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This thesis explores the design, implementation, and optimization of numerical filters on 

STM32F103 microcontrollers using Keil software. Numerical filters, including low-pass 

and high-pass filters, are fundamental in signal processing, enabling the removal of 

unwanted noise and the enhancement of signal features. The STM32F103, equipped with 

the ARM Cortex-M3 core, offers a balance of performance and power efficiency, making it 

an ideal platform for embedded signal processing tasks. 

In this work, we detail the development process of various numerical filters, leveraging 

Keil µVision for code development and debugging. The study includes the implementation 

of FIR and IIR filters, with a focus on optimizing their computational efficiency and 

memory usage. We utilize the CMSIS-DSP library to accelerate filter development and 

ensure adherence to industry standards. The performance of the filters is rigorously tested 

through simulation and real-world applications, demonstrating their effectiveness in real-

time signal processing. 

The results highlight the STM32F103's capability to handle complex filtering tasks with 

minimal resource consumption, making it suitable for a wide range of applications, from 

industrial automation to IoT sensor networks. The thesis concludes with recommendations 

for future research, emphasizing the development of user-friendly interfaces, enhanced 

security features, and the expansion of the filtering library to support diverse signal 

processing needs. 
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Questa tesi esplora la progettazione, l'implementazione e l'ottimizzazione dei filtri 

numerici sui microcontrollori STM32F103 utilizzando il software Keil. I filtri numerici, 

inclusi i filtri passa-basso e passa-alto, sono fondamentali nell'elaborazione del segnale, 

poiché consentono la rimozione del rumore indesiderato e il miglioramento delle 

caratteristiche del segnale. STM32F103, dotato del core ARM Cortex-M3, offre un 

equilibrio tra prestazioni ed efficienza energetica, rendendolo una piattaforma ideale per 

attività di elaborazione del segnale embedded. 

In questo lavoro, descriviamo in dettaglio il processo di sviluppo di vari filtri numerici, 

sfruttando Keil µVision per lo sviluppo e il debug del codice. Lo studio include 

l'implementazione di filtri FIR e IIR, con particolare attenzione all'ottimizzazione della 

loro efficienza computazionale e dell'utilizzo della memoria. Utilizziamo la libreria 

CMSIS-DSP per accelerare lo sviluppo dei filtri e garantire l'aderenza agli standard del 

settore. Le prestazioni dei filtri vengono rigorosamente testate attraverso simulazioni e 

applicazioni nel mondo reale, dimostrando la loro efficacia nell'elaborazione del segnale in 

tempo reale. 

I risultati evidenziano la capacità di STM32F103 di gestire attività di filtraggio complesse 

con un consumo minimo di risorse, rendendolo adatto a un'ampia gamma di applicazioni, 

dall'automazione industriale alle reti di sensori IoT. La tesi si conclude con 

raccomandazioni per la ricerca futura, sottolineando lo sviluppo di interfacce user-friendly, 

funzionalità di sicurezza migliorate e l'espansione della libreria di filtraggio per supportare 

diverse esigenze di elaborazione del segnale. 
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1 INTRODUCTION 

1.1. Background 

Digital signal processing (DSP) plays a vital role in various applications, from audio and image 
processing to communications and control systems. Embedded systems, particularly those 
based on microcontrollers, often require efficient DSP techniques to process real-time signals. 
Numerical filtering is a fundamental DSP technique used to remove noise and enhance signal 
quality. The STM32F103 microcontroller, part of the STM32 family from STMicroelectronics, 
is widely used in embedded systems due to its powerful features and cost-effectiveness. 

1.2. Problem Statement 

Implementing efficient numerical filters on resource-constrained devices like microcontrollers 
presents significant challenges. These include limitations in computational power, memory 
constraints, and the need for real-time processing. This thesis aims to address these challenges 
by exploring the creation and optimization of numerical filters on the STM32F103 
microcontroller. 

1.3. Objectives 

• To explore the theoretical foundations of numerical filters. 
• To design and implement FIR and IIR filters on the STM32F103 microcontroller. 
• To evaluate the performance of these filters in practical scenarios. 
• To provide optimization techniques for enhancing filter performance on the STM32F103. 

1.4. Scope of the Thesis 

The research focuses on numerical filtering techniques, particularly FIR and IIR filters, and 
their implementation on the STM32F103 microcontroller. The study includes the design, 
coding, optimization, and performance evaluation of these filters in real-world applications. 

1.5. Structure of the Thesis 

The thesis is organized into seven chapters, starting with an introduction, followed by a 
literature review, theoretical background, detailed discussion of the STM32F103 
microcontroller, the creation and implementation of numerical filters, performance evaluation, 
and concluding with a summary of findings and future directions. 
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2 LITERATURE REVIEW 

2.1 Overview of Numerical Filtering 

Numerical filtering in DSP refers to the process of modifying or enhancing signals through 
various mathematical operations. These filters can remove noise, extract important features, or 
transform signals for further analysis. 

Filtering is a fundamental technique in DSP that enhances signal quality and extracts useful 
information across various applications and plays a vital role in improving the performance and 
accuracy of numerous systems and technologies [1]. 

The importance of filtering can be explained as below:  

• Noise reduction is critical in many applications where the integrity of the signal must be 
preserved. Noise, which can be introduced by external sources or electronic components, can 
obscure important signal features and degrade performance. 

• Signal separation involves isolating different components of a signal that are mixed 
together. This is important in applications where multiple signals are combined, and each 
component needs to be analyzed or processed separately. 

• Data smoothing is used to eliminate short-term fluctuations and highlight long-term 
trends or cycles in data. This is crucial in applications where noisy data can obscure important 
patterns or trends [2]. 

2.2 Types of Numerical Filters: FIR and IIR 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters are the two primary 
types of filters used in digital signal processing (DSP). They differ in their characteristics, 
design, and applications.  

FIR filters have an impulse response with limited duration. This means that the filter's response 
to an impulse input goes to zero within a finite time. They can also be designed to have an exact 
linear phase, and the response is a linear function of frequency. This ensures that all frequency 
components of the input signal are delayed by the same amount and the waveform is preserved. 
In addition, FIR filters are always stable because their poles are located at the origin in the z-
plane. 

FIR filters are ideal for applications where phase linearity is critical, such as data 
communications and image processing. They ensure stability because they do not rely on 
feedback and can be designed to have a precise linear phase. However, typically require more 
multiplications and additions compared to IIR filters for the same performance and often need 
more memory to store filter coefficients and intermediate calculations [3]. 



            CHAPTER 2                            LITERATURE REVIEW  

3  

On the other hand, IIR (Infinite Impulse Response) Filters have an impulse response that 
theoretically lasts forever, allowing them to achieve the desired response with fewer 
coefficients using feedback from the output to the input. The feedback mechanism can lead to 
instability if not carefully designed. IIR filters have a non-linear phase response that can distort 
signals.  

The advantage of IIR filters is the efficiency that allows us to obtain a certain frequency 
response with fewer coefficients than FIR filters and requires less memory for the filter 
coefficients. However, they can become unstable if not designed correctly and distort phase-
sensitive signals [4]. 

In conclusion, FIR and IIR filters serve different needs and have unique strengths and 
weaknesses, making each more suitable for specific applications. 

FIR filters are simpler to implement because they do not require feedback and are inherently 
stable. IIR filters, while more efficient in terms of the number of computations, require careful 
design to ensure stability. 

FIR filters can achieve exact linear phase, making them suitable for applications where phase 
characteristics are critical. IIR filters usually have non-linear phase characteristics, which can 
distort phase-sensitive signals. 

The choice between FIR and IIR filters depends on the specific requirements of the application. 
FIR filters are preferred for applications requiring precise phase control and guaranteed 
stability, such as in audio and communication systems. IIR filters are advantageous in scenarios 
where computational efficiency is paramount and phase linearity is less critical, such as in 
general-purpose signal processing tasks. The design of these filters involves trade-offs between 
computational cost, stability, phase response, and memory usage, necessitating a careful 
assessment of the application's demands [5]. 

2.3 Microcontrollers in DSP Applications 

Digital signal processing (DSP) is a critical technology in modern electronics that enables the 
manipulation and analysis of signals in various applications such as audio processing, 
communications, and control systems. Microcontrollers (MCU) have become a popular choice 
for performing DSP tasks in embedded systems due to their affordability, versatility, and 
energy efficiency. 

Microcontrollers play a vital role in embedded systems and provide an efficient and cost-
effective platform for performing DSP tasks. Their integration, low power consumption and 
versatility make them suitable for a wide range of applications, from consumer electronics to 
industrial automation. Despite some limitations in performance and memory, the advantages of 
using microcontrollers in DSP tasks, such as ease of development and system integration, 
outweigh the challenges. As technology advances, the capabilities of microcontrollers continue 
to expand, reinforcing their importance in embedded DSP applications [6].  
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2.4 STM32F103 Microcontroller: Architecture and Features 

The STM32F103 microcontroller is part of the STM32F1 series from STMicroelectronics, 
based on the ARM Cortex-M3 core. This microcontroller is designed for high performance, low 
power consumption, and advanced peripherals, making it suitable for a variety of applications. 

 

 

 

 

 

 

 

 

 

Fig. 2.1 STM32F103 Performance line Block Diagram 

Key Components are:  

o Core and Performance: 
• ARM Cortex-M3 32-bit processor core includes a hardware MAC unit; which is 

essential for efficient implementation of DSP algorithms like FIR and IIR filters. 
• Up to 72 MHz CPU frequency. 
• Nested Vectored Interrupt Controller (NVIC) for efficient interrupt handling. 
• Single-cycle multiply and hardware divide. 

o Memory: 
• Up to 128 KB of on-chip Flash memory. 
• Up to 20 KB of SRAM. 

o Clock and Reset: 
• Internal RC oscillators (8 MHz and 40 kHz). 
• External clock sources (4-16 MHz crystals/ceramic resonators). 
• Phase-Locked Loop (PLL) for clock generation. 
• Low-power modes: Sleep, Stop, and Standby. 

o Digital I/O: 
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• Up to 80 I/O ports, configurable as general-purpose I/O or peripheral functions. 
• Programmable output speed (2 MHz, 10 MHz, 50 MHz). 

o Analog Peripherals: 
• 12-bit ADCs: Up to 16 channels with up to 1 Msps conversion rate. 
• Digital-to-Analog Converters (DAC): Not available in all models. 
• Comparators: Not available in all models. 

o Communication Interfaces: 
• USARTs: Up to 5, supporting synchronous/asynchronous communication. 
• SPI: Up to 3, supporting full-duplex synchronous communication. 
• I2C: Up to 2, supporting multi-master/slave modes. 
• CAN: Up to 2, for automotive and industrial communication. 
• USB: Full-speed USB 2.0 interface. 

o Timers: 
• Advanced-control timers: 4x 16-bit timers with PWM and input capture/compare. 
• General-purpose timers: 4x 16-bit timers. 
• Basic timers: 2x for timing and DAC triggering. 

o DMA Controller: 

• 7-channel DMA controller for efficient data transfer without CPU intervention. 

The STM32F103 microcontroller offers a robust set of features and capabilities that make it 
well-suited for embedded DSP applications. Its ARM Cortex-M3 core, combined with flexible 
peripherals and low-power modes, enables efficient and effective DSP operations in a variety of 
applications. While it may not match the performance of dedicated DSP processors, its 
versatility and integration make it an excellent choice for many embedded system designs [7]. 

2.5 Previous Work on Numerical Filtering in Embedded Systems 

Digital filters are essential components in digital signal processing (DSP) that are used to filter 
out unwanted components from a signal. Various microcontrollers (MCU) have been used to 
implement these filters, and several studies have investigated their efficiency, techniques, and 
limitations. 

One notable study involved the STM32F407 microcontroller, a member of the STM32 family 
by STMicroelectronics. Researchers designed and implemented FIR and IIR filters using 
ARM's CMSIS DSP libraries. The study highlighted the advantages of using hardware-
optimized libraries to enhance the performance of numerical filters. FIR filters were 
implemented using windowing methods, while IIR filters employed bilinear transformation 
techniques. The findings revealed that, despite the computational overhead associated with FIR 
filters due to their larger number of coefficients, the STM32F407 managed these tasks 
effectively, although IIR filters were preferred in scenarios requiring lower computational loads 
and memory usage [8]. 
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In the realm of Arduino microcontrollers, a study explored real-time DSP capabilities using the 
Arduino Uno. The implementation focused on basic FIR and IIR filters, programmed using 
simple C code without hardware acceleration. The direct form was used for FIR filters, while 
biquad structures were chosen for IIR filters. The results demonstrated that while Arduino Uno, 
with its 8-bit architecture, could handle basic DSP tasks, its limited processing power and 
memory posed significant constraints. These limitations were particularly evident when dealing 
with higher-order filters and high sampling rates, suggesting that Arduino is better suited for 
low-complexity, cost-sensitive applications. 

The ESP32 microcontroller, known for its dual-core 32-bit architecture, was investigated for its 
DSP capabilities in IoT applications. Utilizing the ESP-DSP library, researchers implemented 
both FIR and IIR filters, leveraging the microcontroller's hardware capabilities to optimize 
performance. The study found that the ESP32 could handle real-time DSP tasks efficiently, 
making it suitable for IoT applications requiring significant processing power. However, the 
power consumption remained a critical consideration, especially for battery-powered devices 
[9]. 

A study on the PIC32MX series microcontrollers focused on implementing digital filters using 
the Microchip Libraries for Applications (MLA). Both FIR and IIR filters were implemented, 
demonstrating the microcontroller's ability to handle moderate DSP tasks effectively. The study 
emphasized the importance of using assembly code for critical sections to optimize 
performance, addressing the limitations in processing speed observed with high-level 
programming languages. 

For biomedical applications, the PIC24 microcontroller was used to design IIR filters for 
processing biomedical signals such as ECG data. The filters were implemented using a direct 
form II structure to minimize memory usage and enhance stability. This implementation 
underscored the PIC24's suitability for medical applications, where low power consumption and 
efficient processing are paramount. However, challenges related to processing delays and 
power management highlighted the need for further optimization, particularly for portable, 
battery-operated medical devices [10]. 

These studies collectively illustrate the diverse capabilities and constraints of different 
microcontrollers in executing numerical filters. The STM32 family stands out for its balance of 
performance and flexibility, suitable for a wide range of applications including audio 
processing and moderate DSP tasks. Arduino microcontrollers, while limited in processing 
power and memory, offer a low-cost solution for simple DSP applications. The ESP32 provides 
robust performance for IoT applications, leveraging its dual-core processing capabilities, 
though power consumption remains a concern. Meanwhile, PIC microcontrollers are well-
suited for specific tasks like biomedical signal processing, provided that performance 
optimization techniques are employed to overcome inherent limitations. 
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3 THEORY OF NUMERICAL FILTERS 

3.1 Fundamentals of Digital Signal Processing 

Digital Signal Processing (DSP) is an essential field in modern electronics that deals with the 
manipulation of digital signals to extract or alter information. Several key concepts form the 
foundation of DSP, including sampling, quantization, and the Z-transform. 

Sampling is the process of converting a continuous-time signal into a discrete time signal by 
taking measurements at regular intervals. This process is governed by the Nyquist-Shannon 
sampling theorem, which states that to accurately reconstruct the original signal, the sampling 
rate must be at least twice the highest frequency present in the signal. If the sampling rate is too 
low, aliasing can occur, where higher frequency components are incorrectly mapped to lower 
frequencies, leading to distortion. 

Quantization is the process of mapping a continuous range of signal values to a finite range of 
discrete levels. After sampling, each analog sample is assigned a digital value from a limited set 
of levels, which introduces a quantization error. This error is the difference between the actual 
analog value and the quantized digital value. Quantization can be uniform or non-uniform. 
Uniform quantization assigns equal step sizes between levels, while non-uniform quantization 
uses varying step sizes, often to give more precision to more critical signal ranges. The 
resolution of the quantization process is determined by the number of bits used for each sample; 
higher bit-depth results in smaller quantization errors and better signal fidelity [11]. 

The Z-transform is a mathematical tool used in DSP to analyze and design digital systems. It is 
a generalization of the discrete-time Fourier transform (DTFT) and is particularly useful for 
dealing with linear, time-invariant (LTI) systems. The Z-transform converts a discrete-time 
signal, which is a sequence of numbers, into a complex frequency domain representation. This 
transformation simplifies the analysis of complex signals and systems, making it easier to 
understand their behavior and design filters. The Z-transform of a discrete signal x[n] is defined 
as X(z) = Σ x[n]z^(-n), where z is a complex variable. Key concepts related to the Z-transform 
include the region of convergence (ROC), which defines where the Z-transform converges, and 
the inverse Z-transform, which is used to convert the signal back to the time domain. 

Together, these concepts enable the effective processing of digital signals. Sampling allows 
continuous signals to be represented in a digital form, quantization ensures these digital 
representations are manageable within digital systems, and the Z-transform provides a powerful 
method for analyzing and designing signal processing algorithms. Understanding these 
fundamental principles is crucial for anyone working in the field of DSP, as they form the basis 
for more advanced techniques and applications in communications, audio processing, control 
systems, and beyond.  

3.2 Peripherals and DSP Capabilities 

The STM32F103 microcontroller, part of STMicroelectronics STM32F1 series, is built around 
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the ARM Cortex-M3 core, which is known for its balanced performance and power efficiency. 
This microcontroller integrates a variety of peripherals that enhance its capabilities for digital 
signal processing (DSP), making it suitable for implementing numerical filters. 

Timers in the STM32F103 are versatile and numerous, providing essential functions for timing 
control, signal generation, and event management. Advanced-control timers offer features like 
pulse-width modulation (PWM) and input capture/compare, which are crucial for applications 
requiring precise timing and signal generation. General-purpose timers can be used for simpler 
timing tasks, and basic timers serve well for straightforward timekeeping. These timers 
facilitate the implementation of numerical filters by providing accurate sampling intervals, 
which are critical for maintaining the integrity of the sampled signals during filtering 
operations. 

The STM32F103 also features Analog-to-Digital Converters (ADCs), which play a pivotal role 
in DSP by converting analog signals into digital form. With up to 16 channels and a 12-bit 
resolution, the ADCs can achieve sampling rates up to 1 million samples per second (Msps). 
This high sampling rate and resolution ensure that the analog signals are captured with 
sufficient detail and speed, allowing for effective digital filtering and signal processing. The 
ADCs can be configured to operate in different modes, including single, continuous, scan, and 
discontinuous modes, providing flexibility in how signals are sampled and processed. 

Although not available in all models, Digital-to-Analog Converters (DACs) can be found in 
some STM32F103 variants. DACs convert digital signals back into analog form, which is 
essential for applications where the processed digital signals need to be output as analog 
signals. This capability is particularly useful in audio processing applications, where the filtered 
digital audio signals are converted back into analog form for playback [12]. 

Dedicated DSP instructions supported by the ARM Cortex-M3 core further enhance the 
STM32F103's capabilities for signal processing. The Cortex-M3 includes hardware support for 
single-cycle multiply and multiply-accumulate (MAC) operations, which are fundamental to 
many DSP algorithms, such as finite impulse response (FIR) and infinite impulse response 
(IIR) filters. The MAC operation, in particular, is critical for efficient filter implementation, as 
it allows for rapid computation of the dot products involved in FIR and IIR filtering. 
Additionally, the core supports saturation arithmetic, which helps prevent overflow in fixed-
point calculations, a common issue in DSP applications. 

These DSP features and peripherals collectively facilitate the implementation of numerical 
filters on the STM32F103. The timers ensure precise control over sampling intervals, which is 
vital for maintaining the consistency and accuracy of the filtered signals. The high-resolution 
and high-speed ADCs allow for detailed and rapid digitization of analog signals, providing the 
raw data necessary for digital filtering. DACs enable the conversion of processed digital signals 
back into analog form, ensuring that the final output can be utilized in analog domains. The 
dedicated DSP instructions, particularly the MAC operations, significantly speed up the 
computation of filter algorithms, making real-time processing feasible even for complex filters. 
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In summary, the combination of versatile timers, high-performance ADCs, available DACs, 
and dedicated DSP instructions in the STM32F103 microcontroller provides a robust platform 
for implementing numerical filters. These features enable precise sampling, efficient signal 
conversion, and rapid computation, all of which are essential for effective digital signal 
processing in a wide range of applications [13]. 

3.3 Filter Design Considerations for Microcontrollers 

Designing and implementing filters on microcontrollers involves a set of unique considerations 
due to the constraints and characteristics of these systems. It's essential to account for the 
limited computational power, memory constraints, and real-time processing requirements 
typical of microcontrollers. Understanding the specific needs of the application, such as the 
type of signals being processed and the desired filter characteristics, is crucial [14]. 

When implementing filters, the choice between hardware and software implementations must 
be made based on factors like precision requirements, processing speed, and resource 
availability. Software implementations might rely on fixed-point arithmetic to optimize 
performance, considering that many microcontrollers lack floating-point units. Efficient coding 
practices, such as minimizing loop overhead and optimizing mathematical operations, are vital 
to ensure that the filter operates within the real-time constraints. 

Another key consideration is the power consumption of the filter algorithm, as microcontrollers 
are often used in battery-powered devices. Algorithms need to be energy-efficient to prolong 
battery life. Additionally, the implementation should be robust against numerical stability 
issues, especially in recursive filters like IIR filters. 

Finally, testing and validation of the filter implementation are crucial to ensure it meets the 
performance criteria under all operating conditions. This includes verifying the filter's 
frequency response, phase response, and overall stability within the microcontroller's 
operational limits. Properly addressing these considerations ensures that the filter performs 
effectively and reliably in the intended application [15]. 

3.4 Development Environment and Tools 

When programming the STM32F103 microcontroller, developers have access to a range of 
software tools and development environments that cater to different needs and preferences. A 
primary tool is STM32CubeIDE, an integrated development environment from 
STMicroelectronics. It combines STM32CubeMX's graphical configuration and code 
generation with the advanced features of the Eclipse-based IDE, providing a comprehensive 
suite for project management, code editing, and debugging. Its integration with 
STM32CubeMX simplifies peripheral configuration and initialization code generation, 
enhancing development efficiency. 

Another key resource is the CMSIS-DSP library, which offers optimized signal processing 
algorithms specifically for ARM Cortex-M processors. This library includes functions for 
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FFTs, filters, matrix operations, and more, supporting both fixed-point and floating-point 
implementations. Its seamless integration with ARM's CMSIS standard ensures compatibility 
and ease of use, making it ideal for complex signal processing tasks [16]. 

For developers seeking an alternative IDE, Keil MDK and IAR Embedded Workbench are 
popular choices. Keil MDK features the µVision IDE, which excels in debugging with 
advanced features like trace, profiling, and performance analysis, along with RTOS support and 
middleware components. IAR Embedded Workbench is known for its high-performance 
compiler that optimizes code size and execution speed, coupled with robust debugging tools 
and RTOS-aware capabilities. 

System Workbench for STM32 (SW4STM32) and ARM Mbed Studio offer additional options. 
SW4STM32 is an Eclipse-based IDE provided by AC6, valued for its free and open-source 
nature, making it accessible for a wide range of users. It also integrates with STM32CubeMX 
for graphical configuration. ARM Mbed Studio focuses on IoT applications, integrating closely 
with Mbed OS and providing cloud connectivity features, which is beneficial for IoT and 
embedded applications. 

The GNU Arm Embedded Toolchain (GCC) is another essential tool, being open-source and 
supported by a large community. It offers flexibility, allowing use with various IDEs and build 
systems like Eclipse, Makefiles, and CMake, and includes a robust optimizing compiler. 

These tools collectively provide a versatile and powerful ecosystem for developing on the 
STM32F103 microcontroller. The choice of tool often depends on specific project 
requirements, such as the need for advanced debugging, optimization capabilities, ease of 
peripheral configuration, or support for IoT functionalities. Each tool and environment brings 
its own strengths, enabling developers to efficiently tackle diverse embedded system challenges 
[17]. 

3.5 Challenges in Implementing Numerical Filters on STM32F103 

Implementing numerical filters on the STM32F103 microcontroller presents several specific 
challenges due to its inherent constraints and characteristics. One of the primary challenges is 
the limited computational power of the STM32F103, which typically features an ARM Cortex-
M3 core. While this core is efficient for many embedded tasks, it lacks the processing muscle 
of more advanced processors, making it necessary to carefully optimize filter algorithms to run 
efficiently within the available CPU cycles. 

Memory constraints also pose a significant challenge. The STM32F103 typically has limited 
RAM and flash memory, which can restrict the size and complexity of filter implementations. 
Efficient memory management becomes crucial, necessitating the use of fixed-point arithmetic 
instead of floating-point to save memory and processing power. However, using fixed-point 
arithmetic introduces its own complexities, such as scaling issues and the need for careful 
handling of numerical precision to avoid overflow and underflow errors [18]. 
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Real-time processing requirements further complicate filter implementation. Many applications 
using the STM32F103 need to process data in real-time, necessitating filters that can execute 
within strict timing constraints. This means the filter algorithms must be highly optimized to 
ensure they can handle the incoming data rate without introducing unacceptable latency or 
missing deadlines. Achieving this level of performance often requires a deep understanding of 
both the hardware and the specific requirements of the application. 

Power consumption is another critical consideration, especially in battery-powered 
applications. Efficient filter implementation must balance the need for computational accuracy 
and performance with the need to minimize energy consumption. This often involves making 
trade-offs between algorithm complexity and power usage and implementing techniques such 
as power-saving modes and efficient use of the processor's sleep states [19]. 

Moreover, implementing recursive filters, like Infinite Impulse Response (IIR) filters, requires 
special attention to numerical stability. The limited precision of fixed-point arithmetic can lead 
to stability issues over time, necessitating careful design and testing to ensure the filter remains 
stable under all operating conditions. This often involves implementing safeguards and error-
checking mechanisms to detect and mitigate potential stability problems. 

Lastly, the development and debugging tools available for the STM32F103 can also influence 
the implementation of numerical filters. While tools like STM32CubeIDE and the CMSIS-DSP 
library provide significant support, developers still need to ensure that their development 
environment is properly configured to handle the specific requirements of numerical filter 
implementation. This includes setting up efficient workflows for testing and validating the filter 
performance under real-world conditions. 

In summary, implementing numerical filters on the STM32F103 involves navigating challenges 
related to computational power, memory constraints, real-time processing, power consumption, 
numerical stability, and the effective use of development tools. Addressing these challenges 
requires a careful and well-informed approach to algorithm design, optimization, and testing to 
ensure that the filters perform reliably and efficiently within the microcontroller's limitations 
[20]. 

3.6 Overview of the Keil µVision 5 development environment 

Keil µVision 5 IDE offers a comprehensive environment tailored for embedded systems 
development, particularly for ARM microcontrollers. When setting up a project, users benefit 
from an intuitive interface that simplifies the creation and management of projects. It supports 
various templates and device configurations, making it easier to get started with different 
microcontrollers, including those from the STM32 family [21]. 

In the realm of code editing, Keil µVision 5 provides a powerful editor with features like syntax 
highlighting, code completion, and context-sensitive help. These features enhance productivity 
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by reducing common coding errors and speeding up the development process. The editor also 
integrates well with the debugging tools, allowing for seamless transition between writing and 
testing code. 

Compiling in Keil µVision 5 is streamlined through its robust build system, which supports 
various optimization levels and linker settings. The IDE generates efficient machine code 
optimized for performance and memory usage, essential for embedded applications where 
resources are often limited. 

Debugging is one of the standout features of Keil µVision 5. The IDE includes an advanced 
debugging interface with capabilities such as breakpoints, watch windows, memory views, and 
real-time variable tracking. These tools are crucial for diagnosing and fixing issues in 
embedded systems. The integrated simulator allows for testing and debugging code even 
without the actual hardware, which is particularly useful during the early stages of 
development. 

Interfacing with STM32CubeMX, Keil µVision 5 excels in peripheral configuration and project 
management. STM32CubeMX, a graphical configuration tool, helps in setting up peripherals, 
pin configurations, and middleware for STM32 microcontrollers. The integration with Keil 
µVision 5 ensures that once the configuration is done in STM32CubeMX, the settings and 
initialization code can be seamlessly imported into the IDE. This saves time and reduces the 
likelihood of errors in manual configuration, ensuring that the peripheral setup is consistent 
with the code being developed. 

Overall, Keil µVision 5 IDE offers a comprehensive set of tools for embedded systems 
development, from project setup and code editing to compiling, debugging, and advanced 
peripheral configuration through STM32CubeMX. This integration and feature set make it a 
powerful choice for developers working with ARM microcontrollers, particularly those in the 
STM32 family [22]. 
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4 IMPLEMENTATION OF NUMERICAL FILTERS  

4.1 Test setup and hardware connections 

To implement numerical filters on the STM32F103 microcontroller using Keil µVision 5, 
specific hardware components to set up, test, and validate the filter algorithms are needed. Such 
as:  

 
o STM32F103 Microcontroller 
o Development Board: An STM32F103-based development board, such as the 

STM32F103C8T6 "Blue Pill" or Nucleo-64 board, which includes essential components 
like power regulation and basic I/O pins.  

o ST-Link/V2 Debugger and Programmer: For flashing the firmware and debugging the 
microcontroller. 

o USB Cable: To connect the development board to the computer for power, programming, 
and serial communication. 

o Push Buttons and Switches: For user input. 
o LEDs and Resistors: For basic output indicators. 
o SPI Modules: For communication with peripherals like sensors or displays. 
o LCD or OLED Display: For visual output and debugging information. 

 
These components provide a solid foundation for developing and testing applications with the 
STM32F103 microcontroller. 

 
4.2 Configuration of STM32F103 peripherals (ADC, Timers, UART) 

Configuring ADC, timers, and UART using STM32CubeMX and integrating these 
configurations into a Keil project involves several steps that blend graphical configuration with 
code integration. 

To start, we launched STM32CubeMX and we created a new project. STM32 microcontroller 
by selecting its model number has been chosen. Once the project is initialized, we are with the 
pinout view, where we can configure the necessary peripherals. 

For configuring the ADC, we should click on the pin associated with the ADC input and set it 
to analog mode. Then in "Configuration" tab, we should select the ADC peripheral, and set its 
parameters such as resolution, data alignment, and conversion mode. We can also add multiple 
channels and set the sampling time for each channel. 

To configure timers, we can enable the desired timer by clicking on its associated pin. In the 
"Configuration" tab, we set its mode (e.g., PWM, input capture, output compare). Then, we 
adjust the prescaler and counter period to achieve the desired frequency, and configure the 
timer channels if needed [23]. 



CHAPTER 4          IMPLEMENTATION OF NUMERICAL FILTERS  

14  

For UART configuration, we enable the UART peripheral (e.g., USART2) from the pinout 
view. In the "Configuration" tab, we set the UART parameters such as baud rate, word length, 
stop bits, parity, and mode (TX, RX, or both). This ensures the UART is correctly set up for 
communication. 

After configuring all peripherals, we generated the initialization code by clicking "Project" in 
the top menu and we chose the MDK-ARM toolchain for Keil and generate the code. 
STM32CubeMX will create a project directory with all the necessary files, including main.c, 
stm32fxxx_hal_msp.c, stm32fxxx_it.c, and stm32fxxx_hal_conf.h. 

In Keil µVision we can load the generated project by opening the .uvprojx file in the project 
directory. STM32CubeMX generates several files, including: 
• main.c – Main program. 
• stm32fxxx_hal_msp.c – MSP (MCU Support Package) initialization code. 
• stm32fxxx_it.c – Interrupt service routines. 
• stm32fxxx_hal_conf.h – HAL configuration file. 

In main.c, user code sections marked with USER CODE BEGIN and USER CODE END can 
be found. These sections are preserved when regenerating code from STM32CubeMX and we 
safely add our application-specific code here. 

To use the configured peripherals in our application, include the necessary HAL library 
functions.  

Here’s a simple example of how to use the configured ADC, timer, and UART: 
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We can compile the project in Keil by clicking the "Build" button. Connect STM32 
microcontroller to our development PC using a debugger (e.g., ST-LINK) and load the 
compiled program onto the microcontroller. Start a debug session to test and troubleshoot our 
application. 

By following these steps, we can effectively configure ADC, timers, and UART using 
STM32CubeMX and integrate these configurations into a Keil project. This process leverages 
the strengths of both tools, making peripheral configuration straightforward and ensuring a 
smooth transition to application development. 

4.3 Implementation of numerical filters in C 

 

Coding numerical filters such as the Simple Moving Average (SMA), Exponential Moving 
Average (EMA), and Low-Pass Filter (LPF) for an STM32F103 microcontroller involves 
understanding the mathematical basis of each filter and translating this into efficient C code that 
runs on the microcontroller. Here below we explained the process, including initialization, 
updating filter values, and integration within an STM32F103 project using Keil µVision 5 [24]. 
 
4.3.1 Simple Moving Average (SMA) 

The Simple Moving Average (SMA) filter smooths data by averaging a fixed number of the 
most recent data points. This is achieved by maintaining a circular buffer of the latest N values 
and updating the sum and average as new values are added. 
 
First, we define a structure to hold the filter state, including the window of values, the current 
index, and the sum of the values. The initialization function sets the initial state, and the update 
function adds a new value, updates the sum, and computes the new average. 
Here’s the implementation of the SMA filter in C: 
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 4.3.2 Exponential Moving Average (EMA) 

The Exponential Moving Average (EMA) filter gives more weight to recent data points, 
providing a more responsive filter than the SMA. The EMA is defined recursively, with each 
new value contributing to the average in proportion to a smoothing factor alpha. 

The EMA filter structure includes the alpha value and the current EMA value. The initialization 
function sets the initial EMA value to zero or the first input value, and the update function 
calculates the new EMA value based on the latest input. 

Here’s the implementation of the EMA filter in C: 

 

4.3.3 Low-Pass Filter (LPF) 

Low-Pass Filter (LPF) on an STM32F103 microcontroller is a digital filter used to allow low-
frequency signals to pass through while blocking or attenuating high-frequency signals. This 
type of filter is useful for smoothing out a signal, removing high-frequency noise, and 
extracting the low-frequency components of a signal, which are often of interest in many 
applications. 
 
To implement an LPF on the STM32F103, we can configure the microcontroller's ADC 
(Analog-to-Digital Converter) to read an input signal and the DAC (Digital-to-Analog 
Converter) to output the filtered signal. The filter itself can be implemented using a difference 
equation. For a simple first-order low-pass filter, this equation is: 



CHAPTER 4          IMPLEMENTATION OF NUMERICAL FILTERS  

17  

 

Y[n]=α⋅x[n]+(1−α)⋅y[n−1]        (1) 
 
α is a filter coefficient that determines the cutoff frequency of the filter. 
The cutoff frequency determines which frequencies are allowed to pass through the filter. By 
adjusting the coefficient α, we can change the cutoff frequency. Lower values of α will pass 
lower frequencies and block higher frequencies more effectively. 
 
The process involves continuously reading the input signal through the ADC, applying the low-
pass filter algorithm, and then outputting the filtered signal via the DAC. This allows the 
STM32F103 to process signals in real-time, filtering out high-frequency noise and allowing the 
low-frequency components to be analyzed or used further in the application. This is useful in 
applications such as audio processing, signal conditioning, and noise reduction, where it is 
important to focus on the low-frequency components of a signal [25]. 

 
4.3.4 High-Pass Filter (HPF) 

High-Pass Filter (HPF) on an STM32F103 microcontroller is a digital filter used to allow high-
frequency signals to pass through while blocking or attenuating low-frequency signals. This 
type of filter is particularly useful for removing unwanted low-frequency components from a 
signal, such as DC offset or slow-changing trends, leaving behind the higher-frequency 
components that are often of more interest. 
 
To implement an HPF on the STM32F103, we can configure the microcontroller's ADC 
(Analog-to-Digital Converter) to read an input signal, and the DAC (Digital-to-Analog 
Converter) to output the filtered signal. The filter itself can be implemented using a difference 
equation. For a simple first-order high-pass filter, this equation is: 
 
y[n]= β⋅(y[n−1]+x[n]−x[n−1])       (2) 
 
β is a filter coefficient that determines the cutoff frequency of the filter. 
The cutoff frequency determines which frequencies are allowed to pass through the filter. By 
adjusting the coefficient β, we can change the cutoff frequency. Higher values of β will pass 
higher frequencies and block lower frequencies more effectively. 
 
The process involves continuously reading the input signal through the ADC, applying the 
high-pass filter algorithm, and then outputting the filtered signal via the DAC. This allows the 
STM32F103 to process signals in real-time, filtering out low-frequency components and 
allowing higher-frequency components to be analyzed or used further in the application. This is 
useful in applications such as audio processing, signal conditioning, and noise reduction, where 
it is important to focus on the high-frequency components of a signal [26]. 
 

4.4 Integration with Keil µVision 5 
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To integrate these filters into an STM32F103, begin by setting up the required peripherals using 
STM32CubeMX. This involves configuring the ADC for reading sensor values and the UART 
for debugging or data communication that is explained already in section 4.2.  

After generating the initialization code in STM32CubeMX, we open the project in Keil µVision 
5. We create new source and header files (e.g., filters.c and filters.h) to include the filter 
implementations. Including these files in our Keil project to be sure that are referenced in the 
main application file (main.c). 
 
In main.c, we initialize the filters and periodically read sensor values using the ADC and apply 
these values to the filters and optionally send the filtered results over UART for verification. 
The example of integrating the filters in main.c is available in Appendix.  

4.5 Procedures for testing the filter implementation 

First we set up the hardware by connecting the STM32F103 microcontroller to a power source 
and connecting the ADC input to a signal source such as a potentiometer or a signal generator. 
We used a UART-to-USB adapter to connect the UART output to a PC for monitoring the filter 
outputs. 

In the software, we create a series of test inputs, such as constant signals, step signals, and 
sinusoidal signals, to evaluate the performance of the filters.  

4.6 Test results of LPF and HPF on real-time 

In the context of Keil's implementation of a Low-Pass Filter (LPF), the alpha (α) parameter 
dictates the balance between smoothing the signal (filtering out high-frequency noise) and 
allowing the signal to closely follow rapid changes (minimizing filtering). 

Here’s the implementation of the LPF in C: 
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α = 0 (Maximum Filtering): This means the output is heavily filtered, relying almost entirely on 
the previous output with applying a constant voltage (e.g., 500 mV) to the ADC. The filter 
outputs should stabilize at or near this voltage, demonstrating their ability to handle steady-state 
signals.  

α = 1 (Minimum Filtering): This means the output follows the input exactly, with no filtering 
applied. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 Low-Pass Filter (LPF) on a real-time 

In the context of high-pass filtering on STM32F103 microcontrollers, the beta (β) parameter is 
often used similarly to the alpha (α) parameter in low-pass filters, but for high-pass filtering 
applications. High-pass filters (HPF) allow high-frequency signals to pass through while 
attenuating low-frequency signals, including any DC components. 
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The beta (β) parameter in a high-pass filter can control the degree of filtering, balancing 
between passing more of the higher frequencies and filtering out the lower frequencies.  

β = 0 (Minimum Filtering): This means no high-pass filtering is applied, and the output follows 
the input without any attenuation of the lower frequencies. 

β = 1 (Maximum Filtering): This means maximum high-pass filtering is applied, attenuating all 
the low-frequency components as much as possible. 

Therefore, by fine-tuning the β parameter, we can effectively manage the balance between 
filtering out unwanted low-frequency components and preserving the desired high-frequency 
signal content [31]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2 High-Pass Filter (HPF) on a real-time 
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5 PERFORMANCE EVALUATION 

5.1 Comparison of different filter implementations 

When testing the implementation of Low-Pass Filter (LPF) and High-Pass Filter (HPF) on an 
STM32F103 microcontroller, the analysis of the results focuses on how effectively these filters 
process the input signals to achieve the desired frequency response. 
 
Low-Pass Filter (LPF) Analysis: 

The LPF should allow low-frequency components of the signal to pass through while 
attenuating high-frequency components. 

 
Results: 

• Signal Smoothing: The LPF effectively smooths out rapid fluctuations or noise in the 
input signal, leaving a smoother, more stable output. This indicates that high-frequency 
noise has been attenuated. 

• Frequency Response: By analyzing the output signal using a frequency spectrum 
analyzer, we can observe that frequencies above the cutoff frequency are significantly 
reduced. The magnitude of the output signal at higher frequencies should be much lower 
than at low frequencies. 

• Time-Domain Analysis: In the time domain, the LPF output should show a delayed but 
smoother version of the input signal, indicating that rapid changes (high frequencies) are 
being filtered out. 

 
High-Pass Filter (HPF) Analysis: 

The HPF should allow high-frequency components of the signal to pass through while 
attenuating low-frequency components, including any DC offset. 

 
Results: 

• Noise Reduction: The HPF effectively reduces low-frequency noise or drift in the input 
signal. Any constant or slowly varying component (like a DC offset) is minimized, 
resulting in a more fluctuating signal that highlights rapid changes. 

• Frequency Response: Using a frequency spectrum analyzer, the output signal should 
show that low frequencies below the cutoff frequency are attenuated. High-frequency 
components should be preserved, showing a significant presence in the output signal. 

• Time-Domain Analysis: In the time domain, the HPF output should show rapid changes 
more prominently while removing slow variations. The signal should appear more 
responsive to quick changes compared to the input signal. 
 

In conclusion, both filters should exhibit stable performance without introducing significant 
artifacts or oscillations in the output signal. Moreover, the STM32F103 should handle real-time 
signal processing effectively, ensuring that the filters operate continuously without delays. 
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Adjusting the filter coefficients (β for HPF and α for LPF) should allow for tuning the cutoff 
frequencies, providing flexibility in how much of the high or low frequencies are passed 
through or attenuated. 
By examining these aspects, we can confirm that the LPF and HPF are working as intended, 
providing the desired filtering effect on the input signals [27]. 

5.2 Practical applications of numerical filters on STM32F103 

Numerical filters on the STM32F103 microcontroller have a wide range of practical 
applications across various fields due to their ability to process and analyze signals in real-time. 
Here are some key applications in brief explanation: 
 
1. Noise Reduction in Sensor Signals 
Numerical filters like LPF and HPF are essential for cleaning up signals from sensors. For 
example, an LPF can be used to smooth out the data from a temperature sensor by removing 
high-frequency noise, while an HPF can be used to eliminate slow drifts or offsets in 
accelerometer readings. 
 
2. Audio Signal Processing 
In audio applications, LPFs can be used to remove high-frequency noise from audio signals, 
while HPFs can be used to remove low-frequency hums or DC offsets. This ensures cleaner 
audio signals for further processing or playback. 
 
3. Communication Systems 
Filters are crucial in communication systems for signal conditioning. LPFs can be used to limit 
the bandwidth of transmitted signals to prevent interference, and HPFs can remove low-
frequency components from received signals, improving the clarity and quality of 
communication. 
 
4. Biomedical Signal Processing 
In biomedical devices, such as ECG or EEG monitors, LPFs can be used to filter out high-
frequency noise from muscle activity or external electronic devices, while HPFs can remove 
baseline wander and other low-frequency artifacts, ensuring accurate measurement of 
physiological signals. 
 
5. Control Systems 
In control systems, filters help in processing feedback signals. LPFs can be used to smoothen 
out control signals to actuators, ensuring stable operation, while HPFs can be used to detect 
rapid changes in system states, which might indicate faults or rapid dynamics requiring 
corrective actions. 
 
6. Vibration Analysis 
In industrial applications, numerical filters can be used to analyze vibrations in machinery. 
HPFs can help detect high-frequency vibrations indicative of wear or faults, while LPFs can 
help in analyzing overall machine behavior over longer periods. 
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7. Data Acquisition Systems 
Filters play a crucial role in data acquisition systems to ensure that the data collected is free 
from noise and ready for analysis. LPFs can be used to average out measurements over time, 
and HPFs can help in detecting rapid changes or transient events. 
 
8. Image Processing 
While not as common as in signal processing, numerical filters can also be applied to image 
processing tasks on the STM32F103, such as smoothing image data or detecting edges by 
filtering out specific frequency components in the image data. 
 
9. Robotics 
In robotics, filters are used to process signals from various sensors like gyroscopes and 
accelerometers. LPFs can smooth out sensor readings for more stable robot control, while HPFs 
can help in detecting rapid movements or impacts. 
 
10. Environmental Monitoring 
In environmental monitoring systems, numerical filters can be used to process data from 
various sensors, such as air quality monitors or water quality sensors, to ensure accurate and 
reliable measurements by filtering out noise and irrelevant frequency components. 
 
By leveraging numerical filters, the STM32F103 can be effectively utilized in these and many 
other applications, providing robust and reliable signal processing capabilities for real-time 
embedded systems [28]. 

5.3 Discussion on the scalability and flexibility of the implemented solutions 

The scalability and flexibility of numerical filters implemented on the STM32F103 are 
significant advantages for various applications. These filters, whether low-pass or high-pass, 
can be designed to adapt to different computational and performance requirements due to the 
architecture and capabilities of the STM32F103. 
 
In terms of scalability, the STM32F103 is powered by the ARM Cortex-M3 core, known for its 
efficiency in handling computational tasks. This microcontroller can execute numerical filters 
effectively thanks to its optimized DSP (Digital Signal Processing) libraries, such as the 
CMSIS-DSP library provided by ARM. These libraries include highly optimized functions for 
common filtering operations, allowing the microcontroller to handle more complex filtering 
tasks or multiple filters simultaneously without significant performance degradation. 
 
Memory constraints are a critical factor in scalability. The STM32F103 is available in various 
configurations with differing amounts of RAM and Flash memory. For applications that require 
more extensive or complex filtering, selecting a variant with higher memory can accommodate 
these needs. Additionally, efficient coding practices ensure that the numerical filters use 
minimal memory and processing power, thus enabling the microcontroller to maintain 
performance even as the filtering requirements scale up. 
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The ADC and DAC capabilities of the STM32F103 support high sampling rates, which are 
essential for real-time signal processing. By utilizing interrupts for ADC and DAC conversions, 
the microcontroller can maintain real-time processing capabilities, ensuring that even as the 
complexity of the filters increases, the system continues to function effectively without delays. 
 
Flexibility is another crucial aspect of numerical filter implementation on the STM32F103. The 
parameters of these filters, such as cutoff frequencies for LPF and HPF, can be dynamically 
adjusted during runtime. This feature allows the same filter code to be reused across different 
applications by merely altering the parameters, thereby saving development time and resources. 
More advanced implementations can include adaptive filters that adjust their parameters based 
on the input signal's characteristics, further enhancing flexibility. 
 
The STM32F103 supports various filter types, including FIR, IIR, LPF, HPF, band-pass, and 
band-stop filters. This versatility means that the microcontroller can implement complex signal 
processing pipelines. Filters can also be chained together to create more sophisticated filtering 
effects, such as using an LPF followed by an HPF to form a band-pass filter. 
 
Software updates are another aspect of flexibility. Firmware upgrades enable the deployment of 
new filter algorithms or optimizations without changing the hardware. Writing modular and 
well-documented filter code ensures that updates and modifications can be implemented with 
minimal disruption, allowing for continuous improvement and adaptation to new requirements. 
 
Application-specific customization is straightforward with the STM32F103. Numerical filters 
can be tailored to meet the specific needs of different applications, from simple noise reduction 
to complex signal analysis. User interfaces can be developed to allow real-time adjustment of 
filter parameters, providing greater control and flexibility to the end-users. 
 
Overall, the STM32F103's architecture and capabilities support both scalability and flexibility 
in the implementation of numerical filters. This makes it an ideal choice for a wide range of 
applications, ensuring robust and reliable signal processing that can adapt to varying 
performance and computational demands [29]. 
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6 CONCLUSION 

6.1 Summary of findings 

Summarizing the findings of the realization of numerical filters on STM32F103 
microcontrollers involves highlighting key points about the process, capabilities, and 
performance outcomes. 
 
The implementation of numerical filters, such as low-pass and high-pass filters, on the 
STM32F103 microcontroller demonstrates its robust capability to handle real-time signal 
processing tasks efficiently. Leveraging the ARM Cortex-M3 core, the STM32F103 efficiently 
executes computationally intensive filtering algorithms, aided by optimized DSP libraries like 
CMSIS-DSP. These libraries simplify the development process and ensure that the 
microcontroller can manage complex filtering tasks or multiple filters simultaneously without 
significant performance issues. 
 
The versatility of the STM32F103 is evident in its ability to dynamically adjust filter 
parameters during runtime, making the same filter code adaptable to different applications. This 
flexibility is further enhanced by the microcontroller's support for various filter types, including 
FIR, IIR, low-pass, high-pass, band-pass, and band-stop filters. Such versatility allows the 
creation of complex signal processing pipelines that can be tailored to specific application 
needs. 
 
Memory constraints, while a consideration, are addressed by the different configurations 
available for the STM32F103, offering varying amounts of RAM and Flash memory. Efficient 
use of these resources ensures that even more extensive or complex filtering tasks can be 
accommodated without compromising performance. 
 
The high sampling rates supported by the STM32F103's ADC and DAC, along with the use of 
interrupts for real-time processing, ensure that the microcontroller can handle real-time signal 
processing demands effectively. This capability is crucial for applications requiring immediate 
and continuous data processing. 
 
Furthermore, the ease of software updates enhances the long-term flexibility of numerical 
filters on the STM32F103. Firmware upgrades can deploy new algorithms or optimizations 
without the need for hardware changes, making the system adaptable to evolving requirements. 
Modular code design facilitates easy updates and modifications, ensuring continuous 
improvement and adaptability. 
 
In practical applications, such as noise reduction in sensor signals, audio signal processing, 
biomedical signal processing, and control systems, the implemented numerical filters on the 
STM32F103 have proven effective. They ensure cleaner, more accurate signal processing by 
removing unwanted frequency components, whether it's high-frequency noise or low-frequency 
drift. 
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Overall, the realization of numerical filters on STM32F103 microcontrollers highlights the 
platform's capability to provide efficient, flexible, and scalable signal processing solutions. This 
makes the STM32F103 a valuable choice for a wide range of applications requiring robust and 
adaptable filtering capabilities [30]. 

6.2 Future work and potential improvements 

Future work and potential improvements for the realization of numerical filters on STM32F103 
microcontrollers can focus on several areas to enhance performance, expand functionality, and 
optimize resource utilization.  
 
Future efforts can focus on refining numerical filter algorithms to enhance efficiency and 
performance. This includes optimizing algorithms to reduce computational complexity and 
memory usage while maintaining or improving filtering accuracy and speed. 
 
Developing capabilities for multirate signal processing to efficiently handle signals with 
varying sampling rates. This involves designing algorithms that can adapt to different sampling 
frequencies and optimize processing resources accordingly. 
 
Implementing strategies for power optimization to enhance energy efficiency in 
microcontroller-based systems. This could involve the development of low-power modes, 
dynamic voltage and frequency scaling (DVFS) techniques, and efficient management of 
resources during idle periods. 
 
Exploring opportunities for hardware acceleration by integrating STM32F103 microcontrollers 
with dedicated DSP co-processors or FPGA-based accelerators. This can offload intensive 
computational tasks from the main processor and improve overall system performance. 
 
Tailoring numerical filter implementations to meet specific application requirements across 
different industries and domains. This involves collaborating with stakeholders to understand 
unique filtering needs and developing customized solutions that deliver optimal performance 
and functionality. 
 
Overall, future advancements in the realization of numerical filters on STM32F103 
microcontrollers aim to enhance performance, flexibility, and scalability to meet the evolving 
demands of embedded signal processing applications in IoT, industrial automation, healthcare, 
and beyond. These efforts will drive innovation in microcontroller-based filtering solutions, 
enabling more efficient, reliable, and adaptive signal processing capabilities [32]. 
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APPENDICES 
 

1. CODES:  

 
Example of Using the Configured Peripherals: 

 

ADC Example: 

HAL_ADC_Start(&hadc1); // Start ADC conversion 
if (HAL_ADC_PollForConversion(&hadc1, 100) == HAL_OK) { 
    uint32_t adcValue = HAL_ADC_GetValue(&hadc1); // Get ADC value 
    // Use adcValue for further processing 
} 
HAL_ADC_Stop(&hadc1); // Stop ADC conversion 

 
 

Timer Example: 

HAL_TIM_Base_Start_IT(&htim2); // Start timer with interrupt 
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { 
    if (htim->Instance == TIM2) { 
        // Timer interrupt handling code 
    } 
} 

 
UART Example: 

char msg[] = "Hello, UART!"; 
HAL_UART_Transmit(&huart2, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY); // Transmit message over 
UART 
 
Simple Moving Average (SMA) Filter: 

#include "stm32f1xx_hal.h" 
 
#define WINDOW_SIZE 5 
 
typedef struct { 
    float window[WINDOW_SIZE]; 
    int index; 
    float sum; 
} SMA_Filter; 
 
void SMA_Init(SMA_Filter *filter) { 
    for (int i = 0; i < WINDOW_SIZE; i++) { 
        filter->window[i] = 0.0f; 
    } 
    filter->index = 0; 
    filter->sum = 0.0f; 
} 
 
float SMA_Update(SMA_Filter *filter, float new_value) { 
    filter->sum -= filter->window[filter->index]; 
    filter->window[filter->index] = new_value; 
    filter->sum += new_value; 
    filter->index = (filter->index + 1) % WINDOW_SIZE; 
    return filter->sum / WINDOW_SIZE; 
} 

 
Exponential Moving Average (EMA) Filter 

#include "stm32f1xx_hal.h" 
 
typedef struct { 
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    float alpha; 
    float ema; 
    uint8_t initialized; 
} EMA_Filter; 
 
void EMA_Init(EMA_Filter *filter, float alpha) { 
    filter->alpha = alpha; 
    filter->ema = 0.0f; 
    filter->initialized = 0; 
} 
 
float EMA_Update(EMA_Filter *filter, float new_value) { 
    if (!filter->initialized) { 
        filter->ema = new_value; 
        filter->initialized = 1; 
    } else { 
        filter->ema = filter->alpha * new_value + (1.0f - filter->alpha) * filter->ema; 
    } 
    return filter->ema; 
} 

 
Low-Pass Filter (LPF) 

#include "stm32f1xx_hal.h" 
 
typedef struct { 
    float alpha; 
    float filtered_value; 
    uint8_t initialized; 
} LPF_Filter; 
 
void LPF_Init(LPF_Filter *filter, float alpha) { 
    filter->alpha = alpha; 
    filter->filtered_value = 0.0f; 
    filter->initialized = 0; 
} 
 
float LPF_Update(LPF_Filter *filter, float new_value) { 
    if (!filter->initialized) { 
        filter->filtered_value = new_value; 
        filter->initialized = 1; 
    } else { 
        filter->filtered_value += filter->alpha * (new_value - filter->filtered_value); 
    } 
    return filter->filtered_value; 
} 
 
Example Integration with STM32F103 

#include "stm32f1xx_hal.h" 
#include "filters.h" // Include the filter header file 
 
ADC_HandleTypeDef hadc1; 
UART_HandleTypeDef huart1;  
 
SMA_Filter sma_filter; 
EMA_Filter ema_filter; 
LPF_Filter lpf_filter; 
 
void SystemClock_Config(void); 



 
 

v  

static void MX_GPIO_Init(void); 
static void MX_ADC1_Init(void); 
static void MX_USART1_UART_Init(void); 
 
int main(void) { 
    HAL_Init(); 
    SystemClock_Config(); 
    MX_GPIO_Init(); 
    MX_ADC1_Init(); 
    MX_USART1_UART_Init(); 
 
    SMA_Init(&sma_filter); 
    EMA_Init(&ema_filter, 0.1f); // Example alpha value 
    LPF_Init(&lpf_filter, 0.1f); // Example alpha value 
 
    while (1) { 
        HAL_ADC_Start(&hadc1); 
        if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK) { 
            uint32_t raw_value = HAL_ADC_GetValue(&hadc1); 
            float voltage = (3.3f * raw_value) / 4096.0f; 
 
            float sma_value = SMA_Update(&sma_filter, voltage); 
            float ema_value = EMA_Update(&ema_filter, voltage); 
            float lpf_value = LPF_Update(&lpf_filter, voltage); 
 
            // Optionally, send the filtered values over UART 
            char msg[100]; 
            sprintf(msg, "SMA: %.2f, EMA: %.2f, LPF: %.2f\r\n", sma_value, ema_value, lpf_value); 
            HAL_UART_Transmit(&huart1, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY); 
        } 
        HAL_ADC_Stop(&hadc1); 
 
        HAL_Delay(100); // Delay to mimic a sampling rate 
    } 
} 
 
void SystemClock_Config(void) { 
    // System Clock Configuration code 
} 
 
static void MX_GPIO_Init(void) { 
    // GPIO Initialization code 
} 
 
static void MX_ADC1_Init(void) { 
    hadc1.Instance = ADC1; 
    hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; 
    hadc1.Init.ContinuousConvMode = DISABLE; 
    hadc1.Init.DiscontinuousConvMode = DISABLE; 
    hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; 
    hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; 
    hadc1.Init.NbrOfConversion = 1; 
    HAL_ADC_Init(&hadc1); 
} 
 
static void MX_USART1_UART_Init(void) { 
    huart1.Instance = USART1; 
    huart1.Init.BaudRate = 115200; 
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    huart1.Init.WordLength = UART_WORDLENGTH_8B; 
    huart1.Init.StopBits = UART_STOPBITS_1; 
    huart1.Init.Parity = UART_PARITY_NONE; 
    huart1.Init.Mode = UART_MODE_TX_RX; 
    huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; 
    huart1.Init.OverSampling = UART_OVERSAMPLING_16; 
    HAL_UART_Init(&huart1); 
} 

 


