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If you always do what you’ve always done, you’ll always get what
you’ve always got.

Henry Ford



Abstract

This work is an attempt to create a robot task planner by exploiting increas-
ingly popular Deep Neural Networks. The aim is to learn how to achieve
a robotic manipulation task by selecting the appropriate action to perform,
along with its arguments, by observing the robot workspace.
This work proposes a model that uses Long Short-Term Memory, along with
an expert policy that is able to generate an artificial dataset used for train-
ing. The network learns sequences composed by robotics action primitives
like picking and placing objects. These sequences aim to achieve a specific
task, in this work we chose swapping the positions of two cubes.
The network’s ability to learn this kind of tasks using an artificial dataset as
well as the ability to generalize to unseen cases is questioned and explored in
this work. Accuracy of action selection up to 97% was obtained on sequences
of the same length of the one used during training and up to 91% on longer
task sequences.



Sommario

Questo progetto è un tentativo di creazione di un task planner tramite l’u-
tilizzo delle sempre più popolari Deep Neural Network. L’obiettivo è quello
di eseguire un task di manipolazione tramite robot selezionando l’azione ap-
propriata da svolgere, con i relativi argomenti, basandosi sull’osservazione
dell’ambiente di lavoro del robot.
Questa tesi propone un modello che utilizza le Long Short-Term Memory,
insieme ad una expert policy in grado di generare un dataset artificiale per
allenamento. La rete apprende sequenze composte da azioni primitive robo-
tiche, come il pick e il place di oggetti. Queste sequenze hanno la finalità di
compiere uno specifico task, in questo progetto il task consiste nell’invertire
le posizioni di due cubi.
In questa tesi ci si interroga sulle capacità delle reti di apprendere questo
tipo di task tramite un dataset artificiale, ovvero le capacità di generalizzare
in presenza di casi nuovi. Una precisione nella selezione delle azioni del 97%
è stata ottenuta su sequenze della stessa lunghezza di quelle utilizzate per il
training e fino al 91% su sequenze di lunghezza superiore.
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Chapter 1

Introduction

The ability to reason about an either partial or complete observation of the
environment is very useful for an autonomous robot. This ability requires
the robot to understand the environment and allows it to choose the right
action to perform to accomplish a previously instructed task.
Planning is an essential ability needed by a robot to carry out tasks: a rover
navigating and exploring an unknown environment while avoiding obstacles,
a robotic arm grasping an object, a humanoid robot standing and walking.
These are just some examples of tasks that need planning. This concept
can be broken down into more specific ones which are Task Planning and
Motion Planning.

"Task Planning is the process of generating a discrete sequence of
actions that are required to achieve a desired task."

Suppose the assignment of a task T to a robot R. A task planner TP :
(s0, sG, A)→ p aims to find a plan p ∈ P solving T . p moves R from its start
state s0 ∈ S to a goal state sG ∈ S by combining the set of actions A that R
is able to perform according to its capabilities.
Each action is defined as a sentence with a set precon(a) = {precon0(a), ...,
preconN(a)} of preconditions and a set effect(a) = {effect0(a), ..., effectM(a)}
of effects, described as conjunctive lists of literals in first-order logic.
TP computes a set of plans P where p ∈ P is defined as

p =< s0, a0, ..., sN−1, aN−1, sN >, sN = sG (1.1)

and (si, ai) → si+1 iff precon(ai) is satisfied by si and effect(ai) brings to
si+1.

"Motion Planning is the process of generating collision-free tra-
jectories to reach a desired position."
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A motion planner MP: (s0, sG, A) → t tries to find a path t ∈ τ that lets
R move from s0 ∈ S to sG ∈ S while avoiding collisions. The problem is
deterministic if the working space is fully observable. MP can find a set of
paths τ , where t ∈ τ is a path in the free space:

τ : [0, 1]→ Cfree, τ(0) = s0, τ(1) = sG (1.2)

Historically Task Planning and Motion Planning have always been treated
as two separate, different problems in a stacked, hierarchical architecture.
Both have been exclusively working on their domain: the task planner works
in a discrete, often hierarchical domain based on preconditions and effects,
while the motion planner works in a continuous, geometric domain called
Configuration Space.
A trending research topic in robotics right now is called Combined Task
and Motion Planning, often shortened to CTMP or TMP. The main chal-
lenge of TMP is to let go the standard hierarchical approach where the task
and motion are approached as two different problem, one on top of the other.
This is usually done by developing a planner that is capable of generating
task and motion plan without treating their domains independently.
Suppose the existence of a Task and a Motion Planner. Suppose that T is
assigned to R. TMP: (s0, sG, A)→ t finds the plan p ∈ P performing T and
returns the trajectory t ∈ T executing p.

The Task Motion Kit [1] (TMKit) is a framework for TMP based on Sat-
isfiability Modulo Theories (SMT) and was used as a starting point for this
work. A more in depth description of this framework is given in Chapter 2.
The fundamental idea of TMKit is to leverage the incremental solving of a
SMT solver, like Microsoft Z3 [2] library, for task planning. In this way
it is able to efficiently add and remove constraint. These constraint re-
gards motion feasibility and come from an off the shelf motion planner, like
the sampling-based planners in the Open Motion Planning Library [3]
(OMPL).

1.1 Motivations

The main limitation when approaching the TMP problem like TMKit or
other similar frameworks do is the incapability of handling motion failures,
like an object slipping from the robot’s hand, or other type of unexpected
changes in the robot environment, like a person moving, that are typical of
real world situations. This is due because a full plan is computed using a
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geometric domain before executing it in real time using a simulator or a real
robot. This type of approaches are not capable of adapting to environment
changes to achieve their goal.

At the same time, the rise in popularity of Deep Learning (DL), a sub-
set of Machine Learning inspired by the human brain, is giving increasingly
positive results in very different fields. Its popularity has been fueled by the
higher GPU computing power, that allows matrices operations used during
the training to be computed with less time than ever before.
Deep Learning is different than standard Machine Learning algorithms that
are very specific and do not generalize enough while also requiring features
to be hand-engineered. DL is able to learn which features are important by
it self, by observing the input data. It also features the ability to train end
to end, i.e. learning internal parameter to reflect a specific behavior shown
through a high number of demonstrations.
This technique has given researchers a new powerful tool that can be applied
in many fields like, but not restricted to, Computer Vision, Natural Language
Processing, Recommender Systems and Robotics. The results obtained so far
are impressive especially in solving specific tasks.

In this work we try to bring together some concepts of two fields, Task Mo-
tion Planning and Artificial Intelligence. Can neural networks be exploited
to learn a task and produce an online planner by selecting the correct action,
along with its parameters, to be performed? Will this planner be able to
avoid computing the entire plan beforehand so that it can react to changes
in the environment or unexpected failures? Will it be able to learn how to
change the execution of the task acknowledging motion-related failures?

1.2 Challenges

The main challenges and goals that this work addresses are reported in this
section.

• Online Planning and Executing: the main goal is to use neural net-
works as main building block to explore the feasibility of an online task
planner. The ability of the network to reason about the environment
and react to unexpected changes is questioned.

• Learning: since neural networks are trained end to end, we question
the ability to learn with supervision how to predict the next action to
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achieve a specific task.

• Dataset: a public dataset to use for training the network is lacking
and collecting this type of data can be very resource expensive.

1.3 Contributions

This work provides a study of Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM) networks. It is also an attempt to exploit
this kind of networks to produce an agent able to learn how to reason about
environment observations. From this observations it should be able to pro-
duce a sequence of actions that fulfill a task. This sequence can be seen as
a program that invokes primitive functions, or APIs, and also provides them
with parameters.

We will focus on a simple robotic manipulation task with a low number
of objects carried out by a robotic arm with a gripper. The experiments were
executed using an artificial environment generated by an expert policy. This
policy produces a high-level representation of the environment composed, for
example, from the position of the objects, the status of the gripper indicating
if full or empty, and so on. This work can be used with either a physics
simulator or in real world by adding the necessary encodings that extract
the relevant high-level feature needed from sensors data. The most common
example is an object detector using a robot’s camera to estimate the position
of a specific object.

• Online Planning and Execution: the proposed model is able to
detect some robotic manipulation failures like an unsuccesful grasp or
a wrong placing of an object. It is also able to react to these action
failures, that can modify preconditions of the failed action, by selecting
the actions that restore the right preconditions.

• Learning: accuracy of up to 97% has been reached when evaluating
the network on sequences of the same length of those used for training,
with length maxlen = 30. Accuracy of up to 91% has been reached
while evaluating the network on sequences of unseen, higher length of
maxlen = 100.

• Dataset: an artificial dataset generator is proposed. It is able to
produce the training examples used to train the network. The issues
that arise by using this approach are also analysed.
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1.4 Structure of the thesis

The remainder of the thesis is organized as follows: Chapter 2 describes the
current state of the art and gives a more in depth explanation of the frame-
works and publications used for this work. Moreover, possible applications
of Deep Neural Networks to Task Planning and Task-Motion Planning are
introduced as well as the concept of meta-learning.
In Chapter 3 an overview of Neural Networks and Deep Learning will be pre-
sented along with Recurrent Neural Networks and Long Short-Term Memory
networks.
In Chapter 4 the experiments of this thesis will be presented and discussed
and in Chapter 5 conclusions will be reported along with possible future
works.



Chapter 2

State of the art

There are many different strands that solve the task planning problem, most
of them are evolution of STRIPS [4], the STanford Research Institute
Problem Solver, an automatic planner developed in 1971 by Fikes and Nils-
son at Stanford. The task of the problem solver is to find some composition
of operators that transforms an initial configuration of the world into the
goal configuration.
Since those years one of the biggest difficulties has been how to model the
world surrounding the robot. Traditional task planning relies on a represen-
tation of the task domain using a formal task language composed of a variety
of notations and logics, like the Planning Domain Definition Language
[5] (PDDL). This language is used to define the initial and goal states and pa-
rameterized actions with preconditions and effects based on first-order logic.
Common techniques used to solve the task planning problems are heuristic
search [6] and constraint satisfaction [7].

At the same time, a lot of research around motion planning is present.
MP has as its main goals to compute collision-free trajectories and to make
a robot reach the goal location as fast as possible. The problem of motion
planning can be stated as the problem of finding a path that moves the robot
gradually from start to goal without colliding with anything. If this is not
possible the task planner does not make anything more than stating "A valid
path can exists but I couldn’t find one".
Sampling-based motion planners are widely used for high dimensional sys-
tems [8]. Such sampling-based planners offer probabilistic completeness, guar-
anteeing that the planner will eventually find a solution if one exists. How-
ever, if a solution does not exists, the planner cannot prove this. In this case
the planner runs until a timeout occurs.
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Prior work in TMP includes applying geometric constraints to limit the
motion planning space or prove motion infeasibility [9]. Hierarchical Planning
in the Now (HPN) [10] interleaves planning and execution, reducing search
depth but requiring reversible actions when backtracking. Combining sym-
bolic and geo-metric planning to synthesize human-aware plans [11] extends a
hierarchical task planner with geometric primitves, using shared literals that
relate task-level symbols with motion-level geometric entities. Combined
task and motion planning through an extensible planner-independent inter-
face layer [12] interfaces an off the-shelf task planner and motion planning
using a herustic to remove objects that potentially block the robot’s path.
Other works like [13] formulate the motion side of TMP as a constraint sat-
isfaction problem over a discretized, preprocessed subset of the configuration
space. The Robosynth framework [14] uses a Satisfiability Modulo Theories
(SMT) solver to generate task and motion plans from a static roadmap, em-
ploying plan outlines to guide the planning process. FFRob [15] develops an
FF-like [6] task layer herustic based on a lazily-expanded roadmap.

2.1 The Task-Motion Kit

The Task-Motion Kit [1] is an end-to-end system developed at the Kavraki
Lab of Houston for probabilistically complete task-motion planning and real-
time execution enabling the coupling of task planning, motion planning, and
real time estimation and control. This framework has been the starting point
in this work.

Figure 2.1: High-Level Planning and Execution Block Diagram. The inputs
are the task domain definition, the environment and robot geometries, com-
bined to produce the scene graph, and the domain semantics that relate the
task and motion layers. The Task–Motion Planner generates a plan based
on these inputs. The Task–Motion Control layer executes the plan, sharing
a geometric representation, the scene graph, with the planning layer



CHAPTER 2. STATE OF THE ART 8

TMKit follows the high-level design shown in Fig. 2.1 and it is able to
compute a discrete sequence of actions along with their collision-free motion
plans by alternating task and motion planning.
The following inputs are needed to compute a plan (See Fig. 2.2):

• Task Domain: Defines the discrete actions that the robot can perform
including their preconditions and effects. As an example a Pick-Up
action could have as precondition that the object to be picked up has
to be on a table and that the robot’s gripper has to be empty. It could
also have the occupied gripper as an effect to that action.

• Motion Domain: Defines the 3D poses of the objects inside the
robot’s environment, its kinematic structure, its geometry and object
meshes in the working environment. The robot and the environment,
together, take the name of Scene.

• Domain Semantics: Defines the relationships between the task do-
main and the motion domain in such a way that it represents specific
geometric configurations at the task level: as an example we can con-
sider when grasping an object, a high level, discrete variable called
holding(obj) should be set to True (Preconditions). In the other way
around relationships from task to motion happens by executing the se-
lected actions (Effects). These effects will in fact modify the predicates
that will be used as preconditions for the successive actions.

In particular TMKIT present a novel algorithm for combined task and
motion planning called Iteratively Deepened Task and Motion Plan-
ning (IDTMP) that uses a constraint-based task planner to compute differ-
ent candidate plans (Fig. 2.3).
The task planner relies on an incremental Satisfiability Modulo Theo-
ries [16] [17] (SMT) solver that is capable of efficiently generating alternate
task plans. Incremental SMT solvers maintain a stack of constraints or asser-
tions and can efficiently perform repeated satisfiability checks as constraints
are pushed onto and popped from the constraint stack. TMKit uses as SMT
solver Z3 [2] the standard the facto library developed by Microsoft.

The motion planner is basically composed by a variety of sampling-based
motion planners through theOpen Motion Planning Library [3] (OMPL)
in synergy with the Flexible Collision Library [18] (FCL) for collision
checkings.
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Figure 2.2: Task-Motion Planner Implementation Diagram, showing frag-
ments of the planner’s input: the task domain, domain semantics, motion
domain. As well as the output consisting of the generated task-motion plan

Figure 2.3: Diagram of IDTMP. Incrementally incorporate motion feasibility
information into the task planner via incremental constraint solving
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A diagram of TMKit’s main components and internals is shown in Fig.
2.4.

Figure 2.4: Map of software components. The key data structures are (a) the
task language and (b) the scene graph. These data structures are connected
by (c) the domain semantics definitions. (d) The scene compiler is used for
efficient visualization

2.2 Neural Network for Task Planning

Due to the rising popularity and effectiveness of deep learning in the last
couple of years novel techniques based on neural networks have been experi-
mented in a plethora of different fields. Combined task and motion planning
is among those fields even though researchers are either publishing papers
from a robotics point of view or from the Artificial Intelligence one.
In the past applying Artificial Intelligence to Robotics seemed an overly com-
plex problem. Therefore, the two branches was separated: robotics became
"a body without a brain" while AI became "a brain without a body". Nowa-
days we are going towards the embodiment of AI back into Robotics since
both fields are beginning to be mature enough to face the challenge.
Some related works like the Neural Programmer-Interpreter [19] (NPI),
although from a pure AI point of view, seems to point to this direction even
though it is not strictly connected to robotics nor it is embodied in any ma-
chine. This work has become really popular among researchers in the field
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and is inspiring more and more research in this direction.
NPI is a recurrent and compositional neural network that learns to represent
and execute programs. It has three learnable components: a task-agnostic
recurrent core, a persistent key-value program memory, and domain specific
encoders that enable a single NPI to operate in multiple perceptually diverse
environments with distinct affordances.
The core of NPI is a LSTM network that at each timestep i selects the next
program to run conditioned on the current observation oi of the environ-
ment.
By learning to compose lower-level programs to express higher-level pro-
grams, NPI reduces sample complexity and increases generalization ability
compared to sequence-to-sequence LSTMs.
NPI is trained with fully supervised execution traces, learning from a small
number of rich samples.

Another useful work was done in [20] that selects subgoals using Deep
Learning in Minecraft. The main concept is based on the interleaving of per-
ception, goal, reasoning, and acting with the observations of the environment
given by the images seen from the in-game character’s camera.
Basic motion primitives have been implemented inside the Minecraft game
such as looking, moving, jumping, and placing or destroying blocks. These
motion primitives compose the operational plans for the four sub-goals: walk-
ing forward, creating stairs, removing obstacles, and bridging obstacles. The
selection of the subgoal is done by a CNN trained on the environment obser-
vations and accuracy up to 87.1% was achieved.

Other approaches use Deep Reinforcement Learning like [21] that learns
both low-level control policies and high-level action selection. It then use
these multi-level policies as part of a heuristic search algorithm to achieve
a complex task like asking a vehicle to drive down a road in traffic, avoid
collisions, and navigate an intersection, all while obeying given rules of the
road. The work proposed in [21] investigates the ability of neural networks
to learn both linear temporal logic constraints and control policies in order
to generate task plans in complex environments.

2.3 Meta-Learning

Since it’s not always possible to collect a large dataset to train the models,
different ways to avoid this necessity are being investigated, one of the most
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Figure 2.5: An order fulfillment task that illustrates the pipeline of the
model. The meta-learning framework learns to instantiate a neural program
from a task specification. In this example, the goal is to move all objects
from the same category into the corresponding shipping container stated in
the task specification.

interesting is called meta-learning where a first network, called the meta-
learner, trains another network, called the learner [22, 23] .
The aim of meta-learning is to achieve better generalization and to develop
a more efficient learning where the model does not need to be trained on a
high number of examples but rather on a few, even just one, from which it
should be able to learn the correct behavior.

The Neural Task Programming [24] (NTP) is a robot learning frame-
work based on the work proposed in NPI. This tool was used with robotic
manipulators for tasks like block stacking and order fulfillment, where the
goal is to transport all objects from each category into a specified shipping
container (Fig. 2.5).
The key idea of this work is to learn reusable representations shared across
tasks and domains. NTP interprets a task specification (Fig. 2.5 left) and in-
stantiates a hierarchical policy as a neural program (Fig. 2.5 middle), where
bottom-level programs are primitive actions that are executable in the envi-
ronment. Each program call takes as input the environment observation and
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a task specification, producing the next sub-program and a corresponding
sub-task specification.
The model executes the program to accomplish the task described in the task
specification. The lowest level of the hierarchy is made of symbolic actions
executed by robot API.
Even more interesting is the fact that NTP bridges the idea of few-shot
learning from demonstration [25] and neural program induction by learn-
ing to execute a task from a single demonstration. It is of course necessary
to train using a high number, possibly infinite, of different tasks to achieve
strong task generalization.



Chapter 3

Deep Learning

DL [26] is a subset of ML that uses neural networks to learn to recognize
common patterns from data. The idea behind it date back to 1943 when
neurophysiologist Warren McCulloch and mathematician Walter Pitts wrote
a paper [27] on how neurons might work. They then created a simple neural
network model using electrical circuits.

Figure 3.1: The Perceptron Model

Source: http://www.ataspinar.com/

Based on the work of McCulloch and Pitts, in 1957 psychologist Frank
Rosenblatt created the Perceptron [28] (Fig. 3.1). It is a simplified math-
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ematical model of how a neuron works, taking a set of binary inputs, mul-
tiplying each input by a weight and thresholding the sum of these weighted
inputs to a output equal to 1 if the sum is above a certain level, to 0 otherwise.
As computers technology grew, the first simulations of neural networks started
to take place giving exciting results: in 1959 Bernard Widrow and Marcian
Hoff of Stanford developed a model capable of recognize binary patterns to
predict the next bit from a stream (ADALINE [29]).
After this years, researchers settled on the fact that networks with multiple
layers of perceptrons could not be achieved; it was also shown that it was
theoretically impossible for a perceptron to learn the XOR function, this
brought neural networks to their first ’winter’.

During the 80s the interest in the field of DL was renewed due to the rise
of multilayer neural networks and during these years the Backpropagation
algorithm was developed. This algorithm allows to propagate the error from
a layer to the previous one starting from the output until the input layer and
therefore update the weights and biases of the network to learn a specific
behavior.
The limited computational power of the CPUs available in those years, that
made the networks training times too long, along with the lack of public
datasets to use is what held back the development of this technology.

In recent years multilayer neural networks or deep networks (and from
this the name Deep Learning is used) have seen, once again, a renovated
excitement. This was possible by many factors, among those the most im-
portant were: the increasing appearance of large high quality labeled dataset,
also known as "Big Data", used for training and the availability of powerful
parallel computing GPUs that lowered the training time by a huge margin.
Since the introduction of these new technologies, DL has had an amazing
progress with a lot of new different network and, lately, compositions of
those networks, proposed by many scientists from all around the world.

3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model inspired by
the brain capable of learning to reflect a specific behavior by observing la-
beled data. Neural Networks are composed by nodes, called neurons, inter-
connected between each other and that can be gathered together into groups
called layers, as depicted in Fig. 3.2. Given an input set of values X the NN
computes the output values Y by applying a series of operations from left to
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Figure 3.2: Neural Network architecture

Source: http://cs231n.github.io/neural-networks-1/

right, hence why this kind of networks are called Feedforward Networks.
The neuron, which is the basic element of computation, can be modeled as:

output = σ(w · x+ b) (3.1)

Where σ is called sigmoid function, and is defined by:

σ(z) =
1

1 + e−z
(3.2)

This can be rewritten in a less compact, but more intuitive form:

1

1 + e
−

∑
j
wjxj−b

(3.3)

In simple words each neuron’s input xi is multiplied by its weight wi and
summed along with the bias b. Then the sigmoid function is applied to
obtain a normalized value between 0 and 1.
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Figure 3.3: The Neuron model

Source: http://diffsharp.github.io

The most important thing to observe is that the sigmoid function is dif-
ferentiable, meaning that we can compute the gradient that tells us how the
output changes in relation to the inputs. By exploiting this we will be able
to iteratively update the weights and biases to reflect the desired behavior,
specifically by minimizing a cost function of the output obtained by feeding
examples to the network: this is in fact how the network learns.
Since a lot of iterations are needed to achieve good results, existance of a
dataset with enough examples is of fundamental importance. The most in-
teresting algorithm that does this parameters’ update after computing the
gradients is called Gradient Descent, discussed next.

3.1.1 Gradient Descent

Gradient Descent (GD) is a iterative algorithm for finding the minimum of
a function, in particular it lets us find weights and biases. To this purpose
we need a cost function, for example the Mean Squared Error (MSE):

C(θ) = C(w, b) =
1

2n

n∑
i=1

(fθ(x
i)− ŷi)2 (3.4)

Where θ denotes all ours parameters in the network, such as the weights
w and the biases b, n is the total number of training inputs, ŷi is the i-th
desired output value while f(xi) is the one predicted by the network. We can
observe that the cost C(w, b) is non-negative, since every term in the sum
is non-negative. Furthermore, C(w, b) ≈ 0 when f(xi) ≈ ŷi for all training
inputs x.
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Since we have defined a cost function we are now able to compute its
gradient, the vector of partial derivatives:

∇C = (
∂C

∂θ1
, ...,

∂C

∂θm
)T (3.5)

Observing that the variation of the cost function is given by:

∆C ≈
m∑
i=1

∂C

∂θi
∆θi (3.6)

We can rewrite it in a more compact way using the gradient vector:

∆ ≈ ∇C ·∆θ (3.7)

we now have a formula that describes how the cost function changes as the
parameters θ change. Since we want to minimize the cost, we want ∆C to
be negative. To achieve this we choose:

∆θ = −α∆C (3.8)

Where α is a small, positive parameter known as Learning Rate. By sub-
stituting the equation above we obtain:

∆C ≈ α∆C ·∆C = α‖∆C‖2 (3.9)

That guarantess that ∆C is always decreasing and so our learning process
will not diverge. By repeatingly updating the parameters θ by the amount
−α∆C we can make the network learn. We can graphically represent the
gradient descent using a trivial case with θ of just one dimension, so we only
have a single parameter to be trained, as in Fig. 3.4.

Figure 3.4: Visual representation of 1-dimensional Gradient Descent

Source: https://www.safaribooksonline.com/
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We can observe that the learning rate (or step) decreases as it approaches
the minimum point of convergence. This is because the gradient of the cost
function ∆C decreases, since it represents the slope of the curve. Therefore,
there is no need to adjust the learning rate α through iterations.
Even though α does not need adjustment during training it needs to be set
at a reasonable value. If α is too little a lot of iterations are needed to get to
the minimum and the algorithm become very inefficient. On the other hand
setting α too large will result in the divergence of the algorithm.

(a)

(b)

Figure 3.5: Hyperparameter α too small (3.5a) and too large (3.5b)

3.1.2 Deep Neural Networks

After a brief introduction to NNs and gradient descent we can finally intro-
duce Deep Neural Networks. The evolution from the basic, shallow network
is based on a rather simple concept: the introduction of more hidden layers
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in cascade, also called stacked layers, between the input and output layers.
The novelty is the capacity for networks to learn abstraction, recognizing low
level patterns, such as edges, and build up new, higher level features at each
layer to obtain a hierarchical learning.

Figure 3.6: A simple Deep Netork with 2 hidden layers

Source: http://cs231n.github.io/neural-networks-1/

To sum up we can call Deep Neural Network every network composed by
two or more hidden layers (Fig. 3.6).

3.1.3 Backpropagation

In paragraph 3.1.1 Gradient Descent was presented as a way to update the
weights and biases of a feed forward neural network. In this paragraph, in-
stead, how to compute the gradient vector ∇C through the Backpropagation
algorithm will be explained.
This algorithm is of extreme importance, in particular for deep networks,
since it allows to compute each partial derivative ∂C

∂θi
that composes ∆C

starting from the output layer. We can apply this algorithm to every inter-
mediate layer, as the name suggested, by back propagating a quantity tied to
the partial derivatives, called error, from the successive layer to the current.
We can denote the error in the jth neuron in the lth layer as δlj and the
weighted input of the same neuron as zlj so its output is σ(zlj + ∆zlj) and
causing the overall cost to change by an amount ∂C

∂zlj
∆zlj.

We can define the error δlj as:

δlj =
∂C

∂zlj
(3.10)
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The next four equations describe the actual Backpropagation algorithm
in mathematical terms, based on the previous intuitions.
The first equation lets us compute the error δLj of the output layer L:

δLj =
∂C

∂aLj
σ′(zLj ) (3.11)

This is given by the multiplication of how fast the cost is changing as a
function of the jth output activation and how fast the activation function σ
is changing at zLj .
The next equation is the core of the backpropagation and is in fact applied
to all the hidden layers in the network. It lets us compute the error δl as
a function of the error in the next layer δl+1. (wl+1)T is the transpose of
the weight matrix wl+1 for the (l + 1)th layer. This can be interpreted as
backpropagating the error from the next layer lth+1 to the output of the
current lth layer and then again through the activation function in the same
layer. The error δl in the weighted input to layer l is obtained in this way.

δl = ((wl+1)T δl+1)� σ′(zl) (3.12)

The last two equations let us compute the rate of change of the cost with
respect to the bias and with respect to the weight.

∂C

∂blj
= δlj (3.13)

∂C

∂wljk
= al−1k δlj (3.14)

3.2 Recurrent Neural Network

In this section we take a step further towards the problem addressed in
this work. While throughout section 2.1 a brief overview of feed forward
neural network has been given, another kind of network is introduced here:
Recurrent Neural Networks.
This type of networks was created in the 80’s and leverage a different concept
that others simpler networks are not able to exploit. They make the strong
assumption that input sets are incorrelated. This can not be a problem for
some tasks like image classification where only spatial features are required
to provide correct answers.
But what about other, more complex and time related tasks, where the
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previous (and potentially future) states and conditions are relevant to make
current choices?
Examples of these kind of tasks are action recognition, time series prediction,
speech recognition, natural language processing, robot control and so on.

Figure 3.7: RNNs can work with sequences as either input, output or both

Source: http://karpathy.github.io/

Recurrent Neural Networks (RNNs), as stated above, exploit the fact that
input sets are not independent from each other, hence RNNs are capable of
operating with sequence of vectors.
But even more interesting is the fact that they are able to retain an internal
state that updates at each iteration thanks to the recurrent connections.

Figure 3.8: Simple representation of a RNN: A is a neural network, xt is the
input at time t, ht is the internal state at time t.

Source: http://colah.github.io/

The basic idea lies in Sharing Parameters across different parts of a
model. In particular to be able to process sequences of different lengths the
network must be able to use the same parameters across different time steps.
Basically, each member of the output is computed using the same parameters,
i.e. the internal state that is in turn a function of the previous outputs.
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There are two ways of representing RNNs: the first one (Fig. 3.8) is a
diagram containing one element for every component that might exists in an
implementation of the model. The other way is by using a computational
graph where each component is represented by many different variables with
one variable per time step; each variable is a separate node of the computa-
tional graph (Fig. 3.9).

Figure 3.9: Unfolding of the previous RNN representation

A RNN can be unfolded into a computational graph obtaining the graph
in Fig. 3.9 that represent a deep network structure where each chunk A share
the same parameters, as discussed before. This is possible due to the fact
that this network can be thought as a recurrent equation like the following:

ht = f(ht−1, xt, θ) (3.15)

Where ht is the hidden state at time t and xt is the input at time t. By
definition the network can be unfolded for a finite number of time steps τ
obtaining a computation graph like the one in Fig. 3.9. For τ = 3 the
following non-recurrent equation is obtained:

h(3) = f(h(2), x(3), θ) = f(f(h(1), x(2), θ), x(3), θ) (3.16)

θ was explicitly put in the notation to remind that f is a function of θ where
θ doesn’t change in time.
A key observation here is that we are not defining a different function, say
gt for each timestep t ∈ τ that takes as input all the sequence up to t:

h(t) = g(t)(xt, xt−1, ..., x1) (3.17)

We are defining a single function f (Equation 2.15) that only takes as input
the current timestep of the sequence xt, θ and the hidden status ht. This
single shared model allows generalization to sequence lengths that did not
appear during training.
Intuitively, the hidden state ht can be thought as a lossy encoding of all the
task-relevant aspects of the past sequence of inputs up to that timestep that
the network learns to generate.
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3.2.1 General RNN model

We present a general model of a Recurrent Neural Network even though this
is not the only design pattern for RNNs. This model is a recurrent neural
network that produce an output at each time step and have recurrent con-
nections between hidden units.
We introduce this model as a reference to discuss the Back Propagation
Through Time algorithm, in the next subsection.

Figure 3.10: The unfolding of a general RNN model

Source: http://www.deeplearningbook.org/

Fig.3.10 depicts the unfolding of a general RNN model that maps an in-
put sequence of x values to a corresponding sequence of o output values.
The loss L measures how far each output is from the corrisponding training
target y.
The matrices U, W and V are the weight matrix of input to hidden connec-
tions, the weight matrix of hidden to hidden recurrent connections and the
weight matrix of hidden to output connections, respectively.

We can assume that the activation function of the hidden units is the
hyperbolic tangent function, instead of the sigmoid function used when in-
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troducing the neuron model in section 3.1. The main difference is that the
output value is not limited between 0 and 1 anymore, but between -1 and 1
instead. Also we assume that the output is discrete. Forward propagation
begins with a specification of the initial state h0.
For each timestep t, 1 ≤ t ≤ τ the following update equations are used, with
parameters bias vectors b and c:

at = b + Wht−1 + Uxt (3.18)

ht = tanh(at) (3.19)

ot = c + Vht (3.20)

ŷt = softmax(ot) (3.21)

3.2.2 Back Propagation Through Time

The Back-Propagation Through Time [30] (BPTT) is the algorithm
used for computing the gradient through a recurrent neural network. It is
the application of the general Back-Propagation algorithm to the unfolded
computational graph.
We take the previous model as a reference to explain the algorithm, for each
node in the graph the gradient has to be computed recursively, based on the
gradient computed on the nodes ahead.
The last nodes, i.e. the ones immediatly preceding the loss, are given by:

∂L

∂Lt
= 1 (3.22)

Where we assumed that the outputs ot were used to compute the softmax
function to obtain the output ŷ and that the loss function is the negative
log-likelihood of the objective yt. The gradient of the output at timestep t,
for all i as:

(∇t
oL)i =

∂L

∂oti
=

∂L

∂Lt
∂Lt

∂oti
= ŷi − 1i,yt (3.23)

The idea is to propagate backwards through the sequence, starting from the
end t = τ :

∇hτL = VT∇oτL (3.24)

From now the actual back propagation through time can be applied, starting
from t = τ − 1 down to t = 1. The gradient now depends on both ht+1 and
ot, obtaining:

∇htL = (
∂ht+1

∂ht
)T (∇ht+1L) + (

∂ot

∂ht
)(∇otL) (3.25)
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= WT (∇ht+1L)diag(1− (ht+1)2) + VT (∇otL) (3.26)

The gradients of the parameter nodes can now be computed, observing that
they are shared across the timesteps:

∇cL =
∑
t

(
∂ot

∂c
)T∇otL =

∑
t

∇[o]tL (3.27)

∇bL =
∑
t

(
∂ht

∂bt
)T∇htL =

∑
t

diag(1− (ht)2)∇htL (3.28)

∇VL =
∑
t

∑
i

(
∂L

∂oti
)∇Vo

t
i =

∑
t

(∇otL)ht
T (3.29)

∇WL =
∑
t

∑
i

(
∂L

∂hti
)∇Wthti (3.30)

=
∑
i

diag(1− (ht)2)(∇htL)ht−1
T (3.31)

∇UL =
∑
t

∑
i

(
∂L

∂hti
)∇Uthti (3.32)

=
∑
t

diag(1− (ht)2)(∇htL)xt
T (3.33)

3.2.3 Vanishing and Exploding Gradient Problem

Optimization algorithms may encounter difficulties when the computation
graph becomes very deep. RNNs have deep computation graph that can be
built by repeatedly applying the same operation at each time step of a long
temporal sequence.
Lets consider this operation is a multiplication by a matrix W . After t steps
this is equivalent to applying W t. We can decompose this as:

W t = (V diag(λ)V −1)t = V diag(λ)tV −1 (3.34)

It can be observed that any eigenvalues λi that is, in absolute value, greater
then 1 will eventually explode leading to the saturation of the gradient dur-
ing training. On other hand, if it is smaller than 1, it will vanish leading to
a loss of information about which direction to take for correct optimization.
The first behavior causes unstable learning while the second, more frequent,
makes it difficult for the network to learn correlation between temporally
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distant events and consequently to learn the long term dependencies inside
the sequences.

Recurrent Neural Netorks don’t differ much from the previous example
and we can describe the recurrence relation for the hidden state, where we
ignore the bias b and input x as:

h(t) = W Th(t−1) (3.35)

the previous equation is also called the power method and it can be simplified
to:

h(t) = (W t)Th(0) (3.36)

if W admits an eigendecomposition of the form W = QΛQT with orthogonal
Q, it can be further simplified to:

h(t) = QTΛtQh(0) (3.37)

We can observe that the eigenvalues are raised to the power of t causing
eigenvalues with magnitude less than one to decay to zero and eigenvalues
with magnitude greater than one to explode. This does not mean that is
impossible to learn long term dependencies but that it might take a very
long time to learn them. Indeed, the signals about these dependencies will
tend to be overridden by even the smallest fluctuations arising from short
term dependencies.

3.3 Long Short-Term Memory Network

As seen in the previous section the error computed using Back Propagation
Through Time in RNNs tends to either explode or vanish, Long Short-
Term Memory [31] (LSTM), a particular kind of recurrent network that
aim to solve these issues is presented in this section.
LSTM were proposed by Hochreiter & Schmidhuber in 1997 to solve the
vanishing and exploding gradient problem and they are able to remember
really long-term interactions. They are based on a simple principle called
Gating : it is a simple multiplication between two vectors. Say x our input
vector and v our gating vector, xTv is the output vector. This is a simple
weighting process used to select the element of the input vector and it is used
by LSTMs and, in general, by Gated Recurrent Units (GRUs).
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Figure 3.11: A block diagram of the LSTM recurrent network cell

Source: http://www.deeplearningbook.org/

The basic idea is to let the network learn the weights of these gates in-
stead of choosing fixed parameters, in this way LSTMs are able to learn how
to control the flow of information inside the cell and choose what to remem-
ber and what to forget.
In Fig. 3.11 a block diagram of an LSTM cell is presented. Many recurrent
connections can be observed straight away, the black box stands for a one
step delay. In the bottom left of the image a feature is computed from the
input and the previous state (called Context) using a regular artificial neuron
unit. Then the first of three gates, called the Input Gate, selects if the just
computed value can be accumulated into the state. The second gate, the
Forget Gate, selects which part of the previous timestep state has to be for-
got and which not and can flow inside the state. The state value is computed
by adding the gated input and gated previous state, for this reason the state
has to be squashed to normalize its values.
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The third and last gate is called the Output Gate that selects which parts of
the current internal state can flow through the output.

Now that we developed the intuition behind this kind of network a formal
definition can be given. Of course the most important part of the network
is the state cell so let’s begin from the computation of the state unit value
sti of the ith cell at time t. Looking at the diagram above we can recall that
it is given by the sum of two terms, so lets start with them. First we define
the external input gate:

gti = σ(bgi +
∑
j

U g
i,jx

t
j +

∑
j

W g
i,jh

t−1
j ) (3.38)

it is computed using gating on the current input vector xt and the previous
time step hidden state vector ht−1 by multiplying with the ith row of matrices
U g of input weights and W g of recurrent weights, respectively. Then the
sigmoid function is applied to obtain a value between 0 and 1.
The forget gate can be computed in almost the same way:

f ti = σ(bfi +
∑
j

U f
i,jx

t
j +

∑
j

W f
i,jh

t−1
j ) (3.39)

We can now give a formal definition of the internal state:

sti = f ti s
t−1
i + gtiσ(bi +

∑
j

Ui,jx
t
j +

∑
j

Wi,jh
t−1
j ) (3.40)

The key observation is that we do not multiply many times by the same
operation W t as discussed in the vanishing and exploding gradient problem
section but the recurrent update is given by the sum of two components
instead.
Finally, we can provide the last two equations for the output to obtain the
current output vector hti:3

hti = tanh(sti)q
t
i (3.41)

qti = σ(boi +
∑
j

U o
i,jx

t
j +

∑
j

W o
i,jh

t−1
j ) (3.42)



Chapter 4

Experiments

In this chapter the main experiments and results are reported and analysed.
We tried to make the network learn how to swap two cubes positions and
how to treat unexpected failures. We exhibit the insights emerged in each
of them, and useful for the progress of the research. In Appendix A.1 some
simple, preliminary experiments are reported and discussed. Those experi-
ments were needed to isolate the training to a minimal task level, so that we
were able to determine if LSTMs were capable of learning the basic behaviors
needed.
The main experiments are divided in two parts: the first part uses a con-
tinuous domain and led to the development of the second part where a dis-
cretization of the domain is used instead. Each part of the experiments
can be further divided into two parts: the first one tries to make the net-
work learn the action prediction and argument generation when no failures
can happen. The second, instead, introduces the possibility of actions failing.

4.1 Configuration

4.1.1 Tensorflow

TensorFlow [32] [33] is an OpenSource software library for Numerical Com-
putation largely used for Machine Learning and training Neural Networks.
It was developed internally by the Google Brain team at first but in 2015 it
was released under a open source license.
TensorFlow uses data flow graphs where nodes represent mathematical oper-
ations and edges represent the multidimensional data arrays, called Tensors,
that are passed between nodes. The flexible architecture allows the user to
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Figure 4.1: The TensorFlow logo

Source: https://www.tensorflow.org/

deploy computation to one or more CPUs or GPUs in a desktop, server or
mobile device using a single API.

4.1.2 Keras

Keras [34] is a high-level neural networks API, written in Python and capa-
ble of running on top of TensorFlow, CNTK [35] or Theano [36]. In this
work we used TensorFlow as the backend.
Keras was developed with the aim of enabling fast experimentation as it
allows easy and fast prototyping of an idea through user friendliness, modu-
larity, and extensibility.

Figure 4.2: The Keras logo

Source: https://keras.io/

4.1.3 Platform Specifications

All of the experiments have been run on a machine with 8GB DDR3 memory
and an Intel i5 2500k at 4.2GHz CPU using Ubuntu 16.04 Operating System.
Tensorflow was compiled from source to take advantage of the SSE instruc-
tions and gain some performance improvements. The training times range
from few minutes for the simpler cases where there are hundreds of parame-
ters up to 2 or 3 hours for cases where there are thousands of parameters.
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Figure 4.3: Main building block of the architecture

Tensorflow with GPU support was also tried as backend for Keras using a
nVidia GTX 970 but in fact the performances deteriorated. This is probably
due to the low batch size and low cardinality of the input, that does not yield
a good speed up factor to improve training times. This combined with the
overhead needed to load the GPU’s memory makes it not enough to switch
to GPU and it is why CPU was preferred.

4.1.4 Architecture

The main building block of our model is a LSTM, to train the network an
expert policy was developed for each of the cases. This policy produces
the training examples which are composed by a pair of two sequences of
length maxlen: the first is a sequence of vectors which elements describe the
environment, the second of vectors which elements describe the target output
instead. The input vector has ndim features that represent the environment
observation while the output vector is composed of odim features.
The ith training example can be defined as

{(In,Out)i|Int = {in1, in2, ..., inn},
Outt = {out1, out2, ..., outo},

∀t ∈ [0,maxlen]}
(4.1)

The expert policy is used to generate an artificial dataset used to train the
network and to evaluate its performances over a set of unseen examples.



CHAPTER 4. EXPERIMENTS 33

Fig. 4.3 describes the general architecture where the LSTM model uses
as its inputs the high level representation of the environment and provide the
selected action and generated arguments using two separate output layers.
Initial experiments were executed using a single output layer but results
quickly pointed out that using a single loss function for two different output
often leads to bad results.
Therefore the output is divided in two different layers, each with its own loss
function and accuracy metrics.

The architecture can be expressd in a mathematical form by considering
the problem of an agent performing actions to interact with an environment
to accomplish a complex task. Let εt ∈ E be the environment observation
at time t and let st ∈ RD be a fixed-length state encoding extracted by a
domain-specific encoder fenc : E → RD.
The network takes the environment representation st as input, possibly along
with other type of inputs like a motion planner failure, and computes a hid-
den state ht ∈ RM that summarizes the progression of the task in the current
environment, different decoders can produce different outputs.
There are two types of outputs: the first is needed to select the next action
to perform and can be computed as fAct : RM → A, where A denotes the
finite set of actions.
The second output type is the parameter generator and it is computed in
different ways, in general each ith argument can be computed as either a
function f iArg : RM → U where U is a finite set of arguments, or a function
f iArg : RM → Rk, where R is the set of real numbers. Then the softmax ac-
tivation function can be applied to obtain a k-dimensional vector with each
value between 0 and 1 and which sum is equal to 1. The argument with the
maximum value is then selected as output.
The first output type is used when the arguments are generated using a con-
tinuous domain, and the problem can be seen as a linear regression. The
second one is instead used when the arguments are generated using a dis-
crete domain, and the problem can be seen as a classification.

An important choice made was to avoid the domain-specific encoder by
directly providing the network with a high-level representation of the envi-
ronment. In this way we can assume that the input position of the object is
correct and does not include any error due to imprecision on the prediction
of an external encoder. Moreover this allows us not to restrict to a specific
environment and therefore to expand to a variety of different domains.
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4.2 Object Swapping Task

The use case of this thesis is a simple robotic task where the scene is composed
of two cubes on a table and the robot should swap the cubes’ positions.
The environment can be restricted to a square table where the cubes are
placed on. When considering this table as a continuous environment, the
cubes can have any (X, Y ) position inside the side the cells, except for (0, 0)
that is used as a symbolic position when the cube has been grasped by the
robot. When using a discrete environment the table can be thought as a
chessboard where the cube can only be positioned at the chessboard cell cen-
ters.
The robot should pick the first cube, place it in a temporary location, pick
the second one and place it on the first cube original position. Finally, it has
to pick up again the first cube from the temporary location and place it in
the second cube’s original position (Fig. 4.4).

Of course, learning the task means: learning the sequence of actions to
perform in order to achieve the target task, but also learning how to recover
from failures.
An action can fail, e.g. the grasped cube can slip from the gripper of the
robot or can be placed in a wrong position. This implies that the action
has to be performed again and eventually other actions have to be executed
before to restore the right preconditions.

4.2.1 Expert Policy - Dataset Generator

Since a dataset for these kind of experiments is not available and hard to ac-
quire from real data, each of the next experiments uses an artificial dataset.
This dataset is randomly generated right before training and it is based on
the fixed structure for the selected task. Whenever a pick fails it is executed
again until it succeds and whenever a place fails, the cube has to be picked
up again, and that pick action can fail as well.

The Dataset Generator has been developed using Python and it is able
to create a dataset using a specified input parameter for the error probability
of each primitive.
It generates a sequence of Input-Output pairs called Environment and
Output that represent the observed high level encoding of the environment
and the desired output of the network, respectively.
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(a)

(b)

(c)

(d)

Figure 4.4: The complete task execution: Move A in a temporary position
4.4a, move B to A initial position 4.4b, move A to B initial position 4.4c and
the scene after the completion of the swapping task 4.4d
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The output is then further divided in Action Output and Argument
Output as previously discussed.
The description of the environment is composed by the coordinates of the
two cubes (XA, YA) and (XB, YB), as well as the status of the gripper. Each
coordinate is a single input to the network and goes from 0 to 1 for the con-
tinuous domain. Fig. 4.5 shows a the sequence of pairs using the continuous
domain. In the discrete domain each coordinate is represented by 10 inputs
that are either 0 or 1 and represent the X or Y coordinate of the specified
cube.
During the first experiments the (X, Y ) temporary swap position coordinates
had to be generated by the network, this led to problems during the evalua-
tion of the network. This was due to the fact that the predicted temporary
positions were nearly always different from the training example randomly
generated positions. This behaviour is correct but was not expected at first,
the generator has been modified to include the temporary position as input
to avoid this type of problems. Specifically 2 inputs node for the continuous
domain and 20 for the discrete domain, 10 for each input.
The desired temporary position is provided in input at the first timestep of
the sequence and then is set to a specific value like 0 or -1 representing a null
value.
The generator is able to introduce an error probability that simulates the

failure of an action. For example the action of Picking a cube can fail,
meaning that the cube falls from the gripper of the robot, and therefore the
actions needed to pick up the object again are introduced to the sequence.
This means that sequences will be, as expected, of different lengths. The
more failures happens the more actions will be added into the sequence. In
listing 4.1 the output of the network is reported where no failures happened.
In listing 4.2, instead, the first pick failed and it has been executed a second
time, that succeeded. The second place also fails and the cube B has to be
picked up again and before attempting again a place.

PickA ( ) ;
P lace ( tempX , tempY ) ; // Temp p o s i t i o n s p e c i f i e d i n i npu t
PickB ( ) ;
P lace (A_x, A_y ) ; // at A’ s o r i g i n a l p o s i t i o n
PickA ( ) ;
P lace (B_x, B_y ) ; // at B’ s o r i g i n a l p o s i t i o n

Listing 4.1: The output of the network can be represented as a list of primitive
invocations and relative arguments. In this example the primitives never fail
therefore only 6 invocations are needed
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Figure 4.5: A part of a continuous training example. The input environment
(left) with the (x,y) position of the two object A and B, the status of the grip-
per (1.0 if holding an object), the temporary swap position (TempX,TempY).
The outputs (right) the selected action and the generated argument (X,Y)
for the place primitive.
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Sequences are padded with zeros if shorter than the provided maxlen, this
is because Keras needs sequences of the same length during training. The
model will then ignore the padding and the parameters of the network will
not change in those cases.

The generator also has different methods that are able to generate slightly
different datasets to be used for each different experiment, described later in
detail. It is able to generate a dataset with discrete or continuos parameters
to allow different experiments.

PickA ( ) ; // F a i l e d !
PickA ( ) ; // Re e x e cu t e s
P lace ( tempX , tempY ) ;
PickB ( ) ;
P lace (A_x, A_y ) ; // F a i l e d !
PickB ( ) ; // Pick B aga in , but t h i s f a i l s too
PickB ( ) ;
P lace (A_x, A_y ) ;
PickA ( ) ;
P lace (B_x, B_y ) ;

Listing 4.2: In this output example the primitives can fail, more than 6
actions could be needed

4.2.2 Object Swapping using error free continuous do-
main

The first experiment is executed using a continuous domain so that cube
positions are a pair (X, Y ) of real numbers that can each range from 0.0 to
1.0.
We also ignore, for now, the possibility of an action failing. This would re-
quire the network, when necessary, to first select the sequence of actions to
restore the right preconditions and then to select the last action to be exe-
cuted again.
The network (Fig. 4.6) composed by a LSTM layer of 50 units was trained
using 3000 artificial training examples using a standard 60-20-20 split for
training-validation-test sets. After some cross experiments using different
hyperparameters, a batch size equal to 4 training samples has been selected.
This was the best tradeoff value between training time and minimum loss.
Using a batch size smaller than 4 does not bring appreciable improvements
but really extends the training time. On the other hand, increasing the batch
size to higher values like 16, 32 or 64 really speeds up the times but with a
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Figure 4.6: The structure of the network with a single output layer for the
arguments (X,Y)

substantial increase of the loss.
The selected training algorithm is ADAM [37] with default parameters in-
stead of the classic Stochastic Gradient Descent (SGD). This was mainly due
to the reason that SGD uses a fixed learning rate while ADAM is able to
adaptively change the learning rate.
The selected loss functions are the categorical cross-entropy and the mean
squared error for the action and arguments (when using a continuous domain,
otherwise cross entropy is used as well) output layers, respectively. Fig. 4.7
depicts the training and validation losses during the training of the network
for every output layer.
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(a)

(b)

Figure 4.7: Losses during training

The fundamental observation here is that since all the data is randomly
generated, the two losses in each diagram would not part ways, meaning that
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the network is overfitting. This is because the more training examples are
generated the more the training, validation and test sets are statistically the
same.
In this first experiment the output layer is basically a fixed sequence of ac-
tions and is correctly learned by the network as verified by the tests run.
The arguments output layer is a little bit more complex since it has to re-
member different dependencies. In particular it has to select the temporary,
and original object positions in synchronization with the place actions.
From the tests it has been observed that the network is not able to use its
memory to store exact values and provide them in output at the correct time.
It is able to provide a value, altough approximated, at the correct timestep.
If the network is not trained enough, these arguments will be close to the
correct position but will be unusable for our purposes. Even with enough
training we cannot assume to receive the exact same value as a generated
argument. Another issue is that the error between the input and output
arguments is not really consistent throughout the range of values.

4.2.3 Object Swapping using error-prone continuous do-
main

The previous experiment, altough interesting, did not really achieve our pur-
pose because there were no primitive failure handling. In this test a probabil-
ity that every single action can fail is introduced. Accordingly the generator
will take an input error probability to determine with which probability an
action will fail.
Introducing a failure probability for the primitives clashes with preconditions
and effects. A failure can therefore modify the environment and the precon-
ditions as well. The network has to selected the right actions to perform to
restore the correct preconditions before re executing the failed primitive.
Specifically, whenever a pick action fails it has to be selected again until
it succeds since preconditions should not be affected by this failure. The
same goes for the place action except that when this action fails the correct
preconditions (i.e. the robot need to grasp the object before placing it some-
where) have to be restored. Therefore the object has to be picked up before
executing again the place.
These failures aim to reproduce an object incorrectly grasped, for example
an object that slipped from the robot gripper or an object placed on a surface
on a wrong position.

The ability of the network to learn these kind of problem is questioned
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along with its ability to generalize to an unseen, different pattern of failures
throughout the execution of the task.
The network was trained using 3000 training samples and introducing a fail-
ure probability for each discrete action of 0.2, splitting the data as already
mentioned. Batch size of 4, 50 units, 100 epochs and ADAM [37] Optimizer
with default parameters were selected for training.
In Fig. 4.8 validation and training losses and accuracies are reported. It
can be observed that after 25 epochs the network starts to overfit and the
training can be stopped at that point since the validation accuracy is not
improving anymore. After 100 epochs the network start to deteriorate.

Results are not as good as those of section 4.2.2. The primitive action
selection is learned, and if a cube is not correctly picked up, the pick is
selected again. This behavior is influenced by the timesteps advancement.
This means that if an action fails n times, the network will re execute that
action one, two maybe three times but then it will eventually select the next
action to be performed since, statistically, it is what happens in the dataset.
In terms of generalization this is not ideal and points toward some kind of
hierarchical solution.

The values obtained can be quite off, meaning that the network is not
really able to infer this type of behavior and is not capable of storing exact
values inside its memory which instead is used to hold long term dependen-
cies and relations. Moreover stopping the training at 25 epochs when the
results for the action layer are not improving anymore could lead to even
worse results, where the predicted (X,Y) place positions are wrong.

4.2.4 Object Swapping using error-free discrete domain

Inspired by the NPI paper [19] where the generated arguments are always
discrete, experiments previously proposed are executed again. But the prob-
lem of arguments generation is formulated as a classification. This means
working in a discrete domain instead of in a continuous one like in section
refsection:SwapNoErrCont.
The arguments output layer for the (X, Y ) coordinates is now splitted into
two separate output layers where each coordinate has its own set of output
values from 0 to 9 (Fig. 4.10). Specifically there are ten output per layer,
where each value represent the cube position in either X or Y . Since the
cube can be in only one cell at a time a softmax function is applied, in this
way only the maximum value is selected as the predicted output argument.
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(a)

(b)

Figure 4.8: Action losses and accuracies during training with primitive fail-
ures

This can be seen as a discretization of the search space and in reality can
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(a)

Figure 4.9: Losses during training with primitive failures

be interpreted as the position of the cubes inside a chessboard.
Training for 15 epochs using 3000 training examples a batch size of 4 sam-
ples, we obtain almost 100% of accuracy in each layer.

The loss regarding the action layer in Fig. 4.11a quickly drops as expected
since a fixed pattern has to be learned.
The loss reported in Fig. 4.11b is for only one of the argument output layers
since they are almost the same. As expected, it converges slower than the
action layer, because only the place actions require the arguments that are
set to a reserved value while the other primitives are selected.
Switching to a discrete domain also enable us to quantify in a more intuitive
way how well the argument generation is performing by using accuracies
instead of losses.

4.2.5 Object Swapping using error prone discrete do-
main

A failure probability of the 20% for each action is introduced to the experi-
ment of section 4.2.3. Results regarding the parameters are definitely better.
The best results were obtained by stacking 3 LSTM layers (Fig. 4.12) of 50
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Figure 4.10: The structure of the network with two dense layer of 10 output
for each argument

units each. The same number of training examples, splits and epochs of the
previous experiments were used.
Accuracies of 97.3% and 99.5% are reached on the validation sets for the
action layer and the argument layers, respectively (Fig. 4.13). These are
good results.

In Fig. 4.14a the training and validation losses of the action layer are
reported. It can be observed that the validation loss starts to deviate from
the training loss meaning that the model is beginning to overfit. Anyway
by looking at the validation accuracy it does not get worse. This is because
even though the prediction is a little bit further from the target value, by
applying the softmax that selects the maximum output, the output is still
correct.
The spike that can be observed in the action loss (Fig. 4.14a) is probably
due to a certain configuration of data since a mini batch size of 4 is relatively
small and also due to the changes to the learning rate by ADAM, using a
larger batch size would indeed smooth the losses.
The training of the parameters for the argument layers in Fig. 4.14b instead
seems to be quite smooth. Unfortunately the learning of the actions collapse
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(a)

(b)

Figure 4.11: Losses during training using an error-free discrete domain

with 5 stacked layers or when the number of LSTM units are further im-
proved.
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Figure 4.12: The structure of the network with 3 stacked LSTM layers

When stacking 5 LSTM layers, one of the two argument output layer does
not correctly learn and diverges.

Using a continuous domain the action selection seems to behave quite
good at first, by selecting the correct action for the first few timesteps. The
fact that the predicted value has a dropping trend for example from 1.0, 0.7,
0.5, 0.3 from the same, repeated, action means that the network will even-
tually make a wrong prediction. Intuitively this is due to the fact that the
network learns that after a few timesteps the next action is expected.
From this intuition we decided to introduce some limit cases inside the
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(a)

(b)

Figure 4.13: Accuracies during training and validation using error prone
discrete domain

dataset to explore how the network prediction changes after seeing these
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(a)

(b)

Figure 4.14: Losses during training using error prone discrete domain

special cases where, for example, only a specific action primitive fails just in
order to fill the maximum sequence length.
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4.2.6 Dataset Augmentation

In this section the Dataset Augmentation motivated at the end of section
4.2.5 is presented. The first experiment executed consists of the introduction
inside the dataset of a specific example a certain number of times, up to 5%
of the dataset.
Specifically what we did was inserting a specific case where the first pick
would always fail and succeed just in time for the sequence to achieve the
task using up to maxlen timesteps.
This does not seem to bring a really appreciable improvement in the overall
prediction performances, that reaches around 97% of accuracy as before but
on the same test dataset without the enrichment.

Then all of the other limit cases are inserted for the training. With all
the limit cases we refer to those with first-level depth, so the limit cases in
fact generated and inserted are those where either the first A pick, the first
A place, the first B pick and so on. In other words the nested actions, like
the pick needed to be re executed after a failed place, will not fail.
After retraining using this enriched dataset, the network was able to pre-

dict correctly examples similar to the newly inserted, i.e., where the first pick
would always fails, until the primitive would be correctly executed. The real
issue happens when, after a number n of failures of that specific action, the
next primitive to execute is predicted correctly but fails again. The network
expects it to succeed nevertheless making the next prediction wrong since
the limit cases did not show this type of behavior.
This is not really different from the problem discussed towards the end of
section 4.2.3 and points out a limit of the current architecture. Possible solu-
tions would be to either provide the network with a even richer dataset with
even more limit cases or a different model.
The first option is not likely to be a good way to solve this problem, in fact
what we wanted to achieve was good generalization. Therefore the objective
is efficient learning by providing just the minimum number of training exam-
ples to make the network learn the task correctly.
The other option would be to use a different architecture that can make
use of the recursion abstraction. In this way, the network should be able to
decompose the problem into smaller pieces until base cases are reached. In
fact, the proposed model suffers from errors due to undesirable dependencies
that the model learns inside its hidden state. To avoid this and implement
recursion, the network should receive as input its previous prediction (recur-
sion) and the hidden state should be saved on a stack, just like with function
calls. After a new prediction is made and before resetting the hidden state
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(a)

(b)

Figure 4.15: Accuracies and losses during training using augmented dataset

the context need to be saved in the stac. This can be seen just like function
invocation. Moreover, this allows the network to restrict the attention to
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the currently relevant recursive call, ignoring irrelevant details about other
contexts. This could solve the issue encountered of the network "expecting"
the next action in the sequence after a certain number of failures.

4.2.7 Generalization over longer sequences

To test the network’s ability to generalize to longer sequences, i.e., with
higher primitives error probabilities, an additional test dataset is generated
using error probability of 0.45 for each primitive. As before, sequences can
reach maxlen that is set to 100 for these samples. If the sequence is shorter
than that it is padded using 0s up to maxlen.

Results obtained are fairly good: the network composed of a single LSTM
layer with 50 units was able to achieve up to 85% of accuracy while the net-
work composed of three stacked LSTM layer was able to achieve up to 91%
instead. The augmentation of the dataset did not bring significant improve-
ment over the normal one. This is probably because the longer sequences
used for these tests probably doesn’t have limit cases like the ones we man-
ually introduced. An improvement in the accuracy is expected if these kind
of examples are introduced, but they were not introduced on purpose to see
if with more general samples the accuracy would increase, which did not.
Of course the aim is to avoid filling the dataset with all possible cases and
looking towards a more efficient learning where less examples but more in-
telligence from the model is needed.
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Conclusions

In this work a review of Task Motion Planning and Neural network state of
the art has been reported in chapter 2. An in depth analysis of the main
frameworks used as starting point for this thesis has been given too.
Then an overview of Deep Learning and its core topics like Gradient Descent,
Back propagation as well as an overview of Recurrent Neural Networks along
with Backpropagation through time and problems related to the vanishing
and exploding gradient have been given.

LSTM have been selected as the main building blocks for creating a task
planner that is able to predict the next action to perform based on past
history and the current environment observation. Preliminary experiments
have been tried and are reported in Appendix A.1.
The main experiments are reported in Chapter 4 where we tried to make the
network learn how to swap two cubes and how to handle unexpected action
failures. We also reported the insights that brought to the development of
the proposed architecture. The first part of the experiments was approaching
argument generation as a regression problem, poor results led to treating the
problem as a classification: in this way better results were obtained.
The hyperparameters used for training the network have been reported, as
well with the selection criteria used.
Potential and limits of this solution has also been questioned and investi-
gated.

Since a public dataset for these type of tasks is not available, a Dataset
Generator to produce an artificial dataset has been proposed. The artificial
data is generated for each of the experiments and is used to train the network.
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5.0.1 Key aspects and limitations

The proposed model is capable of predicting the next action to perform with
up to 97% accuracy on sequences of the same length used for training, which
is 30 timesteps. 91% of accuracy can be obtained instead for sequences of
up to 100 timesteps. The model doesn’t need to compute multiple alternate
plans and the idea can be easily extended with different feedback from the
environment. For example, the feedback from an off the shelf motion planner
could be integrated as input to the network, as discussed in the future works.
However, the network does not provide strong generalization regarding task
length, meaning that is able to achieve good results for a certain length of
unseen task length but after that it start to quickly deteriorate. This would
probably be the main focus for future works.
An artificial dataset generator has been proposed to generate the training
samples to train the different networks tried in the experiments. It is pos-
sible to specify an input error probability to generate data with primitive
failures.

Major difficulties came from the dataset being artificially generated. This
was a necessity since a public dataset that suited our type of tasks was not
available and collecting this kind of data from robots is really resources in-
tensive, time and money wise. The use of an artificial dataset can lead to
difficulties about interpreting training and validation losses. For example,
losses can be really close to each other because they are statistically the
same. It is sometimes hard to determine if the model is overfitting the data
and makes it hard to achieve better results.
The ability to generalize to task length has been evaluated using a test set
with longer sequences. The ability to generalize to different task topology
has been tested by generating a lower amount of input data instead. In this
way, the actual (X,Y) values fed into the network during training time are
actually different from the one used at test time.

Another key difficulty was the scarcity of state of the art regarding this
specific topic: Deep Learning is usually applied on different type of data like
images, sounds or words. The proposed work uses a high level representa-
tion of the environment and therefore requires to hand-engineer the features.
Future work could be that of using directly images and let the network learn
by itself what are the important features of the environment.
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5.0.2 Future Works

There are a lot of starting points that are worth investigating and spending
time on to build upon the results obtained in this work. The most important
and promising ones are reported here:

• Generalizing with Recursion: The idea is to try to integrate the
generalization via the recursion approach described in [38]. The model
proposed in this work can be seen as a sequence to sequence that pro-
duces as output a list of instructions without recursion. Experiments
lead to believe that a somewhat hierarchical and compositional struc-
ture of the data could really improve the generalization capabilities of
the model.
To make each action independent from the actual advancement of the
sequence is needed with this approach. In this way, the action predic-
tion results obtained in this work could be further improved, possibly
reaching a stronger generalization.
In order to do this, the network has to take as next input, along with
the environment observation, the previous predicted action. This pre-
diction can be either a primitive action or a high level action with its
generated arguments. In this way, there is a decomposition of higher
level tasks into finer tasks, until a primitive is reached.
To implement this, a stack is needed to store the context of the net-
work each time a new action is predicted (or invoked) and restore it
each time it is completed, exiting its scope.
This idea should also be combined with the probability of a primitive
action failing and eventually with other types of feedback, for example
from the motion planner.

• Domain Specific Encoder: In this work we provided as input a fixed
high level representation of the environment that can be achieved using
regular computer vision algorithms for object identification and pose
estimation. This is in fact a limit to our generalization purpose be-
cause we would like to have flexibility regarding the number and types
of objects in the scene.
This can be achieved by using a neural network as encoder that can
learn to represent the environment into a fixed size vector of features.
This is also a prerequisite for the next point: meta-learning.

• Meta-Learning: As discussed in the state of the art analysis there
is a trend in research that aims at achieving a more efficient learning.



CHAPTER 5. CONCLUSIONS 56

This means that, rather than providing a lot of training examples of
the same task, we can provide few training examples, even one for each
task. This could avoid retraining the network each time a different task
is selected by providing the task as input.
The training is done using a large number of different tasks but using
few demonstrations of each one. The network will be able to generalize
to entirely different and unseen tasks by just providing few or even one
example as input.
On top of this, there is the real problem of collecting enough training
data from real robots since a lot of resources (Robots, Time, GPUs)
are needed.

• Dataset Improvement and Statistical Analysis: Different datasets
could be artificially created for different, more complex tasks. Moreover
the generation of the proposed dataset could be tweaked by generating
training examples that are less similar between each other. This lets
the network see a broader range of samples.

• Better integration with Conditional Task Motion Planning:
CTMP was discussed as a starting point for this work. On other hand,
the only motion related part of this work is the one about primitive
failures. The proposed work could be further developed by a TMP
point of view by choosing a more significant use case. For example,
the feedback from the motion planner could be integrated as input to
signal the network that a solution could not be found and expect the
next prediction to be weighted also on this knowledge.
Moreover, a robot with two arms could be used to make the network
predict which arm to use based its decisions on collision, shortest path
and so on.

• Deep Reinforcement Learning: this point is more a possible dif-
ferent approach to the problem rather than an improvement. It would
be useful to see which is the potential and limitations of this approach.
A clear advantage would be the absence of a dataset, but at the same
time the need to specify an adequate reward function could be a major
problem.
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Appendix A

Preliminary Experiments

A.1 Simple Experiments

We chose to use LSTMs as our main building block to search if an imple-
mentation of a task planner could be possible. This was mainly influenced
because of their ability to work with sequences and long term dependencies
but also due to their growing popularity and consequent tools availability.
Since this is rather a difficult problem we had to investigate the networks
behaviors in very minimal problems, like returning an input value after a
certain number of timesteps, and trying to build up from there. These same
experiments were also tested using GRUs networks that are really similar to
LSTMs, but with less parameters. Unfortunately they did not provide any
improvement and so LSTMs are presented in these experiments and were
also selected for all of the work.

A.1.1 Echo - Fixed Input-Output Delay

In this experiment we try to make the network learn a simple delay, or Echo,
of a continuous real number between 0 and 1 from input to output. The
generated training set basically shows many sample sequences of the same
length and with the same timestep delay but with different input values.
Figure A.1 depicts a training example used for training.
This may seem a trivial experiment but one that cannot be taken for granted.
The obtained results seem quite good: the network is able to echo the input
number exactly after the learned timestep with two significant figures. The
only problem arises in the low values of the parameter, i.e. between 0.00 and
about 0.08 where the network tends to overshoot. This could be due to a
low number of examples in that range.

58
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Figure A.1: A single training example for the Input - Output delay test
repeating the input number at each timestep

During training, both the training and validation loss get low values in
less than five epochs using 3000 training examples with the 60-20-20 split.
The two loss values are quite similar because of the artificial nature of the
dataset. Therefore, from a statistical point of view, the higher the number
in the training set and validation set the higher the similarity.

A little bit harder variation of the previous experiments has been tried
where the key difference is that the input number is fed to the network only
once during the first timestep (Fig. A.2). Even though this variation intro-
duces a little bit of complexity, it does not seem to affect the learning and
the obtained results are comparable with the original experiment.
The biggest concerns with these results are the actual accuracies of the out-
puts, are they precise enough for our purposes? Since the numbers generated
by the regression should be used as the target position for the robot end ef-
fector, we require to obtain an almost exact copy of the input. Even though
the network learns the echo sequence, it introduces a significant error.
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Figure A.2: A single training example for the Input - Output delay test
without repeating the input number

These experiments showed that the outputs almost always predict the
first significant digit correctly and can often predict up to two or even three
digits. Even though this seems great a lesser precision but higher consistency
of the results would have been better for our purposes.
The main observation is that LSTMs, altough they do have memory, cannot
be used to store a floating point number. The memory used by this kind of
networks is more of a finite approximation of the previous weighted inputs
and is the result of different interactions. An external memory cell would
suit the this better.

A.1.2 Discrete Echo - Fixed Input-Output Delay

We repeated the previous tests after switching to a discrete form for the
output layer, using a softmax activation function. This was because the net-
work proved that it is incapable of providing as output a value with high
precision, hence a classification appeared to be more suitable to this kind of
experiments.
This intuition was correct and as expected the network improved giving good
results, moreover we were able to use the accuracy as a metrics that allowed
us to know how many times the prediction is correct or not while the loss
function gave us some hint on the performance of training. The network was
able to achieve 100% of accuracy after very few epochs.
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A.1.3 Discrete Echo - Variable Input-Output Delay

After the good results using a discrete output layer, in this case we try to
make another step forward: the delay is not fixed and learned from the
dataset anymore. The echo has to wait until an input trigger is given in
input and then provide as output the memorized value. In Fig.A.3 a visual,
more intuitive, representation of the experiment is presented.

Figure A.3: A training sample for the variable echo experiment

This test has shown that LSTMs can reach 100% of accuracy after few
epochs of training in this type of task.
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