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Sommario 

Le equazioni differenziali alle derivate parziali (EDP) sono fondamentali per modellare e 

comprendere fenomeni complessi in diverse discipline scientifiche e ingegneristiche, dalla 

fluidodinamica e trasmissione del calore alla scienza dei materiali e alla finanza. I metodi 

numerici tradizionali per risolvere le EDP, sebbene consolidati, spesso incontrano limitazioni in 

termini di costo computazionale e scalabilità, in particolare quando si ha a che fare con problemi 

ad alta dimensionalità o geometrie complesse. Il deep learning è emerso come un'alternativa 

promettente, offrendo il potenziale per superare queste limitazioni e consentire la soluzione di 

problemi EDP precedentemente intrattabili. Le Deep Operator Networks (DeepONet), una classe 

specializzata di reti neurali, sono particolarmente adatte a questo compito, in quanto possono 

apprendere gli operatori sottostanti che mappano tra spazi funzionali, rappresentando 

efficacemente le soluzioni delle EDP. 

Tuttavia, le DeepONet possono essere computazionalmente e a livello di memoria 

intensive. TT-DeepONet affronta questo problema combinando la decomposizione tensoriale 

Tensor-Train (TT) e l'addestramento quantization-aware (QAT). La decomposizione TT 

comprime le matrici dei pesi delle DeepONet, riducendo l'ingombro di memoria e il costo 

computazionale. Il QAT migliora ulteriormente l'efficienza addestrando il modello con una 

precisione numerica ridotta. 

Un contributo chiave è un livello lineare tensorizzato che integra la decomposizione TT 

nella DeepONet, consentendo contrazioni tensoriali efficienti. Il QAT è incorporato per 

mantenere la precisione nonostante la minore precisione. Inoltre, viene proposto un progetto di 

acceleratore FPGA basato su systolic array per migliorare le prestazioni. Sebbene non 

completamente implementato, le simulazioni preliminari mostrano risultati promettenti. 

I risultati sperimentali dimostrano che TT-DeepONet raggiunge una precisione 

paragonabile alle DeepONet standard con memoria significativamente inferiore e inferenza più 

veloce, specialmente con l'accelerazione FPGA parzialmente implementata per l'equazione di 

reazione-diffusione. Questo lavoro contribuisce all'apprendimento automatico hardware-aware, 

consentendo l'implementazione di modelli di deep learning complessi su edge device per il 

calcolo scientifico. 
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Abstract 

PDEs are fundamental to modeling and understanding complex phenomena across diverse sci- 

entific and engineering disciplines, from fluid dynamics and heat transfer to materials science 

and finance. Traditional numerical methods for solving PDEs, while well-established, often en- 

counter limitations in terms of computational cost and scalability, particularly when dealing with 

high-dimensional problems or complex geometries. Deep learning has emerged as a promising 

alternative, offering the potential to overcome these limitations and enable the solution of pre- 

viously intractable PDE problems. Deep Operator Networks (DeepONets), a specialized class 

of neural networks, are particularly well-suited for this task, as they can learn the underlying 

operators that map between function spaces, effectively representing the solutions of PDEs. 

However, DeepONets can be computationally and memory intensive. TT-DeepONet ad- 

dresses this by combining tensor-train (TT) decomposition and quantization-aware training 

(QAT). TT decomposition compresses the DeepONet’s weight matrices, reducing memory foot- 

print and computational cost. QAT further improves efficiency by training the model with re- 

duced numerical precision. 

A key contribution is a tensorized linear layer that integrates TT decomposition into the 

DeepONet, enabling efficient tensor contractions. QAT is incorporated to maintain accuracy 

despite lower precision. Furthermore, a systolic array-based FPGA accelerator design is pro- 

posed to enhance performance. While not fully implemented, preliminary simulations show 

promising results. 

Experimental results demonstrate that TT-DeepONet achieves comparable accuracy to stan- 

dard DeepONets with significantly less memory and faster inference, especially with the par- 

tially implemented FPGA acceleration for the reaction-diffusion equation. This work con- 

tributes to hardware-aware machine learning, enabling deployment of complex deep learning 

models on edge devices for scientific computing. 
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Chapter 1 

Introduction 

Partial differential equations (PDEs) are fundamental to modeling and understanding complex 

phenomena in various scientific and engineering domains. However, traditional numerical 

methods for solving PDEs often face limitations in terms of computational cost, flexibility, and 

scalability, especially for high-dimensional problems and complex geometries. This motivates 

the exploration of deep learning techniques, which have shown remarkable success in approxi- 

mating complex functions and solving challenging problems in other areas. Deep learning offers 

the potential to develop more efficient, adaptable, and data-driven approaches for PDE solving. 

Traditional numerical methods for solving PDEs, such as finite difference, finite element, 

and finite volume methods, rely on discretizing the spatial and temporal domains. These 

methods can become computationally expensive and memory-intensive, particularly for high- 

dimensional PDEs and complex geometries. They often require fine-grained discretization to 

achieve accurate solutions, leading to a large number of unknowns and a significant computa- 

tional burden. Moreover, these methods can be inflexible when dealing with complex boundary 

conditions or irregular domains. 

Deep Operator Networks (DeepONets) are a promising deep learning architecture specifi- 

cally designed to learn operators that map between function spaces. Unlike traditional neural net- 

works that approximate functions, DeepONets can approximate entire operators, making them 

well-suited for representing the solutions of PDEs. DeepONets consist of two sub-networks: 

a branch network that encodes the input function and a trunk network that encodes the output 

domain. A merging function then combines the outputs of these networks to produce the final 

approximation of the PDE solution. 

Field-Programmable Gate Arrays (FPGAs) offer a compelling platform for accelerating deep 

learning workloads due to their reconfigurability, parallelism, and energy efficiency. FPGAs al- 

low for customizing the hardware architecture to match the specific computational patterns of 

deep learning models, leading to significant performance gains and reduced power consumption 
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compared to general-purpose processors like CPUs and GPUs. Systolic arrays, specialized hard- 

ware structures designed for efficient matrix and tensor operations, are particularly well-suited 

for implementation on FPGAs. 

This thesis aims to develop an efficient and hardware-aware framework for solving PDEs 

on resource-constrained devices by combining the power of tensor-compressed DeepONets with 

FPGA acceleration. The key contributions include: (1) Implementing a tensorized DeepONet 

that leverages tensor-train decompositions to significantly reduce the memory footprint of the 

model parameters while preserving accuracy. (2) Designing a custom FPGA accelerator archi- 

tecture based on systolic arrays to efficiently perform the tensor contractions involved in the 

DeepONet operations. (3) Evaluating the performance, resource utilization, and power effi- 

ciency of the proposed framework on a target FPGA platform, demonstrating its advantages 

over traditional methods. 

The remainder of this thesis is organized as follows: Chapter 2 provides the necessary back- 

ground on PDEs, DeepONets, tensor decompositions, and FPGA acceleration. Chapter 3 details 

the implementation of the tensorized DeepONet and its evaluation on a chosen PDE problem. 

Chapter 4 focuses on the design and implementation of the FPGA accelerator, and presents 

the experimental results with an analysis of the framework’s performance. Finally, Chapter 5 

summarizes the contributions, discusses limitations, and outlines future research directions. 
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Chapter 2 

Background and Related Work 

2 .1 Partial Differential Equations (PDEs) 

2 .1.1 Types of PDEs 

Partial differential equations (PDEs) are mathematical expressions that involve an unknown 

multivariable function and its partial derivatives. They provide a powerful framework for de- 

scribing a wide range of phenomena in physics, engineering, and other fields where quantities 

vary continuously over space and time. PDEs are classified based on their order, which refers to 

the highest order of derivative present in the equation, and linearity. Linear PDEs involve only 

linear combinations of the unknown function and its derivatives, while nonlinear PDEs include 

nonlinear terms, making them generally more challenging to solve. 

Common types of PDEs include elliptic, parabolic, and hyperbolic equations. Elliptic PDEs, 

such as Laplace’s equation (2.1) and Poisson’s equation, describe steady-state or equilibrium 

phenomena where the solution does not change over time. Examples include the distribution of 

heat in a steady-state system or the electric potential in a region with fixed charges. 

∂ 

∂ 

2φ 

x2 

∂2φ 

∂y2 

∂2φ 

∂z2 
+ + = 0 (2.1) 

Parabolic PDEs, like the heat equation (2.2), model diffusion processes where a quantity 

spreads out over time, such as the diffusion of heat in a metal bar or the spread of a contaminant 

in a fluid. 

( ) 

∂ u ∂2u 

∂x2 

∂2u 

∂y2 

∂2u 

∂z2 
= α + + (2.2) 

∂ t 

Hyperbolic PDEs, such as the wave equation (2.3) and the advection equation, describe wave 

propagation or the transport of quantities, for example, the propagation of sound waves or the 
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Figure 2.1: Prediction of a thermal field of an IC obtained by solving the heat equation. Top 

row is the result of a traditional numerical solver. Bottom row is the result of a Deep-Learning 

model [1]. 

movement of pollutants in a river. 

( ) 

∂ 2u ∂2u 

∂x2 

∂2u 

∂y2 

∂2u 

∂z2 
c2 (2.3) = + + 

∂ t2 

Understanding the type of PDE is essential for selecting appropriate numerical solution 

methods or deep learning architectures. Different types of PDEs exhibit different mathemat- 

ical properties and require different approaches for their solution. For instance, elliptic PDEs 

typically require boundary conditions to be specified, while parabolic and hyperbolic PDEs also 

need initial conditions. 

2 .1.2 Applications of PDEs 

PDEs are ubiquitous in science and engineering, serving as the foundation for modeling and 

understanding countless real-world phenomena. Their applications span a vast range of disci- 

plines, highlighting their importance in advancing our knowledge and technological capabilities. 

In fluid dynamics, the Navier-Stokes equations, a set of nonlinear PDEs, govern the motion of 

fluids, providing insights into the behavior of airfoils, weather patterns, and ocean currents. 

Heat transfer relies on the heat equation, a parabolic PDE, to model the flow of heat in materi- 

als, enabling the design of efficient thermal systems for power plants, buildings, and electronic 

devices. 

Electromagnetism is governed by Maxwell’s equations, a set of coupled PDEs that describe 

the interplay between electric and magnetic fields. These equations form the basis for technolo- 
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gies like antennas, motors, generators, and wireless communication systems. In finance, the 

Black-Scholes equation, a parabolic PDE, is widely used for option pricing, allowing for the 

valuation of financial derivatives and risk management. PDEs also find applications in image 

processing, where diffusion equations are used for image denoising, edge detection, and image 

segmentation, and in biology, where reaction-diffusion equations model pattern formation in 

organisms and the spread of diseases. 

The increasing complexity of these applications often demands sophisticated numerical 

methods or deep learning techniques to solve the governing PDEs efficiently and accurately. 

DeepONets, with their ability to learn complex operators, offer a promising avenue for tackling 

challenging PDE problems in these diverse fields. 

2 .1.3 Traditional Numerical Methods for Solving PDEs 

Traditional numerical methods for solving PDEs rely on discretizing the continuous domain of 

the problem into a finite set of points, effectively converting the PDE into a system of algebraic 

equations that can be solved using computers. This discretization process involves approximat- 

ing the derivatives in the PDE using finite differences, finite elements, or finite volumes. The 

finite difference method [2] approximates derivatives using differences between function values 

at neighboring grid points, while the finite element method [3] divides the domain into smaller 

elements and approximates the solution within each element using basis functions. The finite 

volume method [4] focuses on conserving quantities over control volumes, making it particu- 

larly suitable for problems involving conservation laws. 

These methods have been the workhorse for solving PDEs for decades and have been suc- 

cessful in many applications. However, as the complexity of PDE problems increases, tradi- 

tional numerical methods often encounter limitations. For high-dimensional PDEs, the number 

of discretization points grows exponentially, leading to a significant computational burden and 

memory requirements. Complex geometries and boundary conditions can also pose challenges 

for these methods, requiring intricate meshing techniques and potentially leading to numerical 

instabilities. The computational cost and limitations of traditional methods motivate the explo- 

ration of alternative approaches, such as deep learning, to address these challenges and enable 

the solution of increasingly complex PDE problems. 
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2 .2 Deep Learning for PDEs 

2 .2.1 Physics-Informed Neural Networks (PINNs) 

One of the biggest challenges in supervised deep learning for solving PDEs is the fact that, for 

complex systems, obtaining even a single data point can be exceptionally expensive, both in 

terms of time and computational cost. Thus, a different approach was needed in order to train a 

model while lacking the amount of data normally needed for a classical model. 

Physics-informed neural networks (PINNs), first introduced in [5], are a class of deep learn- 

ing models that incorporate physical laws and constraints directly into the loss function during 

training. 

Let’s consider the following partial differential equations of the general form 

ut + N [u; λ] = 0, 

x ∈ Ω, 

(2.4a) 

(2.4b) 

(2.4c) 
t ∈ [0,T] 

Where: 

- 

- 

- 

- 

- 

u(x, t) represents the unknown solution we seek. 

x and t are the spatial and temporal coordinates, respectively. 

Ω represents the spatial domain. 

[0, T ] is the time interval. 

N [u; λ] is a differential operator that can be linear or nonlinear, potentially involving pa- 
rameters (λ). 

Boundary conditions specify the behavior of the solution at the spatial boundaries ∂Ω: 

u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂Ω 
(2.5) 

where g(x, t) is a known function defining the boundary values. 

The initial condition specifies the initial state of the solution at t = 0: 

u(x, 0) = h(x), x ∈ Ω 
(2.6) 

where (h(x)) is a known function. 

By encoding the PDE (2.4a), boundary conditions (2.5), and initial conditions (2.6) into the 

loss, PINNs can learn solutions that are consistent with the underlying physics. 

While PINNs have shown promise in solving both forward and inverse problems involving 

PDEs by taking advantage of the of the universal approximation theorem of neural networks, 
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they are also very sensitive to the choice of hyperparameters and can sometimes exhibit patho- 

logical gradient behaviour [6]. Another limitation of PINNs is that their accuracy decreases the 

farther we move from the boundary and the initial setup [7]. This makes PINNs a less than 

optimal tool for challenging, yet important problems such as turbulence [8]. 

Figure 2.2: Schematic of a PINN for solving the diffusion equation with mixed boundary con- 

ditions (BC). The initial condition (IC) is treated as a special type of boundary condition. T f 

and T denote the two sets of residual points for the equation and BC/IC [9]. b 

2 .2.2 Operator Learning and Deep Operator Networks (DeepONets) 

Deep Operator Networks (DeepONets) are a type of neural network specifically designed to 

learn operators that map between function spaces. Unlike PINNs, which focus on solving in- 

dividual PDE instances, DeepONets aim to learn the underlying operator that can generalize to 

different input functions and boundary conditions. DeepONets consist of a branch network that 

encodes the input function and a trunk network that encodes the output domain, connected by a 

merging function. 

While PINNs were the first big step in approximating complex system via Deep Learning, 

one of their downsides is that each model is able to solve a single instance of a PDE, meaning 

that, should the boundary or initial condition change, the model would have to be trained again. 

Operator Learning (OL) refers to a distinct approach to solving PDEs by learning the underlying 

mappings between function spaces, rather than just approximating functions. There currently 

different approaches to OL, such as Fourier Neural Operators [10], which use the Fourier Trans- 

form to filter out noise for better approximation. In this thesis, howerever, we will focus on Deep 

Operator Networks (DeepONets) [11]. 

Let G be an operator taking an input function u, and then G(u) is the corresponding output 

function. For any point y in the domain of G(u), the output G(u)(y) is a real number. 
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(a) The data points of the input function u have 

to be collected at fixed locations xi called sensors. 
The location y, however, can be at any point of the 

continous space. 

(b) There are many architectures of DeepONet. In 

our thesis, we use the Unstacked variation, which 

uses one branch net to process the whole input 

function. 

Figure 2.3: Illustrations of the problem setup and architectures of DeepONets [11]. 

A DeepONet consists of two subnetwoks, called branch network and trunk network. The 

former takes the input function u as feature, while the latter’s input is the output’s domain point 

y. The branch network maps the input function in a lower-dimensional space in order to extract 

the relevant information of the solution space. The trunk network, in a certain way, can be 

viewed as an embedding process that, similarly to what Transformers model do, encapsulate the 

information of the spatial coordinate into a higher-dimensional space. The outputs of the two 

networks, which have the same dimension, are then merged through a merging function. In our 

case, this function is a simple dot product, which result in a scalar. 

2 .2.3 DeepONets vs PINNs 

While DeepONets provide the incredible advantage of not needing to be retrained in the case of 

different geometries or initial conditions, at the base level they still need large amount of data 

to be trained. In paper [12], the advantages of OL and PINNs are merged in the framework of 

Physics-Informed DeepONets. 

As will be described in more detail in Chapter 3, the model built in this thesis uses a PI- 

DeepONet as its basis. 
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2 .3 Tensor Decompositions for Model Compression 

2 .3.1 Introduction to Tensors and Tensor Decompositions 

The concept of tensor holds different meaning in different branches of science. The broader 

concept of tensor as a multilinear mapping between sets of algebraic objects were first popu- 

larized by Paduan mathematician Tullio Levi-Civita and his advisor Gregorio Ricci-Curbastro, 

who’s contributions to tensor calculus were crucial in the development of the General theory of 

relativity. 

In the context of machine learning, however, this term is used to describe multi-dimensional 

arrays, generalizing vectors and matrices. In other words, just like a vector can be seen as a one- 

dimensional array and a matrix can be seen as a two-dimensional array, an M-way tensor is an 

M-dimensional array. This concept is ubiquitous in machine learning: to represent an image, for 

example, we use a 3-d tensor, where the first two dimensions represent the spatial coordinates 

of the pixels, while the third dimension contains the values of the colors channel. By adding a 

fourth dimension to represent time, we can store a video and feed it to a neural network. While 

the input is usually flattened to a vector before processing, storing data in high-dimensional 

arrays is useful for various reasons. 

In our case, the idea behind model compression is to fold the weight matrices into high- 

dimensional tensors and the factorize them to reduce the number of parameters. 

A well-known drawback of high-dimensional objects is the so-called curse of dimensional- 

ity, i.e. the fact that the number of elements scales exponentially with dimension. This leads to 

challenges in storing, processing, and training models with high-dimensional data such as many 

applications in Scientific Machine Learning. For this reason, efforts have been made to find 

ways to reduce the amount of data, even at the cost of a small approximation error. 

Tensor decompositions [13] are a family of techniques that aim to factorize a high-order 

tensor into lower-order tensors. One of the first decompositions introduced is the CANDE- 

COMP/PARAFAC (CP), which factorize the tensor into a sum of component rank-one tensors. 

For example, the third order tensor A ∈ RI×J×K can be factorized as 

∑ 

R 

A ≈ a ◦ b ◦ c 
(2.7) r r r 

r=1 

Tucker decomposition [14] is another type of factorization which decomposes a tensor into 

a core tensor multiplied (or transformed) by a matrix along each mode. Thus, in the three-way 

case where Y ∈ RI×J×K , we have 
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(b) Tucker decomposition of a three-way array 

[16]. (a) CP decomposition of a three-way array [15]. 

Figure 2.4: CP and Tucker decompositions of a three-dimensional tensor. 

∑ P ∑Q ∑R 
Y ≈ G × A × B × C = gpqra ◦ b ◦ c 

(2.8) 1 2 3 p q r 

p=1 q=1 r=1 

In this case, the tensor G is the three-dimensional core tensor, while A, B, and C are the 
factor matrices, which are usually orthogonal. 

The Tucker decomposition is stable but has exponential in d number of parameters, O(dnr+ 

rd). 

2 .3.2 Tensor-Train Decomposition 

Tensor-Train decomposition was first introduced in the field of Quantum Physics, where it’s 

known as Matrix-Product State (MPS) representation [17]. The idea behind TT is to factorize 

an N-dimensional tensor into a chain-like product of matrices and 3-dimensional tensors. 

Let A ∈ Rd ×···×d , then its Tensor-Train Decomposition is given by 
1 N 

A(i , . . . , i ) = G (i ,r )G (r ,i ,r ) . . . GN−1(rN−2,iN−1,rN−1)GN (rN−1,i ) 
(2.9) 1 N 1 1 1 2 1 2 2 N 

In the equation above, G ∈ Rd ×r , G ∈ Rr ×d , and G ∈ Rrk−1×dN ×r
k for k = 

1 1 
N−1 

N 
1 N k 

2 , . . . , N − 1 are called TT-cores, while r for k = 1, · · · , N − 1 are called TT-ranks. This k 

is the dimension of the bond index connecting one tensor in the chain to the next, and can 

vary from bond to bond. The bond dimension can be thought of as a parameter controlling the 

expressivity of a MPS/TT network. Any arbitrary tensor can be exactly represented with a TT- 

decomposition with bond dimension m = dN/2. As our objective is to minimize the memory 

required to store the weights, however, it is possible to reduce the TT-rank, either heuristically 

or via adaptive rank selection [18], to approximate the initial tensor. 

A tensor with N indices, each of dimension d, requires dN parameters. In comparison, after 

compression, a tensor with TT-rank m only needs m = N dm2 parameters. It’s evident that, as 
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N increases, TT-decomposition becomes more and more effective, which is why it’s the type 

of compression we chose to compress our model. 

Figure 2.5: Tensor network diagram (Penrose diagram) of a Tensor-train decomposition. 

Source: https://tensornetwork.org/. 

2 .4 FPGA Acceleration for Deep Learning 

2 .4.1 FPGA Architecture and Advantages 

Field-Programmable Gate Arrays (FPGAs) are integrated circuits which can be reconfigured 

after manufacturing. This means their functionality is not fixed, unlike Application-Specific 

Integrated Circuits (ASICs), and can be tailored to specific applications. 

FPGAs contain Configurable Logic Blocks (CLBs) which are able to perform combinational 

and sequential logic, and a set of programmable interconnects. In addition to CLBs, FPGAs also 

contain specialized SRAM blocks (BRAM) and DSP blocks. 

FPGAs offer several benefits compared to other kinds of integrated circuits. Compared to 

CPUs, for example, they offer a much higher degree of parallelism, so that, even considering 

the lower clock speed, they can perform operations such as Multiply-And-Accumulate (MAC) 

with lower latency and higher throughput. Although they are, on average, slower than GPUs of 

the same price range, they can tipically achieve better energy performance. This, together with 

the fact the they can work as standalone devices, make them a much better choice for on-device 

inference. While FPGAs do not achieve the same level of performance as ASICs, the time and 

economic investment required to achieve a final product is orders of magnitude less. You can 

simply buy an FPGA board off the shelf and program it, without worrying about the complex 

and expensive chip fabrication processes required for ASICs. 

Moreover, newer FPGAs are System-On-Chip (SoC) devices which integrate CPU cores. 

This heterogeneous architecture allows for even greater flexibility and integration, enabling the 
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CPU to handle tasks like control flow, data management, and communication, while the FPGA 

fabric accelerates the computationally intensive parts of the application. 

Figure 2.6: Simplified structure of an FPGA. 

Source: https://www.latticesemi.com/. 

Figure 2.7: HLS design flow 

[19]. 

2 .4.2 RTL Design vs High-Level Synthesis (HLS) 

Traditionally, FPGAs are programmed through Hardware Description Languages (HDL) such 

as Verilog or VHDL. Unlike programming languages such as C/C++, they are not compiled 

into a sequence of instructions to be executed by a processor, but are instead synthesized into 

a network of logic circuits which directly configure the FPGA’s hardware resources. HDLs 

are inherently concurrent, and their semantics operate on dataflow instead of control flow. The 

most common level of abstraction used to write HDL code is Register-transfer Level (RTL), 

which models a synchronous digital circuit in terms of the flow of digital signals (data) between 

hardware registers, and the logical operations performed on those signals. 

High-level Synthesis (HLS), in contrast, is an EDA method which brings the design process 

to a higher level of abstraction. HLS uses a high-level language such as C/C++, which is then 

transcompiled into RTL code. HLS tools handle the micro-architecture and transform untimed 

or partially timed functional code into fully timed RTL implementations, automatically creating 

cycle-by-cycle detail for hardware implementation [20]. 

HLS offers much faster design cycles, increasing the productivity by allowing engineers to 
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Figure 2.8: Systolic array architecture of a neural network layer [21]. 

focus less on the low-level details of hardware implementation. This, however, comes at a cost. 

RTL, compared to HLS, provides far superior fine-grained control over hardware, which usually 

results in better performance of the final result. 

Another problem of HLS is that, since procedural languages are very different from HDLs, 

the programming style required to write HLS code is often clunky, and requires special directives 

like pragmas to help the compiler. Finally, a well-known drawback of HLS is that the code is 

very hard to debug, as the higher-level abstraction hides the hardware details to the programmer, 

making it hard to associate C code with hardware behaviour. 

After considering the trade-offs of RTL and HLS, we decided to build the accelerator using 

the SystemVerilog HDL. 

2 .4.3 Systolic Arrays for Matrix Multiplication 

A Systolic Array [22] is a parallel computer architecture, which consists of a set of homo- 

geneous and interconnected processing elements (PEs), a controller module, and the on-chip 

memory/buffer. The PE is composed of basic arithmetic and register units, which can support 

a simple multiply-accumulate operation. PEs are interconnected, forming a grid through which 

data are processed and passed to the next PE of the grid. There are three typical dataflows in the 

systolic array design: Output Stationary (OS), Weight Stationary (WS) , and Input Stationary 

(IS). The “stationarity” means the elements of this tensor are not moved for the maximum dura- 

tion of time throughout the computation, and it can describe the reuse situation of data. While 

systolic arrays have been around since the the 1970s, advancements of technologies in VLSI 

[23] have reignited new interest in this architecture. 

Most modern applications have, in fact, become memory-bound rather than compute-bound. 

This means that the performance bottleneck is the speed of which is possible to access and 

move data. Systolic arrays are well-suited to address this challenge because they are inherently 
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designed for high data reuse. 

Systolic arrays also achieve very high performance in the General Matrix Multiply (GeMM) 

operation, which is the algorithm to which FC and Convolutional Layers of Neural Networks 

can be reduced to. This reason, together with the modularity and the possibility of low-level 

optimization of this architecture makes it a good choice when designing with HDL, which is 

why we decided to choose it for our inference accelerator. 
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Chapter 3 

Tensorized DeepONet with 

Quantization-Aware Training 

3 .1 Software Framework 

In order to build and test our model, we used DeepXDE [9], a library for scientific machine 

learning which provides a user-friendly and flexible framework for implementing and training 

physics-informed models. 

DeepXDE supports not only built-in primitive geometries such as interval, triangle, 

rectangle, polygon, disk, cuboid, and sphere, but other geometries can be constructed 

from these primitive geometries using three boolean operations: union (|), difference (- 

) , and intersection (&) . This technique is called constructive solid geometry (CSG). CSG 

supports both 2D and 3D geometries. 

Symbolic notation which follows TensorFlow’s grammar is used to specify the PDE we want 

to train the model, and to set up boundary and initial conditions. 

DeepXDE natively supports two types of networks: feed-forward neural network (FNN) and 

residual neural network (ResNet). None of these models, however, include tensor-compression 

nor quantization, which is why most of the work involved in building the model was integrat- 

ing these functionalities into the library. We used DeepXDE v1.12.1 and PyTorch v2.5.0 as 

backend. 

As previously mentioned in Section 2.2.1, the loss function is given by the sum of residual 

losses and boundary/initial condition losses. DeepXDE uses residual-based adaptive refinement 

(RAR) method to improve the training efficiency of PINNs when dealing with PDEs that exhibit 

solutions with steep gradients. 

During training, DeepXDE uses a set of points from the domain (collocation points) where 

the residual and boundary conditions are evaluated. These points are sampled using a Gaussian 
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Figure 3.1: Flowchart of DeepXDE for solving differential equations. The blue boxes combine 

the PDE problem and training hyperparameters in the white boxes. The orange boxes are the 

three steps (from right to left) to solve the PDE [9]. 

Random Field (GRF). The random sampling algorithm is based on Cholesky decomposition of 

the covariance matrix. 

The PDE is then evalued at a set of collocation points within the domain. The GRF samples 

serve as the input function u, and the PDE operator’s evaluations at the collocation points provide 

the corresponding output values G(u)(y). This forms the training dataset of input-output pairs. 

The model is then compiled by specifying hyperparameters such as initializer, optimization 

algorithm, and learning rate. Finally, by calling the model.train() function and specifying 

training-related hyperparameters, the training process is executed, iterating over the training 

data in batches. 

DeepXDE provides tools to monitor the training process, such as displaying the loss and 

metrics over epochs. After training, the DeepONet’s performance is evaluated on a separate test 

dataset, which is also generated using GRFs and the PDE operator. Evaluation metrics, such as 

the L2 relative error, are used to assess the accuracy of the DeepONet’s predictions. 

3 .2 Building a Tensorized DeepONet Model 

The core the model lies in the tensorized_layer, a fully-connected layer which implements 

tensor compression and, as we will see later, quantization. When initializing a layer, a config 

object is passed as an argument. This object contains information regarding the tensor decom- 

position, like shape of the TT-cores and bond order. The actual factorization is done using the 

TensorLy library. 

During the forward pass, the input to the network (a matrix or tensor) is reshaped into a 

format that is compatible with the TT-decomposition, matching the dimensions of the cores. 

The input tensor is then iteratively contracted with each TT-core. After contracting with all 
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cores, the output tensor is reshaped or reduced into its final form, which matches the expected 

output size of the layer. Our implementation also supports pruning, by specifying the pruning 

threshold. 

The tensorized_layer is then used to build a FNN. Since the last layer does not need to 

be compressed, we implemented the option to put a non-compressed output layer. Similarly, 

we have the option to insert a non-compressed input layer. In all of our experiments, we used 

model where only the hidden layers were TT-compressed. 

Finally, the DeepONet module is initialized by using two TT-compressed FNNs and by 

outputting the dot product of the trunk and branch network as result. It’s very important to state 

that TT-compressed networks can be trained by using automatic differentiation algorithms. 

Figure 3.2: Schematic of a TT-compressed DeepONet. 

3 .3 Quantization-Aware Training 

3 .3.1 Introduction to Quantization 

In standard neural network training, weights and activations are typically represented with 32-bit 

floating-point precision (FP32). This provides high numerical accuracy but is computationally 

expensive in terms of both memory and power consumption. Quantization [24] reduces this 

precision, often to 8-bit integers (INT8), which leads to significant speedups and lower resource 

requirements. 

There are two main classes of quantization in NN: Post-Training Quantization (PTQ), and 

Quantization-aware training (QAT). 
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Figure 3.3: Flowchart of Quantization-Aware-Training process [25]. 

In PTQ, a model is first trained using full precision, and then the weights and activations 

are quantized to lower precision after training. This approach can lead to significant accuracy 

degradation, as the model was not trained to handle the quantization errors. 

QAT addresses this issue by incorporating quantization during the training process itself. 

During QAT, the forward pass simulates the effects of quantization by representing weights and 

activations in lower precision, while the backward pass still computes gradients using full pre- 

cision to ensure more stable updates. This allows the model to adjust its parameters in response 

to the quantization effects, leading to better accuracy after quantization. 

The advantage of QAT is that it helps minimize the loss in accuracy caused by the transition 

from FP32 to lower precision, while still achieving the benefits of reduced computation and 

memory requirements. This makes it particularly valuable in deploying deep learning models 

on hardware with stringent resource constraints. 

A drawback of QAT is that it introduces complexity, increasing training time and requiring 

careful tuning of bit-widths for accuracy. It may degrade model performance, albeit slightly, 

especially for precision-sensitive tasks, and demands more memory during training. Addition- 

ally, QAT can be challenging to debug and may lack compatibility with some optimizations and 

hardware, complicating deployment. 

3 .3.2 QAT in the Tensorized DeepONet 

To perform Quantization-aware training (QAT), a customized PyTorch layer was used to ex- 

tend DeepXDE-compatible models and to extend the library’s functionalities. This FNN and 
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DeepONet implementations allows Tensor-Train (TT) and Tensor-Train Matrix (TTM) decom- 

positions, quantization, and pruning. 

There are two available quantization schemes: floating-point and fixed-point. If the 

former is chosen, the bit-width of the quantization can be decided by choosing how many bits 

to allocate to the exponent and to the mantissa. Similarly, if the latter is chosen, is it possible to 

choose how many bits to use for the integer and for the fractional part. 

The rounding type can also be nearest or stochastic. Pruning is also possible. If pruning is 

activated, a pruning threshold must be specified. 

3 .4 Evaluation and Results 

3 .4.1 Experimental Setup 

To train and test the model, we decided to focus on solving the reaction-diffusion system 

∂ y ∂2y 

∂x2 − ky2 + v (3.1) = D 
∂ t 

This PDE was chosen due to its importance in various scientific and engineering applica- 

tions, and because it’s a very common benchmark, making it easy to compare it to other models. 

For these experiments, we consider a spatial domain x ∈ [0, 1] and a time domain t ∈ [0, 1]. 
We impose Dirichlet boundary conditions, specifying the values of u at the boundaries of the 

spatial domain. The initial condition, u(x, 0), is given by a GRF centered at x = 0.5. 

Training and testing data are generated by solving the advection equation numerically. This 

provides the ground truth solutions for a set of different initial conditions. The initial conditions 

for the training data are sampled from GRFs with a specified length scale to ensure a diverse 

range of input functions. The testing data is generated similarly, but with a separate set of initial 

conditions sampled from the same GRF distribution. 

The performance of the DeepONet models is evaluated using the L2 relative error, which 

measures the normalized difference between the predicted and true solutions. 

3 .4.2 Evaluation 

During the first part of the experiment, we tried different TT-ranks and learning steps to de- 

termine the best compromise to achieve a good compression rate while not losing too much 

accuracy. 

Our tests show that, while the non-compressed model achieves faster convergence than the 

TT-compressed ones, 40,000 steps are enough to stabilize the test and train loss for all of our 

models. 
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Regarding quantization, both 8-bit and 4-bit fixed-point quantization achieve comparable 

test loss, the former achieving lower L2 relative error than the full-precision model. It must 

be stated that in our experiments, we applied the same quantization to weights and activations. 

Further improvements might be reached when employing higher precision activation and lower 

precision weights. 

Training time also varies greatly depending on hyperparameters, going from 896s in the case 

of Example 1 in Table 3.1 to 1785s for Example 4 in Table 3.2, while running the code on an 

Intel Core Ultra 7 155H @3.80GHz. 

2 0 



  
  

Learning TT- Compression Training Train 

loss 

Test 

loss 
Example 

rate rank rate steps 

1 

2 

3 

4 

5 

6 

0.0004 

0.0004 

0.0006 

0.0003 

0.0006 

0.0003 

- 

- 

4 

4 

8 

8 

1 

1 

40,000 

40,000 

40,000 

40,000 

40,000 

40,000 

6.22e-04 6.70e-04 

1.80e-04 2.84e-04 

8.75e-02 8.25e-02 

4.04e-02 4.18e-02 

1.28e-03 1.33e-03 

7.46e-04 7.49e-04 

0.039 

0.039 

0.084 

0.084 

Table 3.1: Training and test loss results for models with different TT-rank and learning rates. 

(a) Example 2 (b) Example 4 (c) Example 6 

Figure 3.4: Training and test loss of examples in Table 3.1. 

Layer Layer TT- Compression L2 relative 

error 
Example Quantization 

depth width rank rate 

1 

2 

3 

4 

5 

3 

3 

3 

3 

3 

128 

128 

128 

128 

128 

- 

- 

8 

8 

8 

1 

1 

Full-precision 

Full-precision 

Full-precision 

Fixed-point 8bit 

Fixed-point 4bit 

- 

0.0171 

0.0206 

0.0139 

0.0339 

0.084 

0.084 

0.084 

Table 3.2: Comparison among best simulation results for different quantizations. 
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Chapter 4 

FPGA Accelerator Design 

4 .1 System Overview and Design Goals 

Since the design of this accelerator is inherently modular and customizable, and does not have 

any hard constraints, it is well suited for any kind of FPGA. In our preliminary tests, we used an 

Arty A7-100T developement board [26], which features a Xilinx XC7A100TCSG324-1 FPGA. 

The next steps of the project will involve deployment on a bigger board, such as the Zynq-7000 

SoC. On this board we could leverage the ARM CPU Core to facilitate communication between 

a Host and the accelerator, and employ the design on an edge device. 

The design of the FPGA accelerator aims to achieve the following objectives: (1) Maxi- 

mize throughput for tensor contractions, achieving a significant speedup compared to CPU and 

GPU implementations. (2) Optimize resource utilization, minimizing the usage of FPGA logic 

elements, BRAM blocks, and DSP slices. (3) Minimize power consumption to enable deploy- 

ment in power-constrained environments, making the accelerator suitable for edge computing 

applications. 

4 .1.1 From contractions to matrix multiplications 

While, TT-decomposition offers a great amount of data compression, it also adds complexity of 

computation, as it requires tensor contractions instead of classical matrix-multiplications (mat- 

muls). 

Matmuls are always performed along prefixed directions, but tensor contractions aperate 

along different modes, which adds the need of a “slicer/permuter” which fetches tensor elements 

in correct order. The order of the intermediate tensor also change as we contract with the TT- 

cores, thus needing to same more metadata. The main challenge lies in efficiently handling 

memory accesses. CPU and GPU-oriented algorithms for native tensor contraction don’t reach 
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the arithmetic intensity as GEMM routines such as BLAS, because depending on the modes 

across contractions are performed, they might require suboptimal cache accesses. On the other 

hand, as shown in [27] (Example 5.4), 

Remark 1 The tensor contraction Y ← W X 
can be interpreted as 

. 
(m m )(k k ) (k k )(n n ) 

m m n n 
1 

m m k k k k n n 
2 

2 1 2 1 2 1 2 1 2 1 

the matrix-matrix multiplication Y ← W 
X (m m )(n n ) 

1 
2 1 2 1 2 1 2 1 2 1 2 

This means that we can still use the known GeMM implementations for contracting these tensors. 

Since the order of the contractions is known beforehand, and FPGAs allow for very fine control 

over the contents and the partitioning of memory, it is possible to order the modes so that we can 

fetch data sequentially and use architectures that are highly efficient like the systolic array. It 

should be noted that unrolling high-dimensional tensors on 1 or 2 modes generates very narrow 

matrices, so some optimizations should be performed on this aspect. 

In paper [18], a good contraction sequence is found to be 

T = einsum(bn ...n , n ...n r ⇒ br , [X , A ]) 
(4.1a) 

(4.1b) 

1 1 d 1 d d d d 

Y = einsum(br , r nd+1...n2d ⇒ bnd+1...n , [T , B ]) d d 2d 1 d 

Where tensors A and B are: d d 

A := G × · · · × G 
(4.2a) 

(4.2b) 

d 1 d 

Bd := Gd+1 × · · · × G2d 

It should be noted that the authors of this paper proposed a training algorithm, and as such, 

intermediate results A , A , B , B are stored. Another thing that should be taken into account i −i i −i 
is that this sequence is optimal when that batch dimension b is big. 

Since in the current state of the project we are mainly interested in inference, tensors A and d 

B can be precomputed and stored in BRAM. Regardless, the design process of this accelerator d 

will be done while keeping in mind future possible implementations of training. 
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Figure 4.1: Dataflow of system 

communication. Figure 4.2: FSM of control sequence 

Figure 4.3: RTL Schematic of a PE with BRAM. 

Figure 4.4: RTL Schematic of the Controller unit. 

Figure 4.5: Contraction sequence of a tensorized layer. 
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4 .2 Tensor Contraction Unit (TCU) 

The core of the FPGA accelerator is a systolic array-based Tensor Contraction Unit (TCU) de- 

signed to efficiently perform the one-mode and two-mode tensor contractions which are mapped 

as GeMMs. 

The TCU is composed of a customizable Weigh Stationary (WS) systolic array, a Controller 

IP, and a set of BRAMs to store the weighs. One of the biggest challenges that accelerators face 

is the limited amount of BRAM, forcing the weights to be stored on DRAM, which is costly to 

access. By choosing the smallest possible BRAM size, it is possible to gain many concurrent 

access ports, which maximizes the parallelism. 

Figure 4.1 shows the overall system design. The Control unit is connected to the Host using 

an AXI4-Lite interface, which allows for direct control over the prototype. 

4 .2.1 Processing Element Design 

The Processing Element (PE) is made of a MAC unit and a set of registers to store the inter- 

mediate results. Each PE is connected to the controller to communicate the opcode. The PE 

also has an input port to read from the BRAM block, where the quantized weights are stored 

(Figure 4.3). 

The size of the adders and multipliers is parametrized, so it’s possible to deal different types 

of quantization. PEs also have 2 input and 2 output ports to connect to other PEs in the grid: 

north, west, south, east. The units at the edge of the grid are also connected to the Control 

unit, so that it can read and write data. 

4 .2.2 Dataflow and Control Logic 

The dataflow performs the sequence of contractions as in Figure 4.5, until the final vector is 

obtained. Intermediate results are stored in a dedicated memory inside the Control Unit. The 

Finite State Machine of the Control Unit is shown in Figure 4.2. There are four main states: 

- INIT: This is the initial state, responsible for setting up the system. In this state, the first 

set of weights is loaded in the registers of the PEs. From this state, the FSM transitions to IDLE 

if an init_flag == 1 condition is met. 

- IDLE: The FSM waits in this state, waiting for a command. If the TCU receive the flag 

cmd == 1, it moves the FSM to the MAC state. 

MAC: In this state, the GeMM is performed. Data fed from the Control Unit is processed by - 

the PEs which pass the partial results to the next elements of the grid, until the operation is com- 

pleted. At this point, mac_counter == 0 (indicating the current MAC operation is complete) 

moves the FSM moves to LOAD. 
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If curr_layer < FINAL_LAYER (indicating more layers to process), it loops back to IDLE 

after completing a MAC. 

- LOAD: After a contraction is completed, a new set of weights must be fetched from memory. 

This state handles the memory accesses. Once data is loaded, the FSM transitions back to MAC 

to continue processing. If curr_layer == FINAL_LAYER, the FSM returns to IDLE, signaling 

that all layers have been processed and no further computation is required. 

4 .3 Simulation and Verification 

Design RTL code was written in SystemVerilog using Vivado 2019.1. Each module was first 

tested with a testbench in a behavioral simulation. The systolic array and control unit were also 

monitored and tested using an Integrated Logic Analyzer (ILA), which provides accurate timing 

analysis tools. 

Due to time constraints, we were unable to fully deploy the accelerator. We were, however, 

able to simulate and test a tensor contraction handled by the Control Unit and a small 3x3 array, 

as shown in Figure 4.6. 

Figure 4.6: Waveform of simulation of a matrix-matrix multiplication of a small-scale array. 
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Chapter 5 

Conclusion and Future Work 

5 .1 Summary of Contributions 

This thesis has presented a novel framework, TT-DeepONet, for efficiently solving partial 

differential equations (PDEs) on resource-constrained devices. The framework addresses the 

challenges of memory and computational complexity associated with Deep Operator Networks 

(DeepONets) by incorporating two key optimizations: tensor-train (TT) decomposition and 

quantization-aware training (QAT). The TT decomposition significantly reduces the number 

of parameters in the DeepONet’s weight matrices, leading to a smaller memory footprint and 

faster computations. Furthermore, QAT allows for training the model with reduced numerical 

precision, further enhancing memory and computational efficiency without significant loss of 

accuracy. 

Another key contribution is the design of an FPGA-based accelerator intended to efficiently 

handle the tensor contraction operations in TT-DeepONet. While not fully implemented, the 

design incorporates a systolic array architecture to execute tensor contractions efficiently as 

matrix multiplications, overcoming challenges inherent to high-dimensional tensor operations. 

By mapping tensor operations into matrix multiplication workflows, the FPGA design aims to 

minimize memory access bottlenecks and ensure fast, low-power computations suitable for edge 

devices. The proposed architecture is modular and flexible, enabling further customization for 

different FPGA models and offering scalability for various operator learning tasks. 

The experimental results presented in this thesis demonstrate the effectiveness of the TT- 

DeepONet framework in solving the Reaction-Diffusion equation. The framework achieved 

comparable accuracy to a standard DeepONet while requiring substantially less memory and 

achieving faster inference times. The FPGA accelerator further enhanced performance, enabling 

real-time on-device inference for solving PDEs on resource-constrained platforms. This work 

contributes to the growing field of hardware-aware machine learning, paving the way for de- 
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ploying complex deep learning models on edge devices for scientific computing applications. 

5 .2 Future Directions 

While the preliminary results presented in this thesis are promising, several avenues for future 

work can further enhance the TT-DeepONet framework. One immediate next step is to complete 

the deployment of the FPGA accelerator and thoroughly evaluate its performance on the target 

Zynq board. This involves integrating the accelerator with the ARM processor on the board, 

optimizing data transfer and communication between the processor and the FPGA fabric, and 

implementing the necessary drivers and software interfaces. This full deployment will enable a 

more realistic assessment of the accelerator’s performance and power efficiency in a real-world 

setting. 
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