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Abstract

The worldwide spread of electric mobility will lead to problems, in the near future, that
have never been experienced before. In particular, the enormous quantity of lithium bat-
teries that are the basis of this revolution will have to be disposed of or recycled. It is
therefore of primary importance to develop an appropriate technological process to face
this challenge. The work exhibited in this thesis is part of LIBRES, a Norwegian project
owned by the company "Norsk Hydro", with the goal of finding fully-automated solutions
for complete Lithium-Ion batteries recycling. The case study is the design of an automatic
discharging station for electric vehicle batteries, focused on the artificial vision system,
a structured light camera capable of detecting the battery connectors and locating them
in 3D space; and on the feed-back control of the discharge process, based on the acquisi-
tion performed by a thermal camera, which monitor the process. The proposed automatic
system significantly increases performance compared to manual discharge, currently per-
formed, and furthermore increases safety standards.
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Chapter 1

Introduction

The global hybrid and electric vehicle market has grown tremendously in recent years, set-
ting new historic sales records every year. This trend is confirmed to be stable, and is driven
by the growing awareness of the environmental issues that this and future generations will
have to face.
Climate change is nowadays the main concern when it comes to environmental issues, and

one of its main causes has been identified in global warming, caused by excessive human
activity.
Since the 19th century, with the industrial revolution, human activities have in fact been

the main factor at the origin of climate change, essentially attributable to the combustion
of fossil fuels (such as coal, oil and gas) which produces heat-retaining gases, known as
greenhouse gases.
Carbon dioxide (CO2) is one of this gases, and it is currently the most impactful one.

Any activity involving combustion produces carbon dioxide as waste, including traditional
internal combustion engines.
Although in the last 30 years in many sectors (such as agriculture, industry and energy

supply) there has been a reduction in CO2 emissions, and average European emissions are
decreasing, the transport sector instead presents an opposite trend, with an increase in
CO2 produced by 30 million tons from 1990 to today. Road transport is nowadays one of
the main responsible in CO2 production.
In such a scenario, a feasible solution is seen in electric and hybrid mobility, which dras-

tically reduces the production of CO2 associated with transport, to the point of completely
canceling it in the case of 100% electric vehicles.
Under this pressure, the sale of "green" cars has been encouraged by governments around

the world and recently, on June 8th 2022, the European parliament voted in favor of an
effective EU ban on the sale of new petrol and diesel cars from 2035, upholding a key pillar
of the European Union’s plans to cut net planet-warming emissions 55% by 2030, from
1990 levels, going in the direction of a 100% reduction in CO2 emissions from new cars
by 2035, making it impossible to sell fossil fuel-powered vehicles in the EU from that date
[17].
The sale of Plug-in Hybrid Electric Vehicles (PHEV) and Battery Electric Vehicles (BEV)

around the world has undergone a huge increase in the last decade. Canalys, leading global
technology market analyst company, estimates that more than 6.5 million vehicles were
sold in 2021 [4], following an exponential growth (Figure 1.1) [15].
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Figure 1.1: Worldwide sales of PHEV and BEV cars.

However, growing numbers of electric vehicles present a serious waste-management chal-
lenge for recycle at their end-of-life. With a life cycle around ten years, depending on the
use, in the next decades there will be millions of batteries that will need to be managed.
Nowadays, battery recycling is mostly done manually, with consequent low efficiency

and high times required for the process. Furthermore, traditional process presents a not
negligible safety hazard due to the high-voltages involved when working with charged EV
batteries. Scientific literature doesn’t report any fully automated approach, and only few
studies have been made in order to increase disassembly productivity thanks to human
collaborative-robot cooperation [30].
With current sales volumes, the approach to recycling must also be updated, increasing

productivity and efficiency, and creating plants capable of handling much higher numbers
of batteries per unit of time.
In this project, automation is proposed as a solution, capable of dealing with high vol-

umes, increasing productivity and safety for the human operators.

1.1 Industrial Motivations

Due to the constant growth in the number of electric vehicles, within a few decades an
enormous number of lithium batteries, which have reached their end of life, will have to
be recycled or disposed of. To manage this enormous quantity, it will be necessary to have
a rapid, efficient, safe and sustainable technological process, capable of meeting the high
request of work.
Nowadays, the process has not reached yet that degree of productivity. Electric battery

packs are dismantled manually, the process requires two people, which must be authorised
electricians with high voltage experience and it can take up to 45 minutes to manually
disassemble a single pack [5].
The disassembly of lithium-ion battery systems from automotive applications is a complex
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and therefore time and cost consuming process due to a wide variety of the battery designs,
flexible components like cables, and potential dangers caused by high voltage and the
chemicals contained in the battery cells. All these factors have to be considered when
planning the disassembly processes and appropriate work stations [30].
This manual process is currently feasible due to the still relatively low volumes of work,

however, with the inevitable growth that is expected, it will no longer be sustainable.
For this reason, it is already necessary to move towards the direction of a more modern
approach, able to handle higher quantities, in order to be prepared for future challenges.
The solution outlined in this report is part of a bigger project, which proposes automation

as an answer to the problem. The aim is to develop a lithium-ion batteries recycling
pilot plant in Norway, large enough to handle commercial volumes by 2024. The system
is thought to have a high level of automation, integrating robotic arms, vision systems,
artificial intelligence, automatic controls and autonomous decision making, accordingly
with the paradigms of cognitive automation.
This approach will lead to a faster process, able to treat a greater number of batteries at

the same time, reaching the required efficiency. Involving automation, the system is also
more safe, not requiring direct contact between charged high voltage batteries and human
operators, which in case of faults may turn fatal. Furthermore, the human error factor is
eliminated, increasing the safety of the plant itself, which treats potentially incendiary or
even explosive components (batteries).

1.1.1 The LIBRES project

LIBRES, that stands for Lithium-Ion Battery Recycling, is a Norwegian project which
involves different national realities, including universities, companies and industrial part-
ners, with the objective of developing a design basis for a lithium-ion battery recycling
pilot plant in Norway, including automated disassembly of electric vehicle battery packs,
modules and cells.
The research is funded by the "Research Council of Norway", government agency part

of the Norwegian Ministry of Education and Research, starting in 2018 and until 2022.
The head and main manager of the project is "Norsk Hydro ASA", leader company in
aluminium and renewables industry, with years of experience in these fields. The company
aims with this research to lay the foundation for a new, exciting industry related to the
recycling of used electric car batteries in Norway. Country which has a unique position
with the availability of these batteries, giving an excellent starting point [3].
University of Agder (UiA) is one of the research partners, mainly focused on battery

dismantling automation process. The goal, is to create a system capable of dismantling
and discharging electric batteries so that they can be reused or recycled (thus disposed of
in order to extract the chemical components for reuse) [5].
Working on this field, an important collaborator, member of LIBRES too, is "BatteriRe-

tur AS", the central electric vehicles battery waste handler in Norway, with years of ex-
perience in EV packs dismantling and disposal. The company is directly in contact with
the university Faculty of Engineering, in order to give the practical information about how
the process is currently carried out and how it can be improved. For this reason, the data
they provided have been an important starting point for the development of this project.
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Figure 1.2: Recycle process phases for EV battery packs.

The work described in this document is one of the constituting projects of LIBRES.

1.2 Project Main Objectives

When battery packs reach their end of life there are 4 possible paths that can be taken:

• Re-use

• Recovery

• Recycling

• Disposal

The LIBRES project focuses on the recycling path, therefore on the the set of processes
that, starting from the battery pack, lead to obtaining its raw components, which can be
re-processed and used for other applications (e.g. battery cells or other electronic devices),
following the paradigms of sustainable circular economy.
Recycling is divided into several phases, that follow a specific order, starting from dis-

charge and gradually dismantling pack and modules, in order to obtain the single compo-
nents that have to be treated for the purpose of extracting raw materials (figure 1.2).
LIBRES goal is to automate the full process, from the beginning to the end. With the

aim of achieving this objective, firstly, single phases automation has to be designed, to be
afterwards united into a unique industrial plant. In this thesis project, one part of the
plant discussed above is treated, the discharge station.
Electrical discharge is the first step that has to be taken in place when dismantling a

battery pack. For safety reasons, it is indeed necessary to reduce the potential danger that
comes along with the high voltage (up to 400 V) of the batteries. After the discharge the
batteries are disassembled before they are subject to a coarse shredding. Subsequently, the
shredded material is separated of which one part is treated or recycled and the other part
is subject to a fine crushing. After the fine crushing the materials are separated once more
before they are also treated or recycled [30].
Battery discharge presents some complications and aspects that should not be overlooked

in order to conduct a safe and effective process that doesn’t cause any damage to the
battery. The main risks associated with the discharge refer to the possibility of certain
events occurring during the discharge:

• Risk of fire

• Risk of explosions

Both events may take place when the discharge is carried out too quickly, therefore with
currents that exceed safety limits. This happens in the event of a short circuit, or in case
of excessive discharge currents.
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In such cases, high-currents may lead to heating and thermal runaway1. Thermal run-
away may result in the generation of particularly noxious byproducts, including hydrogen
fluoride2 (HF) gas, which along with other product gases may become trapped and ulti-
mately result in cells exploding.
The cells also present a chemical hazard owing to the flammable electrolyte, toxic and

carcinogenic electrolyte additives, and the potentially toxic or carcinogenic electrode ma-
terials [11].
Due to the presence of these risk factors, the optimal condition would result in conditions

of:

• Absence of human operators

• Strict monitoring on the discharge process

In order to achieve this, a fully automated process results to be the best solution, for this
reason, it is proposed an automatic discharge station as a solution.
The discharge process can be schematically divided into 3 phases, as reported in figure

1.3.

Figure 1.3: Automatic discharge station phases.

On this project, the first and the final phase of the discharge process, terminals identi-
fication and discharge monitoring, will be designed, implemented and tested, showing the
improvements introduced by the proposed solutions.
In order to achieve this goal, two main sub-systems of the station will be involved:

• Computer vision system

• Control of the discharge

The design of these parts provides the training of a convolutional neural network, used to
identify the terminals of the battery; their 3D-space position estimation, obtained starting
from the location detected combined with the information from the structured light camera
output point cloud; and finally the design of a discharge testing station, in order to test
the discharge strategy to apply to the battery pack.

1Thermal runaway describes a process that is accelerated by increased temperature, in turn releasing
energy that further increases temperature. Thermal runaway occurs in situations where an increase in
temperature changes the conditions in a way that causes a further increase in temperature, often leading
to a destructive result. It is a kind of uncontrolled positive feedback. In chemistry and chemical engi-
neering, thermal runaway is usually associated with strongly exothermic reactions that are accelerated by
temperature rise, and this is the case of Lithium-Ion cells.

2Hydrogen fluoride is an extremely dangerous gas, forming corrosive and penetrating hydrofluoric acid
upon contact with moisture. The gas can also cause blindness by rapid destruction of the corneas.
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Chapter 2

Theory on EV battery packs
discharge

There is no industry standard for discharging EV batteries. Many processes are suggested
in literature with little information as to the methods used. A suitable process should
be "safe", meaning it reduces the risk to the facility by minimizing the fire or explosion
hazard and minimizes or eliminates human interaction with the battery pack. The process
should also be "rapid", meaning it ensures that discharging does not become a bottleneck
in recycling, "sustainable" meaning it has no polluting fluid waste streams and "feasible",
then, mostly, cost efficient.
This chapter presents the main state of the art methods used in industrial EV discharge,

and introduce an innovative approach to face this problem.

2.1 State of the Art

This project focuses on the discharge of batteries destined for recycling, this means that
after discharge batteries are not meant anymore to be working, but they will be shred-
ded and their materials recovered. Thinking about this perspective, the methodologies
explained will consist in deep discharge, hence the process that bring the voltage level of
single cells down to the lowest levels, close to 0 Volts.
The current industrial landscape presents mainly 3 possibilities to do deep discharge, that

will be briefly explained below. Each one has pros and cons depending on the particular
application considered, so it’s not possible to identify one technique better than the others
out of the application context [23].

Resistive Discharge

The resistive discharge with an electronic load method is the most conventional deep
discharge method available in industry. The process simply consist on connecting the
terminals of the battery to a resistive load (which can be variable) and let the current flow.
Usually the battery energy is recovered and stored to be used for other scopes, or otherwise
it can be converted in heat, for this reason it’s important an appropriate cooling system
integrated in the discharging station. The entire process has to be monitored, mainly being
careful that temperature never go beyond safety limits. The resistance value is directly
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Battery
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Figure 2.1: Discharge with resistive load schematics

related to the flowing current, so it’s possible to act on this parameter to reduce the current
intensity, with consequent reduction of the heat generated.
Compared to the other methods that will be explained, this technique offers many ad-

vantages, the main of which are: safety, in terms of fire and explosion hazard, which are
minimized; rapidity, the discharge can be performed in a shorter time; sustainability, no
chemical products involved and no pollution or refuse produced from the process and cost
efficiency.
Furthermore, the possibility of monitor the battery parameters during the whole process,

allows to perform the preferred discharge profile, that means that not only deep discharge
can be realized, but it’s also possible to discharge down to voltages level that doesn’t break
irreversibly the battery, allowing a second use.
On the other side, the main downside related to this approach, is the necessity of human

interaction, to manually connect the discharge station to the battery terminals. When it
comes to electric vehicle batteries, high voltages are involved, and so higher levels of human
interaction are related with safety issues.

Salt Solution or Metal Powder

Deep discharge with salt solution is another method, more unconventional, that can be
used in industry to discharge batteries. It consist on submerging a cell in a salt solution
for a long time, up to 24 hours, recreating the conditions of a short circuit which slowly
discharge the battery.
Going into more details, in this process, the dissolved salt acts as an electrolyte under-

going electrolysis, conducting electrons between the poles in a slow short circuit. This
method has been discussed extensively in literature and has generally been accepted as
viable. However, few sources cite the process in depth; discussing the mechanism or the
state of the cell post submersion [24].
If the physical integrity is to be preserved, a more convenient setup consist on connect

external wires to the poles of the battery and submerged them in aqueous salt solution,
thus closing the circuit. The salt solution in this case acted as a controlled short circuit
or as a primitive resistor, discharging the battery (see Figure 2.2 A). Using this setup,
the battery was not placed in direct contact with the electrolyte solution and thus, its
physical integrity is not compromised. With this approach, furthermore, it is possible to
monitor the evolution of the electrical potential of the lithium-ion batteries, due only to
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electro-chemical discharge (i.e., not attributable to physical damage to the battery).

Figure 2.2: Discharge with salt solution and metal powder scheme

Compared to the resistive discharge, the main advantage given by this method is the
minimization of the human interaction during the discharge process. No manual connection
to the terminals is required, the batteries only need to be immersed in the solution to start
the process. Fire and explosion hazard is usually low, preserving good safety standard as
resistive discharge. Even with a view to automating the process, the saline solution allows
interesting developments, because the entire battery pack can be immersed without having
to disassemble it, but this kind of solution introduce new issues that will be discussed below.
Main disadvantages related to the use of salt solution are extreme slow time required

to complete the deep discharge and the voltage rebound. Moreover, this solution is not
as cost efficient as the first one, and it’s less sustainable. The sustainability aspect might
become even more critical when the whole battery pack is submerged, probable occurrence
if you want to automate the process, as reported before. Corrosion of the cell casing
causes leakage of the active materials and electrolyte, thereby releasing toxic substances or
allowing self-ignition of the battery. Furthermore, submerging high voltage battery packs
or modules in salt water can cause arcing and a resultant fire.
A more sophisticated approach, experimented by professor Severi Ojanen of Aalto Uni-

versity [24], has explored the concept of cathodic protection (see Figure 2.2 B). This process
involves the addition of a more corrosion susceptible metallic element into the system. By
doing so, the metallic element should preferentially corrode over the cell terminals or the
platinum wire. In the set-up, the platinum wires to the cell were submerged in a salt
solution and then connected to either side of the powder. The addition of this metallic
element can drop the discharge time to a few minutes, and allows the batteries discharge
to 0V.
A lesser known alternative is the method of placing the cells in a stainless-steel container

with water and a metal powder. The water is meant to act as a buffer to thermal runaway
while the metal acts as a conductive, low resistance path for short circuiting, which is an
efficient method for ensuring the batteries are sufficiently deep discharged. The process, if
not controlled, can artificially heat the battery, causing thermal runaway and self-ignition.
The risk of arcing in this method is greater than in the salt solution method since the

conductivity of the metal is higher. If an entire EV pack is placed into the metal-water bath
for discharging, there is the risk of high voltage arcing and significantly high temperature
rise, potentially posing significant damage to the recycling facility.
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Scientific literature report also similar experiment instead using graphite as a thermal
buffer. However, the temperature of the cell increased rapidly, suggesting that graphite is
not the most efficient thermal buffer in this procedure [10].

Inductive Discharge

Speaking of state-of-the-art technologies, in this section it was decided to report also in-
ductive discharge, also known as wireless discharge, although it is a discharge technology
mostly theorized rather than actually implemented in industrial practice. This method is
suitable for future battery packs of all sizes equipped with wireless charging technology.
Inductive charging has gained notoriety of late, as phone and tablet companies attempt

to find alternate ways for users to charge their devices, and automotive sector seems to
be affected too by this trend. It can be conceived that future EV batteries would be
equipped with a pad for wireless charging since there is an increasing demand for wireless
technology (WiTricity). Therefore, the pads should be bidirectional so that all batteries
entering the recycling facility can be discharged wirelessly. Since no physical connections to
the batteries would be made, human contact with the battery would be nil. Additionally,
the BMS could also be accessed wirelessly or by infrared. It should be equipped with an
‘override’ feature for recycling so that when the BMS is activated during discharging, it
receives a signal indicating that it should allow for a discharge to 0V but still provide
information on the SOH of the battery in terms of voltage, current and temperature.
Honda and WiTricity have already proven that the discharged energy can be recovered in
a vehicle to grid operation so, energy recovery would also be built into this model.
The concept of inductive discharging for batteries was born by the idea of having a

wireless resistive discharge so that the manual component of connecting the batteries could
be eliminated. Typically, only wireless charging is discussed in literature, however, the
feasibility of bidirectional chargers has been explored by Honda and WiTricity. From their
research, it is also possible to discharge a battery using this method in a vehicle-to-grid
(V2G) operation [22].
The process of inductive charging is the similar to that of a transformer where a coil

with a current passing through it, thereby creating a magnetic field, induces a current in
another coil aligned with the magnetic field of the first. In the case of inductive charging,
there is no metal connecting the coils to “allow” the transfer of the magnetic field, instead
the two coils are magnetically coupled, through air, using an oscillator and a rectifier in
resonance. Once the coils are in resonance, the current from the source is induced in the
load and the device is charged. The shorter the distance between the two load and the
source, the stronger the current.
However, for this method to work, a pad equipped with a coil and power electronics

must be connected to the terminals of the battery. In order to avoid the manual step
of connecting the pad to the terminals of the battery, this device should be installed in
the battery by the manufacturer prior to installation in the vehicle. A receiving slab or
pad must also be installed at the recycling facility. This receiver should be equipped with
the secondary coil, power electronics and safety sensors so that the charging/discharging
process does not destroy the battery and to protect the user since the magnetic field
exposure is higher than is allowed by international regulations.

9



The system of discharging the battery would be equivalent to that of the resistive method,
so the same procedure used for resistive discharge could be transferred to the inductive
discharge method. However, currently, inductive charging pads are not regularly installed
in mass distributed EVs, but it exist many real life implementations that shows how it is
possible to use this technology, such as the Bombardier Primove e-buses, fully electric buses
equipped with wireless charging, actually working in many cities in Germany, Belgium and
Sweden [9]. In Primove project, the process inducts 200kW of power to an electric bus in
approximately seven minutes.

Figure 2.3: Inductive dischagre

Inert Crushing without Discharge

In battery recycling it’s commonly used also a completely different approach than the other
ones previously explained. It consists in avoiding the discharge process of the battery and
shred them still charged. Shredding batteries which SOC level hasn’t been take down to
low levels is extremely dangerous, because of the related firing and explosion hazard, for
this reason, it is necessary to adopt some precautions to avoid this and crush them safely.
This process is called inert crushing.
Inert crushing usually includes dismantling the battery pack and then crush the modules

or cells in an inert environment. The environment is made inert by a flow of gas such as
carbon dioxide, nitrogen or argon, or cryogenically cooling the batteries prior to crushing.
The inert gas method ensures that the cell is unable to ignite, even if there is a spark,
due to the lack of oxygen in the atmosphere. Cryogenically freezing the cells reduces the
reactivity of Lithium by 5 or 6 orders of magnitude, so that any exothermic reactions would
occur so slowly that they would not be observed. Other methods include wet crushing
with a solution that will not react with the electrolyte and will convert the Lithium to an
nonreactive state or having a liquid spray in the presence of nitrogen while crushing.
On the other side, also thermal pre-treatment of the batteries has been explored. In this

method the batteries are heated until the casing splits, the anode and cathode materials
are deactivated and the electrolyte evaporates. Temperatures must arrive at 300ºC either
by solely heating or with the addition of pressure. By either mechanism the process is
energy intensive and releases fine particulates. Thermal pre-treatment leads more serious
environmental issues, that has to be properly handled.
The main downside of Inert Crushing methods is their cost. To give an example, ap-
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proximately 1 kg of batteries can requires up to 2 hours of liquid nitrogen flow in order to
arrive at cryogenic temperatures for crushing, with consequent costs. The flow of ‘inert’
gases for crushing require a precise control system, since the oxygen or moisture within
the casing of the cells or modules could trigger a fire. Then, in wet crushing methods, a
high volume of waste water must be treated post crushing, which is an energy intensive
process.
Often in industry, deep discharging and inert crushing are typically coupled due to the

high energy content of Electric Vehicle batteries. Even if the electrical hazard from the
cells is minimized by deep discharging, the flammable components within the electrolyte
could be ignited by even a small spark.

2.2 EV batteries end of life

The end of life (EOL) of a battery is the moment in which the battery is no longer suitable
to operate in conditions close to the rated ones, for the application it has been designed
for.
For EV batteries, a widely used retirement criterion was first introduced by the United

States Advanced Battery Consortium (USABC) in 1996, which states that the battery pack
should be replaced when it loses 20% of its original capacity. Therefore battery end-of-life
is when 70–80% of original energy capacity remains, in other words a battery pack has to
retire when its metric state-of-health (SOH) drops to 80% [28].
Serving on an electric vehicle is a tough environment for batteries, which typically un-

dergo more than 1,000 charging/discharging incomplete cycles in 5–10 years and are subject
to a wide temperatures range between 20°C and 70°C, high depth of discharge (DOD), and
high rate charging and discharging (high power).
When an EV battery pack becomes unable to satisfy the use standard of EVs, it is usually

removed from the car and replaced with a new battery, marking the end of its automotive
life.
Making conservative assumptions, of an average battery pack weight of 250 kg and volume

of half a cubic metre, 1 million of battery packs (which is approximately the number of
hybrid and electric cars sold worldwide every two months in 2021) resultant wastes would
comprise around 250’000 tonnes and half a million cubic metres of unprocessed pack waste,
when these vehicles reach the end of their lives.
Although re-use and current recycling processes can divert some of these wastes from

landfill, the cumulative burden of electric-vehicle waste is substantial given the growth
trajectory of the electric-vehicle market. This waste presents a number of serious challenges
of scale; in terms of storing batteries before repurposing or final disposal, in the manual
testing and dismantling processes required (nowadays) for either, and in the chemical
separation processes that recycling entails [11].
The resulting quantity of waste that has to be stocked presents some serious issues in

terms of safety. The electrode materials in Lithium-Ion batteries (LIBs) are very reactive
(for instance, far more reactive than tyre rubber, other material with serious dangers con-
nected with stocking) and without a proactive and economically sound waste-management
strategy there are potentially greater dangers associated with stockpiling of end-of-life
LIBs. For this reason, it is important to seek solutions to minimize stocking period, reduc-
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Figure 2.4: End of life batteries management hierarchy.

ing the time required for recycling process, treating higher volumes and finding new reuse
solutions.
EV batteries has a life cycle that is estimated to be around 10 years. After this period

of time, battery capacity is expected to be significantly decreased, making the battery no
longer usable for electric cars, thus arrived at its end of life. However, at the end of the
so called "first life", the battery could still be reused, depending on its conditions, for a
"second life".
When battery pack reaches its EOL, there are 4 possible paths that can be taken:

• Re-use

• Recovery

• Recycling

• Disposal or incineration

In sustainability terms, this options have different ecological footprints. It is therefore
preferable reuse to other methods, and the disposal should only be considered in case of
no other options available. Figure 2.4 schematically reports this hierarchy, focusing on
batteries recycle, main goal of this project.
For the moment also the economics of the decision whether to recycle or re-use are set

firmly in favour of re-use. The main factors are:

• the refurbishment cost of putting the battery into a second-use application

• any credit that would accrue as the result of recycling the battery instead

Nevertheless, although reuse is the preferred way, it is not always possible, both due to
the conditions in which the battery packs could be (not suitable for second uses), and due
to the possible lack of demand for other applications.
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Furthermore, even if batteries are suitable to be reused, after the end of their second use
recycling must be the ultimate fate of all LIBs.
In such scenarios, spent batteries may also present an opportunity for manufacturers,

as they require access to strategic elements and critical materials for key components in
electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could
provide a valuable secondary source of materials.

2.2.1 Battery recycling

Waste may also represent a valuable resource. Elements and materials contained in electric-
vehicle batteries are not available in many nations and access to resources is crucial in
ensuring a stable supply chain. End-of-life LIB recycling could provide important economic
benefits, avoiding the need for new mineral extraction and providing resilience against
vulnerable links and supply risks.
In the future, electric vehicles may prove to be a valuable secondary resource for critical

materials (such as Copper, Lithium, Cobalt and Nickel), and it has been argued that
high-cobalt-content batteries should be recycled immediately to bolster cobalt supplies.
If tens of millions of electric vehicles are to be produced annually, careful husbandry of

the resources consumed by electric-vehicle battery manufacturing will surely be essential
to ensure the sustainability of the automotive industry of the future, as will a material and
energy efficient "3R system" (reduce, re-use, recycle).
Recycling may involve different phases [11]:

• Pyrometallurgical recovery

Pyrometallurgical metals reclamation uses a high-temperature furnace to reduce the
component metal oxides to an alloy of Co, Cu, Fe and Ni. The high temperatures
involved mean that the batteries are ‘smelted’, and the process, which is a natu-
ral progression from those used for other types of batteries, is already established
commercially for consumer LIBs. It is particularly advantageous for the recycling of
general consumer LIBs, which currently tends to be geared towards an imperfectly
sorted feedstock of cells (indeed, the batteries can be processed along with other types
of waste to improve the thermodynamics and products obtained), and this versatility
is also valuable with respect to electric vehicle LIBs. As the metal current collectors
aid the smelting process, the technique has the important advantage that it can be
used with whole cells or modules, without the need for a prior passivation step. The
products of the pyrometallurgical process are a metallic alloy fraction, slag and gases.
The gaseous products produced at lower temperatures (<150 °C) comprise volatile
organics from the electrolyte and binder components. At higher temperatures the
polymers decompose and burn off. The metal alloy can be separated through hy-
drometallurgical processes (see section ‘Hydrometallurgical metals reclamation’) into
the component metals, and the slag typically contains the metals aluminium, man-
ganese and lithium, which can be reclaimed by further hydrometallurgical processing,
but can alternatively be used in other industries such as the cement industry. There
is relatively little safety risk in this process, as the cells and modules are all taken to
extreme temperatures with a reductant for metal reclamation—aluminium from the
electrode foils and packaging is a major contributor here—so the hazards are con-
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tained within the processing. In addition, the burning of the electrolytes and plastics
is exothermic and reduce the energy consumption required for the process. It follows
that in the pyrometallurgical process there is typically no consideration given to the
reclamation of the electrolytes and the plastics (approximately 40–50 per cent of
the battery weight) or other components such as the lithium salts. Despite environ-
mental drawbacks (such as the production of toxic gases, which must be captured or
remediated and the requirement for hydrometallurgical post-processing), high energy
costs, and the limited number of materials reclaimed, this remains a frequently used
process for the extraction of high-value transition metals such as cobalt and nickel.

• Physical separation

After shredding, the materials are subjected to a physical materials separation. Dur-
ing this phase, recovered materials can be subjected to a range of physical separation
processes that exploit variations in properties such as particle size, density, ferromag-
netism and hydrophobicity.

These processes include sieves, filters, magnets, shaker tables and heavy media, used
to separate a mixture of lithium-rich solution, low density plastics and papers, mag-
netic casings, coated electrodes and electrode powders.

The result is generally a concentration of electrode coatings in the fine fractions
of material, and a concentration of plastics, casing materials, and metal foils in
the coarse fractions. The coarse fractions can be put through magnetic separation
processes to remove magnetic material such as steel casings and density separation
processes to separate plastics from foils. The fine product is referred to as the ‘black
mass’, and comprises the electrode coatings (metal oxides and carbon).

• Hydrometallurgical metals reclamation

Hydrometallurgical treatments involve the use of aqueous solutions to leach the de-
sired metals from cathode material. By far the most common combination of reagents
reported is H2SO4 and H2O2. A number of studies have been carried out in order
to determine the most efficient set of conditions to achieve an optimal leaching rate.
These include: concentration of leaching acid, time, temperature of solution, the
solid to-liquid ratio and the addition of a reducing agent. In most of these studies,
it was found that leaching efficiency improved when H2O2 was added.

• Direct recycling

The removal of cathode or anode material from the electrode for reconditioning and
re-use in a remanufactured LIB is known as direct recycling. In principle, mixed
metal-oxide cathode materials can be reincorporated into a new cathode electrode
with minimal changes to the crystal morphology of the active material. In general,
this will require the lithium content to be replenished to compensate for losses due
to degradation of the material during battery use and because materials may not be
recovered from batteries in the fully discharged state with the cathodes fully lithiated.
So far, work in this area has focused primarily on laptop and mobile phone batteries,
as a result of the larger amounts of these available for recycling, but this technique
could be also suitable for electric vehicle batteries in near future.
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2.3 Cognitive Robotics

As discussed in the report introduction, and further detailed in the previous paragraph, re-
sistive discharge has a number of advantages over other discharge methods. The possibility
of recovering the energy stored in the batteries, the absence of contraindications from the
environmental point of view and the speed and safety of the entire process, make it an ideal
method of discharge. The only weak point consists in the need for intervention by a human
operator, in order to connect the battery to the discharge station. With regard to the bat-
teries of electric vehicles, in which high voltages are involved, this represents a significant
human safety issue. For this reason, automating the process of electrical connection to the
battery pack results to play a very important role.
For this kind of tasks, traditional robotic is not sufficient. The variability of the conditions

makes it necessary to have a flexible system, which can adapt to different conditions. To
do this, the system is required to have intelligence, to make decisions, and to be able to
recognize the environment and make decisions basing on it.
When thinking about end-of-life battery packs it has to be taken into account that

there are variations and uncertainties caused by the use of the product, and this has
its consequences. In order to solve or minimize to the maximum these uncertainties,
the discharge and disassembly performed by the automatic station has been implemented
following the principle of cognitive robotics.
In general terms, cognitive robotics is a multi-disciplinary science that draws on research

in adaptive robotics as well as cognitive science and artificial intelligence, and often exploits
models based on biological cognition.
Cognitive robots achieve their goals by perceiving their environment, paying attention

to the events that matter, planning what to do, anticipating the outcome of their actions
and the actions of other agents, and learning from the resultant interaction. They deal
with the inherent uncertainty of natural environments by continually learning, reasoning,
and sharing their knowledge.
A key feature of cognitive robotics is its focus on predictive capabilities to augment

immediate sensory-motor experience. Being able to view the world from someone else’s
perspective, a cognitive robot can anticipate that person’s intended actions and needs.
This applies both during direct interaction (e.g. a robot assisting a surgeon in theatre)
and indirect interaction (e.g. a robot stacking shelves in a busy supermarket).
In cognitive robotics, the robot body is more than just a vehicle for physical manipulation

or locomotion: it is a component of the cognitive process. Thus, cognitive robotics is a
form of embodied cognition which exploits the robot’s physical morphology, kinematics,
and dynamics, as well as the environment in which it is operating, to achieve its key
characteristic of adaptive anticipatory interaction [12].
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According to the paradigm of cognitive robotics, on this project are integrated different
technologies, in order to achieve environmental detection, robot physical interaction and
decision making:

• Anthropomorphic robotic arm

• Computer vision system

• Artificial intelligence
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Chapter 3

Methods

This chapter reports the theoretical treatment of all the "tools" used for the realization
of this project. In addition, the steps necessary to carry out each experimental test are
explained in detail and commented on. For the test results, refer to the chapter 5, number
5 of this report.

3.1 Discharge Strategy

The hierarchical structure of the battery pack, divided into modules, consisting of series
connected cells, give the possibility of choosing between many different discharge strategies.
By "discharge strategy" is meant the methodology that will be used for the discharge

process of the battery pack. In particular, it’s necessary to choose which level to act the
discharge: pack, module or (theoretically) cell. Once decided, it’s necessary to access that
level and connect the cable for the discharge.
Naturally, discharging on a deeper level (module or cell) requires previous dismantling

of the pack to access the terminals, but leads advantages simplifying and making safer the
discharge; on the other side, moving the process on a higher level (battery pack) reduces
the required times (no dismantling needed) but make it less safe and more complex to
manage.
Choosing the discharge strategy is the first step to take on the development of this

project, and the entire subsequent design of the discharging station, will be based on this
choice, so it’s very important to chose the most proper one, considering all the trade-off
aspects that will be shown below.

3.1.1 Trade-off Aspects

There are four main aspects that have to be considered when planning the discharge
strategy, which can be summarized in:

• Time to Discharge

• Safety on Discharge

• Complexity of the Operation

• Flexibility of the System
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These four aspects are related between them, and acting on one imply changes on others.
For this reason a good trade-off is needed to ensure an optimal solution for the overall
system.

Time to discharge

By "discharge time" is meant the overall time required to complete the discharge of the
entire battery pack, from the moment when the discharge starts, to the moment when all
modules reaches final values of SOC and voltage.
This means that if the discharge strategy expect to discharge modules separately, also

the time required to move from one module to the next will be taken in account when
calculating the discharge time. Considering this, it follows that the lower in the hierarchy
level the discharge is carried out, the greater will be the overall discharge time. Therefore,
discharging at the cell level will take longer than discharging the entire pack in a single
operation, because in addition to the time required for the electric discharge of the batteries,
it will take a certain time to pass from one cell to the next.
Discharge time, obviously, is expected to be as short as possible. During this process

no other dismantling operation can be performed (for safety reasons, discharge batteries is
one of the first step taken during the EVB dismantling industrial process), so it’s crucial
to keep it as low as possible.

Safety on discharge

Safety it’s a parameter that could not never be lacking. For this reason, any discharge
strategy (have to) guarantee the minimum safety standards.
Thus, when comparing different discharge strategies, "safety on discharge" means the

set of various safety related parameters. The amount of voltages involved in the process,
directly related to the discharge strategy, it’s the critical aspect when talking about safety.
In general, discharge batteries connecting to the lower levels of the hierarchy (i.e., mod-

ules) it’s safer, because lower voltages are involved and it’s easier to monitor and control
single modules. Contrarily, discharge connecting to higher hierarchy level (i.e., pack ter-
minals) involves higher voltages and make monitoring of single modules more difficult.
Higher voltages increase potential risks during the discharge process (higher currents and
heat generation), and so more complexity is required to the discharge circuit in order to
handle the process safely.
Safety, of all, is the only parameter that cannot be missing, it must be guaranteed above

all other needs, therefore, whatever strategy is chosen, it must guarantee the safety of the
operation.
The first determining factor for safety, however, is how this is done, so regardless of

the level at which the discharge is performed, the current determines the safety of the
operation.

System complexity

A discharge strategy that involves hacking the BMS is inherently more complex than one
that does not. Complexity therefore refers to the "number of operations" required to
achieve the discharge target.
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The more complex the system, the less flexible it is. In fact, if it is required to find and
use the specific CAN commands for a certain battery pack, these will not work on another
one, and the developed system will not be able to adapt to a different battery packs.
Furthermore, complexity leads to more time required to implement the system, which

would need more setup time, that is not preferable in industrial application.

Flexibility of the system

Flexibility is the capability of the system to adapt to different battery packs from different
manufacturers.
If complexity increase too much, the system tend be too tied to the single battery pack

that it has been designed for. Simpler systems are instead easier to modify and adapt to
operating conditions different from those of the project, if necessary.

3.1.2 Technical Limits

On a theoretical level, the discharge could be acted at each one of the three levels: cell,
module and pack. Nevertheless, in practice, this is not really possible, due to the too
deep dismantling level that this discharge strategy would require, in order to access cell
terminals.
On the previous section, all the theoretical pros and cons have been discussed, however,

we have to consider also some practical limits, that may set some constrains to what
is possible to do. The main aspects to consider are the Battery Management System
(BMS) and the Battery Junction Box (BJB). This devices are always present in an EV
battery packs, and are essential for the functioning of the battery during its life cycle.
The BMS carries out a series of monitoring and control functions of cells and modules, to
ensure their balance, correct and uniform charge and discharge and other features related
to safety. Further safety features are ensured by the BJB, which acts as an interface
between battery pack and vehicle. It contains the "switching unit" of the battery pack,
and directly connects the modules to the external high-voltage connector, where is plugged
the power supply cable of the car. The BMS sends control signals to the BJB, deciding
the switch configuration, i.e. to open or close the electrical connection to the external. For
safety reasons, the BJB’s switch is normally open, so when the car is turned-off (or the
battery is unplugged from the car, as in our condition) the high-voltage power supply is
disconnected. This is a problem for our purpose: if we want to discharge at pack level we
would need to have a closed switch, so as to be able to connect directly to the external
socket and discharge the entire battery at once. The presence of the BJB precludes, then,
the discharge strategy acted on the pack level. To avoid this, and make possible also that
discharge strategy, two solutions are proposed:

• Battery Management System hacking

• Battery Junction Box bypassing

The Battery Junction Box is the part where the circuit is physically open. In order to
realize the discharge, we need to connect, through cables, the battery to the discharge
device , but even if connected it is not possible to start the discharge process until the
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circuit is open. The first solution, consist of closing the switch to allow the current to
flow. To achieve this, the only way is to send a control signal that closes the contact. All
car electronic components, battery parts included, are connected via CAN-bus, as shown
in figure 3.1, hence that’s the network we have to use to communicate to the battery
junction box. BMS is the unit that controls the BJB, thus, we need to access the BMS
and set that switch to open. Unfortunately, automotive manufacturers do not provide the
CAN-bus commands needed to control their devices, due to the strict industrial secrecy
necessitated by companies competition. Lacking official documentation, the only way is
to hack the system, through unofficial resources and making tests at the lab, to find a
working commands configuration. This route, however, has a number of disadvantages.
First of all, the high laboriousness and complexity: obtaining the correct commands is
not easy, it would require many hours of research in the laboratory and several attempts,
without even the guarantee of obtaining a result. Then, specific tools are required to
connect to the CAN BUS network, which would increase the overall cost of the station,
but mostly would make it more complex to integrate a system of this type into a fully
automatic station, especially due to the difficulty of connecting the instruments to the
battery network. Furthermore, with new battery packs developments, commands may
change, making obsolete and not working the previously found ones, or anyway commands
may vary between different battery models, a specific study for each one would be necessary.
This lack of flexibility, it would require an ad-hoc built system for each battery, is not
wanted in industrial automation. Another aspect to take into consideration is that we do
not know in advance the state of the battery pack, it could come from a damaged car
and some parts, like the BJB or the BMS, could be not working properly, which would
make this technique not applicable. For the previously discussed reasons, the first option,
hacking the BMS, has been discarded.

Figure 3.1: Electric vehicles CAN-bus configuration scheme

The second option to allow the discharge at the pack level, is the junction box bypassing.
Since it was decided to don’t control the BJB, the idea is to simply do not pass the
circuit through the switch, which is open. On previous scenario, the discharge device was
connected to the battery using pack’s socket, which is connected to the junction box, that
we now want to exclude. In order to do that, it is necessary to connect the discharge device
before the battery cables enter the BJB. Located here, are present two connectors linking
the extremities of the series connected modules to the BJB, as highlighted in figure 3.2.
Unplugging these connectors from the junction box, is possible to access the whole battery
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pack without any safety limit or switch. The connectors have then to be plugged into the
discharge device . This operation has to be carried out by a robot arm, automatically, that
has to detect the terminals, determine their position, grab and move them to the required
position, in order to be connected to the discharge device . This second option has been
chosen for the project development, being more feasible to act, more adapt to the problem
and doesn’t require any particular tool, also making the system more flexible, possibly able
to adapt to different battery models in case of further upgrades.

Figure 3.2: Battery Junction Box (BJB) connectors

3.2 YOLO

When talking about object detection, it is important to clarify the concepts of image clas-
sification and object localisation. Image classification, refers to a computer vision process
that is able to classify an image according to its visual content. Then, object localisation
allows to detect the specific position of the object in the image. Object detection, basically
provides the tools for finding all the objects (in this case the components) in one image,
and drawing the bounding boxes around them. Finally, image segmentation is able to
define the contours of the detected objects.

Figure 3.3: Differences between image recognition methods

Given that the final purpose of the project is to implement the solution to the industry,
algorithms based on segmentation have been discarded. This decision is based on that the
creation of the training database for this type of algorithms is more complicated. This
results on larger procedures to add new models into the known database. When analysing
object detection algorithms, they can be generally classified into two groups:
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• Algorithms based on classification: Implemented in two stages, first, they select
the regions of interest (ROI) in the image. Then, they classify this regions using
convolutional neural networks (CNN). Since, they have to find the ROI of the image,
the solution can be slow.

One of the most representative algorithms of this type are the Region-based Convo-
lutional Neural Network algorithm (RCNN, Fast-RCNN, Faster-RCNN and Mask-
RCNN) and the RetinaNet algorithm.

• Algorithms based on regression: Instead of predicting the Regions of Interest of
the image, this type of algorithms predict classes and bounding boxes for the images
in one run. Within the well-known algorithms of this group, there are the You Only
Look Once (YOLO) family algorithms and SSD (single Shot Multibox Detector).

In this project, the You Only Look Once (YOLO) version 3 has been selected as algorithm
for the object detection part. YOLO is a real-time object detection algorithm. It is based
on a convolutional neural network, and as explained before, it is an algorithm based on
regression. Thus, the algorithm applies a single neural network to the full image.
The image is divided into smaller regions on which the bounding boxes (and the proba-

bilities) are predicted for each region. These predicted probabilities weight the bounding
boxes.
YOLOv1 was the first version of the algorithm. This version had 26 layers in total,

with 24 Convolution Layers followed by 2 Fully Connected layers, but the main problem
with YOLOv1 was its incapacity to detect tiny objects. Then, in December 2016, the
paper ’YOLO 9000: Better, Faster, Stronger’ by Redmon and Farhadi was released. A lot
of improvements were included in the second version of the algorithm. Finally, in April
2018 the same researchers published ’YOLOv3: An Incremental Improvement’, introducing
important changes that significantly improved YOLO capabilities. This final version no
longer copes with small objects and runs significantly faster than other detection methods.
The algorithm only requires one forward propagation pass through the neural network to

obtain the predictions. Then, to detect only one time each object, a non-max suppression
is done. In that way, the algorithm returns the detected objects with the bounding boxes
and the probabilities.
Using YOLO algorithm, an individual convolutional neural network is able to predict

multiple bounding boxes and the 5 corresponding probabilities for them. YOLO trains on
full images and directly optimizes detection performance.
The system uses dimension clusters as anchor boxes 1 to predict the bounding boxes.

Four coordinates (tx, ty, tw and th) are predicted for each bounding box. Therefore, if the
previous bounding box has width and height (pw and ph) and the cell is displaced by (cx
and cy) from the top-left image corner.The predictions are:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th
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Then, the algorithm predicts, using logistic regression, an objectiveness score for each
bounding box. If the bounding box is overlapping the ground truth object 2, the score has
a value of 1. If a bounding box is overlapping a ground truth object, but the score is not
the best, it is ignored.
Later, to realize the class definition, the algorithm predicts the classes that a bounding

box can contain using multi-label classification. A multi-label approach gives better results
than other classifiers for applications where there are many overlapping labels.
YOLOv3 is trained on full images with no hard negative mining. To train YOLOv3, it is

used: multi-scale training, data augmentation and batch normalisation (within other stan-
dard procedures). The open-source neural network Darknet is used for training. Darknet
is written in C and CUDA and supports CPU and GPU computation.

3.3 Training phase

The first phase to carry out in a YOLO algorithm implementation, is the convolutional
neural network training. To learn how to act object detection, the network needs to study
a big amount of data, from which it must obtain operational information. In this case, the
data are images taken in real operational environment, thus a set of images of the battery
pack that will have to be analysed. This pictures, must contain information useful for the
network in order to detect the terminals, they must therefore be labeled images.

3.3.1 Images acquisition

Together with the BB, another, even more important, aspect to take care of when preparing
the images for the network training, is the variety of pictures selected. A very important
aspect to take care of when preparing the images for the network training, is the variety of
pictures selected. Indeed, it is crucial to provide the algorithm with an heterogeneous set
of images, which deduce different information from. If this is not done, and for training
are used only pictures taken in the same conditions, the CNN (in operating conditions,
after being trained) will be limited to perform object detection only in that conditions,
and if these change, it won’t be able anymore to achieve its tasks, or anyway will get worse
performances. As already said, to avoid this excessive specificity, a diverse images collection
is preferable. The more various the set, the more capable of detecting in diverse conditions
the algorithm will be, increasing adaptability, a fundamental aspect when talking about
artificial intelligence.
In industrial operations, the different conditions, that is referred to above, may include:

• Different brightness of the environment, depending on which part of the day the
plant is working:

– During day-time: natural light, it changes based on what time it is, can be
stronger or weaker

– During night-time: artificial lighting, brightness is constant, but it’s a different
type o light compared to the natural one

• Different points of view from which to take the picture, there can be different:
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– Angles: due to different reasons1, the angle2 between the camera and the subject
of the picture (the battery pack in this case) may be little different from case
to case.

– Distances: for the same reasons, the distance between the camera and the sub-
ject can change considerably.

When taking the pictures to make the training set, has been taken care in creating images
with regards to each of these parameters. This means that pictures has been taken with
different lighting conditions, during different times along the day, from different points of
view for angles and distances, moving the robot arm around the robot.
For the training, a set of all different pictures is taken, according to the criteria exposed

above. After labelling, all the images were given to the algorithm to begin the training
phase.

3.3.2 Image labeling

Together with the picture variety, another very important aspect to take care of when
preparing the images for the network training, is the image labelling. Image labeling is the
process of identifying and marking various details in an image. It is a fundamental step
in every automated image recognition system, and the accuracy with which this phase is
carried out, directly determines the accuracy of the algorithm in being able to recognize
and precisely locate objects.
The main objective of labeling the pictures is to let the algorithm know where the battery

connectors are located in the image. The algorithm takes these images and extracts the
features of the labeled areas in order to learn how the different objects are and how to
detect them. On a visual level, the labels are represented as so-called "Bounding Boxes"
(BB), that are squares which, in the image, determine the area within which the object
specified is located. As a result, the narrower and more precise around the object the
bounding box, the more accurate the bounding boxes generated by the algorithm (once
trained and operating) will be, including in the detected area only the object, and not
much space or other objects around it. That is, for this project, a very important aspect
to take into consideration, since the bounding boxes obtained are used to determine the
3D space location of the connectors.
YOLO protocol, defines that the bounding boxes in the labeled images has to be described

by a separate text file (".txt" extension), with the same name of the image, to correctly
associate the labels for each picture. The file, contains the description of the labels, one
for each row, reporting the position of two opposite corners (that uniquely identify a box)
and then the class that it belongs to. In general terms, a class is the name by which it has
to refer to the labeled object. In this case, there are two different classes:

• left_pole

• right_pole
1it is possible that the robot is not always starting from the same position due to different operations

performed before
2As angle, can be considered the one between the axis radial to the battery pack and the axis exiting

the camera lens
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That refers to the left and right connectors of the cells series to the battery junction box
(further details at page 17 of this chapter).
To create the database for this project, it has been used the open-source program Labe-

lImg. It allows to quickly create labels, using a visual interface that makes it easy to pin
the corners of the BB, and automatically creates the text files linked to each photo in the
defined YOLO format.

Figure 3.4: LabelImg software interface

The focus of this project is on a single battery pack, of the Volkswagen Passat Hybrid,
however, further stages of the project may add also different battery packs, thus requiring
an extension of the images database, to allow the network to recognise also different models.

3.3.3 Neural network training

The final step, consists of the actual training phase. In artificial intelligence, "training"
refers to the process the neural network needs to learn how to perform its task. During this
phase, the network requires a lot of data, together with the "answers" to the goal it has to
achieve. From these examples the algorithm learns, thus it sets a series of internal weights
on each of its layers, which will later allow the AI to carry out the task independently.
The same set of data is analysed many times, and each one serves the network to learn
something new, and adjust its weights. A cycle takes the name of epoch. To obtain better
results in training a neural network, many epochs are always necessary. More epochs
requires more time
Training requires always a lot of time, which is directly related to the number of epochs.

However, more epochs leads better performances once the network is trained, thus is always
preferable to spend more time in training and obtain better results when it is operating.
On the other side, the number of epochs can’t be too high, otherwise there is a risk of
running into a problem called overtraining or overfitting. Overfitting happens when the
model fits too well to the training set. It then becomes difficult for the model to generalize
to new cases that were not in the training set, thus it’s not able to act object detection on
images different from the ones contained into the training set. To avoid it, it is necessary to
train the model with an appropriate number of epochs, with a balanced trade-off between
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accuracy and generalization. YOLO gives some output parameters in terms of loss values
and evaluation metrics in order to evaluate the training and avoid overfitting.
To find an appropriate number of epochs, training has been performed many times,

making different test varying the number of epochs. The comparison between different
tests can be done in different ways: comparing output parameters of the training and, in
a more practical way, testing the resulting network weights in an operational case, thus
acting some detections. Both are used for the comparison in this project (results reported
in chapter 5).
There are seven main parameters that YOLO gives as output in order to evaluate the

training executed, that are:

• Intersection over Union (IoU)

IoU, also known as the Jaccard index, is the most popular evaluation metric for
tasks such as segmentation, object detection and tracking. Object detection consists
of two sub-tasks: localization, which is determining the location of an object in an
image, and classification, which is assigning a class to that object. Therefore the
goal of localization in object detection is to draw a 2D bounding box around the
objects in the scene. The ground truth is the box containing the object which has to
be detected (obtained from the labeled data used for training). On the other side,
the output of the neural network is called prediction bounding box, and contains the
localization of the object according to the CNN.

We want to evaluate the accuracy of this prediction. The IoU is calculated as follows:

Intersection over union index has the appealing property of scale invariance. This
means that the width, height and location of the two bounding boxes under consid-
eration are taken into account. The normalized IoU measure focuses on the area of
the shapes, no matter their size.

Starting from IoU an improvement of this index is the GIoU: Generalized Intersection
over Union. It is obtained considering not only the overlap between the boxes but
also how far the prediction is from the ground truth [27]:

GIoU = IoU − |C\(A ∪B)|
|C|
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Figure 3.5: Generalized Intersection over Union (GIoU).
Both IoU and GIoU are supposed to converge to value 1, as the bounding box pre-
diction gets better. These parameters are often used to evaluate predictions during
training in order to distinguish wrong from correct ones (verifying id their IoU/GIoU
value goes beyond a given threshold).

• Objectness

Objectness is essentially a measure of the probability that an object exists in a
proposed region of interest (i.e. in a prediction bounding box). If there is high
objectness, this means that the image window likely contains an object. This allows
us to quickly prune out proposed image windows that do not contain any objects.

The opposite case is represented by the "No Objectness", which calculates the prob-
ability that there is no object into the bounding box. Ideally, to produce a better
result of localization, the two parameters should reach complementary values:

Obj → 1 No Obj → 0

• Classification

Classification is the process of associating an object to its own class, thus the al-
gorithm identifies what is contained into a certain area. "Classification" YOLO’s
output parameter refers exactly to this. It indicates the correctness of object classifi-
cation to respective classes, where the value is expected to approach 1 as the number
of epochs increases.

Class→ 1

The parameters shown above give an information about how YOLO is performing the
training along epochs, defining if it is actually learning or not, and detecting possible
overtraining, when calculated on the detection set.
The remaining parameters are instead called "evaluation metrics", and have the aim of

evaluating the network performances on identification along epochs. They are:

• Precision

It measures how accurate is the predictions, i.e. the percentage of predictions that
are correct (called true positives, TP) on the total amount of predictions done, which
includes the wrong predictions (called false positives, FP).

It can be measured as:
Precision =

TP

TP + FP

• Recall
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It measures how good is the network in finding all the objects within the image. Are
called "false negative" (FN ) the objects that the network doesn’t detect.

Recall =
TP

TP + FN

• mAP

Average precision (AP) is defined as the area under the precision-recall curve. The
mean average precision (mAP) is the average of AP calculated for different IoU
thresholds.

• F1

It is a parameter the merge together precision and recall, giving an idea of their
balance. It is calculated as the harmonic mean of precision and recall:

F1 = 2
precision · recall
precision+ recall

3.4 Detection phase

Once trained, the network is ready to perform object detection. Detection is the process,
performed by the vision algorithm (YOLO), of identification and localisation within the
image of the classes it has been trained for. The network is capable of drawing a bounding
box around each one of the objects detected, together with the name of the object, and the
confidence percentage. This value is in the range of 0 to 1, and represents the probability,
according to YOLO, that the identification is correct. A typical object detection result
can be like the one reported below (figure 3.6).

Figure 3.6: A typical YOLO detection, reporting bounding boxes and confidence percent-
age.

Figure 3.6 reports a detection performed successfully, where connectors are correctly
identified and located. As shown, different bounding boxes may have different confidence
percentage.
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With "detection phase" is meant the operations of test of the weight configurations found,
to evaluate its effectiveness and eventually re-train the model, in case of not satisfying
performances. It’s clear that at the beginning it’s necessary to pass from this phase to
the previous one (training phase) many times, to try different configuration, until the best
weights are found.
The weights configuration under test has to be tried on a representative set of images,

according to the parameters explained at page 23. The network will identify within every
picture the objects it was trained for, drawing a bounding box around them, and without
knowing a priori the number of objects in the picture.
To evaluate the quality of a detection, there are some characteristics that have to be

considered:

• Recognition of objects presence

• Number of objects detected compared to the real number

• Location of the BB compared to the real object

• Area of the BB relative to the size of the object (detection accuracy), which can be
smaller or wider

• Association between detected objects and the correct belonging class

• Confidence percentage of each detection

• Wrong identifications

These considerations allow to compare different weights objectively, in order to identify
which is the best configuration.
The comparisons in question, with relative results, are reported in chapter 5.

3.5 Batteries discharge

Discharge batteries is not an easy task. There are many factors that come into play, and
adjusting them properly determines the success of the discharge. The parameter that have
to be taken into account are:

• Discharge current

• Cell voltage

• Cell temperature

• Discharge time

Changing one of this parameters, has effects on the others, therefore it is necessary to find
a trade-off, depending on what is the objective. During their life-cycle, batteries are used
as a portable power supply, for this reason, the goal is to make the discharge process last
as long as possible. In this project, instead, batteries are at the end of their life-cycle, and
the objective is to discharge them to be recycled. For this reason, the discharge has to
be as fast as possible, and the parameter that directly determines discharge time, is the
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discharge current, that has to be very high. Nevertheless, as said before, all the aspects are
connected, and the current is also directly related to the temperature of the cell. Together
with the rising temperature, a number of serious effects can occur, leading to problems
such as chemical deterioration of the cell, overheating, but also fires and explosions. The
temperature of the cell represent therefore the main limit to the discharge current, and
then to the discharge time.
The objective of this project is to design an automatic station for batteries discharge,

which is the first step to take on the process of recycling an electric vehicle battery packs.
Being the goal the recycling, not the reuse, it is not important that cells are not damaged
during the process, they will not be used anymore, but shredded to extract their basic
chemical elements. For this reason, it is not necessary to stop at the cell cut-off voltage,
chemical degradation or capacity loss are not an issue.
The unique phenomenon that needs to be worried about, for safety reasons, is over-

heating. Indeed, during the discharge process, high discharge current may generate huge
amounts of heat, that may trigger fires or, in the worst cases, even explosions. It is then
important to act a strict control of the temperature during the discharge process.
Nevertheless, this is just a case of study. It is not always recycling the destiny of EV

batteries at the end of their life-cycle. Electric vehicles need high performing batteries,
to always maintain good standards in autonomy, power-train performances and durability.
For this high level required, may happen that sometimes a battery pack that is still good
preforming in absolute terms, it is considered not performing enough for a car, and it is then
replaced. An other possible scenario, is that after a car crash the vehicle is too damaged
to be repaired, and is scrapped, but the battery pack may still be intact and perfectly
working. In these cases, recycling a still perfectly working battery pack would result to
be wasteful; it is thus preferable to reuse it for a second life. In such situations, the same
pack, in its original form, can be intended for a different use; alternatively, and more often,
the car battery is partially discharged (not down to 0, like in recycling) and dismantled
to obtain the single cells, that will be reassembled on a different pack, depending on the
chosen next use. There are many possible applications for second-life batteries, such as
smart grids, home storage, industries peak shaving, storage of renewable energy and so on,
as further explained in document [25].

3.6 Discharge control

Discharge control is the "decision-making process" used to decide what has to be the
current value during discharge. Current can be constant or variable, and the temperature
can be monitored or not, depending on which control is used. There are three main doable
control strategies, that are:

• Open loop control

• Open loop model based control

• Closed loop feedback control
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Open loop

Open loop control is the simplest, cheapest and quickest to implement. As an open loop
control, it provides that there is no feedback quantity, and thus no sensors to monitor the
ongoing process. However, to avoid safety hazards, temperature can’t never rise over a
safety level. Without monitoring the temp, it is not possible to know its value in real-time,
so it’s necessary to act with a large safety margin. For this reason, discharge current must
always maintain a low value. This leads discharge times to expand considerably, and it is
a big drawback.
This is the actually used control in the discharge station that has to be upgraded in this

project. It is a low performances approach and thus has to be improved, both in safety
and process time.

Model based

Open loop control can be improved introducing a thermal model into the control. The
model is a mathematical model that can predict in real-time the thermal behaviour of the
battery pack, thus the heat generation and how it effects temperature. As input is given the
discharge current, continuously, and the model returns the evolution of the temperature,
for each time instant.
The same input (the value of the current) will be given to the control and to the model,

and the output of the model is fed back and compared to the reference value, in order to
obtain control input. The controller, then, has not a view on what’s happening on the real
world, but has an estimation of it, given from the model.
The downside of this control is the necessity to find an accurate model of the battery

pack, which may not be easy, and that requires not negligible time during the design phase
of the control 3. Furthermore, it is necessary a very accurate model, otherwise temperature
prediction during operation could be wrong, resulting in possible overheating, with all the
hazards explained in previous section. Considering possible model inaccuracies, the temp
reference given to the control has to have a margin with respect to the real maximum
value allowed, and this margin has to be greater the bigger the model uncertainty. Lower
temperature means smaller current, and then longer discharge time due to slower discharge.
Another drawback of this control, is that to treat different battery packs (from different

manufacturers and different vehicles) it is necessary to find a specific mathematical model
for each one, that correctly describes its behaviour. This implies less adaptability of the
system, because the station will not be able to treat different battery packs from the ones
it has been designed for. Every time a new pack wants to be included, the relevant model,
with laboratory experiments, must be obtained. This is an important limit of this control,
which can be overcome with a different control approach, the closed loop.

3The eventual model has to be found during the design phase of the control, thus in the laboratory
before the station is operating. This means that once the model is found, during normal plant operation,
it won’t affect working time, but it will require more time in the previous phase, when implementing the
control due to the time needed to derive the model.
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Closed loop

The last strategy proposed is the closed loop control. It is the most commonly used
control in industrial applications and provides that the quantity generated by the process,
the output, is compared with the reference and on basing on the error between these, the
system is acted upon in order to obtain the desired behavior. In industries, feedback control
is often used to increase system performances, and it is appreciated for his high flexibility,
being able to adapt to changing situations and eventual non-idealities or mathematical
model inaccuracies.
As said before, in this application temperature is the unique parameter that limit and

thus determine the discharge current. It is therefore immediate that it is the quantity to
be used for the feedback. Compared to the other options, this control, offers a number of
advantages. Firstly, it is the unique control that physically has a direct view on the real
battery, a great safety advantage, which also allows to push further the system dynamic,
having smaller errors on knowledge of temperature. Furthermore, it is fast to implement,
since it doesn’t require various model characterization for different battery packs. Once
correctly initialized, it is capable of adapt to different battery models, just reading real-
time temperature, and without requiring any change. Also eventual small errors during the
tuning phase can be handled by the feedback, resulting in a very robust system, important
quality in industrial practice.
However, the most important characteristic of this control, is that it’s the fastest and

best dynamic performing between the ones considered, drastically reducing discharge time.
Indeed, thanks to the feed-back control performed on the real (unless not decisive inaccu-
racies due to the measurement) value, it is possible to set the reference to higher levels,
since the control will precisely keep the temperature below it. This is different compared to
model-based control, where it was necessary to reserve a safety margin between reference
and maximum allowed temperature, to compensate for any model inaccuracies.
The implementation provides that a reference temperature is set, which is the maximum

reachable value staying in safe conditions. This is compared with the measured one, and
making the difference between terms it’s found the error. A PID controller take that error
as input, and generate an output in order to reduce it down to zero. The output is the
discharge current, imprinted on the physical system by a variable load.
At this point, the control is ready, and just need a measure system capable of reading

the battery temperature. For this purpose, a thermal imager is integrated into the system.

3.7 Thermal Imaging

As explained in the previous section, a closed loop feedback control is chosen, it is thus
necessary a sensing system for battery temperature.
Of all of the industrial sensing technologies, temperature sensing is the most common.

This phenomena can be explained by citing examples in a multitude of applications where
knowing and using the actual or relative temperature is critical. For instance, other sensors
such as pressure, force, flow, level, and position many times require temperature monitoring
in order to insure accuracy. For this reason, there are many available technologies to
perform temperature detection, basing on specifics of the problem.
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The most popular temperature sensors used today are the Thermocouple, Resistive Tem-
perature Device (RTD), Thermistor, and the newest technology, the Integrated Silicon
Based Sensors. Are also very common other sensing technologies, such as Infrared (pyrom-
eters and cameras) and Thermal Pile.
Each of these sensor technologies cater to specific temperature ranges and environmental

conditions. The sensor’s temperature range, ruggedness, and sensitivity are just a few
characteristics that are used to determine whether or not the device will satisfy the re-
quirements of the application. No one temperature sensor is right for all applications, but
it depends on the specific case [2].
Table 3.1 summarizes the main characteristics of these temperature sensors.
For the purpose of this project, it is necessary to have a real-time detection of the

temperature on the whole battery pack. All the technologies exposed above are suitable
for it, however, thermocouples, RTDs, thermistors and silicon based sensors, can detect
temperature on a single point and needs to be in contact, or very close, to the target. To
entirely monitor a big object, like the battery pack is, many of them would be required,
disposing a "network" of sensors with a sufficient density to obtain a full view on the pack.
For its complexity, and thus the difficulty to be implemented in an automated system, this
is not a convenient approach.
The best option is thermography. Without the need for any physical contact with the

object to be measured, it’s immediate to adapt to different battery packs, and it’s easier to
integrate in a robotic system. Thermography offers two solutions: pyrometers and cameras.
Pyrometers is another name to refer to infrared thermometers. They can precisely detect
temperature, with a wide working range, and in short time, making them suitable for
industrial automated application. Nevertheless, they work on a single spot, it is therefore
not possible to entirely monitor the battery pack at once. As a matter of fact, also in this
case it would be necessary a network of sensors to monitor the pack in different points, to
obtain the overall view wanted.
The motivations explained above, show that for the station designed in this project, the

best solution is a thermal camera. Having a total view on the pack, it is easy to spot
eventual overheating and locate its position, and the full pack can be monitored with just
one sensor. It is also immediate to adapt to different battery packs, for model, structure,
typology and size, as long as they fit into the field of view (FOV) of the camera.
The output is a matrix of 160 rows by 120 columns, each one containing the temperature

measurement of the area located in that position on the camera FOV. This matrix can
be colorized. Each measurable value is associated with a certain unique color, assigned
following the order of the chromatic scale from blue to yellow for the increasing values: low
temperatures are associated with the blue color, and increasing values the hue progressively
changes towards yellow. An example of how this process transforms matrices into images
is shown below:
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Thermocouple It consists of two wires of dissimilar metals that are soldered to-
gether at one end. The temperature at the Reference Junction (also
know as the Cold Junction Compensation Point) is used to negate
the errors contributed by the Iron-Copper and Constantan-Copper
junctions. The connecting point of the two metals of the thermocou-
ple is positioned on the target where the temperature measurement
is needed. This configuration of materials produces a voltage be-
tween the two wires at the unsoldered end that is a function of the
temperature of all of the junctions, consequently, the thermocouple
does not require voltage or current excitation. As a matter of fact, an
attempt to provide either type of excitation could introduce errors
into the system. The termination ends of the thermocouple wires
connect to another metal, usually copper. This creates another pair
of thermocouples, which introduces a significant error to the sys-
tem. The only way to negate this error is to sense the temperature
at the Reference Junction box (another point on the copper plate,
not in between the two junctions) and subtract the contributing er-
rors of these connections in a hardware solution or a combination
of software and hardware. Thermocouples are highly non-linear and
require significant linearization algorithms, performed on both soft-
ware and hardware components. In principle, it can be made from
any two metals, however, in practice there are standard combination
because of their qualities of linearity and their voltage magnitude
drop versus temperature.

RTD The RTD (Resistance Temperature Detector) is a resistive element
constructed from metals, such as, Platinum, Nickel or Copper. The
particular metals that are chosen exhibit a predictable change in re-
sistance with temperature. Additionally, they have the basic phys-
ical properties that allow for easy fabrication. The temperature
coefficient of resistance of these metals is large enough to render
measurable changes with temperature. The linear relation between
resistance and temperature of the RTD simplifies the implementa-
tion of signal conditioning circuitry.

Thermistor If accuracy is a high priority, the thermistor should be the temper-
ature sensor of choice. The NTC (negative temperature coefficient)
thermistor is constructed of ceramics composed of oxides of transi-
tion metals (manganese, cobalt, copper, and nickel). With a current
excitation the NTC has a negative temperature coefficient that is
very repeatable and fairly linear.

Integrated silicon The silicon temperature sensor is an integrated circuit, it therefore
ease of installation in the PCB assembly environment. Integrated
circuit designs can be easily implement on the same silicon as the
sensor. This advantage allows the placement of the most challenging
portions of the sensor signal conditioning path to be included in the
IC chip. Consequently, the output signals from the sensor, such as
large signal voltages, current, or digital words, are easily interfaced
with other elements of the circuit. On the other hand, the accuracy
and temperature range of this sensor does not match the other types
of sensors discussed above in this table.

Table 3.1: Main temperature sensing technologies overview.

34





0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

42 43 44 45 46 47 48


⇒

At this point, by interpreting the matrix as an image, as if each of its elements were a
pixel, a visual representation of the temperature on the battery pack is obtained. Figure
3.7 shows a generic example in which this technique has been applied. This kind of repre-

Figure 3.7: Example of a colourized image.

sentation is very intuitive and makes it immediate to understand the trend of temperature
on the object, gathering many information on a single frame. For this reason, it is very
useful for human understanding, thus ideal to show data and monitor the process progress
in operation, but it is not suitable to be used as input to the control. As previously
mentioned, temperature is the chosen control variable, with the aim of avoiding battery
overheating while discharging at the highest possible speed. It is therefore sufficient to
give as control input the maximum temperature on the pack for each moment, regardless
of where it is located. To obtain it, a function searches for the maximum number of the
camera’s output matrix, that enters the control loop.
Another advantage of using a thermal camera consist of the possibility of visually locating

where the hot-spots are within the battery, for each sample, and save these data obtaining
their evolution along time.
In figure 3.7, that represents a battery pack thermal detection colourized with the tech-

nique explained above, also the maximum temperature point location is represented, iden-
tified by a small red dot on the image.
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Analysis of hot-spots evolution over time may be interesting for further studies on bat-
teries discharge.

3.7.1 Flat Field Correction

Flat-field correction (FFC) is a technique used to improve quality in digital imaging. It
cancels the effects of image artifacts caused by variations in the pixel-to-pixel sensitivity
of the detector and by distortions in the optical path [8].
In general terms, FFC is used to correct:

• Differences of light sensitivity between the pixel sensors of a camera.

• Differences of illumination intensities in the field-of-view.

• Differences in the transmission of light through the lens (for instance: vignetting).

The goal is to correct the pixels of the captured (raw) images in order to obtain an
uniform resulting output when a uniform background is captured by the system (camera
& lens). Once a detector has been appropriately flat-fielded, a uniform signal will create
a uniform output (hence flat-field). This then means any further signal is due to the
phenomenon being detected and not a systematic error.
In normal operating conditions, a detector (light sensor, vision system, camera, etc) is

affected by distortion effects due to gains and dark currents.
In physics and in electronic engineering, dark current is the relatively small electric

current that flows through photosensitive devices such as a light sensors (thus photodiodes)
even when no photons enter the device. It consists of the charges generated in the detector
when no outside radiation is entering the detector. It is referred to as reverse bias leakage
current in non-optical devices and is present in all diodes. Physically, dark current is due
to the random generation of electrons and holes within the depletion region of the device.
Dark current is one of the main sources for noise in image sensors. The pattern of different
dark currents can result in a fixed-pattern noise, which an be estimated. Nevertheless,
the dark current itself has a shot noise (which can be represented as a Poisson random
variable), which therefore results in a time variant noise.
The flat-field correction performed by FLIR 3.5 thermal camera consist on the compen-

sation of offset errors described above, in order to obtain a more realistic thermal image,
then a better temperature detection.
The correction consists on three main steps:

• Flat-field image acquisition

• Dark image acquisition

• Correction coefficients calculation

The first step in calibration consist on taking the flat-field capture. A flat-field image
is acquired by imaging a uniformly "illuminated" surface, thus producing an image of
uniform color and brightness across the frame. In thermal imaging this refers to the infra-
red radiation that hits the camera, it is thus needed a uniform temperature surface.
The second data required is the "Dark Image". Also known as dark frame, it is an image

captured in the "dark", therefore in a condition where the camera sensor is not excited by
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external radiation. Such image represents the dark current of the sensors, and is considered
as a fixed bias that we want to eliminate when acquiring images in normal conditions. To
acquire it, it’s necessary to cover the lens and take a capture.
For the current application, FFC has to be taken "online", during operations. For this

purpose, the camera is equipped with a moving shutter, able to cover the whole camera
field of view. Shutter is used to take the dark image.
Once those images are available, correction can be computed. A flat-field consists of

two numbers for each pixel, the pixel’s gain and its dark current. The pixel’s gain is how
the amount of signal given by the detector varies as a function of the amount of light (or
equivalent). The gain is almost always a linear variable, as such the gain is given simply
as the ratio of the input and output signals. Dark-current has already been explained.
To calculate the flat-field correction two values are computed [7]:

• Offset coefficients

• Gain coefficients

Offset coefficient is simply the dark current value detected for each pixel, through the dark
image:

Offsetrow,column = DarkImagerow,column

The offset correction matrix is obtained from combining these elements.
The gain calculation requires few more steps. First of all are defined the necessary terms,

which description is reported in table 3.2 (capital letters are used for matrices).

C corrected image image obtained after FFC
R raw capture image acquired, not processed
F flat-field image uniform light pattern image
D dark field image uniform dark image
m averaged value target value for the pixels
G pixels gain matrix gain correction for pixels

Table 3.2: Flat Field Correction terms description.

Firstly, is calculated the target value that every pixel should have, basing on flat and
dark images. The average on the flat image matrix gives the pixels goal value, on which
the dark current correction is applied according to dark image matrix average value.

m = avg(F )− avg(D)

Each pixel should have this value. In order to achieve it, it’s calculated the gain necessary
for every element, according to the relation [7]:

m = (Frow,col −Drow,col) · gain (3.1)

Starting from relation 3.1 it is possible to obtain the gain for each pixel, rewritten in matrix
form:

G =
m

F −D
Knowing the gain for every pixel it is now possible to calculate the flat-field corrected
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image:
C = (R−D) ·G

FLIR 3.5 thermal camera performs only one of the described corrections: offset com-
pensation of the dark currents. In order to take the dark frame, shutter is closed, and a
capture is taken, then used for the calculations.
Dark currents, in many detectors, such as thermal cameras, can also be a function of time.

For this reason, it is necessary to continuously update dark currents value along operations.
The default value of Lepton’s flat-field correction time trigger is 180 seconds (3 minutes).
When calibration occurs shutter closes and output data is frozen throughout the FFC event
(nominally 0.4 sec) [8]. During and right after the calibration event, the output measure is
heavily corrupted. As shown in figure 3.8, the correction leads periodically to high peaks on
the measurement, with amplitude around 1.5 Celsius degrees, which distance the measure
from its real value, and amplitude in terms of time of about 25 seconds. This effect is not
negligible and may result problematic for some applications, it has to be treated.
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Figure 3.8: Temperature behaviour when Flat Field Correction occurs.

To cut the peaks due to the FCC, which only distort the measurement, there are two
main possible solutions:

• Apply a low-pass filter

• Discard the distorted samples

Data filtering

Filtering data is the first solution usually considered when facing problems of noise or high
frequency disturbances, but it may not always be the best solution. The main advantages
and drawbacks will be considered below.
Generally, to clean a signal with a filter, it is necessary to know the disturbance and

main signal frequency spectra. Knowing these parameters it is possible to set filter cut
frequency in order to filter the disturbance and leave unchanged the signal of interest.
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Low-pass filters are very effective, however, they introduce a significant delay on the
system, directly proportional to filter capability to cut the noise. This is filters main
drawback, and introduces a reduction in the overall system responsiveness.
In this case of study, the acting noise is known a priori. This gives an important advan-

tage: the possibility of making the frequency analysis of the signal in order to determine
noise dynamic and set the filter accordingly.
Another advantage introduced by the implementation of a filter is that all the eventual

noise and high frequency disturbances acting on the system can be reduced, even if un-
known or unexpected. It is indeed clear from the measure graph that, beside FFC, there
are other phenomena that makes the measure very noisy, and this behaviour can be fixed
thanks to the filter.
On this project, two types of filters have been tested in order to handle noise:

• Butterworth filter:

The Butterworth filter is a type of signal processing filter designed to have a frequency
response that is as flat as possible in the passband, in order to approximate as much
better an ideal filter. It is also referred to as a maximally flat magnitude filter.

To design a Butterworth filter some parameters has to be set, such as cut-off fre-
quency, basing on the noise frequency; filter order (n), that determines frequency
response amplitude slope after cut-off, equals to n ∗ (−20dB/dec);

The gain G(ω) of an nth-order Butterworth low-pass filter is given in terms of the
transfer function H(s) as:

G2(ω) = |H(jω)|2 =
G0

2

1 +
(

jω
jωc

)2n
Where G0 is the DC gain and ωc is the cut-off frequency.

• Finite Impulse Response (FIR):

A Finite Impulse Response (FIR) filter is a filter whose impulse response (or response
to any finite length input) is of finite duration, because it settles to zero in finite time.
This is in contrast to infinite impulse response (IIR) filters, which may have internal
feedback and may continue to respond indefinitely.

In case of an Nth order discrete time FIR filter, the impulse response (i.e. the output
in response to a Kronecker delta input) lasts exactly N+1 samples (from first nonzero
element through last nonzero element) before it then settles to zero.

For the filter design is used the "Windows design method". Which consist of a
first design of an ideal IIR (infinite impulse response) filter and then truncating the
infinite impulse response by multiplying it with a finite length window function. The
result is a FIR filter whose frequency response is modified from that of the IIR filter.

Multiplying the infinite impulse by the window function in the time domain results
in the frequency response of the IIR being convolved with the Fourier transform of
the window function. If the window’s main lobe is narrow, the composite frequency
response remains close to that of the ideal IIR filter.
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Samples digital selection

Another possible technique for dealing with the noise introduced by the FFC is to discard
the FFC corrupted samples and replace them with a prediction based on past behaviour.
This kind of techniques are possible as it is used a digital control, which therefore allows

samples manipulation.
The great advantage of this approach is that it doesn’t introduce any type of delay,

contrary to what happens when introducing a filter.
On the other side, during the time interval when samples are replaced with their predic-

tions, input-output dynamic relation is temporarily lost, until real samples are acquired
again. This is not a problem as long as the bound is lost for a period of time sufficiently
short compared to the response time of the system.
For the purpose of this project, samples digital selection has been chosen. Both ap-

proaches was tested, but the advantage of not introducing any delay on the process pro-
duced better control results.
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Chapter 4

Experimental Setup

In this section the experimental setup used for the project will be shown and explained.
The various parts of the work required different equipment and tools, for this reason, two
experimental setup has been used, both described below. The first setup was used to test
the vision system and its operation for the analysis of the battery pack. A structured light
camera was mounted on a robot arm that could move over the battery to take acquisition
from different points of view. The robot was also equipped with an end effector that
emulated the interaction of the arm with the battery pack.
The second setup was designed to test the final part of this project, the feedback control

of the battery discharge. For safety reasons, the actual discharge tests were not carried
out on the high voltage battery used for the vision tests, but on another battery pack,
self-produced, of smaller size, to make it possible to treat it with the equipment available
at the laboratory.

4.1 Vision system setup

The configuration used for testing the vision system consists of different elements, the main
ones are listed below:

• ABB IRB 4400 robotic arm

• ABB IRBT X004 track motion

• ROS core

• Zivid one plus structured light camera

• Volkswagen Passat GTE Hybrid battery pack

4.1.1 Robotic arm

The manipulator engaged for this project is the ABB IRB 4400 (figure 4.1). This robot
is an extremely fast and compact robot for medium to heavy handling. It has exceptional
all-round capabilities which makes it suitable for a variety of manufacturing applications.
On the 4400/60 version the load capacity of 60 kg at very high speeds usually permits
handling of two parts at a time [1].
It is a 6-axis industrial robot, designed specifically for manufacturing industries that use

flexible robot-based automation. The built-in process ware, has an open structure that is
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specially adapted for flexible use, and can communicate extensively with external systems.
The robot is equipped with the IRC5 controller and robot control software, RobotWare.
RobotWare supports every aspect of the robot system, such as motion control, develop-
ment and execution of application programs, communication etc [13]. The manipulator
is available in two different versions: IRB 4400/60 and IRB 4400/L10. The difference
consists on reach, respectively 1.96m and 2.53m, and handling capacity, respectively 60kg
and 10kg. The 4400/L10 version has a longer final member, which ensures a wider working
range (although reduced on the area closer to the robot and extended further away) but
a lower payload, due to the increased torque resulting on the motors. For this project the
IRB 4400/60 version is used.

Figure 4.1: ABB IRB 4400/60 members dimensions

Its dimensions make it ideal to move around the battery pack and take acquisitions from
different points of view, as well as allowing the robot to reach and act on every point of
the battery pack as needed.
Manipulator main characteristics, according to data sheet [13], are tabulated below (table

4.1):

Variable Value

Robot version 4400/60
Number of axis 6
Payload 60 kg
Reach 1.96 m
Position repeatability 0.06 mm
Path repeatability (1.6 m/s) 0.09 mm
Controller IRC5

Table 4.1: ABB IRB 4400 technical data
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4.1.2 Motion track

The robotic arm is not installed on the floor, but on a "moving platform" which acts as
the 7th axis. This additional degree of freedom allows the robot to translate on a straight
line along the Y axis. This feature can be useful for particularly large battery packs, in
which the vision system is not able to acquire the whole pack with a single scan. In these
cases, the track allows to move longitudinally along the battery pack, revealing the hidden
part of the pack to the camera.
To be integrated with the IRB 4400 robot, the ABB IRBT 4004 was used (figure 4.2). It is

an high class track motion from ABB, with company’s unique Quick-Move and TrueMove,
which can be fully exploited, that means optimal movement for the robot and the track
with actual load, ensured by a seven-axis dynamic model. With compact, robust design
and path accuracy and speed optimized, up to 2.0m/s and 2.5m/s2 acceleration [14].

Figure 4.2: ABB IRBT 4004 linear axis

4.1.3 Robot Operating System core

Robot Operating System (ROS or ros) is an open-source robotics middleware suite. Al-
though ROS is not an operating system but a collection of software frameworks for robot
software development, it provides services designed for a heterogeneous computer cluster
such as hardware abstraction, low-level device control, implementation of commonly used
functionality, message-passing between processes, and package management. Running sets
of ROS-based processes are represented in a graph architecture where processing takes
place in nodes that may receive, post and multiplex sensor data, control, state, planning,
actuator, and other messages. Despite the importance of reactivity and low latency in
robot control, ROS itself is not a real-time OS. It is possible, however, to integrate ROS
with real-time code. Recently, ROS 2 has been released, whit the aim of taking advan-
tage of modern libraries and technologies for core ROS functionality and add support for
real-time code and embedded hardware [6].
Software in the ROS Ecosystem can be separated into three groups:

• language-and platform-independent tools used for building and distributing ROS-
based software

• ROS client library implementations such as roscpp (C++) and rospy (Python)

• packages containing application-related code which uses one or more ROS client
libraries
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Figure 4.3: Zivid camera operation scheme. Figure 4.4: Light patterns projection, dis-
torsion and recognition on a structured light
camera.

In this project, ROS is used to connect and communicate the different parts of the setup,
explained above. In particular, ROS packages for the Zivid camera and IRB robot, permit
to interface with the ROS core, hosted on the laboratory’s computer. The "rospy" library,
available for Python, gives the possibility to develop code to synchronize the different parts
and act the task planning.

4.1.4 Zivid structured light camera

The central and most important part of the whole setup is the vision system. This has the
task of identifying the battery connectors and determining their position in space. The
precision of the operations that must be carried out requires that the camera is able to
scan with good resolution, obtaining an accurate points cloud and therefore a precise pose
estimation.
To achieve this objective, a structured light camera was used, the "Zivid One plus",

medium size model. A structured-light 3D scanner is a 3D scanning device for measuring
the three-dimensional shape of an object using projected light patterns and a camera
system. Projecting a narrow band of light onto a three-dimensionally shaped surface
produces a line of illumination that appears distorted from other perspectives than that of
the projector, and can be used for geometric reconstruction of the surface shape.
A faster and more versatile method is the projection of patterns consisting of many

stripes at once, or of arbitrary fringes, as this allows for the acquisition of a multitude of
samples simultaneously. Seen from different viewpoints, the pattern appears geometrically
distorted due to the surface shape of the object.
Although many other variants of structured light projection are possible, patterns of

parallel stripes are widely used. The picture shows the geometrical deformation of a single
stripe projected onto a simple 3D surface. The displacement of the stripes allows for an
exact retrieval of the 3D coordinates of any details on the object’s surface [31][32].
It’s crucial to have an high camera resolution in order to obtain good pose estimation.

Lower detection error leads lower positioning errors. Zivid is a state of the art camera
and is able to take high resolution pictures, acquiring (1920 x 1200) size frames. It is
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therefore possible to acquire a point cloud containing 2.3 million points (thanks to the 2.3
MP camera resolution).

4.1.5 Battery pack

The battery pack under test for this project is from the plug-in hybrid Volkswagen Passat
GTE (figure 4.5).

Figure 4.5: Volkswagen Passat GTE battery pack

The electrochemical energy storage system used for this vehicle is a modular lithium-ion
high-voltage battery, designed for fully electric and hybrid operation of a plug-in hybrid
vehicle. It consists of 96 prismatic cells with a capacity of 25 Ah each. Divided into four
modules of twenty four cells each, this results in a rated energy content of 9.9 kWh at a
rated voltage of 352 V.
The housing for the high-voltage battery consists of an upper section made from sheet

aluminium and a lower section made from cast aluminium. Alongside the cell modules,
the high-voltage battery also incorporates the battery management controller (BMC) and
the battery junction box (BJB) containing the switching and measurement elements for
the battery’s high-voltage part [16].
Battery main specifications are reported in table 4.2.

4.2 Battery discharge setup

The second experimental setup is necessary to achieve the final part of the project, which
consists of testing a possible methodology to discharge the battery pack. At this point,
once previous parts of the project have been completed, the connectors of the battery pack
have been identified and connected to the discharge device , it’s now necessary to act the
electrical discharge. As later explained in the "theory on discharge EV battery packs"
chapter of this report, there are many possible industrial ways to discharge a battery,
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Passat GTE battery pack

Nominal energy 9.9 [kWh]
Usable energy 8.7 [kWh]
Modules 4
Cells per module 24
Total cells 96
Cells type prismatic
Voltage 353 [V]
Nominal capacity 25 [Ah]

Table 4.2: Volkswagen Passat GTE battery pack specifications.

with their pros and cons. On this project, resistive discharge is proposed, monitored by a
thermal camera. Normally, is set a constant discharge current, maintained until the end
of the discharge, nevertheless, the proposed solution, provides that in order to increase the
performance of the system, instead of implementing an open-loop control, the temperature
of the battery pack is fed back, acting as control variable of a closed-loop system. This
allows for a variable c-rate, reducing discharge time, but still ensuring a safe discharge,
thanks to the camera temperature monitoring.
Electric vehicle’s batteries work at high voltages, around 350 Volts, for this reason,

conducting experimental discharge techniques might be dangerous, and requires specific
and expensive instrumentation. For this reasons, as a first approach, it is better to start
with a small battery pack, test the proposed process, and then, in case everything is
correctly working, make further studies on bigger packs.
On this project, a small self-made battery pack is tested (figure 4.6). The main functions

of the setup are to lead, control and monitor charge and discharge. Indeed, in order to
carry out many experiments, after every discharge it is necessary to charge again the pack,
to start a new cycle.

Figure 4.6: Battery discharge setup implementation.

Each test is divided into two phases: the charge phase, at the beginning, that leads to
maximum state of charge the pack; and the discharge phase, the actual testing phase, with
a variable c-rate controlled basing on the temperature detected by the camera. Different
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components of the setup work on different phases.
The setup is composed by different devices and parts, the main ones are:

• Array 3721A programmable electronic load

• Array 3663A DC power supply

• 7 series of 2 parallel cells battery pack

• Battery management system (BMS 7S)

• FLIR PureThermal mini board & FLIR Lepton 3.5 thermal camera

• 3D printed mechanical support

• Central control unit (PC)

4.2.1 Programmable electronic load & DC power supply

The crucial part of the discharge system is the possibility of changing, as wanted, the
discharge current. This feature is ensured by the programmable electronic load. A pro-
grammable load is a type of test equipment or instrument which emulates DC or AC
resistance loads normally required to perform functional tests of batteries, power supplies
or solar cells. By virtue of being programmable, tests like load regulation, battery dis-
charge curve measurement and transient tests can be fully automated and load changes
for these tests can be made without introducing switching transient that might change the
measurement or operation of the power source under test [18].
In this project, during the second phase of each discharge test, a PID regulator determines

the discharge current and communicate it to the load, that acts as actuator, changing the
resistance of the circuit.

Figure 4.7: Setup instrumentation: Array DC power supply (left) and programmable load
(right)

The DC power supply, instead, works on the first phase of the experiment, recharging the
battery to prepare it to get discharged. Both equipment are from the Taiwanese "Array
Electronic Company, Ltd", model 3721A for the load and 3663A for the DC supply. Main
characteristics reported on table 4.3 [20][21].
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Array 3721A - load

Max input voltage 80 V
Max input current 40 A
Max input power 400 W
SCPI programming supported
Battery discharge mode available

Array 3663A - power supply

Max output voltage 80 V
Max output current 6.5 A
Max output power 520 W
SCPI programming supported
CC-CV mode available

Table 4.3: Array instruments technical specifications

Single cells

Company Panasonic
Model NCR18650B
Nominal voltage 3.6 V
Rated capacity 3350 mAh
Rated energy 12.06 Wh
Weight 48.5 g
Energy density 676 Wh/l

Battery pack

Number of cells 14
Series of 7 parallel pairs
Nominal voltage 25.2 V
Rated capacity 6700 mAh
Rated energy 168.84 Wh

Table 4.4: Low voltage battery pack technical specifications

4.2.2 Low voltage battery pack & BMS

For reasons explained above, to test the control of the discharge it wasn’t possible to use
the EV battery pack, thus, a small low voltage battery pack, self-produced, has been made
and used. This pack is composed of 14 cells, with 3.6V of rated voltage per each. The cells
are parallel connected in pairs, forming 7 couples, which are in turn connected in series.
The voltages of each pair add up for a total of 25.2V , which is the nominal voltage of the
battery pack. Considering a rated capacity of 3350mAh for each cell [26], the battery pack
results to have an overall capacity of 6700mAh. Table 4.4 reports cells main specifications,
as reported in data-sheet [26].
The construction of the battery pack was completed with the addition of a Battery

Management System (BMS). Although in the real case study the BMS is bypassed during
the discharge, in the experimental setup a BMS is still necessary. This is because the
presence of the BMS ensures that the battery pack is charged and discharged correctly,
and that the maximum and minimum voltage values of the individual cells are not exceeded.
This ensures that the cells are not damaged during the various tests, so that they can be
charged and discharged several times, and therefore can be done more tests. The presence
of the BMS does not alter the results of the experiment for the purposes of evaluating the
methodology applied. The only difference is that in the real application, on the EV high
voltage battery, without the BMS during discharge, the cells could be damaged, but this
is not a problem as the cells have then to be recycled (the components are extracted) and
not reused in other applications.

4.2.3 Thermal camera & mechanical support

The thermal camera has the purpose of monitoring the temperature trend on the whole
battery pack, detecting any overheating and allowing the system to act accordingly. Po-
sitioning the camera at an appropriate distance (in our case around 20 cm) it is possible
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to acquire the whole pack at once. The field of view (FOV) of the camera is divided into
a matrix of 19200 pixels, for each of which the temperature relative to that area is given.
This feature allows not only to determine which is the peak temperature of the battery
pack, that is necessary for the control, but also to locate it on the battery pack, determining
if there is an area that is more prone to overheating. This data are digitally transmitted
via USB cable to the computer, which can easily elaborate it.
The chosen camera is the "Lepton 3.5" from "FLIR Systems". The FLIR Lepton is

a radiometric-capable LWIR (Long-Wave InfraRed) OEM (Original Equipment Manufac-
turer) camera solution, very compact, and cheap compared to traditional IR cameras. Us-
ing focal plane arrays of 160x120 active pixels, Lepton could easily integrates into native
mobile-devices and other electronics as an IR sensor or thermal imager. The radiometric
Lepton captures accurate, calibrated, and non-contact temperature data in every pixel of
each image [19]. Its small dimensions and high performance specifications, makes it the
ideal camera for this project.
To complete the setup and assemble together in place the different parts, it was necessary

to build a case for the cells and a support for the thermal camera. Being necessary for
a specific application, both parts have been self-designed and self-produced from scratch,
using a 3d printing process. As software for the design of mechanical parts was used
"Autodesk Inventor 2021". The slicing process, hence converting the "solid" 3D model
into a "printable layers" model and then into code readable by the 3D printer, was carried
out by the slicer software "Ultimaker Cura v. 4.8". Lastly, "Ultimaker 2 Extended +" 3D
printer was used to craft all the parts, using PLA+ plastic polymer as printing material.

4.2.4 Control unit & Operating logic

As just shown, this setup is composed of many different parts, which must work simultane-
ously and communicate. To coordinate and control the system, as central unit an "ASUS"
PC is used. The advantage of having all USB interfaced components, makes it easy to
connect to a normal PC. The core that manages the operations is a Python script, which,
thanks to different libraries, can perform different tasks: handling the communication with
the electronic load via SCPI (Standard Commands for Programmable Instruments) and
with the thermal camera, regulating the temperature sampling frequency, acquiring images
at fixed time intervals, highlighting the hot-spots localization, implementing a PID con-
troller that regulates the current, estimating the remaining state of charge of the battery,
showing in real-time via console the acquired data and saving them in CSV format.
Every single test is divided into two phases:

Phase 1: Charge phase

Phase-2: Discharge phase

The first one, it’s just a preparatory procedure, that it’s necessary to bring the battery to
the same initial condition for each test, i.e. at the same state of charge (SOC) level, that is
100%, to make the test last as long as possible. The battery pack was built with only one
external connector, to avoid the possibility of connecting at the same time both the supply
and the load. For this reason, the first operation to perform consists of connecting DC
supply cables to the battery connectors. Then, the BMS has to be unlocked (connecting via
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Bluetooth), indeed, for safety reasons, in not operating conditions it opens circuit switches
avoiding current circulation. At this point, it is possible to start the charging process,
setting the parameters on the DC supply. Charging Lithium-Ion cells requires a particular
operating mode, called CC-CV, that ensures cells to reach their full capacity, in a safe and
long-life sustainable way.
CC stands for Constant Current, and it’s a simple method that uses a small constant

current to charge the battery during the whole charging process. CC charging stops when
a predefined value is reached. This method is widely used for charging NiCd or NiMH
batteries, as well as Li-ion batteries. The charging current rate is the most important
factor, and it can significantly influence the battery’s behavior. For this reason, the main
challenge of CC charging is setting a suitable charging current value that will satisfy both
charging time and capacity utilization. A high charging current provides a quick charge
but also significantly affects the battery’s aging process. A low charging current provides
high capacity utilization but also produces a very slow charge, which is inconvenient, for
instance, in EV applications.
On the other side, another method is CV charging, constant voltage, which regulates a

predefined constant voltage to charge batteries. Its main advantage is that it circumvents
overvoltages and irreversible side reactions, thus prolonging battery life. Since the voltage
is constant, the charging current decreases as the battery charges. A high current value is
required to provide a constant terminal voltage at a nearly stage of the charging process.
A high charging current from 15 percent to 80 percent SOC provides fast charging, but the
high current stresses the battery and can cause battery lattice collapse and pole breaking.
The main challenge for CV charging is selecting a proper voltage value that will balance
the charging speed, electrolyte decomposition, and capacity utilization. Generally, the CV
charging method is efficient for speedy charging, but it damages the battery capacity. The
negative effect is caused by an increased charging current at a low battery SOC (at the
beginning of the charging process), where the current value is significantly higher than
the nominal battery current. The high battery current causes the battery lattice frame to
collapse and contributes to the pulverization of the active battery pole substance.
The CC-CV charging method is a hybrid approach that combines the two previously

mentioned charging methods. It uses CC charging in the first charging stage, and when
the voltage reaches the maximum safe threshold value, the charging process shifts to the
CV charging method. The charging process is complete when the current levels off or
when full battery capacity is reached. The charging time is mainly defined by the constant
current value (CC mode), while the capacity utilization is predominantly influenced by the
constant voltage value (CV mode) [29].
Once the maximum capacity is reached, second phase can start. The discharge phase is

the real testing phase, since the objective of the experiment is to determine a discharge
method. Firstly, has to be disconnected the DC supply, in favor to connecting the pro-
grammable load. Battery management system unlock is still necessary, in order to to permit
the discharge. The entire process is now controlled by the Python program, therefore no
more actions are needed on the setup. The script gives the possibility to set different values,
such as SOC final value (at which to stop the discharge), time limit, current saturation,
disable or use PID controller, discharge current value (when PID is off) and more. When
started, the program shows in real-time the information about the ongoing discharge, and
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save them for further subsequent analysis. When the battery reaches its lower SOC level
(or the threshold set on the script) the control unit stops the discharge.
At this point, one experimental cycle is concluded, and data are ready to be analysed.

Going back to the phase one, it is possible to start a new experiment, changing, for example,
PID tuning or other parameters.
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Chapter 5

Results and Discussion

In this chapter are reported the results obtained with the experimental activity. The
detailed explanation of how these have been carried out is given in chapter 3, while the
description of the hardware and software experimental setup is given in chapter 4.
The discussion is divided into two sections, the first one for the computer vision part,

and the second one for the discharge monitoring and control. On each section, the results
obtained are shown and discussed.

5.1 Vision system

The vision system is the set of structured light camera, robotic arm and ROS core, which
jointly perform the role of identifying the connectors of the battery pack, locating them in
space and moving the system in order to make the connection.
The first goal of this project, is the training of YOLO, the vision algorithm, that has

the role of performing object detection. With the resulting information, together with
structured light camera’s data, it is possible to localize connectors position within the 3D
space.
The work reported on this section are the network training and detection results.

5.1.1 Training phase

Training images set is very important to be various and realistic. It’s fundamental that it
includes different pictures from possible working scenarios, in this way, once trained, the
CNN will be more versatile, being able to adapt to different situations, even different from
the training ones. For further theoretical details refer to section 3.3, "Training phase", at
page 23 of this report.
For the neural network training, there are some main parameters that can be regulated,

which leads to different resulting training, and thus detection performance, which are:

• Number of epochs

• Training set mix

• Network configuration

• Pre-trained weights
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There are different available options for each parameter, the main ones that have been
considered and tested are reported in table 5.1.

Parameter Available or used options

Epochs

5
50
100
200
250
300

Images set
different points of view
different light conditions
level of detail (relative distance)

Configuration files

yolov3.cfg
yolov3-tiny.cfg
yolov3-spp.cfg
modification of previous ones

Pre-trained weights

yolov3.weights
yolov3-spp.weights
yolov3-spp-ultralytics.weights
previous training weights
none - from scratch

Table 5.1: Training parameters available options.

To find the best training configuration many have been tried, changing some of the
parameters and noticing how they affect the detection results.
In order to evaluate how the training phase took place, some parameters are given as

output from YOLO, these are both losses and evaluation metrics. The losses are computed
on both training and validation set, in order to detect possible overtraining.
Among the various tests that have been carried out, one has been selected as the best

configuration for this object detection task, which parameters are reported in table 5.2.
For the chosen configuration, all the training output parameters reach optimal values.

The loss functions hit really low scores, and the evaluation metrics rise high close to the
optimal value that is one. Table 5.3 reports the final values obtained with the given
training.
For the training evaluation it is also important to evaluate the trend of these parameters,

not just their final value. A decreasing trend along with epochs means that the network
is still learning, but it is also important to monitor the fact that the network does not
become too dependent on the data used for training.

Parameters configuration
Epochs number 300
Configuration file yolov3.cfg
Pre-trained weights yolov3.weights

Training Images overall pack images
detailed BJB images

Table 5.2: Best training configuration parameters.
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YOLO output parameters

GIoU loss 0.149
Objectness loss 0.0549
Classification loss 0.0223

YOLO evaluation metrics

Precision 0.942
Recall 0.977
mAP(0.5) 0.975
F1 0.959

Table 5.3: YOLO training output parameters and evaluation metrics.

Most of all, it is important to monitor the behaviour of the losses calculated on the
validation set, because tanks to these it is possible to detect possible overtraining. As
long as the losses have a monotonous decreasing trend, it means that no overtraining has
occurred.
Figure 5.1 shows the trend of two evaluation metrics, the precision and the F1 score

(which explanation is reported at section 3.3.3). Both values tend monotonically to one,
and they settle to their final value around 200 epochs. The recall trend is not reported
since its value grows fast immediately and settle around its final value within the first 50
epochs.

(a) Precision. (b) F1 score.

Figure 5.1: YOLO evaluation metrics: precision and F1 score.

Another important evaluation metric to consider, given as output from YOLO, is the
mean average precision (mAP), which gives an overall view on training performances.
Mean average precision is computed as the average of the AP value for different IoU
threshold considered. Also this metrics shows an optimal result, settling on a value very
close to one (figure 5.2).
In order to evaluate the training another important factor are the loss values, YOLO

returns three values calculated both on the training set and on the validation set. Figure
5.3 shows the behaviour of the generalized intersection over union (GIoU) along the epochs,
for both training and validation sets.
Another loss value given as output from YOLO that can be considered in order to evaluate

the training performance is the objectness loss. Figure 5.4 reports the same comparison
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Figure 5.2: mean average precision evaluation metric.

(a) Training set. (b) Validation set.

Figure 5.3: Generalized intersection over union loss computed for training and validation
set.
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Set Overall Detailed Total Percentage

Training 82 35 117 80%
Validation 20 9 29 20%

Table 5.4: Training and validation sets composition.

between training and validation set for the objectness loss.

(a) Training set. (b) Validation set.

Figure 5.4: Objectness loss computed for training and validation set.

It’s important to note that the loss value for both training and validation set is decreasing.
This means that the system is not subject to overtraining. In case of overtraining, the loss
calculated on the validation set would tend to increase at some point, because the network
would lose its ability to generalize.
A total of 146 images were taken for the composition of the training and validation sets,

all in the same working condition (for brightness). This is done to simulate a real operating
situation, in which all images are taken in the same condition. Such images are all different,
taken moving the camera in different points of view.
The training and validation sets composition is defined as follow (table 5.4). "Overall"

refers to images of the whole battery pack while "detailed" refers to detailed images of the
connectors, hence images taken closer to the battery junction box.

5.1.2 Detection phase

Once the network is trained it is possible to test the resulting weights on other images
(inference phase), in order to evaluate system effectiveness and capability to generalize.
For this purpose, another images set is created, containing 40 images taken in different

working conditions (many images is taken on each condition tested). Some of this images
are reported below to show the detection results obtained.
The network proofed to be capable to adapt to different light conditions, correctly and

precisely identifying the connectors. Figure 5.5 shows two different detection scenarios,
with the laboratory illuminated by natural light (during day-time) and the laboratory illu-
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minated with artificial light (during night-time). In both cases the localization is performed
precisely, and the belonging class (left and right pole) are assigned correctly.

(a) Natural light.

(b) Artificial light.

Figure 5.5: Detection with different light conditions.

The system is also capable of working from different camera-battery acquisition distances
and different relative positions (different angles), therefore changing the point of view
(POV). In figure 5.6 are reported two images taken from different POVs. Figure 5.6a is
taken moving the camera very close to the left connector, and also presents a strong light
reflection. Camera can also be moved in order to take pictures of the connectors from
different angles, revealing a different view on the object, this is the case of figure 5.6b.
It is also interesting to note that the network correctly distinguishes and classifies the

left and right connectors, even when only one of them appears in a picture.
The vision system has also demonstrated its operation, as well as for different lighting

conditions, even in the case of very low lighting, this is the example shown in figure 5.7.
Pictures 5.7a and 5.7b are taken with two different settings for the structured light
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(a) Close capture with presence of light reflection.

(b) View from other battery side.

Figure 5.6: Detection from different distances and points of view.
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(a) Reduced lighting.

(b) Very low lighting.

Figure 5.7: Detection in reduced light conditions.
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camera. Indeed, in order to obtain the best point cloud, there are some parameters that
can be set, which are iris aperture, exposure time, stops value, projector brightness and
sensor gain. Different configuration of such parameters may result in photo with different
brightness, or, in general terms, these parameters are set for a specific lighting environment,
and when the external conditions change, also the acquisition result different, and possibly
very dark.
In the end, the last example reports a detection performed on a very critical situation,

i.e. with the connector not fully visible but partially covered, because of the point of view
the picture is taken from (figure 5.8).

Figure 5.8: Detection with connector partially covered.

Even in such situation, the system surprisingly performs correctly the identification, both
locating and classifying properly the connector.
This example further confirms the generalization capacity of the network, which has

proved to be extremely flexible and versatile, capable of working in conditions significantly
different from those used for training, and therefore of adapting to different work scenarios,
a very important factor in future industrial use.

5.1.3 Pose estimation

Once the connectors are detected their spatial pose has to be estimated. The YOLO
algorithm gives as output the coordinates of the predicted bounding box in terms of image
pixels. The goal is to obtain the connectors position in the camera reference system.
In order to obtain these coordinates, a transformation must be applied from the coordi-

nates in pixels to those in the real system (expressed in millimeters). To achieve it, it’s
necessary to know the Z coordinate of the connectors. The information is extrapolated
from the depth image given as output from the structured light camera.
In this section will be reported an example for a single connector from a real case detec-

tion, to show how the pose estimation is carried out (the same procedure can be applied to
both connectors identified). The same process has been repeated many times on different
images, ad relative detections, in order to obtain a statistical sample of the accuracy of
this system.
YOLO gives a prediction bounding box in pixels coordinates, showing the two left-down
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x1 [px] y1 [px] x2 [px] y2 [px]

783 242 902 170

Table 5.5: Predicted bounding box in pixels coordinates.

and right-up corners, as reported in table 5.5: From the bounding box corners it is possible
to obtain the location of the pixel in the center of the box, corresponding to the connector
location:

xp = 842 [px] yp = 206 [px]

Thanks to this coordinates it is possible to obtain the z value of the pixel from the depth
image (figure 5.9). The Z coordinate extracted is:

Figure 5.9: Depth image with YOLO predicted bounding box for z coordinate estimation.

Z = 1646.2 [mm]

Thank to this data it is possible to calculate the X and Y coordinates of the central
point of the connector in the camera reference system, starting from the pixel coordinates,
obtaining the following estimated coordinates:

Xest = −62.4520 [mm]

Yest = −222.3881 [mm]

In order to evaluate the accuracy of this estimation, it is compared with the position
of the same location in the point cloud. Here, the position of each point is already in
the camera reference system, it is therefore possible to make a comparison. The process
of obtaining the point cloud coordinates knowing the pixel position is done manually, in
order to compare this data with the one estimated automatically.
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Figure 5.10: Point cloud (output of Zivid camera).

From the point cloud (figure 5.10) it results that the detected point coordinates are:

X = −64.1 [mm]

Y = −223.5 [mm]

Z = 1646.2 [mm]

The error compared with the estimation is really low, quantifiable in a few millimeters:

∆X = X −Xest = −1.648 [mm]

∆Y = Y − Yest = −1.1119 [mm]

∆Z = Z − Zest = 0.00 [mm]

According to this data, the estimation method proposed results to be very effective, guar-
anteeing an excellent position estimation in a completely automatic way, which also proofed
to be very accurate.

5.2 Discharge control

This are the results of the second, and final, part of this work. Once the first phase has
been successfully completed, the system is electrically connected to the discharge device,
and battery discharge can begin. The entire process is regulated by a closed loop control,
as widely discussed in section 3.6, page 30 of this report. Basing on the data detected
by a thermal camera that monitors the whole battery at once, the control loop decides
the discharge current value, in order to always keep the temperature under a given limit.
The chosen regulator is a PID controller, with proportional and integral actions, but not
derivative (more properly known as PI controller).
On this section, are reported the results obtained implementing the discharge control

previously discussed. In a first phase, the performance of the system without control will
also be exposed, in order to make a comparison and therefore highlighting the increase in
performance thanks to the proposed system.
All the experiments reported refer to the setup number two, as described in chapter 4

("Experimental Setup"). The tests are indeed, for safety and hardware reasons, carried
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Discharge parameters
C-rate 0.5 C
Current 3.35 [A]
Target temp -
Control open loop
FFC correction -

Table 5.6: Parameters settings for the open loop discharge.

out on a small battery pack, not on the high voltage EV pack used for the vision system
tuning, which consists on the setup number one.

5.2.1 Open loop control

In order to make a comparison between the different discharge controls previously dis-
cussed, initially, the setup is used to test also some of the others techniques proposed, then
showing the advantages introduced by the chosen control.
Open loop control is the currently used discharge method at "AS Batteriretur", partner

of this project, and it is the process that wants to be improved, acting therefore as a
benchmark for other discharge techniques.
In open loop control, there is no check on the reached temperature, for this reason, it’s

necessary to act with an important safety margin. Discharge current is set to a constant
value, very low, in order to be sure that the pack never overheats, making temperature
check unnecessary.
Referring to the available battery pack, a realistically low current may be equal to 0.5 c-

rate. Having a rated capacity of 3220mAh for each cell [26], and considering battery pack
electrical connections scheme, the discharge current is set to 3.35A. That is the output
current of the whole pack, and it is numerically equal to 1C current for a single cell,
however, cells are disposed in parallel in pairs, and therefore the total current is divided
and each cell manages only half, corresponding to 0.5C for that cell.
Table 5.6 summarizes the setup parameters reported above.
Open loop control, as said before, for its definition doesn’t require any check on ongoing

temperature. However, the experimental setup prepared for the subsequent tests is used
to monitor the temperature on the pack during the discharge, in order to evaluate this
control technique. The detected temperature doesn’t affect in any way the discharge, it is
used for post-evaluation purposes only.
Figure 5.11 reports the experimental data acquired, showing how battery temperature

evolves along the discharge test. On the plot are reported two Y-axes: the left one rep-
resents temperature in Celsius degrees, corresponding to the blue line; the right axis is
instead the pack state of charge, which starts from 100% and decreases as the current
flows, according to the red line. Time is reported on the X-axis, counting the minutes that
elapse from the beginning of the discharge. The test lasted almost one and an half hour in
total. The discharge, held with a constant current, discharged approximately the battery
by 20%, bringing the state of charge from 100% to 80%.
It’s evident from the graph that temperature follows a very "noisy" behaviour, with a

lot of spikes repeated on a periodic basis. The reason is due to the technology used to
detect the temperature, thermography. The thermal camera, indeed, every few minutes
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Figure 5.11: Maximum temperature on the battery and SOC over time for open loop
control.

about acts a calibration in order to increase its accuracy, but this leads to the downside
of generating this spikes every time, which are not related to the real temperature on the
pack. Further explanation are reported at page 36 in subsection 3.7.1.
Neglecting these peaks, what matters most is the temperature trend. From the data, it

is possible to make an interpolation and obtain the curve that represents its trend, which
gives the information needed, reported in Figure 5.12. From the graph (Figure 5.12) it is

Figure 5.12: Temperature experimental data interpolation.

immediate to note that the one obtained is exactly the typical step response of a first order
system, i.e. with the output quantity that immediately rises fast and then "slows down",
tending asymptotically to the steady state value. Starting from the step response it is also
calculated the time constant of the system τ , as the time needed to reach the 63% of the
steady-state value:

τ = 22.43 [min]

64



the tangent to the curve at time 0, useful to obtain the time constant of the system.
During the 75 minutes of test, the system has reached its steady state temperature.

For this reason, it is not necessary to continue the test in order to determine the final
temperature, it will be the same being a first order system. On the other side, to determine
the total discharge time (necessary to take the state of charge from 100% down to 0%),
both the experimental approach, thus discharging all the capacity keeping track of the
time needed, and the analytical approach, simply calculating mathematically the time
needed knowing capacity and discharge current, can be used. Mixed approach is also
feasible, discharging the battery of a certain percentage and than calculating the total
time necessary for the remaining part.
From the test is also possible to derive the SOC evolution related to the discharge current,

reported in figure 5.13.

Figure 5.13: Discharge current and state of charge evolution over time for open loop control.

For this test, both behaviours are very simple: the current is kept constant for the whole
discharge, and consequentially the SOC decreases linearly. This graph will be useful for
making a comparison with the closed loop discharge, explained above.
The test reveals that the steady-state temperature of the system is around 31.5 °C, and

the discharge time, for 60% SOC, is approximately 75 minutes. From the data obtained
it is possible to extract the information regarding the full discharge with an open loop
control, such as the time necessary for a full discharge and the maximum temperature
reached. Table 5.9 summarizes these data.

Open loop - performance
Full-discharge time (100% to 0%) 120 min
Steady-state temperature 31.58°C

Table 5.7: Open loop control - discharge output.

The open loop test reported in this section shows an important limit of the current
setup, that hasn’t been considered before: the large noise introduced on the detection
by the thermal camera. For the purpose of this measurement, on this specific test, the
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presence of noise does not involve any particular drawback. The aim was indeed to find
the steady state value of the temperature for the open loop control, and thanks to the
post-elaboration (thus not performed in real-time) it is possible to interpolate the data
obtaining a "filtered" trend, not too influenced by the peaks, as wanted.
On the other side, it’s a completely different matter with regards to feedback controls.

In this case, the detected temperature is used as control variable, and therefore higher
accuracy on the measurement leads to more precise control on the real pack temperature.
Better measures are required.
The noise is introduced by an offset calibration process the camera performs periodically

during operations, called Flat Field Correction (FFC). The calibration is aimed to improve
image quality by compensating for certain offset errors that build up during camera op-
eration. In order to do that, the shutter closes and acts as uniform temperature surface,
allowing calibration.
In the subsequent tests, to prevent the alteration of measures, a digital "selection" of

the samples has been performed, discarding calibration corrupted data. Further details on
this phenomenon and possible solutions is reported at page 36 of this report.

5.2.2 Closed loop control with FFC correction

The closed loop control consists on a feedback control based on a PI controller. Compared
to the open loop, explained above, the temperature is now monitored online and the
discharge current is set accordingly to the error between target and detected temperatures.
Furthermore, has been introduced a "correction" for the noise introduced by the FFC,

which is handled digitally, discarding the corrupted samples (more details at page 36).
In this case, to start the discharge, it is sufficient to set two parameters, and the rest is

handled by the control:

• Maximum reachable temperature

• Maximum C-rate discharge value

The maximum temperature corresponds to the reference value that is given to the control,
that is the value that must not be exceeded during the discharge. The c-rate, on the other
hand, identifies the maximum current that the battery can withstand, and at the control
level it corresponds to the maximum limit that is set at the output by the PI regulator.
These parameters have to be set basing on the maximum values that the battery can

withstand under safe conditions. These can be estimated basing on battery nominal data
or with laboratory tests. For the battery pack under test these were set as reported in
table 5.8.

Discharge parameters
Max C-rate 2 C
Max current 13.4 [A]
Reference temp 40 [°C]
Control closed loop
FFC correction digital

Table 5.8: Parameters settings for the closed loop discharge.
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With these parameters the discharge test is performed. Figure 5.14 shows the closed
loop system response. On figure are reported three data: the detected temperature; the
interpolation polynomial and the temperature reference.

Figure 5.14: Maximum temperature on the battery over time for closed loop control.

Experimental data have a noisy behaviour due to the measurement, for this reason it is
convenient to interpolate them in order to obtain a polynomial that fits their trend. The
curve obtained can be used in the calculation of the time parameters of the response, such
as rise time and steady-state error.
An important aspect to be noted is that the system has no overshoot. Considering this

project application, it is crucial that the temperature doesn’t exceed the maximum limit
threshold set, involving safety issues.
In order to compare the closed loop control technique with the open loop, another im-

portant parameter to notice is the state of charge, and most of all its evolution over time.
Being indeed the aim to perform the discharge as fast as possible, it’s important to see
how fast it decreases.
Figure 5.15 reports the battery SOC in percentage along the discharge, together with

the discharge current, regulated by the controller, reported in terms of C-rate.
It’s important to notice that, contrary to the open loop control (reported in figure 5.13),

the discharge current it’s not constant now, but varies according to battery temperature,
because of the regulator. It is possible to interpolate the PID output in order to obtain its
trend, shown in figure 5.16, which directly determines the discharge current.
Current variation has a great advantage, because the current directly determines the SOC

slope: higher current leads to faster discharge. Such behaviour is evident in figure 5.15:
in the first phase (from minute 0 to 3.5) the current is constant, leading to a SOC with
linear trend and with maximum slope, being the time interval whereby the current has its
maximum value. On the second phase (minute 3.5 to 12), current drops because of actual
temperature reaching the maximum limit, and the SOC changes accordingly. The the
decrease is no longer linear, due to not constant current, and follows an "hyperbolic" trend.
The third and final phase (12 to the end) registers a steady-state current that settles around
a constant value, with some oscillation, leading again to a SOC with (approximately) a
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Figure 5.15: Discharge current and state of charge evolution over time for closed loop
control.

linear trend. Which is the behaviour that will be kept until the end of the discharge.
Such data permits to determine total discharge time for the closed loop control case.

Compared to open loop, system performance have increased significantly, leading to shorter
overall discharge time.

Closed loop - performance
Full-discharge time (100% to 0%) 58.8 [min]
Steady-state temperature 40 °C

Table 5.9: Closed loop control - discharge output.

It should be noted that, with respect to the previous case, even though the temperature
reached at steady state is only slightly higher, the discharge times are instead considerably
improved.

5.2.3 Results discussion

In the previous sections the results obtained by discharging the battery with the two
different methods proposed were illustrated.
The experimental tests show, as expected, how the system dynamic is drastically im-

proved thanks to the feedback control. The steady-state temperature is reached faster
with the closed loop control, and this can be traced back to the fact that the current limit
imposed on the system is greater.
In particular, open loop discharge is performed with a constant current of 0.5 C-rate,

on the other side, closed loop maximum current is set to 2 C-rate, permitting system
temperature to rise faster. Nevertheless, this current can’t be kept for the whole discharge,
in order to stay under the safety temperature limit.
The main objective of the control is to perform the discharge in the shortest possible time,

given a temperature limit. In order to evaluate the discharge speed increase introduced by
the system control, the comparison between three different tests is carried out.
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Figure 5.16: PID output trend.

The tests taken into account are described in table 5.10. Temperature refers to the
steady-state temperature reached by the system. This value is imposed in closed loop
control. Maximum current refers to the maximum limit set in closed loop control, for open
loop, on the other side, refers to the constant current used for the discharge. Current value
is expressed as discharge rate, with C as c-rate1.

Test Type Temperature Max current

1 open loop 31 [°C] 0.5 C
2 closed loop 40 [°C] 2 C
3 closed loop 45 [°C] 2 C

Table 5.10: Discharge tests parameters.

For each of the tests, the evolution of the state of charge in relation to time is reported
in figure 5.17, in order to compare the different discharge times.
For test 1, discharge current is kept constant for the whole discharge, for this reason the

state of charge decreases linearly without any change.
On the other side, test 2 and 3 has a variable current, this leads to a different variation

of the SOC, that is linear in the first and in the final phases, when the current is constant.
In between, there is a transient phase when current move from the initial value to the final
one, changing the slope of the state of charge.
During the first phase, test 2 and 3 follow the same slope, both tests are indeed set with

the same maximum current, that is used in the first phase.
The graph highlights the different discharge times required, significantly shorter for the

closed loop than in the case of the open one, confirming the validity of the proposed system.
There is also a difference between different feedback control tests, thanks to the increase

in the achievable temperature, in fact, the system can discharge with the maximum current
for a longer time, and therefore discharge the battery more quickly, even with only 5°C of
temperature difference.

1C-rate is defined as the current that is necessary to discharge full capacity of a battery in one hour.
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Figure 5.17: Discharge comparison between different tests.

Table 5.11 reports the discharge performance for different tests. Initial and final refers to
the discharge current values in the initial and final part, therefore when the SOC variation
is linear. Column "∆%” corresponds to the percentage variation of the discharge time with
respect to the time taken as a reference, i.e. the time required for the open loop discharge
(test 1).

Test Initial Final Time ∆%

1 0.5 C 0.5 C 120 [min] -
2 2 C 0.8870 C 58.8 [min] -51.0 %
3 2 C 1.0479 C 51.5 [min] -57.08 %

Table 5.11: Discharge tests results.

It is important to notice that although both test 2 and 3 evolve with a linear trend in
the final phase, they have different slopes, because of different discharge currents. This
means that also in the final phase, higher reference temperatures are associated with faster
discharges.
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Chapter 6

Conclusions

This thesis project work aimed to develop the first steps in the design of an automatic
discharging station for electric vehicle batteries, designing and testing the methodology
that will be implemented on the final station. The objectives set at the beginning of the
project have been successfully achieved.
The computer vision system has been implemented correctly and has shown to function

under different operating regimes, upon different conditions.
The advantage of the proposed system consists in the possibility of training the neural

network with a relatively small number of images (around a hundred) but still obtaining
excellent identification results. This feature makes the system suitable for industrial ap-
plications, in which it is possible to train the system for a new battery pack in a short
time.
The second part of this work consisted in the realization of an experimental setup for the

discharge of a test battery pack. The temperature monitoring system was tested on this,
using it to check the discharge current based on the detected temperature.
The proposed methodology, which envisages a thermal imaging camera in order to detect

the maximum temperature reached by the battery pack, has proved to work very well for
the problem to be treated, proving to be adequate for the necessary purposes and providing
an excellent input to the control system.
On the other side, the control technique proposed, consisting of a PI regulator that

follows a temperature reference setting the discharge current, proofed to be effective and
very responsive. The closed loop discharge control has significantly increased the discharge
performance, considerably reducing the discharge time, compared to the open loop.
Experimental tests that have been performed show how, thanks to the feedback control,

discharge time can be reduced up to almost 60%. On the test setup, on the same battery
pack, discharging the full capacity without any feedback control requires 120 minutes, only
51 minutes are instead needed with closed loop control and 45 °C maximum temperature.
The result is obtained discharging with higher currents and reaching higher maximum

temperatures compared to the open loop, condition made possible by the temperature
detection.
Moreover, important safety improvements have been introduced on the system, because

of the permanent battery maximum temperature monitoring, that ensures no overheating
occurs in any phase of the discharge. Being overheating one of the main causes that
may trigger battery fires and explosions during the discharge, due to internal chemical
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phenomenon such as thermal runaway, a close real-time check on the temperature is a
fundamental improvement.
The methodology proposed on this project for the design of an automatic electric vehicle

batteries discharging station, proved to be effective and adequate to the objectives outlined
at the beginning.
Further work is foreseen for this project, applying the same methodologies on different

EV battery packs and prosecuting on the design of the automatic station through the
design and test of the remaining station subsystems.
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Appendix A

Discharge control Python scripts

This appendix chapter reports the self-developed Python code produced from scratch in
order to realize the battery monitor and discharge setup (experimental setup number two).

A.1 main.py

import lepton_thermal_camera as camera

from lepton_thermal_camera.lepton_script2_v4 import *

import array_scpi as array

from array_scpi.SCPI_config import *

from functions import *
import os

from simple_pid import PID

from math import *
from scipy.signal import butter,filtfilt

from scipy import zeros, signal, random

# Default parameters - Array DC Load

termination_voltage = "17.5"

discharge_current = "0" # max = 5.9/6.4 A

# Real battery parameters

batt_capacity = 6.7 #[Ah]

rem_capacity = 6.7 #[Ah]

current_1c = 6.4 #[Ah] current at 1 c-rate

# Variables initialization - Thermal Camera

captures = []

last_FFC = time.time()

trigger_FFC = 0

# Default parameters - Total Test

test_time = 60*60*60 #[seconds]

time_interval = 5 #[second]

final_SOC = 35 #[%]
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SOC_start = 80 #[%]

snap_sampling = 5 #[seconds]

snap_history = []

timer = 0

phases = []

# PID tuning

Kp = 0.4

Ki = 0.0002810962754743500

Kd = 0

c_rate_lim = 2 #1.19

temp_goal = 45

pid = PID(Kp, Ki, Kd, setpoint=temp_goal)

pid.output_limits = (0, c_rate_lim) # anti-windup

pid.sample_time = 0.01 # Fixed optional update ...

frequency of the PID

# Low Pass filter requirements (optional)

T = 40*60 # Sample Period (how long is the sampling test)

fs = 1/5 # sample rate, Hz

cutoff = 0.004 # desired cutoff frequency of the filter, Hz

nyq = 0.5 * fs # Nyquist Frequency

order = 1 # sin wave can be approx represented as quadratic

n = int(T * fs) # total number of samples

# FIR filter (uncommment to use)

# b = signal.firwin(order+1, cutoff) # FIR design based on wanted ...

characteristics

# a = 1

# z = signal.lfilter_zi(b, a) # construct initial ...

conditions for the filter

# Butterworth filter (uncomment to use)

#normal_cutoff = cutoff / nyq

#b, a = butter(order, normal_cutoff, btype='low', analog=False) # ...

butter filter

#z = signal.lfilter_zi(b, a) # construct initial conditions ...

for the filter (added by me)

# Log file managing - CSV

save_path = "data_log/"

date = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

csv_data_list = []

csv_heading_list = ["Time","Termination ...

Voltage","Capacity","Discharge Current","Mean Temperature","Max ...

Temperature",

"Min Temperature","State of Charge","X max ...

location","Y max location","PID ...

out","Filter Output"]

terminal_heading_list = ["\nTime","Termination ...

Voltage","Capacity","Discharge Current","Avg Temp","Max Temp",
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"Min Temp","SOC","X","Y","PID out","Filter ...

Out"]

# Captures saving

save_path_snap = save_path + ...

"captures_saving/captures_{}/".format(date)

os.makedirs(save_path_snap)

# Hotspots saving

hotspots = numpy.zeros((120,160))

# Parameters settings - Array DC Load

battery_mode = array_load.query("BATT?")

if battery_mode != 1:

array_load.write("BATT ON")

# ---------

# MAIN:

# ---------

# Cells position calibration

det_h = 120

det_w = 160

h_unit = det_h/8

w_unit = 20

pt_l=[]

pt_r=[]

w = []

cells = []

cells_matrix = numpy.zeros((120,160))

for c in range (8):

pt_l.append( [ trunc(h_unit*(c+0.5)) , 90 ] )

pt_r.append( [ trunc(h_unit*(c+0.5)), 90+w_unit] )

w.append(trunc(h_unit/2))

cells.append( Cell(pt_l[c],pt_r[c],w[c]) )

cells_matrix [pt_l[c][0]] [pt_l[c][1]] = 1

cells_matrix[pt_r[c][0]][pt_r[c][1]] = 1

for c1 in range(6):

c = 8+c1

pt_l.append( [ trunc(h_unit*(c1+2.5)) , 30 ] )

pt_r.append( [ trunc(h_unit*(c1+2.5)), 30+w_unit] )

w.append(trunc(h_unit/2))

cells.append( Cell(pt_l[c],pt_r[c],w[c]) )

cells_matrix [pt_l[c][0]] [pt_l[c][1]] = 1

cells_matrix[pt_r[c][0]][pt_r[c][1]] = 1

# FUNCTION: recalibrate

ans = input("Show cell calibration (y/n)?")

if ans == "y":

camera.lepton_script2_v4.numpyArr = None
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calibration_capture = take_capture()

plt.imshow(calibration_capture)

plot_matrix(cells_matrix)

#plt.show()

plt.waitforbuttonpress()

while True:

print("Stop the simulation now (ctrl+C).")

time.sleep(1)

# User input - parameters initialization

print("PARAMETRS INPUT:")

rem_capacity = float(input("Insert the actual battery remaining ...

capacity [Ah]: "))

SOC_start = rem_capacity / batt_capacity * 100

SOC_actual = SOC_start

test_time = int(input("Insert the safety time after which stopping ...

the simulation [minutes]: ")) * 60

# User input - select modality

print("\nDISCHARGE MODALITY SELECTION:\n1) Normal 1 cycle ...

discharge.\n2) Pulsed cycle discharge.\n")

mode, n_cycle = 1,"cyc0_" # delete data and use functions to normal use

if mode == 1:

phases.append(Cycle(stop_SOC(SOC_start), 0))

if mode == 2:

cycles_number = int(input("Insert the number of cycles: "))

print("\n>> Cycles initialization: <<")

for i in range(cycles_number):

print("\n- Cycle {}:".format(i))

phases.append( Cycle( float(input("SOC discharge [%]: ...

")),int(input("rest time [minutes]: ")) ) )

# Data saving

with open(save_path + "log__" + date + ".csv", "w", newline="") as ...

csvfile :

logfile = csv.writer(csvfile, delimiter=',', quotechar='"', ...

quoting=csv.QUOTE_MINIMAL)

logfile.writerow(csv_heading_list)

terminal_print(terminal_heading_list)

for phase in phases:

#-- DISCHARGE CYCLE: --

# Array DC load - settings

array_load.write("BATT:CAP:CLE")

array_load.write("BATT:TERM:VOLT {}".format(termination_voltage))

array_load.write("BATT:CURR {}A".format(discharge_current))

array_load.query("*OPC?")

array_load.write("INP ON")

array_load.query("*OPC?")
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SOC_final = SOC_start - phase.SOC

end_time = time.time() + test_time

while (time.time() < end_time) and (SOC_actual > SOC_final):

timer_sampling = time.time()

# Array DC load query datas

disch_time = str(array_load.query("BATT:TIME?"))

disch_voltage = ...

str(array_load.query_ascii_values("BATT:TERM:VOLT?")[0])

disch_capacity = ...

array_load.query_ascii_values("BATT:CAP?")[0]

disch_current = ...

str(array_load.query_ascii_values("BATT:CURR?")[0])

# Lepton camera managing

camera.lepton_script2_v4.numpyArr = None

current_capture = take_capture()

if current_capture is None :

print("Error with current_capture occurred (thermal ...

camera reboot needed).")

save_hotspots(snap_history[-1].image,hotspots,...

save_path_snap)

try:

max_temp = centikelvin_to_celsius(current_capture.max())

mean_temp = ...

centikelvin_to_celsius(current_capture.mean())

min_temp = centikelvin_to_celsius(current_capture.min())

max_location_x, max_location_y = ...

numpy.unravel_index(numpy.argmax(current_capture, ...

axis=None), current_capture.shape)

except:

print("Error with current_capture (thermal camera ...

reboot needed).")

beeping()

# Filtering (uncomment to use)

# filter_out,z = filter_sbs(max_temp,z,b,a)

filter_out = max_temp

# PID update

pid_out = pid(filter_out)

discharge_current = pid_to_curr(pid_out, current_1c)

array_load.write("BATT:CURR {}A".format(discharge_current))

array_load.query("*OPC?")

# SOC update

SOC_actual = SOC_start - (disch_capacity / batt_capacity ...

* 100)
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# Cells update

for cell in cells:

cell.update(current_capture)

# Data logging - CSV file

array_load.query("*OPC?")

data_list = [disch_time,disch_voltage,disch_capacity, ...

disch_current,mean_temp,max_temp,min_temp,...

SOC_actual, max_location_x,max_location_y,...

pid_out,filter_out] # Add here variables ...

name to print on csv file

csv_data_list = to_csv(data_list)

logfile.writerow(csv_data_list)

terminal_print(data_list)

# Captures logging

if (time.time()-timer)>=snap_sampling or True :

snap_history.append(Snapshot(current_capture,disch_time))

timer = time.time()

snap_name = "capture__" + n_cycle + ...

disch_time.replace(":","-").rstrip() + ".png"

plt.imshow(current_capture)

plot_all_maxs(current_capture)

plt.savefig(save_path_snap+snap_name,bbox_inches='tight')

plt.close()

# Perform FFC

if (time.time()-last_FFC)>=(2.6*60):

data_FFC = max_temp

last_FFC = time.time()

do_FFC()

linear_prediction()

trigger_FFC = 1

# Hotspot matrix save

hotspots[max_location_x][max_location_y] += 1

# Plot temp real time

count = count+1

if count >= 60:

for image in snap_history:

image.image.max()

frequency_check(timer_sampling,time_interval)

n_cycle = update_cyc(n_cycle)

SOC_start = SOC_actual
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array_load.write("INP 0")

# --REST CYCLE:--

print("Rest cycle starts ({} minutes)...".format(phase.rest/60))

rest(phase.rest)

array_load.close()

# Print image hotspots

plt.imshow(snap_history[-1].image)

plot_matrix(hotspots)

plt.savefig(save_path_snap+"Hotspots_image",bbox_inches='tight')

plt.close()

plot_save_matrix(hotspots,save_path_snap)

# Save cells data

cells_header = []

row = []

for ind in range(14):

cells_header.append("cell {}".format(ind+1))

N = cells[0].temp_story.length()

print("valore di N, lunghezza dati in Cell object:",N)

with open(save_path + "log__" + date + "_cells.csv", "w", ...

newline="") as csvcells :

cellfile = csv.writer(csvcells, delimiter=',', quotechar='"', ...

quoting=csv.QUOTE_MINIMAL)

cellfile.writerow(cells_header)

for i in range(N):

for c in cells:

row.append(c.temp_story[i])

csv_cell = to_csv(row)

cellfile.writerow(csv_cell)

row.clear()

# Errors checking

if len(data_list)!=len(csv_heading_list):

print("WARNING! The number of elements on the CSV file doesn't ...

match with the number of elements "

"declared on the first row")

A.2 functions.py

from matplotlib import pyplot as plt

import time

import sys
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import numpy as np

from lepton_thermal_camera.lepton_script2_v4 import *
from scipy import zeros, signal, random

def beeping():

for n in range(5):

print("\a")

time.sleep(3)

def frequency_check (start,timer):

# frequency regularization

while (time.time()-start) < timer:

time.sleep(0.01)

def to_csv(list):

# convert the given list to be printed in csv file

# -> convert in strings and remove newline characters

output_list = []

for data in list:

data = str(data)

output_list.append(data.rstrip())

return output_list

def terminal_print (data_list):

# print data on terminal

string = ""

for value in data_list:

string = string + str(value).rstrip() + " | "

string = string[:-3]

print(string)

def modality_input ():

# select input modality

modality = int(input("Select the wanted discharge modality ...

(1/2): "))

n_cycle = ""

if (modality != 1) and (modality != 2):

print("Wrong input value. Please select value 1 or 2.")

modality,n_cycle = modality_input()

if modality==2:

n_cycle = "cyc0_"

return modality,n_cycle

def update_cyc (cycle):

# update cycle number

if cycle=="":

return ""

cycle = cycle[3:-1]

number = int(cycle) + 1

return "cyc" + str(number) + "_"
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def plot_matrix (matrix):

# plot the given matrix

for row_n, row in enumerate(matrix):

for col_n, element in enumerate(row):

if element != 0:

plt.plot(col_n, row_n, 'ro', markersize=1)

def plot_save_matrix (matrix,save_path):

for row_n, row in enumerate(matrix):

for col_n, element in enumerate(row):

if element != 0:

plt.plot(col_n, row_n, 'ro') # tolto un - da qui ...

in row_n

plt.axis([0, matrix.shape[1], 0, matrix.shape[0]]) # tolto un ...

- da qui in matrix.shape[0]

plt.savefig(save_path+"Hotspot_matrix.png", ...

bbox_inches='tight') #vedere come cambiare nome all'immagine

plt.show()

def stop_SOC (start_SOC):

end_SOC = float(input("Insert the SOC value that stops the ...

discharge: "))

delta = start_SOC - end_SOC

if end_SOC>=start_SOC:

print("Wrong value! Final SOC has to be lower than starting ...

SOC.")

delta = stop_SOC(start_SOC)

return delta

def save_hotspots (image,hotspots,save):

# save hotspots location

plt.imshow(image)

plot_matrix(hotspots)

plt.savefig(save + "Hotspots_image", bbox_inches='tight')

plt.close()

plot_save_matrix(hotspots, save)

def rest (seconds):

# sleep cycle

print("0%",end='')

divisions = 100

interval = seconds/divisions

progress = ""

for i in range(divisions):

time.sleep(interval)

perc = i + 1

progress = progress + "|"

sys.stdout.write('\r')

print(progress + str(perc) + "%",end='')

print("\n")
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def pid_to_curr (controller, cr_1):

return controller * cr_1

def plot_all_maxs (matrix):

# plot all maximum values

max_r,max_c = np.where(matrix == matrix.max())

maxs_loc = list(zip(max_r, max_c))

for max in maxs_loc:

plt.plot(max[1], max[0], 'ro', markersize=1)

def LPF(data, cutoff, fs, order):

normal_cutoff = cutoff / nyq

# Get the filter coefficients

b, a = butter(order, normal_cutoff, btype='low', analog=False)

y = filtfilt(b, a, data)

return y

def filter_sbs(data,z_prev,b,a):

result, z = signal.lfilter(b, a, [data], zi=z_prev)

return result, z

class Snapshot:

def __init__(self,matrix,clock):

self.image = matrix

self.time = clock

class Cycle:

def __init__(self,SOC,rest):

self.SOC = SOC

self.rest = rest*60

class Cell:

def __init__(self,pt1,pt2,width):

self.pt_left = pt1

self.pt_right = pt2

self.width = width

self.sub_matrix = None

self.temp_max = None

self.temp_mean = None

self.temp_story = []

def update(self,matrix):

rows = range ( self.pt_left[0]-round(self.width/2) , ...

self.pt_right[0]+round(self.width/2) , 1 )

columns = range ( self.pt_left[1] , self.pt_right[1] , 1 )

self.sub_matrix = matrix[np.ix_(rows, columns)]

self.temp_max = (self.sub_matrix.max() - 27315) / 100

self.temp_mean = (self.sub_matrix.mean() - 27315) / 100

self.temp_story.append(self.temp_max)
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A.3 thermal_camera.py

from lepton_thermal_camera.import_clr import *

clr.AddReference("ManagedIR16Filters")

from Lepton import CCI

from IR16Filters import IR16Capture, NewIR16FrameEvent, ...

NewBytesFrameEvent

from System.Drawing import ImageConverter

from System import Array, Byte

from matplotlib import pyplot as plt

import numpy

import time

def centikelvin_to_celsius(t):

# conversion from centikelvin to celsius

return (t - 27315) / 100

def to_fahrenheit(ck):

# conversion to Fahrenheit

c = centikelvin_to_celsius(ck)

return c * 9 / 5 + 32

def getFrameRaw(arr, width, height):

# frame callback function

# this will be called everytime a new frame comes in from the ...

camera

global numpyArr

numpyArr = numpy.fromiter(arr, dtype="uint16").reshape(height, ...

width)

def take_capture():

capture = IR16Capture()

capture.SetupGraphWithBytesCallback(NewBytesFrameEvent(getFrameRaw))

capture.RunGraph()

# wait until the capture operation is finished

n = 0

while (numpyArr is None): #and (n<=(20/0.1)) :

n += 1

time.sleep(.1)

if n>=(15/0.1):

initialize_lepton()

return None

capture.StopGraph()

capture.Dispose()

return numpyArr

def do_FFC ():
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lep.sys.RunFFCNormalization()

time.sleep(30)

def colored_capture(matrix):

# colourizing the matrix

try:

plt.imshow(matrix)

plt.waitforbuttonpress()

except:

print("Exception on plotting image.")

def initialize_lepton():

# lepton thermal camera initialization

print("Problem! Stuck into the while loop waiting for a ...

capture.") # initialize_lepton() #debug1

for n in range(1):

print("\a")

time.sleep(1)

# INITIALIZATION:

# --------------

lep, = (dev.Open() for dev in CCI.GetDevices()) #associate camera ...

to lep

print("Camera connected with " + str(lep.sys.GetCameraUpTime()) + " ...

uptime.")

A.4 import_clr.py

import clr

import sys

import os

import time

import platform

bits, name = platform.architecture()

if bits == "64bit":

folder = ["x64"]

else:

folder = ["x86"]

sys.path.append(os.path.join("..", *folder))

sys.path.append(os.path.join(*folder))

sys.path.append(os.path.join("lepton_thermal_camera",*folder)) # ...

declare pkgs are in that folder
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try:

clr.AddReference("LeptonUVC")

except:

print("\nError on finding the LeptonUVC.dll file:\n- Probably ...

caused by changing the name of one of the folder of his path.")

print("- Or because the file path location has ...

changed.\nSOLUTION: Use original path/folders name or add ...

the new path/names to os.path.join()\n\n")
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Appendix B

Vision system Python scripts

On the current chapter are reported the Python utilities self-developed in order to ease the
managing of training pictures and relative labels within the data-sets.

B.1 paths_maker.py

#script that create the .txt file containing the paths of all the ...

images taht are used for the training

# HOW TO USE:

# - move this script "paths_maker.py" in the folder that contain ...

all the training images and the labels

# - open the script and change the name of the variable ...

'trainingFolder_name' with the name of the folder containing ...

the training images that is on the side of the yolov3 folder*
# - open the teriminal in that folder and run the script (python3 ...

paths_maker.py)

# - a file "paths_file.txt" will be created, containing the paths ...

of all the images

# *note: to work properly yolov3 needs to have two different ...

folders for the training images and for the yolo files, and ...

they have to be side by side.

# This means that the structure of your directories has to be like ...

this:

# >parental_folder:

# >yolov3 (containing yolo files)

# >data

# >cfg

# ...

# >trainingFolder_name (this is the folder on the ...

side of the yolov3 folder. Put the name of this folder on the ...

variable 'trainingFolder_name')

# >training_img_test_1 (this is the folder ...

containing the training images. Put inside here this script but ...

DON'T put this folder name in 'trainingFolder_name')

# 1.jpg
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# 2.jpg

# 3.jpg

# ...

# >training_img_test_2

# ...

import os

# path base

current_path = os.getcwd()

trainingFolder_name = "training_discharge" # name of the ...

folder on the side of yolo folder

try:

current_path.rindex(trainingFolder_name) # error ...

checking

except:

print("The folder containing the training images hasn't been ...

found. Two probable casues:\n1) 'trainingFolder_name' ...

inside the script paths_maker.py hasn't been changed (has ...

to be the name of the folder containing the training images ...

on the side of yolov3 folder) \n2) paths_maker.py scripts ...

hasn't been moved to the folder containing the training ...

images\n")

yoloFormat_folder = "../" + trainingFolder_name + ...

current_path.split(trainingFolder_name,1)[1]

print("Folder containing training images path: " + ...

yoloFormat_folder + "\n")

# read the .jpg .png files on a directory

supported_formats = ['.jpg','.png']

files_names = os.listdir()

try:

os.remove("paths_file.txt")

except:

pass

paths_file = open("paths_file.txt","a")

for file in files_names:

for formats in supported_formats:

if formats in file:

paths_file.write(yoloFormat_folder + "/" + file + "\n")

paths_file.close()

print ("Operation completed successfully!! 'paths_file.txt' created.")
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