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Abstract

In recent years Distributionally Robust Optimization (DRO) has raised to the status of
one of the most promising tools for robust estimation. This because it shares some nice
properties such as good out-of-sample performances and well-understood regularization
effects. The estimator we obtain within this framework is computed by minimizing the
worst-case expected loss under all distributions that are close, in a f -divergence sense, to
the empirical distribution which relies just on historical data. In this thesis we propose a
new approach to compute an unknown parameter vector using data coming from linear
and noisy measurements. In doing so, we will use a slight modification of DRO which
amounts to a distributional regularization. The ultimate goal will be to characterize
the estimation error which is in general a challenging task but yet very important.
Our analysis is performed under the modern assumption of high-dimensional regime
in which both the number of measurements and parameters are very large, keeping a
fixed proportion while going to infinity which encodes the under/over-parametrization
of the problem. Our contribution can be summarized as follows. We show that the
estimation error can be recovered solving a scalar minmax convex-concave problem which
consists of just four variables. This enables a fast computational method to find the best
regularization parameter λ in the bias-variance tradeoff.
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Chapter 1

Introduction

This thesis is mainly focused on the problem of estimating an unknown parameter θ0 ∈
Θ ⊆ Rd which describes the relationship between two random variables X,Y via the
linear model given by Y = XT θ0 + Z where X takes values in Rd, Y takes values in R
and they are distributed accordingly to a nominal and generally unknown distribution,
say P⋆ ∈ P(Rd+1) while Z represents instead some measurements noise distributed
accordingly to the unknown distribution PZ . This problem of estimating parameters by
linear functions of measurements has been studied in depth ever since Gauss introduced
the theory of least squares.

A possible and simple approach to find an estimate of the true parameter θ0 is to
solve the stochastic optimization problem given as

min
θ∈Θ

EP⋆ [ℓ(Y −XT θ)] (1.1)

where ℓ is a loss function and P⋆ is the true distribution. The most common losses
adopted in statistical learning are, among the others, squared loss function, i.e. ℓ(·) =
(·)2 and absolute loss function, i.e. ℓ(·) = | · |. For the readers wishing to deepen their
knowledge a comprehensive survey of loss functions can be found in [30].

However, as already pointed out, we usually do not know the underlying true distri-
bution P⋆. In almost every data-driven application we have a sample composed by n i.i.d
noisy datapoints {(xi, yi)}ni=1 from P⋆. This is a well-studied problem in which we would
like to estimate an unknown vector θ0 from n noisy linear measurements of the type
yi = xTi θ0+zi where xi is the vector of known measurements while zi a noise realization.
To solve this problem we can consider an approximation of the true distribution P⋆ con-
structed giving equal weight to all the datapoints, i.e. P⋆ ' P̂n := n−1

∑n
i=1 δ(xi, yi).

Doing this, (1.1) becomes the so-called M-estimation problem given by

min
θ∈Θ

1

n

n∑
i=0

ℓ(yi − xTi θ). (1.2)

Notice that this is an instance of the Empirical Risk Minimization (ERM) [29], whose
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CHAPTER 1. INTRODUCTION

idea is to minimize the number of training errors (empirical risk). In practice it chooses
the parameter θ considering the one that when plugged into the model returns the least
discrepancy or error compared to the observed measurements. We refer to the optimal
value of (1.2) as θ̂ERM .

In the context of statistical inference we can define two quantities describing how
good an estimator is. The concept of “bias” of an estimator or model represents its ability
to approximate well the true parameter θ0. It can be formally seen as the difference
between θ0 and the expected value of the estimator. The concept of “variance” or
“estimation error” instead represents the second order moment of the estimator and it
appears because the empirical risk is only an estimate of the true error.

In practice, in a high variance scenario we are “overfitting” and this is mainly a
consequence of the use of a complex model or equivalently of the fact that we are relying
solely on the available measurements which are just a sample of the true distribution.
Instead, in a high bias setup we are “underfitting” meaning that our estimator or model
cannot describe well the measurements observed because on average it does not retrieve
the true θ0.

For example, it can be shown that the estimator we obtain from (1.2) in the case
of squared loss is unbiased but since it finds the best estimator considering just n i.i.d.
samples it might lead to high variance. Therefore, a general rule already adopted in
the literature to lower the variance is to add an additional term other than the one
accounting for the estimation loss, called regularization term.

The idea of regularization was first introduced by Tikhonov in the context of solving
integral equations numerically [28], but it is nowadays used widely for solving ill-posed
problems (for example the least square problem when XTX, with X matrix of measure-
ments, is not invertible) and, as pointed out before, to prevent overfitting in machine
learning applications. The regularized M-estimator that we get assumes then the fol-
lowing form

min
θ∈Θ

1

n

n∑
i=0

ℓ(yi − xTi θ) + λf(θ) (1.3)

where the parameter λ > 0 constitutes a trade-off between the standard ERM seen
previously and the prior structural knowledge brought by f . The optimal solution of
(1.3) is denoted by θ̂REG. This trade-off is also known as “Bias-Variance” trade-off
where the more we increase the value of λ the more we have a biased estimator but with
lowered variance while if λ is taken small we obtain an unbiased estimator at the price
of having higher variance.

Famous and well-established examples of regularizers are given by Ridge regulariza-
tion in which the function f is the standard Euclidean norm and the Lasso regulariza-
tion which instead considers the ℓ1-norm. However, despite the known ability of these
functions to promote particular known-a-priori structures of the parameter to estimate,
specifically sparsity for Lasso and small norm in the case of Ridge, they are not able to
optimally trade between bias and variance.
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CHAPTER 1. INTRODUCTION

Therefore, one can consider the following optimization problem which automatically
trades between the two quantities

min
θ∈Θ

EP̂n
[ℓ(Y −XT θ)] + λ

√
V arP̂n

(ℓ(Y −XT θ))

n
. (1.4)

In this minimization we can identify the bias with the empirical risk EP̂n
[ℓ(Y − XT θ)]

while the variance arises from the second term in the equation, [19]. Notice that this is
an instance of the problem in (1.3) where now the regularization term is function of the
estimator’s variance.

The latter is an important problem which appealed the statistic community because
the estimator minimizing the variance regularized risk is optimal in the variance-bias
trade off. The main disadvantage is that it is usually not a convex problem even when
the loss is convex, thus very difficult to solve.

Moving forward, in nowadays applications the focus has shifted towards the high
dimensional regime, where both the number of measurements n and the dimension d

of the parameter θ0 are very large, i.e. d, n → ∞, with n/d = δ ∈ (0,+∞). In
practice, δ represents the under-parametrization or over-parametrization of the problem,
respectively if δ ∈ (1,∞) or δ ∈ (0, 1]. This is something new compared with standard
statistical problems. In general the parameter’s space has a relatively low and fixed
dimension while we require the number of samples n to be large in order to have possible
consistency guarantees, i.e. the estimator converges in probability to the true parameter
θ0. In this work instead we will consider the high-dimensional regime where also the
number d of variables to estimate is large. Of particular interest is also the compressed
measurements scenario (or over-parametrization case), where d > n. This case has
many challenges because as long as the parameter θ0 is not structurally constrained the
problem in (1.2) is generally ill-posed because there are more variables to estimate than
the number of measurements available. This is another reason to adopt the regularized
formulation in (1.3) since the structural properties of θ0 can be encoded in f or one can
optimize the variance of the estimator using the formulation in (1.4).

Examples of high-dimensional statistics are ubiquitous throughout science: astro-
nomical projects such as the Large Synoptic Survey Telescope produce terabytes of
data in a single evening; each sample is a high-resolution image, with several hundred
megapixels, so that d� 108. Financial data are also of high-dimensional nature with lot
of financial instruments tracked at a fine time interval for high frequency trading, [20].
Other examples are Magnetic Resonance Imaging (MRI) in medicine which is an essential
medical imaging tool inherently slow in the acquiring data process. In here compressed
sensing is applied because it offers significant scan time reductions, with benefits for
patients and health care economics, [18]. Finally, also hyper-spectral imaging in ecology
[8] leads to high-dimensional data sets.

Merging this high dimensional scenario with the non-convexity of problem (1.4)
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yields to computationally intractable problems, which has limited the applicability of
procedures that minimize the variance-corrected empirical risk. On top of this, as pointed
out in [27] it is still unknown how to optimally tune the regularization parameter λ.
Indeed, it is impossible to perform some sort of cross validation to find the best parameter
λ given the huge number of parameters involved in the high-dimensions scenario.

The work [19] has served has inspiration for our procedure because they showed
that solving a particular instance of f -divergence DRO we obtain an estimator that near
optimally trades between bias and variance. Moreover, they proved that this problem
is now convex if the loss is convex in θ which makes the solution easier to find using
standard learning algorithms.

The general idea of this line of work called Distributionally Robust Optimization
(DRO) is to create a “ball” of radius ϵ > 0 in the probability space around the afore-
mentioned empirical distribution P̂n. Then, the problem solves a minimization problem
choosing the parameter θ which best performs under the least favorable distribution in
this ball. This intuitive reasoning can be formalized mathematically by the following
minmax formulation

min
θ∈Θ

sup
Q∈Bϵ(P̂n)

EQ[ℓ(Y −XT θ)]. (1.5)

An optimal solution of (1.5) is denoted in the thesis as θ̂DRO. Robustness against
perturbations is brought by the inner maximization while Bϵ(P̂n) represents the so-called
ambiguity set. To have a better understanding, this set represents a family of probability
distributions which are ϵ-close to the empirical one and may account for the possible
adversarial attacks. Instead of solving the standard ERM in (1.2) which considers equal
weights for each measurement loss, in (1.5) the expectation is taken accordingly to the
worst case distribution present in the ambiguity set. Notice that such set should contain
the unknown true distribution with a certain level of confidence and should not be taken
too large to avoid the risk of being too conservative.

A question may arise spontaneously, how can we quantify the distance between
distributions in order to create the ambiguity set? A possible way, adopted also in
[19] to obtain the approximated variance-regularized risk, is to use f -divergences and in
particular the χ2-divergence.

The concept of f -divergence was first introduce in [21] to measure the information
that a random variable ξ carries after having observed the event E which is in someway
related to ξ. Indeed, the original idea was to quantify the difference between the original
(unconditional) distribution of ξ, say P, with the conditional distribution of ξ under the
condition that the event E has taken place, say Q, to measure the amount of information
contained in the observation of event E. This family of divergences has been also studied
by [1] and most importantly by [10].
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CHAPTER 1. INTRODUCTION

The f -divergence between two probability measures P and Q is defined as

Df (P‖Q)
.
=

∫
f

(
dP
dQ

)
dQ (1.6)

where f(t) : R → R+ is a convex function for t ≥ 0 satisfying f(1) = 0 and defined as
+∞ for t < 0. Notice that, f -divergences are not metrics because, in general, they are
not symmetric (Df (P‖Q) 6= Df (Q‖P)) and they do not satisfy the triangle inequality,
but they are still useful when quantifying the distance between two probability measures.
The ambiguity set constructed adopting a f -divergence takes the form

Bϵ(P̂n) = {Q � P̂n | Df (Q‖P̂n) ≤ ϵ}. (1.7)

In the literature there are already some tractable reformulations of the DRO problem
in (1.5) when the ambiguity set is constructed using f -divergences as distance both in
continuous and discrete case, ([4], [12], [24]).

However, in this work we will consider a slightly modification of the DRO problem
which at the same time maintains most of the intuitions given so far about the problem
and it is also relatively simpler to analyze. What we consider is the Distributionally
Regularized Optimization problem which can be defined mathematically as follows

min
θ∈Θ

sup
Q≪P̂n

EQ[ℓ(Y −XT θ)]− λDf (Q‖P̂n). (1.8)

We will refer to an optimal solution of (1.8) as θ̂DRE .
As last main ingredient of this thesis we introduce what is called Convex Gaus-

sian Minmax Theorem (CGMT), directly related to the Gaussian inequality proposed
in [15]. Taking inspiration from [27] and its line of work that uses CGMT to solve
convex-regularized M-estimators we will use this tool to show that ‖θ̂DRE − θ0‖2/d can
be retrieved solving a deterministic program involving only scalar variables. This is rele-
vant because in this way we are able to find the estimation error and optimally tune the
regularization parameter λ by simply solving a convex-concave problem with low dimen-
sionality despite the multidimensional and stochastic nature of the variables involved in
the original DRE problem.

To summarize, our contributions brought by this work are:

• Development of a strong dual reformulation of the problem (1.8) and characteri-
zation of the estimation error in terms of a scalar deterministic program providing
all the steps and proofs to reach such goal.

• Numerical simulations to guarantee the theoretical result.

The rest of this thesis is organized as follows: Chapter 2 is entirely devoted to the
description of the CGMT tool and the f -divergence family. In here we present also
the f -divergence distributionally regularized problem and its dual formulation. Chapter
3 instead contains the step-by-step solution of the problem that leads to the scalar
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optimization program returning the estimation error. Chapter 4 instead is devoted to
numerical examples.
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Chapter 2

Background Material

This chapter is devoted to a self contained and short survey of the basic concepts that
are at the core of this work. In particular, we divide it into three sections. The first
one provide a brief introduction to the concept of CGMT which is the main theorem
upon which we leverage to obtain some theoretical guarantees of our work. In the
second section we introduce the reader to the family of distances called f -divergences.
Finally, in the third section we present the Distributionally Regularized problem using
f -divergences and also a dual reformulation of it. We mostly omit the proofs of the
result we present because they are outside of the scope of this thesis, nevertheless for
the most interested readers we will provide detailed references.

2.1 Notation

Throughout this thesis we denote sets with upper case calligraphic letters, e.g. X .
Probability distributions will be denoted as P and Q. ‖ · ‖ will denote the standard
Euclidean (ℓ2) norm. For a convex function f : R → R we denote with ∂f(x) the
subdifferential of f at the point x and with f ′

+(x) the quantity sups∈∂f(x) |s|. We use the
notation Xn

P−→ c to denote that the sequence of random variables {Xn}n∈N converges
in probability to the constant c. The expectation of a random variable ξ ∼ P will be
denoted with EP[ξ] while the variance with V ar(ξ). We finally denote with R+ the set
of non-negative real numbers while R+ denotes the same set union with {+∞}.

2.2 CGMT

The main technical result that we will adopt in this thesis is the asymptotic version of
the Convex Gaussian Minmax Theorem (CGMT) which is presented in Prop. 2.2.1. An
asymptotic variant is necessary because we will deal with the high-dimensional regime,
namely when both the number of measurements n and the parameter’s dimension d are
very large. In the following we are going to present a self-contained exposition of this
theorem.

7
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The theorem can be seen as a tight version of the Gaussian Minmax Theorem
(GMT) proved by [15]. Consider indeed the task of analyzing this problem called Pri-
mary Optimization (PO) problem

Φ(X)
.
= min

w∈Sw

max
u∈Su

uTXw + ψ(w,u) (2.1)

where X ∈ Rn×d is the known random measurement matrix having entries i.i.d. standard
normal, Sw ⊆ Rd,Su ⊆ Rn are compact sets and ψ(w,u) is a continuous function defined
on Sw × Su. We refer to an optimal solution of (2.1) as wΦ(X).

Since it is difficult to analyze the (PO) problem due to the bilinear form involving
the random matrix X, [15] developed a simpler problem called Auxiliary Optimization
(AO) and used it to infer properties of the much challenging (PO) problem based on
some Gaussian inequalities. The (AO) problem is actually simpler to analyze because
the bilinear term uTXw is split into two separate terms, ‖w‖gTu and ‖u‖hTw where
h ∈ Rd and g ∈ Rn are random vectors whose entries are again i.i.d. standard Gaussian.
Therefore the (AO) problem is given by

ϕ(g,h)
.
= min

w∈Sw

max
u∈Su

‖w‖gTu+ ‖u‖hTw + ψ(w,u). (2.2)

We denote by wϕ(g,h) an optimal solution of (2.2).

CGMT builds on top of [15] and extends its results proving the following inequality
between optimal values of (PO) and (AO)

P(Φ(X) < c) ≤ 2P(ϕ(g,h) ≤ c) ∀c ∈ R. (2.3)

This expression has to be intended as follows. Whenever P(ϕ(g,h) ≤ c) is close to zero,
namely c is an high-probability lower bound for ϕ(g,h) because the probability of ϕ(g,h)
being greater than c is high, then we can assert the same for Φ(X). This result is not
something new because, as already said, it is a simple extension of the work proposed
by [15]. The novelty brought by the CGMT is in a tighter bound. Indeed, up so far
(2.3) says that Φ(X) has high probability to be greater than c but does not say anything
on how much greater Φ(X) is allowed to be. We can potentially have an unbounded by
above cost.

To get better the idea let us think about the following example. Let us assume that
ϕ(g,h) is concentrated around some constant µ, namely for every t > 0 the events

{ϕ(g,h) ≤ µ− t} and {ϕ(g,h) ≥ µ+ t}

each occur with small probability. Up to now, the theorem ensures that µ − t is also
a high-probability lower bound on Φ(X), i.e. the event {Φ(X) ≤ µ − t} also occurs
with small probability, but we do not know nothing about the probability of the event
{Φ(X) ≥ µ+t}. It might be that Φ(X) is arbitrarily greater than µ with high probability.

8
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In order to have the desired tight bound we need to add other requirements not
present in the original GMT. These are:

(i) Sets Sw,Su are now convex and compact.

(ii) The function ψ is now assumed to be convex-concave on Sw × Su.

Given these new hypotheses we can formulate the high-probability upper bound for
Φ(X).

P(Φ(X) > c) ≤ 2P(ϕ(g,h) ≥ c), ∀c ∈ R. (2.4)

Again, this has to be interpreted as whenever c is a high-probability upper bound for
ϕ(g,h) (the probability of ϕ(g,h) being greater than c is small) then the same holds
true for Φ(X).

Now, if we some up results (2.3) and (2.4) we obtain the tight inequality of CGMT
which states, under the additional convexity assumption, that the (AO) problem tightly
bounds the optimal value of the (PO) problem, meaning that for every µ ∈ R and t > 0

P(|Φ(X)− µ| > t) ≤ 2P(|ϕ(g,h)− µ| ≥ t). (2.5)

This relationship has been widely used in [27] to derive the asymptotic properties of the
optimal (PO) problem solution based uniquely on the (AO) problem.

In the following we will explain how these concentration inequalities may be helpful
in our analysis. Remember that our goal is to quantify the error norm ‖θ̂DRE − θ0‖2/d,
therefore it is natural to make the following change of variables

w
.
=
θ − θ0√

d
. (2.6)

We would like to show that the norm of the DRE problem optimal error, i.e. ‖ŵDRE‖,
converges in probability, as d, n → +∞, to a value α⋆ which can be retrieved by a
convex-concave deterministic program involving few scalar variables. CGMT is essential
in order to show this convergence as explained in the following.

First we will show that we can bring the DRE problem in (1.8) into a (PO) problem
where the random matrix X is built using the measurement vectors xi. Then, the step
from (PO) to (AO) is quite straightforward. Assume now that we are able to constraint
both variables w and u to compact sets (we will show this later). In order to arrive
at the scalar optimization which determines α⋆ we need to pass through the so-called
Modified (AO) problem given by

ϕ(g,h)′
.
= max

0≤β≤Kβ

min
w∈Sw

max
∥u∥=β

‖w‖gTu+ ‖u‖hTw + ψ(w,u). (2.7)

Notice that this problem differs slightly from (2.2) in the order in which we compute the
optimization and one can obtain one problem from the other exchanging the minimiza-
tion over w and the maximization over β.

9
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However, in general the two problems are not the same and we cannot do the
aforementioned swap because Sion’s minmax theorem [25] is not applicable. Indeed,
differently from the (PO) objective function the (AO) one is not anymore convex-concave
because for different realizations of the random vectors g and h the terms ‖w‖gTu and
‖u‖hTw may be convex or concave. For example, if gTu is negative and hTw is positive
the term ‖w‖gTu is concave in w while ‖u‖hTw is convex in u prohibiting the use of
Sion’s minimax theorem to interchange the order of minimization and maximization in
(2.7).

Nevertheless, CGMT with the previous inequalities helps us because the tight rela-
tion between (PO) and (AO) along with convexity of the (PO) problem can be translated
to asymptotically (when d, n→ +∞) infer properties of the (PO) optimal solution based
on the modified (AO) which we stress again is not equal to the standard (AO) problem.

Since we are focused on the high dimensions regime we present now the asymptotic
version of the CGMT that will be actually employed in this work noticing that, as we
said, we obtain a characterization of the optimal (PO) problem solution investigating
the (AO) problem.

Proposition 2.2.1. (Asymptotic CGMT). Let S be an arbitrary open subset of Sw and
Sc = Sw/S. Denote with ϕ′Sc(g,h) the optimal cost of the optimization in (2.7), when
the minimization over w is now constrained over w ∈ Sc. Let wΦ(X) be any optimal
minimizer of (2.1). Under the same convexity conditions of CGMT, suppose there exist
constants ϕ′ < ϕ′Sc such that ϕ′(g,h) P−→ ϕ′ and ϕ′Sc(g,h)

P−→ ϕ′Sc. Then,

lim
n→∞

P(wΦ(X) ∈ S) = 1

2.3 f-divergences

The notion of divergence to quantify the discrepancy between two probability distri-
bution has its foundations in information theory, specifically in communication theory
where the main goal back in the days was to understand how much one can compress
data and what is the ultimate transmission rate of communication. These questions
are deeply related to probability distributions that underlie the communication and in
particular to the concept of entropy of a random variable and mutual information. For
example the capacity of a communication channel with input X and output Y is the
maximum mutual information.

The entropy of a random variable X with probability density p(x) having support
in X is a measure for the average uncertainty of the random variable and mathematically
is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x). (2.8)

To get more intuition of the concept, let us think about the toss of a fair coin. The
random variable representing this event has entropy 1 because it requires just one bit to

10
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describe the outcome of the toss which is simply head or tail (i.e. 0 or 1).

Moving further, entropy is a concept related to a single random variable. When we
want to describe the uncertainty of a random variable conditioned on another random
variable we introduce the concept of conditional entropy. Therefore, the reduction in
uncertainty due to another variable is called mutual information which in formula is

I(X;Y ) = H(X)−H(X|Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.9)

This small detour to say that mutual information turns out to be a special instance
of what is called relative entropy which is a way to quantify the “distance” between two
distributions p and q. It is defined as

D(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.10)

which is mostly known as Kullback-Leibler divergence, [9].

This type of divergence is in turn a special case of distance belonging to the wider
family called f -divergences first introduced in [21] and further developed by the works
[1] and most importantly [10]. The f -divergence between two measures P and Q over X
is defined as

Df (P‖Q)
.
=

∫
X
f

(
dP
dQ

)
dQ (2.11)

where f(t) : R → R+ is a convex function for t ≥ 0 satisfying f(1) = 0 and defined as
+∞ for t < 0. Notice that when dealing with probability measures the case t < 0 never
occurs. Because f(1) = 0 we can easily see that when the two measures are the same,
i.e. P = Q the divergence is identically zero as we would expect. Moreover, if we assume
that f is strictly convex then this is actually the only situation in which the divergence
is zero, namely Df (P‖Q) = 0 iff P = Q.

If we are able to find a measure µ on the space X for which P,Q are absolutely
continuous with respect to µ then we can use Radon-Nikodym theorem and consider the
probability densities p = dP

dµ , q = dQ
dµ . In this case the f -divergence can be rewritten as

Df (P‖Q) =

∫
X
f

(
p(x)

q(x)

)
q(x)dµ(x). (2.12)

Remark 2.3.1. Up to now we have considered continuous measures, but there is an
analogue definition for discrete ones in which appears a summation instead of the inte-
gral. The discrete version is actually what we will consider because we are interested in
data-driven applications.

Notice also that there is another thing to pay attention to. Specifically, if Q(x) = 0

and P(x) = a we have an non-admissible division by zero in the argument of the function

11
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f . A first way to tackle this issue is by defining

f
(a
0

)
.
=

a limx→0+ xf(
a
x) a > 0

0 a = 0

However, since the family of divergences is wide and different we might have different
limiting behaviour for specific instances of f -divergence. To avoid this, one can restrict
the attention to the case where P is absolutely continuous with respect to Q, namely
when the two measures P and Q share the same support. In this scenario whenever
Q = 0 also P must be equal to zero, thus excluding the above case.

Below we summarize some of the most important properties of f -divergences.

(i) Linearity: Dα1f1+α2f2(P‖Q) = α1Df1(P‖Q) + α2Df2(P‖Q), for every non-negative
α1, α2. This holds because the integral operator is a linear functional.

(ii) Non-negativity: Df (P‖Q) ≥ 0 with the equality if P = Q. This is a consequence
of Jensen’s inequality, indeed

Df (P‖Q) =

∫
f

(
dP
dQ

)
dQ ≥ f

(∫
dP
dQ

dQ
)

= f(1) = 0.

(iii) Joint convexity: for t ∈ [0, 1] and two pairs of measures (P1,Q1) and (P2,Q2) it is
verified the condition

Df (tP1 + (1− t)P2‖tQ1 + (1− t)Q2) ≤ tDf (P1‖Q1) + (1− t)Df (P2‖Q2)

which follows from the convexity of the mapping (p, q) 7→ qf(p/q) in R2
+.

(iv) Let g(x) = f(x) + c(x− 1), for every c ∈ R and x ≥ 0, then Df (P‖Q) = Dg(P‖Q).
In particular we can always assume that f ≥ 0 and (if f is differentiable at 1) that
f ′(1) = 0.
This property follows using linearity and noticing that Dc(x−1)(P‖Q) = 0. More-
over, we can reduce to f ≥ 0 considering c = −f ′(1) (or any subdifferential at
x = 1 if f is not differentiable) and applying the property of convex functions
f(x) ≥ f(y) + f ′(y)(x− y), for every x, y = 1.

Finally, we grouped some of the most common f -divergences along with their con-
jugate functions in Tab. 2.1, [4].

2.4 f-divergence distributionally regularized optimization

Now we have all ingredients to formulate the problem from which we will develop our
analysis. In particular our problem is an instance of the Distributionally Regularized
Optimization (DRE) framework where the distance between distributions is measured
using f -divergences. This type of optimization differs from the standard Empirical Risk
Minimization (ERM) because in this latter and more widely adopted framework the
goal is to find models that achieve uniformly good performance on almost all possible
instances of the input. However, this way of proceeding may lack of performance on
hard instances of the problem. To give an example, in speech recognition automated
algorithms are inaccurate for people with minority accent. Also in other applications such

12
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Table 2.1: Some f−divergence examples

Divergence f(t), t ≥ 0 f∗(s)

Kullback-Leibler t log t− t+ 1 es − 1

Burg entropy − log t+ t− 1 − log(1− s), s < 1

J divergence (t− 1) log t No closed form

χ2-distance 1
t (t− 1)2 2− 2

√
1− s, s < 1

Modified χ2-distance 1
2(t− 1)2

{
s2

2 + s if s ≥ −1

−1
2 otherwise

Hellinger distance (
√
t− 1)2 s

1−s , s < −1

Cressie-Read 1−θ+θt−tθ

θ(1−θ) , θ 6= 0, 1 1
θ (1− s(1− θ))θ/(θ−1) − 1

θ , s < 1
1−θ

as facial recognition, language identification, automatic video captioning performances
may vary significantly over different demographic groups such as gender, age or race ([6],
[16], [23], [26]). On the contrary, our work explicity optimizes performance on “bad”
events that suffer high loss.

In the introduction we presented the existing approaches to deal with DRO in the
high-dimensions regime presenting the general formulation of our own problem. We will
go now deeper in the technicalities related to our problem, in particular let us consider
again the minmax program in (1.8) that we report here for convenience

min
θ∈Θ

sup
Q≪P̂n

EQ[ℓ(Y −XT θ)]− λDf (Q‖P̂n).

Recall that ℓ is the convex in θ loss function, Df is the f -divergence and we would like
to stress again that we made the assumption of Q absolutely continuous with respect to
P̂n. Notice also that this problem is not far from the DRO problem in (1.5). Indeed,
it can be thought as a sort of Lagrangian relaxation of the DRO: instead of solving the
harder problem of minimizing the expected loss under the constraint Df (Q‖P̂n) ≤ ϵ we
can bring this inequality in the objective function with the Lagrange multiplier λ.

This has served also as an assist to discuss how should be chosen λ. In [11], [19] they
select a radius that shrinks as the number of measurements grows, i.e. ϵ/n, and with this
choice they obtain also the much desired variance regularization approximation. This
is somehow reasonable because when the number of measurements is high we would
like to consider a probability measure Q very close to the empirical one because we are
sufficiently confident with the data. This translates to a small admissible difference in
f -divergence between Q and P̂n. One might think that an identical reasoning holds in
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our case but with the role of λ flipped compared with the aforementioned radius. In this
case, having λ = λ0d forces to choose Q close to P̂n when the number of available data
is sufficiently large because a tiny change in the f -divergence will cause the objective
function to be −∞ for which any θ is a minimizer. However, in our case we decided
to pick λ constant and verify if it works in simulations. Our take on this is that we
are dealing with a high-dimensions regime where also d grows to infinity and therefore
this might translate into a constant regularization parameter. A thorough study to
investigate better this is left as future work.

Back to the problem, we make also some rather mild assumptions to have a tractable
formulation. The first one is something very natural and massively used in statistics and
machine learning, we indeed assume that the loss function ℓ : R 7→ R+ is convex in θ and
proper. This implies that the problem we would solve is eventually convex enabling us to
use established optimization techniques such as Gradient Descent (GD) and Stochastic
Gradient Descent (SGD) to find the minimum which is also global. Note that without
losing generality we can assume that the loss function takes only non-negative values
and minx ℓ(x) = 0 for x = 0.

The second assumption which we have made is Q absolutely continuous with respect
to P̂n. This is needed, as already observed in the previous section, to avoid the argument
of f to be an undefined operation. This implies that the possible distributions Q under
which we compute the expectation have the same support as the empirical distribution.
Strictly speaking, if P̂n assigns zero probability to an event the same thing has to happen
with Q, making impossible the emergence of unseen scenarios. Notice that the contrary
is still possible, if P̂n assigns positive mass to an event, Q can still give zero mass to
the same event. This has also the major implication that we cannot be robust against
events that we did not capture with the data. Unfortunately, this is a price we need to
pay when working with f -divergences, but on the other hand this very peculiarity of this
family of distances makes the problem computationally tractable which is an appreciated
property that the same problem with the Wasserstein metric usually does not enjoy.

We continue our discussion presenting a dual reformulation of our minmax problem.
This is something not completely new because there are already similar results in the
literature presenting the dual problem of the DRO in (1.5). However our instance is
slightly different as already pointed out, therefore we present also a proof of how we can
obtain the dual problem which we think could be helpful to understand thoroughly it and
have some insights about the technicalities. The dual form consists of a single convex
minimization problem which can be more easily solved using standard algorithms. Our
result leverages on [4] because we are focused on data-driven applications where the
reference distribution is discrete. For sake of completeness a similar result holds in the
case of continuous distributions, [24].

Proposition 2.4.1. Let P̂n be the empirical measure on (X ,A) which gives to any point
the same value 1/n, f∗(s) := supu∈dom(f){uT s− f(u)} be the usual Fenchel conjugate of
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f then problem (1.8) admits the following strong dual reformulation

inf
θ∈Θ,η∈R

{
EP̂n

[
λf∗

(
ℓ(Y −XT θ)− η

λ

)]
+ η

}
. (2.13)

Remark 2.4.2. (Convexity of the dual reformulation). For convex losses θ 7→ ℓ(θ;X)

the dual form in Proposition 2.4.1 is jointly convex in (θ, η).

For illustration purposes, we conclude this section with an example bridging the gap
between the distributionally regularized M-estimator with f -divergence and the CGMT
tool. In the example we show that the DRE problem can be brought into the formulation
required by the CGMT.

Example 2.4.3. ((DRE)→(PO)). Consider the dual reformulation presented in Prop. 2.4.1.
For sake of completeness we report it also here

inf
θ∈Θ,η∈R

1

n

n∑
i=0

λf∗
(
ℓ(yi − xTi θ)− η

λ

)
+ η. (2.14)

Remember that we collect measurements of a linear model of the type yi = xTi θ0 + zi.
Therefore, recalling the change of variables w = (θ− θ0)/

√
d we can rewrite the problem

as

inf
w∈Rd,η∈R

1

n

n∑
i=0

λf∗

(
ℓ(zi −

√
dxTi w)− η

λ

)
+ η. (2.15)

Now, consider the following change of variables vi = zi−
√
dxTi w which lead to this new

formulation

inf
w∈Rd,η∈R

v∈Rn

1

n

n∑
i=0

λf∗
(
ℓ(vi)− η

λ

)
+ η

s.t. v = z−
√
dXw.

(2.16)

Let us introduce the Lagrange multiplier u ∈ Rn to bring the constraint into the objective
function

inf
w∈Rd,η∈R

v∈Rn

max
u∈Rn

1√
d
uT (

√
dX)w+

1√
d
uT z− 1√

d
uTv+

1

n

n∑
i=0

λf∗
(
ℓ(vi)− η

λ

)
+η. (2.17)

Finally it takes not much effort to check that the following objective function is in the
format required in CGMT (for now assume that both w and u live in compact sets):
there is the bilinear form uTXw where matrix X has entries i.i.d. standard normal
while the remaining part is jointly convex-concave in w,u.
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Chapter 3

Main Results

This chapter contains the bulk of the results we obtained when solving the high-dimensional
regime f -divergence DRE problem. In particular, starting our analysis from the strong
dual reformulation presented in the previous chapter we will present all the steps neces-
sary to bring the problem into a convex-concave deterministic formulation of it. We are
going to do this using the particular instance of distance called χ2-divergence.

3.1 Problem statement

In the introduction and in the previous chapter we reviewed some existing approaches
to deal with DRO and we also presented our DRE problem along with its strong dual
reformulation whose objective function is a function of the estimation error w as we can
see from

M(w)
.
= inf

η∈R

1

n

n∑
i=0

λf∗

(
ℓ(zi −

√
dxTi w)− η

λ

)
+ η (3.1)

We will now go deeper into the technicalities in order to reach our final goal of finding
in a relative easy way the estimation error.

We begin by explicitly state the first main assumptions that will be used in this
work.

Assumption 3.1.1.

(i) Isotropic Gaussian features: vectors xi are all i.i.d. N (0, d−1Id), ∀i.

(ii) The true parameter θ0, the measurement noise Z and the feature vectors xi, i ∈
{1, . . . , n} are independent random quantities.

(iii) The number of measurements n and the number of variables d go to infinity at a
fixed ratio n/d = δ ∈ (0,+∞).

We need to make a simplification that will in some sense facilitate the problem
because it restricts ourselves to a particular case of f -divergence. The reason for this
decision will become clear later in the analysis of the problem. Also the choice of what
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particular instance of f to select is not easy, one needs to consider one function for which
there exists an expression of its conjugate in closed form and at the same time it should
lead to tractable formulations. Our decision is toward χ2-divergence because it has a
relative nice expression for the conjugate function and at the same time it has already
been used in the literature as previously mentioned.

The work we will present relies on the result of [27] for the high-dimensional error
analysis. In order to make use of these results we need to set up the following assumptions
on the loss function ℓ and on the noise Z.

Assumption 3.1.2.

(i) The noise distribution is such that EZ2 <∞.

(ii) The loss function ℓ is proper, lower semicontinuous and convex.

(iii) The loss function ℓ satisfies the relation ℓ(x) ≤ K|x|, for some K > 0.

Remark 3.1.3. (Assumption’s details). The first assumption is tailored to ensure that
the noise has at least finite second order moment. The second one ensures that the
problem is well-posed and tractable (it is a standard assumption in the literature). The
final one is related to the growth rate of the loss function. We are requiring that ℓ has
growth rate at most linear.

Example 3.1.4. (Examples of noise and loss combination satisfying the assumption).
We make here some examples of possible combinations of loss and noise distribution
which are admitted by Assumption 3.1.2. Examples of loss functions can be Least Abso-
lute Deviation (LAD) which considers the absolute value as error or Huber loss which
has a quadratic growth below than a certain threshold and after that is equivalent to the
absolute value. Possible examples of noise distributions with finite second moment are
Gaussian and exponential noise.

Remark 3.1.5. (Implication of finite second moment). The first assumption of finite
second order moment implies that

‖z‖ ≤ C1

√
d, for some C1 > 0

holds with high probability for large d using d = n/δ by the WLLN. Indeed, as n→ +∞,
1
n‖z‖

2 P−→ E(Z2) <∞

We present now the the main result on the high-dimensional error analysis. How-
ever, before stating the main theorem we introduce some notation which is used in its
statement. We first introduce the function k(s, η) = 1

2λ(ℓ(s)−η)
2+ℓ(s). Associated with

this function we can define its Moreau envelope as presented in Appendix A, namely

ek(c, τ) = inf
w

{
k(w, η) +

1

2τ
|w − c|2

}
(3.2)
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and consequently its expected Moreau envelope K : R× R 7→ R as

K(c, τ ; η)
.
= EG∼N (0,1),

Z∼PZ

[ek (cG+ Z, τ)] . (3.3)

Theorem 3.1.6. (Performance of θ̂DRE). Let Assumptions 3.1.1 and 3.1.2 be satisfied
then it holds w.p.a. 1

lim
d→+∞

‖θ̂DRE − θ0‖2

d
= α2

⋆ (3.4)

where α2
⋆ is the unique minimizer of the following convex-concave minimax scalar pro-

gram

inf
α≥0,τ>0,

η∈R

max
β≥0

βτ

2
− αβ +K

(
α,

τ

βδ
; η

)
(3.5)

where K(·, ·; η) is defined in (3.3).

To better have the intuition about the statement of the theorem we can argue as
follows. The theorem says that, given ŵDRE = (θ̂DRE−θ0)/

√
d, we have the convergence

in probability ‖ŵDRE‖
P−→ α⋆ as n, d → +∞ where α⋆ is the deterministic solution of

a convex-concave scalar program and this is actually what we should prove. The same
convergence in probability is equivalent to say that w.p.a. 1 the optimal solution ŵDRE

belongs to the set
Sρ = {w : |‖w‖ − α⋆| < ρ} (3.6)

for every arbitrary ρ > 0.
A question may arise: how can we show that the optimal solution of a stochastic

program lies in such set? One idea is to consider the complement set Sc
ρ and instead of

looking at the optimal solution we better might check the corresponding optimal value,
in particular if

M(ŵ) < inf
w∈Sc

ρ

M(w) (3.7)

holds w.p.a. 1 then we can conclude that ŵ belongs to the set Sρ.
However, it is generally challenging to verify the previous inequality. Indeed, we are

comparing stochastic processes which can hide non-trivial issues (for example it might be
that the inequality is not satisfied for all realizations of the random variables involved).
One might first consider the convergence in probability of these two random quantities
and then compare the deterministic values obtained which is instead a straightforward
operation. Indeed, if

M(ŵ)
P−→M and inf

w∈Sc
ρ

M(w)
P−→MSc

ρ
(3.8)

then (3.6) holds as long as the following deterministic comparison is true

M < MSc
ρ
. (3.9)
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This approach is what we are going to follow, but there are still some challenges. For
example, it is in general not straightforward to work directly with the objective function
M and determine the two convergences in probability of the stochastic programs. But
here is where CGMT comes to help because we will derive these results working with an
auxiliary objective function.

Since the proof of the theorem is definitely long and intricate we briefly present
here, in order to get the scheme, what are the main required steps to obtain the desired
convergence in probability to a deterministic program. In the next section we are going
to develop better all the steps while all the proofs are deferred to the appendix.

• Derivation of the (PO) problem from (2.13) and identification of the corresponding
(AO) problem proving convexity-concavity and compactness of the sets Sw and Su.

• Scalarization of the (AO) problem.
• Convergence analysis.

3.2 Steps of the solution

In the section we will expand the steps presented before. We decided to divide the
proof in steps instead of a continuum to give the reader a sort of methodology to follow
explaining how to bring the problem into the desired formulation needed for proving the
theorem.

Step 1: We bring the formulation in (1.8) into a (PO) problem. The proof
is built on top of the dual formulation presented in Prop. 2.4.1. Indeed after the change
of variable w = (θ − θ0)/

√
d we can rewrite the dual formulation as

inf
w∈Rd,η∈R

1

n

n∑
i=0

λf∗

(
ℓ(zi −

√
dxTi w)− η

λ

)
+ η. (3.10)

where we have also used the fact that yi = xTi θ0 + zi, namely that our measurements
come from a linear and noisy model.

We can now make this other change of variables v = z−
√
dXw which leads to the

following

inf
w∈Rd,η∈R

v∈Rn

1

n

n∑
i=0

λf∗
(
ℓ(vi)− η

λ

)
+ η

s.t. v = z−
√
dXw

(3.11)

and using Lagrangian duality to bring the equality constraint into the objective function
with associated Lagrange multiplier u ∈ Rn we obtain the following problem which has
the form of a (PO) problem

inf
w∈Rd,η∈R

v∈Rn

max
u∈Rn

− 1√
d
uT (

√
dX)w+

1√
d
uT z− 1√

d
uTv+

1

n

n∑
i=0

λf∗
(
ℓ(vi)− η

λ

)
+η. (3.12)
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This is partially incorrect, because in order to be a (PO) problem it should have
the bilinear form which is present in our case (note that the minus sign in front is not
important since the matrix X has entries that are N (0, 1/d)) and the remaining part
must be convex-concave in (w,u) which instead it has not been verified yet. Moreover,
for now we have written that variables w,u live in Rd and Rn respectively, but CGMT
requires those sets to be compact convex and clearly we lack of compactness. The
following will be devoted to investigate these requirements.

Convexity-concavity is immediate to verify, because we can notice that we have a
linear function in u which is concave while since w does not appear except in the bilinear
form, convexity is ensured. As remark that will be useful later we would like to point
out that the remaining part is jointly convex in (w,v, η). Indeed, f∗

(
ℓ(vi)−η

λ

)
is jointly

convex in (vi, η) because from the definition of Fenchel conjugate we have

f∗
(
ℓ(vi)− η

λ

)
= sup

z∈R

{
z

(
ℓ(vi)− η

λ

)
− f(z)

}
.

Again, we can notice that f(z) = +∞ for z < 0 implying that the supremum will be
never attained for negative values.

Therefore, fixing z ≥ 0 (which is the effective domain of f) the function z
λℓ(vi) −

z
λη − f(z) is jointly convex in (vi, η) simply because by hypothesis ℓ is convex and η

appears linearly. Thus, using Proposition A.0.2 taking the supremum over z we prove
joint convexity. Therefore the term

1

n

n∑
i=0

λf∗
(
ℓ(vi)− η

λ

)
+ η

is finally jointly convex in (v, η) because sum of convex functions with weight λ > 0 is
still convex and we have another term η which appears linearly.

We move forward now to check compactness which will require two separate lemmas.
The general idea is to add artificial constraints that do not invalidate the optimization
problem but allow to apply the theorem by restricting to compact sets. The first one
regards the variable w. We can define the set Sw = {w ∈ Rd | ‖w‖ ≤ Kα} where
Kα := α⋆+ ζ for a constant ζ > 0 and α⋆ being the estimation error defined in Theorem
3.1.6. If we restrict the optimization variable w ∈ Sw in (3.12) we expect that the
optimization will not be affected with high probability when d is large enough. This is
formally stated in the following Lemma.

Lemma 3.2.1. Consider the optimization in (3.12) and its “bounded” version when
w ∈ Sw. Let ŵ and ŵb be optimal solutions of these two problems, respectively. Recall
also the definition of Kα given before. If ‖ŵb‖

P−→ α⋆, then it holds also ‖ŵ‖ P−→ α⋆.

Moving on, variable u is unconstrained as well, therefore we would like to add a
constraint of the same type adopted for w without modifying the optimization result.
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Defining the set Su = {u ∈ Rn | ‖u‖ ≤ Kβ} where Kβ is taken sufficiently large we will
show that if we constraint variable u to Su the optimization result is not affected.

However, before stating the lemma, we are going to consider a specific instance of
f as we mentioned before. The main reason to consider a particular instance of function
is that it makes the remaining analysis a little bit easier. Secondly, in [19] they obtain
the bias-variance approximation from the DRE problem using this specific instance of
f . Recall that the χ2-divergence function is

f(t) =

1
2(t− 1)2 if t ≥ 0

+∞ otherwise

whose convex conjugate is

f∗(s) =

 s2

2 + s if s ≥ −1

−1
2 otherwise.

Clearly this is a convex function but we do not like this two-cases formulation.
However, we assume that only the first case is satisfied w.p.a. 1, namely when the
dimension grows only the first case happens with high probability. We will then verify
if it is a reasonable assumption in simulation.

Therefore substituting this expression into the problem we get

inf
w∈Sw,

v∈Rn,η∈R

max
u∈Rn

1√
d

{
−uT (

√
dX)w + uT z− uTv

}
+

1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
(3.13)

Before presenting the lemma it is important to have an insight on the value of the
optimal η and on the subdifferential of the loss function. This is what the following
remarks do.

Remark 3.2.2. (η expression). We would like to understand what is the expression
of η which can be useful in later proofs. In particular what we can do is to solve the
minimization over it in closed form and find the expression for its optimal value. From
(3.13) we can differentiate over η obtaining

1

n

n∑
i=0

1

λ
(ℓ(vi)− η)(−1)

and since (3.13) is convex in η as previously said, by simply imposing derivative equal
to zero we obtain the minimum

η⋆ =
1

n

n∑
i=0

ℓ(vi). (3.14)

Notice that since the loss is always non-negative we are ensured that the optimal η⋆ is
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actually non-negative.

Remark 3.2.3. (Subdifferential of ℓ). In the case of loss with at most linear growth
we have that the subdifferential is always bounded, i.e. ℓ

′
+(·) ≤ Q, for some Q > 0.

This simply implies the natural normalization condition: for every c > 0 there exists a
constant P > 0 s.t. if ‖v‖ ≤ c

√
d then sups∈∂L(v)‖s‖ ≤ P

√
d.

Lemma 3.2.4. (Growth rate of u⋆ in (3.13)). If Assumption 3.1.2 holds then the optimal
u⋆ in (3.13) satisfies ‖u⋆‖ ≤ Kβ, for some constant Kβ > 0.

Finally we can identify the corresponding (AO) problem which is given by

inf
w∈Sw,

v∈Rn,η∈R

max
u∈Su

1√
d

{
‖w‖gTu− ‖u‖hTw + uT z− uTv

}
+
1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
.

(3.15)

Step 2: We consider the modified (AO) problem, and show that it can
be brought to a scalar optimization problem. When we presented the CGMT in
the previous chapter we discussed that in order to arrive at the scalar optimization we
cannot work directly with the (AO) problem in (3.15) but we might consider a similar
program but yet with an important difference: the order of optimization operations is
slightly different. Thus, we refer to the following as Modified (AO) problem

max
0≤β≤Kβ

inf
w∈Sw,

v∈Rn,η∈R

max
∥u∥=β

1√
d

{
‖w‖gTu− ‖u‖hTw + uT z− uTv

}
+

+
1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
.

(3.16)

We would like to point out again that (AO) and Modified (AO) problems could be
derived one from the other if we could interchange the maximization over β and the
infimum, but this is not possible due to the non-convex nature that might arise for
different realizations of the random vectors involved. However, [27, Lemma 7] provides
the theoretical guarantees allowing to consider the modified version of the (AO) problem
in place of the “original” one.

Now, observing (3.16) one might notice that variables w and u appear in the ob-
jective only through either linear terms or their magnitudes. This suggests that one can
easily optimize over their direction keeping fixed the magnitudes. Indeed, one can use
this general fact when optimizing a linear function over a variable with fixed magnitude

max
∥x∥=ϵ

xTy = ϵ‖y‖. (3.17)

We can notice that we already have the maximization over ‖u‖ = β in (3.16),
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therefore we can apply the previous relation obtaining the following

max
0≤β≤Kβ

inf
w∈Sw,

v∈Rn,η∈R

β√
d
‖‖w‖g + z− v‖ − β√

d
hTw +

1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
.

(3.18)

We can also do the same for the minimization over w which lives in the compact
set Sw, i.e. ‖w‖ ≤ Kα.

max
0≤β≤Kβ

inf
0≤α≤Kα,
v∈Rn,η∈R

inf
∥w∥=α

β√
d
‖‖w‖g + z− v‖ − β√

d
hTw +

1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
=

max
0≤β≤Kβ

inf
0≤α≤Kα,
v∈Rn,η∈R

β√
d
‖αg + z− v‖ − αβ√

d
‖h‖+ 1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
.

(3.19)
In this way we have been able to transform the problem from an optimization over
two vector variables to only two scalar values. We would like to stress that this is
necessary once the number of measurements and parameters go to infinity otherwise the
optimization would be performed over variables that are infinite dimensional vectors.

Next, we wish to simplify the minimization over the remaining vector variable v ∈
Rn using the same technique but unfortunately this is not possible because this time the
variable appears in the objective also as argument of a function and not only linearly or
through its magnitude. The new idea that we will use here is the so-called “square-root
trick” which in formula can be written as

χ = inf
τ>0

{
τ

2
+
χ2

2τ

}
.

We apply this trick to the term 1√
d
‖αg + z− v‖ obtaining the following reformulation

of (3.19)

max
0≤β≤Kβ

inf
0≤α≤Kα,
η∈R,v∈Rn

inf
τ>0

β

{
τ

2
+

‖αg + z− v‖2

2dτ

}
−αβ√

d
‖h‖+1

n

n∑
i=1

[
1

2λ
(ℓ(vi)− η)2 + ℓ(vi)

]
(3.20)

And now, rearranging some terms we can write

max
0≤β≤Kβ

inf
0≤α≤Kα,
η∈R,τ>0

βτ

2
−αβ‖h‖√

d
+
1

n

n∑
i=1

inf
vi∈R

{
1

2λ
(ℓ(vi)− η)2 + ℓ(vi) +

βδ

2τ
(αgi + zi − vi)

2

}
.

(3.21)

At this point, if we use the function k(vi, η) := 1
2λ (ℓ(vi)− η)2 + ℓ(vi) it can be

readily seen that the minimization over vi gives rise to the Moreau envelope function of
k evaluated at αgi + zi with index τ/βδ, i.e.

inf
vi∈R

{
1

2λ
(ℓ(vi)− η)2 + ℓ(vi) +

βδ

2τ
(αgi + zi − vi)

2

}
:= ek

(
αgi + zi,

τ

βδ

)
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which substituted in the previous expression leads to

max
0≤β≤Kβ

inf
0≤α≤Kα,
η∈R,τ>0

βτ

2
− αβ‖h‖√

d
+

1

n

n∑
i=1

ek

(
αgi + zi,

τ

βδ

)
. (3.22)

We refer to the objective function in (3.22) as Od(α, η, τ, β) where the pedix d stands
for the dimension of the problem.

Step 3: We show that Od is jointly convex in (α, τ, η) and concave in
β and it is also continuous on its domain. First of all, in order to understand
convexity-concavity for Od we need to study it for the Moreau envelope. In particular,
we show that the Moreau envelope is jointly convex in (α, τ, η) while concave in β. In
doing so we will make use of the following technical lemma

Lemma 3.2.5. The function h(α, τ, vi) := 1
2τ (αgi+zi−vi)

2 is jointly convex in (α, τ, vi).

Let us first consider the function inside the minimization in the definition of Moreau
envelope, namely

1

2λ
(ℓ(vi)− η)2 + ℓ(vi) +

βδ

2τ
(αgi + zi − vi)

2.

Concavity is simple to verify since β appears only linearly. As for the convexity, we
already saw that 1

2λ (ℓ(vi)− η)2 + ℓ(vi) is jointly convex in (vi, η). Now, from Lemma
3.2.5 we have joint convexity in (α, vi, τ) for 1

2τ (αgi + zi − vi)
2 therefore we can say that

the function inside the minimization is jointly convex in (α, vi, η, τ) and concave in β.
Thus, applying Proposition A.0.3 we can conclude that the Moreau envelope is jointly
convex in (α, η, τ) and concave in β.

Now that we have shown joint convexity in (α, τ, η) and concavity in β for the
Moreau envelope we can conclude convexity-concavity for the stochastic function Od.
This because the sum of Moreau envelopes is still convex-concave while the remaining
terms are simply linear in α, τ and β thus implying convexity-concavity. As a conse-
quence, convexity-concavity of Od allows us to apply Sion’s minmax theorem to flip the
order between inf and max obtaining

inf
0≤α≤Kα,
η∈R,τ>0

max
0≤β≤Kβ

βτ

2
− αβ‖h‖√

d
+

1

n

n∑
i=1

ek

(
αgi + zi,

τ

βδ

)
. (3.23)

We are left with the continuity of Od. Notice that this is nothing more than proving
the continuity for the Moreau envelope ek(αg+z, τ/βδ) because all the other terms in the
objective function are trivially continuous. As for the Moreau envelope, if the function
k(· , ·; η) is lower semicontinuous and convex we can apply [22, Theorem 2.26(b)] to
conclude the continuity. Convexity has already been shown while lower semicontinuity
follows because of the assumption 3.1.2(ii) on the loss ℓ(·).

Step 4: We study the convergence in probability of Od. We have now
arrived at the optimization over scalar variables in (3.23) which has the same optimal
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value as the modified (AO) problem in (3.16). Following the reasoning presented at
the beginning of this chapter we are interested in computing the asymptotic behaviour
(in probability) of this problem for easier comparisons. To do so, we start with the
convergence in probability of its objective function Od.

Notice that the first term in (3.22) is already a deterministic quantity that does not
depend on the dimensions. The second one instead contains the norm of the stochastic
vector h ∈ Rd whose convergence is simple to compute using the WLLN (Theorem B.0.1).
Indeed, we know that given h ∼ N (0, 1)

1

d

d∑
i=0

h2i
P−→ Eh2 = 1 (3.24)

thus, taking the square root both sides and applying this result to the second term we
obtain the desired result

αβ
‖h‖√
d

P−→ αβ. (3.25)

Finally, we need to show the convergence in probability for the sum of Moreau
envelopes. If the Moreau envelope shows absolute integrability, namely its absolute
value is finite when taking the expectation, then we can apply again WLLN to conclude
the following

1

n

n∑
i=0

ek (cgi + zi, τ)
P−→ EG∼N (0,1),

Z∼PZ

[ek (cG+ Z, τ)] = K(c, τ ; η) (3.26)

As for the integrability of the Moreau envelope we can argue as follows∣∣∣∣ek (αG+ Z,
τ

βδ

)∣∣∣∣ = inf
v∈R

βδ

2τ
(αG+ Z − v)2 + ℓ(v) +

1

2λ
(ℓ(v)− η)2

≤ βδ

2τ
(αG+ Z)2 + ℓ(0) +

1

2λ
(ℓ(0)− η)2 =

βδ

2τ
(αG+ Z)2 +

η2

2λ
(3.27)

which is integrable due to the fact that both G and Z have finite second moment and
the quantity η2/2λ is finite as well. In the previous equation we have also used ℓ(0) = 0.

Wrapping up the results we discussed we obtain the convergence in probability of
Od to the following deterministic objective function

O(α, τ, η, β)
.
=
βτ

2
− αβ +K

(
α,

τ

βδ
; η

)
. (3.28)

As last remark we would like to point out that the function O is jointly convex
in (α, τ, η) and concave in β because it is obtained by pointwise limit (in probability,
for each (α, τ, η, β)) of the sequence of convex-concave functions Od and convexity is
preserved by pointwise limits.

Step 5: We explain how the uniqueness of α⋆ can be used to conclude
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the proof of the theorem. At the beginning of this chapter we briefly explained
the idea behind Theorem 3.1.6 and a possible direction to prove the statement. What
we are going to do now is a step forward to the final solution. In particular we make
evident how uniqueness of α⋆ is essential in the convergence analysis of Prop. 2.2.1. In
particular, recall the set presented in (3.6) and knowing that ‖w‖ = α we can consider
this new variant for that set more suited for the scalar problem

Sρ = {α ≥ 0 : |α− α⋆| < ρ} (3.29)

with α⋆ unique solution of the optimization in (3.23). If we consider now the set Sc
ρ it

is clear that uniqueness of α⋆ is sufficient to guarantee that

inf
0≤α≤Kα,
η∈R,τ>0

max
0≤β≤Kβ

O(α, τ, η, β) < inf
α∈Sc

ρ,
η∈R,τ>0

max
0≤β≤Kβ

O(α, τ, η, β) (3.30)

which is nothing more than the deterministic comparison (3.9) presented in the theorem’s
discussion of the previous section, but contextualized in our scenario.

Now, due to (3.30), if we prove that the optimal value of the scalar version of the
modified (AO) problem in (3.23) satisfies

inf
0≤α≤Kα,
η∈R,τ>0

max
0≤β≤Kβ

Od(α, τ, η, β)
P−→ inf

0≤α≤Kα,
η∈R,τ>0

max
0≤β≤Kβ

O(α, τ, η, β) (3.31)

and that the same one when additionally restricted to α ∈ Sc
ρ, for any ρ > 0, satisfies

inf
α∈Sc

ρ,
η∈R,τ>0

max
0≤β≤Kβ

Od(α, τ, η, β)
P−→ inf

α∈Sc
ρ,

η∈R,τ>0

max
0≤β≤Kβ

O(α, τ, η, β) (3.32)

then we can conclude the desired result of Theorem 3.1.6 by simply applying Prop. 2.2.1.

Therefore, the next part will be devoted to proving such convergences in probability.
Notice that it will be easier to prove the following version of convergence in probability in
which we modified the order of optimizations by a simple application of Sion’s minmax
theorem (we stress again that this is possible because the objective function is convex-
concave and variable β lives in a compact set)

min
α≥0,η∈R

max
0≤β≤Kβ

inf
τ>0

O(α, τ, η, β) < min
α≥0,η∈R

max
0≤β≤Kβ

inf
τ>0

O(α, τ, η, β). (3.33)

Step 6: We prove the two convegences in probability and we conclude
the proof. The main ingredient that we will adopt to prove these convergences is [27,
Lemma 10] which allows us to prove the convergence of the infimum of a sequence of
convex converging stochastic processes. Indeed, if we know that a sequence of stochastic
processes converges pointwise in probability to a deterministic function, it suffices to
show that this function is level-bounded to extend the convergence also to the respective
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infima. Level-boundedness condition for a convex function G is equivalent to say that
exists z > 0 such that G(x) > infx>0G(x) for all x ≥ z.

First, for fixed (α ≥ 0, η ∈ R, β > 0), {Od(α, ·, η, β)}d∈N is a family of real-valued
convex stochastic functions defined on the open interval (0,+∞) converging pointwise
(in probability, for every τ > 0) to the deterministic function O(α, ·, η, β). Thus, if we
prove that O(α, τ, η, β) is level-bounded in τ > 0 we can apply the lemma to conclude
that

inf
τ>0

Od(α, τ, η, β)
P−→ inf

τ>0
O(α, τ, η, β). (3.34)

The condition O(α, τ, η, β) being level-bounded is equivalent, by [27, Lemma 11],
to proving the following limit

lim
τ→+∞

O(α, τ, η, β) = +∞ (3.35)

or equivalently
lim

τ→+∞

β

2
+

1

τ
K(α, τ/βδ; η) > 0. (3.36)

But this is immediate noticing that β/2 > 0 and that the Moreau envelope is always non-
negative which in turn implies that the expected Moreau envelope is itself non-negative.

Let us define Oτ
d(α, η, β)

.
= infτ>0Od(α, τ, η, β) and Oτ (α, η, β)

.
= infτ>0O(α, τ, η, β).

Consider for now the case β > 0 and until further notice restrict to the case α > 0. For
fixed (α > 0, η ∈ R), {Oτ

d(α, η, ·)}d∈N is a sequence of real-valued stochastic concave
functions (minimization over τ > 0 of a concave in β function) defined in (0,+∞) con-
verging pointwise (in probability, for every β) to the deterministic function Oτ (α, η, ·)
by (3.34).

Thus, if we prove limβ→+∞Oτ (α, η, β) = −∞ we can use again [27, Lemma 10] and
conclude

sup
β>0

Oτ
d(α, η, β)

P−→ sup
β>0

Oτ (α, η, β). (3.37)

First notice that −αβ → −∞ as β → +∞. Then, let us consider the sequence
{τ}j → 0+. Along this sequence the remaining terms βτ/2 + K(α, τ/βδ; η) converge
to E[limτ→0+ ek(αG+ Z, τ/βδ)] where we have used monotone convergence theorem to
flip limit and expectation. This is possible because, calling n = 1/τ , we have that if
n1 < n2 (τ1 > τ2) then ek(· , 1/n1) ≤ ek(· , 1/n2) since the Moreau envelope is monotone
non-increasing in τ .

Indeed, the derivative with respect to τ of the Moreau envelope is always negative
∀τ

∂ek(χ, τ)

∂τ
= − 1

2τ2
(χ− proxk(χ; τ))

2 ≤ 0 (3.38)

where proxk(χ; τ) is the proximal mapping defined in A.0.6. Recall also that by [22,
Theorem 1.25]

lim
τ→0+

ek(αG+ Z, τ/βδ) = ℓ(αG+ Z) +
1

2λ
(ℓ(αG+ Z)− η)2. (3.39)
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Therefore, if we can prove that the previous quantity is finite when taking the
expectation we conclude because

inf
τ>0

O(α, τ, η, β) ≤ lim
τ→0+

O(α, τ, η, β) = −αβ + E
[
lim

τ→0+
ek(αG+ Z, τ/βδ)

]
(3.40)

and then taking the limit as β → +∞ both sides we have that the RHS goes to −∞ and
thus we get the desired result limβ→+∞Oτ (α, η, β) = −∞.

But proving that E[ℓ(αG+Z)+ 1
2λ(ℓ(αG+Z)−η)2] < +∞ is quite straightforward

using Assumption 3.1.2(iii) and the hypothesis that both G and Z have finite second
moments which in turn implies finite first moments.

Finally, consider the case β = 0 to conclude

sup
β≥0

Oτ
d(α, η, β)

P−→ sup
β≥0

Oτ (α, η, β). (3.41)

In this case Oτ
d(α, η, 0) =

1
n

∑n
i=0minvi∈R{ 1

2λ(ℓ(vi)− η)2 + ℓ(vi)} which by WLLN con-
verges in probability to Oτ (α, η, 0) = E[minx{ 1

2λ(ℓ(x)−η)
2+ℓ(x)}] since minx{ 1

2λ(ℓ(x)−
η)2 + ℓ(x)} is trivially absolutely integrable (use again minx ℓ(x) = ℓ(0) = 0). Notice
that the expectation is another time computed over the joint distribution N (0, 1)⊗ PZ .

Let us now define Oτ,β
d (α, η)

.
= supβ≥0Oτ

d(α, η, β) and Oτ,β(α, η)
.
= supβ≥0O(α, η, β).

Recall now Remark 3.2.2 which says that the optimal η⋆ is actually positive. This enable
us to restrict the minimization over η ≥ 0.

Consider for now the case η > 0. For fixed α > 0, {Oτ,β
d (α, ·)}d∈N is a sequence

of real-valued stochastic convex functions (since they were obtained by first minimizing
over τ a jointly convex function in (α, τ, η), and then maximizing over β a jointly convex
function in (α, η)) defined in (0,+∞) converging pointwise (in probability, for every η)
to the deterministic function Oτ,β(α, ·) by (3.41).

Following the same line as before, if we prove that limη→+∞Oτ,β(α, η) = +∞ we
can use [27, Lemma 10] to conclude

inf
η>0

Oτ,β
d (α, η)

P−→ inf
η>0

Oτ,β(α, η). (3.42)

To prove the previous limit we can argue as follows

Oτ,β(α, η) = sup
β≥0

inf
τ>0

βτ

2
− αβ +K(α, τ/βδ; η) ≥ inf

τ>0
K(α, τ/0; η) =

= E
[
min
x

{
ℓ(x) +

1

2λ
(ℓ(x)− η)2

}]
= E

[
min
x

{
ℓ(x) +

1

2λ
(ℓ(x)2 − 2ηℓ(x) + η2)

}]
≥

≥ E
[
min
x

{
−η
λ
ℓ(x)

}]
+
η2

λ
=
η2

λ
→ +∞, as η → +∞

(3.43)

where the first inequality holds because the supremum over β is for sure greater than
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the same function evaluated in β = 0 (specifically the function we are evaluating is
Oτ (α, η, β)). After that, we can discard the infimum over τ because there is no more
dependency on this variable. Finally, last inequality follows because if f(x) ≥ g(x) ∀x,
then the same relation holds for the minimums. Therefore, since ℓ(x) + 1

2λ(ℓ(x)
2 −

2ηℓ(x) + η2) ≥ − η
λℓ(x) the same inequality holds when considering the minima. Thus,

we can conclude that also limη→+∞Oτ,β(α, η) = +∞.
Consider now the case η = 0 where

Oτ,β(α, 0) = sup
β≥0

inf
τ>0

βτ

2
− αβ + E

[
min
x

{
ℓ(x) +

1

2λ
ℓ(x)2 +

βδ

2τ
(αG+ Z − x)2

}]
.

(3.44)
We know that for every η ∈ R we have the convergence in probability in (3.41). There-
fore, the same holds when η = 0 concluding the following convergence

inf
η≥0

Oτ,β
d (α, η)

P−→ inf
η≥0

Oτ,β(α, η). (3.45)

Finally, define Oτ,β,η
d (α)

.
= infη≥0Oτ,β

d (α, η) and Oτ,β,η(α)
.
= infη≥0O(α, η). These

functions are convex in α because they were obtained by minimizing jointly convex in
(α, η) functions. Moreover, by (3.45) we know that Oτ,β,η

d (α)
P−→ Oτ,β,η(α) pointwise

for every α ≥ 0. Thus, since we have assumed that α⋆ is the unique minimizer, level-
boundedness is satisfied and we can ensure that

min
α>0

Oτ,β,η
d (α)

P−→ min
α>0

Oτ,β,η(α). (3.46)

This is equivalent to the convergence in probability in (3.31) (still the case α = 0 to be
done).

A similar reasoning holds also for the convergence in probability in (3.32) where the
last convergence of the minimization over α ∈ Sc

η is obtained applying a generalization
of [27, Lemma 10] provided by [2, Lemma A.3]. With this we conclude the section.

3.3 Choice of λ.

In this section we are going to investigate how the choice of λ affects the problem.
In particular, up to now we have considered λ as a constant, or better as if its value
is proportional to the ratio n/d. However, in the literature, [11] and [19] obtained
some results with χ2-divergence among which there is also the variance regularization
approximation using a radius that shrinks as the number of measurements increases.
As already explained in Chapter 2, this is reasonable but for our best understanding it
holds when considering a problem with fixed dimension d. In our case also d grows to
infinity thus preventing us to use λ = λ0d.

In the next we will show that actually considering λ = λ0d leads us to a final scalar
convex-concave optimization that does not encode anymore the parameter λ0 and instead
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it is the same as solving the problem starting from the simple ERM in (1.2). As side note
we would like to point out that in the case of λ growing with d it is actually possible to
prove that the convex conjugate of χ2-divergence in our problem is just f∗(s) = s2

2 + s

w.p.a. 1.
Going back to the previous section, before going into the convergence analysis we

arrived to an objective function containing the following term

1

n

n∑
i=1

inf
vi∈R

{
1

2λ
(ℓ(vi)− η)2 + ℓ(vi) +

βδ

2τ
(αgi + zi − vi)

2

}
. (3.47)

Now, if we pick λ not as a constant but λ = λ0d we can look at the minimization over vi
and immediately see that the first squared term is weighted by 1/d while the remaining
terms not. This implies that when d is large, despite the choice of vi, the first term
is close to zero (this is true because ℓ is a proper function therefore there exist values
of vi for which the first term is not identically +∞) and hence it is not relevant when
considering the minimum over vi. Therefore, we can equivalently consider the following
when d→ +∞

1

n

n∑
i=1

inf
vi∈R

{
ℓ(vi) +

βδ

2τ
(αgi + zi − vi)

2

}
. (3.48)

However, one can notice that in the previous expression there is no more the regulariza-
tion parameter and actually this is the same thing we can derive from the ERM in (1.2)
as we will do in the next chapter.
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Chapter 4

Numerical simulations

In this chapter we will validate our findings with some experiments involving the solution
of the scalar minmax problem in (3.5) compared with its ERM counterpart. We are going
to perform numerical simulations involving different levels of noise and also in different
scenarios of under and over-parametrization.

Before presenting our results, we want to determine the scalar problem resulting
from the ERM in (1.2) in order to make a comparison with the one coming from χ2-
divergence DRE. Without going trough all the details which we have discussed previously,
we will show the derivation of the scalar problem following a similar analysis of the
previous chapter.

We start from (1.2) and with the same change of variable w = (θ − θ0)/
√
d we

obtain

inf
w∈Sw

1

n

n∑
i=0

ℓ(zi −
√
dxTi w). (4.1)

Next, we can perform another change of variable v = z−
√
dXw which leads to

inf
w∈Sw,v∈Rn

1

n

n∑
i=0

ℓ(vi)

s.t. v = z−
√
dXw

(4.2)

and using Lagrangian duality to bring the equality constraint into the objective function
with associated Lagrange multiplier u ∈ Rn we obtain the following problem which we
can think as (PO) problem

inf
w∈Sw,v∈Rn

max
u∈Su

− 1√
d
uT (

√
dX)w +

1√
d
uT z− 1√

d
uTv +

1

n

n∑
i=0

ℓ(vi). (4.3)

The next step is to derive the (AO) problem and its associated modified version
which takes the form

max
0≤β≤Kβ

inf
w∈Sw,v∈Rn

max
∥u∥=β

1√
d

{
‖w‖gTu− ‖u‖hTw + uT z− uTv

}
+

1

n

n∑
i=1

ℓ(vi) (4.4)
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and using (3.17) we get

max
0≤β≤Kβ

min
w∈Sw,v∈Rn

β√
d
‖‖w‖g + z− v‖ − β√

d
hTw +

1

n

n∑
i=0

ℓ(vi). (4.5)

Doing the same over w, we can write

max
0≤β≤Kβ

min
0≤α≤Kα,v∈Rn

β√
d
‖αg + z− v‖ − αβ√

d
‖h‖+ 1

n

n∑
i=0

ℓ(vi). (4.6)

Finally, using again the square-root trick we arrive to

max
0≤β≤Kβ

min
0≤α≤Kα,τ>0

βτ

2
− αβ

‖h‖√
d
+

1

n

n∑
i=0

min
vi∈R

{
ℓ(vi) +

βδ

2τ
(αgi + zi − vi)

2

}
(4.7)

which can be easily shown (simple application of WLLN) to converge in probability to
the following optimization

max
0≤β≤Kβ

min
0≤α≤Kα,τ>0

βτ

2
− αβ + EG∼N (0,1),

Z∼PZ

[
min
x∈R

{
ℓ(x) +

βδ

2τ
(αG+ Z − x)2

}]
. (4.8)

Example 4.0.1 (Moreau envelope for the LAD estimator). Consider the LAD estimator
where the loss function is the absolute value, i.e. ℓ(·) = | · |. To recover the expression of
the Moreau envelope eℓ(c, τ) we will make use of the following relationship between the
Moreau envelope of ℓ and its convex conjugate ℓ∗,

eℓ(c, τ) + eℓ∗

(
c

τ
,
1

τ

)
=
c2

2τ
. (4.9)

Now, given the convex conjugate of the absolute value function

ℓ∗(v) = sup
u∈R

uv − |u| =

0 if |v| ≤ 1

∞ otherwise,
(4.10)

we can compute its Moreau envelope

eℓ∗

(
c

τ
,
1

τ

)
= min

u∈R
ℓ∗(u) +

τ

2

( c
τ
− u
)2

= min
|u|≤1

τ

2

( c
τ
− u
)2

=

0 if |c| ≤ τ

τ(c/τ − Sign(c))2/2 otherwise,

(4.11)

from which we can easily derive

eℓ(c, τ) =

c2/2τ if |c| ≤ τ

|c| − τ/2 otherwise.
(4.12)
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For the simulations, we selected the LAD estimator which considers as loss the ab-
solute value function. Since the expected Moreau envelopes, both for ERM and DRE,
require the calculation of an integral coming from the expected value over the joint
distribution N (0, 1) ⊗ PZ we decided to approximate this using “Sample Average Ap-
proximation”. This method is quite simple, it consists in drawing a random sample W
and approximating the expected value function by the corresponding sample average
function. The obtained sample average optimization problem is solved, and the proce-
dure is iterated several times until convergence, [17]. In our case, we took two random
samples of size 5000 composed by i.i.d. points from a standard gaussian and from the
noise distribution which we assumed to be gaussian with zero mean and different levels of
variance. Notice that we can consider two different samples because the two distributions
are assumed to be independent.

To simulate the high-dimensional regime we are interested in, we decided to pick
n = 2500. Since we would like to quantify the estimation error we also selected a value
for θ0, in particular each entry of this vector is i.i.d. from the following distribution
px(x) = 0.9δ(x) + 0.1ϕ(x)/

√
0.1 with ϕ(x) = 1√

2π
e−

x2

2 . In simple words, 90% of the
entries is 0 while the remaining 10% is drawn from a gaussian distribution with zero
mean and variance 10. As for the noise, we added to each measurement an additive
stochastic noise drawn from a Gaussian with zero mean and different values of variance,
[0.01, 0.1].

At this point we need to compute the Moreau envelope

inf
x∈R

{
1

2λ
(|x| − η)2 + |x|+ βδ

2τ
(c− x)2

}
. (4.13)

To do so we can simply calculate the minimum of that expression and then substitute
back the corresponding value. Since the function is convex, we can set the derivative
equal to zero to find the minimum. We just need to be careful because the absolute
value is not differentiable in the origin.

The value of the minimum that we obtain is therefore

x⋆ =

|βλδ · c− λτ + ητ |/(τ + βλδ) if |c| ≥ τ λ−η
βλδ

0 otherwise.
(4.14)

In order to solve the scalar minmax problem both for ERM (4.8) and χ2-divergence
DRE (3.5) we adopted a gradient ascent-descent approach in which at each minimizer
iteration we performed 500 maximizer iterations over the variable β. The learning algo-
rithm adopted is Adam from PyTorch.

In the following we can observe various plots of our simulations. What we would
expect from the theory is that for small values of λ our robust approach performs worse
or similar to ERM because it is overly conservative. Then, DRE should perform better
as λ increases meaning that when there is additive stochastic noise our approach is
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robust against it while simple risk minimizer not. Lastly, as λ grows toward infinity
our approach should converge to ERM because the only admissible distribution in the
ambiguity set is the empirical center.

Looking at the figures we can clearly see that this is actually what happens. Indeed,
for smaller values of λ the green line is greater or close to the red line of the ERM.
Then, as λ grows, we have a decrease in the green line which guarantees that the robust
approach performs better while after a certain value it starts to increase again converging
finally to the ERM value.

Looking at Fig. 4.1 and Fig. 4.2 it is evident the benefit brought by our robust
approach which for a range of λ values performs better compared to ERM, while if we
take λ sufficiently large our approach is equivalent to ERM as we expected. If instead
we look at Fig. 4.3 and Fig. 4.4 we can see a similar behaviour even though in this case
the noise is smaller and hence our robust approach does not really outperform standard
ERM.

10 2 100 102 104
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0.6

0.7

2

Theory, = 1.2
ERM

Figure 4.1: Comparison between DRE and ERM. In this plot we have in green the mean
squared error for the DRE while in red the same error for the ERM. The noise is drawn
from a Gaussian distribution with zero mean and variance 0.1. The ratio n/d = 1.2.
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Figure 4.2: Comparison between DRE and ERM. In this plot we have in green the mean
squared error for the DRE while in red the same error for the ERM. The noise is drawn
from a Gaussian distribution with zero mean and variance 0.1. The ratio n/d = 0.8.
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Figure 4.3: Comparison between DRE and ERM. In this plot we have in green the mean
squared error for the DRE while in red the same error for the ERM. The noise is drawn
from a Gaussian distribution with zero mean and variance 0.01. The ratio n/d = 1.2.
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Figure 4.4: Comparison between DRE and ERM. In this plot we have in green the mean
squared error for the DRE while in red the same error for the ERM. The noise is drawn
from a Gaussian distribution with zero mean and variance 0.01. The ratio n/d = 0.8.
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Appendix A

Basic Concepts of Convex Analysis

Let us have a brief overview of what are the main results from convex analysis adopted
in the thesis. Everything reported in this section can also be found in standard convex
analysis books. As main references we will use [5], [7] and [22].

Definition A.0.1. A set C ⊂ Rn is called convex if

αx+ (1− α)y ∈ C, ∀α ∈ [0, 1], ∀x, y ∈ C.

Definition A.0.2. Let C be a convex subset of Rn. We say that a function f : C → R
is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C, ∀α ∈ [0, 1].

Similarly we say that a function is concave if −f is convex. Examples of convex
functions are affine functions of the form f(x) = ax + b where a ∈ Rn, b ∈ R or any
norm ‖ · ‖. We can introduce variants of the definition of convex function. For example,
we can say that a convex function f is strictly convex if the inequality in the definition
holds strictly for all x, y ∈ C, x 6= y and for all α ∈ (0, 1).

We want also to describe some operations that preserve convexity because they are
used throughout the thesis.

Proposition A.0.1. [5, Proposition 1.1.5] Let fi : Rn 7→ (−∞,+∞], i = 1, . . . ,m, be
given functions, let γ1, . . . , γm be positive scalars, and let F : Rn 7→ (−∞,+∞] be the
function

F (x) = γ1f1(x) + · · ·+ γmfm(x), x ∈ Rn.

If f1, . . . , fm are convex, then F is also convex.

Proposition A.0.2. [7] If for each y ∈ A, f(x, y) is convex in x, then the function g,
defined as

g(x) = sup
y∈A

f(x, y)

is convex in x.
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Proposition A.0.3. [5, Proposition 3.3.1] Consider a function F : Rn+m 7→ (−∞,+∞]

and the function f : Rn 7→ (−∞,+∞] defined by

f(x) = inf
z∈Rm

F (x, z).

then f is convex if F is jointly convex.

Generally we prefer to deal with convex functions that are real-valued and defined
over the entire space Rn rather than just a convex subset of it because they are simpler
to study. In some cases this is not possible (e.g. f : (0,∞) 7→ R defined by f(x) = 1/x),
but it may be convenient to extend the domain to be Rn and let the function take infinite
values.
When dealing with extended real-valued functions the forbidden sum +∞−∞ can arise
when checking convexity. To avoid this kind of problem we can give another characteri-
zation for convex functions in term of epigraphs, intuitively the set of points above the
graph of a function.

Definition A.0.3. The epigraph of a function f : X 7→ [−∞,+∞], where X ∈ Rn is
defined to be the subset of Rn+1 given by

epi(f) = {(x,w) | x ∈ X , w ∈ R, f(x) ≤ w}.

We then say that a function is convex if its epigraph is a convex subset of Rn+1.
When dealing with extended real-valued functions we can introduce also other im-

portant notions that are not relevant when the function cannot take infinite values,
namely effective domain and properness.

The effective domain of f is defined to be the set

dom(f) = {x ∈ X | f(x) <∞}.

It can be seen that the effective domain is obtainable by projecting the epigraph on
Rn. Notice also that if we restrict f only to its effective domain the epigraph remains
unaffected.

A function is instead proper if f(x) < +∞ for at least one x ∈ X and it never
coincides with −∞. This property is important to exclude degenerate cases. Indeed, it
is not meaningful in optimization to have a function which is always +∞ (true if and
only if the epigraph of f is empty), neither having some points in which the function is
−∞ (true if and only if the epigraph at those points is a vertical line). In both cases there
is nothing to optimize since the minimum can be simply found checking the function
expression.

For twice differentiable convex functions, there is another characterization of con-
vexity, given by the following proposition
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Proposition A.0.4. [5, Proposition 1.1.10] Let C be a nonempty subset of Rn and let
f : Rn 7→ R be twice continuously differentiable over an open set that contains C.

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.

(c) If C is open and f is convex over C, then ∇2f(x) is positive semidefinite for all
x ∈ C.

Another very important notion adopted is the one of Fenchel conjugate.

Definition A.0.4. (Legendre-Fenchel transform). For any function f : Rn 7→ R, the
function f∗ : Rn 7→ R defined by

f∗(v) := sup
x∈dom(f)

{〈v, x〉 − f(x)}

is conjugate to f .

Next, we present an important result that can be used when it is desirable to verify
if for an optimization problem strong duality holds. The following proposition is actually
a particular case when the constraints are simple linear equalities of more general results
that hold when the constraints are both equalities and inequalities, possibly non-linear.

Proposition A.0.5. (Convex Programming - Linear Equality Constraints)[5, Proposi-
tion 5.3.3]. Consider the problem

min f(x)

s.t. x ∈ X, Ax = b.
(A.1)

Assume that f∗ is finite and that there exists x̄ ∈ ri(X) such that Ax̄ = b. Then f∗ = q∗

and there exists at least one dual optimal solution.

Sometimes it is also useful to deal with function approximations. We therefore
present a method of approximating general functions in terms of “envelope functions”.
But let us first present the concept of semicontinuity.

Definition A.0.5. (Lower semicontinuity). The function f : Rn 7→ R is lower semi-
continuous (lsc) at x̄ if

lim inf
x→x̄

f(x) ≥ f(x̄), or equivalently lim inf
x→x̄

f(x) = f(x̄)

and lower semicontinuous on Rn if this holds for every x ∈ Rn where

lim inf
x→x̄

f(x)
.
= lim

δ→0+

[
inf

x∈B(x̄,δ)
f(x)

]
.
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Figure A.1: Example of comparison between a function and its Moreau envelope with
different parameter’s values, [3] (in the paper the role of C is inverse of our λ).

Definition A.0.6. (Moreau envelopes and proximal mappings). For a proper, lower
semicontinuous function f : Rn 7→ R and parameter value λ > 0, the Moreau envelope
function eλf and proximal mapping Pλf are defined by

eλf(x)
.
= inf

w

{
f(w) +

1

2λ
|w − x|2

}
≤ f(x). (A.2)

Pλf(x)
.
= argmin

w

{
f(w) +

1

2λ
|w − x|2

}
. (A.3)

What we can observe is that generally eλf approximates f from below and one
pictorial example of it can be found in Fig. A.1. The idea is that for smaller and smaller
values of λ the Moreau envelope approximates f better and better, and indeed, 1/λ can
be interpreted as a penalty parameter for the constraint w − x = 0 in the minimization
defining eλf(x).
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Basic Concepts of Probability and Real Analysis

In this section we want to give the reader some basic concepts of probability theory that
are majorly utilized throughout the thesis. Moreover, we present also some important
results related to real analysis which are helpful when dealing with convergence’s analysis.
Everything that appears in this section can be found in [13] and in [14] which we have
used as main references.

Definition B.0.1. (Convergence in probability). We say that a sequence of random
variables {Yn}n∈N converges in probability to the constant Y if for all ϵ > 0,

lim
n→∞

Pr(|Yn − Y | > ϵ) = 0.

In this case we will say that |Yn−Y | ≤ ϵ holds with probability approaching 1 (abbreviated
as w.p.a. 1).

Theorem B.0.1. (Weak Law of Large Numbers (WLLN)). Let X1, X2, . . . be uncor-
related random variables with EXi = µ and V ar(Xi) < ∞. Denoting with Sn =

X1 + · · ·+Xn, then as n→ +∞ Sn/n→ µ in probability.

Theorem B.0.2. (Monotone Convergence Theorem)[14]. If {f}n is a sequence of mea-
surable non-negative functions such that fj ≤ fj+1 for all j, and f = limn→+∞ fn,
then ∫

f = lim
n→+∞

∫
fn.
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Proofs for Chapter 3

Proof of Proposition 2.4.1. In order to prove the proposition we use duality theory to
bring the inner maximization in (1.8) to a minimization problem. The reference distri-
bution is empirical therefore we can consider both expectation and f -divergence as sums
because the distribution has support on a finite number of points. Notice also that in
this discrete setting the supremum over the probability measure Q in (1.8) becomes the
supremum over a n-dimensional vector with non-negative entries which are the weights
of the distribution. Therefore, we can rewrite the maximization as follows

sup
q∈Rn

+

n∑
i=0

qiℓ(yi − xTi θ)− λpif

(
qi
pi

)
s.t.

n∑
i=0

qi = 1. (C.1)

Now, using a Lagrangian multiplier we can bring the equality constraint into the objec-
tive function. Thus, the Lagrangian of problem (C.1) is

L(q, η) =
n∑

i=0

{
pi
qi
pi
ℓ(yi − xTi θ)− λpif

(
qi
pi

)}
+ η

(
1−

n∑
i=0

qi

)

=
n∑

i=0

{
pi
qi
pi
(ℓ(yi − xTi θ)− η)− λpif

(
qi
pi

)}
+ η.

(C.2)

The Lagrangian dual of problem (C.1) is the problem

inf
η∈R

sup
q∈Rn

+

L(q, η). (C.3)

Next we can define the likelihood ratio Li =
qi
pi

to reformulate our dual problem as

inf
η∈R

sup
L∈Rn

+

n∑
i=0

pi
{
Li(ℓ(yi − xTi θ)− η)− λf(Li)

}
+ η =

inf
η∈R

sup
L∈Rn

+

n∑
i=0

λpi

{
Li
ℓ(yi − xTi θ)− η

λ
− f(Li)

}
+ η

(C.4)
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Finally, we can swap the supremum and the sum because we are maximizing over a
vector whose components appear independently in the summation.

inf
η∈R

n∑
i=0

sup
Li∈R+

λpi

{
Li
ℓ(yi − xTi θ)− η

λ
− f(Li)

}
+ η (C.5)

Notice that the supremum is over the non-negative real variable Li which does not allow
to use the definition of convex conjugate. However, if we extend the domain of f to
be the real line and define f to be +∞ in the interval (−∞, 0) as done in Section 2.3
we can use the convex conjugate given by f∗(s) = supLi∈R{Lis− f(Li)}. Indeed, if we
consider a negative value for Li this immediately implies that −f is equal to −∞ and
the supremum will never take this value. Finally, the dual reformulation of the DRE
problem is given by

inf
θ∈Θ,η∈R

n∑
i=0

λpif
∗
(
ℓ(yi − xTi θ)− η

λ

)
+ η. (C.6)

This reformulation works for any kind of reference distributions with weights pi, but in
our case pi = 1/n ∀i, therefore the sum with weights pi can be seen as empirical average
(expectation under P̂n) as we wanted.

To finish the proof we need to verify that strong duality actually holds, namely
the gap between the primal optimal solution and the optimal dual one is zero. With
Prop. A.0.5 we can guarantee strong duality. In this case, since ri(Rn) = Rn we just
need to verify that the problem is feasible, namely there exists at least one feasible point
for which the equality constraint is satisfied. By simply choosing q̄i = 1/n ∀i we satisfy
the equality thus concluding the proof.
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Proofs for Chapter 4

Proof of Lemma 3.2.1. We prove this lemma by contradiction, in particular we assume
that ‖ŵ‖ does not convergence in probability to α⋆. Let us define the set D := {w ∈
Rd :

∣∣‖w‖ − α⋆

∣∣ ≤ ϵ} given ϵ > 0 such that α⋆ + ϵ < Kα. In practice we are defining an
interval of radius ϵ around α⋆ and D contains vectors such that their norm is inside this
interval. Notice also that we can consider D ⊂ Sw whenever we choose ϵ < ζ.

By hypothesis, ‖ŵb‖ converges in probability to α⋆. This means that by taking
sufficiently large d,

∣∣‖ŵb‖ − α⋆

∣∣ ≤ ϵ w.p.a. 1 which is equivalent to say that w.p.a. 1
ŵb ∈ D. Denoting with M(w) the value of the objective function in (3.12) we can also
state that

M(ŵ) ≤M(ŵb) (D.1)

because the optimal cost obtained with the unbounded solution can only be better than
the one obtained with w constrained in Sw.

Assume now by contradiction that ‖ŵ‖ does not convergence in probability to α⋆,
i.e. ŵ /∈ D w.p.a. 1. There are two possible cases, either ŵ ∈ Sw/D or ŵ /∈ Sw.

The first case is trivial because we have an optimal solution of the “bounded”
problem (ŵ ∈ Sw) which we know by hypothesis that converges to α⋆, thus contradicting
the assumption. In the second case instead we can always define wθ := θŵ + (1− θ)ŵb

with θ ∈ (0, 1) such that wθ ∈ Sw/D. This because we can always find a point in the
segment between ŵ /∈ Sw and ŵb ∈ D satisfying that property. Notice that wθ is a
solution of the “bounded” optimization problem.

Now, using convexity in w of the objective function in (3.12) and property (D.1)
we can formulate the following result

M(wθ) = θM(ŵ) + (1− θ)M(ŵb)

≤ θM(ŵb) + (1− θ)M(ŵb) =M(ŵb).

But this clearly contradicts the optimality of ŵb concluding the proof.

Proof of Lemma 3.2.4. Consider the optimal values of the optimization in (3.13), w⋆,v⋆,u⋆, η⋆.
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Simple first order optimality conditions lead to

v⋆ = z−
√
dXw⋆, (D.2)

u⋆ =
1

δ
√
d

∂

∂v

n∑
i=0

1

2λ
(ℓ(v⋆,i)− η⋆)

2 + ℓ(v⋆,i) =
1

δ
√
d


ℓ′+(v⋆,1) +

1
λ (ℓ(v⋆,1)− η⋆) ℓ

′
+(v⋆,1)

...
ℓ′+(v⋆,n) +

1
λ (ℓ(v⋆,n)− η⋆) ℓ

′
+(v⋆,n)


(D.3)

where we make use of the subdifferential of ℓ because it might be that it is not a
differentiable function.

We want to verify if ‖u⋆‖ is bounded.

‖u⋆‖ =
1

δ
√
d

∥∥∥∥∥∥∥∥
ℓ′+(v⋆,1) +

1
λℓ(v⋆,1)ℓ

′
+(v⋆,1)−

η⋆
λ ℓ

′
+(v⋆,1)

...
ℓ′+(v⋆,n) +

1
λℓ(v⋆,n)ℓ

′
+(v⋆,n)−

η⋆
λ ℓ

′
+(v⋆,n)

∥∥∥∥∥∥∥∥ ≤

1

δ
√
d

[
n∑

i=0

(
ℓ′+(v⋆,i)

)2] 1
2

+
1

λδ
√
d

[
n∑

i=0

(
ℓ(v⋆,i)ℓ

′
+(v⋆,i)

)2] 1
2

+
η⋆
λ

1

δ
√
d

[
n∑

i=0

(
ℓ′+(v⋆,i)

)2] 1
2

(D.4)
which follows using simple triangular inequality.

Now, recall from Lemma 6 proof in [27] that ‖v⋆‖ ≤ C
√
d for some C > 0 with

high probability as d → +∞. This inequality comes from (D.2) and a standard high
probability bound on the spectral norm of Gaussian matrices.

From Remark 3.2.3 the normalization condition ensures that 1√
d

[∑n
i=0

(
ℓ′+(v⋆,i)

)2] 1
2

is upper bounded by a constant P > 0. At the same time we also know that ℓ′+(v⋆,i) ≤ Q

∀i, given some Q > 0. Moreover, η⋆ is bounded, indeed developing from (3.14) using
Assumption 3.1.2(iii)

η⋆ =
1

n

n∑
i=0

ℓ(v⋆,i) ≤
K

n

n∑
i=0

|v⋆,i| ≤
K
√
n

n

[
n∑

i=0

|v⋆,i|2
] 1

2

≤ KC√
δ
. (D.5)

We can use these results to prove that u⋆ has finite norm. In particular the first and
third term in the previous equation are bounded using the normalization condition while
also the second one can be bounded as follows

1

λδ
√
d

[
n∑

i=0

(
ℓ(v⋆,i)ℓ

′
+(v⋆,i)

)2] 1
2

≤ Q

λδ
√
d

[
n∑

i=0

(K|v⋆,i|)2
] 1

2

≤ QKC

λδ
. (D.6)

To conclude we have
‖u⋆‖ ≤ P

δ

(
1 +

η⋆
λ

)
+
QKC

λδ
. (D.7)
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Proof of Lemma 3.2.5. We first consider convexity for p(α, vi) := 1
2(αgi − vi)

2. If this is
convex then its perspective function 1

2τ (αgi − vi)
2 is jointly convex in all its arguments.

Finally, its shifted version 1
2τ (αgi + zi − vi)

2 is jointly convex as well.
We are left with proving convexity for the initial function p. In order to do so

consider the Hessian matrix of the function p which can be easily found to be

Hp =

[
(gi)

2 −gi
−gi 1

]
.

From Prop. A.0.4(a) we know that by checking if the Hessian is positive semidefinite we
can guarantee convexity.

Therefore, let us consider x =
[
x1 x2

]
6= 0 and verify that xTHpx ≥ 0. What we

obtain is
xTHpx = x21(gi)

2 − 2gix1x2 + x22 = (gix1 − x2)
2 ≥ 0

for every possible realization of gi.
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