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Abstract

The QCD axion is an hypothetical particle introduced to solve the strong
CP problem of standard model of particle physics and are of interest as
a possible component of cold dark matter. The allowed couplings between
particles is determined by the vertices of the spin-0 bosons: the pseudoscalar
interaction is always spin-dependent, while, in the non-relativistic limit, the
scalar interaction can be treated as spin-independent. Thus, in a multipole
expansion, the two fields are described by the “dipole” (pseudo-scalar cou-
pling gp) and ”monopole” (scalar coupling gs) moments, respectively.
Aim of the experiment is to improve the measured limits for the gpgs prod-
uct, for different values of the axion mass, this interaction arises between a
nucleus N and the spin of an electron e−.

Even if the coupling between single particles is weak, a macroscopic
sample with the order of 1023 atoms, could produce a light coherent bosonic
field that can be measured. In the axion scenario, J.E. Moody and F.
Wilczek showed that a new macroscopic force, mediated by the exchange of
axions, acts on electron spins, and that such force can be described in terms
of the potential of a field. The effective field interacts with electron spins
of matter, can be associated to an effective magnetic field and detected
by measuring the induced changes of magnetization. The purpose of the
experiment is to detect with a SQUID a magnetization signal which is not
produced by a magnetic field but by a material with high nuclei density.

The source consists of large unpolarized masses that provides the monopole
part of the interaction gNs while the dipole part gep depends on the electron
spins of the crystal. The interaction causes a change in the magnetization
of the sample and induces a change of the magnetic flux collected by a coil
surrounding the crystal. As the interaction potential is generated by pseu-
doscalar exchange rather than by vector gauge boson exchange, this field
does not satisfy the Maxwell’s equations, therefore it is possible to shield
the apparatus from electromagnetic noise sources without affecting the sig-
nal. A rotating wheel with evenly spaced lead disks allows for a source mass
with a variable distance, while a cryostat houses the detector in lHe, placed
as close as possible to the moving source; this allows a periodic modulation
of the signal. To further increase the sensitivity of the apparatus, the signal
is amplified with a resonant RLC circuit, tuned at the signal frequency given
by the rotating wheel. This circuit will be coupled with the pick-up of the
SQUID and the resulting signal will be increased by its Q-factor.

The main efforts to measure this interaction has been performed by
Ni et al. and Adelberger et al., this experiment lowered this limits of one
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orders of magnitude. Considering an integration time of 4 h, the minimum
detected signal is Beff,min ' 10−17 T, with a resultant limit on the coupling
gepg

N
s /~c . 10−30. Using a resonant pick-up with Q ' 104 the limit becomes

Beff,min ' 10−22 T, therefore the limit on the coupling is gepg
N
s /~c . 10−34.
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Abstract

L’assione di QCD è una particella introdotta per risolvere il problema della
CP forte del modello standard della fisica delle particelle ed è di inter-
esse come candidato componente di materia oscura fredda. Gli accoppi-
amenti permessi sono determinati dai vertici di un bosone a spin nullo:
l’interazione pseudoscalare dipende sempre dallo spin, mentre, nel limite
non relativistico, l’interazione scalare viene considerata indipendente dallo
spin. Quindi, in un’espansione multipolare, i due campi sono descritti come
“dipolo” (accoppiamento pseudoscalare gp) e “monopolo” (accoppiamento
scalare gs). L’obiettivo dell’esperimento è migliorare gli attuali limiti mis-
urati per l’intensità dell’accoppiamento gepg

N
s , per diversi valori della massa

dell’assione, quest’interazione avviene tra un nucleone N e lo spin di un
elettrone e−.

Anche se l’accoppiamento di singola particella è molto debole, un cam-
pione macroscopico composto da circa 1023 atomi, può produrre un leggero
campo bosonico coerente che può essere misurato. Nell’ambito della fisica
degli assioni, J.E. Moody and F. Wilczek hanno mostrato che una nuova
forza macroscopica, mediata dallo scambio di assioni, agisce sullo spin elet-
tronico, e ne hanno descritto il potenziale. Tale campo, che interagisce con
lo spin degli elettroni della materia, può essere descritto in termini di un
campo magnetico efficace e rivelato misurando un cambiamento di magne-
tizzazione indotto. Il principio alla base dell’esperimento, è la rivelazione
tramite SQUID di un cambiamento di magnetizzazione anomalo, prodotto
non da un campo magnetico, ma da un materiale ad alta densità di nuclei.

Le sorgenti del segnale sono grandi masse non polarizzate che costituis-
cono la parte monopolare gNs dell’interazione, mentre la parte dipolare gep
è costituita dagli spin elettronici di un cristallo. L’interazione crea quindi
un cambio di magnetizzazione del campione e induce quindi una variazione
del flusso magnetico collezionato dalla bobina che circonda il cristallo. Dal
momento che il potenziale dell’interazione è generato da mediatori pseu-
doscalari invece che da bosoni vettori di gauge, il campo generato non sod-
disfa le equazioni di Maxwell, ed è quindi possibile schermare l’apparato
dalle sorgenti di rumore elettromagnetico senza compromettere il segnale.
Un disco rotante con blocchi di piombo o rame equispaziati permette alle
masse sorgente di avere distanza variabile dal rivelatore, che è posizionato in
un criostato ad elio liquido più vicino possibile alle sorgenti in movimento;
questo permette di modulare il segnale. Per incrementare ulteriormente
la sensibilità dell’apparato, il segnale viene amplificato con un circuito RLC
risonante, costruito in modo che la frequenza di risonanza coincida con quella
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del segnale dato dalle masse rotanti. Il circuito sarà quindi accoppiato con
il pick-up dello SQUID e il segnale risultante verrà incrementato in base al
fattore di qualità Q del circuito.

I più recenti tentativi di misurare tale interazione sono stati fatti da
Ni et al. e Adelberger et al., questo esperimento ha abbassato tali limiti
di un ordine di grandezza. Utilizzando un tempo di integrazione di 4 ore,
il campo minimo misurato è Beff ' 10−17 T, con un conseguente limite
sull’accoppiamento gepg

N
s /~c . 10−30. Utilizzando il pick-up risonante con

un Q ' 104 il limite diventa Beff,min ' 10−22 T, e il limite sull’accoppiamento
diviene gepg

N
s /~c . 10−34.
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Chapter 1

Theoretical introduction

In particle physics, a spontaneously broken symmetry implies the existence
of a Nambu-Goldstone boson [1]. If the symmetry is exact, the resulting bo-
son is always massless, and couples with fermions with a coupling constant
of gp = mf/F , where mf is the mass of the fermion and F is the energy
scale of the spontaneously broken symmetry. On the other hand, massive
bosons are produced by symmetries which are not exact, like QCD pions for
the chiral symmetry, and their mass is mb = Λ2/F (where Λ is the explicit
symmetry-breaking scale of the effective Lagrangian).
The search of broken symmetries at extremely high energies can be per-
formed through the search of such exotic pseudo-Goldstone bosons, which
mediates long-range ultraweak forces. The detection of a new force will ac-
count for the presence of a boson and, therefore, of a broken symmetry; the
axion is a pseudo-Goldstone boson arising from the breaking of the Peccei-
Quinn symmetry [2] and it could mediate forces which are dependent on its
coupling.

1.1 Axions in the framework of the SM

In the 1970’s the strong interactions had a puzzling problem, which became
particularly clear with the development of QCD. The QCD Lagrangian for
N flavors in the limit of vanishing quark masses mf → 0 has a large global
vector-axial (V-A) symmetry: U(N)V ×U(N)A. Since mu,md << ΛQCD '
200 MeV, it is known that, at least for these quarks, the limit of sending the
quark masses to zero is sensible. Thus one would expect the strong interac-
tions to be approximately U(2)V ×U(2)A [3]. What one finds experimentally
is that, indeed, the vector symmetry corresponding to isospin times baryon
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CHAPTER 1. THEORETICAL INTRODUCTION

number U(2)V = SU(2)I × U(1)B is a good approximate symmetry of na-
ture, as manifested by the appearance of nucleon and pion multiplets in the
spectrum of hadrons. Although pions are light, there are no signs of another
light state in the hadronic spectrum, since m2

η � m2
π.

After Weinberg’s suggestion [4] that there was not a U(1)A symmetry in
strong interactions, t’Hooft [5,6] realized that the QCD has a more compli-
cated vacuum structure than expected. The U(1)A symmetry is in fact only
an apparent symmetry of the QCD Lagrangian, in the limit of vanishing
quark masses. However, associated with this more complicated QCD vac-
uum there is a phase parameter θ and only if this parameter is very small
CP is not very badly broken in the strong interactions. So the solution of
the U(1)A problem begets a different problem, the absence of CP violation
in the strong interactions.
The vacuum state is a superposition of n-vacua and it is called the θ-vacuum:

|θ〉 =
∑
n

e−inθ |n〉 . (1.1)

Calculating the vacuum to vacuum transition amplitude one obtains

〈θ+|θ−〉 =
∑
n,m

e−inθeimθ 〈m|n〉 =
∑
ν

eiνθ
∑
n

〈(n+ ν)+|n−〉 , (1.2)

the difference in winding numbers ν is

ν =
g2

32π2

∫
d4xFµνi F̃ iµν , (1.3)

where F̃ aµν = 1
2εµν%σF

a%σ. Using the usual path integral representation for
the vacuum to vacuum amplitude 〈θ+|θ−〉 one sees that the solution of the
U(1)A problem actually adds an extra term to the QCD Lagrangian

Lθ =
θg2

32π2
Fµνi F̃ iµν (1.4)

which violates parity and time reversal invariances, but conserves charge
conjugation invariance, so it violates CP. Naturally the value of this param-
eter is expected to be of the order of the unity, and is to be experimentally
determined. The effective physical CP-violating parameter in the Standard
Model is θ̄, the phase angle including both the strong and weak interac-
tions θ̄ = θ + arg(detM) (where M is the quark mass matrix). It has to
be noticed that the term in Eq.(1.4) is a permitted term of the Standard
Model lagrangian, in fact it respects the symmetries of the model and is
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CHAPTER 1. THEORETICAL INTRODUCTION

renormalizable, indeed [Lθ] = [M]4. It is often omitted because of the small-
ness of the θ parameter, nevertheless it violates the charge conjugation and
parity symmetries. Experimentally this violation would be expressed in an
anomalous neutron electric dipole moment dn,

|dn| =
e

mn

(mq

mn

)
|θ̄|, (1.5)

where mn (mq) is the neutron (a light quark) mass, e is the unit of electric
charge. A strong experimental bound of dn . 3 × 10−26 e cm [7] suggests
that the angle θ̄ should be very small, θ̄ . 10−10 [8–10]. Despite θ can take
any value, a value very small or zero lead to a “naturalness problem”, as
it is expected to be O(1). In fact a Universe where CP is violated strongly
seems as viable as one where it is not.
Introducing an additional chiral symmetry is a very natural solution for this
problem since this chiral symmetry, effectively, rotates the θ-vacua away,
leading to a dynamical interpretation of the angle. This symmetry, intro-
duced by Peccei and Quinn [2] and therefore known as U(1)PQ, is neces-
sarily spontaneously broken at high energies, and its introduction into the
theory effectively replaces the static CP-violating angle with a dynamical
CP-conserving field, the axion a(x). This particle is the Nambu-Goldstone
boson of the broken PQ symmetry, which, as a result of the U(1)PQ trans-
formation translates

a(x)
U(1)PQ−−−−→ a(x) + αfa, (1.6)

where fa is the energy associated with the spontaneously broken symmetry,
such that θ = a(x)/fa. Formally, the axionic interaction must be added to
the Standard Model Lagrangian (LSM) to make it PQ-invariant

L = LSM +
θ̄g2

32π2
Fµνi F̃ iµν −

1

2
(∂µa)(∂µa) + Lint[∂µa;ψ] + ξ

a

fa

g2

32π2
Fµνi F̃ iµν .

(1.7)
In Eq.(1.7) the last term is needed to ensure that the U(1)PQ current has
indeed a chiral anomaly

∂µj
µ
PQ = ξ

g2

32π2
Fµνi F̃ iµν . (1.8)

This term also represents an effective potential for the axion field, with
the minimum in < a >= −faθ̄/ξ and , as an effective potential, it is not
renormalizable. Since at the minimun the θ̄-term is cancelled out, this pro-
vides a dynamical solution to the strong CP problem. An expansion of
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CHAPTER 1. THEORETICAL INTRODUCTION

the potential around the minimum gives the axion a mass [11]. In the
Peccei Quinn model [2], the symmetry breakdown coincided with that of
electroweak breaking fa = vF ' 250 GeV, however, this is not necessary.
The original PQ model, was long ago ruled out by experiment, but the
so called “invisible axion” model, where fa � vF , are still viable [12].
This models introduce axions which carry PQ charge but are singlets of
SU(2)L×U(1)Y . The first model, due to Kim [13] and Shifman, Vainshtein
and Zakharov [14] (the so-called KSVZ Model), introduces a scalar field σ
with fa =< σ >� vF and a superheavy quark Q with MQ ' fa as the
only fields carrying PQ charge. The second one, due to Dine, Fischler and
Srednicki and Zhitnisky [15] (called DFSZ Model), adds to the PQ model
a scalar field φ which carry PQ charge and such that fa =< φ >� vF .
Although the KSVZ and DFSZ axions are very light, very weakly coupled
and very long-lived, they are not totally invisible.

1.1.1 Astrophysical and cosmological bounds

As the axion is not involved in the standard model and in other astrophys-
ical and cosmological theories, its mass have to be small (or large) enough
not to affect them critically. The first astrophysical bound is given by the
stellar energy loss, since low mass weakly-interacting particles (like neutri-
nos and possibly axions or gravitons) are produced in astrophysical plasma
and transport energy out of stars [16]. The observed stellar lifetimes give
rise to bounds on the coupling of these particles to matter and radiation,
in fact processes such as the Primakoff effect (γγ → a) and compton pro-
duction (γe → ae) would produce losses in the stellar luminosity. Since
e.g. solar luminosity is fixed, this losses lead to an enhanced nuclear energy
production and therefore to enhanced neutrino fluxes, measured, for exam-
ple, by the SNO experiment. Similar limits are given by the variation of
the cooling period in White Dwarfs, the measured period decrease of star
G117-B15A led to a limit of fa & 7× 108 GeV. The energy loss is inversely
proportional to f2

a , and hence proportional to m2
a thus axions must be light

enough, so as not to affect stellar evolution. Another bound on ma come
from SN1987a, since axion emission through the process NN → NNa in the
core collapse affects the neutrino spectrum [17]. Typical bounds obtained
from astrophysics require axions to be lighter than ma < 1− 10−3 eV [18].

Cosmology gives an upper bound to fa and a lower bound to ma [15,19–
21]. Applying the PQ phase transition to the Universe, at a temperature
T ' fa the QCD anomaly is not effective, sice fa � ΛQCD. Eventually,
when the Universe cools down and T ' ΛQCD the axion obtains mass, not
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CHAPTER 1. THEORETICAL INTRODUCTION

instantaneously but fluctuating. This axion oscillations contribute to the
Universe energy density and axions act as cold dark matter. The energy of
oscillations is proportional to fa and thus bounds the energy density of cold
dark matter, providing an upper bound of fa and therefore a lower bound
to ma.
A calculation by Fox, Pierce and Thomas [22] provide the contribution to
the Universe’s energy density due to axions:

Ωah
2 = 0.5

( fa/ξ

1012GeV

)7/6
(θ2
i + (σθ)

2)γ, (1.9)

where ξ is the coefficient of the PQ anomaly (ξ = 1 in the way was defined
fa, for both DFSZ and KSVZ models), θi is the misalignment value for
< a > /fa, σθ is its mean squared fluctuation and γ is a possible dilution
factor for the energy density produced by axion oscillations.
Using the WMAP bound on cold dark matter [23]

Ωah
2 < 0.12, (1.10)

assuming no dilution (i.e. γ = 1), using an average θ2
i ' π2/3 and neglecting

the fluctuations, the data gives the following cosmological bound for the PQ
scale

fa < 1012 GeV or ma > 2.1× 10−5 eV. (1.11)

Figure 1.1: Summary of cosmological and astrophysical constraints for ax-
ions [24]. See text for details.
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CHAPTER 1. THEORETICAL INTRODUCTION

Moreover, in the plot in Fig.(1.1) the areas marked “ADMX” and “CAST”
show the near future search ranges.

1.2 Axionic interactions

Axions can be detected through the macroscopic forces which they mediate,
the possible forces are determined by the allowed couplings that are the ver-
tices of the spin-0 bosons [25]. There are only two possibilities for coupling
with fundamental fermions, the scalar and pseudoscalar vertex, that can be
analyzed in the momentum space using the Gordon decomposition. For pure
spacelike momentum transfer q, they become, for the scalar

gsa(q)ψ̄(pf )ψ(pi) = gsa(q)
(pµpµ
M2

ψ̄(pf )ψ(pi)− i
pµqν
2M2

ψ̄(pf )σµνψ(pi)
)
,

(1.12)
and pseudoscalar,

gpa(q)ψ̄(pf )iγ5ψ(pi) = gpa(q)
qµ

2M
ψ̄(pf )iγ5γµψ(pi)

= gpa(q)
q

2M
ψ+(pf )iΣψ(pi);

(1.13)

where pf = p + q/2 and pi = p − q/2 are the final and initial on-shell mo-
menta, M is the fermion mass and Σ is the diagonal spin matrix.
The pseudoscalar interaction is always spin-dependent, while, in the non-
relativistic limit, the scalar interaction can be treated as spin-independent
(see Fig.(1.2)). Thus, in a multipole expansion, the two fields are described
by the “dipole” (pseudo-scalar coupling gp) and “monopole” (scalar cou-
pling gs) moments, respectively. Calling the vertices Gs, p for scalar and
pseudoscalar respectively, the two-fermion potential can be calculated with
the inverse Born approximation as

V (r) =

∫
d3q

(2π)3

GvGwe
iq·r

q2 +m2
a

; v, w = p, s. (1.14)

The potential in Eq.(1.14) can lead to three different combination, this allow
the existence of the same number of distinct forces.

Since the aim of the experiment is to the detect the monopole-dipole cou-
pling, only that will be analyzed in this Section, however a brief discussion
of the other two couplings is performed in Appendix A.
Fig.(1.2) reports the Feynman diagram of the gpgs interaction, where the
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a

e−

e−

N

N

igepγ5 igNs

Figure 1.2: Interaction diagram of a scalar-pseudoscalar coupling between a
nucleus N and an electron e−. N is unpolarized and interacts at the scalar
vertex with the coupling constant gNs , whereas e− is polarized and interacts
at the pseudoscalar vertex with the coupling constant gep. The mediator is

the axion a and the interaction strength is proportional to gNs g
e
p.

considered fermions are an electron e− and a nucleus N ; the superscripts on
the coupling constants are named after these. The single particle monopole-
dipole coupling (e.g. of electronic spin with nuclei) can be derived from
Eq.(1.14), using a scalar and a pseudoscalar vertex (e.g. v = s and w = p).
The calculation yields

Vmd(r) =
~gepgNs
8πmec

[
(σ̂ · r̂)

( 1

rλa
+

1

r2

)]
e−

r
λa , (1.15)

where λa is the Compton wavelength of the axion, gep and gNs are the coupling
constants of the Yukawa interaction, c is the speed of light in vacuum, me

is the mass of the electron, σ̂ is the vector of Pauli spin matrices, and r and
r̂ are the distance and unit vector between the monopole and the dipole,
respectively [1,25,26]. This potential describes the interaction between two
single particles and the axion Compton wavelength determines the range
of the interaction. Since λa = h/mac is macroscopic, a long-range force is
produced.

Thanks to the presence of the Pauli matrices vector term, this interaction
can be written in the form of an effective magnetic field. The amplitude of
this field can be estimated using the formula of the potential energy of an
electron in an external magnetic field B

U = µeσ̂ ·B, (1.16)

where µe = e~/2me is the Bohr’s magneton and µeσ is the spin magnetic
moment of an electron. By recasting Eq.(1.15) as Eq.(1.16) one gets the
explicit expression of this field

Beff,md(r) = −
gepg

N
s

4πec
r̂
( 1

rλa
+

1

r2

)
e−

r
λa . (1.17)

7



CHAPTER 1. THEORETICAL INTRODUCTION

Even if the coupling between single particles is weak, a macroscopic sample,
with the order of 1023 atoms, could produce a light coherent bosonic field
that can be measured. From the integration of this equation over the vol-
ume of the source, it is possible calculate the amplitude of the equivalent
measurable field. However, this field is not an ordinary magnetic field, since
it couples to the spin of the fermion, and is independent of fermion mag-
netic moment, electric charges, moving charges and angular momentum. As
the interaction potential is generated by pseudoscalar exchange rather than
by vector gauge boson exchange, this field does not satisfy the Maxwell’s
equations.

1.2.1 Couplings magnitude

The different axion models ( [13,14,27]) do not provide a unique value for the
coupling constants gp and gs. The axion mass is determined by the values
of fa, the energy scale at which the Peccei-Quinn symmetry is broken. In
addiction, the presence of an axion vacuum angle expectation θ 6= 0 allows
for monopole-dipole coupling. The values of the couplings as a function of
the mass of the axion ma reads

gpgs =
θσ

f2
a

mumd

(mu +md)2
ma, (1.18)

where mu and md are the masses of the up and down quarks [25]. The
angle θ in the conservative Kobayashi-Maskawa model, is expected in the
10−14 range and the pion-nucleon σ term is taken to be 60 MeV [28]. This σ
term takes into account the strange quark component of the pion, it is often
used in the chiral perturbation theory, which aim is to give a description of
QCD at low energies1. The dimensionless axion coupling strengths for the
three interaction types (Eq.(1.18), (A.2), (A.5)) are reported in Fig.(1.3) to
better understand their magnitude. It is worth noticing that this value of
θ is a limit from below, and that other models suggest much higher values,
up to θ ' 10−10, increasing the monopole-dipole coupling of several orders
of magnitude.

As briefly discussed, cosmological and astrophysical considerations sug-
gest a preferred value of fa ' 1012 GeV [15, 19–21]; in this case axions
would account for the missing mass of the universe. Moreover, fa must be
< 1013 GeV, otherwise axion would overdominate the evolution of the Uni-
verse (overclosure problem). The values of θ, σ and fa set the axion window

1Note that QCD is perturbative only at high energies.
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CHAPTER 1. THEORETICAL INTRODUCTION

10^-14 < θ<10-10

Figure 1.3: Dimensionless axion couplings in function of ma and θ. The
gravitational dimensionless coupling for two nucleons αG = Gm2

n/~c is re-
ported for comparison and the gsgs term was omitted.

in the coupling-mass space [29]. The values of the other types of couplings
are reported in Appendix A.

1.3 Possible experimental approaches

Since the forces mediated by spin-0 bosons are described, it is possible to
attempt a measurement of this interactions. Techniques to measure very
weak forces have been developed and seem suitable for the detection of
axions. Axion sources are macroscopic collections of nucleons (ordinary
masses) or coherent, spin-polarized electron or nucleon systems. The works
to search for the spin-dependent (semi-)long-range forces, can be classified
into two categories: those searching for the monopole-dipole interactions and
those searching for the dipole-dipole interactions. These works are largely
motivated to explore the role of spin in gravitation, and to explore the
interaction associated with the exchange of a light or massless boson.

In connection with P (parity), and T (time reversal) noninvariance, Leit-
ner and Okubo [30], and Hari Dass [31] suggested some time ago the type
of spin-gravity interaction in the form given in Eq.(A.1). Fujii [32] proposed
finite-range mass-mass interactions. More recently, Fischbach et al. [33] pro-
posed a fifth force which violates the equivalence principle with finite-range
monopole-monopole interactions and stimulated many experimental efforts.
Wei-Tou Ni [6], used torsion balance with two cylindrical copper test masses
and two cylindrical polarized “attracting” Dy6Fe23 masses to search for

9



CHAPTER 1. THEORETICAL INTRODUCTION

finite-range mass-spin interactions with the potential of Eq.(A.1). The re-
sult showed that for the range of 3-5 cm, the upper limit of this interaction
were below 1% of their gravitational interaction. Ritter et al. [34], in a re-
cent experiment, used spin-polarized Dy6Fe23 masses acting on unpolarized
copper masses in a dynamic-mode torsion pendulum and searched for the
interaction of the axion.

 (m)aλ
3−10 2−10 1−10 1

ch/ sg
pg

38−10

37−10

36−10

35−10

34−10

33−10

32−10

31−10

30−10

29−10

28−10

27−10

26−10

25−10

24−10

Present axion models

Hammond

Youdin

Ni

Adelberger

Figure 1.4: Measured limits for the gpgs coupling compared with the axion
window, for θ = 10−10 and θ = 10−14.

Vorobyov and Gitarts [35] first used induced ferromagnetism with a
SQUID2 to search for spin-dependent forces. The Cooper pairs of the super-
conducting shields enclosing the SQUID detecting system provide magnetic
shielding. The searched-for anomalous spin interaction due to an outside
body would not be shielded by these Cooper pairs. However, the ferro-
magnetic permeable material in their SQUID detector system was asked
to be sensitive five-order beyond the actual test of these materials. To
avoid this limiting factor, and to assure a clear understanding of a low-
field response, this experiment have used induced paramagnetism with a

2A device that can be used as a very sensitive magnetometer, it will be described in
Section 2.3.1.
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CHAPTER 1. THEORETICAL INTRODUCTION

dc-SQUID to search for spin-dependent forces. The latest and more pre-
cise measurement were reported in Fig.(1.4). In the case of Hammond and
Adelberger [36,37] the measurement was performed with a torsion pendulum
and rotating attractor and a new device that they refer to as the spherical
superconducting torsion balance, respectively. Youdin et al. [38] managed
compare the relative precession frequencies of Hg and Cs magnetometers
as a function of the position of two lead masses with respect to an applied
magnetic field. Finally, Ni et al. [39] performed this measurements using a
paramagnetic salt TbF3 with a dc-SQUID.

Figure 1.5: Representation of the change of magnetization due to the source.

This last approach is similar to the one of QUAX-gpgs, whose aim is to
measure a force mediated by axions (or axion-like particles, ALPs) which
has a large unpolarized mass as source and a paramagnetic crystal as a
detector. The presence of the mass allows axions to mediate this spin-
dependent force and change the magnetization of the sample (crystal) as
represented schematically in Fig.(1.5).

This considerations hold not only for axions but also for the already
mentioned ALPs. In fact the axion window is derived from a theoretical
model, which still has to be confirmed. The region of space above the
reported limit is already unexplored, so the absence of particles which has
features similar to the one of the axion can be verified. In this sense the
performed measurement, like the others reported until this point, does not
test only the presence of axions, but the presence of a spin-dependent force
that stands for the presence of a new particle. In fact, some of the cited
authors refer to their works as generic pseudo-Goldstone bosons detector or
axionlike coupling searches.
For the sake of completeness, a brief review of the present experiment testing

11
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the coupling with photons is reported in this section. In particular, some
of this works assumes that axions are the main constituents of cold dark
matter, in fact cosmic observation and particle physics experiments have
bracketed the unknown mass of the axion between approximately a µeV
and a meV.

Figure 1.6: Summary of experimental constraints for axion-like-particles
(two photon coupling constants vs. mass ma of the ALP) [24], see text for
details. Some astrophysical and cosmological bound are reported too.

In the plot in Fig.(1.6) the axion band is shown hatched. Here are also
shown laboratory limits from photon regeneration experiments (ADMX and
LSW). Note that the limit from ADMX is valid only under the assumption
that the local density of ALPs at earth is given by the dark matter density.
Other areas with interesting astrophysical hints are also marked in orange.
It is also to be noticed that the mass region, where the axion can be the
cold dark matter (the orange regions labeled “CDM” in the plots), can
be extended towards smaller masses (larger fa . 1016 GeV) by anthropic
reasoning.
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Chapter 2

Experimental Apparatus

The effective field in Eq.(1.15) interacts with electron spins of matter, and
it can be detected by measuring the induced changes of matter magnetiza-
tion. First efforts to measure spin-dependent forces using ferromagnets and
SQUIDs are reported in Ref. [35].

Figure 2.1: A schematic showing the QUAX-gp-gs apparatus for measuring
the strength of gpgs interaction. The cryostat houses the GSO crystal (de-
tector). The rotating toothed wheel (unpolarized source) modulates in time
the monopole-dipole interaction.

13



CHAPTER 2. EXPERIMENTAL APPARATUS

The approach chosen for QUAX-gpgs (QUest for AXion) is similar, ex-
cept for the substitution of the ferromagnetic sample with a paramagnetic
crystal, in order to avoid domain wall noise. Aim of the experiment is to
detect a magnetization signal which is not produced by a magnetic field
but by a material with high nuclear density. The periodic modulation of
the signal is achieved by varying the source-detector distance. Fig.(2.1)
shows a schematic of the main components of the QUAX-gpgs experiment.
A rotating toothed wheel allows for a source mass with a variable distance,
while a cryostat houses the detector, placed as close as possible to the mov-
ing source. Hereafter are given some details about the experimental setup,
starting from the unpolarized mass sources and the paramagnetic detector,
and continuing with the SQUID and readout electronics.

2.1 Source

The source consists of large unpolarized masses that provides the monopole
part of the interaction. Each mass is a lead disk, 2.5 cm thick, 9.5 cm in diam-
eter and 1.95 kg in weight. In the first experimental setup, 4 masses evenly
spaced are placed on a prototype of the rotating wheel having controllable
angular velocity; this allows to modulate the interaction at a given frequency.

Figure 2.2: 3D rendering of the wheel.

A higher frequency signal modula-
tion is suitable to improve the ap-
paratus sensitivity. To this aim,
a measurement with 24 masses on
the wheel is planned and a high ro-
tation stability is to be achieved.
The spread of the angular veloc-
ity ∆ωwheel must be at least com-
parable with the one of the RLC
circuit ∆ωrlc, otherwise the sensi-
tivity of the experiment will result
limited. Since the resonant circuit

quality factor is expected to be of the order of Q ' 104, the spread results
∆ωwheel = Q/ω0 ' 20 Hz (considering a resonance frequency ω0 ' 500 Hz).
However, for the first sets of measurements, the smaller 4-teeth wheel was
not stable enough to provide a good reference for the signal. A good inte-
gration with a phase detection scheme was not possible, so the wheel was
equipped with 64 evenly spaced holes to achieve a good control on the mod-
ulation of the signal. This fine sampling of the rotation frequency allows

14



CHAPTER 2. EXPERIMENTAL APPARATUS

to remove noise from the signal using a lock-in amplifier; the details of this
procedure are explained in Section 5.2.

Figure 2.3: Different points of view of the wheel.

2.2 Detector

The paramagnetic sample is a cubic crystal of gadolinium oxyorthosilicate
Gd2SiO5 (GSO) of 1 cm length [40]. Its features are reported in Table
(2.1). Its magnetic properties will be described in detail in Chapter 3.
The monopole-dipole interaction, acting on the electron spins in the crystal,
causes a change in the magnetization of the sample and induces a change
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CHAPTER 2. EXPERIMENTAL APPARATUS

of the magnetic flux collected by a coil surrounding the GSO. To reduce
thermal fluctuations, the crystal is cooled down to cryogenic temperature
(T ' 4 K). The distance between source and detector is 3.7 cm.

Volume V = 1 cm3

Mass 6.71 g
Density ρ = 6.71 g/cm3

Molar weight ρmol = 422.58 g/mol
Number of moles Nmol = 0.015 mol

Spin relaxation time τM = 7.4 · 10−11 s
Effective number of µB peff = 8.02
Magnetic susceptibility χ0 = 0.7

Table 2.1: Summarized features of the used GSO crystal.

Figure 2.4: Scheme of the detector,
the SQUID is represented as a in blue,
while the GSO crystal in green.

It is worth noticing that Beff is
not subjected to Maxwell’s equa-
tions. Therefore the sample can be
shielded from electromagnetic noise
sources without affecting the signal.
For this purpose two MgB2 super-
conductive shield are used to re-
move external noise of an expected
factor 1012. In addition, the appa-
ratus is placed in a µ-metal cylin-
der that reduces the magnetic fields
of an expected factor of the order
of 102. The temperature was con-
trolled through a Pt100 thermome-
ter placed inside the superconduc-
tive shield, which was switched off
at the moment of the measurement.
The superconductive shields, how-
ever, freeze every DC magnetic field
already present in their inside at
the moment of the superconducting
transition, such as the one of earth.
This static magnetic field should not
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be a problem, since it does not change the magnetic flux that is revealed
by the SQUID (see subsection 2.3.3). This is true in absence of mechanical
oscillations, in fact if the crystal moves inside a static magnetic field, the
result is a magnetic flux through the pick-up coil at the frequency of the
vibration, hence a possible background signal. Since the rotating wheel, for
example, will move air surrounding the cryostat exactly at its rotational
frequency, it has to be verified that this background signal does not affect
the measurements, as it can be easily confused with the searched signal.

During the research and development phase of the experiment, it was
taken in consideration the possibility of using a ferrimagnetic high-spin-
density material as detector: Yttrium Iron Garnet (YIG) ferrite. Its high
magnetic susceptibility increases the intensity of the signal, but, to achieve a
better SNR, it has to be compared with the noise level. Since measurement of
the magnetic noise of the YIG are not present in literature, the first measure
of it has been done. This work was carried out together with M. Spagnol
and is partially reported in his thesis “Magnetization Measurement for Dark
Matter Searches”. The results of this measurements will be reported in
an article titled “Measurement of the YIG magnetization noise” which is
in course of elaboration. The use of this ferrimagnet instead of the GSO
was discarded because of the high magnetic noise level. This is discussed in
details in Appendix C.

2.2.1 The cryostat

The cryostat that houses the GSO crystal is a liquid helium cryostat designed
at the Padua section of the INFN and it’s scheme is reported in Fig.(2.5). It
consists subsequently in a liquid nitrogen chamber, a vacuum chamber and
a liquid helium chamber, and can maintain the crystal at liquid helium (lHe)
temperature for 7 hours, as calculated hereafter and reported in Fig.(2.6),
where the slope of the straight line gives the evaporation rate. This feature of
the cryostat is fundamental to achieve an integration time of several hours.
Another important detail of the cryostat is the small distance which lies
between the lHe vessel and the room, this guarantees the smallest possible
distance between the source and the detector, crucial for the sensitivity
of this experiment. The vacuum chamber reaches a pressure lower than
10−8 mbar in presence of liquid helium; this pressure level is approximately
maintained during the acquisition.
The project of the cryostat is reported in Fig.(2.5), the most important thing
to notice is the lower part of it, which allows the 3.5 cm distance between
the source and detector centers of mass.
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CHAPTER 2. EXPERIMENTAL APPARATUS

Figure 2.5: Lateral section of the liquid helium cryostat used in this ex-
periment, which shows the lN, vaccum and lHe chambers. At the bottom
a vertical section of the appendix is reported, notice that the 4 K chamber
is close to the outside of the cryostat. Project by Mario Zago and Marco
Romanato - Uff. Tecnico Meccanico - I.N.F.N sezione di Padova.
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CHAPTER 2. EXPERIMENTAL APPARATUS

As previously hinted, some hour long integration time is essential to lower
the random background noise. Fig.(2.6) shows the losses of the cryostat, that
were estimated using a liquid helium level controller, used in low-noise mode
not to affect the measurements of the SQUID. From the slope of the fitted
line in Fig.(2.6) one can estimate an integration time 7 h, since the capacity
of the cryostat is around 17 l and the evaporation rate of 2.4 l/h.
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Figure 2.6: Estimation of the losses of the cryostat, needed to understand
the possible length of the integration time of a single acquisition.

The vacuum chain is composed by a scroll pump VARIAN SH-100 used
to produce the pre-vaccum, in series with a turboolecular pump Pfeiffer
TMU261, that permits to reach the high vacuum range inside tha cham-
ber of the cryostat. The pressure inside the vacuum vessel of the cryostat
was controlled using both a Pirani Pfeiffer TPG201 and a Penning Edwards
GP25-5 gauge. In addiction, it has been checked for leaks using a helium
mass spectrometer. In order to limit the vibrations the cryostat was decou-
pled from the floor using high density rubber, placed below the suspension
structure. This will damp the oscillations coming from the floor, nevertheless
the SQUID is sensible enough to be affected also from acoustic vibrations.
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2.3 SQUID readout

To detect the signal coming from the sample a SQUID based magnetometer
is used. Its functioning principles are described in the following subsection
(2.3.1), while in the next one (2.3.3) the readout is explained.

2.3.1 The dc-SQUID

The SQUID (Superconductive Quantum Interference Device) is a very sen-
sible magnetometer based on superconducting loops containing Josephson
junctions1, in particular in this experiment a dc-SQUID is used [41].

Figure 2.7: On the left side is reported the lumped element representation
of the dc-SQUID: Ib is the bias current applied to the junction, φ is the
magnetic flux and V is the voltage to be read. On the right side there is an
image of an actual dc-SQUID superconducting loop.

This device combines the physical phenomena of flux quantization and
Josephson tunneling. First predicted by F. London, flux quantization was
observed experimentally by Deaver and Fairbank, and Doll and Näbauer in
1961. They showed that the flux contained in a closed superconducting loop
is quantized in units of the flux quantum φ0 = h/2e = 2.07×10–15 Wb. Here,
h is Planck’s constant, and e is the electronic charge. It is based on the direct
current Josephson effect. In the absence of any external magnetic field, the
input current I splits into the two branches equally. If a small external
magnetic field is applied to the superconducting loop, a screening current,
Is, begins circulating in the loop that generates a magnetic field canceling
the applied external flux. The induced current becomes I/2 + Is in one
branch and I/2 − Is in the other. As soon as the current in either branch

1The Josephson junction consists of two weakly coupled superconducting electrodes.
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exceeds the critical current, Ic, of the Josephson junction, a voltage appears
across the junction. Now suppose the external flux is further increased
until it exceeds φ0/2. Since the flux enclosed by the superconducting loop
must be an integer number of flux quanta, instead of screening the flux the
SQUID now energetically prefers to increase it to φ0. The screening current
now flows in the opposite direction. Thus the screening current changes
direction every time the flux increases by half integer multiples of φ0, and
the critical current oscillates as a function of the applied flux. The voltage
in this case is thus a function of the applied magnetic field and the period
equal to φ0. Since the current-voltage characteristics of the dc-SQUID is
hysteretic, a shunt resistance, R is connected across the junction to eliminate
the hysteresis. This resistance is the source of the SQUID noise, discussed
in Section 2.3.2.

2.3.2 SQUID noise

As reported in the SQUID Handbook [41], for a dc-SQUID (schematically
reported in Fig.(2.8)), an estimation of the noise can be given starting from
the technical data of the device.

Figure 2.8: Scheme of the dc-SQUID, with schematic Josephson junction.

The interested noise is the one at the pick-up coil, and it’s spectral density
is given by

S
(p)
φ (ω) =

(Li + Lp)
2Sφ(ω)

M2
i

, (2.1)

where Li and Lp are the inductances of the interior and pick-up coils, Sφ(ω)
is the spectral density of the flux noise and Mi = ki

√
LiLl is the mutual

inductance of the interior coil coupled with Ll (the inductance of the loop).
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The source of the noise is a Johnson-Nyquist current associated to a shunt
resistance (R) used to remove the hysteresis of the Josephson junction. One
can find that, under optimum conditions, the spectral density of the flux
noise is

Sφ(ω) = 16kBTL
2
l /R. (2.2)

Combining Eq.(2.1) and (2.2) and considering a coupling ki, one can easily
find the spectral density of the equivalent flux noise at the pickup coil:

S
(p)
φ (ω) =

(Li + Lp)
2

LiLp
Sφ(ω). (2.3)

So the equivalent noise energy and then the magnetic field noise can be
calculated in the minimum given by Li = Lp,

ε(p)(ω) =
S

(p)
φ (ω)

2Lp
=

(Li + Lp)
2

2LpM2
i

Sφ(ω)

=
4Sφ(ω)

2k2
iL

=
4ε(ω)

k2
i

.

(2.4)

The pickup coil has a radius r = 7.5 mm and N = 8, considering the features
of the SQUID the noise energy ε(ω) ' ~ and an ideal coupling ki = 1 one
can find the magnetic field noise

√
S

(p)
B (ω) =

√
S

(p)
φ (ω)

N(πr2)
=

√
8Lpε(ω)

N(πr2)
= BN/

√
∆ν. (2.5)

Where BN is the equivalent noise field, this gives:√
S

(p)
B (ω) = BN/

√
∆ν = 3.8 · 10−18 T/

√
Hz. (2.6)

As last check, using the nominal value of noise for the used SQUID (reported

in the data sheet): S
1/2
φ (1kHz) = 0.81µφ0/

√
Hz with the same values used

above and replacing them in Eq.(2.1):√
S

(p)
B (ω) = BN/

√
∆ν = 9.2 · 10−19 T/

√
Hz, (2.7)

which is compatible with the previous calculation. To read current changes
one must couple the input coil Li with the internal inductance of the loop,
the mutual inductance limits the sensitivity of the device to a 5% of the
calculated value, with Mi = 8.8 nH. Therefore, using Eq.(4.4) and normal-

izing the flux for this pick-up coil, the calculation yields (S
(p)
B (ω))1/2 '

7.3 · 10−16 T/
√

Hz.
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2.3.3 SQUID calibration and electronics

An approximate calibration of any SQUID can be made using its V/φ char-
acteristic, which is checked when the device is used. Data showing a typical
example of this are reported in Fig.(2.9). When the dc-SQUID is biased
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Figure 2.9: Tension vs. flux φ/φ0 of a measurement.

at an appropriate constant current Ib , changes in applied magnetic flux
cause the voltage to swing between two extrema, producing the oscillations
with period φ0 shown in Fig.(2.9). The maximum response to a small flux
change δφ � φ0 is obtained when φa ' (2n + 1)φ0/4, where the flux-to-
voltage transfer coefficient |∂V/∂φa| is a maximum. This happens in in the
interval where the slope of the sine is higher.

However, to have a more precise calibration, the pick-up coil of the
SQUID was placed inside a controlled magnetic field. This was possible
using a bigger coil L in which is placed the smaller pick-up coil. Than,
using the signal generator reported in Fig.(2.10) a known magnetic field
was generated into the coil at a chosen frequency. The generator allows to
modify the voltage (e.g. the magnetic field) and the frequency of the signal,
collected by the pick-up coil and read with a spectrum analyzer HP-35660A.
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Figure 2.10: Lumped element circuit of the generator used for the calibration
of the SQUID. Here L is the coil in which is placed the SQUID pick-up coil.

This permitted a precise calibration of the SQUID, as reported in Fig.(2.11).
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Figure 2.11: Calibration of the SQUID using the homogeneous magnetic
field generated by the external coil L. The result is 4.2× 10−11 T/V.
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To measure the GSO magnetization induced by the source it is used a
Magnicon C6XXL1W dc-SQUID. With reference to Fig.(2.12), the coil Lp
picks up the magnetic flux generated by GSO magnetization; Lp is connected
to the SQUID input coil Li. Optimal work conditions of the SQUID require
Lp ' Li.

Figure 2.12: Lumped element model of the apparatus. Li = 1.8µH is the
input coil of the SQUID, Lp ' 1.8µH is the pick-up coil around the GSO
crystal.

To further increase the sensitivity of the apparatus, the signal can be am-
plified with a resonant RLC circuit, tuned at the signal frequency, reported
in Fig.(2.13).

Figure 2.13: Lumped element model of the resonant pick-up circuits coupled
with the SQUID through the mutual inductance Mp. The detector crystal
is wrapped in the pick-up coil Lp as in Fig.(2.12).

The GSO crystal is still placed inside Lp as previously. The resistance R is
an equivalent resistance accounting for all circuit losses, L is the inductance
of the coil, C is the capacity, Li is the internal inductance of the SQUID, Lp
is the pick-up coil, and Mp is the mutual inductance between Lp and L. In
the resonant readout configuration, the signal is increased by the Q-factor
of the resonant circuit. The signal produced by this configuration will be
analyzed in details in Section 5.2.2.
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Chapter 3

GSO magnetic properties

The GSO (Gd2SiO5) is a paramagnetic crystal (whose magnetic proprieties
were characterized by Baiboussinov, et al. [40]), that is going to be used in
the QUAX-gpgs experiment. For the aim of this experiment, the interesting
properties of GSO crystals are the ones that affect signal and noise, i.e.
magnetic susceptibility χ0 and spin relaxation time τM . The sample is a
cube-shaped GSO crystal, whose features are reported in Table (2.1). Here
will be performed a theoretical calculation of his susceptibility, followed by
two different experimental techniques of measurement.

3.1 Theoretical susceptibility

Assuming kBT � gµBH, where H is the external magnetic field, the sus-
ceptibility of a set of identical ions of angular momentum J = L+S is given
by Curie law

χ0 = µ0
N

V

(gµB)2

3

J(J + 1)

kBT
, (3.1)

where µ0 is the vacuum magnetic permeability, N/V is the number of ions
for unit of volume, g is the Landé factor, µB is Bohr’s magneton, J = L+S is
the total angular momentum of the ion, kB is Boltzman’s constant and T is
the temperature. When the free ions are part of a lattice in a solid structure,
e.g. ions with partially filled electronic f -shells in insulating crystals, the
generalized Curie law of paramagnetic susceptibility reads [42]

χ0(T ) = µ0
N

V

µ2
B

3

p2
eff

kBT
, (3.2)
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where peff is the effective number of Bohr magnetons. Here peff = g
√
J(J + 1),

where g is the Landé factor

g(J, L, S) =
3

2
+

1

2

(S(S + 1)− L(L+ 1)

J(J + 1)

)
(3.3)

taking the electron g0-factor to be exactly 2.
Crystals containing rare earth ions (which have partially filled electronic f -
shell), like gadolinium, obey the law in Eq.(3.2). In fact, for the Gd, the
values found in literature are reported in Table (3.1). With this data, using

Electronic configuration peff pmes

Gd 4f7 7.94 8.0

Table 3.1: Values of peff for Gd, the magnetic ion of GSO.

the features of these samples reported in Table (2.1), a first value of χ0 can
be calculated. Since N = 2n ·Na (where Na is Avogadro’s number, n is the
number of moles of the sample and the factor 2 considers that there are two
Gd atoms in a GSO molecule), the calculation yields

χ0 =
1

3

N

V

µ0µ
2
Bp

2
eff

kBT
=

=
2

3

0.015× (6 · 1023)

10−6 m3

(4π · 10−7 H/m)× (9 · 10−24 J/T)2 × 82

1.38 · 10−23 J/K× 4 K
' 0.71

(3.4)

This is a first approximated value of the magnetic susceptibility of the GSO,
and will be compared with two experimental results.

3.2 Measured susceptibility

In this Section the magnetic susceptibility of GSO is calculated using differ-
ent methods. First the results of [40] are used to make a first estimation of
the magnetic susceptibility through a fit of the M/B curve for small fields.
Than, using the data collected during the preliminary tests of the resonant
circuit, a second value of χ0 is obtained. This values will than be compared
with each other and to the theoretical value calculated in Section 3.1.
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3.2.1 From interpolation

Referring to [40], the magnetic susceptibility of GSO was measured in the
field cooling mode for H = 100 Oe, and fitted with a Curie-Weiss law:

χcgs(T ) =
C

T −Θ
; (3.5)

the resulting parameters of a linear fit of χ−1
cgs(T ) are C = 16.13(7) emu K

mol Oe
and Θ = −8.9(2) K. In the measures reported in [40], one can notice that
for small applied magnetic field the behaviour of the susceptibility is almost
linear, the slope of the line gives the χ0 .
From the fit parameters one can obtain the number of Bohr’s magnetons peff

already used in Eq.(3.2), this article reports a value of peff = 8.02. Using this
parameter, the calculation is similar to the one performed in the previous
chapter, and gives χ0(T ) = 0.72, obtained for using the previously reported
features of the crystal.

3.2.2 From resonance frequencies

An estimation of GSO susceptibility can be made using a resonant RLC
circuit. The resonance frequency ν0 = ω0/2π of the circuit is given by

ν0 =
1

2π
√
LC

, (3.6)

using this relation it is possible to find out information about inductance
and capacity.
This technique will be applied using the same RLC circuit with and without
the GSO crystal placed inside the coil, with the same capacity the expecta-
tion is that the shift of the resonance is entirely due to the inductance. If
Le is the inductance of the empty coil and LG is the inductance with the
GSO filling all the coil,

Le ∝ µ0, LG ∝ µ = µ0(1 + χ0); (3.7)

therefore, from Eq.(3.6) one can obtain the ratio between the two resonance
frequencies. The calculation yields

νe0
νG0

=

√
LG
Le

=
√

1 + χ0 , (3.8)

where the relation in Eq.(3.7) was used. Two spectra of the same RLC
circuit was collected with and without the GSO crystal inserted in the coil.
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Figure 3.1: Graphics of the two resonances with GSO (red) and without
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Since all other parameters are the same, except for the two inductances
it is possible to obtain the value of the susceptibility using the relation

χ0 =
( νe0
νG0

)2
− 1. (3.9)

The resonances are reported in Fig.(3.1) and the value of their resonance
frequencies in Table (3.2). As expected there is a shift of the resonance fre-
quency of about 140 Hz, probably due to the inductance, since nothing else
was changed in the circuit. To find an estimated value of the magnetic sus-
ceptibility, it is possible to perform a calculation starting from experimental
data reported in Table (3.2).

Empty With GSO

Capacity 150 nF 150 nF
Inductance 13 mH 15 mH
Resonance frequency 3.5154 kHz 3.3729 kHz
Quality factor 8788.5 4818.4

Table 3.2: Results of the calculations for the two cases.

This straightforward procedure however can not be applied directly to this
case, since there are some differences to be taken into account.

Corrections

The previous calculation does not consider some corrections on the suscep-
tibility:

1. multi-layered coil;

2. incomplete filling of the coil by the crystal;

3. effective number of electrons which give the magnetic moment.

This three factors will be taken into account in order to obtain a more precise
value of χ0 .

1. Multi-layer coil - The 13 mH coil used is not made of a single layer
of wire, so the formula to be used to calculate the inductance is

L = µ
0.8(R2N2)

6R+ 9l + 10∆l
, (3.10)
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where µ is the magnetic permeability of the medium, R is the average
radius, l is the length, N is the number of turns, ∆l is the thickness
of the coil. This will be taken into account in the following parts of
the calculation, in fact Eq.(3.8) is no longer valid.

2. Filling factor - The geometry of the apparatus gives information
about the region of the space filled by the crystal; in fact the coil is
cylindrical, but the sample is cubic. Not all the space inside the coil is
occupied by the GSO, but this geometry can be simplified considering
an equivalent configuration, with two parallel cylindrical coils. The
calculation in Eq.(3.11) takes into account this correction, using the
parameter Θ(χ0) = (νe0/ν

G
0 )2.

Θ(χ0) =
LG
Le

=

(
1
L1

+ 1
L2(1+χ0 )

)−1

Le
, (3.11)

where L1 is the external cylindrical empty coil, and L2 is the internal
coil (filled or not with GSO); the internal one is considered as an
equivalent circular-based coil instead of one with a squared base, and
Le can be considerd L1+L2. A representation of this model is reported
in Fig.(3.2).

Figure 3.2: Schematic representation of the model used in the calculations.

Imposing Θ(χ0) = (3.5154/3.3729)2 ' 1.086 one obtains a value for
the susceptibility χ0 ' 0.7.

3. Effective magnetic moment - The magnetism of GSO comes from
the gadolinium ion, in which the magnetic moment is given almost
entirely by the spin S. Referring to the first part of this section, in
particular to Table (3.1) and Eq.(3.2), considering J = L+ S, the χ0

of the GSO measured for J is equal to the one for S, since J is almost
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completely given by the spins. For this reason no correction has to be
done.

After the corrections, the value of the susceptibility remains heavily ap-
proximate, however its final value χ0 ' 0.7 is compatible with the results
obtained with the other procedures.

3.2.3 Imaginary part of the susceptibility

From the acquired data it is also possible to understand more about the
imaginary part of the χ. In fact writing χ(ω) = χ′(ω) + iχ′′(ω), the two
parts imply the presence of added resistance and inductance to the circuit:

La = 4πξLeχ
′, Ra = 4πξωLeχ

′′. (3.12)

The first shifts the resonant frequency of the circuit, while the second mod-
ifies the damping and is a source of Johnson noise.
Using the difference between the quality factors of the circuits, one can give
an estimated value of Ra (in fact a generic Q = ω0L/R). In this case R is
the resistance due to contact and losses, and the changing from Qe → QG
(using the previous subscripts) allows the calculation of Ra and therefore of
χ′′. All the used values are reported in Table (3.2).

Qe = ωe0Le/Re, QG = ωG0 LG/RG;

Ra = RG −Re = 0.01 Ω− 0.005 Ω = 0.005 Ω;

χ′′(ω0) =
Ra

4πω0ξLG
=

0.005 Ω

4π × 0.14× 3372.9 Hz× 15 mH
' 5.6 · 10−5.

(3.13)

Which, at the resonance frequency, is much smaller than the real part of the
susceptibility.

3.2.4 Summary

In the previous chapter were obtained three different values of the magnetic
susceptibility of the GSO, these results are reported synthetically hereafter.

Curie’s law Interpolation Resonance

χ0 0.71 0.72 0.7
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Chapter 4

Noise and sensitivity

The tests of the various components were performed in a lHe dewar with
a temporary apparatus, similar to the final one. After that, the first mea-
surement inside the cryostat were performed. In this chapter both of them
are reported. The aim was to identify the main source of noise, measure
the actual background and compare it with the calculated one, in order to
estimate the real sensitivity of the experiment.

To calculate the thermodynamic fluctuation of the magnetization, one has
to resort to the fluctuation-dissipation theorem [43], which reads

SM (ω) =
2kBT

µ0ωV
Im(χ(ω)), (4.1)

where SM (ω) is the spectrum of the magnetization noise, and Im(χ(ω)) is
the imaginary part of the Fourier transform of the susceptibility. In the
Debye approximation [44], and assuming ωτM << 1 one obtain

Im(χ(ω)) = Im
( χ0

1 + iωτM

)
' χ0ωτM . (4.2)

Hence, the mean square fluctuation of the magnetization, integrated over a
frequency band ∆ν, is

σ2
M =

∫
∆ν
SM (ν)dν =

4kBTχ0τM (∆ν)

µ0V
. (4.3)

To evaluate this quantity, the spin relaxation time τM of GSO was measured
through an EPR spectrum, obtained with a ELEXSYS 580 Bruker instru-
ment, equipped with a dielectric cavity at 80 K. The measurement gives a

35



CHAPTER 4. NOISE AND SENSITIVITY

linewidth ∆Hpp = 0.48 T. Considering the gyromagnetic ratio of the elec-
tron γe, the calculation yields δν = γe∆Hpp = 13.5 GHz. Since γe/2π =
28.0 GHz/T and τM = 1/(πδν), the spin relaxation time is 7.4× 10−11 s.
Assuming no variation of τM from 80 K to 4 K the value of the noise de-
pends only on the temperature; in this case T ' 4 K, and using the pre-

viously calculated χ0(4 K), the level of magnetization noise is S
1/2
B (ω) =

1.2 × 10−16 T/
√

Hz. A comparison between S
1/2
B (ω) and the SQUID noise

calculated from Eq.(4.3) shows that their value is similar, therefore a de-
tailed analysis of the two is needed.

4.1 Characterization of the main noises

The orders of magnitude of the magnetic noise and of the SQUID noise,
Eq.(4.3) and Eq.(4.4) respectively, are comparable. In order to verify that
the SQUID noise is above the magnetic noise, two measurements has been
made. The first with GSO and the second without the crystal, both of them
are reported in Fig.(4.1).
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Figure 4.1: Measurement with and without the GSO into the pick-up coil,
taken inside the test dewar. The red line represent the expected noise.
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The spectrum reported in Fig.(4.1) allows to verify that the noise mea-
sured is the one of the SQUID. In fact, as discussed in Section 2.3.2, the
optimal work conditions of the SQUID are reached if Lp = Li and in this
case the condition is verified when Lp is filled by the crystal. In other words
this relation is satisfied for the inductance of the coil wrapped around the
GSO, the inductance of the empty coil changes as the magnetic permeabil-
ity does (µ→ µ0). This change of inductance forces not to work in optimal
conditions, as a result, the SQUID noise increases. Assuming that the noise
measured with the GSO is due to the SQUID, the new noise level can be esti-
mated and compared with data. Since the two are compatible, it is possible
to conclude that the main noise is actually due to the SQUID.

One last check can be made in order to verify that the noise is actually
uncorrelated and random. Performing a vector averaging of the noise, using
the internal reference of the analyzer as phase signal, is a technique to do it.
A vector average takes into consideration the phase of the signal, allowing
to remove the noise which is not in-phase with the signal. The measurement
is reported in Fig.(4.2).
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0 20000 40000 60000 80000 100000

Not averaged
Averaged 1000 times
Expected noise level

Figure 4.2: Phase-sensitive averaging over the background inside the test
dewar. The reduction of the background is compatible with the expectation.
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The figure shows that the integration reduces the background level of a
factor

√
N ' 100, where N is the number of averages. This is exactly what

was expected, since the considered noise has a random phase.

4.1.1 Demagnetization factor

The effect of the geometry of the sample in a magnetic field is quantified
by the demagnetization factor: different shapes have different degrees of
shearing, this is due to demagnetization fields. Maxwell’s equations states
thatB must be continuous, butH is discontinuous at the surfaces of a finite
object, with normal components M . In this way, the surfaces acts as free
poles. In principle this effect should limit the sensitivity of the experiment,
however, this will be not taken into consideration, since the equivalent field
induced by axions does not respect Maxwell’s equations. What could be
considered is the interaction of spins with the other spins surrounding them,
in fact this interaction is independent on the nature of the force. However
this is a second order correction and will therefore be considered negligible.

4.2 Noise measurements

The results of Eq.(4.3) and the measures of Section 4.1 suggest that the dom-
inant noise of the experiment is the one of the SQUID. A detailed derivation
of this noise is can be found in Section 2.3.2, here only the most important
results and calculations are reported. Referring to Fig.(2.12), the spectral
density of the equivalent flux noise at the pickup coil of the SQUID is given
by

S
(p)
B (ω) =

1

(nπr2)2

(Li + Lp)
2

M2
i

Sφ(ω), (4.4)

where n and r are the number of turns and the radius of the pick-up coil
respectively, Lp is the pick-up coil inductance, Li is the internal inductance
of the SQUID, and Mi = k

√
LsLi is the mutual inductance between Li and

the loop inductance of the SQUID Ls. The intrinsic SQUID flux noise level

is S
1/2
φ (ω) ' 0.81µφ0/

√
Hz [45], since Mi = 8.8 nH and φ0 ' 2 × 1015 Wb,

using Eq.(4.4) and calibrating the magnetic flux through the pick-up coil,

the calculation yields S
(p)
B (ω)1/2 ' 7.3× 10−16 T/

√
Hz.

As was determined in Section 4.1 this is the main noise of the experiment.
Assuming that no ALP will be found, this values will be close to what will
be obtained with the acquisitions. Under this assumption this backgrounds
allow to give a first estimation of the gpgs limit measured.
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Noise spectra has been measured at frequencies f > 0.1 Hz (i. e. above
the 1/f noise knee of the SQUID [45]), and are reported in Fig.(4.3). As
can be seen, there exist frequency bands where the background is compatible
with the SQUID noise. The spectra are shown in the frequency bands of
planned gepg

N
s measurements: around 10 Hz and 500 Hz. These measures are

taken with a band-pass filter around the chosen frequencies. The intensity
of the low frequency spectrum is slightly higher than expected, probably
because of 1/f noises or vibrational noises.

4.3 Sensitivity calculations

The signal to be measured is a change of the GSO magnetization. For a
paramagnet, the change of magnetization M due to an external field H is
given by M = χ0H ≡ χ0B/µ0, where χ0 is the magnetic susceptibility.
Likewise, the axion effective magnetic field will induce a change in the mag-
netization µ0M = χ0Beff , that will be collected by the pick-up coil. The
noise sources are the magnetization noise and the SQUID noise; however,
in this experimental apparatus the dominant noise is due to the SQUID as
discussed in Chapters 3 and Section 4.2.

In order to obtain the signal generated by the source one has to start from
the potential in Eq.(1.17), that is a single particle effective magnetic field.
To get the intensity of the signal generated by a macroscopic body, an in-
tegration over the volume of the source is needed, calling V the volume of
the mass and N the number of nucleons and n = N/V the nucleon density
of the bulk mass

χ0S
1/2
B =

∫
V
nBeff(r)dV. (4.5)

Here the signal is considered independent on time. For a first approxima-
tion the signal will thus be a squared wave whose value is the result of the
integration of Eq.(4.5) when the source is in front of the detector and zero
otherwise. This is possible also because in the calculation, due to the small
dimension of the sample (compared to the source masses), it will be consid-
ered a point, that implies that inside the detector the field is considered to
be uniform. This also implies that the source, seen from the detector, is like
an infinite plane. Also if this seems a heavy approximation that could bring
to a sensitivity higher than the real one, a more precise calculation, reported
in Appendix D yield that this approximation works well in this case. In fact,
thanks to the exponential decay, the intensity of the interaction falls quickly
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with the increasing of r.
The explicit expression of the integral in Eq.(4.5) is∫

V
nBeff(r)dV = −

~2gepg
N
s

8πeµB

∫
V
nr̂
( 1

rλa
+

1

r2

)
e−

r
λa dV, (4.6)

applying the approximations discussed above and considering that n is con-
stant over the volume, the integral becomes∫

V
nBeff(r)dV =

~2gepg
N
s

4eµB
nλa(1− e−

d
λa )e−

z
λa '

~2gepg
N
s

4eµB
nλae

− z
λa , (4.7)

where d is the depth of the source mass.
As is clear form Eq.(4.7), as the distance between the two centers of mass z
increases, the intensity of the signal decreases and the correction due to the
depth of the source is negligible. This value of will be used in the following
section to estimate the sensitivity of the experiment.

Non-resonant readout

The signal to noise ratio of the magnetization measure is SNR = χ0Beff/σB,

where σ2
B = S

(p)
B (ω)/t is the variance of the measure and t is the integration

time. The minimum detectable magnetization at unitary signal-to-noise
ratio corresponds to an equivalent field

Beff,min =
S

(p)
B (ω)1/2

χ0

√
t

. (4.8)

Substituting for the measured values of χ0 and S
(p)
B (ω), and assuming an

integration time t ' 4 h, one gets Beff,min ' 10−17 T. The present configu-
ration of QUAX-gpgs should be able to improve the upper limit reported in
reference [46] of one order of magnitude.

Resonant readout

To further improve the sensitivity, a resonant pick-up circuit is exploit. Cal-
culations in Appendix B show that the SNR is increased by 2Q, where Q is
the quality factor of the resonant circuit. Using the measured values of the
non-resonant readout and Q ' 104, from Eq.(4.8) it is possible to estimate
an effective field Beff,min ' 10−22 T.
In Fig.(4.4) is summarized the expected sensitivity of the apparatus in terms
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of the strength of the monopole-dipole interaction, compared with the up-
per limits already reached by other experiments. The measurements of other
authors are reported in references [34,36–39,46–51]. It is worth mentioning
that some experiments has been proposed [52, 53] that should be able to
reach sensitivities of the same order of magnitude of this experiment.
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Figure 4.4: Expected sensitivity of QUAX-gpgs with an integration time of
4 h. As can be seen the limit on the gepg

N
s coupling can be lowered of 1 or 5

orders of magnitude in the non-resonant or resonant (RLC) configuration,
respectively. This figure also shows the gepg

N
s upper limits already reported

in literature (see text).
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Measurements and data
analysis

After the tests performed on the different parts of the experiment reported
in the previous sections, the final apparatus was built as it is described in
Section 2. The procedure usually starts the day before the actual measure-
ment, when the outer chamber of the cryostat is filled with liquid nitrogen
and a pre-vacuum is obtained using a scroll pump. After the pre-vacuum
is created, the turbomolecular pump is switched on, this permits to reach
a pressure around 10−7 mbar in a few hours. The next day, with the a
steady vacuum and after refill of liquid nitrogen, the liquid helium (lHe)
transfer can be made, the presence of lHe permits to reach a pressure below
5 × 10−8 mbar, which is the limit of the Penning vacuum gauge used for
the pressure measurent. The actual pressure is probably on the order of
10−8 mbar, due the turbomolecular pump and to the condensation provided
by lHe, no precise measurement have been made, since this parameter does
not affect the signal.
To allow the integration of the signal provided by the spectrum analyzer,
a reference (phase) signal is needed. A first effort to provide this phase
signal was made using a reflective surface placed on the source masses and
an opaque surface where there were no sources. Than, hitting with laser
light the wheel and placing a photodiode to detect the reflected signal (see
Fig.(5.1)), it is possible to obtain a signal in phase with the presence of the
mass in front of the detector. The signal coming from the photodiode is al-
most a square wave and, once passed through a generator used to provide a
suitable TTL signal, is sent to the analyzer to be used as external reference.
This should allow the analyzer to integrate the signal using this phase.
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Figure 5.1: Schematized representation of the part of the apparatus used to
obtain the phase of the searched signal. This scheme presents two states:
the first, in a time when the signal arrives to the photodiode (left), and
the second, in another time when it does not (right). This provides the
time-modulation of the signal.

Unfortunately, since the phase signal provided by the wheel was not sta-
ble enough, this method does not allow a good integration of the signal.

Figure 5.2: Fine sampling of the rotational
frequency, see text for details.

In fact as previously said,
for the non-resonant mea-
surement, a prototype wheel
was used, which balance and
stability have not been op-
timized. The solution of
this problem was to use a
different method to acquire
the phase: 64 holes evenly
spaced on the circumference
of the wheel were made.
Than, using a laser and
a photodiode, it was pos-
sible to check the angular
velocity ω as precisely as
needed. The configuration
is represented schematically

in Fig.(5.2). This fine sampling of the rotation (and tough of the frequency),
permits to lock the phase with a precision dependent on the number of holes
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in the wheel, in this case 64 samples per turn resulted enough. This expe-
dient permitted to acquire two different signals, that will be processed via
software, providing a phase-sensitive detection that will be explained in de-
tails in Section 5.2. The first test made on the final apparatus was for
external noises. In fact it is not evident that the wheel, rotating outside the
cryostat, does not affect the measurement. This is a reasonable doubt, also
because the possible noise (due to air moved by the teeth or other vibra-
tions) would be exactly in phase with the searched signal. In Fig.(5.3) the
two measures taken, with the wheel on and off, are reported.
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Figure 5.3: Comparison between the two spectra with and without the ro-
tating wheel, the cut of the lowest frequencies is due to a band-pass filter.

As can be noticed, two sharp peaks are present in around 2 and 5 Hz,
this are probably due to mechanical resonances of the structure of the wheel.
In the other frequency bands the rotation seems not to disturb the signal,
since the two background are compatible. Therefore the two peaks can be
ignored1 since they are distant from the 10 Hz planned for the measurement.

1However, in Section 6.1, a method to remove this noise is described.
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5.1 Acquisitions

The first spectra with all the parts of the apparatus set-up and working were
acquired to verify the presence of external noises affecting the signal. An
example of acquisition is reported in Fig.(5.4).
As can be seen, differently from the first run of measurements, the back-
ground is lacking of vibrational peaks and external noises of various sources.
This is probably due to the relaxation of the mechanic structures of the
apparatus, after the first measurements at cryogenic temperatures. This
background is close to what expected, confirming the possible result antic-
ipated in Section 4.3. This data were used only as check before going on
with the actual measure.
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Figure 5.4: Background spectrum of the first acquisition with all the appa-
ratus working. This spectrum is averaged 5 times using RMS averages.

It is worth noticing that at higher frequencies the background signal
of the SQUID is lower of almost an order of magnitude, this is useful also
without the resonant circuit. In fact, using an engine that allows a frequency
ω ' 25 Hz with a 24-teeth wheel, one can improve the measurement of
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a factor 10. A spectrum around the frequency of 500 Hz is reported in
Fig.(5.5), this is the planned resonance frequency of the RLC circuit and
therefore of the resonant measures.
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Figure 5.5: Background spectrum of the first acquisition with all the appa-
ratus working. At higher frequencies the SQUID noise level is lower.

As was discussed, an integration using the phase of the wheel as TTL
reference for the analyzer was not a useful solution for the reduction of
the background. The actual measurements were thus made using a LeCroy
HDO6000 high definition oscilloscope, the calibration of the SQUID, read by
the oscilloscope, is made using the internal generator of the device and yield
a value of 9.9 × 10−13 T/V. An acquisition consists in the two components
described in the previous section, hereafter referred as signal and phase,
briefly summarized below:

• signal : it have its origing in the GSO, is collected by the pick-up coil
and read SQUID. Finally acquired by oscilloscope for a time of ∼ 4 h;

• phase: it comes from a laser which supervise the angular speed of the
wheel, is collected by a photodiode and eventually acquired by the
same oscilloscope.
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Figure 5.6: Part of the signal collected during first measurement with the
oscilloscope, the upper plot is the signal, while the lower is the phase.
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5.2 Analysis

Here will be performed two different types of analysis, since the resonant
configuration need a more detailed procedure. The definitive measures with
the resonant configuration are still to be made, so the following considera-
tion regard the prototype wheel and therefore the oscilloscope analysis. It is
still not certain if this acquisition system will be used also for the resonant
measures, since the more stable wheel should allow a good TTL signal used
as reference for a spectrum analyzer. Section 5.2.1 essentially describes the
software used for the signal-phase acquisition, while in Section 5.2.2 a more
complex signal analysis is performed.

5.2.1 Non-resonant readout

The analysis of this configuration is very straightforward; since two simul-
taneous signal (i. e. signal and phase) are collected, it is possible to make a
lock-in amplification. Assuming that no force is present in the tested range,
this method will only reduce the background.
The two sets of data are processed from a software that follows the working
principle of a lock-in amplifier: the normalized phase and the signal data
are multiplied one to each other and then integrated with a low-pass filter.
To have an output independent from the amplitude of the phase (since its
value does not contain any information), it is normalized to a square wave
going from 1 to -1, this tip permits to directly multiply signal and phase
and proceed with integration. The low-pass filter integrates over frequencies
above his cutoff frequency, so if a zero mean signal passes through the filter,
it is gradually mediated to zero. Otherwise, if a signal in phase with the
reference passed through the filter, it produces a DC current that is the out-
put signal of the lock-in amplifier; instruments such as this allow to extract
signals from a very noisy environment. Since the measured background is a
the SQUID noise, whose origin is a thermal noise (as described in Section
2.3.2), it is a zero mean gaussian noise2, that once is integrated reduces as
t−1/2, where t is the integration time [54].

To test code and algorithm a white gaussian noise was generated us-
ing the Marsenne-Twister generator [55] present in the boost libraries3 and
added to a known signal sin(ωt), see Fig.(5.7).

2A method to confirm this is to verify is to collect multiple spectra and verify that the
values of a single bin are distributed according to a gaussian curve.

3http://www.boost.org/doc/libs/1_39_0/libs/random/random-generators.html
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Figure 5.7: Test signal for the lock-in software, plotted together with a white
gaussian noise generated randomly. The amplitude is in arbitrary units.

As previously explained, if the phase is normalized, a simple multiplication
with the signal will provide for the mixer of the amplifier. Let vin(t) be the
sequence (v1

in, v
2
in · · · vnin) and vout(t) = (v1

out, v
2
out · · · vnout), the differential

equation that describes the behavior of the filter is

vin(t)− vout(t) = RC
dvout(t)

dt
, (5.1)

where τ = RC is the time constant of the RC circuit. To simulate the
low-pass filter, the discretization of Eq.(5.1) that rule the system yield

viout = vi−1
out +

dt

RC + dt
(viin − vi−1

out ), (5.2)

where dt is the time interval and viout and viin are the output and input signal
i-th signals4. The test of this simple software is reported in Fig.(5.8), where
it can be seen that the random background is reduced, while the presence
of a signal with SNR∼1 produces a DC signal.

4This configuration can be improved by means, for example, of a Butterworth filter.
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Figure 5.8: Output of the lock-in software for random generated noise and
for noise and signal with SNR∼1. The random noise produces a decreasing
signal (→ 0), while the in-phase signal produce a DC signal (> 0).
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The reference phase used for the test reported in Fig.(5.8) is a square wave
that is positive when the sine is positive e negative if it is not, thus it is
in-phase with the test signal as plotted in Fig.(5.7).

After this preliminary test it is possible to measure the output signal
of the performed measurements, to obtain a limit of the measured field.
The acquisition time t is 4 hours long, therefore it is expected to have a
background reduction of a factor

√
t ∼ 120, that, basing on spectrum in

Fig.(5.4), predicts a background noise level of ∼ 1.6× 10−17 T. Considering
now the integrated measurement reported in Fig.(5.6), the phase signal was
normalized as described, and the whole acquisition was analyzed by the
lock-in software. The output is reported in Fig.(5.9).

Figure 5.9: Decreasing output voltage of the lock-in. Note that the plot
does not represent the whole acquisition.

A 4-hour long acquisition (t = 15000 s) integrated over time with the
method described brought to a measure of a field Beff = (0.34 ± 0.51) ×
10−16 T. The error was calculated through a fit between experimental data
and the 1/

√
t trend.

5.2.2 Resonant readout

In this section is performed an analysis of the expected spectrum given by the
resonant circuit. In fact, differently from the non resonant configuration, the
resonance will provide a spike in the spectrum due to the white noise lying
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below the SQUID noise. The circuit used to simulate the readout is reported
in Fig.(5.10), where the SQUID is substituted by a current generator (to
make the function of noise) parallel to an amplifier.

Figure 5.10: Circuit simulating the behaviour of the read out electronic and
the SQUID. L, C and R are the inductance, capacity and resonance of the
RLC circuit, respectively. Vr is the generator simulating the thermal (or
magnetic) noise flowing in the circuit, while Vs is for the signal. Lp is the
used pick-up coil, Li is the internal coil of the SQUID, Vba simulates the
back-action of the SQUID and In represents its current noise.

To understand the behaviour of this circuit, working in the Laplace do-
main, one has to calculate the response function of the circuit, which is
given by Eq.(5.3), where M is the mutual inductance between L and Lp,
M = k

√
LpL.

A(ω) =

(
iω
(
R− 1

iωC + iωL
)

−ω2M
−ω2M −ω2(Li + Lp)

)
(5.3)

The transfer functions of the generators SVs + SVr and SVp are reported in
Eq.(5.4) and Eq.(5.5). Vp is the SQUID noise spectra. Usually SVp = εLiω

2,
where ε is the energy resolution of the SQUID and SVr = 2RkBT is the noise
(in the case of thermal noise):

Ts(ω) =

(
iω
(
R− 1

iωC + iωL
)
−ω2M

iω 0

)
, (5.4)

Tp(ω) =

(
iω
(
R− 1

iωC + iωL
)
−ω2M

0 iω

)
. (5.5)
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To obtain the power spectrum read by the SQUID, which is the current
flowing in the branch of In, the calculation yields

Stot
V (ω) = S

(p)
V (ω) + S

(s)
V (ω), (5.6)

where the two components can be calculated from the transfer functions of
Eq.(5.5) and Eq.(5.4):

S
(p)
V (ω) = Vp

det(Tp(ω)) det
(
T ∗p (ω)

)
| det(A(ω))|2

,

S
(s)
V (ω) = (Vs + Vr)

det(Ts(ω)) det(T ∗s (ω))

| det(A(ω))|2
.

(5.7)

Since the SQUID measures a current, the amplifier is basically a resistance,
so if one supposes that G = 1, the gain of this amplifier, the current and the
voltage have the same value. In this way the current noise In of the SQUID
can be added to the power spectrum as SIn(ω) = 2ε/LSQUID, where LSQUID

is the inductance of the loop.
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Figure 5.11: Computed spectrum of the measurement. The values used are
reported on the right side of the figure.

Finally, the power spectrum that will be measured is given by Eq.(5.8)
and are reported in Fig.(5.11).

SV (ω) = Stot
V (ω) + SIn(ω). (5.8)
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Using the information of this spectrum and the experimental data, one can
calculate precisely the losses of the circuit. A fit of this function with exper-
imental data can provide unknown information about the apparatus, such
as the contact and loss resistance R, or the mutual inductance coefficient k.
A test of this analysis has been performed on the first data obtained with
the SQUID resonant pick-up reported in Fig.(5.12).
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Figure 5.12: Preliminary data obtained with a resonant pick-up of the
SQUID, the function in Fig.(5.11) is fitted over this experimental spectrum.

Clearly, some coefficients are implement to better evaluate the SQUID noise
level and the scale between the two graphics. Using this procedure it is
possible to verify the nominal ε of the SQUID, which is found to be correct
as expected. The values obtained form the fit that were still unknown are

R = 0.23 Ω, k = 0.84.

This results, however, are not the final characteristics of the experiment.
In fact the resonant pick-up is currently a work in progress, and test with
different low-losses capacitor and coils are currently being performed. It
can be noticed that Fig.(5.13) gives information also about the nature of
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Figure 5.13: Preliminary data obtained with a resonant pick-up of the
SQUID, detail of the resonance region.

the noise. The spike arises because of a white noise that is amplified by the
resonance. Taking for example the case of pure white noise, the resulting
spike turns out to be asymmetric. If another noise exists, which is above the
white noise but not amplified by the resonance the lower part of the spike
results covered by this noise, and, on first approximation will be symmetric.
This is shown by the graphic produced in Fig.(5.11), where the covering
noise is the one of the SQUID. Referring now to Fig.(5.13) and Fig.(5.12),
it can be noticed that the spectrum is almost symmetric, this yields that
the magnetization noise is (also in the resonant configuration) below the
SQUID noise. This is expected, since another measure was performed to
verify this fact, however, applying the same procedure to the thermal noise
of the circuit, it is expected to be below the noise of the SQUID too.
Since the fit provided a value for the contact and losses resistance of the
circuit, it is possible to estimate the Johnson-Nyquist noise of the circuit,
given by the relation

SV (ω) = 4kBTR. (5.9)
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Substituting the values of the apparatus in Eq.(5.9) one obtains

(SV (ω))1/2 = 7× 10−12 V/
√

Hz→ (SB(ω))1/2 = 3× 10−22 T/
√

Hz

which is less that the SQUID noise, as expected by the qualitative analysis.
What results from a more detailed analysis, using the instruments already
described in this section, is that that for a resistance R . 1 Ω the thermal
noise of the circuit is below the SQUID noise, therefore the gain of the SNR
is equal to the Q factor of the circuit.
Since the tests on the resonant circuit are currently underway, no measured
field will be reported but only a projection of the future sensitivity.

5.3 Results

As discussed, to give a limit on the coupling it is possible to detect an
anomalous magnetization which comes from the effective field mediated by
axions. The limit of this magnetization (i. e.) gives a limit on the axionic
field, that can be reduced to an upper limit for the gpgs coupling.
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Figure 5.14: The gray-filled region represents the axion window discussed
in Section 1.2.1 for θ = 10−10 (transparent color) and θ = 10−14 (solid
color). The curve labelled as Quax-gpgs is the limit already reached and
measured. Quax-gpgs (RLC) represent the limit that should be reached
considering the background of Fig.(5.5) with the Q factor of the resonant
circuit already obtained and reported in Fig.(5.13).
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Using the Eq.(D.7) it is possible to obtain a plot showing the areas of the
gpgs/λa plane examined in this experiment. The plot in Fig.(5.14) shows the
possible interaction region excluded by this measure and gives a projection
of the imminent measure with the resonant configuration. Note that this
values are compatible with what expected and reported in Fig.(5.12).
This establishes an upper limit of the combined values of mass (wavelength)
and coupling of axions and ALPs, the final result is

Beff = (0.34± 0.51)× 10−16 T→ gepg
N
s . (2.7± 4.0)× 10−30,

for wavelengths of λa &1 cm as reported in Fig.(5.14), for λa . 1 cm the
experiment loses sensitivity.

5.3.1 Possible limits on the θ̄ parameter

Referring to the graphic in Fig.(5.14), it is possible to deduce some more
information about the physics involved. For example, assuming the presence
of a mediator for this long-range ultraweak force, a limit on the θ̄ param-
eter can be given. Today’s limit is θ̄ . 10−10 and is measured through an
anomalous neutron electron dipole moment dn, this experimental apparatus
can be used also for testing the magnitude of this parameter to a similar
order of magnitude or even to a smaller one. In fact, fixing the mass of the
axion or ALP (or equivalently λa), it is possible to calculate the magnitude
of the interaction, and therefore the value of θ̄. If the wavelength of the
axion (or ALP) will result of the order of some cm, the resonant measure of
this same experimental configuration will fix a constraint on θ̄ that is more
accurate that the one derived from dn.

58



Chapter 6

Conclusions

In this thesis is described a method to measure the gepg
N
s coupling with the

QUAX-gpgs experiment, the measurement reported fixes a new upper limit
for this type of interaction.
At the beginning one can find a theoretical introduction which describes
the specific physical phenomena and the main reasons to search for this in-
teraction; placing some constraints on the measure it is possible to develop
specific techniques to detect the considered effect. This leads to a description
of the whole final set-up of the experiment, built during the thesis period,
which consists in source, detector and read-out. Afterwards it is reported
a specific study of the magnetic properties of the GSO crystal used in the
experiment, that was completely characterized in terms of magnetic sus-
ceptibility and spin relaxation time using different experimental methods.
With this information it is useful to make some tests of the background
noise, from these first data an expected sensitivity of the experiment is de-
termined, both at ∼ 10 Hz and ∼ 500 Hz, that are the frequencies chosen
for the measurement. Eventually are reported the definitive low-frequency
measurements and the preliminary acquisition of the resonant configuration,
with a detailed description of data analysis and results. Since the collected
data confirm the expectations it is possible to conclude that this measures
establish a new limit for the gepg

N
s interaction. In fact, considering an inte-

gration time of 4 h, the signal measured with the non resonant configuration
is Beff,min ' 10−17 T, with a resultant limit on the coupling gepg

N
s /~c . 10−30

within λa & 1 cm, that currently is the best limit measured for this spin-
dependent force, as it is more accurate of one order of magnitude in respect
of any previous measure.
Using a resonant circuit it is possible to improve this upper limit of 5 or-
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ders of magnitude, reaching a magnetic field limit of Beff,min ' 10−22 T and
therefore a coupling limit of gepg

N
s /~c . 10−35.

A paper describing the apparatus has been currently submitted to Nuclear
Instruments and Methods, the article titled “The QUAX-gpgs experiment
to search for monopole-dipole Axion interaction” is currently waiting to be
published. Another article reporting the measurements of Section 5.2 is
currently in course of writing.

6.1 Improvements

The ultimate aim of this type of experiments is to detect the presence of
a force due to an axionic field, the models suggest that to do so it is nec-
essary to reach the axion window reported in Fig.(5.14), therefore a higher
precision is needed. In order to reach a higher sensitivity it is possible to
use different expedients, some of them are briefly discussed in this section.
Since QUAX-gpgs is only sensible to monopole-dipole coupling, another im-
provement could be extend its possibility of measurement also to the dipole-
dipole coupling, as proposed in Section 6.1.1. Some simpler improvements
are discussed in Section 6.1.2, like use differential measurements to reduce
the background or reduce the SQUID noise by improving the coupling ki
between the loop inductance L and the internal coil Li. Finally, increasing
the volume of the detector should produce a signal with a larger intensity.
This can be done using a number of Nc crystals of GSO in series, read by
the same SQUID with a resonant pick-up and is discussed in Section 6.1.3.

6.1.1 Polarized sources

A possible and interesting upgrade of this experiment is to make QUAX-
gpgs sensible also to the dipole-dipole interaction. This aim can be achieved
by means of using a polarized source. In fact in the actual configuration
only the detector (GSO crystal) is polarized, while the sources are not. This
was already made by Adelberger et al. [36], the key feature that makes these
torsion balance experiments sensitive to all the above interactions is the large
macroscopic net intrinsic spin of the interacting masses. Different designs
of test bodies have been developed aiming for a high density of polarized
spins in masses from a few tens to a few hundreds of grams. The highest
spin density achieved so far is about 3× 1024 spins/kg obtained with a 29 g
cylinder of Dy6Fe23. A slightly lower density of about 1.2 × 1024 spins/kg
has been reached in with a 70 g composite structure of SmCo and AlNiCo.
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These latter designs use ferromagnetic materials and permanent magnets
due to the intrinsic alignment of a high number of electron spins. As a
natural consequence, special attention in these designs has been given to
suppressing magnetic effects. Magnetic shielding, magnetic compensation or
magnetic field confinement have been exploited to ensure that the possibility
of detecting any potential spin interaction is not limited by magnetically
induced systematic errors.

A work by Carbone et al. [59] presents conceptually new designs for spin-
polarized masses based on permanent magnets. The idea of a concentric
assembly of permanent magnets comes from the need to neutralize the mag-
netic field produced by pairs of counter-aligned permanent magnets, while
retaining their individual magnetic properties. Although this may seem dif-
ficult to realize because of the impossibility of the physical superposition of
two magnetic moments, the use of simple geometries makes this feasible, as
reported in Fig.(6.1).

Figure 6.1: Left: nested arrangement of a uniformly magnetized sphere
within a spherical shell. Right: nested arrangement of two cylinders [59].
Subscript 0 relates to the inner magnet while 2 is for the outer one.

Designing a concentric assembly of permanent magnets whose relevant m
lm moments are equal and opposite still nominally allows the minimization,
or even the nulling, of the magnetic behavior of the system.
The use of this kind of samples make it possible to detect a dipole-dipole
interaction, since both the source and detector are polarized, and limits the
disturbing magnetic effects introduced by the masses, allowing to measure
a limit for this interaction too. Using this technique, instantaneous noises
coming form the environment are read both from both the sources, so no
signal is measured.
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6.1.2 Differential measurement

The first spectra gathered during the tests, referring to Fig.(4.3), shows
that the background is somewhere afflicted by vibrational noise peaks. As
discussed, the SQUID sensitivity is such that also acoustic vibrations present
in the measure environment disturbs the acquisition. To damp this effect it
is possible to perform a differential measurement, as to compare to crystal
in the exact same condition, of which one is affected by the interaction
while the other does not, according to the scheme in Fig.(6.2). Using this
technique, instantaneous noises coming form the environment are read from
both the sources, so no signal is measured.

Figure 6.2: Scheme of the differential measure with two detectors. s +
n represents the signal and noise coming from the first sample, while n0

represents the noise coming from the second one, which is not affected by
the interaction.

The problem of this configuration is letting the interaction affect only one
sample, since the two has to be very close, as to measure the same noises. A
possible solution that can be exploited is to use the same detector provid-
ing both for the sample biased by the signal and for the other. This could
be possible taking advantage of the geometry of the experiment. Consider-
ing that the interaction acts only on the direction r̂, another pick-up coil
wrapped on the same crystal with the axis perpendicular to r̂ should stand
for the background sample, as it is not affected by the interaction. This can
be a useful tool, but need some test, since its working principle suppose that
the noises, differently from the signal, is isotropic. Such thing is not verified
in principle and could produce errors in the measurement. Note that this
analysis can also be done a posteriori, taking two measures, with and with-
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out sources. This will lead to the same result only if the exact external noise
are present during the two acquisition, but since the main sources of disturb
to be removed are environmental this condition is not always satisfied.
Another way to directly improve the measure is to use a SQUID with a bet-
ter coupling between the internal coil Li and the inductance of the loop L,
i. e. to have a higher value of ki. Since such SQUIDs are commercially avail-
able, so the noise of the magnetometer will result improved dependently on
the coupling ki. As a consequence, the internal coils Li of this devices, typi-
cally have inductances of the order of some nH, therefore a suitable pick-up
of the signal has to be developed.

6.1.3 Superconducting transformer

Consider the simple measuring scheme of Fig.(2.12) in which the coupling
between the GSO sample and the dc-SQUID is done by means of a super-
conducting transformer composed by the pick-up inductance Lp wound on
the GSO and the SQUID input coil Li coupled to the SQUID loop Ll by
means of the mutual inductance Mi. In this scheme, the noise sources that
can be modeled are the SQUID noise and the thermal noise due to the mag-
netic losses of the GSO crystal. As regards the SQUID, in this case, as for
the majority of applications at audio frequencies without high Q resonat-
ing input load [56], its noise can be modeled as an additive flux noise at
the SQUID loop with power spectral density Sφ or its equivalent energy
resolution ε = Sφ/(2Ll). It is easy to show (see Section 2.3.1 [41]) that
the equivalent noise energy referred to the pickup loop εp can be minimized
when Lp = Li and its optimal value is ep = (4/k2

i )ε. By operating with this
optimal coupling and approximating the Lp inductance to that of a long
solenoid of volume V , one can show that the equivalent magnetic field noise

applied to the pick-up is given by S
1/2
B = (2/ki)(2µε/V )1/2 where mu is the

permeability of the GSO crystal and V its volume. As an example, con-
sider a cylindrical GSO sample (µ ' 1.7), 30 mm in diameter and 200 mm
in height, with 20 turns of pick-up. Its expected inductance is about 1.7µH,
a value near the typical input inductance of some commercial SQUIDs. In
the best case one can consider a SQUID with an energy resolution of 1~,
an ideal quantum limited SQUID, with a coupling constant ki = 1. In this
case the expected equivalent magnetic field noise applied to the pick-up is
3.9 × 10−18T/

√
Hz. The noise source associated to the paramagnetic GSO

crystal depends on the imaginary component of its magnetic susceptibility
(see Chapter 3). In particular, the resistive component of the pick-up in-
ductance wound on the GSO is given by ω2L′pχ0τM where ω is the angular
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frequency, L′p = µLp, χ is the magnetic susceptibility, and τM is the spin
relaxation time. In this case, it can be shown that, at the audio frequencies
of interest, the equivalent magnetic field noise at the pick-up is given by

S
1/2
B = 2(2µ(kBTχ0τM )/8V )1/2. This noise, at 4 K and with the values of
χ0 and τM reported in Chapter 3, becomes comparable to the noise due to
the SQUID only if the latter operates at the quantum limit.

Other possible schemes can improve the signal-to-noise ratio. Here will
briefly mentioned a few variants of the basic scheme of figure 2.12. From
Eq.(4.1) for the equivalent magnetic field noise at the pick-up one can infer
that this can be reduced a twill by simply increasing the volume of the GSO
crystal. This is possible only as long as the inductance of the coil wound on
the crystal can be kept approximately equal to the input coil inductance of
the SQUID which is typically less than 2µH. To overcome this limit one can
use a superconducting low-losses matching transformer [57] that permits to
optimally couple pick-up coils with inductance of the order of 1-10 H to the
SQUID input coil. The typical dimensions of the paramagnetic crystal and,
as a consequence, of the rotating mass that constitutes the signal source, are
determined, as well as by practical constraints, by the range of the values
of parameter λa it is intended to test. To keep the crystal dimensions of
the order of 1 cm but to reduce the equivalent magnetic field noise at the
pick-up due to the SQUID, it is convenient to use a number Nc of crystals
with their pick-up coil connected in series. In this case, Eq.(4.1) is still
valid if V represents the total volume of the Nc crystals. Of course, also the
number of the rotating masses has to be equal to Nc in order to generate
signals in phase in the Nc pick-up coils of the crystals connected in series.
Compared to the SNR of the single crystal optimally coupled to the SQUID
this configuration would permit an improvement of a factor N2

c .
Another strategy to improve the signal-to-noise ratio consists in using a

resonating matching circuit. If a low-losses capacitor is connected in series
to the primary coil of the matching transformer and the Nc pick-up coils,
so that the circuit resonates at the frequency of the signal, it is easy to
demonstrate that the flux signal at the SQUID is increased by Q, the qual-
ity factor of the resonant circuit. In order to quantify this improvement,
observing that, if the losses of the resonant circuit operating at, let’s say,
500 Hz were entirely due to the GSO crystal, according to the values of χ
and τM given in Section 3, the circuit quality factor could be of the order
of 106. This means that the GSO magnetic losses are negligible compared
to the intrinsic losses of this type of LC resonators that can achieve quality
factors of the order of 106 [58].
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Appendix A

Axionic couplings

The possible interaction between mediated by a scalar particle are given by
three vertexes, which combined gives the three different couplings, monopole-
monopole, monopole-dipole and dipole-dipole, reported in Fig(A.1). The first
is spin-independent, while the other two are not, in particular the dipole2

depends only on the spin.

a

ψ1

ψ1

ψ2

ψ2

ig1
s ig2

s a

ψ1

ψ1

ψ2

ψ2

ig1
pγ5 ig2

s

a

ψ1

ψ1

ψ2

ψ2

ig1
pγ5 ig2

pγ5

Figure A.1: Interaction diagram of all spin-0 boson couplings between two
fermions ψ1 and ψ2. The scalar vertex has the coupling constant gs, whereas
the pseudoscalar vertex has gp. The mediator is the axion a and the inter-
action strength is proportional to gsgp, gpgp or gsgs.

Starting from Eq.(1.14) one can calculate the potential for the three macro-
scopic forces which arises between the fermons.
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A.1 Monopole-monopole

For the monopole-monopole coupling one obtains the potential of Eq.(A.1)

Vmm(r) = −g
1
sg

2
se
− r
λa

4πr
, (A.1)

his coupling constant value can be calculated [25], and results

gsgs =
(θσ
fa

2mumd

(mu +md)2

)2
, (A.2)

where all the symbols used has been already defined in Section 1.2.1.

A.2 Monopole-dipole

In the case of the monopole-dipole coupling, which has been considered in
Section 1.2, the calculation yields

Vmd(r) =
g1
pg

2
s

8πm1

[
(σ̂ · r̂)

( 1

rλa
+

1

r2

)]
e−

r
λa . (A.3)

For further discussion of this interaction see Section 1.2.

A.3 Dipole-dipole

As can be seen in Fig.(A.1), there is another coupling permitted for elec-
tronic spin, which is the (dipole)2. For this interaction the potential is given
by Eq.(A.4),

Vdd(r) =
g1
pg

2
p

16πm1m2r3

[
(σ̂1·σ̂2)

(
1+

r

λa

)
−3(σ̂1·r̂)(σ̂2·r̂)

(
1+

r

λa
+
r2

3λ2
a

)]
e−

r
λa .

(A.4)
Like the other one, for a macroscopic body this can be interpreted as an
effective magnetic field, the consideration reported in Section 1.2 are true
for this field too. The value of the the coupling constant is

g2
p =

(ma

fa

)2
, (A.5)

a comparison between the intensity of the monopole-dipole and dipole-dipole
interaction is shown in Fig.(1.3). Their relative intensity depends heavily
on the λ considered.
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Appendix B

Resonant circuits

There are several possibilities for the design of the resonant circuit, two of
them are reported in Fig.(B.1).

Figure B.1: Possible designs of the resonant circuits, coupled with the
SQUID. The resistance R is an equivalent resistance (superconduction
regime), Li is the internal inductance of the SQUID, and Lp is the pick-
up coil.

Here will be performed brief analysis of the two circuits above, consider-
ing initially the signal given by the simple circuit in the black square, with
Lp ' Li. If B is the signal of the axionic field, a is the section and n the
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number of spires of the pick-up coil, one can write,

δφi + (Li + Lp)Ii = (an)B + 2LpIi = 0. (B.1)

So the interested signal can be measured through the relation:

I1 = −(an)B

2Lp
. (B.2)

Now, considering the whole circuit in figure, and supposing the flux to be
collected only by the solenoid L (which has his own section A and number
of spires N), the coupling is M = k

√
LpL. At the resonant frequency of the

circuit, considering k = 1, the signal is given by:

I2 =
AN B√
LpL

Q, (B.3)

so the gain, compared with the one of the previous configuration, if a = A,
is

|I2|
|I1|

=
AN B√
LpL

2Lp
anB

= 2
N B√
LpL

Lp
nB

=2
Lp√
LpL

√
L

Lp
Q = 2Q.

(B.4)

Another configuration can be given by the second circuit in figure, where
the hypothesis is that the field B is collected entirely by L. This biggest
solenoid have L � Lp (with Lp = Lq), and, since Li = Lp one obtains
M = Lp, and equations like the ones used before, with signal I3 yields:

|I3|
|I1|

=
AN B

2L

2Lp
anB

= Q
AN

an

Lp
L

=
AN

an

n2a

N2A
Q =

n

N
Q

(B.5)

The noise produced by this circuits is different, and has to be taken into
account; for the simplest circuit the noise is calculated in Appendix 2.3.2.
For the other two circuits the main source of noise is the Johnson’s noise
of the resistor, so the relation to be respected, if the spectral density of the
noise is S2,3 (given by I2,3) and ω is the frequency, is

S2,3
φ (ω) >

4kbTR

ω2
→ S2,3

B (ω) >
4kbTR

S2N2ω2
. (B.6)

Considering a resistance R ' 0.01 Ω at a frequency of 600 Hz and the actual
pick-up coil, the resulting magnetic field noise is S2,3

B (ω) = 2.0·10−24 T/
√

Hz.
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Appendix C

YIG magnetization noise

The magnetization noise was measured with a SQUID based magnetometer
and from this measurement the imaginary part of the magnetic suscepti-
bility can be estimated. The noise spectrum has an intensity

√
SB(ω) '

40 fT/
√

Hz in the frequency range from 1 kHz to 100 kHz, from this mea-
surement, after a fit with the equation given by the fluctuation-dissipation
theorem, was obtained the imaginary part of the susceptibility χ′′ ' 0.002.
Since the sample has a spherical shape, a geometric normalization is needed,
these factors were calculated from a numerical simulation.

C.1 Introduction

Yttrium Iron Garnet (YIG) is a ferrimagnetic material belonging to the
rare-earth garnets with a chemical formula Y3Fe2(FeO4)3. It has interesting
magnetic properties such as high density of unpaired electron spin, low dis-
sipation of magnetization and a sharp resonance at the Larmor frequency
tunable with a static magnetic field.
In this kind of materials the magnetism is determined by the electron spin,
they are moved by the thermal bath and this generates a noise in the entire
magnetization of the dissipative sample in accordance with the fluctuation
dissipation theorem. The magnetic noise is related to the imaginary part
of susceptibility of the material, in fact, when a sample is placed inside an
inductance, a resistivity term arises and it is a source of Johnson-Nyquist
noise.
In this studies was measured the magnetic noise of a spherical sample of
crystalline YIG at 4.2 K using a magnetometer based on a dc-SQUID.
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C.2 Experimental setup

The pickup loop is connected to a Magnicon dc-SQUID C6XXL1W with a
niobium cable of negligible inductance (see figure C.1), the condition that
minimize the noise referred to the pickup loop is Lp = Lin. The magne-
tometer is mounted on a stainless steel bar which is the connection between
the warm and cold phases of the experiment. The set-up is placed inside a
dewar filled of liquid helium-4. The YIG sample is a sphere of radius 1 mm
and it is coupled with a 24 turns pickup loop made out of superconductive
niobium wires. The pickup loop has 6 mm of length and 1.5 mm of radius,
the 24 turns are divided symmetrically in two group with an internal gap of
2.8 mm. This configuration forces to consider some geometrical and coupling
factors in order to correct the theoretical result, which will be calculated in
the next section.

Lp

SQUIDYIG

Lin

Figure C.1: Magnetometer circuit with YIG sphere inserted in the pickup
loop.

The magnetometer is immersed in glycerin for mechanical noise suppres-
sion and a cylindrical superconductive lead shield is applied for electromag-
netic noise control. The calibration system is realized by a large cylindrical
solenoid mounted coaxially to the pickup loop, in which is induced a small
current at different amplitudes and frequencies. A Hewlett-Packard 35660A
spectrum analyzer is used to process and collect the data. The reported
noise of the SQUID is Sφ(ω) ' 1µφ0/

√
Hz for frequencies above 1 kHz, the

corner frequency of the 1/f noise is around 0.1 Hz. The magnetometer ex-
hibits a measured noise of

√
SB(ω) ' 6 × 10−15 T/

√
Hz in the considered

frequency range, this value is taken as the sensitivity of this instrument. The
temperature was controlled through a Pt100 thermometer placed inside the
superconductive shield.

After the optimization of the transfer function of the SQUID the system
is calibrated with a known magnetic field, in this way is verified the linearity
in frequency and amplitude of the magnetometer. Then it is possible to
collect a spectrum of the YIG magnetic noise over a range of frequency from
1 kHz to 102 kHz.
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Figure C.2: Scheme of the apparatus.

C.3 Measurement result

Viscosity term of pickup loop partially filled with YIG is Rs = 4πξLpχ
′′(ω),

where ξ = VYIG/Vcoil is the fraction of occupied volume and Lp is the induc-
tance of empty pickup loop. Rs is a source of voltage noise with a spectral
density SV (ω) = 4kBTRs, the related magnetization noise that produce this
voltage fluctuation is

SB(ω) = C
kBTχ

′′(ω)

ω
, (C.1)

where C is a constant that contains ξ and circuit’s components reported in

Fig.(C.1), the calculation yields C =
16πξL3

p

N2A2ζ(Lp+Lin)2
, where ζ is a geometri-

cal factor that take into account the coupling between the YIG sphere and
pickup inductance. To estimate the effective flux collected by the pickup
coils (e.g. ζ), a simulation of the internal field of a spherical YIG was car-
ried out. The measured current is due to a fraction of this magnetization
noise, that can be estimated with ζ = φcoil/φeff .
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Figure C.3: Perspective of the configuration of the pickup coils and resulting
field from the simulation of the coupling. The left figure represents the
YIG sphere (grey) and the pickup coil area (green), while the right figure
represents the vectors of the magnetization field on the symmetry plane of
the coil.
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Figure C.4: Spectrum of the measured magnetization noise (blue) and spec-
trum of the magnetometer’s noise (red). In black is reported the fitted
function of the Johnson-Nyquist noise, used to estimate χ′′.

This simulation permits to calculate the value of the constant C ' 0.19Hm−4.
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The measured magnetization noise, together with the intrinsic noise spec-
trum of the magnetometer, is reported in Fig.(C.4).
As can be seen, the measured noise is considerably above the sensitivity of
the magnetometer, and respects the prediction of the fluctuation dissipation
theorem (black continuous line in Fig.(C.4)). The results of the fit gives√
C · kBTχ′′ = 27 ± 1 fT, that yield an imaginary part of the susceptibility

χ′′ = (1.1± 0.1)× 10−4

C.4 Conclusions

Considering the results reported in the previous section (C.3) and in Chapter
4, it is clear that the magnetization noise of the YIG does not permit a higher
SNR, even if the magnetic susceptibility χYIG

0
> χGSO

0
. Other works [35]

also suggest that in this case, the domain wall noise limits the sensitivity
even more than the magnetization noise. It is therefore clear that the GSO
will provide a better detector that the YIG for the measurements of the
QUAX-gpgs experiment.
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Appendix D

Integration of the effective
field

The potential caused by a monopole-dipole coupling between an unpolarized
nucleon and a polarized electron with mass m and spin σ is given as function
of the interaction range λa as [25]

Vmd(r) =
~gepgNs
8πmec

[
(σ̂ · r̂)

( 1

rλa
+

1

r2

)]
e−

r
λa , (D.1)

where r̂ is the unit vector of the position

r = (φ, t, z′) (D.2)

in cylindrical coordinates between the electron and a nucleon. In order to
evaluate the total potential Vtot(z) of many nucleons within bulk matter, e.g.
an infinite plate of thickness d, as function of the height z of the electron
above the matter surface, the frame of reference in Fig.(D.1) is considered.
For obtaining Vtot(z), it is necessary to integrate over all possible nucleon
coordinates:

Vtot(z) =

−d∫
0

+∞∫
0

2π∫
0

nVmd(r) dφ tdt dz′, (D.3)

where n is the nucleon density of the bulk matter plate which is located with
its upper surface at z′ = 0 and its lower surface at z′ = −d . Only cases
with neutron spin σ normal to the surface are taken into account. Thus the
scalar product σ · r̂ in Eq.(D.1) can be evaluated by using the vector −σ as
sketched in Fig.(D.1):

− σ · r̂ = cos(θ) =
z∗√

z∗2 + t2
, (D.4)
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Figure D.1: Sketch of the frame of reference to derive a pseudomagnetic
field caused by a short-range spin dependent interaction [60]. The radial
coordinate t is given on the abscissa and the vertical coordinate z′ is given
on the ordinate. Bulk matter in form of a plate of thickness d and infinite
radius is depicted by grey dots. An exemplary nucleon N is depicted as red
circle and its coordinates are subscribed with N . The electron is depicted
by a black circle and its spin vector σ by a purple arrow.

where z∗ ≡ z − z′ , and z′ < 0 and t are the coordinates of the nucleon N
in the sketch. The length of the position vector r is given by

r = |r| =
√
z∗2 + t2. (D.5)

Using Eq.(D.3), Eq.(D.5) can be evaluated as

Vtot(z) =
~gepgNs
8πmec

n

−d∫
0

+∞∫
0

2π∫
0

[
cos(θ)

( 1

rλa
+

1

r2

)]
e−

r
λa dφ tdt dz′

=
~gepgNs
4mec

n

−d∫
0

+∞∫
0

[ z∗√
z∗2 + t2

( 1√
z∗2 + t2λa

+
1

z∗2 + t2

)]
e−
√
z∗2+t2
λa dφ tdt dz′

=
~gepgNs
4mec

n

−d∫
0

−e−
z∗
λa dz′ =

~gepgNs
4mec

n

−d∫
0

−e−
z−z′
λa dz′

=
~gepgNs
4mec

nλa

(
− e−

z+d
λa + e−

z
λa

)
=

~gepgNs
4mec

nλa(1− e−
d
λa )e−

z
λa

(D.6)

where the integral over dt was solved using Wolfram Mathematica, and z∗

was resubstituted by z − z′ [60].
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It is possible to solve the integral also for a finite region of space (i.e. the
surface of the sources). The detailed derivation is omitted, since it can
be done with a calculation tool (Mathematica). Adding the parameter t
standing for the surface radius of the source, one obtains

Vtot(z) =
~gepgNs
4mec

nλa

(
e−
√

(t+z)2+d2

λ a − e−
z+t
λ a − e−

√
d2+z2

λ a + e−
z
λa

)
.

(D.7)
This is the most precise estimation of the total field acting on the detector,
which is still considered as a point, and will therefore be the formula used to
estimate the actual signal. It is to be noticed that the differences between
Eq.(D.7) and Eq.(D.6) are hardly appreciable for the considered scales.
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