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Chapter 1

Introduction

1.1 Brain perfusion and hemodynamic param-

eters

Perfusion refers to the delivery of oxygen and nutrients to a capillary

bed in the tissue by means of blood flow and is one of the most funda-

mental physiological process. Abnormalities or disruption in this pro-

cess can have heavy effects, especially in brain which is a particu-

lary highly perfused organ, receiving large portion of cardiac output

(about 20% under normal conditions [1]). Adequate levels of cerebral

perfusion are therefore essential to brain’s functioning, making per-

fusion measurament an important tool in the assesment of brain tis-

sue’s health and activity. Infact many pathological conditions (includ-

ing stroke, brain tumor, neurodegenerative diseases and epilepsy) are

associated with disorders of perfusion whose accurate evaluation can

provide useful diagnostic informations and aid the monitoring of treat-

ment for some of those pathologies. Perfusion also serves as biomarker

for a wider range of physiological functions due to the close coupling

(whose precise mechanisms are still not completely understood) be-

tween tissue blood supply and glucose metabolism, which allows re-

gional brain activity to be assessed through measurements of cerebral

perfusion.

Perfusion is a complicated phenomenon that can be characterized

by numerous parameters, each one sensitive to different aspects of the

perfusion state of tissue (see [?] for a complete revision).

Cerebral blood flow

Cerebral blood flow (CBF) represents the most common measure of
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perfusion state of brain. Adoptiong a general notation, it is given by:

P =
F

W
= CBF

where F is the blood flow rate in milliliters of blood per minute
[
mL
min

]
,

W is the tissue mass in 102g [100g], and P is the quantity “perfusion”,

called CBF in brain context. Thus CBF is the volume of arterial blood

delivered to 100g of tissue per minute, with
[

mL
100g min

]

as nominal unit.

A typical value is CBF = 60 mL
100g min

for gray matter, and CBF = 20 mL
100g min

for white matter.

In imaging applications, the most powerful way to accomplish per-

fusion quantfication, it is convenient to express CBF as flow delivered

to a unit volume of tissue rather than a unit mass of tissue. With these

techinques infact a signal is measured for a particolar volume, the

imaging voxel, and the actual mass of tissue within that volume is not

known, so it easier define CBF in terms of a volume of tissue. Always

using a general notiation, we have:

f = ρP = ρ
F

W

where ρ is the tissue density in 102g
mL

, and f , called sometimes perfusion

rate, is expressed in milliliters of blood per millilter of tissue per minute

(or second)
[

mL
mLmin

]
(
[

mL
mL s

]
). This voxel-based definition of CBF is the

natural choice for imaged-based perfusion measurament and has the

inverse time dimension as a rate costant. This dimensionality shows

the primary role CBF plays in determining the delivery of metabolic

substrate and the clearance of metabolic products: the rate of delivery

to the tissue of any substrate is simply fCb, where Cbis the arterial

blood concentration of the substrate [2]. To express f in common CBF

definition terms, it must be scaled by the local density of the voxel,

remembering that the density of brain is close to 1 g

mL
:

mL

mLs
= 1

g

mL

mL

100gmin
= 1

g

mL

mL

100g 60s
=

1

6000

mL

mLs
=⇒ f =

1

6000
CBF

(1.1)

where the corretcting factor (including ρ and having its unit) from
mL

100g min
to mL

mLs
is explicitated. Accepting a density value of 1 g

mL
as a good

approximation in brain tissue, a typical value for human is 0.6 mL
mLmin

or 0.01 mL
mLs

. Beyond this amplitude correction, changing the localiza-

tion of the process (voxel volume instead of mass of tissue) make the

definition slightly different from the more usual because the quantity

we now measure is the average flow to the voxel which is afflicted to
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partial volume effects. That is, the average perfusion in the voxel is

accurately measured, but the true flow per gram of tissue is unknown

and dipends on which types of tissues are included in the voxel. How-

ever in this thesis both CBF and f refers the same perfusion quantity,

keeping in mind the difference in unit and the consequent conversion

equation (1.1).

Cerebral blood volume

In general blood volume V is defined as the subvolume occupied by

blood whithin a volume of interest or in 100g of tissue. With the former

definitions, the volume of interest is often chosen as the volume of a

voxel V0, allowing the blood volume to be expressed as a dimensionless

factor q, called CBV in brain context

q =
V

V0
= CBV

where V is the blood volume and V0 is the voxel volume, both in [mL].

The cerebral blood volume is thus a dimensionless number (millilters

of blood vessel per milliliters of tissue) that quantify the fraction of

tissue volume occupied by blood vessels, and a typical value for the

brain is CBV = 0.04 mL
mL

. It can be furthermore subdivided in arterial

(aBV), capillaries and venous volumes.

Mean transit time

Mean transit time (MTT) refers to the average time requires to a par-

ticle to pass through the tissue. It could be a few seconds if the particle

remains in the vasculature, or much longer if the particles freely dif-

fuse out of the capillary bed and fill the tissue space. A fundamental

relation between MTT, CBV and CBF is described by central volume

theorem:

MTT =
V

F
=

CBV

ρCBF
=

CBV

f

where MTT is in [min] except in the last form where is in [s].

1.1.1 The meaning of cerebral blood flow

Cerebral blood flow is often confused with blood velocity. Although

CBF and blood velocity, together with CBV are all important aspects

of perfusion state of tissue, they are distinct physiological quantities.

Cerebral blood flow is mainly associated with the delivery of arterial

blood to the tissue element and has no fixed relationship with either
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the amount of blood present in the tissue volume (CBV) or the motion

of blood within the tissue element (blood velocity). An increase in CBF

(for example during brain activation) could occour through a number

of different changes in blood volume or blood velocity. The only way to

estabilish a connection between CBV and CBF is through the central

volume principle: it is transit time, rather than blood velocity, that is

directly connected to CBV and CBF.

It is difficult to make reliable measurament of CBF by looking at

blood within a tissue element. An element of tissue, infact, could con-

tain in larger arteries arterial blood that is just passing through, desti-

nated for a capillary bed in another location, or venous blood passing

through as it drains another tissue element. Also a measure of motion

of the blood does not necessarly reflect CBF, the flow of arterial blood

into capillary beds. For example, an element of tissue could have no

change in CBF but shows increased blood motion if CBF increases in

a distal tissue element with a corresponding increase in speed of the

arteries and draining veins that pass through the first element.

The defining characteristic of CBF is not blood motion within the

tissue element but rather delivery of arterial blood to the capillary bed

[?]. For this reason, the most robust approaches to quantifying CBF are

based on measuring the rate of delivery of an agent carried to the tissue

by arterial blood flow. This is the case of Arterial Spin Labeling (ASL)

technique which has the appealing property of measure perfusion in a

completely non invasive way.

1.2 Goal and outline of the thesis

In this thesis approaches to CBF estimation from Arterial Spin Labeling

data has been studied. In particular the work presented here can be

summarized in two main steps:

• the standard model for ASL data, also knwon as Buxton model [3],

was used to estimate CBF from datasets available. A new formula-

tion was given to the estimation procedure typically adopted when

parametric models,as standard model, are used in CBF estimation

in which several assumption on parameters must be taken. Here

a bayesian approach to soften this assumptions was proposed

• an improved version of standard model was considered to over-

come a typical limitation of such model. In particular, a two com-

ponent model [4] able to deal with the so called vascular artifacts
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in the measured perfusion signal was proposed.

This thesis is structured as follows. In chapter 2 basic principles of ASL

is given, along with some information about the particular ASL version

used in this study. In chapter 3 fundamentals of ASL modeling, giving

particular care to standard model, are reviwed. In chapter 4 data set

used in this study is briefly described and methods apllied to data

are presented. In chapter 5 results of the methods described in the

previous chapter are shown. Finally, chapter 6 is dedicated to discuss

some of the results achieved and problems encountered.





Chapter 2

Arterial Spin Labeling to

measure perfusion

In this chapter Arterial Spin Labeling (ASL) technique is presented.

This method can measure perfusion inside the brain and also in sev-

eral other organs. The basic idea of ASL experiment, generalities and

avandtages over other techniques are reviewed. ASL practical imple-

mentation are also given, with particular regard to those methods used

to generate data analyzed in this work.

2.1 Basic principles of Arterial Spin Labeling

Arterial spin labeling (ASL, or arterial spin tagging AST) is a completely

noninvasive technique that provides quantitative measures of cerebral

blod flow (CBF). The general principle of ASL is to use protons of wa-

ter molecules in the inflowing blood as an endogenous tracer to probe

the blood supply to tissue. The tracer employed is constituted by a

magnetic labeling of water molecules. This labeling is accomplish by

manipulating blood water magnetization which is inverted at the loca-

tion of the larger brain-feeding arteries (such as the internal carotid

artery). The magnetization of those protons can serve as tracer for per-

fusion process since water transport across the blood brain barrier is

relatively unrestricted, and water protons diffuses (although not as a

freely diffusible tracer) from capillary to tissue with their labeling, al-

lowing CBF to be measured.

In a typical ASL experiment, a radiofrequency (RF) inversion pulse

is applied to flip the magnetization of arterial blood water before imag-

ing region (a single slice or a volume) is reached. The water molecules,

carrying the labeled magnetization, flow into each tissue element in
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proportion to the local CBF. After a sufficient delay (typically denomi-

nated inversion time, TI) to allow the tagged blood to reach the region

of interest, acquisition is made, creating the so-called tag image. Then

the experiment is repeated without labeling the arterial blood to create

the control image, in which no information about inflowing blood is

observable. If the tag and control images are carefully adjusted so that

the signal from the static spins is the same in both, then the difference

of the two images (control and tag) gives rise to a signal (a magnetiza-

tion difference signal ∆) proportional to the amount of blood delivered

to each voxel, nothing else than the local CBF.

Figure 2.1: in panel (a) a schematic representation of the phenomenon that

ASL measures is shown. Water in arterial blood is deliverd to tissue capillary

bed by arterial flow, here it is exchanged with tissue water and then drained

by venous flow. This process is magnetically detected by labeling arterial wa-

ter at a location proximal to the tissue to image, and isolated by a proper

image subtraction. The ASL protocol, based on tag and control subtraction, is

conceptually shown in panel (b).
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In each image (tag and control) the voxel signal is proportional to

the longitudinal magnetization of the voxel at the time when image was

acquired. If no arterial blood is delivered, the signal measured in tag

and control images should be the same, and so difference image would

be zero. But if arterial blood is delivered to a voxel, it will carry an

inverted magnetization in the tag image and a fully relaxed magnetiza-

tion in the control image, and so signal of blood will not cancel in the

subtraction.

Figure 2.2: perfusion-weighted property of ASL images is the result of subtrac-

tion between tag (label) images and control images. The different magnetic

state having the blood that reaches the tissue gives rise to a coeherent signal

difference proportional to CBF, if it is holden the main assumption that mag-

netization of tissue (often named static spin magnetization) would remain the

same in the two state of ASL experiment.

The major advantage of ASL comparing to other techniques used to

measure CBF resides in its complete non invasive nature since it uses

magnetically labeled water as tracer instead of requiring injection into

blood stream of exogenous contrast agent or inalation of radioactive

tracer (i.e. radioactive xenon studies). This confers to the technique

a great versatility, making ASL applicable to human studies without



12 2. ARTERIAL SPIN LABELING TO MEASURE PERFUSION

any restriction regarding age (even pediatric population) or pathological

conditions (patient with kidney faliure can not undergo typical bouls

tracking perfusion studies) of subjects examined, and also to measure

perfusion in other tissues than brain. Moreover ASL opens the pos-

sibility of repeated perfusion measurements, that were not possible

with older techniques based on the use of potentials harmful, costly

tracer, including the widespread dynamic susceptibility contrast (DSC)

MRI. These serial measurements could be useful in a number of appli-

cations, for example following perfusion changes after stroke or drug

treatment, and for perfusion-based functional MRI.

Finally ASL technique traces a phenomenon directly related to per-

fusion. Especially, it provides a set of raw data, already showing a

strong perfusion-weightening, from which quantitative measure of per-

fusion in absolute unit of [ mL
100g min

] can be obtained.

The big issue of ASL is intrinsically connected to process that it aims

to measure, and in the way it is intended to be measured. The signal

change associated with tagged blood is small. It can be roughly esti-

mated by considering how much tag water can enter the brain during

the experiment. If f denoted local CBF in untis of [s−1] (see section 1.1,

f is simply CBF measured in mL of blood per mL of tissue per second),

and the volume of voxel is V (mL), then the total rate of arterial flow

into the voxel is fV (measured in mL
s

), and the volume of arterial blood

delivered during TI (time at which an ASL image is taken) is fV TI.

Therefore the fraction of voxel volume that is replaced with the incom-

ing arterial blood during the interval TI is fV TI

V
= fTI. Since typical

value for f and TI are respectively 0.01s−1 and 1s, it results that the de-

liverd volume of arterial water is only about 1-2% of the volume of the

voxel [?]. Moreover the magnetic label decay (with proprer rate costant)

along time, making the measurements feasible only in a limited tem-

poral extent.

Due to the relative small magnitude of ASL signal, every other fac-

tor potentially liable to cause even restreined signal variation must be

avoided or compensated for. A common source of errors is the mag-

netization transfer (MT) effect (figure 2.3), which can cause signal loss

substantially larger than the perfusion induced signal change, making

fundamental adequate equalization of their effects between tagged and

control images.
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Figure 2.3: water protons in blood have a narrow frequency spectrum (plot-

ted in blue). Frequency spectrum of macromolecules in brain tissue is much

broader. Thus labeling pulses affect macromeluclar spin even when they are

located at different position, and this magnetization can be trasnferred to the

free water signal. If the total power of RF pulses in labell image differs from

the control image, a net difference in magnetization will be created, and a

subtraction errors will be shown in ASL images.

The small signal changes also makes perfusion very sensitive to ran-

dom noise, necessitating signal averaging to increase signal-to-noise

ratio (SNR). Tipically 20 to 40 pairs of subtracted control and label

images are required to be averaged to get the desired SNR in the perfu-

sion weighted maps. This inevitably lenghtening the acquisition time,

to allow multiple experiments repetitions.

single acquisition 10 averages 30 averages

Figure 2.4: SNR improvment following images averaging is clearly shown in fig-

ure. To reach an adequate SNR level thus ASL experiment has to be repeated

more times, lengthening the total scan duration.

Arterial spin labeling is based on a quite simple idea, but in prac-

tice its execution requires to consider several sources of systematic

error. Dealing with these technical difficulties is a critical aspects of
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ASL methods, because any uncontrolled confounding effect may con-

tribuite to loose the perfusion weightening of the small signal that is

aimed to measure.

2.2 Implementing ASL experiment

Pratical implementation of ASL idea has to be able of bracket in a

unique pulse sequence the exigence of generate tracer, i.e. magnetically

label the arterial blood water molecules, and the capability of detect it

effectively despite its intrinsically small amplitude. The whole has to

be implemented avoding any contamination of the former request onto

the latter and ensuring the right timing between them, because the

magnetic label acting as tracer progressively vanishes with time (with

a scale time set by longitudinal relaxation time T1 of bloodT1b, and tis-

sue T1t, respectively 1.6s and 1.3s at 3T ), but also need a time delay

before imaging to reach tissue of interest. Answering to this double

claim, straight consequence of ASL idea, in a low SNR signal context,

is the reason why ASL is a technique challenging to implement, that

demands advanced technical solution to face with a large set of poten-

tial degrading factors.

A generic ASL experiment can be thought as composed of three

phase (figure 2.5):

1. labeling: in which bolus of labeled blood to deliver to tissue is

created by inverting magnetization of spins in proton waters

2. post-labeling: (optional) in which a sequence of pulses is apllied

to improve SNR or to facilitate the subsequent data quantification

step

3. readout: in which the actual image (control or label) is acquired

The are a variety of techniques both for spin preparation and imag-

ing acquisition. One important feature of the ASL sequence is that the

three components are indipendent each from the others. This fact al-

lows them to be combined as desidered in relation to the specific appli-

cation. In the following sections the labeling part, the imaging part are

discussed, with particular attention to methods used to acquired data

considered in this study.
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Figure 2.5: a schematic example of an ASL sequence complete of its three

phase is reported. The inflowing blood in a thick slab under brain is labeled

into different magnetic state during spin preparation (see PASL section 2.2.1),

while the actual imaging of the brain occour during image acquisition. In the

middle, examples of post-labeling pulses are shown. Background suppres-

sion (termed as saturation in figure) is a series of inversion pulses carefully

designed to reduce the contribution of static spins in acquired image (and

consequentely to beat down potential subtraction errorrs deriving from dif-

ferent magnetization of this group of spin in label and control images) [5].

QUIPPS2 is a protocol that permits to experimental fixing parameters related

to duration or timing of labeld blood bolus, otherwise unknown [6].

2.2.1 Labeling of arterial blood

There is a huge variety of methods whereby spins of arterial blood wa-

ter can be inverted to obtain ASL images. A detailed revision of those

methods outsteps the goal of this work, however in the following par-

ticular care is given only to methods used in this study.

Conceptually there is two main approaches to label arterial blood

water, commonly denoted as pulsed arterial spin labeling (PASL), and

continuous arterial spin labeling (CASL). With CASL arterial blood spins

are inverted for a certain period as they pass through a plan fixed to a

designed location along axial direction, using a long duration (2−4s) RF
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pulses and availing flow-driven adiabatic inversion principle. Whereas

in PASL, instead of a temporal long RF pulse, a spatially confined la-

beling pulse (of duration 10 − 50ms) is employed over a large region, as

results a large volume of spin is inverted almost simultaneously. Thus

in pulsed experiment, the tag is performed in sapace than in time, and

this has a straightforward impact on data quantificatiuon, as the du-

ration of the labeld blood bolus delivered to each voxel is absolutely

unknown.

In the last years, continuous arterial spin labeling data has been

increasingly acquired using a pulsed version of continuous labeling,

called pseudo-continuous arterial spin labeling (pCASL) [7]. This tech-

nque simulate a CASL protocol by using train of RF pulses and gra-

dient waveform adequately shaped in order to overcome the limitation

connected to practical realization of the typical CASL scheme.

In the following sections, pCASL scheme and the specific PASL ver-

sion used to tag blood in the dataset available are described.

Pulsed arterial spin labeling

Many different approaches have been proposed for PASL, although in

the end all implementations create, using a single inversion RF pulse,

two images in which arterial blood water has an opposite magnetization

state. The differences among these methods are mainly the location of

the tagged region and the magnetic state of the tagged spins for the

control and label images. The two best-known PASL sequences are:

• flow-sensitive alternating inversion recovery (FAIR), which uses

slice-selective inversion of the imaging slices as label condition

and a non-selective inversion pulse of whole imaging region as

control condition

• signal targeting with alternating radiofrequency (STAR), which

uses a slice selective inversion below the imaging slices as label

condition, and no RF pulses for the control image.

Advantages of PASL are the high labeling efficiency (i.e. the fraction of

maximum magnetization that is actually inverted by labeling scheme,

denoted by the dimensionless number α) and the lower specific ab-

siorption rate (SAR) due to the short RF-pulses. Disadvantages are the

potentially lower SNR of the perfusion-weighted images and additional

difficulties in quantification, as previously hinted, because labeling is
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performed spatially, thereby incorporating a dependency on tagging re-

gion arterial tree structure into the duration of bolus parameters, rising

in an unknown label duration (τ ).

In STAR scheme label image is obtained inverting spins within a

thick slab (about 10cm) proximal to imaging region. The tagging pulse

is a spatially selective inversion pulse, the most used is the hyper-

bolic secant adiabatic one. In control images no tagging is actually

performed, but two 180° pulses of half power and at the same loca-

tion respect that one used in label state are applied (figure 2.6, left).

The STAR scheme, in principle, provided an asymmetrical pulse ap-

plication respect to imaging region, so no correction of MT effect that

eventually occour in it is accounted for. However, in the scheme just

described the RF power of the labeling inversion pulse is counterbal-

anced by the two consecutive adiabatic pulses of half RF power of the

control phase (figure 2.6, right). The associated induced magnetization

transfer effects are identical in both cases, which allows multislice ac-

quisition with good MT effect equalization [8]. Anyhow, MT effects are

less prominent in PASL techniques, and major care must be paid to re-

duce the effects of nonideal profile of the tagging pulse on the imaging

region, making necessary the introduction of a sufficient spatial gap

form labeling to imaging region.

Figure 2.6: conceptual representation of the contributions in imaged slice both

for label and control state. From the difference (controlo-label) a positive con-

tribution proprtional to the amount of the inflowing blood can be isolated

(left). Example of STAR pulse sequence (right,[8]).
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Having a tagged arterial blood that flows into imaging region car-

rying and inverted magnetization, in STAR experiment the signal from

a voxel in labeled image, Ml, is less than control image ones, Mc, (if

consistent aamount of blood perfuse it), and thus to have a positive

quantity from images subratction as index of labeled blood that has

entered into the voxel during inversion time TI , difference signal ∆M

has to be defined as:

∆M = Mc −Ml

Figure 2.7: example of ASL difference signal ∆ in STAR version of pulsed ASL.

Signal acquired in label state is perturbated by the inflowing of arterial tagged

blood with inverted magnetization. Magnetization in labeled condition does

not return to its equilibrium value in the same manner of control condition,

originating a signal difference carrying information about CBF. The compar-

ison between the arbirtary scale of the signals (label or control vs. difference)

clearly shows the low SNR property of the perfusion weighted ASL measure-

ment.

pseudo continuous arterial spin labeling

Previous studies have demostrated that CASL labeling produces a greater

SNR than PASL labeling [7], and also that this theoretical advantage is
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reduced by a number of challenges that practical implementation of

CASL have to face off. These are inefficiency of labeling, magnetization

transfer and limited support for continuous-mode operation on clini-

cal scanners. The last one is surely the most difficult to bypass: the

majority of the imagers are optimized for pulsed operation and can not

support CASL beacuse of constraints on the RF duty cicle. It means

that flow-driven adiabatic inversion, the mechanism producing the la-

beling, can not be achieved applying constant RF and gradient field.

Intuitively, the solution could be found by breaking up the continu-

ous rectangular RF into a train of RF pulses separated by a gap. And

actually this is right the basic idea of pCASL.

It has been shown that blood spins can be adiabatically inverted as

they pass to a selected plane even using a train of pulsed field excita-

tions, if some conditions on RF pulses sequence and gradients system

are met:

1. the train of RF pulses used instead of continuous rectangular RF

is prone to cause a number of aliased labeling planes. To limit

this effect, appropriated RF pulse shape (Hanning pulse) jointly

to a constrain on gradients amplitude has to be considered.

2. the applied gradient should be able to cause the position-dependent

phase shift necessary to adiabatic inversion, with an average value

between pulses comparable to that used for continuous inversion

3. average RF field between pulses should be comparable to the con-

tinuous pulse

If labeling pulses sequence is designed respecting these conditions wa-

ter blood spins can actually be inverted (*). Control pulses sequence

can be achieved by alternating the sign of the RF from pulse to pulse

and ensuring that there is zero average gradient between each of them.

It permits to have zero average field of RF pulses, but matched mag-

netization transfer effects between label and control, since the average

RF power is the same.
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Figure 2.8: pCASL sequence scheme [7]: (a) labeling pulse sequence: Hanning

pulse in combination with gradient waveform with maximum strength Gmax

much higher than its average value between two consecutive pulses, Gave, pro-

vides great spatial selectivity to aliased planes (condition to met is Gmax

Gave
≫ ∆t

δ
),

Gave and B1ave are non null and similar to those used in a hypotetic continu-

ous scheme. (b) control sequence: B1ave and Gave are zero, and magnetization

of the blood spin is uninverted, but RF power of the sequence is equal to label

sequence one, providing a correction for MT effects.

Pseudo-continuous arterial spin labeling (pCASL) is considered the

best method to approach continuous labeling studies because of its ap-

pealing properties of provideing high efficiency, multislice capabilities

and broad compatibility with existing scanner hardware.

Figure 2.9: pCASL signal derives as PASL form label and control difference (see

figure (2.7) for description). Due to long duration of labeling (titpically 1−2s) no

signal is acquired in the early phase of perfusion process, making estimation

of the transit delay ∆t more difficult because few samples are sensitive to it.
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A subtle problem involved in pCASL data is due to the absence of

sampling in the early part of the signal, as no imaging pulse can be

applied during labeling phase (that in pCASL last longer enough to

allow signal rising in tissue). This could entangle qauntification step,

especially transit delay ∆t estimation, since a portion of model can not

fit any data (figure 2.7).

2.2.2 Readout approach for ASL

In principle, any readout sequence can be used for ASL as long as the

sequence is predominantly proton density weighted. However,due to

the samll amount of the blood signal and to the decayment of label-

ing before measurement time, delayed on purpose to allow perfusion,

an ideal imaging sequence should have high SNR and meantime allow

fast acquisition. Single-shot echo planar imaging (EPI) or fast low-angle

shot (FLASH) readout sequences are the most commonly used readout

protocols when 2D multislice imaging is performed. Recently, 3D ac-

quisition methods (such as GRASE) have gained much attentions since

they have inherently higher SNR than multislice sequences and allow

blood inflow informations to be acquired exactly at the same moment

(no temporal offset is inserted between two consecutive slices acqui-

sition). However, 2D multislice acquisiton is still the most widesprad

strategy employed to acquire ASL images.

In a single shot-EPI a rapid series of gradient echoes is generated to

cover the k-space in a back and forth scanning pattern, after a single

excitation pulse. In figure (2.10) a EPI k-space sampling trajectory and

semplified pulse sequence diagram (for a single-shot EPI) are shown.
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Figure 2.10: single slice EPI pulse sequence (b), and its k-space trajectory (a).

Initial positive Gx and Gy gradients and the RF inversion pulse moving the

sampling poitn to the bottom-left of the k-space. Then the boxed pulses are

repeated N
2 times to acquire N lines of k-space in alternate direction. The sign

of Gx indicates wheter the trajectory of the straight line along kx moves from

left to right (positive value) or contrarily (negative value). The samll y gradients

pulses, called bilps, shift the k-space sampling to a new line in an upper ky

level. The duration of this pulses gives is the rise time of the gradient system.

The intial pulses move the location of k-space sampling to −kmax

both along x and y axis, and then the repetition of the gradient echo

modules produces a back and forth scannig of k-space. Since all of k-

space must be filled following a single excitation pulse, the data must

be acquired before significant T2∗ decay can occour (tipically the ac-

quisition window is limited by those effect to about 100ms). To confine

data acquisition in a tempral window shorter than T2∗, and mantaining

at the same time a reasonable spatial resolution (i.e. sampling a large

number of line in k-space), strong gradients and rapid switching ca-

pabilities are required. The total imaging time infact depends on how

quickly the sampling of the k-space grid occour, and its is governed by

two properties of the gradients coils used for imaging: the maximum

gradient strenght and the slew rate (or in alternative the rise time).

The most common EPI artifacts derive from inhomogeneities in the

magnetic fields (static and gradient field both) that results in signal

loess and geometrical distortion.

2.3 Modifications of traditional ASL sequence

The inherently low amplitude of ASL signal, due to the relative small

amount of blood that reached the tissue in a typical ASL measurement
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time, and the aim to measure it in a completely non invasive way make

ASL technique implementation very challenging.

In the following two widely used modification of the ASL sequence

that aim to optimize data acquisition are presented. The first regards

the englobment into the readout block of the Look Locker sampling

strategy to allow multi inversion time measurement keeping global ex-

periment duration in a reasonable extent, the second concernes the

application of bipolar gradients to suppress signal form nonperfusion

blood.

2.3.1 Look Locker readout

Look-Loocker (LL) acquistion scheme is a sequence that was ideated

to speed up the longitudinal relaxation time measurement in a typical

inversion recovery sequence. The technique consits of applying, after

the initial inversion pulse, a series of low flip angle pulses, αLL(typically

is α < 50°), to sample the longitudinal magnetization during its recovery

to equilibrium (see figure 2.11). The signal from each of these pulses is

used to create an image using typical readout protocols. Therefore, LL

is a signal sampling strategy rather than a real readout protocol, but if

used in combination with the last, so forming a LL-like readout, it can

produce a very fast T1 mapping (in about 3s).

More formally, a series of NLL RF readout pulses, of the same flip

angle αLL, are used to sample multiple point with a fixed interexcita-

tion interval TI2, starting after a delay TI1 from the initial excitation

pulse. The repetitive perturbation accomplished by the readout pulses

during recovery drives magnetization to a steady state M0,eff , lower

than original equilibrium magnetization M0, through an effective longi-

tudinal relaxation time observed,T1,eff , shorter than actual T1. The real

signal evolution, Mz(t), when LL pulses are applied has been derived in

[*ref. Look and Locker]. It should show a jagged shape as consequence

of consecutive perturbation introduced by low flip angle that progres-

sively beat down by a fraction (αLL dependent) the recovered signal.

However approximating Mz time course to be continuous like, it can be

described as follows:

Mz(t) ≈ M0 − (M0 +M0,eff) e
− t

T1,eff (2.1)

where the effective steady state magnetization, M0,eff , and the effective

longitudinal relaxation time, T1,eff , defined by LL sequence are given
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by:

M0,eff = M0t
1− e

−
TI2
T1

1− (cosαLL) e
−

TI2
T1

T1,eff =
1

(
1
T1

− ln(cosαLL)
TI2

)

Figure 2.11: schematic Look Locker pulse sequence is drawn in panel (a). After

initial 180° RF pulse that invert longitudinal magnetization, a series of low flip

angle αLL excitation is applied, to sample the recovery of signal multiple times

within a unique TR. The effect of the LL scheme on acquired signal is shown

in panel (b): a new steady state value is set, and a shorter relaxation time is

observed (αLL = 25° and TI2 = 0.2s are used).

Look Locker sampling strategy has found an important application

in ASL experiment. As will be discussed in section 3.5, typical ASL ex-

periment is made up by imaging control and label state at a single time

point. But the ability of visualize the whole temporal dynamics of per-

fusion would be of great advantage, in brief it would help to unmask

some confoundifng effects that could angle CBF estimates. Unfortu-

nately sampling the signal evolution after labeling at more point is not

feasible with traditional ASL sequences, if the total scan time needs

to be kept relatively short. Infact, signal is measured at a one fixed

inversion time after magnetic labeling, and beforesequence could be

repeated, adopting a new inversion time, a delay of approximatively

3s (MTT of water in brain tissue) has to be introduced to allow com-

plete wash out of the labeled blood form the capillary exchange sites,

Furthermore, to achieve good SNR several experiment repetitions are

necessesary to perform images averaging procedures. As example, let

consider 20 averages of an ASL signal sampling just at 3 time points
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a with single-shot imaging technique, such EPI. It results in a total

measurement time of [9]:

3s
↓

time for

single TI

× 3
↓

different

TI point

× 20
↓

number of

averages

× 2
↓

control and

label state

= 6min

Traditional ASL sequences are thus time-consuming and inefficient,

since just one single measurement is made within the long TR needers

to be used, and any other information is not sampled during this time.

In this context LL sequence provides a great improvement.The com-

bination of LL sampling strategy with any spins preparation scheme

allows to sample a series of images after each labeling pulse, making

possible the monitoring of the perfusion signal time course with ad-

equate number of temporal samples, within a reasonable total scan

time.

2.3.2 Vascular crushing

As it has been shown, ASL techniques produces a series of images

which are themselves an undirect measurement of brain perfusion.

The main effort in extracting precise measures of perfusion state of the

brain from these data is usually performed by mathematical models,

which can be formultaed with different degrees of complexity and de-

tail. Several techniques able to improve the perfusion-sensitive nature

of the data could be adopted still in the acquisition stage. Improve data

quality, i.e. make them more informative, without stressing excessively

the modeling step is of crucial importance. However one should keep

in mind that ASL suffers of low SNR. Hence the possibility of adopting

simpler model (with less parameters) to quantify perfusion, justyfied by

a more carefull data acquisition scheme, is a great benefit and helps to

achieve a better accuracy in estimates.

Tipically these technical solution are applied between labeling and

acquisition scheme. In the following, it will be emphasized the tech-

nique of vacular crushing to reduce the so called vascular artifacts.

Vascular artifacts can have substantial effects on quantification

of CBF. These are contributions to difference images non perfusion-

related, due to tagged blood that at measurament time is still in the

vasculature tree. Vascular artifacts are evident particulary in the early

acquistions, where blood is supposed to be still in large arteries. Often

in the very first acquired images bright spots are clearly visible, which
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doubtless attests for tagged blood inflowing in large arteries. These con-

tributions act as confounding effects since they originate from arterial

blood that is just flowing into large arteries contained in the voxel, but

that is destined to perfuse more distal tissues. A more subtle vascu-

lar artifacts are then contributions to signal difference ∆ coming from

labeled blood situated in small arteries included in the voxel. These

tagged blood is actually a perfusion blood for the local tissue (the voxel

considered), but at the time of measurement hasn’t reached the ex-

change site yet. Since perfusion are defined as the blood flow rate

to capillary bed, this kind of pre-perfusion blood contribution must

be considered properly. Vascular artifacts complicate brain perfusion

quantification, leading to severe overestimation of CBF. The quantita-

tive determination of perfusion requires correction for those vascular

artifacts.

A common way to deal with these artifact is to insert small magnetic

field gradients after the spin labeling stage and prior to the readout ex-

citation pulses [10]. The contribution of arterial blood water spins to ∆

signal can be reduced if those gradients, called crusher gradients, are

used to dephase the signal from spins in arterial blood that is flowing

with a velocity greater then a specified vascular crushing velocity: the

encoded velocity venc.

Vascular crushing is tipically performed by applying a bipolar gradi-

ent . If bipolar gradient is made up by two lobes of equal duration and

magnitude but opposite polarity, it will cause no resultant phase shift

of the stationary spins. However, moving spins will acquire a phase

shift, as they move along gradient direction axis during its application,

since they do not experience both gradients equally. If it is assumed

that spins flow into vessels with costant velocty v [mm/s], the phase shift

φ [rad] they acquired during the bipolar gradient phaser is linearly pro-

prortional to velocity, in this manner:

φ = γδ∆GGv (2.2)

where γ = 42.58 rad
sT

is the gyromagnetic ratio of hydrogen proton nuclei,

δ [ms] is the duration of gradient lobe, ∆G is the time distance between

the centres of the gradient lobes, and G [mT/m] is the gradient strength.

Hence, the encoded velocity venc that characterized crusher gradients

can be calculated from (2.2) when φ = π:

venc =
π

γδ∆GG

The encoding velocity is the cut-off velocity, above which the spins

will be dephased giving no detectable signal, whereas below this level
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the spins will still be visible in the final image. In brief, bipolar gradi-

ents can be used to slectively suppress the signal form moving blood-

water, because the velocity of blood that is intended to be suppressed

is inversely proportional to the strenght of the gradient, which can be

manipulated by the user to get the desired performance. In diffusion

MRI, gradients are usually characterized by a unique variable b, the b-

value (or b-factor), that condensated all the user-dependent parametrs

involved in gradient design. For example, assuming a rectangular-

shaped gradient pulses, the b-value (in a unit of s/mm2), can be ex-

pressed as b = (γδG)2
(
∆G − δ

3

)
, which is uniquely defined once a cut off

velocity venc is chosen. Value greater than b = 1.7 s
mm2 have been found

to remove significant amount of intravascular signal.[11]

No vascular crushing Vascular crushing

Figure 2.12: example of a brain slice acquired after PLD = 0.21s the end of

a pseudo continuous labeling scheme without (on the left) and with (on the

right) bipolar gradients for flow suppression (b = 3 s
mm2 ).

However, the appropriate threshold of flow velocity to remove in a in-

dividual case is not easily defined, and so gradient strenght is generally

chosen empirically. Moreover, the flow suppression gradient is often

applied only in one direction to avoid the reduction in SNR associated

with the increased echo time TE required for multiple directions. Inso-

far, some of the signal for vessels with flow component perpendicular

to gradient may remain. It is the case of every feeding arteries parallel

to the image plane, if crusher gradients are applied in the slice selec-

tion direction. Another possibile problem with crushed experiments is

the fact that diffusion gradients, used for eliminating the signal from

fast-flowing blood, would add a diffusion weightening to the image.

However, when using common bipolar gradients of venc = 30mm
s

(equiv-

alent of b = 1.7 s
mm2 ), the resulting effect contribuites to a signal drop

inferior of 0.14% (in gray matter), which is negligible compared to an
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excepted signal change of 1− 2% due to perfusion [11].

Vascular crushing technique operate a reduction of ASL signal, mak-

ing it more perfusion related naturally at the expense of lower SNR. The

correction of vascular artifacts using vascular crusher gradients could

involve some problems, and sometimes the explicity model of the in-

travascular signal should be preferred.



Chapter 3

Quantification of ASL data with

parametric models

3.1 Introduction

ASL techniques produces a set of tagged and control images, which

subtracted ones form the others (accordingly to the labeling scheme

used) provide a series of perfusion-weighted images (PWI). Each voxel

value in the difference imagesvrepresents the blood flow measured

during the acquisition. If ∆ is the value of a difference image voxel,

we can distinguish two types of contribution in it:

• ∆(phy) : the effect due to the pysiological behaviour of the tracer

(labeled blood) that can be detected in the PWI obtained from dif-

ference of control and tag.

• ∆(non−phy): all the other effects that are not related to the physiolog-

ical functioning of the brain. A typical examples of these unwanted

contributions are off resonance effects difference and magnetiza-

tion transfer effects (MT) difference between control and label im-

ages, which are due to imperfections and technical limatations

in ASL experiment implementation. They are typically called sub-

traction errors because they arise from unexcepted discrepances

between label and control images.

Thus the ASL signal could be thought as the sum of these two groups

of magnetization contributions:

∆ = ∆(phy) +∆(non−phy)

However when a (parametric) model for cerebral perfusion quantifi-

cation from ASL data is used, the quantity ∆(non−phy) is generally ig-
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nored. This is why the purpose of such models is to describe how ki-

netics and relaxation combining each other to extract a quantitative

measurament of perfusion, condensated in some parameters whose

physiological meaning is well-defined. The central assumption of quan-

tification methods is that the control and tag subtraction is ideally

perfect, and so no subtraction error contribute to the measured sig-

nal (∆(non−phy) = 0). Every potential source of ∆(non−phy) contributions

should be previously accounted by appropriate mathematical model-

ing of these effects (in a preprocessing step) or using accurate technical

solutions which could prevent or reduce them.

The ASL signal is simply proportional to the difference in longitu-

dinal magnetization in the tissue due to blood that entered the voxel

and is still present at the measurament time. To make it more clear, it

is helpful to think as there were two groups of spin, defined by their

location just after the labeling inversion pulse: static untagged tissue

spins in the image voxel, and tagged arterial blood spins that travel

to the voxel. Then the essential assumption is that the longitudinal

magnetization of the first group is identical during the two parts of the

experiment. It means that the signal difference ∆ only depends on the

difference of the longitudinal magnetization of the labeled blood, and

gives a direct measure of how much of the original arterial magneti-

zation, created by the inversion pulse, has been delivered to the voxel

and survives to the time of measurement. So every model proposed to

quantify ASL data assumed that the static tissue is subtracted accu-

rately, and focused on the interpretation of the difference signal as a

measure of magnetization delivered by arterial flow [3].

The perfusion-weighted signal, that ASL technique produces, re-

flects perfusion of the tissue f , but also depends on a number of fac-

tors that are not directly related to perfusion itself. They are rather a

technique by-product, the results of how ASL detects perfusion. Pas-

sage of labeled blood in large vessels not perfusing the tissue through

which they pass, distance between labeling region and imaging voxel

which vary on voxel location, magnetization relaxation time function of

tissue type (and of readout) are some examples. All of these confound-

ing effects must be taken into account along with others calibration

factor and parameters which defined the absolute scale of the signal.

Inversion efficiency and the equilibrium magnetization of arterial blood

have to be measured or supposed to be known, if an absolute quantifi-

cation of perfusion is required. Vector ∆ reflects the principal factor to
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be described by ASL models:

∆ = ∆(t, f, T1t, T1b, α,M0b,∆t, τ, . . .)

In table (3.1) a list of parameters considered in ASL-MRI data quan-

tification, with their definition and unit, is reported. Some of them have

just been discussed, the other will be explained afterwards:

parameter description unit

CBF (f∗) cerebral blood flow mL
100g min

∆t transit delay s

τ bolus duration s

T1t tissue longitudianl relaxation time s

T1b blood longitudinal relaxation time s

α inversion efficiency of labeling pulse a.u.

M0t equilibrium magnetization of tissue a.u.

M0b equilibrium magnetization of arterial blood a.u.

λ brain-blood partition coefficient (*) mL
g

αLL flip angle of readout scheme employed rad

Table 3.1: definition of parameters. [*see section 1.1 for concepts on relation

existing between CBF and f ]

As it will be discussed in the following section, ASL data could be

sampled at single or multiple time after blood inversion. In both cases

sampling time will be generically denoted as t (global experiment time)

with the implicit assumption that its value represents the time from

the start of labeling. In the context of pulsed techniques t is often re-

ferred to inversion time (TI), i.e. the time from the inversion pulse which

is substantially the time from the start of labelling since the labelling

pulse used has a limited extent (tipically 20 − 50ms). With continuous

labeling, sampling times are sometimes expressed as post-labeling de-

lay (PLD), i.e. time delay after the end of labelling, which need to be

added to the labeling duration to get sampling time in terms of global

experiment time t.
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3.2 Single inversion time vs multi inversion

time

Among the parameters reported in table (3.1), great importance is cov-

ered by transit delay (∆t). Transit delay (also termed as arterial arrival

time AAT, bolus arrival time BAT, or arterial transit time) represents the

time tagged blood takes to move form the tagging location (a plane for

continuous labeling, a spatial position inside a volume for pulsed label-

ing) to the imaging voxel. It arises because the tagged blood must cross

a gap between tagging and imaging regions. ∆t is then dependent from

ASL acquisition parameters (those distance between tagging and imag-

ing regions). However, ∆t is known to vary markedly across the brain,

for example longer transit delay to the occipital lobe are typically ob-

served realtive to the frontal-parital-temporal lobe. This differences in

∆t are completely indipendent of acquisition parameters because they

reflect the different pathways that labeled bolus follows to reach imag-

ing voxels. Probably the posteriors cerebral arteries travel a longer dis-

tance parallel to the imaging plane to reach the occipital lobe, whereas

the middle cerebral arteries travel directly upward to the parietal lobes

[12]. In general, the network of cerebral arteries and arterioles exhibits

a complex geometry, with blood supplyig different parts of the brain

following different trajectories at varying velocities, making ∆t a vari-

able parameters over the whole brain. ∆t is thus somewhat governed

by the vasculature, providing useful information about its state: many

pathological conditions are known to results in a very slow blood flow

and consequently in very long transit times to tissue. ∆t measurements

also help to understand whether the hypoperfusion, typically found in

cerebrovascular disorders cases, is due to actual flow deficit or an ar-

tifact due to the delayed arrival of labeled blood. Moreover in healthy

individuals, ∆t has been shown to decrease during neuronal activity.

Transit delay evaluation is thus a useful complement to CBF measure-

ment.
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Figure 3.1: example of two voxels having the same CBF but different ∆t. Mea-

suring signal at a single inversion time would result in a lower CBF estimates

a the voxel with longer ∆t as compared with the voxel with shirter ∆t [11].

This local nature of ∆t makes particulary problematic the attemp

to accuraltely quantify CBF with usual ASL acquisition schemes. Tipi-

cally, ASL measurements are conducted at a single inversion time (or

post labeling delay) between tag generation and image readout, and

so no informations about transit time are acquired. The only way to

extract quantitative measure of CBF from these poor data is simply

neglecting transit time effects. Inappropiate values and uncertains on

this parameters can lead to both over and understimation of perfusion,

making the accuracy of CBF quantification from single time point ac-

quisition highly dependent on the actual ∆t values (figure 3.1). More-

over with single inversion time acquisition, not only the quantifica-

tion of CBF is weak, but relative perfusion values between regions are

not valid either. Modifications to the basic techniques have been intro-

duced to minimize ∆t sensivity of the measured signal ∆ in a single TI

experiment ([13, 6]). The basic idea to account for an unknow ∆t is to

sufficiently delay the acquisition time point. Nevertheless, the reduced

sensivity to ∆t might be compromised whenever transit times are un-

expectedly long (for istance in many pathological conditions) making

this artifice ineffective. In addition, there is another consideration that

potentially limits the advantages introduced by these techniques, ex-

pecially for PASL data. The TI required to face prolonged ∆t could be

so long as to degrade the SNR of the magnetization difference images,

being higher the signal reduction that occur due to magnetization re-

laxation. Since SNR is already a critical issue in ASL techniques, the

use of very long delay before imaging should be ideally avoided.

The problem can be solved acquiring images at multiple inversion

time and therefore measuring a signal difference time course instead
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of a single sample.
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Figure 3.2: typical sampling time points for PASL and pCASL labeling tech-

niques.

The improvment of the infomation available with dynamic perfusion

acquisition is associated with a time penalty due to the need of sam-

pling multiple inflow periods. Special readout schemes, such as Look

Locker readout, have to be used to overcome this incovenient, since the

standard sequences are generally too lengthy to be suitable for clinical

examination if more than one sample is needed. The theory of Look-

Locker has been reviewed in section 2.3.1, while the implications on

the quantification model will be discussed in the follow. Acquisition

time can be reduced also if an optimal sampling is designed, since less

experiment repetitions have to be performed to get the desired SNR by

averaging procedure.

3.3 ASL perfusion quantification

To extract quanitative CBF measurements from ASL dynamic data,

a detailed model of the process combining kinetics and relaxation is

needed. There are two main approaches to model ASL experiment, they

differ on how signal in difference image ∆ is interpreted when a model

∆M is built:
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• Compartmental models: ∆M is thought to be a measure of con-

cetration of labeled spins in difference images. It represents the

measured signal of a system of compartments describing the dis-

tribution and the exchange of labeled water spins within the voxel.

The equations of each compartment, which quantify the rate of

change of longitudinal magnetization in each pool, are versions of

Bloch equation modified by the inclusion of the exchange terms.

That is, labeled blood water molecule is the system tracer, and

usual compartimetal modeling is applied to it, giving a set of dif-

ferential equation each one describing the rate of change of this

tracer concentration inside the compartment. Since the measured

signal ∆ is modeled as the magnetization due to labeled spin con-

centration within the voxel rather than an actual tracer concen-

tration, a modification to this set of equation has to be introduced

to taking into account the magnetic properties of the ASL tracer.

The final result is a set of reviewed Bolch equations describing the

rate of change of the longitudinal magnetization of the labeled wa-

ter molecules inside the compartment due both relaxation and ex-

change processes. Single and multi-compartment (accounting for

finite capillary water permeability) have been proposed in litera-

ture [14]. In section 3.3.1 single compartment model is explained.

• Tracer kinetics model: ∆M is considered to be the fraction of

the original concentration of a tracer bolus that is still in the

voxel at the time of measurement. The labeling procedures pro-

duced a bolus of inverted water spins which is treated like a gen-

eral bolus of tracer delivered to the tissue by arterial flow, and

cleared by venous flow. The experiment is described by a linear

system whose input and output functions are respectively the ar-

terial tracer concentration and the measured signal ∆, and whose

impulse responses lump all the underlying phenomenon involved

in transport and uptake. In section 3.3.2 general tracers kinet-

ics model in the context of ASL experiment are reviewed, and a

common version of this model, the so called standard model, are

exhaustively exposed in 3.4.

3.3.1 Single compartment theory

The imaging voxel is assumed to be a single well-mixed compartment,

genearlly called tissue compartment. Labeled water is treated like a

diffusible tracer that freely crosses the blood brain barrier and fills the
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extravascular space. It eneters and leaves the voxel with perfusion rate

f , relaxes with tissue longitudinal relaxation time T1t, and no difference

is made between intra- and extra-vascular water.

Figure 3.3: schematic diagram of single compartment model.

The Bloch equation is modified to including the incoming of arterial

magnetization ma(t) and the outgoing of venous magnetization mv(t),

giving:
dM(t)

dt
=

M0t −M(t)

T1t

+ fma(t)− fmv(t)

where M(t) is the longitudianal magnetization of the voxel and M0t is

the equilibrium magnetization of the tissue. Single well-mixed com-

partment assumption imply that immediately labeled blood water ho-

mogenuosly distribuites within the compartment, so that labeled blood

water molecules and extravascular water molecules equilbrate each

other and are not discernable. Water in the blood leaving the voxel

contains labeled molecules at the same concentration as water in the

tissue voxel, weighted by the increased water concentration of blood to

tissue.Mathematically it is traduced by stating:

mv(t) =
M(t)

λ

where λ is the brain-blood partition coefficient for water. Consider-

ing the magnetization of the difference image, and assuming that the

physical quantyties f , T1t, M0t do not change between the two scan, the

single compartmental model equation is:

d∆M(t)

dt
=

0−∆M(t)

T1t

+ f∆ma(t)−
f

λ
∆M(t)

= −(
1

T1t

+
f

λ
)∆M(t) + f∆ma(t)
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defining:
1

T1t,app

=
1

T1t

+
f

λ

it yields to:
d∆M(t)

dt
+

∆M(t)

T1t,app
= f∆ma(t) (3.1)

where ∆M(t), the quantity described as a single compartiment, can

be though as a measure of concentration of labeled molecules in the

diffrence image [14]. This equation is a first order differential equation

that can be solved once an expression for the input function ∆ma(t) is

provided. That is not a problem because the form of ∆ma(t) can easily

derived from knowledge on the type of labeling used. The assumption

that the phisiology of the system is in a steady state implies that f and

T1,app remain costant over time during the experiment. So, the single

compartment model equation (3.1) can be viewed as the state equation

of LTI system: ẋ(t) = Fx(t) +Gu(t), where x(t) = ∆M(t) is the state vari-

able. The explicit solution of the differential equation is simply given

by the state output function with null initial condition (∆M(0) = 0) of

the LTI system:

x(t) = eFtx(0) +

t
ˆ

0

eF (t−t′)Gu(t′)dt′

⇓

∆M(t) =

t
ˆ

0

e
− 1

T1,app
(t−t′)

f∆ma(t
′)dt′

=

t
ˆ

0

e
− 1

T1,app
(t−t′)

f∆ma(t
′)dt′

= f∆ma(t) ∗ g(t)

Single compartment assumption clearly appears in the exponential

form e−αt of impulsive response of the linear system g(t). It is sim-

ply e−
f
λ
t when only kinetics of the agent are modelled, or become a

more complex expression e
−( f

λ
+ 1

T1t
)t

when also the magnetization decay

is considered. The main restriction of single compartment model is to

costrain clearance of labeled blood water and relaxation of its magne-

tization to follow the same law, making these two different processes

simply two aspects of the same more general one: magnetization out-

flow from the voxel.
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3.3.2 General kinetic model

The general kinetic model directly derives from tracer kinetics theory

which provide a mathematical description of the dynamic tissue con-

centration of any tracer that is delivered to the tissue by blood flow.

Dealing with ASL data, some adaptions to the general theory has to

be apported. The tracer considered here is labeled blood water, which

is measured in term of quantity of magnetization instead of concen-

tration. The measured signal ∆(t) is thus considered as a quantity

of magnetization that is carried into the voxel by arterial blood. The

amount of this magnetization at a time t will depend on the history of

delivery of magnetization by arterial flow and clearance by venous flow

and longitudianl relaxation [15]. These various physical process can

be described by defining three functions of time, that we call kinetic

model functions:

• delivery function c(t): normalized arterial concentration of magne-

tization arriving at the voxel at time t

• residue function r(t, t′): is the fraction of tagged water molecules

that arrived at time t′ and is still in the voxel at time t. This func-

tion contains most of the details of the distribution and the kinet-

ics of the agent.

• magnetization relaxation function m(t, t′): is the fraction of the

original longitudinal magnetization tag carried by the water molecules

that arrived at time t′ that remains at time t. This function justi-

fyies the other way in which the agent can “clear” from the voxel

in addition to venous flow.

If the physiological state of the tissue is not changing, then r(t, t′) and

m(t, t′) are functions of just the interval t − t′, and could be written as

m(t) and r(t), with t having that time difference meaning.

With these definitions the amount of magnetization delivered to a

particular voxel between t′ and t′ + dt′ is 2αM0bfc(t
′)dt′, where f is the

CBF (expressed in units of ml/ml s), M0b is the equilibrium magnetization

of a fully arterial blood filled voxel, and α is the labelling efficiency,

the fraction of the maximum possible change in longitudinal magneti-

zation, so that 2αM0b is the arterial magnetization difference after the

labeling phase. The fraction of magnetization that remains at time t is

r(t−t′)m(t−t′). Then ∆M(t), the amount of magnetization in the voxel at

time t, is simply given by adding up all the magnetization contributions
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that had arrived in the past weighted with the probability they are still

in the voxel:

∆M(t) = 2αM0bf

t
ˆ

0

c(t′)r(t− t′)m(t− t′)dt′

= 2αM0bf {c(t) ∗ [r(t)m(t)]}
= fQ(t) (3.2)

The last form of (3.2) emphasizes the central role of the perfusion in

determining the ASL signal, making explicit its perfusion-weighted na-

ture. The measured magnetization difference is modeled as the product

of f and Q(t), that can be thought as a calibration factor that convert

the local cerebral flow into a measured magnetization difference. This

factor control the SNR of the experiment: for a larger Q(t) the same

local f will produce a larger ASL signal difference ∆M(t).

Summarizing, the general ASL model need to consider transit delays

from the tagging region to the voxel, magnetization decay, exchange of

water between blood and tissue, clearance by venous flow and different

forms of arterial tagging. All of these process can be taken into account

with appropriate forms of the delivery function c(t), the resiude func-

tion r(t) and the magnetization deacy function m(t).

3.4 The Standard ASL model

The standar model for ASL data is based on three key assumptions

that, in the frame of the kinetic model, correspond to three particular

forms for the functions c(t), r(t) and m(t) [3].

1. the arrived of labeled blood at a particular voxel is assumed to be

via uniform plug flow. It leads to a picewise definition of the de-

livery function which allows the labeled blood to eneter the voxel

only in a precise temporal window defined by two parametrs: tran-

sit delay ∆t, and bolus duration τ . The transit delay ∆t is the time

required to labeled blood to begin to appear in the tissue voxel

after the start of labeling, and its role has been previously investi-

gated. The bolus duration τ is the temporal extent of the delivery

of labeled blood to voxel. These two parameters define when the

perfusion process became detectable by the ASL experiment so

they are directly related to the pysiology state of the tissue, but

also depend on how the labeling is accomplish. The meaning of
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uniform plug flow assumption is that c(t) is nonzero only in the

interval ∆t < t < ∆t+τ , where for continuous labeling is c(t) = e
− ∆t

T1b

while for pulsed labeling is c(t) = e
− t

T1b .

2. the kinetics of water exchange between tissue and blood are as-

sumed to be described by single compartment kinetics: whatever

compartements may exist within the tissue are undergoing such

rapid exchange of water that their concentration ratios remain

constant even though the total tissue concentration is function of

time. This mean that the tissue concentration ∆M(t) and the ve-

nous conetration ∆mv(t) are equal once they are corrected for the

different water conetent between blood and tissue. It has been

shown that this assumption is equivalent to take the exponential

form for the reisude function r(t) = e−
f
λ
t

3. as soon as the labeled water molecules have reached the tissue

voxel, the magnetization is assumed to decrease with the relax-

ation time of the tissue T1t. This essentially means that water

is completely extracted form the vascular space immediately af-

ter arrival in the voxel. Thus magnetization relaxation function is

given by m(t) = e
− t

T1t .

The standard model can be summarized, in terms of delivery, kinetics

and relaxation function, as:

c(t) =







0 t ≤ ∆t

e
− t

T1b (pulsed)

e
− ∆t

T1b (continuous)
∆t < t ≤ ∆t+ τ

0 ∆t + τ ≤ t

r(t) = e−
f
λ
t

m(t) = e
− t

T1t (3.3)

It can be shown that these setting for the kinetic models function leads

to the same model provided by single compartmental theory, in which

modify Bloch equations approach is used. For the sake of complete-

ness the demonstration of this equivalence, proved in [16], is reported

here. To Defining the arterial magnetization in the difference image as

∆ma(t) = 2αM0bc(t), and using the exponential forms [] for residue and

relaxation functions, the voxel magnetization difference in the general
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kinetic model frame can be rewritten as:

∆M(t) = f

t
ˆ

0

∆ma(t
′)r(t− t′)m(t− t′)dt′

due to exponential form, r(t) and m(t) can be scomposed as:

r(t− t′) = e−
f
λ
(t−t′) = e−

f
λ
te−

f
λ
(−t′) = r(t)r(−t′)

m(t− t′) = e
− 1

T1t
(t−t′)

= e
− 1

T1t
t
e
− 1

T1t
(−t′)

= m(t)m(−t′)

giving:

∆M(t) = fr(t)m(t)

t
ˆ

0

∆ma(t
′)r(−t′)m(−t′)dt′

differentiating both sides of this equation, remembering derivate of

product rule (so that d(r(t)m(t))
dt

= (f
λ
+ 1

T1t
)r(t)m(t)), fundamental theorem

of calculus (so that d
dt
(
´ t

a
f(t′)dt′) = f(t), if F (t) =

´ t

a
f(t′)dt′ is contonuous

in [a, t] and differentiable in (a, t)) and the exponential form of functions

m(t) and r(t) (that imply r(t)r(−t) = 1 and m(t)m(−t)=1), it gives:

d∆M(t)

dt
= f(

f

λ
+

1

T1t
)r(t)m(t)

t
ˆ

0

∆ma(t
′)r(−t′)m(−t′)dt′ + fr(t)m(t)∆ma(t)r(−t)m(−t)

= (
f

λ
+

1

T1t
)∆M(t) + f∆ma(t)

=
1

T1t,app

∆M(t) + f∆ma(t)

which is the same equations describing the single compartment model.

It has been shown that assuming residue function to be r(t) = e−
f
λ
t is

equivalent to the single compartment assumption on difference of ve-

nous magnetization, ∆mv(t) =
∆M(t)

λ
, which implies that water exchange

occouring across capillary walls between blood and tissue within the

voxel is such rapid that the ratio of concentration of water in venous

blood vs. tissue space is constant over time and equal to λ. Further-

more, assuming magnetization deacy to be governed only by the tissue

relaxation (m(t) = e
− t

T1t ), make possible a single compartment modeling

for ∆M(t), the magnetization difference in the voxel.

3.4.1 Standard Model equations

Using formulations 3.3, explicit expression for the magnetization dif-

ference model ∆M(t) can be obtained by inserting them into (3.2) and



42 3. QUANTIFICATION OF ASL DATA WITH PARAMETRIC MODELS

analitically resolving the convolution integral. The equivalence between

single compartment and kinetic model under standard assumption on

the kinetic functions (i.e. steady state conditions), as it has been previ-

ously proved, ensure the same expressions result form analitical reso-

lution of first order differential equation (3.1) with ∆ma(t) = 2αM0bc(t) as

driving function. It has been chosen to show how to derive ∆M(t) equa-

tions by resolving convolution integral instead of differential compart-

ment equation. The extremely flexible nauture of the general kinetic

approach allows standard assumptions to be relaxed modifying the ex-

pressions of the kinetcs functions without altering the structure of the

model. Ideally all physiologic effects of the system can be modelled by

appropriate definitions of those three functions, although analitical so-

lution is possible only in some simple cases. Elsewhere they must be

handled numerically [17, 3].

The following notations is used:

R1t =
1
T1t

R1b =
1

T1b
R1,app =

1
T1t,app

= R1t +
f

λ
δR = R1b −R1,app (3.4)

Pulsed arterial spin labeling

Recalling (3.3), kinetic functions expressions for standard model are:

c(t) =







0 t ≤ ∆t

e
− t

T1b ∆t < t ≤ ∆t + τ

0 ∆t+ τ < t

r(t) = e−
f
λ
t m(t) = e

− t
T1t

coping them into the convolution integral, it yields to

∆M(t) =







0 t ≤ ∆t

2αM0bf
´ t

∆t
e
− 1

T1b
t′−

f
λ
(t−t′)− 1

T1t
(t−t′)

dt′ ∆t < t ≤ ∆t + τ

2αM0bf
´ ∆t+τ

∆t
e
− 1

T1b
t′−

f
λ
(t−t′)− 1

T1t
(t−t′)

dt′ ∆t + τ ≤ t
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the general solution for second and third segment is given by (using

(3.4)):

∆M(t) = 2αM0bf

n2
ˆ

n1

e−R1bt
′−

f
λ
(t−t′)−R1t(t−t′)dt′

= 2αM0bf

n2
ˆ

n1

e−R1bt
′−R1,appt+R1,appt

′

dt′

= 2αM0bf

n2
ˆ

n1

e−δRt′−R1,apptdt′

= 2αM0bfe
−R1,appt

(
1

−δR

)
(
e−δRn2 − e−δRn1

)

= −2αM0b

δR
fe−R1,appt

(
e−δRn2 − e−δRn1

)

For n1 = ∆t and n2 = t (second segment), it becomes :

∆M(t) = −2αM0b

δR
fe−R1,appt

(
e−δRt − e−δR∆t

)

= −2αM0b

δR
fe(δR−R1b)t

(
e−δRt − e−δR∆t

)

= −2αM0b

δR
fe−R1bt

(
1− e−δR(t−∆t)

)

and for n1 = ∆t and n2 = ∆t + τ (third segment):

∆M(t) = −2αM0b

δR
fe−R1,appt

(
e−δR(∆t+τ) − e−δR∆t

)

= −2αM0b

δR
fe(δR−R1b)te−δR∆t

(
e−δRτ − 1

)

= −2αM0b

δR
fe−R1bteδR(t−∆t)

(
e−δRτ − 1

)

Standard model for pulsed ASL data is thus:

∆M(t) =







0 t ≤ ∆t

−2αM0b

δR
fe−R1bt

(
1− e−δR(t−∆t)

)
∆t < t ≤ ∆t + τ

−2αM0b

δR
fe−R1bteδR(t−∆t)

(
e−δRτ − 1

)
∆t + τ ≤ t

(3.5)
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Figure 3.4: PASL standard model with the following parameters settings:

CBF = 60 mL
100g min

, T1t = 1.3s, ∆t = 0.8s, τ = 1s. In each boxe, a parameters

is allowed to vary on a grid of values defined in the relative legend.

Continuous or pseudo-continuous arterial spin labeling

To achieve standard model expression with continuous or pseudo con-

tinuous labeling scheme can be used the same strategy. The biggest

conceptual difference stays in the different description of the delivery

function c(t). Using the kinect model functions (3.3) with version (c) for

delivery of arterial magnetization c(t):

c(t) =







0 t ≤ ∆t

e
− ∆t

T1b ∆t < t ≤ ∆t + τ

0 ∆t+ τ < t

r(t) = e−
f
λ
t m(t) = e

− t
T1t

the general model ∆M(t) becomes:

∆M(t) =







0 t ≤ ∆t

2αM0bf
´ t

∆t
e
− ∆t

T1b
−

f
λ
(t−t′)− 1

T1t
(t−t′)

dt′ ∆t < t ≤ ∆t + τ

2αM0bf
´ ∆t+τ

∆t
e
− ∆t

T1b
−

f
λ
(t−t′)− 1

T1t
(t−t′)

dt′ ∆t + τ ≤ t
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The general solution for second and third segment is given by (using

(3.4) again):

∆M(t) = 2αM0bf

n2
ˆ

n1

e−R1b∆t− f
λ
(t−t′)−R1t(t−t′)dt′

= 2αM0bfe
−R1b∆t

n2
ˆ

n1

e−R1,appt+R1,appt
′

dt′

= 2αM0bfe
−R1b∆te−R1,appt

n2
ˆ

n1

eR1,appt
′

dt′

= 2αM0bfe
−R1b∆te−R1,appt

(
1

R1,app

)
(
eR1,appn2 − eR1,appn1

)

=
2αM0b

R1,app
fe−R1b∆te−R1,appt

(
eR1,appn2 − eR1,appn1

)

For n1 = ∆t and n2 = t (second segment), it becomes:

∆M(t) =
2αM0b

R1,app

fe−R1b∆te−R1,appt
(
eR1,appt − eR1,app∆t

)

=
2αM0b

R1,app
fe−R1b∆t

(
1− e−R1,app(t−∆t)

)

and for n1 = ∆t and n2 = ∆t + τ (third segment):

∆M(t) =
2αM0b

R1,app
fe−R1b∆te−R1,appt

(
eR1,app(∆t+τ) − eR1,app∆t

)

=
2αM0b

R1,app
fe−R1b∆te−R1,app(t−∆t)

(
eR1,appτ − 1

)

The Standard model for continuous or pseudo-continuous labeling is

thus:

∆M(t) =







0 t ≤ ∆t
2αM0b

R1,app
fe−R1b∆t

(
1− e−R1,app(t−∆t)

)
∆t < t ≤ ∆t + τ

2αM0b

R1,app
fe−R1b∆te−R1,app(t−∆t)

(
eR1,appτ − 1

)
∆t + τ ≤ t

(3.6)



46 3. QUANTIFICATION OF ASL DATA WITH PARAMETRIC MODELS

0 1 2 3 4 5 6
0

5

10

15

20

25

t [s]

∆M(t)
[a.u.]

a  

 
CBF=40mL/100g min
CBF=60mL/100g min
CBF=150mL/100g min

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

t [s]

∆M(t)
[a.u.]

 

 

b

T
1t

=0.9s

T
1t

=1.3s

T
1t

=1.6s

0 1 2 3 4 5 6
−2

0

2

4

6

8

10

12

t [s]

∆M(t)
[a.u.]

 

 

c

∆t=0.4s
∆t=0.8s
∆t=1.2s

Figure 3.5: pCASL standard model with the following parameters settings:

CBF = 60 mL
100g min

, T1t = 1.3s and ∆t = 0.8s . In each boxe, a parameters is

allowed to vary on a grid of values defined in the relative legend.

3.5 Standard model and Look Locker readout

In section 3.2, the importance of monitoring the inflow of labeled blood

at many sampling times has been discussed. In brief, local parame-

ters in addition of CBF can be estimated form data, addressing in a

more reliable way the quantification of some confounding effects that

influence CBF estimation. This ideal great improvment involves, on the

other hand, some potential complications: (a) the need of sampling la-

beled blood signal at several time points (more than 5 as it’s typically

performed in ASL dynamic data) to assure the additionl parameters

to be estimated with good accuracy despite low SNR of ASL signal, (b)

the need of doing that in a limited temporal extension (compatible with

clinical experiment), (c) the further model complexity introduced due

to either new parameters that have to be estimated and the need of

modeling how the acquisition strategy interfers with the process the

model aims to describe.

The Look-Locker sampling strategy has been shown to fit very well

the first two drawbacks just highlighted (as reported in parte sul read-

out LL capitolo precedente). It allows a whole dataset to be acquired
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within 5 minutes with a temporal resolution between samples of about

100 ms [9]. In the follow, the modifications brought on the perfusion

standard model to taking into account multiple RF-pulses in the Look-

Locker readout are described.

The Look Locker read out applied to ASL experiment samples a se-

ries of images, equally spaced in time, after each spin tagging prepara-

tion, employing low flip angle excitations during the relaxation of the

longitudinal magnetization to equilibrium, and it is applicable to all the

common labeling techiques used. The repetetive perturbation by the LL

readout pulses during recovery costantly disturbed the free relaxation,

and drives the magnetization to a steady state described by an effective

longitudianal relaxation time T1,eff (shorter than usual T1) and an equi-

librium magnetization M0,eff (lower than the undisturbed M0) in which

a dependance from LL readout parameters appear.

The perturbation by the readout pulses can be taken into account,

in the frame of standard model, in the computation of magnetization

relaxation function m(t, t′). When more than one readout pulse is ap-

plied, the longitudinal magnetization decays no more with relaxaton

time of the tissue T1, but and addictional flip angle dependent factor

must be added, so that:

m(t, t′) = e
−

(t−t′)
T1t [cosαLL]

n

where the readout dependent parameters are αLL, the flip angle of each

excitation pulses, and n, the number of readout pulses experienced by

the labeld blood bolus since its entrance in the voxel. Parameter n is

thus function of time, and is given by:

n = floor

(
t

T I2

)

− floor

(
t′

TI2

)

where TI2 denoted the equally spaces time between LL readout pulses.

The floor function returns the largest integer smaller than its argu-

ment, and it is intrinsically a discontinue function. This discontinue

nature of the parameter n, entailed in m(t, t′) definition, make the con-

volution integral (3.2) not analytically resovable. To preserve one of the

most appealing properties of the standar model, the analytical form of

its solution as showed in section (soluzioni analitiche standard model),

the magnetization relaxation function must be approximated by a con-

tinuous function in which floor function is ommitted. The parameter

n is thus given by n = t−t′

TI2
, and the magnetization function m(t, t′) be-
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comes:

m(t, t′) = e
−

(t−t′)
T1t [cosαLL]

n

= e
−

(t−t′)
T1t en ln[cosαLL]

= e
− t−t′

T1t
+ t−t′

TI2
ln[cosαLL]

= e
−

(

1
T1t

−
ln[cosαLL]

TI2

)

(t−t′)

The magnetizaion relaxation function now depends on the time differ-

ence t−t′, as was naturally assumed in the standard model by recalling

the steady state of the physiologic system modelled. Moreover, m(t− t′)

is again a exponential-shape function, where the longitudinal relax-

ation rate is now R1,eff = 1
T1,eff

= 1
T1t

− ln[cosαLL]
TI2

, the effective LL relaxation

rate, instead of the orignal tissue relaxation rate R1t =
1
T1t

. Defining:

R1,eff,app =
1

T1,eff,app
=

1

T1t
+

f

λ
− ln [cosαLL]

TI2

δR =
1

T1b
− 1

T1,eff.app
= R1b − R1,eff,app

the expression of the standard model is directly obtained, using this

new definition of δR for pulsed experiments, or substituing R1,app with

R1,app,eff for continuous experiments. In both cases the special form of

the Look-Locker readout scheme is apparent only in the modified ap-

parent relaxation time T1,eff,app (which appear explicitely in countinuous

model while is included in δR in pulsed model), due to the presence of

a readout dependent factor ln[cosαLL]
TI2

, missing in standard acquisition

methods.
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Figure 3.6: effect of flip angle, αLL, in pCASL (top) and PASL (bottom) model.

Model parameters are the same used in figures (3.4,3.5).
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model.
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Figure 3.8: comparison between standard model and standard model with LL

readout both for pCASL (top) and PASL (bottom). Parameters for standard

models are those used in figures (3.4,3.5), αLL = 40° and TI2 = 0.2s.

The LL readout introduces in the standard model several measure-

ment parameters that highly impact the predicted signal. These are

the flip angle αLL, and the time between successive data acquisition

TI2 (which contribuite to define the total measurement time togheter

with NLL. Optimization procedures are usually employed to find an

appropriate set of these measurement parameters that minimizes a

particular cost function (for exemple, a function that relate the vari-

ance of CBF to the adjustable LL parameters, or express SNR of the

acquired signal in terms of the LL parameters[]). However, when para-

metric models are fitted to ASL data, these LL-dependent parameters

are fixed to their experimental (eventually optimal) nominal values, and

the main issue is to ensure they don’t differ. Form this point of view,

while TI2 is usually well-definie, αLL is a very fairy parameters because

is likely to vary largerly within the acquisition volume, actually limiting

the reliability of Look-Locker measurements. Due to this reason, LL

measurement require either a good field homogeneity or an additional

measurement of the flip angle spatial distribution to limit or account

for its deviation [9].

3.6 Proposed models restrictions

Standard ASL model is the result of a series of assumptions conden-

sated in the kinetic functions definition (3.3). They provide an oversem-

plified description of blood exchanges within brain tissue, by a severe
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hypothesis on tissue voxel considered as a single well mixed compart-

ment. More realistic description of perfusion process should take into

account the limited permeability to water of capillary blood (implying

that water is not completely extracted during capillary transit), or the

fact that tissue\blood exchange of water is not istantaneous but re-

quire to begin at least a time lag after entering the voxel, to allow blood

to travel down the vascular tree of the voxel till capillary bed. Although

this improvements, in principle, can be implemented in the frame of

general kinetic model by adequate reshaping of kinetics function r(t)

and m(t), they has been mostly indagated through the adoption of pluri

compartmental models [*ref].

Figure 3.9: schematic diagram of two compartmentals model proposed by [*ref].

Water exchanges between blood and extravascular space are described in

terms of PS, the permeability (P) surface area (S) product of brain capillar-

ies to water, per volume of tissue. PS published values in whole brain vary

from 0.9 − 1.7min−1. In single compartmental (i.e. standard ASL model) capil-

lary wall permeability to water is else assumed to be infinite [14].

Assumption regarding the shape of input function c(t), however, can

be relaxed without modify the basic single compartment structure un-

derlying standard ASL model, and furthermore without lose the pos-

sibility of deal with analytical expression. In the standard model de-

scribed above, sudden and simultaneous arrival of tagged blood into

the imaged region is assumed (the uniform plug flow assumption). This

makes leading and trailing wavefront of tagged blood bolus to form

sharp-edge step functions, noticeable in the ’rect’ like shape of deliv-

ery function c(t). A more realistic approach aims to replace c(t) with a

smoother input function that accounts for the statistical nature of the

arrival time. Infact, tagged blood water molecules proceed to the imag-

ing slice along pathways of varying lengths and at different speeds.

This randomness has a consequence of smoothing the edges of the
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c(t). Remembering the definition of standard delivery fucntion for PASL

and pCASL:

c(t) = e
− ∆t

T1b w(t) pCASL

c(t) = e
− t

T1b w(t) PASL

with w(t) defining tyical boxcar shape (function is non null only for

times ∆t ≤ t ≤ ∆t + τ ), dispersion effects can be explicitated by taking

the convolution of w(t) with the a dispersion kernel k(t), describing how

dissipation occour:

c(t) = e
− ∆t

T1b [w(t)⊗ k(t)] pCASL

c(t) = e
− t

T1b [w(t)⊗ k(t)] PASL

Analytical solutions were obtained with uniform dissipation kernel and

gaussian dissipation kernel (see figure (3.10)).

Figure 3.10: effects of input dispersion (top panel) inclusion into PASL

model (bottom panel). Smoothing of the input function is shown to

affect not only the intial slope but also the maximum obtainable per-

fusion signal [17].

Recently, a gamma kernel shape has been proposed and suggested

as the more realistic solutions to model dispersion in ASL data quan-

tification [18]. Analytical solution for convolution with gamma kernel
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is given:

w(t)⊗k(t) =







0 t ≤ ∆t

Q (s(t−∆t), 1 + sp) ∆t ≤ t ≤ ∆t+ τ

Q (s(t−∆t), 1 + sp)−Q (s(t−∆t− τ), 1 + sp) t ≥ ∆t + τ

where Q(x, y) is the incomplete gamma integral defined as Q(x, y) =
1

Γ(y)

´ x

0
e
−uuy−1du, and s and p are the parameters of gamma dispersion

kernel.

Another limitation regards the introduction of the LL readout effects

in standard model (see section 3.5). In the model proposed blood spins

are assumed only to experience perturbations when they are visible in

the experiments, that is before ∆t, when bolus has not reached the

tissue yet, magnetization tag is supposed to be insentive to RF pulses

of LL readout. Actually longitudinal magnetizaion of water molecules

is already diminuished by the readout excitations, albeit they reside

in arterial blood instead of tissue. By modifying the function c(t), the

additional RF-excitations in LL acquisition can be modeled:

c(t) =







0 t ≤ ∆t

e
− t

T1b [cosαLL]
nc [pCASL]

e
− ∆t

T1b [cosαLL]
nc [PASL]

∆t < t ≤ ∆t + τ

0 ∆t + τ ≤ t

with nc = floor
(

∆t−δtmin

TI2

)

providing the number of excitations of LL puls-

ing scheme experienced by blood before reaching the voxel, being δtmin

the time at which tagged blood entered the imaging region. The ad-

dictional cosine factor, [cosαLL]
nc, can be separted from the convolution

model (3.2), and acts only as a scaling factor for the perfusion. However

this factor is difficult to calculate because nc is not precisely known,

and can vary in dependance of which artery is feeding the voxel.





Chapter 4

Materials and Methods

In this chapter datasets available is briefly described. Methods used in

this work to quantify these data is then accurately exposed, giving also

their theoretical background.

4.1 Materials

MR images were acquired with a Philips ACHIEVA 3T MRI-scanner us-

ing a 32-channel neurovascular head coil. Six healthy human subjects

(27.5 ± 1.68 years of age, 2 males and 4 females) were scanned using

the same protocol. All subject gave informed consent after the nature

of the procedure examinations were explained. The acquisition session

was constituited of:

• high resolution T1-weighted MR images, acquired using a magne-

tization prepared rapid gradient echo (MPRAGE) sequence (256 ×
256×160 matrix dimension, 1×1×1mm3 voxel dimension), providing

anatomical informations.

• perfusion-weighted ASL images. They were acquired using a mul-

tislice gradient-EPI readout in combination with Look-Locker sam-

pling strategy. EPI readout was designed to accomplish the acqui-

sition of six axial slices (64 × 64 matrix, with 3.5× 3.5mm2 in plane

resolution, slice thickness of 6mm), in a temporal windown of

Tslice = 33ms per slice. For LL sequence, parameter set was given by

TI2 = 200ms sampling period, NLL = 15 number of TI, andαflip = 40°

flip angle of multiple excitation pulses. With these settings, 15 im-

ages at TI ranging from 10ms to 3010ms after the end of labeling

scheme, equally spaced in time by amount ∆TI = TI2, were ac-

quired in order to adequately sample the kinetic curve of inflow-
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ing blood and allow model fitting. Tag\control pairs acquisition

was repeated N = 30 times for subsequent signal averaging. Two

kind of labeling scheme was performed: (a) signal targeting with

alternate radiofrequency (STAR) version of pulsed ASL (TR=5s),

(b) pseudo-continuous ASL, with a labeling duration τ = 1.6s. In

both schemes gap between labeling plane (or inversion slab center

for pulsed label) and lowest imaged slice was 7, 5cm. LL-EPISTAR

adn LL-pCASL experiments were repeated with and without bipo-

lar gradients to compare differenece in perfusion-weighted images

due to signal from intra-arterial blood. The diffusion-sensitizing

bipolar gradients (diffusion b-value =3 s
mm2 ) were applied in all spa-

tial directions directly after readout preparation to dephase flow-

ing spins, with TE = 16ms long enough to accomodate theeir pres-

ence. All acquisitions used a sense acceleration factor of 2.5.

• M0 sensitive images, a series of calibration images in which no

spin tagging was performed (same readout dimension of pCASL

and PASL, TE = 16 ms, TR = 20s long enough to approach a

magnetization equilibrium state).

4.2 Methods

In the work presented here, CBF and other pefusion realated param-

eters were estimated by fitting appropriate models to ASL data. Model

fitting procedure is usually preceded by a preprocessing step, in which

correction for motion\acquisitions artifacts, outliers analysis and spa-

tial filtering, are generally performed. In this work, all acquired data

were involved in quantification step, and preprocessing reduced to a

simple masking of slice images to exclude from the analysis back-

ground voxels.

Two aspects of ASL data quantification was mainly discussed in this

work:

1. the definition and the validation of a general scheme of settings

to perform ASL standard model quantifiation [3] with a variegated

set of data. In this study PASL (STAR) and pCASL data with and

without vascular crushing was considered.

2. the study of an improved version of Standard model. The aim was

to correct one of its typical limit that severly restricts its use, espe-

cially when data are acquired without vascular flow suppression
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as single well mixed compartment assumption is far to be satisfied

in that case.

4.2.1 Voxel wise standard model

ASL dynamic data is describe at voxel level using the following voxel

wise model of observations:

∆(tk) = ∆M(tk, p) + v(tk) k = 1, . . . , NLL (4.1)

where ∆(tk) is the measured signal difference at istant tk, ∆M(tk, p)

is the magnetization difference (which takes form (3.5) for PASL, and

form (3.6) for pCASL data, see chapter 3 for theoretical description)

for a given time point tk. p is the parameters vector p, and v(tk) is the

additive noise corrupting measures at time tk.

Defining t = [t1, t2, . . . , tNLL
] as the vector of temporal grid at which

ASL images are sampled, the time dependence in (4.1) can be including

in ASL model using a vector notation, in which vector element at posi-

tion k refers to sampling time tk. Thus, voxelwise ASL model is thus:

∆ = ∆M(p) + v







∆1

∆2

...

∆NLL







=








∆M(t1, p)

∆M(t2, p)
...

∆M(tNLL
, p)







+








v1
v2
...

vNLL








(4.2)

where ∆ is the set of observation, ∆M is the vector of model predic-

tions, and v is the vector of random noise samples. Each vector has

a dimension of [NLL × 1], where NLL is the total number of RF pulses

in the LL readout. Parameters vector p contains parameters that have

to be estimated from data to obtain the optimal fit. The exact content

of vector p depends also on how model inference is performed (LS ap-

proach or bayesian approach), beside labeling technique used. In table

[4.1] a resumptive scheme of parameters vector is shown.
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LS approach MAP approach

PASL scheme p = [f, T1t, ∆t, τ ]T p = [f, T1t, ∆t, τ, M0b]
T

pCASL scheme p = [f, T1t, ∆t, ]T p = [f, T1t, ∆t, M0b]
T

Table 4.1: unknown parameters in each of inference settings. Standard

PASL model requires τ to be estimated from data respect to pCASL

data model. Bayesian approach allow M0b to be estimated using a-

priori information, instead of fixing it to a data-driven value as with

LS approach.

All the other parameters included in standard model definition, ac-

curately described in section 3.5, has to be considered known from

literature or experimental setup when model (4.2) is fitted to data. Ta-

ble (4.2) reports the setting of these auxiliary parametrs used with ASL

standard model.

PASL pCASL

α 0.95 literature 0.8 literarure

λ 0.9 g

mL
literature 0.9 g

mL
literature

T1b 1.68s literature 1.68s literature

αflip 40° experimental setup 40° experimental setup

TI2 0.2s experimental setup 0.2s experimental setup

τ unknown 1.6s experimental setup

M0b* extracted from data* extracted from data*

Table 4.2: λ and T1b are global parameters independent from labeling

scheme with well defined values derivable from literature [3, 19][3, 19].

α is dependent from the type of labeling, whose value can be ex-

tracted from data. However in this thesis it was set to values obtain

from published studies [7]. αflip and TI2 are parameters of readout se-

quence. τ has different meaning dipending on labeling approach used:

with pCASL it indicates labeling duration and is fixed by experimental

setup, with PASL it becomes bolus duration at voxel level and has to

be estimated. [*] M0b is generally calucalated from data using correc-

tion factor deriving form literature studies, but when model inference

is performed in a Bayesian framework it becomes part of vector p and

treated as unkown parameter, to better account for its fundamental

role as main CBF scaling factor (for details see section 4.2.3).
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4.2.2 Weighted nonlinear least squares estimation

The first attemp to fit model for magnetizion difference ∆M(t, p) to ASL

∆(t) was performed using least squares (LS) approach. Briefly, the opti-

mal set of parameter values when LS approach is used, pLS, is the one

who minimizes a cost function given by the residual sum of squares

(RSS), where residuals,r(tk) with k = 1, . . . , NLL, are defined as the dif-

ferences between data and model predictions. In the context of ASL

model, it can be formalize as follows:

pLS = argmin
p

[
‖ r(p) ‖2

]
= argmin

p

[
‖ ∆−∆M (p) ‖2

]
(4.3)

where vector p of unknown is defined in table (4.1). The nonlinear na-

ture of ASL standard model ∆M(t, p) precludes the existence of a close-

form solution for minimization problem explicitated by (4.3). In prac-

tice, to find pLS non linear version of LS estimator has to be used. A

lot of algorithm can be used for nonlinear optimization, however all

of them consist of an iterative scheme in which substantially a linear

solution approximation is maden at each step. In this work nonlinear

least square (NLLS) optimal parameters were calculated using MatLab

rountine lsqnonlin() in which trust region reflective optimization algo-

rithm is set as default [20].

A refined version of LS estimation could be obtain associating a

weight to each data point ∆k, so that when computing the RSS each

of them will contribuite to the total amount in proprotion to the ampli-

tude of its weight. One can refernce this approach as weighted NLLS

(WNLLS). The meaning of data weights is to decrete how reliable is each

sample to better address parameters identification. A natural choiche

for weight is to use inverse of measurement noise standard deviation,

when it is known. Elsewhere they must be evaluate somehow, for ex-

ample using data or knowledge about experiment [21].

In ASL, data weights to include in NLLS estimator can be derived di-

rectly form data, taking advantage form the multiple experiment repeti-

tons performed to face with low SNR of the perfusion signal. Each ASL

signal sample, ∆k, is the result of an average procedure along N experi-

ment repetition, from which a measure of variance of the sample can be

derived. There is two way to evaluate standard deviation of measures,

depending on how signal difference is considered: (a) difference be-

tween average of labeled and control images, (b) average of labeled and

control difference images. Details on weights calculation, in both man-

ner, are given in A. In WNLLS estimation, weights derived using (b), the
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so called mean of differences model for weights, was choosen. Sum-

marizing, from multiple ASL experiment repetitions a vector of data

weights [w1, w2, . . . , wNLL
] were extracted for each voxel, and introduced

in LS estimator. Adopting a matrix notation, LS solution of parameters

identification is given by:

pLS = argmin
p

[
NLL∑

k=1

(
wkrk(p)

)2

]

= argmin
p

[(
∆−∆M(p)

)T
W

(
∆−∆M(p)

)]

(4.4)

where W is the diagonal [NLL ×NLL] matrix, whose elements are sim-

ply data weights wk. Parameter values obtained from equation (4.2.2)

are referred to weighted non-linear least square (WNLLS) estimations

of ASL standard model parameters. The intial values of parameters,

required by nonlinear estimation algorithm to initialize iterative reso-

lution scheme, were set to accepted physiological values.

4.2.3 Bayesian inference with ASL data

As it will be shown in section (risultati), the traditional model fitting ap-

proach that makes use of WNLLS estimate experiences some problems

when it is applyied to ASL data. Model nonlinearity coupled with low

SNR data points could easily lead to local optimum solutions, or to the

lack of convergence of non linear estimator. This unwanted behaviour,

at a fixed SNR level, is the more likely the more is the number of pa-

rameters to be estimated. This implies that with WNLLS estimation,

particular care must be paid to the number of unknown parameters

included in the model, an usually with dynamic data no more than

two parameters (f and ∆t) are estimated. The aim of extracting useful

information form data is thus limited by these numerical issues, and

as consequence local parameters, such as T1t (and τ for PASL data),

are fixed to a whole brain unique value. When there is no valid reason

to fix them (for expample with Q2-TIPS, τ can be sperimentally deter-

mined with good roboustness), it inevitabily introduces bias in f (and

∆t) estimates. In the context of ASL data fitting, a more powerful ap-

proach to model inference, such as bayesian approach, can lead to a

strong improvments as concern the capability to obtain more reliable

estimates and add an important informtion on the precision of each

estimate (an example can be found in [22]).

In the basic bayesian inference problem there is a series of measure-

ments y that are to be used to determine the parameters p of chosen
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model M. The gain beside least squares estimation is that information

on parameters (or some of them), ideally independent on experimental

measurements, are available somehow, and can be exploited to im-

prove parameters estimation. The method is based on Bayes theorem:

P (p | y, M) =
P (y, p | M)

P (y | M)
=

P (y | p, M)P (p | M)

P (y | M)

which gives the posterior probability of the parameters given data and

model, P (p | y, M), in terms of: the likelihood of the data given the

model and its parameters p, P (y | p, M), the prior probability of the

parameters for the model, P (p | M), and the evidence for the measure-

ments given the chose model, P (y | M). A more familiar expression for

Bayes theorem, already referred to ASL data, is given by:

P (p | ∆) =
P (∆ | p)P (p)

P (∆)
(4.5)

where measured data y are formed by signal difference ∆, and where

the dependance upon the model used is implicity assumed.

As previously noted, the key advantage of the bayesian approach is

that a priori information about the parameters based on physiologic or

physics knowledge can be incorporated in estimation procedure.

Parameters estimation in a bayesian framework can be obtain also

without the need of evaluate the entire posterior porbability distri-

bution which is a high computationally demanding step. Numerical

methods as variational Bayes and Markov Chain Monte Carlo, have to

be employed since analitycal forms for posterior are admitted only in

few simple cases. In fact, bayesian inference can be accomplish simply

extracting from P (p | ∆) puntual estimates and their (approximated)

variance. When this kind of approach is performed, the terms that do

not depend on the parameters in (4.5) can be discarded, that is the

normalization factor provided by the evidence term P (∆) is ignored,

leaving:

P (p | ∆) ∝ P (∆ | p)P (p) (4.6)

P (∆ | p) is calculated form the model, in particular it depends on the

statistical description of noise vector v, and P (p) incorportaes prior

knowledge of the parameter values and their variability.

A number of puntual estimator can be obtained from (4.6), such as

minimum variance (MV) estimator, and maximum a posteriori (MAP)

estimator. In this work maximum a posteriori (MAP) criterion is used to

obtain parameters estimation within a bayes framework. Adopting MAP
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criterion, the primary interest is on the location of the maximum of the

posterior probability, i.e. parameters estimated values are those which

maximize the posterior probability distribution P (p | ∆). Maximum a

posteriori criterion is mathematically expressed by:

pMAP = argmax
p

[
P (p | ∆)

]
= argmax

p

[
P (∆ | p)P (p)

]
(4.7)

A straightforward interpretation of expression (4.7) is to view pMAP ren-

dered by MAP criterion as maximum likelihood estimates balanced by

the a priori information, condensated in the prior probabilty term P (p).

In this study an informative prior is associated to T1t. This param-

eter well fits with the requirements of bayesian schemes. Infact it is a

local tissue parameter, having a certain degree of variability, but it is

also widely charctarized in MRI studies and so strong prior knowledge

is available for it. Generally, equilibrium magnetization of blood (M0b) is

considered a fixed parameters in ASL data quantification. However, it

is always obtained undirectly form tissues other than brain, and with

procedures that introduce variability and uncertains on it. All these as-

pects can be accounted for defining an appropriate prior distribution

for this parameter. Physiological parameters such as f , ∆t, and τ (only

for PASL data) are considered not subject to a-priori information, and

thus their estimation relies only on data (uninformative priors are used

for them).

As LS approach, MAP bayesian approach involves the resolution of

a nonlinear optimization problem. The details of problem formulation

and resolution will be exposed in 4.2.4, while the procedures used to

define prior distributions on parameters T1t and M0b are explained be-

low.

Longitudinal magnetization relaxation time: T1t

Tissue longitudinal relaxation time T1t is usually considered a fix pa-

rameters in ASL model inference. Although it is a well known parame-

ters and accurate measures are available for it, conceptually T1t repre-

sents a potentially local parameter variable in relation to type and state

of local tissue. Other sources of variability in T1t could be introduced

by the LL used for imaging in this study. Flip angle is treated as a fixed

parameters, set to its nominal value. Discrepancies, that field inhomo-

geneities introduce, between the nominal flip angle value and the flip

angle that is actually expericenced by local tissue, could be somehow

accounted by admitting local variability on T1t values. Physiological and
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experimental knowledge therefore suggest that a more refined ASL data

quantification approach should include T1t in the vector of unkown pa-

rameters, allowing it to be estimated from data.

To regularize T1t estimation in face of all this confounding factors, a

prior distribution was introduced for this parameter: a lognormal prior

shape was chosen. Lognormal distribution is a probability distribution

of a random variable whose logarithm is normally distribuited. Then, if

T1t is lognormally distribuited, the former definitions gives:

T1t ∼ LN(· , ·) ⇐⇒ ∃X ∼ N(µT1t , σ
2
T1t

) | T1t = e
X (4.8)

where it is shown as T1t prior distribution can be completely defined by

mean and variance of the associated normal distribution, µT1tand σ2
T1t

.

T1t a-priori probability density function is thus given by:

P (T1t, µT1t , σT1t) =
1

T1t

√
2π σT1t

e

− 1
2

(

ln(T1t)−µT1t
σT1t

)2

(4.9)

Lognormal shape for T1t prior was chosen to accomodate the pronounced

right tail showed by the distribution of T1t estimates with WNLLS. More-

over, lognormal prior has the appealing property, stated by (4.8), of

ensure the non negativity of the estimated T1t values. The prior was

designed so that its most probable value (the mode), given by e
µ−σ2

in

a lognormal distribution, would be 1.3s, the commonly accepted value

at 3T for longitudinal magnetization relaxation time in GM [22], while

the variance was set empirically form a grid of plausible σ2
T1t

(variance

of normal associated sitribution). In detail, starting from a grid of as-

cending σT1t value, [0.1, 0.3, 0.5, 0.7], a set of four prior was built with a

mean µT1t that satisfaced the constrain on distibution mode:

max(P (T1t)) = 1.3 = e
µ−σ2

=⇒ µT1t = ln (1.3) + σ2
T1t
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Figure 4.1: set of priors used for T1t bayesian approach estimation in standard

ASL model. Lognormal priors are difined in term of µk and σ2
k, mean and

variance of associated normal distributions. The standard deviation, σk, take

values in grid [0.1, 0.3, 0.5, 0.7], that progressively flattering prior distribution.

As consequence the weight of prior information in MAP estimation is reduced.

The mean µk is constrained to produce a mode in lognormal distribution equal

to 1.3s, (GM T1t value at 3T), so taking values [0.272, 0.352, 0.512, 0.7524].

Parameters vector p was evaluated for each of the prior designed.

The the choice of the proper prior was done afterwards, comparing

standard deviation of every T1t prior distribution with the standard de-

viation showed by a T1t estimated values distriubtion (on a meaningful

group of voxel) deriving from the use of that prior. This was done essen-

tially to guarantee an adequate balance among prior strenght (governed

by its variance) and adherence to data. The group of voxels where T1t

estimates distributions were evaluated is said to be meaningfull be-

cause those voxel were selected using a method (see appendix mappe

di score) that approximatively sample them form GM areas, where the

prior is intended to be effective.

Arterial blood equilibrium magnetization: M0b

ASL method rely on correct measurement of the arterial blood equi-

librium magnetization M0b, that convert relative perfusion estimates in

absolute perfusion unit measurements. M0b has been previuosly de-

fined as the equilibrium magnetization of a voxel fully filled by arterial

blood and, it is the most important scaling factor in any ASL experi-

ments for quantitative measure of CBF: any error in M0b will propagate
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directly to the uncertainity in the perfusion estimate.

However, in practice it is difficult to measure accurately such pa-

rameter. The typical spatial resolution whereby ASL images are ac-

quired (about 3 − 4mm3) is too coarse to find vessels voxels that are

totally filled with arterial blood, and so partial volume effects with sor-

rounding tissue play an influential role on this kind of measurament.

A lot of methods can be adopted to circumvents these problems en-

tailed in M0b determination. The basic idsea underlies the major part of

these methods is to measure equilibrium magnetization in a different

type of tissue, and then correct it with proper scaling coefficient depen-

dent on blood properties [*ref]. In this study arterial blood equilibrium

magnetization M0b was derived via estimation of more easily measured

cerebrospinal fluid equilibrium magnetization, M0csf .

M0csf was obtained extracting, from a manual selected ROI, the mag-

nitude of the fully relaxed CSF signal in the proton density image (M0

images). The ROI was drawn so that it accurately bordered ventricule

areas where fully CSF voxels are likely to be found. All image slices

were considered in ROI determination, but it were effectively drawn

only in those slices where ventricules appeared clearly visible. M0csf

value has to be corrected for the different proton density and trans-

verse relaxation time of the blood compared to the values of CSF. It

was done using:

M0b = RM0csfe
∆R∗

2TE (4.10)

where R is the proton density ratio of CSF to blood, defined as R = ρb
ρcsf

and equal to 0.87mL
mL

[*ref], and ∆R∗
2 is the difference in transverse relax-

ation rate (the inverse of tranverse relaxation time T ∗
2 ) bewtween CSF

and blood, given by ∆R∗
2 = 1

T ∗

2csf
− 1

T ∗

2b
, in which T ∗

2csf was set to 74.9ms,

whereas T ∗
2b = 43.6ms was used for blood [19]. The transverse relaxation

time of blood is difficult to measure in vivo, indeed its value is obtain

from an analytical expression in which T ∗
2bis function of blood oxygen-

taion level, fixed in this case to 75% that corresponds approximately

to the oxigention level in the capillaries. It should be noted that ex-

pression (4.10) is applicable, with properly correction factor, also when

M0bis derived form other tissue than CSF, as could be global WM, local

tissue or venous blood from sagittal sinous [*ref].

Usually a unique value for M0b is obtain from an average value of

M0csf inside the selected ROI (and this was effectively done with WNLLS

estimator). In particular CSF signal does lend itself to this procedure,

being a very stable signal with limited intra and inter subject variabil-

ity. Thus, deriving equilibrium arterial blood magnetization form CSF
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measures is an approach that well agrees with the exposed theory of

standard model, which asserts that M0b is a single global scaling fac-

tor for all voxels, being a blood properties. However, CSF equilibrium

magnetization might show a certain degree of variability which reflects

onto M0b estimates, despite its attractive stability. This variability as-

sociated to CSF equilibrium signal M0csf is due to different aspects: (a)

voxels selected as candidates of fully CSF unit of volume could show

different degree of partial volume effects whenever ROI selection is per-

formed manually from proton density images, without any help from

anatomical images (b) the sensivity of the imaging coil could be sub-

ject to spatial variation (expecially at high field), causing differeces in

measured signal among CSF filled voxels (ideally this aspect should

be corrected by the acquisiton and subsequent normalization of coil

sensitivity images) [19].

In this study corrections for variability in CSF singal was not per-

formed. CSF signal variability was just taken into account by adopting

a conceptually simple strategy: M0b was considered as an unknown

parameter subjects to a prior information extracted from CSF user de-

pendent ROI. That is bayesian inference was apllied also in M0b, so

that the primary role played by this parameter could be addressed in

a more reliable way, allowing limited oscillations of its value to occour.

The prior distribution for M0b was completely data driven. In particu-

lar, M0csf ROI voxel values were converted into M0b values using (4.10).

manual ROI was then progressively depured using a thresholding pro-

cedure based on a CSF-score map, that quantify quality of each voxel

in the ROI as CSF sample (see appendix CSF score). The selectivity of

the thresholding was increased untill the distribution of blood mag-

netization voxel values resemble a normal distribution, condition that

was validated through a statistic test of gaussianity. Lilliefors test with

significance level α set to 5% was used (for a complete descriprion of the

procedure used to validate M0b prior see figure 5.5). Mean and standard

deviation of distibutions obtianed from the validated subset of the ini-

tial ROI was used as mean µM0b
and standard deviation σM0b

of the prior

normal distribution associated to parameters M0b. A-priori information

on equilibrium magnetization of arterial blood was described by:

M0b ∼ N(µM0b
, σ2

M0b
) (4.11)

CSF score map.
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4.2.4 Implementing bayesian inference

Let consider the voxelwise model described by (4.1), using a vector

notation:

∆ = ∆M(p) + v

The meaning of vectors ∆ and ∆M(p) has been previously defined.

When a bayesian approach is performed, also a stitistical description of

random error vector is required. In this study the common assumption

on vector v were taken: random error vector v were considered to be

a relization of an additive withe gaussian noise (AWGN) process, with

zero mean and covariance [NLL ×NLL] matrix given by:

Σv =






σ2
1

. . .

σ2
NLL






Note that the variance of random the process describing v is not con-

stant over time. Statistical description given to random error vector can

be condensated in:

v ∼ N(0,Σv).

In bayesian framework, vector p contained the parameters to be es-

timated with MAP criterion, that were:

p = [f, T1t, ∆t, τ, M0b]
T [PASL]

p = [f, T1t, ∆t, M0b]
T [pCASL] (4.12)

for PASL and pCASL data respectively. These were essentially the same

vectors defined for WNLLS estimation, updated by the appending of

M0b, considered now unkown. As largely explained above, a priori dis-

tributions were considered informative only for parameters T1t and M0b,

while for the other parameters. This can be formally handled by asso-

ciating to these parameters generic prior distributions (e.g.. normal)

with infinite variance. Pratically it means to use a flat prior that allows

parameter to take any values with the same probability:

T1t ∼ LN(µT1t , σT1t)

M0b ∼ N(µM0b
, σM0b

) (4.13)

f, ∆t, τ ∼ N(·, ∞) uninformative priors

A general statistical description of a-priori information on paramenters

vector p can be given in terms of mean vector [M × 1], and covariance
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matrix [M ×M ]:

µp =










·
µT1t

·
·

µM0b










Σp =










∞
σ2
T1t

∞
∞

σ2
M0b










(4.14)

where the mean vector and covariance matrix are written respecting

the same order used in parameters vector definition (4.12) (note that

the sizes of (4.14) are referred to PASL data, i.e. M = 5). Σp definition

implictly assumes statistical independence of parameters, denoted by

null off-diagonal elements, while the absence of useful prior knowl-

edges for some parameters is highlighted by the infinity variance ele-

ments.

The set of optimal parameters defined by MAP criterion are those

that maximize the posterior probability of parameters given the data

(the objective function in MAP estimations). Remembering considera-

tions that lead to [4.6], pMAP is given by:

p(MAP ) = argmax
p

(
P (p | ∆)

)

= argmax
p

(
P (∆ | p)P (p)

)
(4.15)

where the likelihood function P (∆ | p), under assumption of inde-

penedce between vector parameters p and noise vector v and acccord-

ing to random error vector v statistical description is a multivariate

normal distribution:

P (∆ | p) = N(∆M(p), Σv)

=
1

√

(2π)NLLdet [Σv]
e
− 1

2
(∆−∆M(p))TΣ−1

v (∆−∆M(p)) (4.16)

and the prior probability P (p) can be expressed as the product of sin-

gle parameter probability distribution (see equations (4.13)), as conse-

quence of having assumed parameter a-priori distributions to be sta-

tistically indipendent:

P (p) =
M∏

m=1

P (pm) = P (T1t)P (M0b)P (pni)

=
1

T1t

√
2π σT1t

e

− 1
2

(

ln(T1t)−µT1t
σT1t

)2

1√
2π σM0b

e

− 1
2

(

M0b−µM0b
σM0b

)2

P (pni) (4.17)
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In above eqaution, pni indicates the subset of parameters for which

no a-priori knowledge is assumed (pni = [f, ∆t, τ ] for PASL data or

pni = [f, ∆t] for pCASL data). It automatically means that P (pni) takes

a costant value whatever value the parameters subset pni assumes

(P (pni) = K, ∀pni ∈ R
3(2)×1). Taking together (4.16), (4.17) and combining

them into (4.15), optimal MAP parameter values are given by:

pMAP = argmax
p

[
P (∆ | p)P (p)

]

= argmax
p





e
− 1

2
(∆−∆M(p))TΣ−1

v (∆−∆M(p))

√

(2π)NLLdet [Σv]

e

− 1
2

(

ln(T1t)−µT1t
σT1t

)2

T1t

√
2π σT1t

e

− 1
2

(

M0b−µM0b
σM0b

)2

√
2π σM0b

P (pni)






= argmax
p





e
− 1

2
(∆−∆M(p))TΣ−1

v (∆−∆M(p))
e

− 1
2

(

ln(T1t)−µT1t
σT1t

)2

e

− 1
2

(

M0b−µM0b
σM0b

)2

T1t

√

(2π)NLL+2det [Σv]σM0b
σT1t






(4.18)

where the costant value assumed by factor P (pni) (independent form

parameters as consequence of flat priors adopted) permits to discars it

from the optimization function. The objective function is given by the

product of non-negative monotonic functions (probability distribution),

so taking the natural logarithm of (4.18) will not change the global

optimum. This reduces objective function into a form more suitable

for numerical methods used to resolve optimization problem, and per-

mits to depure the expression from terms that not include parameters,

yielding:

pMAP = argmax
p

[
ln

(
P (∆ | p)P (p)

)]

= argmax
p

[

−1

2
‖ ∆−∆M(p) ‖2

Σ−1
v

−1

2

(
M0b − µM0b

σM0b

)2

− 1

2

(
ln(T1t)− µT1t

σT1t

)2

− ln(T1t)

(4.19)

= argmin
p








1

2
‖ ∆−∆M(p) ‖2

Σ−1
v

︸ ︷︷ ︸

fidelity to data

+
1

2

(
M0b − µM0b

σM0b

)2

︸ ︷︷ ︸

normal prior

+
1

2

(
ln(T1t)− µT1t

σT1t

)2

+ ln(T1t)

︸ ︷︷ ︸

lognormal prior








(4.20)

It represents the final form of the cost function when MAP criterion is

applied to obtain optimal model parameters value in a bayesian frame-

work. It emerges from the general assumptions that has been made:



70 4. MATERIALS AND METHODS

(a) unknown parameters p were independent form noise statisical de-

scription, and (b) statistical independence between parameters to be

estimated. The meaning of the different terms that contribuite to gen-

eral cost function can be clearly recognized: the first represents cost

function to be minimized when simple WNLLS approach is used for pa-

rameters estimation, second terms represents the penalty due to nor-

mal prior on M0b and the third contributions (third and fourth terms) is

the penalty due to lognormal prior on T1t. Note that as long as assump-

tion (a) and (b) are valid, prior knowledge on other parameters can be

inserted in the computation simply by adding an appropriate (normal

or lognormal) terms inside the cost function (4.20).

Equation (4.20) shows that pMAP evaluation requires the knowledge

of Σv. Noise covariance matrix were modeled as follow:

Σv = σ2B

where matrix B is kwnown, set to the inverse of weights matrix W used

in WNLLS, B = W−1, while σ2 is an unknown scaling factor that had

to be estimate a-posteriori. Unbiased estimator of σ2 is given by WRSS
N−M

,

where WRSS (weighted residuals sum of square) is ‖ ∆ − ∆M(p) ‖2
B−1

evaluated at its minimum. In the bayesian framework adopted in this

study, σ2 a-posteriori estimation required an iterative schemes since

every modification of σ2 altered cost function optimum due to the pres-

ence of priors terms in addition to residuals sum of squares, and new

value of pMAP should be updated. σ2 can be though as correction on re-

altive weight of data respect to a-priori information in MAP cost func-

tion (4.20). The following scheme was used to determine σ2 and the

final estimations for parameters:

Σ(0)
v = B

initialization

⇓

pMAP (0) ⇒ σ2(0) =
WRSS

N −M
⇒ Σ(1)

v = σ2(0)Σ(0)
v ⇒ condition onσ2(0)?

iteration 1

⇓

pMAP (1) ⇒ σ2(1) =
WRSS

N −M
⇒ Σ(2)

v = σ2(1)Σ(1)
v ⇒ condition onσ2(1)?

iteration 2

⇓
. . .

At every step, covariance matrix were updated by a new a-posteriori

σ2(k) correction. The termination condition were met when the last cor-
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rection factor was considered uneffective, that is 0.95 ≤ σ2(k) ≤ 1.05.

The final parameters vector estimation was given by pMAP (k) and the

a-posteriori σ2 estimation was given by:

σ2 =

k−1∏

i=0

σ2(i)

where k was the iteration number where output condition was met. A

further exit condition was introduced, to limit the maximum number

of iteration to k = 5.

The knowledge of noise covariance matrix Σv make possible also the

measure of the uncertainty of estimates. Cramer-Rao inequality [23]

estabilishes a lower bound for covariance matrix of estimates, ΣpMAP ,

and expresses it in terms of Fisher matrix information, F (p), evaluated

at optimal parameters vector value pMAP :

ΣpMAP ≥
[
F (pMAP )

]−1
= (STΣ−1

v S + Σp)
−1 (4.21)

where S is sensitivity matrix of dimensions [NLL ×M ], whose generic

element at position[i, j] is given by
[
∂∆M(ti,p)

∂pj

]

. The equivalence at sec-

ond member of (4.21) holds if random vectors p and v are gaussian.

This condition were not satistfy because T1t, belonging to parameters

vector, were supposed to be lognormally distribuited. However, equa-

tion (4.21) was considered likewise, because lognormal distributions

with mean far from zero can be well approximated by normal distri-

butions. Variance of estimated parameters were approximated to the

second to member of (4.21), thus ignoring inequalities and giving an

understimation of actual estimates uncertainity. This can be viewed as

a Laplace approximation on the posterior distribution, which is forced

to be a multivariate normal distribution with covariance matrix ΣpMAP

in the corrsipondence of its maximum [4]. Beyond all these consider-

ations, the effect of a-priori knowledge inclusion on prameters model

identification is clearly visible: the final estimate of pMAP shows smaller

variance than when no prior information is used (that ideally yields

Σ−1
p = 0).

Implementing MAP in MatLab

MAP estimation of model parameters was performed by minimization

of cost function (4.20), which is essentially the cost function of WN-

LLS data fitting approach complicated by the presence of prior terms.

The estimation availed of MatLab function lsqnonlin(), a powerful tool
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to solve nonlinear leat squares problems when no close-form solutions

are admitted. In detail, lsqnonlin() computes the minumum with re-

spect to parameters of a function made up by a sum of squares. This

sum of squares is essentially the euclidean norm of a vector coming

form the evaluation of an input function f(t, p) at series of time point

t1, t2, . . . , tNLL
, nothimg but the acquisition time points of the experimet.

To meake it clear, in data fitting problems f(t, p) is simply the resid-

uals, i.e. discrepances between observed data and model predictions

(eventually normalized by proper weights). Hence, lsqnonlin() formal-

izes minimization problem as:

pLSQ = argmin
p

[
‖ f(t, p) ‖2

]

= argmin
p

[
f(t1, p)

2 + . . .+ f(tNLL
, p)2

]

where f(tk, p) can be interpreted as the element k of the vector:

f(p) =








f1(p)

f2(p)
...

fNLL
(p)








If MAP estimation has to be solved using lsqnonlin, its cost function

needs to be expressed as a sum of squares so that the appropriate vec-

tor f(p) to pass to lsqnlin() can be easily extracted. This requirement

ideally could be satisfacted in a straightforward manner by taking the

square roots of each terms in (4.20) to form vector f . Unfortunately,

the lognormal prior, in particular the term ln(T1t), hindered a non triv-

ial complications. The natural choiche would lead to treat ln(T1t) as the

square of an hypothetical element vector
√

ln(T1t). This solution was

not accomplishable becasue likely to provoke the arrest of the com-

putation, since negative values for ln(T1t) (forbidden with
√· operator)

could be reached during optimization (at each iterations lsqnonlin eval-

uates vector f(p)). It happened whenever T1t assumed values inferior to

1s, which was a very common situation since T1t excepted values for

WM and GM fall right on this critical value: at 3T T1t is known to be

about 0.9s and 1.3s for WM and GM respectively. For these reasons the

term associated to lognormal prior has to be riarranged so that it could

be expressed as a sqared term.

Let K be the set of lognormal terms in [4.20], it can be elaborated

as follow:
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K = ln(T1t) +
1

2

(
ln(T1t)− µT1t

σT1t

)2

= ln(T1t) +
1

2σ2
T1t

(
ln2(T1t)− 2ln(T1t)µT1t + µ2

T1t

)

=
1

2σ2
T1t

(
2σ2

T1t
ln(T1t) + ln2(T1t)− 2ln(T1t)µT1t + µ2

T1t

)

=
1

2σ2
T1t

(
ln2(T1t) + 2ln(T1t)(σ

2
T1t

− µT1t) + µ2
T1t

)
(4.22)

The overall goal is to reduce K to a squared form like Cg(p)2, with C

scalar coefficient and g(p) a scalar function of model parameters vector.

Then the element of vector f (input vector of lsqnonlin()) associated to

lognormal prior would be clearly defined, simply it would be
√
K =√

Cg(p). The expression in bracket in (4.22) resembles the square of a

binomial, but to be exactly a square of binomial it needs an adjustment.

Adding and subtracting the quantity σ4
T1t

− 2µT1tσ
2
T1t

to the third term in

brackets, it results:

K =
1

2σ2
T1t

[
ln2(T1t) + 2ln(T1t)(σ

2
T1t

− µT1t) + µ2
T1t

+ σ4
T1t

− 2µT1tσ
2
T1t

− σ4
T1t

+ 2µT1tσ
2
T1t

]

=
1

2σ2
T1t

[(
ln2(T1t) + 2ln(T1t)(σ

2
T1t

− µT1t) + σ4
T1t

− 2µT1tσ
2
T1t

+ µ2
T1t

)
− σ4

T1t
+ 2µT1tσ

2
T1t

]
]

=
1

2σ2
T1t

[(
ln2(T1t) + 2ln(T1t)(σ

2
T1t

− µT1t) + (σ2
T1t

− µT1t)
2
)
− σ4

T!t
+ 2µT1tσ

2
T1t

]

=
1

2σ2
T1t

[(
ln(T1t) + (σ2

T1t
− µT1t)

)2 − σ4
T1t

+ 2µT1tσ
2
T1t

]

=
1

2σ2
T1t

(
ln(T1t) + (σ2

T1t
− µT1t)

)2
+

1

2σ2
T1t

(
−σ4

T1t
+ 2µT1tσ

2
T1t

)

Combining this new expression for lognormal term into (4.20), and

discarding the second part independent from parameter T1t value, MAP

cost function becomes a sum of squares and can now be implemented
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into lsqnonlin():

pMAP = argmin
p

[

1

2
‖ ∆−∆M(p) ‖2

Σ−1
v

+
1

2

(
M0b − µM0b

σM0b

)2

+K

]

= argmin
p

[

1

2
‖ ∆−∆M(p) ‖2

Σ−1
v

+
1

2

(
M0b − µM0b

σM0b

)2

+
1

2

(
ln(T1t) + (σ2

T1t
− µT1t)

σT1t

)2

+ . . .

]

[

. . .+
−σ4

T1t
+ 2µT1tσ

2
T1t

2σ2
T1t

]

(4.23)

= argmin
p







‖ ∆−∆M(p) ‖2

Σ−1
v

︸ ︷︷ ︸

fidelity to data

+

(
M0b − µM0b

σM0b

)2

︸ ︷︷ ︸

normal prior

+

(
ln(T1t) + (σ2

T1t
− µT1t)

σT1t

)2

︸ ︷︷ ︸

lognormal prior








(4.24)

From (4.24), input vector of lsqnonlin() is directly obtain by taking the

square root of each term:

f(p) =















∆(t1)−∆M(t1,p)

σ1
∆(t2)−∆M(t2,p)

σ2
...

∆(tNLL
)−∆M(tNLL

,p)

σNLL
M0b−µM0b

σM0b
ln(T1t)+(σ2

T1t
−µT1t

)

σT1t















It shows that MAP estimation criterion can be formulated in terms of

LS approach, when normal and lognormal prior distribution for model

parameters is chosen. As consequence MAP optimal parameter values

were achieved using MatLab function lsqnonlin(), adopting (4.24) as

final cost function to be minimized.

4.2.5 Correction of vascular aritfacts: two component

model

In the following section an improvment of standard model is presented.

In addition to magnetization difference described by standard model

equations, henceforward termed as ∆Mt as accounting for tagged blood

carried into tissue, another component, ∆Ma, is added to give reason of

signal from tagged blood contained into arteries that pass through the

voxel. This model is called two-component ASL model. Theoretic basis

of such model, definition of its equations, and application on datasets

available are discussed below.
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Two component ASL voxelwise model

The ASL standard model, as previously discussed, provides an over-

semplified description of the system involved in the perfusion process.

Principally, structural complexity of brain tissue inside the voxel and

the fact that blood water can not be considered as a freely diffusible

tracer are ignored, stating that voxel acts as a single well mixed com-

partmenent respect to blood diffusion into tissue. Thus, predictions of

standard model can be totally wrong when the assumption of single

well mixed compartment is far to be realized. As result, parameters es-

timates (first of all CBF), that derive form the fit of standard model to

data, are heavly contaminated by this unsuited assumption and can

not be used to extract any physiological meaningful information.

The most denotive case in which standard model fails is when ASL

signal is contamined by the presence of tagged blood in arterial ves-

sels that is destined to perfuse more distal regions. This intravascular

component is particulary significant near major arteries, such as the

middle cerebral artery (MCA).

Figure 4.2: a schematic architecture of voxel is shown in figure. Contributions

to ASL signal form actual perfusion blood are plotted in blue. Contributions

to ASL signal form tagged blood that just passes through the voxel are shown

in red. Standard model describes with a single compartment approach only

the former contribution, and completely neglects the potential presence of the

latter which are considered as perfusion blood to.

Here an alternative approach to correct those vascular artifacts
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without compromitting the SNR of the acquired signal is proposed. It

aims to explicitely model the intravascular signal and then to include

it in a two component model to account for the effects of arterial spins

in multi-TI ASL data. The general expression of two component model

is:

∆M(t, p, pa) = (1− aBV )∆Mt(t, p) + aBV∆Ma(t, pa) (4.25)

where ∆Mt is the tissue component whose expression is given by stan-

dard ASL model and p is its vector of unknown parameter, ∆Ma is the

new arterial component with vector of parameters pa, and aBV is the

arterial blood volume fraction, a dimensionless number (milliliter of ar-

terial blood per milliliters of tissue) usually expressed as a percentage

of entire voxel volume.

Arterial component model equations

In the following section model equation for arterial component, ∆Ma(t)

is derived, with respect to pulsed and pseudo-countinuous labeling

techniques.

In general, arterial component has to represent simply the transit

of the labeled blood bolus through a large artery. To model this phe-

nomenon, an application of the general kinetic model (see section parte

modelli) is not appropriate. Infact, any residue function r(t) can be de-

fined as the arterial vessels walls are impermeable (large artery do not

exchange blood with tissue voxel), and the arterial blood is assumed to

pass istantaneously through the voxel.

Arterial component model ∆Ma(t) is thus essentially the kinetic curve

of a bolus of tagged blood that is expected in large arteries. A detailed

model can be derived, incorportaing into temporal profile w(t) of the la-

beled bolus that transit through an artery in ideal conditions, defined

by the typical box-car shape:

w(t) =







0 t < ∆ta

1 ∆ta ≤ t < ∆ta + τa

0 ∆ta + τa ≤ t

where ∆ta is the arterial transit delay, and τa is arterial bolus duration,

all the effects that it is expected to experience in an ASL experiment.

They are decay of the label with time due to magnetization relaxation,

signal attenuation operated by excitation RF pulses as the blood passes

through the imaged region, and phyisiological disperison of bolus pro-

file as it travels along vasculature, which can be properly accounted
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for by definition of three functions of time,M(t), R(t) and K(t) respec-

tively. Availing of these functions, a general model for arterial compo-

nent ∆Ma(t) is derived, adopting the convolution integral formulation

given in [*ref Okell]:

∆Ma(t) = 2αM0b

∞̂

−∞

w(t− td)K(td)M(t, td)R(t, td)dtd

= 2αM0b

t−∆ta
ˆ

t−∆ta−τa

K(td)M(t, td)R(t, td)dtd (4.26)

The dispersion function K(td) is a convolution kernel describing the

fraction bolus of blood that arrives at the voxel level delayed by time td.

Previous studies on dispersion occouring in ASL suggest to choiche a

gamma shape kernel to model dispersion in large arteries (*ref Chap-

pel), so K(t) is given by:

K(t) =
s1+sp

Γ(1 + sp)
e
−sttsp (4.27)

where s (measured in s−1) characterizes the sharpness of the kernel,

and p (measured in s−1) indicates the time-to-peak.

M(t, td) describes the T1 decay experienced by the blood after label-

ing during its transit from the point it has been labeled to the voxel

artery considered. Its definition depends, of course, on the type of la-

belling performed (pulsed or continuous) and also includes the addi-

tional T1 decay during delay td resulting from bolus dipersion effects,

so:

M(t, td) = e
−(

t+td
T1b

)
PASL

M(t, td) = e
−(

∆ta+td
T1b

)
pCASL (4.28)

R(t, td) accounts for the effects on signal amplitude form the imaging

pulses used in the Look-Locker readout. Each pulse collected by blood

before transit through the considered voxel reduces the longitudinal

magnertization by a factor of cosαLL, where αLL is the flip angle used by

the LL readout. Thus, function R(t, td) is given by:

R(t, td) = (cosαLL)
N(t,td)

where N(t, td) gives the actual number of RF pulses experienced by the

blood at time t since its entrance in imaging region. For sake of semplic-

ity, in the follow N(·, ·) dependance on td is ignored, which is equivalent
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to considering uneffective the delays effect introduced by dispersion

in the computation of the number of RF pulses experienced by blood.

Even N(t) expression depends on the type of labeling. In pCASL, since a

the same coil is used both for labeling and imaging, during the labeling

time pulses no RF excitations pulses are apllied to imaged region. So,

starting from t0, the sampling time in which the first pulses is played

out, the number of previous pulses that at time t blood has been af-

fected by is:

N(t) = floor

(
t− t0
TI2

)

≈ t− t0
TI2

(4.29)

where the contiunuous approximation for N(t) is made, in the same

manner in which LL readout pulses are incorporating into standar

model (*ref. part e look locker teoria). Expression (4.29) implictly as-

sumes that the imaging region encompasses everything distal to the

labeling plane, but often there is a gap between the labeling plane and

imaging region within which blood does not experience any imaging

pulses. Named δtmin time that blood from feeding arteries takes to cross

the border of imaging region, the maximum amount of time spent in

the imaging region before reaching the voxel of interest is ∆ta − δtmin.

This time limits the number of RF pulses experienced by the blood, so

expression for N(t) becomes:

N(t) ≈ min

{
t− t0
TI2

,
∆ta − δtmin

TI2

}

(4.30)

where the approximated nature of N(t) must be kept in mind, further-

more remembering that effect due to dipsersion are not accounting in

its evaluation.

In PASL, assigning a reliable expression to N(t) is a simpler task.

The inflow of labeled blood into the imaging region is entirely sampled

due to the short duration of labeling phase (substantially impulsive),

so all blood forming labeled bolus experiences the same number of

RF pulses during the transit from the lower edge of imaging region to

considered voxel. Thus, for PASL N(t) is given by:

N(t) ≈ ∆ta − δtmin

TI2
(4.31)

Using former definitions, arterial component model ∆Ma(t) expres-

sion can be obtain just placing them (taking the right form with respect

to the type of labeling) into convolution integral (4.26) and resolving it.
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Solution for pCASL and PASL techniques are given by:

∆Ma(t) = 2αM0b

t−∆ta
ˆ

t−∆ta−τa

K(td)M(t, td)R(t, td)dtd

= 2αM0b (cosαLL)
∆ta−δtmin

TI2 e
− t

T1b

t−∆ta
ˆ

t−∆ta−τa

K(td)e
−

td
T1b dtd

PASL

∆Ma(t) = 2αM0b

t−∆ta
ˆ

t−∆ta−τa

K(td)M(t, td)R(t, td)dtd

= 2αM0b (cosαLL)
min

{

t−t0
TI2

,
∆ta−δtmin

TI2

}

e
−

∆ta
T1b

t−∆ta
ˆ

t−∆ta−τa

K(td)e
−

td
T1b dtd

pCASL

(4.32)

where integral explicitated can be resolved analytically by manipulat-

ing solution () given in (*parte dispersione modelli) to define gamma

dispersion on the delivery function of standard model c(t).

Toward validation of two component ASL model

The two component model is introduced to adequately account for ar-

tifacts coming from large arteries spins signal by means of a mathe-

matical modeling approach. Previuous studies supposed that model-

ing approach for those vascular artifacts could performace better than

technical approach, as vascular crushing, in reduction of CBF bias in-

troduced by macrovascular signal. However, the additional parameters

the arterial component carries may be used to fit spurious data not

related to arterial flow signal. To avoid overfitting, adverse for param-

eters estiamtes, two component model should be fitted only in those

voxel where data supported it, therefore in each voxel model selection

methodologies must be adopted to single out which model provides a

better description of acquired signal.

These complete analysis was not performed in this study. But, ex-

ploiting the great deal of data available (crushed and uncrushed data,

both for PASL and pCASL) steps toward validation of the two compo-

nent model proposed were accomplished.

It was tried to show that the adoption of arterial component equa-

tion (4.32) into the two component model (4.25) is viable solution to
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reasonably describe data with marked intra vascular artifact, restor-

ing CBF estimates map into a phsyiological range of values, at least

comparable with those calucalted using vascular crushed data.

The arterial model ∆Ma(t) validation was perforemd fitting the par-

tial component aBV∆Ma(t) to a signal given by the difference among

data in which no vascular suppressions were applied (NVC data) and

those acquired with vascular crushing techniques (VC data). This dif-

ference signal (NVC-VC) gives the actual portion of ASL signal crushed

by the application of bipolar gradients for flow suppression, and thus

can be considered as a good surrogate of the real arterial component

associated to the voxel. The fitting of the single arterial model ∆Ma(t)

on this “dedicated” dataset were conducted considering as unknown

the following vectors of parameters (for PASL and pCASL):

pa = [aBV, ∆ta, τa, p, s] PASL

pa = [aBV, ∆ta, p, s] pCASL

A set of a-priori knowledge (informative only on some of them) was

considered, by adopting normal prior distributions to be used in a

bayesian estimation framework (MAP). Prior distribution parameters

was set to values already used in literature (*ref Chappel1, Chappell2,

Okkell1), condenstaed in the following table:

PASL pCASL

aBV [%] uninformative prior uninformative prior

∆ta [s ] ∼ N(0.3, 0.3) ∼ N(0.5, 0.1)

τa [s] uninformative prior fixed to labeling duration

p [s] ∼ N(0.05, 0.1) ∼ N(0.05, 0.1)

s [s−1] ∼ N(5, 1) ∼ N(5, 0.5)

Table 4.3: specifications of priors (mean and standard deviation of nor-

mal distributions) used for arterial component model fitting.

Parameter δt(min) could not be measured in this study, and it was

fixed to a reasonable values. The implications of this unavoidable prac-

tice are explained in discussion chapter.

Arterial model component ∆Ma evaluated in this ideal condition,

∆Ma(p
MAP
a ), was then traeated as a fixed contribution, Ya, in the two

compoent model:

∆M(t, p, pa) = (1− aBV )∆Mt(t, p) + aBV∆Ma(t, pa)
︸ ︷︷ ︸

NVC−VCestimate

= (1− aBV )∆Mt(t, p) + Ya(pa
MAP ) (4.33)
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to probe the power of this modeling approach in helping standard ASL

model to handle with vascular artifacts associated to typical multi-TI

ASL data. The tissue contribution, (1 − aBV )∆Mt(t, p) of the two com-

ponent model, was then fitted to the NVC data, using the same esti-

mation settings defined when standard model parameters estimation

was described (see section 4.2.3). The aBV coefficient was constrained

to staisfy a relation involving fixed arterial contribution amplitude AYa

and M0b estimate, expressed by:

aBV =
AYa

M0b

to assure coerent scaling between the two component estimated with

separte consecutive stages.





Chapter 5

Results

In this chapter results relative to practical implementations of meth-

ods described in chapter 4.2 for ASL data quantification are presented.

First of all, priors extracted using procedures previously outlined are

shown. Then results of estimation procedure defined for standard model

are given, with particular attention to the comparison between different

labeling types and different approach to vascular signal suppression.

Finally, outcomes of the two component model proposed are shown,

especially highlighting the correction it introduces on CBF, whose val-

ues is addressed by the new component towards a more physiological

range.

5.1 Priors definition

5.1.1 Prior on longitudinal relaxation time

The procedure used to define T1t prior distribution required to perform

whole model identification varying in a grid of possible lognormal priors

(with different standard deviation), to select the one that best account

for variability insight data. The grid of prober prior distributions has

been defined in section 4.2.3. In brief, distributions mode were fixed to

1.3s while standard deviation was allowed to vary from 0.1s to 0.7s with

increasing step of 0.2s.

In figure (5.1), T1t parametric maps and their distributions (over a

specific group of voxels) for each prior designed are shown (a represen-

tative subject is considered):
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Figure 5.1: (left) T1t estimate maps resulting from the adoption of a progres-

sively increasing prior standard deviation (single slice of an examined subject,

pCASL data with vascular crushing was used.). Distributions of T1t values, de-

fined on a selected group of voxel, for each prior attemps (right). Distribution

were normalizaed by a scaling factor (to make their area under curve equal to

1) to allow a direct comparison with prior distribution that they follow.

Voxels on which distribution of T1t values has been calculated were

extracted by thresholding, at a proper level, a map showing the “good-

ness of fit” (described in B). This was done essentially to ensure that

distributions could be considered an authentic representation, not con-

tamined by voxel in which spurious fit was occoured. It is quite impor-

tant not include such voxels, since the choice of the appropriate prior

for T1t was done by direct inspection of those distributions. Fit score

map (see figure 5.2) was thresholded at 20-th percentile, so the 20%

“best-fit” voxels entered in the distribution.
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Figure 5.2: example of fit score map in a single slice. After threshold-

ing only voxel with score values lower than threshold estabilished was

manteined. Roughly, they come from GM areas where the fitting of ASL

model is largely known to work well.

From visual inspection of T1t distributions, like those reported in fig-

ure (5.1), lognormal standard deviation prior was set to 0.3s. This value

provides a good agreement between observed distribution variability

and prior standard deviation that generate it. At sd=0.1 distribution

values were densely located across prior mode, suggesting their esti-

mation was subsatntially driven only by prior term. Over sd=0.3s level,

distribution of T1t estimates smeared towards right reaching higher val-

ues, whose exceeded any physiological plausible range, till hit, for some

voxels, the upper-bound imposed by nonlinear alghorithm used for es-

timation (set to 3s).

The improvment carried by bayesian approach in T1t estimates is

clearly shown in figure (5.3), where a comparison with performance on

T1t estimates of WNLLS approach is reported.
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Figure 5.3: T1testimate maps using WNLLS estimator (on top, left) and bayesian

MAP estimator (on bottom, left). Distributions arisings the same group of vox-

els are shown (right). If T1t was freely estimated from data, it was likely to

escape from a desired physiological range, making the settings of the nonlin-

ear algorithm used for estimation inappropriate. The pronounced peak visible

at 3s is the result of these unwanted constrain on T1t values, that showed the

tendecy of overshoot it.

When the standard LS approach were adopted for parameters esti-

mation, T1t estimates was hardly outside the expected range, and most

of them touched the upper bound before convergence of the iterative

algorithm was reached. The upper bound for T1t parameter needed to

be increased till 6s to avoid to see a heavy effect of this constrain onto

final estimtes (data not shown).

In figure (5.4) an example of T1t map resulting from MAP estimator

is give, both for no vascular crushing and vacular crushing data. The

effects of using a prior on this parameter instead of fixing it to a unique

value is clearly visible in the figure. T1t were allowed to vary locally to

better fit the data, and maintaining meantime a reasonable value ac-

cording the hypothesis made by the model on it. Estimated values in

data with vascular crushing were more influenced by prior distribu-

tion than estimated values in data where no vascular suppersion were

accomplished.
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Figure 5.4: T1t parametric map resulting form MAP estimator, for data ac-

quired with (right) and without (left) application of vascular crusher gradients

(slice 4 of subject 1 is shown).

5.1.2 Prior on equlibrium arterial blood magnetization

The procedure described in section 4.2.3 to define a prior distribution

on M0b has shown to be effective in all subjects. It means that the

condition of gaussianity, probed by means of Lilliefors test, was met in

all subject, at different levels of thresholding in the map of CSF score

used for refined manual CSF ROI. In table (5.1) a resume of the M0b

prior distributions extracted form data are reported.

manual ROI final ROI segmented CSF (95%)

subject 1 1083 (85.3) 1089.7 (74.7) 981.3 (152.9)

subject 2 1163 (130) 1172.5 (137.1) 901.6 (120)

subject 3 960.7(126.1) 965.5 (124.1) 921.9 (253)

subject 4 1062.5 (136.2) 1119.4 (169.3) 1145.7 (189.9)

subject 5 1197.2 (169.6) 1233.6 (180.2) 1386.3 (138.7)

subject 6 1092 (142.2) 1092 (142.2) 1067.2 (185.5)

Table 5.1: first column: mean and standard deviation of M0b values from voxels

contained in manually drawn CSF ROI. Second column: mean and standard

deviation of M0b values of voxels contained in CSF ROI after iterative thresh-

olding procedure. They represents mean, µM0b
, and standard deviation, σM0b

,

used to describe the normal prior distribution associated to M0b. In third col-

umn mean and standard deviation of a CSF probability map, after threshold-

ing at 95% of probability, are reported to allow a comparison.

During the iterative procedure built to extract mean and standard

deviation of the M0b normal prior, manually drawn ventricular CSF ROI
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could be progressively eaten away with different degree, apiece the

quality of the initial manual ROI (that was user-dependent) and the

ability of CSF score map to be more or less selective on distinguish

CSF voxels from other types of voxels. Also this step might impact

differently on the number of iterations necessaries to get a gaussian

like distribution, since CSF score map used to correct manual ROI

was built using empirical index calculated from the acquired data (see

B). Lilliefors non parametric test (which test in a statistic frame if the

ditribution of given values come from a gaussian family with unknown

mean and variance) was used as automatic tool to decrete at wich level

stop the redrawing of CSF manual ROI accomplished by the iterative

procedure based on CSF score map evaluation. In the follow, interme-

diate results of the procedure are shown (just for one subject), whereas

in table (5.2) a general report for the whole dataset is given.

N maual N final threshold p value

subject 1 238 148 5% 0.0849

subject 2 300 58 5% 0.1024

subject 3 385 296 42.5% 0.0513

subject 4 395 77 10% 0.0679

subject 5 362 226 32.5% 0.0575

subject 6 192 192 100% 0.4382

Table 5.2: different levels of thresholding were generally asked by each

subject to get a p value greater then 0.05.

From table (5.2), it can be seen that a consistent number of voxel

contribuited to the prior definition for all subject. The iterative proce-

dure, fully describe above, although accountable of slight modfications

on mean and standard deviation of initial manual CSF ROI, was able to

filter initial ROI so that the assumption of a normal prior on M0b could

be checked in the data.

The prior information associated to M0b was charcaterized by a thin

distribution variance, as results MAP estimation of this parameter al-

lowed just light displacements form the initial value given (data not

shown).
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Figure 5.5: (at right) (at left). panel(a): example of a CSF manually selected

ROI form a M0 sensitive image slice. A CSF-ROI can be safty drawn in the

lateral ventricles. These are brain structures containing CSF, that can be

easily recognized in M0 acquisitions. Panel (b): CSF score map of the slice

shown in panel (a), the less is the score value the more the voxel is considered

as a CSF sample. Untill the condition of gaussianity (verifyed by means of

statistical test) was not met, CSF ROI starting from the manual drawn one

was depurated of those voxel excluded by the thresholding procedure of CSF

score map. At each iteration the threshold was made more selective: a total of

40 step, spanning equally a range of all the possible values for CSF score, was

provided. The threshold was defined as percentile of the distribution of CSF

score value, and decreased by 2.5% at each iteration. Panel (c): final output

of the iterative CSF ROI reduction are plotted. In green it is shown the first

CSF ROI that satisfy gaussianity test. Mean and standard deviation of this

ROI was used as prior for M0b in Standard model, drawn in blue. Panel (d):

p-value pattern of Lillietest along iterations is shown (bottom). Untill it did

not reach the value p = 0.05, the null hypothesis (the distribution is normal)

was rejected, and the thresholding procedure continued to erode voxel form

CSF ROI. (top) Course of the number of voxel accounted in distribution to be

tested at each iteration.
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5.2 Standard model

In this section the results of standard ASL model identification with

the new estimator setting developped are shown.

5.2.1 Comparing CBF estimates

In figure (5.6) resumptive results of CBF estimation in the 4 dataset

acquired for each subject consiedred , are reported.
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Figure 5.6: boxplots refer to distribution of voxels extracted using a GM mask

(calculated using a dedicated software for probabilistic segmentation of tissue)

corrected by a fit score map to avoid the contribution of undesired voxels in

CBF results comparison. Highlighted yellow band represents the range of CBF

values assumed as physiological in literature (in GM tissues).

Standard model clearly showed to overstimate CBF when data were

acquired without vascular crushing, both with pCASL and PASL la-

beling techniques. However, in PASL this behave was less accentuated,

and an apppreciable portion of CBF distribution fell inside the accepted
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range of values. Thus, standard model seems to be appropriate for

CBF estimations when data were acquired in combination with vascu-

lar crushing. CBF values, both in PASL and pCASL data, were grately

reduced compared with no vascular crushing data. In tables (5.3), a

global report on CBF estimate is given.

A comparison between PASL and pCASL CBF estimates were per-

formed on datasets acquired with vascular crushing, i.e. over the kind

of datasets in which standard model seems to perform better. In figures

(5.7) and (5.8) some examples of CBF maps and correlation anlysis of

CBF voxels estimates are shown respectively.

pCASL CBF-NVC [mL/100gmin] CBF-VC [mL/100gmin]

subject 1 188.8 (138) 80.1 (31)

subject 2 207.4 (150) 51.5 (20)

subject 3 213.0 (161) 79.1 (34)

subject 4 175.7 (126) 55.6 (22)

subject 5 189.8 (132) 54.3.6 (21)

subject 6 206.2 (135) 87.4 (32)

PASL CBF NVC[mL/100gmin] CBF VC[mL/100gmin]

subject 1 153.6 (148) 46.9 (54)

subject 2 154.2 (139) 49.0 (46)

subject 3 110.38 (133) 41.1 (76)

subject 4 114.6 (134) 49.85 (117)

subject 5 150.27 (152) 44.1 (101)

subject 6 163.7 (146) 49.4 (44)

Table 5.3: mean and standard deviation of CBF estimate distributions plotted

in figure (5.6).
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CBF − VC data
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Figure 5.7: maps of CBF estimate in two slice of the same subject (subject 2).

As excepted, CBF maps shows a good congruence in both slice. The overall

quality of PASL maps is firmly lower than pCASL, reflecting the lower SNR

that characterized PASL data, especially when vascular crusher gradients are

applied.
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Figure 5.8: correlation of CBF estimates between PASL and pCASL data, with

vascular crushing (subject 1, 2 and 6 are shown respectively).

5.2.2 Effects of vascular crushing

The effect of vascular crushing onto acquired signals is evident in fig-

ures (5.9) and (5.10) where two samples of voxel difference signals and

consequent data fittings are shown (for pCASL and PASL data respec-

tively) .
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Figure 5.9: measured singal and relative model fit to pCASL without vascular

crushing acquisition is drawn in red, measured signal and model fit to pCASL

with vascular crushing is plotted in blue. In the associated boxes, results

of parameters identification with MAP estimator are shown (units are those

reported in table (4.1)).
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Figure 5.10: measured singal and relative model fit to PASL without vas-

cular crushing application is drawn in red, measured signal and model

fit to PASL with vascular crushing is plotted in blue. In the associ-

ated boxes, results of parameters identification with MAP estimator

are shown (units are those reported in table (4.1)).

Vascular crushing acts in the same manner with PASL and pCASL,

essentially modifying the intial part of signal time course when in-



5.2. STANDARD MODEL 95

travascular tagged spins give their contribution to the signal. About

the end, signal time courses sholud in priciple realign each other since

no more fast flowing spin are in the voxel yet.

The modification introduced by vascular crushing in parameter es-

timates, that locally can already be seen in fit plotted above, are shown

in figure (5.11) and (5.12). In these figures, it has been reported CBF

and ∆t paraemtric maps when vascular crushing is (or is not) used.

These two parameters are typically used in ASL to characterized perfu-

sion process, since they provide complemetary informations about the

underlying physiology.
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Figure 5.11: CBf maps for PASL (top) and pCASL (bottom) data. As shown

above, flow suppression gradients resulted in more physiological CBF values

when standard model is used for quantification. Observing CBF maps, more

detailed information can be learnt form those relative to pCASL data, reflect-

ing the higher SNR characterizing this technque. This fact must be kept in

mind when PASL map, especially with vascular crushing, are analyzed. Slice

2 of subject 6 is shown.
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Figure 5.12: ∆t maps for PASL (top) and pCASL (bottom) data. An overall ∆t in-

creasing is visible form no vascular suppression to vascular suppression data.

In particular, pCASL map shows a good agreement with the expected behavior

of transit delay pattern accross different brain areas (the longer transit delay

of occipital lobe appears in both version of pCASL data).

The bright spot visible in the maps reported in figure (5.11), i.e.

groups of voxels with high CBF values, were likely due to the contam-

ination of large arteries in the volume enclosed by the voxel. This sug-

gestion found a good confirmation in ∆t maps, where the lowest values

were associated right to those voxels supposed to partially including

large vessels.

A global representation of the effects due to vascular crushing onto

∆t estimation is given in figure (5.13)
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Figure 5.13: global representation of ∆t estimated values increasing, that fol-

lows the application of flow suppression gradients for PASL dataset (left) and

pCASL dataset (right). Columns height are the mean value of ∆t estimates

of voxels slected by a GM mask (the same used for display CBF estimates in

figure 5.6)

5.3 Two component model

In this section a series of preliminary results obtained by the fit of the

two component model developped in section 4.2.5 is given. The study

of this new model was split up in two subsequent steps in which the

ability of the new component to describe arterial contribution and to

correct CBF overestimation with no vascular suppression were tested,

separately.

5.3.1 Arterial component fitting

The model of arterial component, ∆Ma(t), were tested in the datset

given by the difference between data without vascular crushing and

data with vascular crushing, both for PASL model and pCASL model.

This difference signal gives the fraction of the measured signal that

derives form form tagged blood flowing faster than the cut-off veloc-

ity defined by cruher gradients. Thus it can be considered as a good

representation of the signal arising form arterial compoent.

In figure (5.14, 5.15) examples of arterial component fit are reported.
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Figure 5.14: example of arterial component model ∆Ma(t) fit to data

difference (uncrushed data minus crushed data) in PASL dataset.

Parametrs estimate are reported in the box (units are dined in table

4.3). Data from subject 6.
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Figure 5.15: example of fitting of arterial component model ∆Ma(t) to data

difference (uncrushed data minus crushed data) in pCASL dataset.

Parametr model estimates are reported in the box (units are dined in

table 4.3). Data form subject 1.

Parameters contained in arterial model were estimated using a bayesian
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approach (MAP estimator). The set of prior knowldge used has been re-

ported in table (4.3). These settings for prior distribution parameters

were based on values provided by previuos studies ([4, 18]), with slight

modifications according to inital fitting experience that had been made

on data. The arterial component was fitted onto the whole volume. This

meant that in a large set of voxel where no arterial signal was actually

measured, spurious data were fitted by ∆Ma(t), resulting in a nonsense

arterial component. However, the arterial component estimated in this

first step was inerted in a two component model only for those vox-

els, whose signal showed to be strongly affected by flow suppression

gradients. These candidate voxels were identificated with the aid of a

vascular score map, in which the degree of arteriality of each voxel was

measured taking into account some appropriate indexes (see appendix

B).

5.3.2 Two component model performance

The two component model for correction of vascular artifacts was fitted

to data acquired without vascular crushing, exploiting the results that

were obtained in the first step. The estimated arterial component was

simply inserted as fixed contribution into the two component model.

This procedure was a particulary safe application of two component

models, as a great assistance on arterial component identification was

given by the availabilty of crushed and uncrushed data both. In fig-

ure (5.16) examples of PASL two component model fit are shown. No

examples of pCASL two component model are reported because other

work is necessary on that model to achieve good data description (see

section 6.3 for details).

The effect of two component on CBF estimation form data acquired

without vascular crushing can be appreciated globally in figures (5.17,

5.18), where CBF estimate maps in three different conditions are di-

rectly compared. They are standard model CBF map form uncrushed

data, two component model CBF map and standard model CBF map

from crushed data.
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Figure 5.16: two component model fit to PASL data. The arterial component

fits data in the intial portion of experimet time, whereas tissue component de-

scribe the latter part. This allows a great reduction of CBF estimate compared

with single component model (standard model), whose fit is shown in black.

Parameters estimate of the tissue component are listed in the box, where in

bracket nearby CBF estimate, termed as f , also standard model CBF value is

indicated.
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Figure 5.17: PASL data are considered (slice 2, subject 6). aBV [%] map deriving

from two component model identification (right), CBF [ mL
100g min

] map in stan-

dard model with no vascular crushing (1), in two component model (2), and in

standard model with vascular crushing (3) are shown for the same slice. Red

circles localize areas where aBV assumes high values, drawn approximatively

around the voxels shown in in figure (5.10). In those area standard model

substantially overestimates CBF (left panel,1) while two component model is

able to correct this artifact due to arterial signal contamination (left panel, 2).



102 5. RESULTS

 

 

0 50 100 150 200 250

a

a

1.

2.

3.

aBV − pCASL data

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

a

Figure 5.18: effect of two component model in pCASL data (slice 3, subject 1).

See figure (5.17) for description.



Chapter 6

Discussion

In this chapter results presented previously are briefly discussed. The

rationale of methods developped, limitations encountered, and clues

on possible future works are given.

6.1 Bayesian approach on ASL data estima-

tion

Quantification of ASL data through parametric models, among which

standard model is the most common, usually relies on a number of

fixed parameters that have to be supposed known or accurately mea-

sured, besides unknown parameters. This practice is particulary crit-

ical for some of them that can not measured with good accuracy or

could vary locally from voxel to voxel. Fixing them to unique value is

not best modality to proceed in ASL data quantification: this hard as-

signment can lead to errorrs on perfusion estimates whenever assumed

values does not match data evidence.

In this work a bayesian appproach, based on MAP estimation, has

been proposed to improve parameters estimation procedure. The key

advantage of the bayesian approach is that prior informations about

the parameters, based on physiologic knowledge, can be incorporated

in estimation procedure. This is important when face with ASL data

that have poor SNR since prior knowledge helps to constraint the esti-

mation within a physiological reasonable range, leading to more robust

and reliable results. Prior information thus can be used to regularize

the problem, especially for time-sensitive parameters estimation.

Here, prior information has been used to better address T1t and M0b

roles when standrad model is used in perfusion quantification from
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ASL data.

6.1.1 Longitudinal relaxation time

Some methods have been considered in this work to avoid assumption

of a unique fixed value on tissue longitudinal relaxation time, T1t.

It has been tried to determine T1t by fitting the signal from the con-

trol images obtained in the ASL experiment to a Look-Locker saturation

recovery curve (see 2.1), but the absence of pre-saturation pulses in the

sequence used left a variable amount of transverse magnetization that

confounded T1t measurement.

T1t has been estimated also from data by means of WNLLS esti-

mator, but the results has not been sucessful. The problem on doing

this is that T1t, being a time costant of an exponential decay, enters

in the model as a nonlinear parameters, and thus several samples are

required to estimate it. This is not the case of ASL signal curve at all.

Standard ASL model frames the exponential decay (in which T1t has the

predominant role) in a temporal window usually made of a few noises

samples, whose extent is moreover not well defined since it is depen-

dent on ∆t (and τ in PASL model) value, considered unknown by the

model. Furthermore anatomical measurement, as T1t, is required from

a signal sensitized to perfusion, and thus its estimation can miserely

fail in voxels showing lower perfusion levels. All these considerations

are suppose to be the reasons why T1t estimation with WNLLS was

highly variable and so far from physiological expected range (see figure

5.3).

Then, T1,t estimation has been framed into a bayesian appproach

to better account all its possible sources of variation, including un-

certainities on actual flip angle αLL value. Lognormal shape prior has

been choose as prior distribution to hear tendecy shown by T1t esti-

mates to form toward high values. The resulting maps (5.4) showed

that a certain degree of variability was allowed to T1t without get out

a reasonable range. It must keep in mind that standard model makes

strong assumption on the role of T1t in data description, so when model

is not a good representation of system generating data, T1t is likely to

assumes values different form those expected. From visual inspetction

of maps (5.4), it can be seen how higher T1t estimates were reached

right in those voxels where hyperperfusion occoured (contamined by

intravascular signal), i.e. voxels where standard model was no more

appropriate. Moreover it can be seen and how those values was re-

duced in the map estimated from crushed data where standard model
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had shown to provide good results.

Prior on T1t has been designed reffering to GM voxels data fitting,

and modification of its mean, at least, shoud be introduced to try to

properly describe also WM signal.

Procedure built for prior selection was based essentially on an em-

piric definition of prior variance, chosen so that a good agreement be-

tween variability of estimate distribution and prior variance was met. A

more robust method for prior variance definition should be taken into

account in future works. Finally, in this work T1t prior distribution was

calibrated on a single subject and then used for all data sets. Althought

slight modification would be introduced, a better approach would re-

quire to calibrate T1t prior distribution individually in each subject.

6.1.2 Equilibrium magnetizaion of arterial blood

Prior on M0b is introduced to face with all the difficoulties involved in its

measurement. A proved method based on CSF equilibrium magnetiza-

tion value has been used to define the mean of a prior distribution for

M0b, instead of its unique global value. This has been done essentially

to take into account the variability introduced into M0b value by the

indirect methods use to extract it form data. Particulary care has been

imparted to these parameter as it represents the most direct scaling

factor for CBF estimates in ASL.

The standard deviation assigned to M0b priors was particulary small,

and this is the reason why final M0bestimates do not stand aside ap-

preciably from the prior mean. The method proposed allowed the val-

idation of a data-driven normal prior on M0bby means of a statistical

test.

Regarding implementation of method, CSF score map used for iter-

ative thresholding, as described in section 4.2.3, was calculated form

data. This means that, as a matter of principles, different priors (4.11)

might be obtained for PASL and pCASL data (being different the thresh-

olds used in the procedure), althought hypothetic M0b value should be

unique for subject, no matter if it is used for scale PASL or pCASL data.

Therefore, the larger distribution (between PASL and pCASL) that veri-

fyed the test was chosen as unique M0b prior for whole datasets reffered

to that subject. However, the strict similarity of PASL and pCASL distri-

bution obtained is a further assurance on the reliability of the method

used for M0b prior design.

In table (5.1), the mean and standard deviation of the prior distri-

bution (which derives from a intial manually selected CSF ROI) can be
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compared to those deriving form a distribution of voxels extracted us-

ing a probabilistic segmentation (threshold tCSF ≥ 0.95). The apparent

discrepancies between the two methods originates from the fact that

CSF ROI used as initial step for M0b prior definition was drawn only

around ventricular CSF voxel, which showed higher values.

6.2 Standard model

Standard model estimation procedure has been redefined by adopting

a bayesian approach. This new settings for standard model quantifica-

tion been applied to data sets available (PASL-VC, PASL-NVC, pCASL-

VC, pCASL-NVC). The bayesian approach used has allowed to improve

the model fitting to data. Considering parameters estimates, standard

model has shown a markedly trend of overestimate CBF when NVC

data are considered, both in PASL and pCASL. The causes must be

identifyied in th oversemplified description of the local tissue made by

standard model. GM brain tissue is far to be a single compartement

with respect to water exchanges: istantaneous and complete mixing

between blood water and tissue water has been shown to not occour at

all [14]. The voxel is characterized by a vascular tree that blood has to

travel down before reaching capillary bed, where water exchange actu-

ally occur. The single well-mixed assumption for tissue voxel became

even more critical when large arteries are enclosed by the voxel, since

a vascular artifact (a non perfusion contribution) is introduced into the

measured signal. This effects appear to be more prominent in pCASL

labeling technique, where CBF overstimation is greater than PASL la-

beling technique. It is a consequene of the greater amount of blood

labeled in pCASL (5.6).

Standard model CBF estimates has shown a great improvement

when data acquired with vascualar crushing were considered. Both

in PASL and pCASL, CBF estimates were accetably placed inside the

physiological range of CBF values for healthy subjects. Vascular crush-

ing thus permits to reduce discrepancies between the actual physiology

reflected by measured signal and the assumptions made by the model.

By crushing the signal for high-flowing spins, only contribution from

tagged blood in capillary bed (or in proximity to capillary bed) gives

rise to a detectable signal. In particular pCASL data has shown to per-

formance very well in combination with vascular crushing application.

The higher SNR of pCASL respect to PASL data has allowed to bear with

the signal reduction involved by flow suppression gradients, providing
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good CBF estimates map. Analysis of CBF estimates with PASL-VC has

been hampered by the low SNR of these type of data. To prevent the in-

clusion of any misleading outcomes in the analysis, only the two lower

slice of PASL volume has been considered in the comparisons. Visual

inspection of the susbequent maps has suggested to discard results

from higher slice.

Also ∆t has been estimated from data. This important parameters,

used in pathology to complement perfusion informations given by CBF,

shown a relevant increase when standard model were fitted to crushed

data (5.13). This underlines the different meaning assumed by these

parameter, in dependance on the type of data set used. With uncrushed

data, ∆t reflect the transit delay from labeling creation to entrance into

the tissue voxel, while with crushed data ∆t gives information about

the transit delay from labeling region to a level of voxel vasculature in

proximity of capillaries. In pCASL data this parameter was difficult to

extract since the initial part of the signal time course were not acquired

(the coil was employed for long labeling blood phase), and just few

samples could be used to estimated it (see figure 2.9).

Further work is also needed to better evaluate parameter τ in PASL

model.

Since the main goal was to evaluate the performance in data fitting

and parameters quantification of standard model, any kind of prepro-

cessing analysis was not performed. However it can not be escluded

that their application could have an impact on parameter estimated

values.

6.3 Two component model

Standard model describes tissue volume as single well-mixed compart-

ment. This quite simple system description is meantime a limitation

on model ability to provide good CBF estimates. It has been largely

discussed when sCBF estimates from NVC data has been shown. In

briefing, the semplicity characterizing standard model makes it sensi-

ble to intra vascular tagged blood signal.

Several strategies have been developed to reduce this contamina-

tion, such as measurements at later inversion time to allow blood to

pass through arterial vessels, or the use of bipolar gradient to sup-

press the signal form fast moving spins. Both this methods permit to

improve the data fitting provided by standard model at the expense

of an overall loss of signal, making SNR even more critical. In the first
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case signal is reduced by the increased time allow to relaxation of mag-

netization tag, in the second case signal is reduced because a fraction

of tagged molecules are completely crushed.

The correction of vascular artifacts by modeling approach given by

(4.25) is potentially more powerful than solutions that demand to sac-

rify portion of perfusion signal, and in theory, it is applicable with every

labeling schemes, previous a proper modeling of arterial component.

The main disavantage is that estimating the extra parameters asso-

ciated with the new arterial component may be detrimental to overall

perfusion quantification. In particular, significant contributions from

intravascular blood might only be expected in a limited number of vox-

els, reflecting the limited distribution of large arterial vessels in the

brain. In the absence of true arterial signal, this component of the

model might fit erroneously the noise or a fraction of the perfusion sig-

nal, leading to overfitting and confounding tissue perfusion estiamtion

[22].

In this study the problem of best model selection has not been ad-

dressed. Effort has been made in this study to extract a plausible model

for arterial component, and to show the potential ability of the two

component model to eliminate vascular artifacts, restoring CBF values

to those obtained from fitting of VC data. The main difficulties reside

in detecting the right timing and amplitude of artetrial component to

properly correct the tissue component data fitting.

Arterial component model has been derived in this study using the

same strategy for PASL and pCASL data. Starting from the ideal profile

of labeled bolus transit into an artery, destructives effects introduced

by acquisition scheme, dispersion and magnetical property of the la-

beling has been modeled by means of apprpriate function of time. In

particular, dispersion of labeled blood has been taking into account

using a gamma shape kernel, since a previous study ([18]) indicated it

as the best model for dispersion occouring in large arteries. Several as-

sumption has been made on function descrbing LL readout effects on

arterial component model. First of all, the dependance of this function

from dispersion effects was nelgected. Then, the additional parameter

required, δtmin, was fixed arbitrarly, since it could not be extracted from

the data available in this study. This assumption impacted in different

way on PASL and pCASL models.

Since in PASL all the infowing blood is labeled at the same time,

semplifications described above resulted only in a biased scaling factor

for the arterial component, but no alterations on its shape were intro-
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duced. This different amplitude, were inglobed in the aBV estimated

values that accounted the scaling factor lacking in R(t) expression.

PASL model has been applied to data, following the two step strategy

described in section 4.2.5, providing hopefuls results both in data fit-

ting and in CBF estimates correction.

In pCASL, labeling of blood is performed on time. This implies that

the labeled blood bolus does not experience LL readout pulses in the

same manner, but only the final part of the bouls is affected. A precise

evaluation of the number of RF pulses experienced by labeld blood in

time requires knowledge of trasnsit time form labeling region to imag-

ing region, i.e. parameters δtmin. Taking an approximated value for δtmin

could be very detrimental since the portion of model sensitive to δtmin,

is just the portion sampled by acquisition scheme. Thus, a complex

model requires to be fitted to a set of samples that spans the time

course just partially, moreover in a temporal window where there is a

strong dependence from an unknwon parameter. Finally, to keep ana-

lytical expression also for pCASL model, effect of dipersion on R(t) has

been discarded, resulting in a sharp transition of the modeled profile.

All this considerations suggest that improvments on pCASL arterial

component model are recommended.

It could be noted that a very complex arterial component model

has been used in combination with a relatively basic tissue compo-

nent model (standard model). The rationale of method was to correct

standard model CBF estimates by adding a new component, so effort

has been made on the arterial side of the model, leaving tissue com-

ponent invariate. However, parameters describing dispersion could be

measure more easily in large arteries than tissue, using for example

ASL based angiography techniques.





Conclusion

The main goal of this work was the estimation of cerebral blood flow

(CBF) from ASL data. STAR and pseudo-continuous labeling were in-

volved in this study, as representative of the two most used approaches

for ASL experiments to measure perfusion: Pulsed ASL and Continu-

ous ASL.

Standard model, commonly known also as Buxton model [3], was

adopted to describe acquired data. This model was deeply analyzed, re-

calling theoretical fundamentals and analytical expression derivation,

and modified to accounting for the special readout used in which a

Look-Locker sampling strategy was implemented.

A bayesian framework, making use of maximum a posteriori (MAP)

estimator, was developped for data quantification. This alternative ap-

proach given to estimation procedure allowed a-priori knowledge to be

used on some of those parameters usually treated as fixed contribu-

tion, with the aim of estimating them from data too. This approach

conferred to the model more flexibility, resulting in a global improved

fit.

MAP estimator was forumlated as a optimization problem, and a

formalization of the procedure was given for normal and lognormal

prior distributions.

Two examples of data-driven method to derive prior distribution

on tissue relaxation time and blood equilibrium magnetization were

shown. Improvment on those precedures should be applied in future

to confer them larger robustness.

Extracting relevant consideration from results analysis required to

face with the intrinsically low SNR of ASL data and with the consider-

able amount of data available for each subject (acquisition with vascu-

lar crushing modality was accomplished). Assistance on this work was

provided by a set of MatLab routines implemented to classify results of

voxel wise model fitting on the basis of appropriate indexes.

Further effort was accomplished to adapt standard model and its

estimation settings into a two component model, where also the signal
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of intravascular tagged blood was explicitley modelled. Mathematical

formulation of the new arterial component, assumptions made and

limitations encountered in the data set available was explicitely dis-

cussed. Exploiting data acquired with and without flow suppression

gradients, arterial component model was fitted separately from tissue

component to probe the effectivness of the two component model to

reduce CBF overestimations resulting from standard model identfica-

tion onto ASL data without vascular crushing. The correct addressing

of arterial component timing and amplitude was found to be funda-

mental for macro-vascular artifacts reduction. This last part has to be

intended as a preliminary study that aim to propose two component

model as a valid tool in CBF estimation with ASL data.







Appendix A

Data weights

ASL data quantifaction needs several experiment repetitions to improve

SNR by means of signal averaging. Exploiting this great amount of ac-

quisition, data weights to be used in parameters estimation procedure

can be extracted. Defining l
(i)
k and c

(i)
k as the sample acquired at time tk

in the experiment repetition i for label and control state respectively,

two types of weight model can be considered. In this work they has

been termed as:

• mean of differences model

• difference of means model

First of all, it could be advantageous formalizing how voxel signal dif-

ference ∆ is obtained from the multiple experiment repetitions. Perfu-

sion weighted signal at sampling time k is calculated as:

∆(tk) = ∆k =
1

N

N∑

i=1

l
(i)
k − 1

N

N∑

i=1

c
(i)
k = Lk − Ck (A.1)

=
1

N

N∑

i=1

l
(i)
k − c

(i)
k =

1

N

N∑

i

δ
(i)
k (A.2)

where Lk and Ck represent average along N repetition of label and con-

trol signals at sampling time tk, and δ
(i)
k indicates pairwise subtraction

of labeled and control signals from repetition i at time tk (i = 1,. . . , N

and k = 1, . . . , NLL). Obiouvsly, (A.1) and (A.2) provide the same val-

ues ∆k (the observed data). However the different modeling of signal

diffeence leads to a double evaluation of data weights.
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A.1 Mean of differences model

Weights wk are directly obtained by taking the inverse of the standard

deviation, σk, of δ
(i)
k along all the i = 1, . . . , N repetition of the experi-

ment:

wk =
1

√

var[δ
(i)
k ]

=
1

√

1
N

∑N
i=1

(

∆k − δ
(i)
k

)2

=
1

σ2
δk

A.2 Difference of means model

Weight wk are obtained by applying variance propagation law to equa-

tion (A.1), as follows:

wk =
1

√

var
[

l
(i)
k

]

+ var
[

c
(i)
k

]

=
1

√

1
N

∑N

i=1

(

Lk − l
(i)
k

)2

+ 1
N

∑N

i=1

(

Ck − c
(i)
k

)2

=
1

√

σ2
lk
+ σ2

ck



Appendix B

Maps of score

To facilitate the analysis of the result, a procedure to rate voxelwise

performance on the basis of some indexes has been built. This derived

form a general idea of considering a weighted sum of penalities, and

then has been modified to produce quantitative maps of:

• goodness of fit

• degree of CSF inclusion

• degree of arteriality

The each voxel in the volume an index of score R given by a weighted

sum of penalities Pi was associated:

R =

∑M

i=1wiPi(pi)
∑M

i=1wi

Each penality quantified the distance of voxel performance from an

ideal condition, respect to a precise metric. For example, considering

the goodness of fit case one of the metrics included in index R com-

putation was the WRSS (weighted residuals sum of square), and the

associated penality quantified how far was WRSS in the voxel from the

ideal condition of WRSS = 0. Since metrics of different nature was con-

sidered in global indedx R, each penality should map the distance from

its ideal condition into a unique domain of values, to make the weighted

sum of Pi actually balanced by weights wi and not by differences of Pi

scales. To accomplish this, cumulative distribution functions of some

distribution was used to restore all penality values in the range [0− 1] .

Figure (B.1) gives an intuitive explanation of this concept.
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Figure B.1: example of penalities associated to exponential and normal distri-

butions. The distance of voxel performance from an ideal condition regarding

a particular metrics (popt − p along x axis) is mapped into the range [0− 1] by

taking the difference of the cumulative distribution function of p and popt.

The score R was highly flexible, as in the global computation weight

wi could be changed to enhance or attenuate the contribution of each

penality. Moreover each of them could be calibrated varying probability

distribution parameters (mean µ, and variance σ2 for normal distribu-

tion, and λ for exponential distribution) to modify the selectivness of

the penality function around certain values.

In the follows, applications of this procedure are shown.

Godness of fit

Metrics used:

• product of parametrs CV

• compatibility of parameters estimates with physiological values

• WRSS
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goodness of fit
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Figure B.2: R map describing the goodness of fit. Since R is defined as a sum

of penalities, higher performance is associated to lower R values.

Degree of CSF inclusion Metrics used to probe the degree of CSF

inclusion into the voxel was based essentially on empircal evidence of

the acquired signal, that usually shows high variability coupled with

low amplitude (since no tagged blood can be found in an ideal fully

CSF voxel).

CSF inclusion score
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Figure B.3: R map describing the degree of CSf inclusion showed by each voxel.

Since R is defined as a sum of penalities, higher performance is associated to

lower R values.
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Degree of arteriality

Metrics used are:

• numerical integral of signal measured in its initial part (first 5

samples were considered)

• CBF values obtained from standard model estimation

• ∆t values obtained from standard model estimation

arteriality score
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Figure B.4: R map describing degree of arteriality showed by each voxel. Since

R is defined as a sum of penalities, higher performance is associated to lower

R values.
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