈ 𝑉𝑖 ∧ 𝑣 ∉ 𝑆𝐺𝑊1−𝑖 if 𝑣 ∈ 𝑉𝑖 ∧ 𝑣 ∈ 𝑆𝐺𝑊1−𝑖 if 𝑣 = 𝐿𝑖𝐿1−𝑖 if 𝑣 = 𝑊𝑖

It can be observed that strategies on a parity game and their extended counterparts

create a bĳection. In fact notice that the condition 𝑣 ∈ 𝑉𝑖 ∧ 𝑣 ∉ 𝑆𝐺 in the first case

of 𝜎′ is equivalent to requiring 𝑣 ∈ dom(𝜎), meaning that restricting 𝜎′ to dom(𝜎)
will result in 𝜎 itself.

The bĳection is not only limited to this. It can be showed that strategies that are

related by this bĳection will also induce plays with the same winner.

Theorem 3.1  (plays on extended strategies). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game and 𝐺′ = (𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝′) be the extended game from 𝐺. Let 𝜎0 and 𝜎1 be two

strategies on 𝐺 and 𝜎′0 and 𝜎′1 be the unique corresponding strategies on 𝐺′. Let 𝑣 ∈ 𝑉0 ∪ 𝑉1 and consider the plays starting from 𝑣0 on the instances 𝐼 = (𝐺, 𝜎0, 𝜎1)
and 𝐼′ = (𝐺′, 𝜎′0, 𝜎′1). The two plays have the same winner.

Proof. We will prove that for all 𝑖 the play induced by 𝐼 is won by player 𝑖 if and

only if the induced play by 𝐼′ is also won by player 𝑖:
• ⇒): We distinguish two cases on the play induced by 𝐼 :

‣ the play is infinite: 𝑣0𝑣1𝑣2…, then every vertex is in dom(𝜎𝑖) for some 𝑖 and

thus 𝜎′𝑖 are defined to be equal to 𝜎𝑖 and will induce the same play, which

is won by player 𝑖;
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‣ the play is finite: 𝑣0𝑣1…𝑣𝑛, with 𝑣𝑛 ∈ 𝑉1−𝑖 because the play is won by player𝑖. For the same reason as the previous point the two induced plays are the

same until 𝑣𝑛, which is not in dom(𝜎1−𝑖) but is in dom(𝜎′1−𝑖). The play in-

duced by 𝐼′ is 𝑣0𝑣1…𝑣𝑛𝑤𝑖𝑙1−𝑖𝑤𝑖… which is also won by player 𝑖 because only

the vertices 𝑤𝑖 and 𝑙1−𝑖 repeat infinitely often, and they have both priority

favorable to player 𝑖.
• ⇐): We distinguish the following cases on the play induced by 𝐼′:

‣ the play never reaches the 𝑤0, 𝑤1, 𝑙0 or 𝑙1 vertices: 𝑣0𝑣1𝑣2…, then only the

first case of 𝜎′𝑖 is ever used and thus every vertex is in dom(𝜎𝑖). Thus 𝐼
induces the same play, which is won by player 𝑖;

‣ the play reaches 𝑤𝑖: 𝑣0𝑣1…𝑣𝑛𝑤𝑖𝑙1−𝑖𝑤𝑖…, then 𝑣𝑛 is not in dom(𝜎1−𝑖) and 𝐼
induces the finite play 𝑣0𝑣1…𝑣𝑛 which is won by player 𝑖 because 𝑣𝑛 ∈ 𝑉1−𝑖
due to its successor being controlled by player 𝑖;

‣ the play reaches 𝑤1−𝑖: this is impossible because it would be winning for

player 1 − 𝑖, which contradicts the hypothesis;

‣ the play reaches 𝑙𝑖 or 𝑙1−𝑖 before 𝑤𝑖 or 𝑤1−𝑖: this is impossible because the

only edges leading to 𝑙𝑖 or 𝑙1−𝑖 start from 𝑤1−𝑖 and 𝑤𝑖. □
Theorem 3.2  (compatibility of extended games). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game and 𝐺′ = (𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝′) be the extended game from 𝐺. Then 𝐺′ is compatible

with 𝐺, that is ∀𝑖. 𝑊𝑖 ⊆ 𝑊 ′𝑖 .
Proof. Let 𝑣 ∈ 𝑊𝑖, then there exist a winning strategy 𝜎𝑖 for player 𝑖. We claim that

the extended strategy 𝜎′𝑖 for player 𝑖 on 𝐺′ is also winning. In fact consider any

strategy 𝜎′1−𝑖 for player 1 − 𝑖 on 𝐺′, then it is the extended strategy of some strat-

egy 𝜎1−𝑖 on 𝐺. We know that the play starting from 𝑣 on the instance (𝐺′, 𝜎′0, 𝜎′1)
is won by the same player as the play starting from 𝑣 on the instance (𝐺, 𝜎0, 𝜎1).
Moreover since 𝜎𝑖 is a winning strategy for player 𝑖 we know that these plays are

won by player 𝑖, thus 𝑣 ∈ 𝑊 ′𝑖  and so 𝑊𝑖 ⊆ 𝑊 ′𝑖 . □
3.1.2 Generalizing subgames with subset of edges

The local strategy improvement algorithm gives a way to consider only a subset of

the vertices, but still assumes all edges between such vertices to be known. However

this is not necessarily true in the symbolic formulation, as the list of successors of

vertices in 𝑉0 is computed lazily, and this might include vertices already in the sub-

game. We thus have to update the local algorithm to handle this case by extending

the idea of escape set. Instead of identifying those vertices that can reach the 𝑈 -

exterior we will identify those vertices that can reach an “unexplored” edge, that is

an edge present in the full game but not in the subgame. We will call the vertices

directly connected to such edges incomplete vertices. Note that the resulting set will

be a superset of the 𝑈 -exterior, since edges that lead outside 𝑈  cannot be part of

the subgame.
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Definition 3.4  (subgame). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game, 𝑈 ⊆ 𝑉  and 𝐸′ ⊆ 𝐸 ∩ (𝑈 × 𝑈), then 𝐺′ = (𝑉0 ∩ 𝑈, 𝑉1 ∩ 𝑈, 𝐸′, 𝑝|𝑈) is a subgame of 𝐺, where 𝑝|𝑈  is the function 𝑝 with domain restricted to 𝑈 . We will write 𝐺′ = (𝐺, 𝑈, 𝐸′)
for brevity.

Definition 3.5  (escape set (updated)). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game

and 𝐺′ = (𝐺, 𝑈, 𝐸′) a subgame of 𝐺. Let 𝐿 = (𝐺|𝑈 , 𝜎, 𝜏) be an instance of the sub-

game. Let 𝐸∗𝜎 (resp. 𝐸∗𝜏) be the transitive-reflexive closure of 𝐸𝜎 (resp. 𝐸𝜏) and 𝐼𝐺 = {𝑣 | 𝑣𝐸 ≠ 𝑣𝐸′} the set of vertices that have unexplored outgoing edges. The

(updated) escape set for player 0 (resp. 1) from vertex 𝑣 ∈ 𝑈 is the set 𝐸0𝐿(𝑣) =𝑣𝐸∗𝜎 ∩ 𝐼𝐺 (resp. 𝐸1𝐿(𝑣) = 𝑣𝐸∗𝜏 ∩ 𝐼𝐺).

Theorem 3.3  (definitive winning set is sound). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game and 𝐺′ = (𝐺, 𝑈, 𝐸′) a subgame of 𝐺. Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity game

and 𝑈 ⊆ 𝑉 . Let 𝐿 = (𝐺|𝑈 , 𝜎, 𝜏) be an instance of the subgame where 𝜎 and 𝜏 are

optimal strategies. Then 𝑊 ′0 ⊆ 𝑊0 and 𝑊 ′1 ⊆ 𝑊1.
Proof. Let 𝑣 ∈ 𝑊 ′𝑖 , then there exist a strategy 𝜎𝑖 on 𝐺′ the for player 𝑖 such that

for any strategy 𝜎1−𝑖 for player 1 − 𝑖 on 𝐺′ the resulting play is winning for player𝑖. Moreover 𝐸1−𝑖𝐿 (𝑣) = ∅ by definition of 𝑊 ′𝑖 , meaning that in the graph restricted

to the strategy 𝜎𝑖, any vertex controlled by player 1 − 𝑖 that has unexplored edges

is not reachable. This in turn means that on the full game 𝐺 the strategy 𝜎𝑖 is still
winning, because for any strategy 𝜎′1−𝑖 for player 1 − 𝑖 on 𝐺 the resulting play will

still be within the subgame, since no unexplored edge can be reached, and any such

play is winning for player 𝑖, hence 𝑣 ∈ 𝑊𝑖. □
3.1.3 Expansion scheme

In the local strategy iteration the expansion scheme is based on the idea of expand-

ing the subgame by adding new vertices. In our adaptation it will instead add new

edges, and vertices will be implicitly added if they are the endpoint of a new edge.

This does not however change much of the logic behind it, since the expansion

schemes defined in [11] are all based on picking some unexplored successor, which

is equivalent to picking the unexplored edge that leads to it.

More formally, the 𝜀1 and 𝜀2 functions now take the set of edges in the subgame

and output a set of new edges to add to the subgame. The requirements remain

similar, in that 𝜀1 must return a non-empty set of edges that are not already in

the subgame and 𝜀2 must return a set of outgoing edges from the given vertex.

Moreover if a vertex has no successor then 𝜀2 must also be non-empty in order to

given that vertex a successor and make the game total.

38



Definition 3.6  (expansion scheme (updated)). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be a parity
game and 𝐺′ = (𝐺, 𝑈, 𝐸′) a subgame of 𝐺. An expansion scheme is a pair of func-

tions 𝜀1 : 2𝐸 → 2𝐸 and 𝜀2 : 2𝐸 × 𝑉 → 2𝐸 such that:

• ∅ ⊊ 𝜀1(𝐸′) ⊆ 𝐸 ∖ 𝐸′
• 𝜀2(𝐸′, 𝑣) ⊆ ({𝑣} × 𝑣𝐸) ∖ 𝐸′
• 𝑣𝐸 = 𝐷𝐺(𝑈, 𝑣) ⇒ 𝜀2(𝐸′, 𝑣) ≠ ∅

As before the expansion is computed by first applying 𝜀1 and then by repeatedly

applying 𝜀2.
Expand(𝐸′) = Expand2(𝐸′, 𝜀1(𝐸′))

Expand2(𝐸′, 𝐸″) = ⎩{⎨
{⎧𝐸 if 𝐸″ = ∅
Expand2(𝐸′ ∪ 𝐸″, ⋃(𝑢,𝑣)∈𝐸″ 𝜀2(𝐸′ ∪ 𝐸″, 𝑣)) otherwise

For our implementation we decided to adapt the symmetric expansion scheme from

[11]. The adapted 𝜀1 picks any edge from a vertex in the escape set of 𝑣∗ for the

losing player 𝑖, that is, 𝜀1(𝐸′) = {𝑒} for 𝑒 ∈ (𝑣 × 𝑣𝐸′) ∖ 𝐸′, some 𝑣 ∈ 𝐸𝑖𝐿(𝑣∗) and 𝑝((𝜑(𝑣∗))1) mod 2 ≡ 1 − 𝑖, while the adapted 𝜀2 picks any unexplored edge from

the given vertex 𝑣 if it has no successors, that is 𝜀2(𝐸′, 𝑣) = {𝑒} for some 𝑒 ∈ (𝑣 ×𝑣𝐸′) ∖ 𝐸′ if 𝑣𝐸′ = ∅, otherwise 𝜀2(𝐸′, 𝑣) = ∅. The choices it makes are almost the

same as those of the original symmetric algorithm if each chosen edge is replaced

with its head vertex, with the exception that it may select edges that lead to already

explored vertices.

It should be noted that the upper bound on the number of expansions grows from𝑂(|𝑉 |), caused by when each expansions adds only a single vertex to the subgame,

to 𝑂(|𝐸|), now caused by when each expansion adds only one edge to the subgame.

As shown in [11], a big number of expansions might not be ideal because each will

require at least one strategy iteration, which in the long run can end up being slower

than directly running the global algorithm.

On the other hand a lazier expansion scheme can take better advantage of the

ability to perform simplifications on symbolic moves, which allows to remove lot of

edges with little work. A eager expansion scheme may instead visit all those edges,

just to ultimately find out that they were all losing for the same reason. There is

thus a tradeoff between expanding too much in a single step, which loses some of

the benefits of using symbolic moves, and expanding too little, which instead leads

to too many strategy iterations.

3.1.4 Symbolic formulas iterators and simplification

Differently from the implementation in [8], we need to generate symbolic moves

lazily in order to take advantage of the local algorithm and the simplification of
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formulas. To do this we represent the generator for symbolic moves described in

Section 2.6.3 as a sequence of moves rather than as a set. Then, we can generate

moves in the same order they appear in the sequence, and keep track of which point

we have reached.

For sake of simplicity we assume that every ∧ and ∨ operator with a single subfor-

mula can be first simplified to that subformula itself, while ∧ and ∨ operators with

more than two subformulas can be rewritten to nested ∧ and ∨ operators each with

exactly two subformulas using the associative property. We thus define the sequence

of moves for each type of formula as follows, where for the recursive case we take 𝑀(𝜑𝑖) = (𝑿𝑖1, 𝑿𝑖2, …, 𝑿𝑖𝑛):
𝑀([𝑏, 𝑖]) = (𝑿) with 𝑋𝑖 = {𝑏} and ∀𝑗 ≠ 𝑖. 𝑋𝑗 = ∅

𝑀(𝑡𝑟𝑢𝑒) = (𝑿) with ∀𝑖. 𝑋𝑖 = ∅
𝑀(𝑓𝑎𝑙𝑠𝑒) = ()

𝑀(𝜑1 ∨ 𝜑2) = (𝑿11, 𝑿12, …, 𝑿1𝑛𝑿21, 𝑿22, …, 𝑿2𝑚)
𝑀(𝜑1 ∧ 𝜑2) = (𝑿11 ∪ 𝑿21, …, 𝑿11 ∪ 𝑿2𝑚, 𝑿12 ∪ 𝑿21, …, 𝑿1𝑛 ∪ 𝑿2𝑚)

Intuitively a formula [𝑏, 𝑖] represents a sequence consisting of a single element, 𝑡𝑟𝑢𝑒 also represents a sequence of a single winning move for player 0, while 𝑓𝑎𝑙𝑠𝑒
represents an empty sequence which is thus losing for player 0. The ∨ operator

represent concatenating the two (or more) sequences, with the left one first, and the∧ operator is equivalent to the cartesian product of the two (or more) sequences,

by fixing an element of the first sequence and joining it with each element of the

second sequence, then repeating this for all elements of the first sequence.

In practice the implementation is based on formula iterators, on which we define

three operations:

• getting the current move;

• advancing the iterator to the next move, optionally signaling the end of the

moves sequence;

• resetting the iterator, thus making it start again from the first move.

These are implemented for every type of formula:

• for [𝑏, 𝑖] formula iterators:

‣ the current move is always 𝑿 with 𝑋𝑖 = {𝑏} and ∀𝑗 ≠ 𝑖. 𝑋𝑗 = ∅;

‣ advancing the iterator always signals that the sequence has ended, since

there is ever only one move;

‣ resetting the iterator always does nothing, since the first move is always the

end represented by the iterator.

• for 𝜑1 ∨ 𝜑2 formula iterators:

‣ the current move is the current move of the currently active subformula it-

erator, which is kept as part of the iterator state;
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‣ advancing the iterator means advancing the iterator of the currently active

subformula, and if that signals the end of the formula then the next subfor-

mula becomes the active one. If there is no next subformula then the end of

the sequence is signaled;

‣ resetting the iterator means resetting the iterators for both subformulas and

making 𝜑1 the currently active subformula.

• for 𝜑1 ∧ 𝜑2 formula iterators:

‣ the current move is always the union of the current move of the two subfor-

mula iterators;

‣ advancing the iterator means advancing the iterator of the right subformula,

and if that reports the end of the sequence then it is resetted and the iter-

ator for the left subformula is advanced. If that also reports the end of its

sequence then this iterator also reports the end of its sequence;

‣ resetting the iterator means resetting the iterators of both subformulas.

Example 3.1  (formula iterator). Consider for example the formula (𝑎 ∨ 𝑏) ∧ (𝑐 ∨𝑑), where for sake of simplicity we have represented atoms by a single variable letter.

The sequence of its moves would then be {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐} and {𝑏, 𝑑}. Initially

the formula iterator would start with the following state, where red edges represent

the currently active subformula of an ∨ formula:

∧
∨ ∨

𝑎 𝑏 𝑐 𝑑
Figure 7: Example of formula iterator

The current move would then be {𝑎, 𝑐}, since the ∧ formula performs the union

of the moves of its two subformulas, while the two ∨ subformulas select their left

subformula as active.

Advancing the iterator would result in advancing the iterator for the right sub-

formula of the ∧, which happens without reaching its end, thus resulting in the

following formula iterator:

∧
∨ ∨

𝑎 𝑏 𝑐 𝑑
Figure 8: Example of formula iterator after one step
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The current formula would then be {𝑎, 𝑑}, which is also the next move in the orig-

inal sequence.

Advancing again the iterator would result in the right subformula signaling it has

reached its end, and thus the ∧ subformula advances the left subformula and resets

the right one, resulting in the following iterator:

∧
∨ ∨

𝑎 𝑏 𝑐 𝑑
Figure 9: Example of formula iterator after two steps

This time the current move is {𝑏, 𝑐}, the next one in the sequence.

Advancing would again advance the right subformula:

∧
∨ ∨

𝑎 𝑏 𝑐 𝑑
Figure 10: Example of formula iterator after two steps

The current move is now {𝑏, 𝑑}, the last move in the sequence. In fact advancing

again would result in the right subformula signaling it has reached its end, causing

the left subformula to also advance and reach its end, ultimately resulting in the

whole formula iterator reaching its end.

As mentioned briefly in Section 2.6.3, in LCSFE [8] formulas are simplified once

before exploring their moves according to the assumptions on the winner for each

vertex made at that point in the exploration. This is however not applicable to our

case since we lazily explore moves, and thus have to simplify formulas whose moves

have already been partially explored. An option would be performing simplifications

anyway, losing the information about which moves have already been explored and

thus needing to explore them again. We however want to preserve this information

to avoid exploring moves over and over, and thus need a way to simplify formulas

while tracking the effects on their iterator.

The way we do this is by considering how the operation of simplifying a formula

iterator can be seen on their sequence. It turns out that simplifying a formula is

equivalent to removing some elements from its sequence, in particular simplifying a

formula to 𝑓𝑎𝑙𝑠𝑒 removes all the moves from its sequence, while simplifying a for-

mula to 𝑡𝑟𝑢𝑒 removes all the moves from its sequence except the first winning one.

Simplifying a formula iterator then requires simplifying its subformula iterators,
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which in turn might remove moves from the parent formula iterator. Most impor-

tantly, the current move may also be among those removed moves, in which case

the iterator needs to be advanced to the next remaining move, potentially reaching

its end. Note that a formula iterator might also need to be adjusted depending on

whether a subformula has been advanced or reached its end after being simplified;

for example if the left subformula of an ∧ formula is advanced, even if once, then

from the point of view of the sequence of moves of the ∧ formula a lot of moves

might have been skipped, corresponding to all the pairs between the skipped move

on the left subformula and all the moves in the right subformula.

Example 3.2  (formula iterator simplification). Consider again an iterator for the

formula (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑) in the following state:

∧
∨ ∨

𝑎 𝑏 𝑐 𝑑
Figure 11: Example of formula iterator simplification

If it becomes known that the position represented by the atom 𝑐 is winning, then we

might want to simplify the 𝑐 ∨ 𝑑 branch to just 𝑐, since 𝑐 will always be a best move

for player 0. This is similar to assigning to 𝑡𝑟𝑢𝑒 to 𝑐, resulting in 𝑐 ∨ 𝑑 also being 𝑡𝑟𝑢𝑒, though, from the point of view of the sequence of moves, keeping 𝑐 is more

intuitive since we ultimately want a winning move. Note however that we also want

to update its current move, and since 𝑐 was already considered due to appearing on

the left side of the ∨ formula, the new iterator is thus considered as having reached

its end.

From the point of view of the sequence of moves for the ∧ formula however, this is

equivalent to discarding all the moves derived from the 𝑑 in the right subformula

and instead considering only those derived from 𝑐, thus the original sequence with{𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐} and {𝑏, 𝑑} would become just {𝑎, 𝑐} and {𝑏, 𝑐}. Notice however

how the iterator has already considered the move {𝑎, 𝑐}, and thus it should advance

to the next move {𝑏, 𝑐}. This can be inferred by the fact that the right subformula

has reached its end, so just like when advancing the ∧ formula, the left subformula

is advanced to 𝑏 and the right subformula is resetted, which for a formula iterator

consisting of just 𝑐 does nothing. Thus we end up with the following simplified

formula iterator:
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∧
∨ 𝑐

𝑎 𝑏
Figure 12: Example of formula iterator simplification

Notice how this iterator would consider exactly the moves {𝑎, 𝑐} and {𝑏, 𝑐} if

restarted, but instead is currently considering the move {𝑏, 𝑐} because the original

iterator already considered the move {𝑎, 𝑐} and would be a waste to consider it

again.

When simplifying we will be interested, for every subformula, about whether it has

been simplified to 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 or whether its truth value is still unknown. In case

it has not been simplified to 𝑓𝑎𝑙𝑠𝑒 we will also care about whether it has reached

the end of its sequence after the simplification, and if not whether the current move

has changed or not. This will be useful to update the current move of the parent

formula iterators. In particular:

• for [𝑏, 𝑖] formulas, simplifying them depends on whether it is known that the

position for player 0 corresponding to that atom is definitely winning or not:

‣ if it is definitely winning the iterator remains unchanged, since the only

move in the sequence it represents is winning, while the information that it

is winning is propagated to the parent formula iterator;

‣ if it is definitely losing the iterator is replaced with 𝑓𝑎𝑙𝑠𝑒, effectively remov-

ing all moves from the sequence;

‣ if it is neither of them then the iterator is not changed.

• 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 formulas do not need to be simplified, since they are already as

much simplified as possible;

• for ∨ formulas, each subformula is simplified, thus any move that is removed

from those subformulas sequences is also removed from the ∨ sequence. Then:

‣ if one of the subformulas is simplified to 𝑡𝑟𝑢𝑒 then this formula simplifies

to 𝑡𝑟𝑢𝑒. The current move is updated based on whether the winning move

was before the current move, in which case the iterator reaches its end, the

current move itself, in which case it remains the same, or after the current

move, in which case the current move it updated to the winning move.

‣ if all the subformulas are simplified to 𝑓𝑎𝑙𝑠𝑒 then this formula is also sim-

plified to 𝑓𝑎𝑙𝑠𝑒 and reaches its end;

‣ otherwise the current move is updated to the new current move of the cur-

rent subformula if it has not reached its end, to the first move of the next

subformula if that exists, which becomes the new active subformula, or the

iterator signals having reached the end of the sequence.
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• for ∧ formulas each subformula is simplified and moves that use removed moves

from any subformulas are removed. Then:

‣ if any subformula has been simplified to 𝑓𝑎𝑙𝑠𝑒 then the whole formula also

simplified to 𝑓𝑎𝑙𝑠𝑒 and reaches its end;

‣ if all subformulas have been simplified to 𝑡𝑟𝑢𝑒 then this formula also simpli-

fies to 𝑡𝑟𝑢𝑒. If the current move is the winning one nothing changes, other-

wise if the first subformula whose winning move is not the current one had

already considered that move the iterator reaches its end, if not the current

move is advanced until the winning one;

‣ otherwise the first subformula from the left that has reached its end causes

the advance of the subformula on its left and the reset of itself and all the

ones on its right. If there is no subformula on its left the whole iterator has

reached its end.

3.2 Improvements

3.2.1 Graph simplification

In the local strategy iteration it may happen that we learn about the winner on

a vertex that is not the one we are interested in. When this happens we will do

a lot of wasted work in the subsequent valuations steps, since it will have to visit

its edges again and again. We now propose a transformation that produces a com-

patible graph and reduces the amount of edges of vertices in the definitely winning

sets, thus decreasing the amount of work that the valuation step needs to perform.

Informally, the idea will be to replace all outgoing edges from vertices in a definitely

winning set with one pointing to one of the four auxiliary vertices 𝑤0, 𝑙0, 𝑤1 or 𝑙1
in such a way that its winner is preserved and the graph remains bipartite.

Definition 3.7  (simplified graph). Let 𝐺 = (𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝) be the extended game

of some game (𝑉0, 𝑉1, 𝐸, 𝑝), let 𝐺′ = (𝐺, 𝑈, 𝐸″) be a partially expanded game with{𝑤0, 𝑙0, 𝑤1, 𝑙1} ∈ 𝑈 and let 𝑊 ′0 and 𝑊 ′1 be the definitely winning sets of 𝐺′. Let 𝑣 ∈(𝑉0 ∪ 𝑉1) ∩ (𝑊 ′0 ∪ 𝑊 ′1), then 𝐺 can be simplified to the graph 𝐺″ = (𝑉 ′0 , 𝑉 ′1 , 𝐸‴, 𝑝)
where:

• if 𝑣 ∈ 𝑉0 ∩ 𝑊 ′0 then 𝐸‴ = 𝐸′ ∖ 𝑣𝐸″ ∪ {(𝑣, 𝑙1)};
• if 𝑣 ∈ 𝑉0 ∩ 𝑊 ′1 then 𝐸‴ = 𝐸′ ∖ 𝑣𝐸″ ∪ {(𝑣, 𝑤1)};
• if 𝑣 ∈ 𝑉1 ∩ 𝑊 ′1 then 𝐸‴ = 𝐸′ ∖ 𝑣𝐸″ ∪ {(𝑣, 𝑙0)};
• if 𝑣 ∈ 𝑉1 ∩ 𝑊 ′0 then 𝐸‴ = 𝐸′ ∖ 𝑣𝐸″ ∪ {(𝑣, 𝑤0)};

Theorem 3.4  (simplified graph compatible). Let 𝐺 = (𝑉0, 𝑉1, 𝐸, 𝑝) be an extended

parity game which has been simplified to 𝐺″ = (𝑉 ′0 , 𝑉 ′1 , 𝐸′, 𝑝) according to the pre-

vious definition. Then 𝐺″ is compatible with 𝐺.
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Proof. We want to prove that the winning sets in 𝐺 are equal to the ones in 𝐺″,

that is ∀𝑖. 𝑊𝑖 = 𝑊″𝑖 . Without loss of generality we assume the simplification has

happened on a vertex 𝑣 ∈ 𝑊 ′0. Consider now any vertex 𝑢 ∈ 𝑊𝑖, that is winning

for some player 𝑖 in 𝐺. We want to prove that 𝑢 ∈ 𝑊″𝑖  too. Consider any winning

strategy for player 𝑖 and any other strategy for player 1 − 𝑖 in 𝐺. Any play in 𝐺
induced by these two strategies will be winning for player 𝑖 since we have 𝑣 ∈ 𝑊𝑖.
We now distinguish two cases:

• 𝑖 = 0, then these plays could reach vertex 𝑣. The corresponding play in 𝐺″
would then also reach 𝑣, but would then only be able to reach 𝑙1, 𝑤0 and loop

between them. The resulting play would is however also won by player 0, hence𝑣 ∈ 𝑊″0 .

• 𝑖 = 1, then it is not possible for the play in 𝐺 to reach vertex, since otherwise

player 0 would have a strategy to continue the play and win it, resulting in 𝑢 ∈ 𝑊0 instead of 𝑊1. Hence all plays in 𝐺 do not go through 𝑣 and remain

the same in 𝐺′, thus remaining winning for player 1 and 𝑢 ∈ 𝑊″1 .

□
3.2.2 Computing play profiles of the expansion

Each game expansion is normally followed by a strategy iteration step, which com-

putes the play profile of each vertex and then tries to improve the current strategy.

We can notice however that the play profiles of all the vertices are known right

before the expansion, and if we keep the current strategies fixed, both for player

0 and 1, then the newer vertices cannot influence the play profiles for the existing

vertices, since the existing strategies will force any play to remain within the edges

in the old subgame. Hence, we can compute the play profiles for the newer vertices

in isolation, and only then determine if the existing strategies can be improved given

the newer vertices.

It is known that a play profile on a vertex depends on the vertex itself and on the

play profile of its successor according to the strategy for the player controlling that

vertex. In particular, given a vertex 𝑥 and its successor 𝑦 we know the following

about its play profile components 𝜑0, 𝜑1 and 𝜑2:
𝜑0(𝑥) = 𝜑0(𝑦)
𝜑1(𝑥) =

⎩{{⎨
{{⎧𝜑1(𝑦) if 𝑥 < 𝜑0(𝑥)
∅ if 𝑥 = 𝜑0(𝑥)
𝜑1(𝑦) ∪ {𝑥} if 𝑥 > 𝜑0(𝑥)

𝜑2(𝑥) = {𝜑2(𝑦) + 1 if 𝑥 ≠ 𝜑0(𝑥)
0 if 𝑥 = 𝜑0(𝑥)

Notice however how this can result in a cyclic dependency if we need to compute

the play profiles of multiple vertices creating a cycle. We thus distinguish two cases:
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• if the expansion stops by reaching an existing vertex then its play profile was

already known and there is no cyclic dependency. Each play profile can be com-

puted based on the one of the successor, starting with the play profile of the

last new vertex found;

• if the expansion stops by reaching a vertex found in the current expansion then

there is a cyclic dependency. The cyclic dependency can however be broken by

finding the most relevant vertex of the cycle 𝑤, for which we know that 𝜑(𝑤) =(𝑤,∅, 0). This then breaks the cyclic dependency, since we know the play profile

of one of the vertices in the cycle, and we can compute the play profiles of the

rest like in the previous case.

By computing the play profiles after an expansion step we can thus perform an im-

provement right away without having to go through a valuation step to recompute

the play profiles. We can further improve this by noticing that the play profiles of

existing vertices did not change, thus allowing us to skip the improvement check

for any vertex that did not have an outgoing edge just added.

Ultimately this allows us to skip a lot of valuation steps, which are relatively ex-

pensive. This also allows to reduce some of the downsides of the local algorithm,

among which there is an increased amount of valuation steps required.

3.2.3 Exponentially increasing expansions

While lazier expansion schemes are intuitively better when paired with symbolic

moves simplification, and the incremental play profiles computation helps often re-

moves the need to perform an expensive valuation step, it can still happen that

games fall into the worst case of expanding only a handful of edges in each itera-

tion without being able to perform significant simplifications. This can be avoided

by expanding more eagerly, like in the asymmetric expansion scheme for the local

strategy improvement algorithm, but ideally we would like to be lazier when pos-

sible.

We thus changed the expansion logic to repeatedly expand until a minimum amount

of edges has been added to the game. We choose this number to be initially pretty

small in order to favour the locality of the algorithm, but made it increase to favour

more eager expansions once it becomes clear that the winner cannot be quickly

determined locally.

There are multiple ways to perform this increase, and this will influence the final

complexity of the algorithm. In our case we choose to increase this number expo-

nentially, thus guaranteeing that the maximum number of expansions is logarithmic

in the amount of edges and keeping the cost of the worst cases under control.

To see why this is the case consider the sum of the number of edges 𝑒𝑖 added in

each expansion 𝑖. We require each 𝑒𝑖 to be at least 𝑎 × 𝑏𝑖 for some constants 𝑎 > 0
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and 𝑏 > 1. This creates a geometric progression, whose sum is known to be 𝑎𝑏𝑛−1𝑏−1 ,

though for our purposes we can focus only on bounding it by 𝑎𝑏𝑛.

#edges added = 𝑒0 + 𝑒1 + 𝑒2 + … + 𝑒𝑛≥ 𝑎 + 𝑎𝑏 + 𝑎𝑏2 + … + 𝑎𝑏𝑛
≥ 𝑎𝑏𝑛

Then we know that in the worst case we can add at most |𝐸|, since those are all the

edges. This gives the equation |𝐸| ≥ 𝑎𝑏𝑛, which if we solve for 𝑛 given 𝑛 ≤ log𝑏 |𝐸|𝑎 .
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4 Implementation

The final goal of this thesis was a concrete implementation of the algorithms ex-

plained in the previous sections. The implementation partly relies on the work done

in LCSFE [8] which, as mentioned in the introduction, was based on a different

algorithm for parity games. The final implementation is available in the repository

https://github.com/SkiFire13/master-thesis-code

In this section we will explain our design choices, what was actually implemented,

and we will present a performance comparison with some existing tools.

4.1 Technologies used

Just like LCSFE, our implementation is written in Rust [16], a modern systems pro-

gramming language, focused on performance and correctness and whose goal is to

rival languages like C and C++ while offering memory safety. Just like C and C++,

Rust mainly follows the imperative paradigm, allowing mutations, loops and general

side effects, but it also includes lot of functional programming related features, like

algebraic data structures and most notably enums, pattern matching, which allows

to exhaustively inspect those enums, and closures, which are anonymous function

that can capture their outer environment, although with some limitations due to

how the memory management works. Among other features there are traits, which

work similarly to type classes in Haskell and fill the same use cases as interfaces in

popular OOP languages like Java. It should also be mentioned that Rust programs

are organized in crates, which make up the unit of compilation, and modules, which

are a hierarchical division internal to a crate and help organize code and avoid

name clashes.

The most interesting features however are its ownership system and its borrow

checker, which allow the compiler to guarantee memory safety without a garbage

collection or other kind of runtime support. The ownership system enforces that

every value has exactly one owner, which is responsible for freeing up its resources,

making classes of issues like use-after-free impossible, and others like memory leak-

ing much more difficult to hit. The borrow checker instead rules how borrows can

be created and used. Every variable can be borrowed, creating either a shared ref-

erence or an exclusive references, which are pointers with a special meaning for the

compiler. The borrow checker ensures that at any point in time there can be either

multiple shared references or one exclusive reference pointing to a variable, but not

both. Coupled with the fact that only exclusive references allow mutations, this

system guarantees that references always point to valid data.

49

https://github.com/SkiFire13/master-thesis-code


The borrowing rules however can become an obstacle when writing programs that

perform lot of mutations, especially for programmers used to other imperative lan-

guages. It has been found however that data oriented designs in practice work pretty

well with the borrow checker, due to the ability to replace pointers with indexes and

thus restricting the places where borrows need to be created. This paradigm also

helps creating cache efficient programs, which can often be faster. For this reason

we tried to implement out algorithm with a data oriented design, which was mainly

done by associating an auto-incrementing index to each vertex. Then informations

associated with vertices, like their successors or remaining moves, was each stored

in its own array indexed by the same index on vertices.

4.2 Structure of the implementation

The implementation was split in multiple crates, just like in the original LCSFE

implementation. It consists of one main solver crate implementing the solving algo-

rithm and multiple dependent crates, that translate specific problems into systems

of fixpoint equations with logic formulas ready to be solved by the solver crate and

offer a CLI interface for testing such functionalities.

parity mucalc bisimilarity

aut

solver local

strategy symbolic

Figure 13: Crates tree of the implementation

The crates involved are the following:

• parity, which implements the parsing and translation from parity games to a

system of fixpoint equations, which we saw in section Section 4.3, and a binary

crate for the associated CLI;

• aut, which implements the parsing of labelled transition system files from the

AUT format (also called Aldebaran) and is consumed by both the mucalc and

bisimilarity crates;
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• mucalc, which implements the parsing of a subset of 𝜇-calculus formulas, fol-

lowed by their translation to a system of fixpoint equations and logic formulas

as shown in Sections 2.4.1 and 2.6.4, and along with a binary crate for the

associated CLI;

• bisimilarity, which implements the translation from a bisimilarity problem be-

tween two states of two different labelled transition systems to a system of one

fixpoint equation and then logic formulas as shown in Sections 2.4.2 and 2.6.5,

along with a binary crate for the associated CLI.

The solver crate is also internally split into three main modules implementing the

major pieces of functionality:

• symbolic, which defines the structures for systems of fixpoint equation and logic

formulas, and more importantly implements formula iterators their simplifica-

tion;

• strategy, which implements the strategy iteration algorithm;

• local, which implements the local algorithm and the expansion scheme, along

with the improvement we made to them, connecting to the symbolic module to

generate new moves when necessary and to the strategy module to perform the

valuation and improvement steps.

4.3 Testing with parity games

As mentioned in Section 2.6.6 parity games can be translated to systems of fixpoint

equations, and we used this fact to generate simple problems for testing our imple-

mentation.

The parity crate implements this conversion from parity games to systems of fixpoint

equations and then logic formulas, along with a parser for parity games specified in

the pgsolver [17] format, according to the following grammar:

⟨𝑝𝑎𝑟𝑖𝑡𝑦_𝑔𝑎𝑚𝑒⟩ ⩴ [𝗉𝖺𝗋𝗂𝗍𝗒 ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟⟩ ; ] ⟨𝑛𝑜𝑑𝑒_𝑠𝑝𝑒𝑐⟩+
⟨𝑛𝑜𝑑𝑒_𝑠𝑝𝑒𝑐⟩ ⩴ ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟⟩ ⟨𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦⟩ ⟨𝑜𝑤𝑛𝑒𝑟⟩ ⟨𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠⟩ [⟨𝑛𝑎𝑚𝑒⟩] ;
⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟⟩ ⩴ ℕ

⟨𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦⟩ ⩴ ℕ
⟨𝑜𝑤𝑛𝑒𝑟⟩ ⩴ 𝟢 | 𝟣

⟨𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠⟩ ⩴ ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟⟩ (, ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟⟩)∗
⟨𝑛𝑎𝑚𝑒⟩ ⩴ " (any ASCII string not containing '"') "

For example the parity game shown in Figure 4 would be specified in the following

way:

parity 5
0 0 0 1,2;
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1 2 1 0;
2 3 1 1,3;
3 5 0 4;
4 4 0 2,3;

The format consists of a header containing the identifier 𝗉𝖺𝗋𝗂𝗍𝗒 followed by a number

indicating how many vertices will be specified, which can be used to speed up the

parsing of the file. Then each of the following lines specifies a vertex with, in order,

its identifier, priority, controlling player, edges and optionally a name. For the sake

of simplicity we assumed the names to never be present, since they are not required

for solving the game and were not present in the games we exploited for our testing

activity.

We used the parity game instances included in the Oink [18] collection of parity

game solvers to test our implementation. These tests are pretty small, reaching a

maximum of 24 vertices and 90 edges, but they include lot of tricky cases which

help getting empiric evidence of the correctness of our implementation.

4.4 Testing with 𝜇-calculus

As mentioned in Sections 2.4.1 and 2.6.4, 𝜇-calculus formulas can be translated to

systems of fixpoint equations and then to logic formulas. We implemented this in

the mucalc crate, which performs this translation after parsing a labeled transition

system and a 𝜇-calculus formula from two given files.

The labelled transition system is expected to be in the AUT (Aldebaran) format,

according to the following grammar, which based on the one given in [19]:

⟨𝑎𝑢𝑡⟩ ⩴ ⟨ℎ𝑒𝑎𝑑𝑒𝑟⟩ ⟨𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛⟩∗
⟨ℎ𝑒𝑎𝑑𝑒𝑟⟩ ⩴ 𝖽𝖾𝗌 ( ⟨𝑖𝑛𝑖𝑡𝑖𝑎𝑙-𝑠𝑡𝑎𝑡𝑒⟩ , ⟨𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠-𝑐𝑜𝑢𝑛𝑡⟩ , ⟨𝑠𝑡𝑎𝑡𝑒𝑠-𝑐𝑜𝑢𝑛𝑡⟩)

⟨𝑖𝑛𝑖𝑡𝑖𝑎𝑙-𝑠𝑡𝑎𝑡𝑒⟩ ⩴ ℕ
⟨𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠-𝑐𝑜𝑢𝑛𝑡⟩ ⩴ ℕ

⟨𝑠𝑡𝑎𝑡𝑒𝑠-𝑐𝑜𝑢𝑛𝑡⟩ ⩴ ℕ
⟨𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛⟩ ⩴ ( ⟨𝑓𝑟𝑜𝑚-𝑠𝑡𝑎𝑡𝑒⟩ , ⟨𝑙𝑎𝑏𝑒𝑙⟩ , ⟨𝑡𝑜-𝑠𝑡𝑎𝑡𝑒⟩ )

⟨𝑓𝑟𝑜𝑚-𝑠𝑡𝑎𝑡𝑒⟩ ⩴ ℕ
⟨𝑙𝑎𝑏𝑒𝑙⟩ ⩴ ⟨𝑢𝑛𝑞𝑢𝑜𝑡𝑒𝑑-𝑙𝑎𝑏𝑒𝑙⟩ | ⟨𝑞𝑢𝑜𝑡𝑒𝑑-𝑙𝑎𝑏𝑒𝑙⟩

⟨𝑢𝑛𝑞𝑢𝑜𝑡𝑒𝑑-𝑙𝑎𝑏𝑒𝑙⟩ ⩴ (any character except " ) (any character except , )∗
⟨𝑞𝑢𝑜𝑡𝑒𝑑-𝑙𝑎𝑏𝑒𝑙⟩ ⩴ " (any character except " )∗ "

⟨𝑡𝑜-𝑠𝑡𝑎𝑡𝑒⟩ ⩴ ℕ
The grammar consists of a header containing the literal “des” followed by the initial

state number, the number of transitions and the number of states. After that, are all

the transitions, encoded as a triple (𝑠, 𝑙𝑎𝑏𝑒𝑙, 𝑡), where the first and last components
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𝑠 and 𝑡 are the source and target state of the transition, while the second component

is the label, which can be quoted or not. For the sake of simplicity we have diverged

from the specification at [19] by considering labels as either a sequence of characters

until the first comma or as sequence of characters delimited by quotes. In particular

we have ignored character escaping and any restrictions on which characters are

allowed to be used.

The given grammar for a 𝜇-calculus formula mostly follows the definition previously

given in Section 2.4.1:

⟨𝑒𝑥𝑝𝑟⟩ ⩴ ⟨𝑓𝑖𝑥-𝑒𝑥𝑝𝑟⟩ | ⟨𝑜𝑟-𝑒𝑥𝑝𝑟⟩
⟨𝑓𝑖𝑥-𝑒𝑥𝑝𝑟⟩ ⩴ (𝗆𝗎 | 𝗇𝗎) ⟨𝑣𝑎𝑟⟩ . ⟨𝑜𝑟-𝑒𝑥𝑝𝑟⟩

⟨𝑣𝑎𝑟⟩ ⩴ (any identifier)
⟨𝑜𝑟-𝑒𝑥𝑝𝑟⟩ ⩴ ⟨𝑎𝑛𝑑-𝑒𝑥𝑝𝑟⟩ ( || ⟨𝑎𝑛𝑑-𝑒𝑥𝑝𝑟⟩ )∗

⟨𝑎𝑛𝑑-𝑒𝑥𝑝𝑟⟩ ⩴ ⟨𝑚𝑜𝑑𝑎𝑙-𝑒𝑥𝑝𝑟⟩ ( && ⟨𝑚𝑜𝑑𝑎𝑙-𝑒𝑥𝑝𝑟⟩ )∗
⟨𝑚𝑜𝑑𝑎𝑙-𝑒𝑥𝑝𝑟⟩ ⩴ (＜ ⟨𝑎𝑐𝑡𝑖𝑜𝑛⟩ ＞ ⟨𝑎𝑡𝑜𝑚⟩) | ( [ ⟨𝑎𝑐𝑡𝑖𝑜𝑛⟩ ] ⟨𝑎𝑡𝑜𝑚⟩) | 𝑎𝑡𝑜𝑚

⟨𝑎𝑐𝑡𝑖𝑜𝑛⟩ ⩴ 𝗍𝗋𝗎𝖾 | ⟨𝑙𝑎𝑏𝑒𝑙⟩ | ! ⟨𝑙𝑎𝑏𝑒𝑙⟩
⟨𝑙𝑎𝑏𝑒𝑙⟩ ⩴ (any character except ＞ and ] )
⟨𝑎𝑡𝑜𝑚⟩ ⩴ 𝗍𝗋𝗎𝖾 | 𝖿𝖺𝗅𝗌𝖾 | ⟨𝑣𝑎𝑟⟩ | ( ⟨𝑒𝑥𝑝𝑟⟩ )

Compared to the definition given in Section 2.4.1 we have omitted support for ar-

bitrary propositions. Arbitrary subsets of labels are also not supported, but are

instead limited to singleton sets containing a label, their complement, signaled by

a ! character preceding a label, or the set of all labels, represented by the 𝗍𝗋𝗎𝖾 ac-

tion. From now on we will use 𝜇-calculus formulas that follow this syntax. Several

mathematical symbols have also been replaced with similar ASCII characters, and

precedence rules have been encoded in the grammar.

The two grammars for labelled transition systems and 𝜇-calculus formulas have

been chosen to be mostly compatible with the ones used in LCSFE, from which

their limitations also come from, in order to simplify a comparison between the

two implementation. However the grammar for labelled transition systems has also

been extended in order to allow for quoted labels in the labelled transition system

grammar, which appeared in some instances used for testing, and more convenient

precedence rules for the 𝜇-calculus grammar, which helped when writing some more

complex formulas.

4.4.1 Performance comparison

We compared the performance of our implementation with respect to LCSFE and

mCRL2 on the mCRL2 examples used originally in [8]. All the tests were performed

on a computer equipped with an AMD Ryzen 3700x and 32GB of DDR4 RAM

running Windows 10. LCSFE and our implementation were compiled using the Rust

release profile, which applies optimizations to the code produced.
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We started with the “bridge referee” example from mCRL2, modeling the crossing

of a bridge by a group of 4 adventurers with different speeds, with the additional

restrictions that only 2 explorers can cross the bridge at a time and that they have to

carry their only flashlight at every crossing. This leads to a labelled transition sys-

tem with 102 states and 177 transitions, representing all the possible ways they can

try crossing such bridge. The formula to check is 𝜇𝑥. ⟨report(17)⟩ 𝑡𝑟𝑢𝑒 ∨ ⟨𝑡𝑟𝑢𝑒⟩ 𝑥,

representing the fact that all 4 adventurers reach the other side in 17 minutes, which

is signaled by the transition report(17). The formula thus checks if it is possible to

ever execute such transition.

Using the workflow suggested by mCRL2 we first converted the mCRL2 specifica-

tion into its internal lps format using the mcrl22lps utility:

> mcrl22lps bridge-referee.mcrl2 bridge.lps --timings

- tool: mcrl22lps
  timing:
    total: 0.024

Then, we bundled together the lps file and a file holding the formula specified above

into a pbes file, another internal format, using the lps2pbes utility.

> lps2pbes bridge.lps --formula=bridge_report_17.mcf \
  bridge_report_17.pbes --timings

- tool: lps2pbes
  timing:
    total: 0.016

Finally, the pbes2bool was used to convert the pbes file into a boolean parity game

and solve it. It should be noted that 𝜇-calculus also admits an ad-hoc translation

to parity games, which we would expect to be better than our generic approach.

> pbes2bool bridge_report_17.pbes -rjittyc --timings

true
- tool: pbes2bool
  timing:
    instantiation: 0.009495
    solving: 0.000028
    total: 0.038349

We then verified the same formula with LCSFE and our implementation. We used

mCRL2 again to convert the mCRL2 machine specification to a labelled transition

system in AUT format we can use. To do this we reused the lps file previously

generated to produce a lts file using the lps2lts utility:

> lps2lts bridge.lps bridge.lts -rjittyc --timings

- tool: lps2lts
  timing:
    total: 0.035608
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The lts file was then converted to an AUT file using the ltsconvert utility, which

converts between different labelled transition systems formats:

> ltsconvert bridge.lts bridge.aut --timings

- tool: ltsconvert
  timing:
    reachability check: 0.000
    total: 0.002

Finally we verified the formula using LCSFE and our implementation

> lcsfe-cli mu-ald bridge.aut bridge_report_17.mcf 0

Preprocessing took: 0.0004837 sec.
Solving the verification task took: 0.0000129 sec.
Result: The property is satisfied from state 0

> mucalc bridge.aut bridge_report_17.mcf

Preprocessing took 432.1µs
Solve took 1.1076ms
The formula is satisfied

We used this small example to get some empirical evidence that our implementation

for 𝜇-calculus is correct, as it gives the same result as the other tools, and to also

show the process we used to run all the tools involved. From now on we will omit

the specific commands we ran and instead will only report the time required to

run them.

We then tested the second formula that was used in [8], which uses the bigger “gos-

sip” labelled transition system, also an example from mCRL2 which models a group

of 𝑛 girls sharing gossips through phone calls. We tested up to 𝑛 = 5, which leads to

9152 states and 183041 transitions, after which the transition system began growing

too big. The formula tested was 𝜈𝑥. ⟨𝑡𝑟𝑢𝑒⟩𝑡𝑟𝑢𝑒 ∧ [𝑡𝑟𝑢𝑒]𝑥, which represents the lack

of deadlocks. It should be noted that formulas checking for absence of deadlock that

are satisfied, like this one, are a worst case for local algorithms because they require

visiting the whole graph, thus vanishing the advantage of local algorithms which

consists in the possibility of visiting only the states that are relevant.

𝑛 mCRL2 AUT generation Our solver LCSFE

2 67.8 ms 54.7 ms 132 μs 65.5 μs

3 68.5 ms 59.2 ms 212 μs 195 μs

4 72.0 ms 117 ms 2.30 ms 4.38 ms

5 1.47 s 2.05 s 202 ms 5.90 s

Table 1: Gossips benchmark results

Our implementation scales much better than LCSFE, confirming that the different

parity game solving algorithm does make a difference in this case, to the point where
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the bottleneck becomes the generation of the AUT file, which takes an order of

magnitude more time than solving the parity game itself. Compared with mCRL2

our implementation overall takes a similar amount of time, most of which is however

spent doing conversions to produce the AUT file using mCRL2 itself. This suggests

that lazily generating the labelled transition system might be beneficial, though

this was considered out of scope for our work. Overall the pure mCRL2 approach is

slightly faster, probably due to the costs of the intermediate conversions to produce

the AUT file or the overhead of using a local algorithm in a case where all states

must be explored regardless.

We also compared our tool with LCSFE on a set of randomly generated transition

systems given the number of states, the number of transitions for each state, and

the number of labels. For sake of simplicity the labels have been given a natural

number starting from 0 as their name. We used the two tools to test a fairness

formula on these transition systems, that is a formula in the shape 𝜈𝑥. 𝜇𝑦. (𝑃 ∧⟨𝐴𝑐𝑡⟩𝑥) ∨ ⟨𝐴𝑐𝑡⟩𝑦, which is satisfied when there exist a path in the labelled transi-

tion system where 𝑃  is true infinitely often. We choose such formula because it

represents a common property to verify, it actually uses nested fixpoints, and also

because it does not require exploring the whole transition system to verify, hence

favoring local solvers. As a formula 𝑃  we choose ⟨0⟩𝑡𝑟𝑢𝑒 ∧ ⟨1⟩𝑡𝑟𝑢𝑒 ∧ ⟨2⟩𝑡𝑟𝑢𝑒, that

is we require a state to be able to do three transitions with respectively the labels 0, 1 and 2, because it is an arbitrary condition that we can manipulate how often

it is satisfied by changing the number of transitions and labels. We then tested on

a number of states ranging from 1000 to 10000, while the number of transitions

and labels tested was respectively 10/10 and 20/100, representing a case where the

condition 𝑃  was satisfied quite often and a bit rarer.

Size (states/

transitions/labels)
Our solver LCSFE

1000 / 10 / 10 2.74 ms 21.8 ms

2500 / 10 / 10 5.10 ms 59.9 ms

5000 / 10 / 10 10.2 ms 120 ms

10000 / 10 / 10 18.5 ms 250 ms

1000 / 20 / 100 5.63 ms 26.6 ms

2500 / 20 / 100 13.8 ms 67.7 ms

5000 / 20 / 100 40.1 ms 142 ms

10000 / 20 / 100 48.6 ms 298 ms

Table 2: Random LTS benchmark results

Again we can see our tool improving compared to LCSFE, though this time by

not so much. This could be attributed to a difference in either the efficiency of the

algorithm of the one of the implementation though.
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Finally, we also ran our solver on some of the instances in the VLTS benchmark

suite to understand the limitations and the strengths of our implementation. For

each chosen instance we verified the 𝜇-calculus formulas 𝜈𝑥. ⟨𝑡𝑟𝑢𝑒⟩𝑡𝑟𝑢𝑒 ∧ [𝑡𝑟𝑢𝑒]𝑥,

which checks for absence of deadlocks, and 𝜇𝑥. ⟨𝑡𝑟𝑢𝑒⟩𝑥 ∨ (𝜈𝑦. ⟨tau⟩𝑦), which checks

for the presence of livelocks, that is cycles consisting of only tau transitions. For

each instance we ran the solver 5 times, ignored the slowest and quickest ones and

reported a mean of the remaining 3.

Name
States

count

Trans.

count

Dead-

locks?

Deadlock

solve time

Live-

locks?

Livelock

solve time

vasy_0_1 289 1224 no 4.93 ms no 6.98 ms

cwi_1_2 1952 2387 no 8.74 ms no 72.9 ms

vasy_52_318 52268 318126 no 443 s yes 75.2 ms

vasy_69_520 69754 520633 yes 122 ms no 6.59 s

vasy_720_390 720247 390999 yes 82 ms no 3.64 s

Table 3: VLTS benchmark results

The various labelled transition systems reported in Table 3 have different sizes, and

some have deadlocks and livelocks while others do not, which greatly influences

the results and makes the various results not directly comparable to one another.

We can for example see that checking for the absence of deadlocks when they are

not present quickly becomes very slow, like in vasy_52_318 where in particular we

observed that even single iterations of the strategy iteration algorithm become quite

slow.

Checking for the presence of livelocks also becomes pretty slow when they are not

present, however when they are the local nature of the algorithm allows us to skip

checking a lot of positions, ultimately making the algorithm much faster.

In the cwi_1_2 we observed the computation of play profiles for newly expanded

vertices to be especially effective, allowing the valuation step to be performed only

once.

The vasy_720_390 instance is also interesting because it is not connected, with only

87740 states which are actually reachable from the initial one. This is a favorable

case for local algorithms, and in fact the time required to verify the formulas is

proportional to the number of actually reachable states rather than the full amount.

4.5 Testing with bisimilarity

We also briefly tested performance of our bisimilarity checker implementation. For

that we used some of the instances mentioned above, in particular vasy_0_1 and

cwi_1_2 because bigger instances were too slow to check. For each instance we ob-

tained a reduced version of them according to strong bisimilarity and then used
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our implementation to check whether random states in the original instance were

bisimilar with the ones in the reduced one.

Non bisimilar
Name Bisimilar

Min Max

vasy_0_1 15.4 ms 540 μs 80 ms

cwi_1_2 5.63 s 1.17 ms 5.73 s

Table 4: Bisimilarity benchmark results

We splitted the results based on whether the two states were bisimilar or not, as

that influences how many states the local algorithm has to consider. We also noticed

that when checking non bisimilar states the time needed varied a lot, which we

suspect was due to some states having lot of transitions with the same label and

thus causing lot of pairs of states to be checked before becoming distinguishable.

It should be noted that strong bisimilarity admits an algorithm that runs in 𝑂(𝑀 log 𝑁) [20] time, where 𝑁  is the number of states and 𝑀  the number of tran-

sitions. In comparison, for states that are bisimilar the solver needs to visit at least

as many vertexes as states, similarly to the deadlock case for 𝜇-calculus, leading

to a complexity of 𝑂(𝑁 ⋅ 𝑀) for each the improvement step, let alone the whole

algorithm.

Ultimately the goal was to show that the powerset game was flexible enough, and

being able to solve bisimilarity too, although a bit inefficiently, does confirm it.
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5 Conclusions

We have seen how common systems of fixpoint equations are, especially in model

checking, and how we can characterize them using a particular parity game called

the powerset game. We have also seen how the moves of this game can be reduced

and efficiently expressed using a logic for upward closed sets, which also fits a local

algorithm for solving the game. We have then considered a pair of algorithms for

locally solving parity games based on strategies.

Our contribution has then been to adapt such algorithms to be used with the pow-

erset game, in particular bridging the conflicting requirements of the two by con-

verting the powerset game to a total parity game, generalizing subgames to consider

a subset of edges rather than vertices. This also resulted in the need for a lazy gen-

eration of symbolic moves through formula iterators, which also required an adap-

tation of the simplification process of the corresponding formulas to work on such

iterators. In this process we have also introduced a series of small optimizations,

most notably the ability to compute play profiles while expanding, which avoids

potentially expensive valuation steps. We have then implemented a tool based on

our theoretical work, which we have compared against LCSFE, an existing imple-

mentation with similar ideas, showing that we have improved over it, in some cases

even by orders of magnitude.

Future work

Although the focus of the game characterization is to be as general as possible,

which we have also shown by providing a formulation of bisimilarity using logic

formulas, the performance is still quite questionable. A possible improvement in

this area could be obtained by integrating different parity game algorithms while

keeping the local approach, for example the recent quasi-polynomial algorithms [21,

22] seems to be very good candidates for this.

There also seems to be a lot of room for smarter expansion schemes by combining

the informations given by play profiles with symbolic formulas. In particular we

believe it could be possible to simplify some formulas such that moves that lead

to better improvements are preferred over those that do not. Ultimately the goal

would be to include the most critical edges in the expansion as soon as possible, so

that the optimal strategy becomes known earlier.

The use of a logic to express symbolic moves also suggests that it might be possible

to use symbolic data structures like Binary Decision Diagrams (BDDs) to represent

them, possibly improving their efficiency. This might in turn open new possibilities
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to the usage of symbolic moves thanks to making them easier and faster to manip-

ulate, especially in combination with the previous point.

Another challenge involves integrating up-to techniques [23], possibly in a generic

way, which could result in speed ups by orders of magnitude. However the problem

of efficiently determining when to apply them is still open. We suspect that the

previously mentioned use of BDDs might help with this though.

Finally, further work could be done on the adaptation of the different domains. Our𝜇-calculus and bisimilarity adaptations currently expect a full labelled transition

system to be given ahead of time, which sometimes may be too prohibitive and

more in general reduce the benefits of a local algorithm. However in principle this

could be generated on the fly, avoiding the need to generate parts of the model

that are not necessary. The implementation of more and varied domain, like for ex-

ample the previously mentioned Łukasiewicz 𝜇-calculus and abstract interpretation

techniques, is also a possibility for further work to show the generality of the game

characterization for solving systems of fixpoint equations.
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