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Abstract 

Monoclonal antibodies are biopharmaceuticals used to treat diseases such as cancer, leukemia, 

and asthma. The best host platform for growing these antibodies is mammalian Chinese hamster 

ovary (CHO) cells; however, the complex and variable nature of this system poses a significant 

challenge to product and process development. 

This Thesis proposes a new methodology to understand how cell metabolism is related to 

chemical-physical and biological phenomena occurring into the cell culture to understand the 

connections between those phenomena and cells metabolism. To this purpose, an improved 

CHO cell first-principle model is proposed. This model is based on several Literature models 

(Botton et al., 2022; Jimenez del Val et al., 2016; Kontoravdi et al., 2010b) and main 

improvements are related to the introduction of Glutamate contribution and refinement of the 

Lactate consumption term. The parameters of this model are estimated using process data (e.g., 

Viable cell concentration, Product Titer, etc.) that describe the macroscopic behavior of the 

system and allow to fit a descriptive model of the culture. Metabolomics data are then integrated 

into this framework to provide new insights and reveal the connections between the phenomena 

occurring into the culture and cellular metabolism.  Metabolomics data provide a microscopic 

perspective of what happens into the cells and are essential for investigating biological 

information at the metabolite level. A multivariate latent-variable regression techniques, 

namely partial least squares (PLS), is used to relate the dynamic behavior of cell metabolism 

and the most significant chemical-physical and biological phenomena, by estimating the most 

important model parameters, identified through a in-depth sensitivity analysis, from 

metabolomics dynamics data. Accordingly, it is possible to determine which metabolites is 

related to a specific chemical-physical and biological phenomenon. 

The proposed framework is applied to the industrial case study of CHO cell culture for the 

production of monoclonal antibodies at the scale of microreactors from GlaxoSmithKline, 

Process Engineering & Analytics and Biopharm Process Research (Stevenage, U.K.).  

The results show that cell metabolism is strongly related to the model parameters, with an 

average determination coefficient of 72% in validation. Furthermore, the outcomes allow to 

understand that cell growth is mainly related to the metabolism of Arginine and Taurine, while 

antibody production is mainly related to higher Thiamine monophosphate content and 

Glutamate metabolism. 
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Introduction 

Monoclonal antibodies (mAbs) are large, lab-grown proteins that mimic the innate disease-

fighting capabilities of the immune system. These molecules are engineered to combat invasive 

threats, including viruses and cancer cells and are precisely designed to target and neutralize 

pathogens and foreign molecules by binding to specific antigens (Castelli et al., 2019). This 

fundamental role makes mAbs crucial for the treatment of a wide range of diseases, including 

cancer, leukemia, asthma, macular degeneration, arthritis, Crohn's disease and post-transplant 

complications (Quinteros et al., 2017). As a result, mAbs are among the top-selling biologicals 

and occupy an important position in the biopharmaceutical market (Lu et al., 2020).  

Monoclonal antibodies are commonly produced using mammalian cells in a medium that 

contains the necessary macro and micronutrients. Among these cells, Chinese Hamster Ovary 

(CHO) culture is the preferred platform for fed-batch mAbs production (Walsh & Walsh, 2022). 

The development of a process for the effective production of mAbs requires significant 

resources and time. Therefore, optimizing research and production processes can significantly 

accelerate the production of high-quality products (Barberi, 2023). However, open issues 

remain in the efficient development of mAbs, particularly related with the complexity of the 

cell culture system, where the chemical-physical and biological phenomena occurring into the 

culture are typically poorly understood. To address these challenges, the biopharmaceutical 

industry and the scientific community have focused on harnessing the capabilities of Industry 

4.0 (Barberi, 2023). This paradigm offers novel approaches to utilize the significant quantities 

of physical, chemical, and biological data collected during the process. High-throughput 

systems have become indispensable for gathering extensive data sets, creating the basis for 

advanced bioprocess modeling (Ahn & Antoniewicz, 2012). In CHO cell culture development, 

two main categories of data are usually collected: process data, which give insight into the 

overall behavior of the cell culture through measurements of key parameters and chemical 

properties (Botton et al., 2022; Facco et al., 2020); and biological (i.e., -omics) data, which 

offer a microscopic perspective into the internal characteristics and behaviors of the cultured 

living organisms (Barberi et al., 2022). Among these, metabolomics stands out as crucial 

factors, concentrating on examining biological information at the metabolite level. Metabolites 

are vital in different chemical, physical, and biological processes, therefore have significant 

potential to explain these biological systems. However, working with metabolomic data 

presents challenges due to the vast number of measurements (ions) and their intricate 

complexity. Overcoming these issues and harnessing the potential of metabolomic data allows 

to optimize monoclonal antibody production and provide valuable insights.  
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The current state of the art in this field characterizes CHO cell cultures with two different 

approaches. One is the use of first-principles nonlinear models to accurately describe the 

behavior of such systems (Barberi, 2023; Botton et al., 2022; Jimenez del Val et al., 2016; 

Kontoravdi et al., 2010). Within these models, the complexity arises from many parameters, 

each of which is intrinsically linked to chemical, physical, or biological culture phenomena that 

give them significant physical meaning. Despite their complexity, these models provide the 

most appropriate approaches for describing the dynamic behavior of mammalian cell cultures 

in terms of cell growth and metabolic activities (Kyriakopoulos et al., 2018). However, a 

limitation of this methodology is its inability to explicitly incorporate the amount of metabolic 

information; additionally, the models are often too simplified to describe accurately the 

complex culture phenomena.  

Other state-of-the-art approaches study the metabolomics information by means of machine 

learning techniques (Barberi, 2023; Barberi et al., 2022). In this case, the use of multivariate 

techniques and neural networks allows to build models in which the behavior of CHO cells is 

described using the metabolites and other omics data. This type of model proves to be very 

efficient. However, in the existing Literature, there are no explicit efforts to correlate 

metabolism with the culture chemical, physical, and biological phenomena occurring into the 

biopharmaceutical process. In particular, correlations between cellular metabolism and cell 

phenomena remain unexplored due to a lack of available techniques for such investigations. In 

this context, the main objective of this work is to introduce an innovative way to integrate cell 

metabolism information from metabolomics data into the framework of first-principles models 

for CHO cell lines. This allows to simultaneously leverage the descriptiveness of first-principles 

models, where model parameters represent cell phenomena, with machine learning. In 

particular, this integration is carried out by building a new accurate first-principles model in 

which the role of each parameter is strongly associated to a chemical-physical and biological 

phenomenon. After that the correlation between the most important model parameters 

(identified through sensitivity analysis) and metabolomics dynamics is explored through 

multivariate latent-variable regression techniques to gain valuable insights into processes and 

uncover the intricate connections between the phenomena occurring within the biological 

system and cell metabolism. 

 

 

 

 

 

 

 



 

Chapter 1 

Materials and methods 

In this Chapter, the mathematical methodologies used in this Thesis are described. These 

techniques, for both first-principle and data based modelling, include the methods for first-

principle model structural identifiability and the sensitivity analysis of models’ parameters and 

methodologies of unsupervised and supervised machine learning, such as multivariate statistical 

models like Principal Component Analysis (PCA) and Partial Least-Squares (PLS).  

1.1 First-principle models 

First-principles models are nonlinear systems of equations that provide a comprehensive 

understanding of the dynamic behavior of cellular phenomena. In these models, many 

parameters are used to define the behavior of the cell lines and these parameters are estimated 

from process data. The structure of the model must be verified by assessing the structural 

identifiability of the model parameters. In addition, the most important cell phenomena can be 

selected by ranking the most characteristic parameters and performing a sensitivity analysis. 

1.1.1 Structural Identifiability 

Structural Identifiability is an essential prerequisite for parameter estimation (Godfrey, 1999). 

A model is said to be structurally identifiable if it is possible to determine the values of its 

parameters from measurements of the model outputs. The method for Structural Identifiability 

used in this Thesis is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-

Generalized Observability with Lie Derivatives and Decomposition) (Villaverde et al., 2016). 

1.1.2 Procedure for model Structural Identifiability 

To understand the procedure behind the structural identifiability of model parameters, consider 

a generic dynamic model 𝑀. 

 

 

𝑀 ∶  {

�̇� = 𝒇[𝒙, 𝒉, 𝒅]

𝒚 = 𝒈[𝒙, 𝒅]

𝒙𝟎 = 𝒙(𝑡0, 𝒅)
 , ( 1.1 ) 
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where 𝐟 and 𝐠 are vector functions, 𝐝 is the vector of 𝑠 parameters and 𝐡 is the vector of inputs, 

𝐲 is the vector of the measurable outputs and 𝐱𝟎 is the vector of initial conditions. 

Mathematically, a parameter 𝑑𝑖 is structurally identifiable if for any value of 𝑑𝑖 the following 

property holds: 

 

𝑦(𝑡, 𝑑�̂�) = 𝑦(𝑡, 𝑑𝑖
∗) →  𝑑�̂� = 𝑑, ( 1.2 ) 

Namely, parameter 𝑑𝑖  is structurally identifiable if it can be uniquely determined from the 

system outputs. Consequently, a model is said to be structurally identifiable if all parameters 

are structurally identifiable. 

Within this framework, parameter identifiability can be considered as an augmented 

observability property (August & Papachristodoulou, 2009). A system is (locally) observable 

at a state 𝑥𝐴 if there exists a neighborhood of 𝑥𝐴 such that every other state in the neighborhood 

is distinguishable from 𝑥𝐴. Two states 𝐱𝐴  ≠  𝐱𝐵 are said to be distinguishable when there exists 

some input 𝐡 such that 𝐲(𝑡, 𝐱𝐴, 𝐡) ≠  𝐲(𝑡, 𝐱𝐵, 𝐡). For a nonlinear system it is possible to obtain 

information about the states 𝐱 from its outputs 𝐲 by calculating the Lie derivatives of the output 

function 𝐠. The Lie derivative of 𝐠 with respect to 𝐟 is defined by: 

 

𝐿𝑓𝒈 =
𝜕𝒈

𝜕𝒙
𝒇(𝒙, 𝒖), ( 1.3 ) 

For a system with 𝛿-states and 𝑚-outputs 𝜕𝐠/𝜕𝐱 is an [𝑚 × 𝛿] matrix and 𝐿𝑓𝒈 is an 

𝑚 × 1 vector. Additionally, the 𝑖𝑡ℎ order Lie derivative are recursively defined as: 

 

𝐿𝑓
𝑖 𝒈 =

𝜕𝐿𝑓
𝑖−1𝒈

𝜕𝒙
𝒇(𝒙, 𝒖), 

( 1.4 ) 

The nonlinear observability matrix 𝐎𝐈 can then be built as follow: 

 

 

𝑶𝑰 = 

(

 
 

𝜕

𝜕𝒙
𝒈

𝜕

𝜕𝒙
(𝐿𝑓𝒈)

⋮
𝜕

𝜕𝒙
(𝐿𝑓
𝑛−1𝒈)

 

)

 
 

, ( 1.5 ) 

Based on that, the observability rank condition states that a system is locally observable around 

𝐱𝐀 if 𝑟𝑎𝑛𝑘(𝐎𝐈(𝐱𝑨)) = 𝛿.  

The described identifiability problem can be transferred to the framework of observability if 

the 𝑠 parameters 𝐝 are considered as additional states with no-dynamics (�̇� =   0). In this way, 

the state variable vector can be augmented by including model parameters, �̃� = [𝐱, 𝐝], and the 

obtain matrix 𝐎𝐈(�̃�) is referred as generalized observability-identifiability matrix. The 

generalized Observability-Identifiability Condition (OIC) can be defined so, if the system 

satisfies 𝑟𝑎𝑛𝑘(𝐎𝐈(𝐱𝐀)) = 𝛿 + 𝑠, then, it is (locally) observable and identifiable. 
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1.1.3  Structural Identifiability limitations and solutions 

In practice, verifying model structural identifiability by checking the OIC is often 

computationally inefficient (or even infeasible). Especially for large models, constructing 𝐎𝐈 

and computing its rank is a very demanding task. For this reason, i) limiting the number of 

calculated Lie derivatives and ii) decomposing the original system into several sub models, are 

two techniques that can be applied to reduce the computational cost and access large model 

structural identifiability. 

1. The main limitation for large and complex model is the calculation of high order Lie 

derivatives the rank of the resulting 𝐎𝐈 matrix. The 𝐎𝐈 matrix is built by vertically stacking 

all the 𝛿 +  𝑠 Lie derivatives sub-matrices. resulting in final dimension of full matrix 𝐎𝐼 of 

(𝑚 ∙ (𝛿 +  𝑠)) × (𝛿 +  𝑠). However, it may not be always necessary to calculate all the 

Lie derivatives in order to test whether 𝐎𝐈 is full rank, since this may be achieved with a 

lower number of derivatives. The minimum number of Lie derivatives for which the matrix 

may be full rank is 𝑛𝑑 = [(𝛿 + 𝑠)/𝑚 − 1] (Villaverde et al., 2016). For this reason, to 

reduce the computational cost it is possible to build 𝐎𝐈 by calculating Lie derivatives until 

the number of rows is greater or equal to 𝑛𝑑. Once 𝑛𝑑 is reached, the addition of a new Lie 

derivative is followed by the calculation of the rank. This process is repeated until the 

maximum number 𝛿 +  𝑠 –  1 is reached, or until adding a new Lie derivative does not 

increase the matrix rank; in both cases no further derivatives are necessary. At that point, if 

𝐎𝐈 is fullrank the corresponding model is observable and identifiable; 

2. another solution is to decompose the model 𝑀 into sub-models {𝑀1, 𝑀2, . . . } that require 

few Lie derivatives for their analysis. Studying the structural identifiability of each sub-

model is equivalent of study the structural identifiability of the entire model (Villaverde et 

al., 2016). Each sub-model 𝑀𝑠𝑢𝑏 includes a subset of the model states, 𝐱𝐬𝐮𝐛. Its outputs, 

𝐲𝐬𝐮𝐛, are the outputs of 𝑀 which are functions of at least one state included in 𝐱𝐬𝐮𝐛. The 

submodel parameters and inputs are those appearing in the equations of 𝐱𝐬𝐮𝐛 and 𝐲𝐬𝐮𝐛.  

This sub models can be found by optimization. For each sub-model 𝑀𝑖 a subset of states in 

𝑀 is selected by performing an optimization where 𝑛𝑑 is minimized. 

 
𝑚𝑖𝑛
𝑒𝑥
𝑛𝑑(𝑒𝑥), ( 1.6 ) 

where 𝐞𝐱 =  {𝑒𝑥1, 𝑒𝑥2, . . . , 𝑒𝑥𝑛} is a binary vector of size 𝑛, whose entries 𝑒𝑥𝑗  ∈  {0, 1} 

denote inclusion (𝑒𝑥𝑗  =  1) or exclusion (𝑒𝑥𝑗  =  0) of the corresponding state. The 

combinatorial optimization is performed with the Variable Neighborhood Search 

metaheuristic (Egea et al., 2014).  

In both cases if 𝐎𝐈 is not full rank, the model is not identifiable and the OIC does not inform 

about which parameters are identifiable and which are not. However, if deleting the 𝑖𝑡ℎ column 

of the 𝐎𝐈  does not change its rank, then the corresponding 𝑖𝑡ℎ state (parameter) is non-
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identifiable). This fact can be exploited to determine which of the parameters in an 

unidentifiable model are identifiable. After the matrix rank has been calculated, each of the 

columns in 𝐎𝐈 is removed one by one and the rank is recalculated. In this way even if the system 

Structural Identifiability is not achieved the identifiability of each of the parameters is evaluated 

1.1.4 Sensitivity Analysis 

Sensitivity analysis is defined as the study of how uncertainty in the output of a model can be 

attributed to different sources of uncertainty in the model input. Performing model’s parameters 

sensitivity analysis can by a decision driven by different aspects: 

• factor prioritization: prioritize factors that are most deserving of further analysis or 

measurement; 

• factor ranking: order the factors from the most important to the least important; 

• model simplification: Fixing or simplifying some factors or compartments of the model. 

In this Thesis two sensitivity approaches are used: i) the Elementary Effect Test ii) the Variance 

Based Sensitivity Analysis. Particularly, the sensitivity analysis is performed to identify a set 

of parameters that most accurately capture the overall behavior of the cell culture. 

1.1.5 Elementary Effect Test 

The Elementary Effect Test (EET) is a method to find an approximate sensitivity information 

(Saltelli et al., 2008a). The Elementary Effect index (𝐸𝐸𝑖) is an average of derivates performed 

at different points sampled over the space of factors. Considering 𝑠 parameters the 𝐸𝐸𝑖 of the 

𝑖𝑡ℎ-input parameter is defined as: 

 
𝐸𝐸𝑖 = [𝑦(𝑑1, 𝑑2, … , 𝑑𝑖 + 𝛥,… , 𝑑𝑠) − 𝑦(𝑑1, … , 𝑑𝑠)] / 𝛥, ( 1.7 ) 

where 𝑑𝑖 is the 𝑖-th parameter, y is the response variable and Δ is the parameter variation. 

To effectively calculate the value of 𝐸𝐸𝑖, the sampling space (Ω) is divided in a grid and the 

absolute value of 𝐸𝐸𝑖 can be computed at different grid points.  

1.1.6 Sensitivity indexes for the Elementary Effect Test 

Results of the Elementary Effect analysis are collected in the matrix of the Elementary Effects 

(𝐄𝐄). From that two indices one can calculate: 

• µ𝑖, mean of the 𝐸𝐸𝑖. These describes the mean effect in the response by changing the 

parameter across Ω; 

• 𝜎𝑖, standard deviation of the 𝐸𝐸𝑖. It calculates how much the value of µ𝑖,  vary in the range 

of the variation of the single parameter. 

The value of µ𝑖, assesses the overall influence of the parameter on the output obtained by 

averaging the value of the 𝐸𝐸𝑖. In this work, the use of the mean 𝜇𝑖 is replaced by 𝜇𝑖
∗, which is 
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defined as the mean of the absolute values of the Elementary Effects. The use of 𝜇𝑖
∗ is 

convenient as it solves the problem of the Type II error (i.e., failing the identification of a 

parameter of considerable influence on the model) to which the 𝜇-value can be exposed 

(Campolongo et al., 2007). Type II errors might occur when the distribution contains both 

positive and negative elements. In this case, computing parameters’ mean determine that some 

effects may cancel each other out, thus producing a low mean value even for an important 

factor. The value of µ𝑖
∗ is a very useful index (Saltelli et al., 2008a) as: 

• provide a semi-quantitively measure to rank factors; 

• is numerically efficient; 

• is a good approximation for more complex sensitivity index. 

The second calculated index is the standard deviation 𝜎𝑖, which estimates the ensemble of 

higher order effects of the parameter. If for a parameter 𝑑𝑖 a high value of 𝜎𝑖 is obtained 

compared to 𝑑𝑖, then the respective 𝐸𝐸𝑖 differ significantly from each other. This means that 

the values of 𝐸𝐸𝑖 are strongly influenced by the choice of the sample points at which they are 

computed and thus by the choice of the values of the other parameters.  

1.1.7 Latin Hypercube Sampling 

The value of 𝐸𝐸𝑖 is obtained by sampling the parameters values in an iterative procedure. This 

operation can be performed by the introducing the Latin Hypercube Sampling (LHS) that 

reduces the computational cost of the analysis (McKay et al., 1979). This sampling 

methodology is a sort of stratified Monte Carlo sampling procedure. Practically, in a case of a 

one-dimensional LHS to generate a random sample with Γ data points, i) the parameter 

cumulative density function is divided into Γ equal intervals at same probability. Then ii) in 

each interval a point is selected randomly, and this give Γ different points. This rationale can 

be extended to two independent parameters 𝑑1 and 𝑑2 (two-dimensional LHS). It is possible to 

generate two one dimensional sample for 𝑑1 and 𝑑2 separately. Once we have two lists of 

samples, they are combined into two-dimensional pairs. The same procedure can be extended 

to a larger number of parameters. Compared to a classical Montecarlo approach, LHS has 

several advantages: 

• tends to be spread more uniformly the samplings along Ω (Morris, 1991); 

• is more efficient and less time consuming than a Monte Carlo simulation (Atangana, 2017). 

1.1.8 Variance Based Sensitivity Analysis 

Variance Based Sensitivity Analysis (VBSA) is a global sensitivity analysis to assess the 

sensitivity of the response to parameter variation (Saltelli et al., 2008b). Consider a model in 

the form of 𝑌 = 𝐟(𝑑1, 𝑑2, … , 𝑑𝑘) in which each 𝑑𝑖 is a parameter that has a non-null range of 

variation. The concept behind VBSA is in the investigation of 𝑌 total variance (i.e., 

unconditional variance) indicated with 𝑉(𝑌) when some parameters are kept fixed. If a 
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parameter is frozen to a specific value 𝑑𝑖 = 𝑑𝑖
∗, then the resulting variance 𝑉(𝑌|𝑑𝑖 = 𝑑𝑖

∗) will 

be certainly smaller compared to 𝑉(𝑌). Hence, the smaller 𝑉(𝑌|𝑑𝑖 = 𝑑𝑖
∗) is, the greater is the 

influence of 𝑑𝑖 on the variance of 𝑌. However, 𝑉(𝑌|𝑑𝑖 = 𝑑𝑖
∗) is affected by the choice of 𝑑𝑖

∗, 

so this concept can be generalized by averaging the measure of 𝑉(𝑌|𝑑𝑖 = 𝑑) with different 𝑑𝑖
∗ 

points, so that the dependence on specific parameter value will disappear. The average of the 

measurements of 𝑉(𝑌|𝑑𝑖 = 𝑑𝑖
∗) at different 𝑑𝑖

∗values is referred as 𝐸𝑑𝑖 (𝑉𝑑𝑖(𝑌|𝑑𝑖)) and this is 

always lower or equal to 𝑉(𝑌).  

1.1.9 First order Variance Based Sensitivity Index 

The conditional variance 𝑉𝑑𝑖(𝐸𝑑𝑖(𝑌|𝑑𝑖)) is defined as: 

 
𝑉𝑑𝑖 (𝐸𝑑𝑖(𝑌|𝑑𝑖)) = 𝑉(𝑌) − 𝐸𝑑𝑖(𝑉𝑑𝑖(𝑌|𝑑𝑖), 

( 1.8 ) 

Lower value of 𝐸𝑑𝑖(𝑉𝑑𝑖(𝑌|𝑑𝑖) means that 𝑑𝑖 is an important parameter, consequently, the higher 

𝑉𝑑𝑖 (𝐸𝑑𝑖(𝑌|𝑑𝑖)) is, the higher is the importance of 𝑑𝑖. 

The conditional variance is called first order effect of 𝑑𝑖 on 𝑌 and the associated sensitive index 

is: 

 

𝑆𝑖 =
𝑉𝑑𝑖

(𝐸𝑑𝑖
(𝑌|𝑑𝑖)) 

𝑉(𝑌)
 ∈ [0; 1], 

( 1.9 ) 

High value for 𝑆𝑖 means that 𝑑𝑖 is an important parameter, however no conclusive statement 

can be done if 𝑆𝑖 is very low. In fact, the first order index considers only the main effect of a 

factor, but nothing says on its total effect considering interactions with other parameters.  

1.1.10 High order Variance Based Sensitivity Index 

The first ordered sensitivity index is obtained by conditioning one parameter at time, however 

this concept can be generalized to any higher order. Let’s consider for simplicity to use two 

conditioned factors instead of one, the conditioned variance is calculated as:  

 
𝑉 (𝐸(𝑌|𝑑𝑖, 𝑑𝑗)) = 𝑉𝑖 + 𝑉𝑗 + 𝑉𝑖𝑗, 

( 1.10 ) 

here 𝑉𝑖 is the conditioned variance for the 𝑖-th parameter, 𝑉𝑗 is the conditioned variance for the  

𝑗-th parameter and Vij considered parameters interaction effect. 

In Equation ( 1.10 ), 𝑉𝑖 and 𝑉𝑗 can be computed from Equation 1.8 and 𝑉(𝐸(𝑌|𝑑𝑖, 𝑑𝑗)) is 

calculated as the conditioned variance by keeping fixed two parameters: 

 𝑉(𝐸(𝑌|𝑑𝑖, 𝑑𝑗)) = 𝑉(𝑌) − 𝐸𝑑𝑖(𝑉𝑑𝑖(𝑌|𝑑𝑖)  − 𝐸𝑗(𝑉𝑑𝑗(𝑌|𝑑𝑗), 
( 1.11 ) 

then: 
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𝑉𝑖𝑗 =  𝑉(𝐸(𝑌|𝑑𝑖, 𝑑𝑗)) – (𝑑𝑖  +  𝑑𝑗), 

( 1.12 ) 

𝑉𝑖𝑗 is the interaction term between 𝑑𝑖 and 𝑑𝑗 and capture the part of response that cannot be 

written as superposition of the two-separate effect of 𝑑𝑖 and 𝑑𝑗.  

If the rationale of conditioned variances is expanded to a general order, all the factors except 

for one can be conditioned. In that case, the conditioned variance 𝑉(𝐸(𝑌|𝐝 − {𝑑𝑖})) captures 

all terms of any order that do not include parameter 𝑑𝑖 and the associate sensitivity index is 

equal to 𝑉(𝐸(𝑌|𝐝 − {𝑑𝑖}))/ 𝑉(𝑌). Additionally, the sum of all possible sensitivity terms must 

be equal to one, as:  

 
∑ 𝑆𝑖𝑖 + ∑ ∑ 𝑆𝑖𝑗 𝑗>𝑖 + ∑ ∑ ∑ 𝑆𝑖𝑗𝑙𝑙>𝑗𝑗>𝑖𝑖𝑖 +⋯+ 𝑆123…𝑘 = 1 , ( 1.13 ) 

where 𝑆𝑖 is the first order sensitivity index, 𝑆𝑖𝑗  is the second order sensitivity index, Sijlis the 

third order sensitivity index and 𝑆123…𝑘 is the 𝑘-order sensitivity index. 

Then the difference 1 − 𝑉(𝐸(𝑌|𝐝 − {𝑑𝑖}))/ 𝑉(𝑌) must be made up of all terms of any order 

that include 𝑑𝑖, namely the total effect of 𝑑𝑖. Based on that we define the total-sensitivity index 

of 𝑑𝑖 (i.e., Sobol’s index) as: 

 

𝑆𝑇𝑖 =  1 −
𝑉(𝐸(𝑌|𝑑 − {𝑑𝑖}))

𝑉(𝑌)
 . 

( 1.14 ) 

Calculation of the sensitivity indexes are performed by iteratively calculating the conditional 

variances (value of 𝑉(𝑌|𝑑𝑖 = 𝑑𝑖
∗)) for different parameter values. The values of the parameters 

are sampled by LHS. The calculation of the indexes is performed with the SAFE MATLAB 

Toolbox (Pianosi et al., 2015) in which main and total effects are calculated as explained above 

(Homma & Saltelli, 1996; Saltelli et al., 2008a, 2008b, 2010). 

1.1.11 Limitations of Variance Based Sensitivity Analysis 

A good characterization of sensitivity of a system is given by the total set of first-order terms 

plus the total effects. Additionally, if the total sensitivity index of a parameter, 𝑆𝑇𝑖 = 0 then 

this is a necessary and sufficient condition for 𝑑𝑖 to be non-influent in the model (this does not 

hold simply for the first order sensitivity index 𝑆𝑖).  

VBSA is more efficient with respect to the EET. However, it has several problems: 

• computationally heavy. VBSA lead to higher computational burden. To decrease the time 

required for the simulation EET can be used. This prunes the number of factors as 𝐸𝐸𝑖 

significance is a necessary condition for the parameter to be also significant for the VBSA; 

• if the output distribution is multi-modal or if it is highly skewed, using variance as a 

approximation of uncertainty may lead to contradictory result (Pianosi & Wagener, 2015). 

There are different reported cases (Borgonovo et al., 2011; Liu et al., 2006) in which highly 
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skewed distributions have proved to not be efficient in the application of VBSA. If the curve 

is highly skewed, results need to be interpreted comparing them with the ones obtained from 

the EET; 

• sensitivity index is lower than zero. Any order sensitivity is limited between 0 and 1, where1 

indicates that parameter is the only influential one. However, in this work, the used method 

calculate the Sobol’s indexes (Saltelli et al., 2010) does not guarantee that 𝑉(𝐸(𝑌|𝑑𝑖)) is 

always positive. Accordingly, sometimes 𝑆𝑖 might exhibit negative values. To overcome 

this numerical problem, is necessary to increase the numbers of simulation to bring this 

value as close to zero as possible and if any negative value occurs, is possible to keep it as 

zero at the condition that its confidence interval contains the zero. 

1.2 Machine learning 

In this Thesis several machine learning techniques are used to perform several tasks. K-means 

analysis is used to cluster the different cell lines and identify common behaviors. Multivariate 

methods are statistical models used for dimensionality reduction, data interpretation and 

visualization, correlation analysis, and regression/classification. Two multivariate methods are 

implemented: i) Multiway Principal Component Analysis and ii) Multiway Partial Least 

Squares. In both cases, the dataset analyzed by multivariate models are preprocessed: dataset 

are mean-centered (i.e., by removing the column-wise mean value), auto scaled (i.e., by 

removing the column-wise mean value and scaling for the column-wise standard deviation) or 

pareto-scaled (i.e., by removing the column-wise mean value and scaling for the square root of 

column-wise standard deviation). 

Particularly in the Partial Least Squares, the importance of each regressor variable (i.e., in 𝐗) 

for the prediction of 𝐘 is quantified through several indices. Three different indices are used to 

assess the importance of predictor variables: i) the regressor coefficients, ii) VIP scores and iii) 

the Selectivity Ratio. These indexes are utilized to select the most important ions for building 

the multivariate models. This ion discrimination is achieved via a robust and computationally 

intensive backward iterative elimination method (Barberi, 2023) Furthermore, the VIP value 

and regressor coefficients are also applied to differentiate the most significant metabolites in 

each PLS model. 

1.2.1 k-means clustering 

The k-means method is a widely used clustering technique that aims at minimizing the average 

squared distance between data points within the same cluster. While it offers no explicit 

guarantees of accuracy in finding the best clusters, its practical appeal lies in its simplicity and 

efficiency. Mathematically, the algorithm follows a straightforward process in four steps: 

1. initialization: select 𝑘 initial cluster centroids 𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑘}; 
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2. assignment: for each 𝑙 𝜖 {1, … , 𝑘} set the cluster 𝐶𝑙 to be the set of points closer to 𝑐𝑙 

accorindg to a selected distance metric (i.e., measurement of dissimilarity between 

observation) which, for example, can be the euclidean distance; 

3. update: for each 𝑙 𝜖 {1, … , 𝑘} recompute the centroids so that 𝑐𝑙 is set to be the center of 

mass of all points in 𝐶𝑙; 

4. iterate: repeat steps 2 and 3 until convergence is reached, or a specified number of iterations 

is reached. 

1.2.2 Principal component analysis 

Principal Component Analysis (PCA; Wise & Gallagher, 1996) is a powerful method for 

reducing the dimensionality of multivariate data and extracting the main driving forces. PCA 

decomposes a scaled dataset 𝐗 [𝑁 × 𝑉𝑅], consisting of 𝑁 observations and 𝑉𝑅 variables, into 𝐴 

orthogonal principal components (PCs). These principal components indicate the most 

significant directions of variability within 𝐗 and effectively capture the relationships among the 

𝑉𝑅 variables. In PCA the 𝐗 dataset is decomposed as:  

 

𝐗 = 𝐓𝐏T + 𝐄 , ( 1.15 ) 

where 𝐓 [𝑁 × 𝐴] is the score matrix, 𝐏 [𝑉𝑅 × 𝐴] is the loading matrix, the superscript T 

indicates the transpose, and 𝐄 [𝑁 × 𝑉𝑅] is the residual matrix, which is minimized in the least-

squares sense. The scores represent the projection of the samples onto the space defined by the 

principal components and illustrate the relationship among the 𝑁 observations. Meanwhile, 

loadings describe the pattern of correlations among the 𝑉𝑅 variables. Common methods to 

compute model scores and loadings (i.e., calibration) are singular value decomposition or 

nonlinear iterative partial least squares. (NIPALS; Geladi & Kowalski, 1986).  

In this Thesis, the number 𝐴 of PCs (i.e., the dimension of the reduced space) is selected through 

cross-validation. In cross-validation (Wold, 1978), the optimal number of PCs is chosen to 

minimize the reconstruction error, usually measured by the root mean squared error (RMSE) 

using a bootstrapping or jackknifing technique. The main model diagnostics to assess the 

performance of the model are the RMSE and the coefficient of determination 𝑅2. The RMSE 

is defined as:  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑛 − �̂�𝑛)2 
𝑁
𝑛=1

𝑁
 , 

( 1.16 ) 

where x𝑛 is the 𝑛-th sample, and x̂𝑛 is the 𝑛-th sample reconstructed by the PCA model. The 

coefficient of determination quantifies the amount of variability of the original data 𝐗 captured 

by the model, and it is defined as:  
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𝑅2 = 1 −

∑ ∑ (𝑥𝑛,𝑣
𝑁
𝑛=1 − �̂�𝑛,𝑣)

2 𝑉
𝑣=1   

∑ ∑ (𝑥𝑛,𝑣
𝑁
𝑛=1 − �̅�𝑣)2  

𝑉
𝑣=1

 , ( 1.17 ) 

where x𝑛,𝑣 is the value of the 𝑣-th original variable for the 𝑛-th sample, x̂𝑛,𝑣 is the value of the 

𝑣-th original variable for the 𝑛-th sample reconstructed by the PCA model, and x̅𝑣 is the average 

value of the 𝑣-th original variable.  

After calibrating a PCA model, a new observation 𝐱𝑁𝐸𝑊 [1 × 𝑉𝑅] can be projected onto the 

PCA model to compare it with the calibrated observations and evaluate if its fit to them. This 

projection is performed as: 

 
𝐭NEW = 𝐱NEW𝐏 , 

( 1.18 ) 

where 𝐭𝑁𝐸𝑊 [1 × 𝐴] represents the score vector for the new observation. To assess how well 

the model describes an observation, to detect potential outliers, and to determine the impact of 

an observation on the overall model, sample diagnostics such as Hotelling's 𝑇2 and the squared 

prediction error (𝑆𝑃𝐸) can be computed. Hotelling's 𝑇2 quantifies the distance between the 

projection of an observation and the origin of the reduced space, typically indicating the 

magnitude of the deviation of a particular sample from the average conditions of the calibration 

data set. The Hotelling’s 𝑇2 for a given observation 𝑛 is defined as: 

 

Tn
2 = 𝐭n𝚲

−𝟏𝐭n
T  , ( 1.19 ) 

where 𝐭𝑛 is the score vector of the 𝑛-th observation, and 𝚲−𝟏 [𝐴 × 𝐴] is a diagonal matrix 

collecting the inverse eigenvalues. The 𝑆𝑃𝐸 quantifies the mismatch between an observation 

and its reconstruction through the PCA model. Large values of 𝑆𝑃𝐸 identify observations with 

a correlation structure different than the one in the calibration dataset. The 𝑆𝑃𝐸 for a given 

observation 𝑛𝑖 is defined as:  

 

SPEn = 𝐞n𝐞n
T , ( 1.20 ) 

where 𝐞𝑛  =  𝐱𝑛  −  �̂�𝑛 is the residual vector of the 𝑤-th observation. It is possible to construct 

confidence limits for both Hotelling's 𝑇2 and 𝑆𝑃𝐸 (Nomikos & MacGregor, 1995a) to detect 

potential outliers. These statistical calculations assume that the data used to construct the model 

are independent and normally distributed. This assumption results in scores that follow a multi-

normal distribution and residuals that resemble white noise. The confidence limit on the 

Hotelling’s 𝑇2, 𝑇lim
2  , is calculated as: 

 
𝑇𝑙𝑖𝑚
2 =

𝐴(𝑁 − 1)

(𝑁 − 𝐴)
 𝐹𝐴,𝑁−𝐴,𝛼 , 

( 1.21 ) 
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where 𝐹𝐴,𝑁−𝐴,𝛼 is the critical value of a 𝐹-distribution with 𝐴 and 𝑁 − 𝐴 degrees of freedom at 

the significance level 𝛼.The confidence limit on the 𝑆𝑃𝐸, 𝑆𝑃𝐸𝑙𝑖𝑚, is calculated as:  

 

𝑆𝑃𝐸𝑙𝑖𝑚 =
𝜎𝑆𝑃𝐸
2

2𝜇𝑆𝑃𝐸
 𝜒
2𝜇𝑆𝑃𝐸

2 /𝜎𝑆𝑃𝐸,𝛼
2

2  , ( 1.22 ) 

where χ
2𝜇𝑆𝑃𝐸

2 /𝜎𝑆𝑃𝐸,𝛼
2

2  is the critical value of a 𝜒2-distribution with 2𝜇𝑆𝑃𝐸
2 /𝜎𝑆𝑃𝐸

2  degrees of 

freedom at the significance level 𝛼, 𝜇𝑆𝑃𝐸 is the average, and 𝜎𝑆𝑃𝐸  is the variance of the 𝑆𝑃𝐸 

distribution. 

1.2.3  Partial Least-Squares 

Partial Least-Squares Regression (PLS; Wise & Gallagher, 1996) is a linear multivariate 

regression method used to capture the joint correlations between a matrix of predictors and a 

matrix of responses, and to predict new responses using a set of new predictors. PLS identifies 

the maximum direction of covariance between a scaled matrix of predictors 𝐗 [𝑁 × 𝑉] and a 

scaled matrix of responses 𝐘 [𝑁 × 𝑅] containing R responses. This technique projects both 𝐗 

and 𝐘 into a reduced space defined by 𝐴 latent variables (LVs) using the following approach: 

 

𝐗 = 𝐓𝐏T + 𝐄 , ( 1.23 ) 

 

𝐘 = 𝐓𝐐T + 𝐅 , ( 1.24 ) 

 

𝐓 = 𝐗𝐖(𝐏T𝐖)−𝟏 , ( 1.25 ) 

where 𝐏 [𝐴 × 𝑉𝑅] and 𝐐 [𝐴 × 𝑅] are the loading matrices, 𝐓 [𝑁 × 𝐴] is the score matrix, 

𝐄 [𝑁 × 𝑉𝑅] and 𝐅 [𝑁 × 𝑅] are the residual matrices of 𝐗 and 𝐘, respectively (minimized in a 

least-square sense), and 𝐖 [𝑁 × 𝐴] is the weight matrix used for the calculation of the scores.  

The inclusion of weights is crucial to maintain orthogonality within the latent variable (LV) 

scores and to identify the direction of maximum correlation within the standardized versions of 

𝐗. It's important to note that the scores 𝐓 and loadings 𝐏 in a PLS model are different from 

those in a PCA model. Calculating model scores, loadings, and weights (referred to as 

calibration) typically involves iterative techniques such as NIPALS algorithm (Wold et al., 

2001). PLS can be used for predicting a response variable �̂� [1 × 𝑅] from a set of new 

predictors 𝐱𝑁𝐸𝑊 [1 × 𝑉𝑅] according to: 

 

�̂� = 𝐱NEW𝐖(𝐏
T𝐖)−𝟏𝐐T , ( 1.26 ) 

The number of LVs can be selected similarly to PCA (Section 1.2.2) with the cross-validation.  
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1.2.4 Multiway modeling by batch-wise unfolding 

Multiway multivariate modeling (Nomikos & MacGregor, 1994) is a technique used to deal 

with complex data sets organized as multidimensional matrices, where one of the dimensions 

is often related to time (indicating temporal variability in the data). Multiway modeling consists 

in unfolding the multidimensional data 𝐗 [𝑁 × 𝑉𝑅 × 𝑇] (where 𝑇 is the number of time instants 

in which 𝑉 variables are collected for 𝑁 batches) followed by the decomposition with a standard 

multivariate model. In this Thesis the data unfolding procedure followed the rules of the batch-

wise unfolding (Nomikos & MacGregor, 1995b) and are schematically shown in Figure 1.1 

Data are collected at different time instants (e.g., 𝐗𝑡 [𝑁 × 𝑉𝑅] with 𝑡 = 1,2, … , 𝑇) and are 

horizontally concatenated to generate a matrix 𝐗𝑏𝑤𝑢 [𝑁 × 𝑉𝑅 ∙ 𝑇]  =  [𝐗1 𝐗2  ⋯ 𝐗𝑇], which is 

the batch-wise unfolded version of 𝐗. In multiway multivariate modeling, loadings play a 

crucial role in clarifying the correlation among the variables denoted by 𝐗 at different time 

points. This distinction provides insights into the relationships among the dynamics of the 

variables and their cross-correlations. This Thesis includes the multiway principal component 

analysis (MPCA) and the multiway of partial least squares (MPLS). 

 

 
Figure 1.1 Batch-wise unfolding procedure for multiway multivariate modeling. 

1.2.5 Regression coefficients 

In Section 1.2.3 PLS is defined as a linear multivariate regression method that can be used to 

predict new responses using a new set of predictors. Within this framework, is possible to 

define: the beta regressors (Wold et al., 2001) as:  

 

𝐘 = 𝐗𝐁  , ( 1.27 ) 

 

𝐁 =  𝐖(𝐏T𝐖)−𝟏𝐐T , ( 1.28 ) 

where 𝐁 is the matrix of regression coefficient for PLS. Because both the X and Y data sets are 

auto-scaled, higher beta values are indicative of regressors that are more important in 

influencing the value of the response variable. 
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1.2.6 VIP 

VIP scores summarize the influence of each X variable on the PLS model (Chong & Jun, 2005). 

They are calculated as the weighted sum of squares of the PLS weights, which consider the 

amount of explained y-variance in each extracted latent variable. For this reason, VIP scores 

provide a measure useful for selecting which are the variables that contribute the most to the 

explanation of the y-variance. The VIP score for the 𝑣-variable can be calculated as: 

 

𝑉𝐼𝑃𝑣 = √
𝑉∑ (𝑆𝑆(𝑏𝑘𝑡𝑘) ∙ 𝑤𝑣,𝑎2 )

𝐴
𝑣=1

∑ 𝑆𝑆(𝑏𝑘𝑡𝑘)
ℎ
𝑘=1

 , 
( 1.29 ) 

where 𝑆𝑆(𝑏𝑘𝑡𝑘) is the variance of the response explained by the 𝑎-th LV of the model and 𝑤𝑣,𝑎 

is the weight of the 𝑣-regressors and 𝑎-the LV. In addition, since the average of the squared 

VIP scores is equal to 1, the greater than one rule can be used as a criterion for variable 

selection. 

1.2.7 Selectivity Ratio 

The Selectivity Ratio (SR) (Rajalahti et al., 2009) method is a tool for searching what are the 

important variables of a multivariate data set in the prediction of a particular property. In 

particular, SR is defined by the ratio between the explained and the residual (unexplained) 

variance for each variable in the target projection vector. This target projection utilizes both the 

predictive ability (regression vector) and the explanatory ability (spectral variance/covariance 

matrix) for the calculation of the Selectivity Ratio. Given the PLS regression vector: 

 

𝐭TP = 𝐗𝐛TP , 
( 1.30 ) 

 

𝐩TP
T =

𝐭TP
T 𝐗

(𝐭TP
T 𝐭TP)

 , ( 1.31 ) 

 

𝐗 = 𝐗TP + 𝐄TP = 𝐭TP𝐩TP
T + 𝐄TP , 

( 1.32 ) 

Where 𝐭𝑇𝑃 is the vector of target projection scores, 𝐩𝑇𝑃 is the vector of target projection 

loadings and 𝐗𝑇𝑃 + 𝐄𝑇𝑃 is the target projection model. From that we can calculate explained 

𝑣𝑒𝑥𝑝𝑙,𝑖 (‖𝑋𝑇𝑃‖
2)  and residual 𝑣𝑟𝑒𝑠,𝑖 (‖𝐸𝑇𝑃‖

2) variance for each variable 𝑖 after the target 

projection. The ratio of explained to residual variance of a variable is defined as selectivity ratio 

and represents a measure of a variable's sensitivity: 

 
𝑆𝑅𝑖 =

𝑣𝑒𝑥𝑝𝑙,𝑖

𝑣𝑟𝑒𝑠,𝑖
 . ( 1.33 ) 
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Chapter 2 

Case study: monoclonal antibody 

development 

This Chapter gives a general introduction on the biopharmaceutical industry and introduces 

CHO cell cultures and monoclonal antibodies. The case study presented in this Thesis is then 

described.  

2.1 Biopharmaceutical industry 

In medicine, biopharmaceuticals (also known as biologicals or biologics) are drugs and 

therapeutics derived or synthesized from living organisms. These organisms include microbial, 

animal, or human cells that have been genetically modified to produce specific biological 

substances with therapeutic effects. One of the key advantages of biopharmaceuticals over 

traditional pharmaceuticals is their ability to produce more complex drugs with highly targeted 

functions (Rader, 2008). This specificity leads to a reduced likelihood of side effects compared 

to conventional chemically synthesized drugs. The use of living cells as a source for drug 

production has opened up new possibilities for the treatment and prevention of various diseases. 

The main biopharmaceutical products are vaccines, cells (such as stem cells), biological tissues, 

recombinant proteins (such as monoclonal antibodies) and gene therapy drugs.  

Monoclonal antibodies (mAbs) dominate the biopharmaceutical market as the best-selling class 

of biologics (Lu et al., 2020). Within this framework, mammalian cell culture has emerged as 

the preferred method for the production of recombinant proteins, accounting for 67% of total 

production (Walsh, 2018). Within this category, Chinese hamster ovary (CHO) cells stand out 

as the primary cell line responsible for the synthesis of 89% of mAbs produced (Walsh & 

Walsh, 2022). 

2.2 Monoclonal Antibodies 

Monoclonal antibodies play a critical role in the treatment of a variety of medical conditions, 

including breast cancer, leukemia, asthma, macular degeneration, arthritis, Crohn’s disease, and 

transplants (Quinteros et al., 2017) 

The primary function of antibodies in living organisms is to eliminate invading pathogens and 

foreign molecules. They specifically bind to their targets, known as antigens, and form a 
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complex that is recognized and eliminated by specialized components or cells of the host 

organism's immune system (Castelli et al., 2019) 

Monoclonal antibodies are large Y-shaped proteins composed of two identical chains (one 

heavy and one light), and two identical light chains linked by disulfide bonds (Chiu et al., 2019). 

In living organisms, monoclonal antibodies are predominantly produced by secretory B cells, 

an essential component of the cellular immune system (Gaughan, 2016). 

Monoclonal antibodies are typically cultured in mammalian cells in fed-batch reactors. In this 

system, cells are cultured in a medium containing all the macro- and micronutrients necessary 

for their growth and survival (Li et al., 2010). The primary carbon sources for the cells are 

typically Glucose, Glutamate, and Glutamine. In addition, specific amino acids required for the 

production of the desired product can be supplied via daily boluses. 

2.3 CHO cell cultures 

Cell culture is the preferred host platform for mAb production. The development of a successful 

biopharmaceutical molecule encompasses all activities aimed at large-scale production of a 

biopharmaceutical product. Process development is resource-intensive and time-consuming, 

and is typically divided into several steps: 

• cell generation and engineering. The first stage of process development involves the 

generation of cell lines that will be responsible for producing the desired monoclonal 

antibody; during this stage, host cells are genetically engineered to improve or modify 

various aspects such as product quality and growth characteristics; 

• cell line selection and scale-up. Cell line selection involves screening thousands of different 

cell lines for a limited number of quality attributes (QAs) such as cell growth, specific 

productivity, and product titer (Facco et al., 2020). This screening process is essential to 

identify the most promising cell lines that meet the desired critical quality attributes 

(CQAs). To improve the selection process and optimize cultivation, valuable information 

from biological profiling, such as metabolomics, can be extracted and used (Barberi, 2023). 

After the initial screening, only those cell lines that meet the desired CQAs are scaled up, 

moving from laboratory to production scale. Scale-up is a complex and resource-intensive 

process; reducing the time to market by early identification of suitable commercial cell lines 

has a significant impact on the overall economics of the process. 

• process characterization. Process characterization is a crucial step in the development of 

biopharmaceuticals, as it is a requirement for drug approval, specifically as part of the 

biologic license application; 
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• media, feed, and process optimization. Another essential step is the optimization of media 

and feeding schedule to balance cell growth, productivity, and product quality. Equally 

important is the optimization of the critical process operating parameters (CPPs) to ensure 

stable and high protein expression while maintaining the desired product quality.  

Efficient biomanufacturing and the production of high-quality biopharmaceutical products 

depend heavily on optimizing these critical steps. However, the advent of Industry 4.0 and the 

abundance of big data offer new solutions to address these challenges.  

The biopharmaceutical industry has recognized the potential opportunities in harnessing the 

vast amounts of physical, chemical, and biological data generated. For this reason, the 

implementation of high-throughput systems enables the collection of massive amounts of data 

and serves as the basis for advanced bioprocess modeling. In CHO cell culture, the main types 

of available data are: 

• process data: the macroscopic behavior of cell cultures is assessed by measuring key process 

parameters and chemical properties. These measurements are essential for monitoring 

culture growth and cell metabolism, and for investigating potential factors contributing to a 

decline in cell health. The most important measurement is the viable cell concentration 

(VCC), which provides valuable insight into the response of the culture to specific 

conditions; 

• -omics data: biological data provide valuable insights into the internal microscopic 

properties and behavior of the cultured living organisms. These data revolve around the 

flow of information within all living organisms, starting from DNA and progressing to 

mRNA, proteins, and metabolites, ultimately leading to the expression of cell phenotypes 

(Reel et al., 2021). To capture this informative flow of biological information, -omics data 

are modelled and categorized based on the source of the information they study. The -omics 

models provide a comprehensive understanding of cellular processes and help to optimize 

bioproduction for various applications. 

Among the various -omics data, metabolomics focuses specifically on the analysis of biological 

information at the metabolite level. Metabolomics involves the identification and quantification 

of all small molecules, called metabolites, involved in the metabolic reactions of a given system. 

It provides valuable insight into the metabolites which are present in the system and their 

respective abundances. Mass spectrometry, liquid chromatography-mass spectrometry (LC-

MS), and gas chromatography-mass spectrometry (GC-MS) are the typical methods used to 

perform metabolomic measurements. 
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2.4 Available data 

In this Thesis, an industrial case study concerning the development of mAb at a small bioreactor 

scale (AMBR15TM) is considered. Data from two runs performed in the AMBR15TM miniature 

bioreactor system (Sartorius Stedim Biotech, Sartorius AG, Goettingen, Germany) are 

available. These experiments were performed using GSK proprietary platform process.  

The data contains information on 𝑁 = 96 CHO cell lines, all expressing a common product 

(i.e., monoclonal antibody), grown simultaneously in 48 parallel 15-mL bioreactors for 15 days 

of culture (i.e., experimental batches). 

The production process is carried out in a fed-batch manner. In this system, as the cells grow 

and consume nutrients, additional nutrients are continuously fed to the bioreactor during the 

cultivation process (Xu et al., 2023). Glucose and Glutamate are used as the main carbon 

sources. The process conditions in terms of pH and temperature are the same for all 

microbioreactors, while the feeding action (daily boluses of nutrients) is different for all cell 

cultures.  

A set of 𝑉𝑃 = 7 process variables are measured in 𝑇 = 7 time instants during the experimental 

batch (𝑡 = 1,2, … , 𝑇, namely 0, 3, 5, 8, 10, 13 and 15 days). These are: 

• Viable Cell Concentration (VCC); 

• product titer: concentration of monoclonal antibody in the cell culture;  

• Glucose: main nutrient and source of carbon; 

• Glutamate: second main nutrient and primary source of nitrogen; 

• Glutamine: essential building block generated by Glutamate conversion 

• Lactate: product of Glucose anaerobic glycolysis whose accumulation decrease cellular 

productivity and viability; 

• Ammonium: by-product of the cellular activity that cause the death of the cells in the 

culture; 

All the process variables are arranged in a three-dimensional array 𝐗𝐏 [𝑁 × 𝑉𝑃  ×  𝑇]  =

 [96 𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒𝑠 ×  7 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ×  7 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠], which is defined as process 

dataset. The unfolded version of this matrix 𝐗𝐏 [𝑁 ×  𝑇𝑉𝑃] is obtain by batch-wise unfolding 

𝐗𝐏, following the procedure explained in Chapter 1. 

For each CHO cell line, intracellular metabolites are analyzed by using flow injection liquid 

chromatography-mass spectrometry. The chromatography measurements were performed in 

negative ionization mode, with a scan range of mass over charge (m/z) from 50 to 1000. The 

raw data obtained from the analysis are pre-preprocessed through an in-house pipeline, and the 

identified ions are tentatively assigned as metabolites based solely on accurate mass 

information. However, due to some limitations, such as isomers or metabolites with masses 



Case study: monoclonal antibody development 21 

 

falling within the annotation tolerance, some ions are annotated as multiple tentative 

metabolites.  

Metabolomic profiling is performed in 𝑅 = 2 replicates at the same 𝑇 time points as in the 

culture analysis. However, metabolomic profiles at time point 𝑡 = 2 are missing, because the 

number of cells in the cultures was insufficient to perform the analysis. For this reason, the 

intracellular metabolomic profiles consisting of intensities of 𝑉𝐼  =  4587, are arranged in four-

dimensional arrays 𝐗𝐢𝐜 [𝑁 × 𝑉𝐼  ×  (𝑇 − 1)  ×  𝑅] =  [96 𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒𝑠 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑜𝑛𝑠 ×

(7 − 1) 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 ×  2 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠]. Initially 𝐗𝐢𝐜 is divided between the two replication 

matrixes: 𝐗𝐢𝐜,𝟏 and 𝐗𝐢𝐜,𝟐[𝑁 × 𝑉𝐼  ×  (𝑇 − 1)]. Then both matrices are unfolded, and the 

unfolded version of these matrices 𝐗𝐢𝐜,𝟏 and 𝐗𝐢𝐜,𝟐 [𝑁 × 𝑉𝐼(𝑇 − 1)] are obtained by batch-wise 

unfolding respectively 𝐗𝐢𝐜,𝟏 and 𝐗𝐢𝐜,𝟐, following the procedure explained in Chapter 1. 

In addition, to ensure reliable analysis, ions with more than 20% missing intensities are removed 

from the data set. For the remaining missing data, a missing data imputation technique is used 

(Barberi, 2023; Troyanskaya et al., 2001) to infill the missing measurements. In this method, 

the missing values are imputed by calculating the weighted average intensity of 𝐾𝑚𝑖𝑠𝑠 = 15 

metabolites that have intensity profiles similar to the metabolite of interest. 
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Chapter 3 

CHO cell cultures modelling: analysis and 

improvement 

In this Chapter, a state-of-the-art model describing CHO cell cultures is analyzed and improved 

by refining the role of Glutamate and Lactate. The model structure is first assessed by the 

identification of its parameter. A sensitivity analysis is then performed to retrieve a ranking of 

the parameters importance to select the subset of the most characterizing parameters whose 

values are estimated in a step-by-step procedure. 

3.1 Framework of the project and research objectives 

Monoclonal antibodies serve as essential therapeutic proteins produced by mammalian cell 

culture, specifically using CHO cells (Walsh & Walsh, 2022). The biopharmaceutical industry 

and the scientific Literature demonstrate an impressive level of activity in this field, making it 

a highly trending topic (Walsh & Walsh, 2022). However, despite its importance, CHO cell 

culture faces numerous challenges and complexities. The system exhibits remarkable biological 

variability and poorly understood phenomena that contribute to the issues of this critical 

process. 

In our case study, two types of data are available: process data, which describe the overall 

behavior of the system and are related to the physical phenomena that govern it, and 

metabolomic information, which provides insight into the metabolic characteristics and internal 

microscopic properties of the living organisms used in the process. Furthermore, the 

metabolites within this system are undoubtedly associated with various chemical-physical and 

biological phenomena. However, working with metabolomic data and drawing meaningful 

conclusions can be challenging due to the high number of available measurements (i.e., ions) 

and its high complexity, making data analysis and interpretation laborious. Overcoming these 

issues and exploiting the potential of metabolomic information promises to unlock valuable 

insights and optimize monoclonal antibody production. 

The state-of-the-art in the Literature relies on the representation of this type of system (i.e., cell 

cultures) using kinetic models (Kyriakopoulos et al., 2018). These are first-principle nonlinear 

models which provide a comprehensive understanding of the dynamic behavior of cellular 

metabolic processes. In these models, complexity is associated to a large number of parameters 
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that define the cell lines behavior and must be carefully estimated from process data. These 

parameters are associated with specific model equations to regulate the evolution of a particular 

component; for this reason, model parameters are typically associated either with a chemical, a 

physical or a biological phenomenon and embed a strong physical meaning. These model 

parameters are usually estimated by integrating process data in a fitting procedure that attempts 

to minimize the error between model predictions and the expected trend. Despite the high 

complexity, kinetic modeling is the most up-to-date and appropriate approach to characterize 

the dynamic behavior of mammalian cell cultures in terms of cell growth and metabolism 

(Young, 2013).  

Nevertheless, this procedure has a strong limitation since it does not explicitly consider the 

available set of metabolomics. In the Literature several models try to integrate -omics data in a 

classical way by refining the kinetic model, where metabolites act as intermediates in 

equilibrium and can be used to fit new parameters in the model 'equations (Ahn & Antoniewicz, 

2012; Ghorbaniaghdam et al., 2013). However, these works use metabolomics data to directly 

regress the process variable of the cell culture by integration in a first principle models equation 

or by application data-driven approaches.  

Within this framework, the aim of this work is to present a novel approach for integrating 

metabolomics data in CHO cell lines first principle models to gain valuable process insights 

and to explore the intricate relationships between biological system phenomena and cell 

metabolism. Accordingly, metabolites are linked to first-principles model parameters. This 

approach facilitates the bridging of metabolites with biological phenomena by leveraging all 

available data and harnessing the power of data-driven methods to establish parameter-

metabolite relationships. At the same time, first-principle modeling is used to elucidate the 

importance of these parameters in understanding the underlying biological phenomena. 

3.2 Thesis workflow 

The workflow of this Thesis is organized following six steps as shown in the schematic of 

Figure 3.1. 

 

Figure 3.1. Workflow of the Thesis work. 
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1. improvement of the state-of-the-art model. Literature state-of-the-art models for CHO cell 

lines(Kontoravdi et al., 2010b) are able to discriminate several phenomena (i.e. cell growth, 

nutrient consumption, etc.). However, the available models are not sufficiently descriptive 

for the specific case study, so they are improved by adding novel parameters that represent 

new contributions; 

2. model structural identifiability. The structure of the model is mathematically analyzed to 

determine if all model parameters can be estimated from process data; 

3. parameter sensitivity analysis. Due to limited number of experimental points (7) in the 

course of the cell culture, only 7 parameters can be estimated for each cell line. Sensitivity 

analysis is performed to rank and identify the 7 parameters that are the most characterizing 

and the most important to describe the identity of each cell line; 

4. parameter estimation. For each cell line, the 7 most characterizing parameters are estimated 

for each cell line from the process data. The remaining parameters are fixed to a 

predetermined value, which is not the same for all cell lines, but is specific of the class of 

cell line defined by the production performance. At this point, the integration of 

metabolomics data provides an opportunity to explore the biological relationships within 

the system; 

5. data-driven modelling of the relation between the call metabolism and the chemical-

physical and biological phenomena occurring in the cell culture. A PLS model is used to 

relate the cell metabolism in terms of metabolomic dynamics to the most important 

chemical-physical and biological phenomena occurring in the production of the mAbs, 

namely the 7 most characterizing parameters of the first-principle model; 

6. biological understanding. The results of the data-driven model are explored. The 

relationships between metabolomics data and model parameters are investigated to 

determine which metabolites are more influential in determining a specific parameter and 

thus in controlling a particular biological phenomenon. 

3.3 State-of-the-art CHO cell culture model 

This Section introduces the state-of-the-art CHO culture model (Kontoravdi et al., 2010b), 

schematically shown in Figure 3.2.  



26  Chapter 3 

 

 

Figure 3.2. Structure of the original model for the description of CHO cell structure. 

The state-of-the-art model represents the behavior of CHO cell culture by manipulating 8 

process variables through a set of differential equations. 

• Volume (V): 

 
𝑑𝑉

𝑑𝑡
= 𝐹𝐼𝑁 − 𝐹𝑂𝑈𝑇  ( 3.1 ) 

where 𝐹𝐼𝑁 and 𝐹𝑂𝑈𝑇 are respectively the inlet and outlet flowrate; 

• Viable Cell Concentration (VCC or 𝑋𝑉) 

 
𝑑𝑋𝑉

𝑑𝑡
= (𝜇 − 𝜇𝐷)𝑋𝑉 −

𝐹𝐼𝑁

𝑉
𝑋𝑉  ( 3.2 ) 

 
𝜇 = 𝜇𝑚𝑎𝑥 (

𝐶𝐺𝐿𝐶

𝐾𝐺𝐿𝐶+𝐶𝐺𝐿𝐶
) (

𝐾𝐼𝑎𝑚𝑚

𝐾𝐼𝑎𝑚𝑚+𝐶𝑎𝑚𝑚
)  

( 3.3 ) 

 
𝜇𝐷 = 𝜇𝐷,𝑚𝑎𝑥 (

𝐶𝑎𝑚𝑚
2

𝐶𝑎𝑚𝑚
2 +𝐾𝐷,𝑎𝑚𝑚

2 )  
( 3.4 ) 

where μ𝑚𝑎𝑥 and μ𝐷,𝑚𝑎𝑥 are respectively the maximum growth and death velocity for the 

cell culture. 𝐾𝐺𝐿𝐶 is the parameter that control rate of cell growth due to Glucose 

consumption and 𝐾𝐼𝑎𝑚𝑚 is the parameter that control Ammonia inhibition in the cell 

culture. Finally 𝐾𝑑,𝑎𝑚𝑚 is the parameter that control rate of cell death due to Ammonia 

level; 

• Glucose (GLU): 

 
𝑑𝐶𝐺𝐿𝐶

𝑑𝑡
=
𝐹𝐼𝑁

𝑉
(𝐶𝐺𝐿𝐶,𝐼𝑁 − 𝐶𝐺𝐿𝐶) − (

𝜇

𝑌𝑥,𝐺𝐿𝐶
+𝑚𝐺𝐿𝐶)𝑋𝑉  ( 3.5 ) 
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where 𝐶𝐺𝐿𝐶,𝐼𝑁 is the Glucose concentration in the feed and 𝐶𝐺𝐿𝐶 is the Glucose concentration 

in the fed batch system. 𝑌𝑥,𝐺𝐿𝐶 is the yield parameter that control biomass growth due to 

Glucose consumption and 𝑚𝐺𝐿𝐶 is the Glucose maintenance parameter; 

• Product Titer (mAb): 

 
𝑑𝐶𝑚𝐴𝑏

𝑑𝑡
= −

𝐹𝑂𝑈𝑇

𝑉
𝐶𝑚𝐴𝑏 + [𝑌𝑚𝐴𝑏𝑔𝑙𝑐 (

𝜇

𝑌𝑥,𝐺𝐿𝐶
+𝑚𝐺𝐿𝐶)] 𝑋𝑉  ( 3.6 ) 

where 𝐶𝑚𝐴𝑏 is the Product Titer and 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 is the yield parameter that control antibody 

production due to Glucose consumption; 

• Lactate (LAT): 

 
𝑑𝐶𝐿𝐴𝑇

𝑑𝑡
= −

𝐹𝐼𝑁

𝑉
𝐶𝐿𝐴𝑇 + [𝑌𝑙𝑎𝑡𝑔𝑙𝑐 (

𝜇

𝑌𝑥,𝐺𝐿𝐶
+𝑚𝐺𝐿𝐶)] 𝑋𝑉  ( 3.7 ) 

where 𝐶𝐿𝐴𝑇 is the Lactate concentration and 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 is the yield parameter that control 

Lactate production due to Glucose consumption; 

• Glutamine (GLN): 

 
𝑑𝐶𝐺𝐿𝑁

𝑑𝑡
= −

𝐹𝐼𝑁

𝑉
𝐶𝐺𝐿𝑁 − (

𝜇

𝑌𝑥,𝑔𝑙𝑛
+𝑚𝑔𝑙𝑛)𝑋𝑉  ( 3.8 ) 

where 𝐶𝐺𝐿𝑁 is the Glutamine concentration in the fed batch system. 𝑌𝑥gln is the yield 

parameter that control biomass growth due to Glutamine consumption and 𝑚𝐺𝐿𝑁 is the 

Glucose maintenance parameter; 

• Ammonia (AMM): 

 
𝑑𝐶𝐴𝑀𝑀

𝑑𝑡
= −

𝐹𝐼𝑁

𝑉
𝐶𝐴𝑀𝑀 + [𝑌𝑎𝑚𝑚𝑔𝑙𝑛 (

𝜇

𝑌𝑥,𝑔𝑙𝑛
+𝑚𝑔𝑙𝑛)]𝑋𝑉  ( 3.9 ) 

Where 𝐶𝐴𝑀𝑀 is the Ammonia concentration and 𝑌𝑎𝑚𝑚𝑔𝑙𝑛 is the yield parameter that control 

Ammonia production due to Glutamine consumption; 

Unfortunately, the state-of-art kinetic model does not fully capture the complexity of the system 

under study. In particular, it does not include the role of Glutamate (GLU) as a key nutrient and 

essential molecule for monoclonal antibody synthesis. To address these limitations, it is 

essential to update the model to include the contribution of Glutamate and to refine the 

contribution of other process variables. 

3.4 Proposed CHO cell culture model  

This Section introduces the proposed CHO culture model, schematically shown in Figure 3.3. 

As previously explained, the state-of-art model is too simplified to correctly describe the 

complexity of the biological system under study. As a result, the set of equations governing the 

model is updated, with particular emphasis on incorporating the new role of Glutamate. This 
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includes consideration of its function as a nutrient and its ability to regulate Ammonia levels in 

cell culture. 

 
Figure 3.3. Structure of the proposed model for the description of CHO cell cultures. 

The red parts are the contributions added to the model. 

In order to improve the modeling of the system under consideration, an investigation of the 

relationships between various process variables is conducted. In this study, the role of these 

variables in CHO cell lines is investigated through a comprehensive review of the existing 

Literature. Furthermore, in the context of the same case study, a previous PCA analysis (Barberi 

et al., 2022b) revealed interesting relationships between different process variables. These 

findings provide valuable insights into the interrelationships and dependencies among the 

variables, contributing to a deeper understanding of the system under study. 

After examining the various process variables contributes, the following relationships have 

been observed in previous Literature and analysis: 

• Glutamate is one of the main energy sources in cell cultures (Coulet et al., 2022); 

• Glutamine and Glutamate are interchangeable, and their relative amount may be associated 

to cell needs, such as high energy requirement or molecule synthesis. If no Glutamine is 

present in the system, it is typically synthetized from Glutamate (Genzel et al., 2005); 

• conversion between Glutamate and Glutamine regulates Ammonia level in the cell culture 

(Schneider et al., 1996); 

• cell death rate depends both on both Ammonia and Lactate levels (Krampe & Al-Rubeai, 

2010); 

• high Lactate concentration along the batch is associated with poor performance (Barberi et 

al., 2022b); 

• high Glutamate concentration tends to increase Ammonia in the system, consequently the 

cell cultures exhibit worse performance (Barberi et al., 2022b); 
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• Lactate is generally produced by consumption of Glucose, but it can be also produced from 

Glutamate during the cell growth phase (Dean & Reddy, 2013); 

• Lactate can be used as energy source during the cell growth when Glucose and Glutamate 

are lacking (Tsao et al., 2005); 

• Product Titer and VCC appear to be anticorrelated with Glutamate and Lactate, namely the 

low is the Glutamate consumption the low will be the final product concentration (Barberi 

et al., 2022b);  

Based on these observations, a novel model structure is proposed. The main changes relate to 

the role of Glutamate, which is assumed to be a key nutrient component governing the system 

behavior. The contribution of Lactate is also refined. A new Lactate consumption term is added 

to account for its conversion back to Glucose, and a new Lactate production term is introduced 

to account for the conversion of Glutamate to Lactate.  

As for the Glutamate, the new proposed model is constructed by introducing two major 

improvements: 

• the relationship between Glutamate and Glutamine is modeled as a reversible first-order 

kinetics; 

• a novel parameter 𝑌𝑔𝑙𝑢,𝑋 is introduced to describe the behavior of the Glutamate in the first 

part of the cell culture. 

The resulting contribution of the Glutamate, modeled by equations derived from well-

established kinetic structures (Botton et al., 2022; Kyriakopoulos et al., 2018), is:  

 
𝑑𝐶𝐺𝐿𝑈

𝑑𝑡 
=
𝐹𝐼𝑁

𝑉
(𝐶𝑖𝑛,𝑔𝑙𝑢 − 𝐶𝐺𝐿𝑈) − 𝑄𝐺𝐿𝑈𝑋𝑉 + 𝑄𝐺𝐿𝑈 + 𝑘1𝐶𝐺𝐿𝑁 − 𝑘2𝐶𝐺𝐿𝑈𝐶𝐴𝑀𝑀  ( 3.10 ) 

 𝑄𝐺𝐿𝑈 =
𝜇

𝑌𝑥,𝑔𝑙𝑢
+𝑚𝐺𝐿𝑈  ( 3.11 ) 

 𝑄𝑔𝑙𝑢,𝑥 = 
𝜇

𝑌𝑔𝑙𝑢,𝑋
 ( 3.12 ) 

where 𝐶𝑖𝑛,𝑔𝑙𝑢 is the concetration of Glutamate in the bolous, 𝑘1 is the kinetic constant regulating 

conversion of Glutamate to Glutamine, 𝑘2 is the kinetic constant regulating the conversion of 

Glutamine to Glutamate, and 𝑌𝑔𝑙𝑢𝑋 is the Glutamate production constant.  

Furthermore, the description of Lactate behavior is improved by adding: 

• Lactate production due to Glutamate consumption; 

• Lactate consumption at low Glucose and high Lactate concentrations  

• regulation of cell death ratio by both Ammonia and Lactate concentrations. 

Accordingly, the equation that regulates Lactate behavior is refined (Jimenez del Val et al., 

2016) and is structured as follows:  
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 𝑑𝐶𝐿𝐴𝑇

𝑑𝑡
= −

𝐹𝐼𝑁

𝑉
𝐶𝐿𝐴𝑇 + 𝑄𝑙𝑎𝑡,𝑔𝑙𝑐𝑋𝑉 + 𝑄𝑙𝑎𝑡,𝑔𝑙𝑢𝑋𝑉 − 𝑄𝑙𝑎𝑡,𝑐𝑜𝑛𝑠𝑋𝑉  ( 3.13 ) 

 
 
𝑄𝑙𝑎𝑡,𝑔𝑙𝑢 = 𝑄𝐺𝐿𝑈𝑌𝑙𝑎𝑡,𝑔𝑙𝑢  ( 3.14 ) 

 
 
𝑄𝑙𝑎𝑡,𝑐𝑜𝑛𝑠 =

1

𝑌𝑥,𝑙𝑎𝑡
(

𝐶𝑙𝑎𝑡

𝐾𝑐,𝑙𝑎𝑡+𝐶𝑙𝑎𝑡
) (

𝐾𝑐,𝑔𝑙𝑐

𝐾𝑐,𝑔𝑙𝑐+𝐶𝐺𝐿𝐶
)  ( 3.15 ) 

 
 
𝜇𝐷 = 𝜇𝐷,𝑚𝑎𝑥 (

𝐶𝑎𝑚𝑚
𝛼𝑛

𝐶𝑎𝑚𝑚
𝛼𝑛 +𝐾𝐷,𝑎𝑚𝑚

𝛼𝑛 ) (
𝐶𝑙𝑎𝑡

𝐶𝑙𝑎𝑡+𝐾𝐷,𝑙𝑎𝑡
)  ( 3.16 ) 

where 𝑌𝑙𝑎𝑡,𝑔𝑙𝑢 is the yield of Lactate with respect to Glutamate, 𝑌𝑥𝑙𝑎𝑡 is the yield of Lactate 

consumption, 𝐾𝐶,𝑙𝑎𝑡 is the constant regulating the conversion Lactate consumption at low 

Glucose concentrations and 𝐾𝐷,𝑙𝑎𝑡 is the constant regulating the cell death associated to Lactate. 

The complete set of equation for the proposed model is reported in Appendix A. 

The model proposed and used in this work is finally composed of: 

• eight state variables (Table 3.1): 𝑉, 𝐶𝑔𝑙𝑐 , 𝐶𝑔𝑙𝑢, 𝐶𝑙𝑎𝑡, 𝐶𝑎𝑚𝑚, 𝑋𝑉, 𝐶𝑚𝐴𝑏 , 𝐶𝑔𝑙𝑛 

• four input conditions (Table 3.1): 𝐹𝐼𝑁 , 𝐹𝑂𝑈𝑇 , 𝐶𝑔𝑙𝑐,𝑖𝑛, 𝐶𝑔𝑙𝑢,𝑖𝑛 

• twenty-five parameters (Table 3.2). 

Table 3.1. Proposed CHO cell model. List of variables used by the model. 

 Variable 

𝑉  Fedbatch volume 

𝐶𝑔𝑙𝑐  Glucose concentration 

𝐶𝑔𝑙𝑢  Glutamate concentration 

𝐶𝑙𝑎𝑡   Lactate concentration 

𝐶𝑎𝑚𝑚  Ammonia concentration 

𝑋𝑉  Viable cell concentration 

𝐶𝑚𝐴𝑏   Product titer 

𝐶𝑔𝑙𝑛  Glutamine concentration 

𝐹𝐼𝑁  Inlet flowrate 

𝐹𝑂𝑈𝑇   Outlet flowrate 

𝐶𝑔𝑙𝑐,𝑖𝑛  Feed Glucose concentration 

𝐶𝑔𝑙𝑢,𝑖𝑛  Feed Glutamate concentration 
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Table 3.2. Proposed CHO cell model. List of parameters used by the model. 

 Parameter 

Kc,lat Control factor to Lactate consumption (high Lactate concentration) 

Kc,glc Control factor to Lactate consumption (low Glucose concentration) 

Yammgln Yield of Ammonia production due to Glutamine consumption 

Yammglu Yield of Ammonia production due to Glutamate consumption 

Ylatglc Yield of Lactate production due to Glucose consumption 

Ylatglu Yield of Lactate production due to Glutamate consumption 

YmAbglc Yield of Product formation due to Glucose consumption 

Yxlat Yield of biomass growth due to Lactate consumption 

k1 Glutamate to Glutamine constant 

k2 Glutamine to Glutamate constant 

Kglc Glucose contribution to cell growth 

Kglu Glutamate contribution to cell growth 

KIlat Lactate contribution to cell inhibition 

KIamm Ammonia contribution to cell inhibition 

Kd,lat Lactate contribution to cell death 

Kd,amm Ammonia contribution to cell death 

µmax Maximum cell growth rate 

µd,max Maximum cell death rate 

Yxglc Yield of biomass growth due to Glucose consumption 

mglc Glucose maintenance factor 

Yxglu Yield of biomass growth due to Glutamate consumption 

mglu Glutamate maintenance factor 

Yxgln Yield of biomass growth due to Glutamine consumption 

mgln Glutamine maintenance factor 

Yglux Yield of Glutamate production due to cell activity 

3.5 Proposed model structural identifiability 

In this Section, the parameters structural identifiability is evaluated for the proposed model. 

This is a pre-requisite of system identification and parameter estimation since it refers to the 

ability to determine the values of the unknown parameters from the available input-output data. 

Structural identifiability ensures that the estimated parameter values are unique and meaningful, 

allowing for reliable model analysis, validation, and prediction. To perform the latter analysis, 

the Structural Identifiability procedures (Villaverde et al., 2016) described in Chapter 1 has 

been applied.  

The Observability-Identifiability matrix (OI) is built and due to the model’s complexity, the 

Lie’s derivatives are calculated up to the third degree, because higher order calculation results 

in an excessive computational cost. The process of building the OI by the calculation of Lie’s 

derivatives and the consequently rank calculation is performed with the STRIKE-GOLDD 

toolbox (Villaverde et al., 2016). The results of the rank calculation of the OI indicates that only 

ten parameters out of 25 are identifiable at first glance (Table 3.3Table 3.3.Results of the 

structural identifiability procedure. The table reports the parameters identified before (first 

analysis) and after (second analysis) the model decomposition.), while no information on the 

structural identifiability of the remaining parameters is obtained. For this reason, due to the 

complexity of the system the model is decomposed to reduce the computational time of the 
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analysis. The decomposition is performed using the MEIGO toolbox (Egea et al., 2014). 

Additionally, parameters already identified in the first analysis are not considered for further 

investigation, resulting in fifteen parameters to be studied in the second structural identifiability 

run. Results of this new structural identifiability run show all parameters as structurally 

identifiable (Table 3.3).This analysis shows that all the parameters can be potentially estimated 

from data. However, due to the reduced number of available experimental points (7) for a single 

cell line, the values of all model parameters cannot be estimated for each cell line. In fact, 

experimental data for all process variables (𝐗P) are measured in 7 time points. Furthermore, 

due to model’s complexity, the parameter fitting procedure must be carried out considering one 

variable at a time (as detailed in Section 3.8). Thus, only (7 − 1) degrees of freedom are 

available for estimating 6 parameters. In addition to that, an extra parameter (𝑌𝑚𝐴𝑏𝑔𝑙𝑐) can be 

estimated directly from product titer profile, because it is the only parameter controlling the 

product titer mass balance.  

In this Thesis, all process variables (except the product titer) are used to estimate the value of 6 

parameters. After that, product titer profile is used to fit the value of 𝑌𝑚𝐴𝑏𝑔𝑙𝑐. 

Consequently, the 25 parameters are divided in two groups: 

• subset of seven characterizing parameters (6 + 𝑌𝑚𝐴𝑏𝑔𝑙𝑐) that is selected to guide the behavior 

of the system and undergo accurate estimation; 

• subset of less important parameters whose value is not estimated for each cell line, and they 

are kept fixed at an average value (between cell lines).  

The subset of the seven characterizing parameters is found by investigating which parameters 

are the most influent in changing the model’s response (Sensitivity analysis; Section 3.6). 
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Table 3.3.Results of the structural identifiability procedure. The table reports the 

parameters identified before (first analysis) and after (second analysis) the model 

decomposition. 

Parameter Identifiable at first analysis Identifiable at second analysis 

Kc,lat ●  

Yammgln ●  

Yammglu ●  

Ylatglc ●  

Ylatglu ●  

YmAbglc ●  

Yxlat ●  

k1 ●  

k2 ●  

Kglc  ● 

Kglu  ● 

KIlat  ● 

KIamm  ● 

Kd,lat  ● 

Kd,amm  ● 

α  ● 

µmax  ● 

µd,max  ● 

Yxglc  ● 

mglc  ● 

Yxglu  ● 

mglu  ● 

Yxgln  ● 

mgln  ● 

3.6 Parameters sensitivity analysis to identify the most characterizing 

parameters  

In this Section, the parameters sensitivity analysis is performed, to understand the sensitivity of 

the model's responses to changes in the parameters. This serves to prioritize the parameters that 

have the larger impact on the model's responses.  

The sensitivity analysis is performed using two different techniques: i) EET analysis (Saltelli 

et al., 2008a) and ii) VBSA (Saltelli et al., 2010). These two types of analysis are characterized 

by different advantages and disadvantages: 

• VBSA is able to analyze the whole parameter space. However, in the proposed biological 

model the complex feeding strategy and the large number of parameters may cause large 

numerical instability;  

• EET is simpler and faster but does not ensure to investigate the whole parameter space.  

In summary, VBSA is a more comprehensive approach with respect to EET, but it lacks in 

robustness when applied to complex systems. Therefore, to enhance VBSA applicability, it is 

integrated with the EET. 
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3.6.1 Simplified sensitivity analysis 

In this Section, two methodologies for sensitivity analysis, EET sensitivity indices and the 

VBSA resulting Sobol’s indexes, are compared to clarify which one is the best for the system 

under study and to understand if EET analysis can be used as a substitute for VBSA.  

To compare the two methodologies, the two analyses are executed considering a simplified 

feeding strategy, which facilitates the application of VBSA. 

The Elementary effect analysis is applied to the model following the procedure described in 

Chapter 1. The main considerations for the analysis are: 

• parameters are free to vary up to 20% around their initial values; 

• initial parameter values are obtained by a preliminary fitting; 

• parameters are sampled from a uniform distribution; 

• the selected model’s response is the viable cell concentration; 

•  1 ∙ 105 runs are selected in the EET Montecarlo analysis to assess the robustness of the 

results. 

Results of the EET analysis suggests that 5 parameters induce important changes in the model 

responses and are identified as important parameters. These parameters are: 

𝜇𝑚𝑎𝑥 , 𝜇𝑑𝑚𝑎𝑥 , 𝑌𝑋𝑔𝑙𝑐 , 𝑌𝑋𝑔𝑙𝑢 , 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 . 

Once the important parameters have been identified by the EET the the sensitivity index using 

a Variance-based approach can be calculated. VBSA is used to calculate Sobol's Index (Saltelli 

et al., 2008b) following the procedure described in Chapter 1. The assumptions considered in 

the application of VBSA are the same as those of EET to ensure a fair comparison between the 

two methods. 

Results of the Variance Based analysis are reported in Figure 3.4a. Three parameters are 

identified as important (𝑌𝑥𝑔𝑙𝑐, 𝑌𝑥𝑔𝑙𝑢, 𝑌𝑚𝐴𝑏𝑔𝑙𝑐), having both the main and total effect siginicantly 

different from zero. Two additional parameters (𝜇𝑚𝑎𝑥, 𝜇𝑑,𝑚𝑎𝑥) exhibit Sobol’s indices (total 

effect) that are significantly different from zero and negligible main effects. This means that 

these parameters may have a negligible impact when considered individually (non-significant 

first order interaction). However, when they interact with other parameters, their overall 

importance becomes visible as they significantly influence the model's response.  

To gain a better understanding of the contributions of parameters with Sobol's index close to 

zero, another round of VBSA is performed, by fixing the value of the most important parameter 

identified in the initial analysis. In this way, the variance of the response (i.e. 𝑉(𝑌)) becomes 

solely associated with the few important parameters, allowing for a more in-depth investigation 

of their behaviors. Following this rationale, the Sobol's indexes resulting from this second 

variance-based run are presented in Figure 3.4b. In this Figure, a new parameter (𝑌𝑎𝑚𝑚𝑔𝑙𝑢) 

demonstrates relative importance in determining the behavior of the cell culture,  both its main 

and total effects are significantly different from zero. 

 



CHO cell cultures modelling: analysis and improvement 35 

 

 
 

(a) (b) 
Figure 3.4. Results of the VB sensitivity analysis with the simplified feeding strategy: 

(a) procedure applied to 17 parameters, and (b) procedure applied to 12 parameters. 

The square represents the mean value of the sensitivity index. 

The overall results of the VBSA are summarized in Table 3.4, which presents the outcomes of 

the first analysis, and identifies the parameter that captures the majority of the response 

variability, as well as the results of the second analysis, identifying parameters that contribute 

to a lesser extent.  

Comparing the results obtained from the two analyses (Figure 3.5), both methods successfully 

identify the subset of the most important parameters. Even if some discrepancies arise in 

identifying the least important parameters, these do not pose a significant issue in this specific 

case, because only the most relevant factors will be considered in the estimation phase. 

Table 3.4. Results of the VBSA sensitivity analysis applied to the simplified feed. 

Important  

Parameters 

Probably important  

Parameters 

𝜇𝑚𝑎𝑥 , 𝜇𝑑𝑚𝑎𝑥 , 𝑌𝑋𝑔𝑙𝑐 , 𝑌𝑋𝑔𝑙𝑢 , 𝑌𝑚𝐴𝑏𝑔𝑙𝑐   𝑌𝑎𝑚𝑚𝑔𝑙𝑢 

 

In conclusion, this Section demonstrates that in the studied biological system, the EET produces 

identical results to the VBSA in identifying the most important parameters. Although this 

demonstration is conducted on a simplified feeding schedule, we can reasonably assume its 

general validity, even in more complex scenarios. For this reason, EET will be used in this 

Thesis as sensitivity analysis methods, as it is simper, stabler, and faster.  
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  EET VBSA 

𝜇𝑚𝑎𝑥 ●1 ●1 

𝜇𝑑𝑚𝑎𝑥 ●1 ●1 

𝐾𝑔𝑙𝑐     

𝐾𝑔𝑙𝑢    

𝐾𝐼𝑙𝑎𝑡     

𝐾𝐼𝑎𝑚𝑚     

𝐾𝑑𝑙𝑎𝑡      

𝐾𝑑𝑎𝑚𝑚     

𝑌𝑋𝑔𝑙𝑐 ●1 1● 

𝑚𝑔𝑙𝑐     

𝑌𝑙𝑎𝑡𝑔𝑙𝑢     

𝑌𝑙𝑎𝑡𝑔𝑙𝑐     

𝑌𝑋𝑙𝑎𝑡     

𝐾𝑐𝑙𝑎𝑡     

𝐾𝑐𝑔𝑙𝑢     

𝑘1     

𝑘2     

𝑌𝑋𝑔𝑙𝑢 ●1 ●1 

𝑚𝑔𝑙𝑢     

𝑌𝑋𝑔𝑙𝑛     

𝑚𝑔𝑙𝑛     

𝑌𝑎𝑚𝑚𝑔𝑙𝑢  ▲0.5 

𝑌𝑎𝑚𝑚𝑔𝑙𝑛     

𝑌𝑚𝐴𝑏𝑔𝑙𝑐 ●1 1● 

Figure 3.5. Results of different sensitivity analysis methodologies. Green (●) - most 

important parameters; yellow (▲) - parameters supposed to be important. 

3.6.2 Identification of most characterizing parameters by EET analysis 

In this Section, a complete sensitivity analysis is conducted by considering: 

• experimental feeding strategy: the simplified feeding strategy is replaced with the one used 

in the experiments. As a result, the mean values of model parameters need to be updated; 

• multiple responses: the sensitivity analysis is calculated for multiple responses to gain a 

comprehensive understanding of the influence of parameters on all the process variables; 

• dynamic behavior: the sensitivity index of each parameter is calculated in multiple time 

points because the importance of parameters is expected to vary along the entire life of the 

cell culture (Kontoravdi, 2006).  

These additional complexities pose significant challenges in obtaining accurate results from the 

sensitivity analysis. Accordingly, to enhance the results, the following assumptions are 

considered: 

• the simulated response is constrained to be non-negative because all state variables 

represent physical entities that cannot have negative values. By enforcing this mathematical 
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constraint, all the responses are guaranteed to remain greater than zero throughout the 

integration, ensuring physically meaningful outputs; 

• numerical errors associated with stiff equations are mitigated by modifying the integration 

procedure, to expand the parameter space that can be explored. The integration is performed 

in a piecewise manner between feeding actions, while the effect of daily feed boluses is 

determined through separated by mass balances; 

• parameters can vary by 20% around their nominal values. Further variations beyond this 

threshold may introduce numerical errors due to inherent mathematical issues associated 

with the model itself.  

Considering these assumptions, the sensitivity analysis is performed considering the same 

setting as in Section 3.6.1. 

Before conducting the EET analysis, the effect of the analysis settings on the sensitivity results 

is studied, and shows that: 

• analysis is robust and stable: a larger number of runs in the Monte Carlo simulations do not 

result in any significant change in the obtained results; 

• type of parameter prior distribution has negligible impact on the outcomes: changing the 

parameter distribution from uniform to normal does not alter the final results of the analysis; 

• parameter range has a negligible effect on results: a smaller range of parameters has no 

effect on the results of the sensitivity analysis leading to identification of the same important 

parameters. Note that it is crucial to select an appropriate dimension range to ensure a good 

exploration of the parameter space. 

The results of the sensitivity analysis are presented in Figure 3.6 (product titer) and Figure 3.7 

(viable cell concentration), while the outcomes for all other variables are detailed in Appendix 

B. The analysis reveals that the importance of different parameters undergoes significant 

changes over time. Some parameters maintain their importance throughout the entire duration 

of the experiment, such as 𝜇𝑚𝑎𝑥, which consistently plays an essential role in determining the 

response of the VCC. 

On the other hand, other parameters, such as 𝑌𝑥𝑔𝑙𝑢, become influential in determining the 

response of VCC only during later stages of the cell culture's lifespan. This confirms that the 

importance of specific parameters may vary depending on the specific time instant considered 

for the analysis. 
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Figure 3.6. Results of the EET sensitivity analysis for the Product Titer.  

 
Figure 3.7. Results of the EET sensitivity analysis for the viable cell concentration.  

The obtained sensitivity EET indices are related to a specific response. For this reason, the 

important parameters for a specific response along the entire cell culture can be assessed 

through the cumulative (in time) values of the EET indexes. The selection follows the rationale 

described below and results are collected in Table 3.5. 
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• multiple variable control: if a parameter is found to control more than two variables, it is 

considered as highly important; 

• sole variable control: if a parameter has exclusive control over specific variables, it is 

considered as highly important since it is critical for manipulating those particular aspects 

of the system; 

• subset exclusivity: if a subset of important parameters is chosen to control other variables 

according to one of the two previous rules, an additional significant parameter has to be 

identified specifically for that particular variable. 

Following latter indications, a subset of seven (6 + 𝑌𝑚𝐴𝑏𝑔𝑙𝑐) very important parameters is 

identified: 𝜇𝑚𝑎𝑥, 𝐾𝐼𝑎𝑚𝑚, 𝑌𝑋𝑔𝑙𝑢, 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 , 𝑌𝑔𝑙𝑢𝑋, 𝑌𝑋𝑔𝑙𝑐 , 𝑌𝑚𝐴𝑏𝑔𝑙𝑐. These parameters (i.e. 

characterizing parameters) are the main contributors to the overall variability of the system and 

control the main biological phenomena. Nutrient consumption is related to  𝑌𝑋𝑔𝑙𝑐 and 𝑌𝑋𝑔𝑙𝑢, cell 

growth to 𝜇𝑚𝑎𝑥, while Ammonia and Lactate inhibition are related to 𝐾𝐼𝑎𝑚𝑚 and 𝑌𝑙𝑎𝑡𝑔𝑙𝑐. 

Finally, the formation of monoclonal antibody associated with cell activity is regulated by 

𝑌𝑚𝐴𝑏𝑔𝑙𝑐. 

The remaining parameters are identified as less important for the proposed model as their 

variation does not induce significant changes in the response variables.  

Table 3.5. Important parameters for all the culture variables: (●) indicates very 

important parameters in determining the value for the associated variable according 

to the cumulative EET index. 

 VCC Glucose Lactate Glutamate 
Product 

Titer 

𝜇𝑚𝑎𝑥  ● ●  ● ● 

𝑌𝑋𝑔𝑙𝑢   ● ●   ● 

𝐾𝑑𝑎𝑚𝑚  ●     

𝑌𝑎𝑚𝑚𝑔𝑙𝑢  ●    ● 

𝐾𝐼𝑎𝑚𝑚  ● ●  ● ● 

𝑌𝑎𝑚𝑚𝑔𝑙𝑛  ●     

𝜇𝑑𝑚𝑎𝑥       

𝑘2       

𝑘1       

𝑚𝑔𝑙𝑛       

𝑌𝑔𝑙𝑢𝑋     ●  

𝑌𝑋𝑔𝑙𝑐   
 ● ●   

𝑌𝑙𝑎𝑡𝑔𝑙𝑐   
  ●   

𝑌𝑋𝑙𝑎𝑡   
  ●   

𝐾𝐼𝑙𝑎𝑡   
     

𝐾𝑔𝑙𝑢        

𝑚𝑔𝑙𝑢       

𝑌𝑙𝑎𝑡𝑔𝑙𝑢        

𝐾𝑐𝑙𝑎𝑡   
     

𝑌𝑚𝐴𝑏𝑔𝑙𝑐  
    ● 
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3.7 Clustering of cell behavior through MPCA and k-means  

In this Section, the objective is to identify groups of the cell lines with different productivity 

behaviors, which can be described in a similar manner and with the same model parameters. 

This operation is necessary because, as mentioned in previous Sections, only seven 

characterizing parameters undergo precise estimation for each cell line, while the remaining 

parameter cannot be individually fitted and are fixed at a value that represents the general 

behavior of the biological system. This is done to apply fixed parameters across cell lines with 

similar behavior, avoiding generalizing the whole system variability in a single behavior, which 

would impose significant limitations and proves inadequate as it compromises the quality of 

subsequent estimation steps. 

To address this issue, the cell lines are divided into different classes and specific values are 

assigned to the fixed parameters for each cluster, capturing the unique characteristics of the 

respective sub-family. The process of clustering is accomplished in a reduced (latent) space 

obtained through MPCA, which effectively summarizes the entire dynamic behavior of cell 

cultures. The actual clustering is performed through k-means clustering applied on the MPCA 

scores. Detailed mathematical methods for MPCA and the k-means clustering are explained in 

Chapter 1. 

3.7.1 Modelling cell dynamic behavior through MPCA 

In this Section, the cell dynamic behaviors are modeled in a reduced dimensional space for 

either a better recognition of similarities among cell cultures or the identification of differences. 

To achieve this objective, MPCA is applied to the process dataset (𝐗𝐏) so that the correlation 

between process variables (e.g. Glucose, VCC, mAb, etc.) can be used to study dynamic cell 

behavior. As the available experimental measurements are performed at seven different time 

points, MPCA is used to effectively capture the dynamic behavior of the biological system. The 

number of latent variables is selected based on the minimization of the RMSECV, which in this 

case is calculated through a Venetian blind cross-validation procedure. The explained variance 

and the value of the RMSECV for each principal components are presented in Table 3.6. A total 

of 9 PCs minimize the RMSECV capturing approximately 90% of the overall variability, which 

is considered quite satisfactory within the context of a biological system. Finally, residuals are 

checked to ensure normality and absence of trends.  
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Table 3.6. MPCA model on cell-culture data: cumulative and per PC explained 

variance, and RMSECV. The bold underlined character shows the selected number of 

PCs based on the minimization of the RMSECV. 

PC Explained Variance [%] 
Cumulative  

explained variance [%] 
RMSECV 

1 39.7 39.7 0.844 

2 15.4 55.1 0.780 

3  9.47 64.5 0.731 

4  8.16 72.7 0.683 

5  4.82 77.5 0.657 

6  4.28 81.8 0.644 

7  3.07 84.9 0.655 

8  2.83 87.7 0.640 

9  2.52 90.2 0.630 

10  1.73 91.9 0.641 

Identification of main cell behaviors is limited to the first two principal directions because they 

capture a significant part of the overall data variability (55.1%). Their loadings reveal the most 

relevant correlations between the process variables within the described biological system. 

Correlations captured by the first two PCs are summarized in Figure 3.8: 

• PC1: Viable Cell Concentration and product titer are positively correlated and anticorrelated 

with Lactate and Glutamate. Specifically, the cell cultures with negative PC1 scores exhibit 

lower VCC and final product concentration, lower Glutamate consumption, and higher 

Lactate production;  

• PC2: Glucose and Glutamate are anticorrelated with Lactate. Positive PC2 scores have 

higher levels of Glucose and Glutamate, with lower levels of Lactate. Along this direction, 

the values of VCC and Product Titer do not exhibit significant changes. 

 
Figure 3.8. Correlations among main culture variables captured by PC1 and PC2 in 

the MPCA model on cell culture data. 
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3.7.2 Clustering of cell behavior 

In this Section, the information obtained by modeling cell-lines behavior according to the 

experimental data in the reduced latent space is used to cluster the cell-lines different groups. 

This operation is necessary to distinguish different groups according to productivity behavior 

that appear in the biological system under study. To carry out the clustering, a k-means 

algorithm is used. The methodology allows analyzing the score space derived from the 

previously built MPCA model and dividing the cell lines in 3 groups1 according to the dynamic 

behaviors of the variables, which are the most influential on the direction of maximum 

variability of the data (PC1), which are VCC and product titer, the main indicators of cell line 

quality and performance. The results of the clustering procedure are presented in Figure 3.9. 

This means that the three groups distinguish the cell line behavior according to the main 

dynamics of VCC and product titer. In fact, the central cluster (△) represents batches with a 

standard productivity behavior of VCC and product titer dynamics. On the other hand, the 

cluster on the left contains the low-performing batches (○). These batches display high lactate 

concentration and great inhibition, resulting in lower VCC and product titer values than other 

cell lines. In the right part of the score space, we find the high-performing batches (×). These 

batches demonstrate improved consumption of Glutamate and increased resilience to Lactate. 

Consequently, they yield high values of VCC and product. 

 
Figure 3.9. K-means clustering on the score space of the MPCA model on cell culture 

data. 

 
1 Note that a lower number of cluster captures behaviors that are not sufficiently different, while larger number of clusters 

identify small groups that show only limited differences on the overall behavior. 
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3.8 Estimation of first-principle model parameters from process data 

In this Section, the methodology employed for parameter estimation is explained in detail. This 

is essential to determine the values of the model parameters for each cell line. As demonstrated 

in previous sections, the set of parameters has been divided into two classes of importance: 

seven characterizing parameters, that require to be fitted for each cell line, and a subset of 

remaining parameters whose values are set as constants.  

First of all, to ensure a reliable estimation, it is essential to start from an acceptable initial point, 

which is identified by retrieving parameter values from the Literature and refining them through 

a preliminary fitting. These refined values are referred to as adjusted literature-parameter 

values.  

Once the initial set of parameters is determined, the estimation procedure is approached 

separately for the fixed parameters and the characterizing parameters. 

In the determination of the fixed parameters, their values are calculated separately for each of 

the three clusters identified in the previous section. This approach avoids the estimation average 

values across all the cell cultures. Instead, it allows determining specific parameters for each 

group of cells, according to their VCC and titer dynamics, and to characterize their macro-

trends within biological system.  

For the seven characterizing parameters, their values are individually fitted for each cell line. 

These parameters are essential for capturing the differences among various lines, while 

highlighting the specific characteristic behavior of each one. However, the methodology for 

parameter estimation is inherently complex because the limitations of the biological model, the 

large number of parameters involved, and the lack of multiple experimental data points make it 

challenging to obtain accurate estimations. Therefore, we need a systematic approach to 

perform the estimation in the form of a step-by-step method. The estimation strategies vary 

depending on the type of parameters being considered (characterizing, fixed or adjusted 

literature parameters). Two distinct strategies are used in this Thesis: 

• fixed parameters: for estimating the parameter values: i) all cell lines within a single group 

are included in the parameter estimation process. However, ii) due to the limited availability 

of experimental data points, only seven parameters can be estimated simultaneously. For 

fixed parameters iii) all parameters are set to start by their adjusted-literature value; during 

the estimation, iv) various combinations of parameters can be adjusted to refine the 

estimation gradually, enabling the fitting of all parameters. In the procedure, v) all variables 

are retained to prevent the overfitting of any specific process variable. In addition, at each 

estimation step vi) only few iterations are retained; specifically, the ones that contribute 

most to the decrease of the residual errors. In fact, the risk is that the optimization solver, 

in its attempt to minimize the objective function, may find values for the parameters that 

differ significantly from the literature ones; 
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• adjusted literature parameters: the fitting procedure of the adjusted literature parameters is 

analogous to that of fitting the fixed parameters. The only differences are related to the fact 

that: i) the starting point for estimation are literature parameters value and ii) a single cell 

line is used to estimate the adjusted literature parameters. Thanks to point ii, a large number 

of iterations can be carried out in the estimation procedure because of the limited risk of 

overfitting; 

• seven characterizing parameters: for estimating the parameter values i) each cell line is 

individually considered, resulting in 96 sets of seven parameters specific for each line (𝐗𝐄𝐏). 

For the characterizing parameters ii) only seven parameters need to be fitted, while the 

remaining parameters are held constant at the fixed values previously determined. The 

initial value of the seven parameters are set to the respective adjusted literature value. The 

fitting process iii) begins with VCC, which plays a central role in the model (Figure 3.2). 

Once VCC is fitted, the procedure continues by iv) adding Glucose contribution and fitting 

VCC and Glucose together. After that, v) this strategy is repeated for all the process 

variables, adding them one at a time (in order: Glucose, Lactate, Glutamate, Glutamine and 

Ammonia). Finally, vi) Product Titer is incorporated, and the product yield is estimated. 

3.8.1 Identification of literature parameters 

In this Section, the values of parameters are retrieved from the relevant Literature review to 

have a reliable starting point for parameter estimation procedure. The parameter values obtained 

from literature are represented in Table 3.7. Note that the values of some parameters (i.e., 

𝐾𝑐𝑔𝑙𝑐, 𝑘1, 𝑘2, 𝑌𝑋𝑔𝑙𝑢, 𝑌𝑚𝐴𝑏𝑔𝑙𝑐, 𝑌𝑔𝑙𝑢𝑋) cannot be found in the Literature. For this reason, their initial 

guesses are hypothesized based on similar parameters; for example, 𝑚𝑔𝑙𝑢 represents the 

maintenance factor for Glutamate. Since its value is not available in the literature, we assume, 

as a reasonable starting point, that its order of magnitude is similar to the one of Glucose 

maintenance coefficient, 𝑚𝑔𝑙𝑐.  
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Table 3.7. Model parameters from the Literature: value, unit of measure, and 

reference. 

Parameters Value Unit Ref. 

𝜇𝑚𝑎𝑥 2.9 ∙ 10−2 [ℎ−1] (Xing et al., 2010) 

𝜇𝑑𝑚𝑎𝑥 1.6 ∙ 10−2 [ℎ−1] (Xing et al., 2010) 

𝐾𝑔𝑙𝑐  1.5 ∙ 10−2 [𝑔𝑔𝑙𝑢/𝐿] (Xing et al., 2010) 

𝐾𝑔𝑙𝑢  4.7 ∙ 10−2 [𝑚𝑚𝑜𝑙/𝐿] (Xing et al., 2010) 

𝐾𝐼𝑙𝑎𝑡  3.9 ∙ 103 [𝑚𝑔𝑙𝑎𝑡/𝐿] (Xing et al., 2010) 

𝐾𝐼𝑎𝑚𝑚 6.5 [𝑚𝑚𝑜𝑙/𝐿] (Xing et al., 2010) 

𝐾𝑑𝑙𝑎𝑡  4.1 ∙ 103 [𝑚𝑔𝑙𝑎𝑡/𝐿] (Xing et al., 2010) 

𝐾𝑑𝑎𝑚𝑚 6.5 [𝑚𝑚𝑜𝑙/𝐿] (Xing et al., 2010) 

𝑌𝑋𝑔𝑙𝑐  1.69 [1011𝑐𝑒𝑙𝑙𝑠/𝑚𝑜𝑙] (Xing et al., 2010) 

𝑚𝑔𝑙𝑐 1.2 ∙ 10−11 [𝑔𝑔𝑙𝑐/(𝑐𝑒𝑙𝑙 ∙ ℎ)] (Xing et al., 2010) 

𝑌𝑙𝑎𝑡𝑔𝑙𝑢 1.3 ∙ 102 [𝑚𝑔𝑙𝑎𝑡/ 𝑚𝑚𝑜𝑙𝑔𝑙𝑢]  derived from 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 

𝑌𝑙𝑎𝑡𝑔𝑙𝑐  7.3 ∙ 102 [𝑚𝑔𝑙𝑎𝑡  /𝑔𝑔𝑙𝑐]   (Jimenez del Val et al., 2016) 

𝑌𝑋𝑙𝑎𝑡  0.3 ∙ 109 [𝑐𝑒𝑙𝑙/𝑚𝑔𝑙𝑎𝑡] (Jimenez del Val et al., 2016) 

𝐾𝑐𝑙𝑎𝑡  1.2 ∙ 102 [𝑚𝑔𝑙𝑎𝑡/𝐿] (Jimenez del Val et al., 2016) 

𝐾𝑐𝑔𝑙𝑐  - - - 

𝑘1 - - - 

𝑘2 - - - 

𝑌𝑋𝑔𝑙𝑢 - - - 

𝑚𝑔𝑙𝑢 1 ∙ 10−12 [𝑚𝑚𝑜𝑙𝑔𝑙𝑢/(𝑐𝑒𝑙𝑙 ∙ ℎ)] derived from 𝑚𝑔𝑙𝑐 

𝑌𝑋𝑔𝑙𝑛 9.74 [1011𝑐𝑒𝑙𝑙𝑠/𝑚𝑜𝑙] (Xing et al., 2010) 

𝑚𝑔𝑙𝑛 1 ∙ 10−12 [𝑚𝑚𝑜𝑙𝑔𝑙𝑢/(𝑐𝑒𝑙𝑙 ∙ ℎ)] derived from 𝑚𝑔𝑙𝑐 

𝑌𝑎𝑚𝑚𝑔𝑙𝑢 4.5 ∙ 10−1 [𝑚𝑚𝑜𝑙𝑎𝑚𝑚/𝑚𝑚𝑜𝑙𝑔𝑙𝑢] derived from 𝑌𝑎𝑚𝑚𝑔𝑙𝑛 

𝑌𝑎𝑚𝑚𝑔𝑙𝑛 4.5 ∙ 10−1 [𝑚𝑚𝑜𝑙𝑎𝑚𝑚/𝑚𝑚𝑜𝑙𝑔𝑙𝑛] (Kontoravdi et al., 2010b) 

𝑌𝑚𝐴𝑏𝑔𝑙𝑐 - - - 

𝑌𝑔𝑙𝑢𝑋 - - - 

3.8.2 Adjusted parameter values and comparison with respect to the literature 

data 

In this Section, the Literature parameter values are adjusted so that the proposed model is able 

to adapt to the cell cultures under study and to better fit the process data. To achieve this, the 

behavior of a selected cell culture is carefully fitted using the literature parameters as a starting 

point. The choice of the refence group according to productivity behavior is based on the results 

of the k-means analysis. The selected cell line is the one closest to the centroid of the standard 

cell cluster, which is cell line #8. This approach is adopted because it is supposed that this cell 

culture represents an average point among all the cell cultures, making the retrieved parameters 

a suitable initial point for all subsequent estimations on our biological system.  

The literature values, the results of the preliminary fitting are reported in Table 3.8. In the Table, 

the variability of each parameter is derived from Literature:(Jang & Barford, 2000; Jimenez del 

Val et al., 2016; Kontoravdi et al., 2010b; Pörtner & Schäfer, 1996; Xing et al., 2010) 
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Table 3.8. Fitted parameter for cell line #8. The value can be used as initial value in 

the following fitting estimations.  

Parameter Initial Value Fitted Value Literature variability 

𝜇𝑚𝑎𝑥 - 1.1 ∙ 10−1 0.01-1 

𝜇𝑑𝑚𝑎𝑥 - 5.2 ∙ 10−1 0.01-1 

𝐾𝑔𝑙𝑐  1.5 ∙ 10−2 0 0.01-1.00 

𝐾𝑔𝑙𝑢  4.7 ∙ 10−2 2.0 ∙ 10−1 N/A 

𝐾𝐼𝑙𝑎𝑡 3.9 ∙ 103 2.8 ∙ 104 100 − 1 ∙ 105 

𝐾𝐼𝑎𝑚𝑚 6.5 2.3 ∙ 10−1 1.0-20.0 

𝐾𝑑𝑙𝑎𝑡  4.1 ∙ 103 0 N/A 

𝐾𝑑𝑎𝑚𝑚 6.5 23 1.00-20.0 

𝑌𝑋𝑔𝑙𝑐 - 1.2 0.1-100 

𝑚𝑔𝑙𝑐 1.2 ∙ 10−11 0 0 − 1 ∙ 10−3 

𝑌𝑙𝑎𝑡𝑔𝑙𝑢 1.3 ∙ 102 8.9 ∙ 102 N/A 

𝑌𝑙𝑎𝑡𝑔𝑙𝑐 7.3 ∙ 102 1.0 ∙ 103 N/A 

𝑌𝑋𝑙𝑎𝑡 0.3 ∙ 109 7.9 ∙ 10−2 N/A 

𝐾𝑐𝑙𝑎𝑡  1.2 ∙ 102 1.7 ∙ 102 N/A 

𝐾𝑐𝑔𝑙𝑐  - 1.0 ∙ 109 N/A 

𝑘1 - 6.4 ∙ 10−2 N/A 

𝑘2 - 6.5 ∙ 10−3 N/A 

𝑌𝑋𝑔𝑙𝑢 - 10 N/A 

𝑚𝑔𝑙𝑢 1 ∙ 10−12 4.3 ∙ 10−5 0 − 1 ∙ 10−3 

𝑌𝑋𝑔𝑙𝑛 - 1.0 ∙ 1015 N/A 

𝑚𝑔𝑙𝑛 1 ∙ 10−12 1.4 ∙ 10−3 0 − 1 ∙ 10−3 

𝑌𝑎𝑚𝑚𝑔𝑙𝑢 - 1.2 N/A 

𝑌𝑎𝑚𝑚𝑔𝑙𝑛 4.5 ∙ 10−1 9.4 ∙ 10−1 N/A 

𝑌𝑚𝐴𝑏𝑔𝑙𝑐  - 68 N/A 

𝑌𝑔𝑙𝑢𝑋 - 1.1 N/A 

 

The comparison between adjusted literature parameters and original literature parameters can 

provide valuable insights on the behavior of the considered cell culture:  

• the fitted value of 𝐾𝑔𝑙𝑐 is equal to zero. The parameter represents the Glucose concentration 

below which the rate of growth of the cell culture is halved. It is likely that the cell cultures 

are being supplied with an excess of Glucose, consequently, regardless of the specific 

amount of nutrient provided, the rate of growth is not directly dependent on Glucose 

consumption. However, other factors associated with Glucose consumption (e.g., Lactate 

production) can indirectly limit the growth of the cell culture; 

• the parameter 𝐾𝑑𝑙𝑎𝑡 represents the rate of cell death in relation to Lactate concentration. The 

fitted value of 𝐾𝑑𝑙𝑎𝑡is zero, indicating that rate of cell death is independent on the quantity 

of Lactate in the cell culture; 

• 𝐾𝑐𝑔𝑙𝑐 is the constant that regulates Lactate consumption at lower glucose concentration. The 

fitted value for this parameter suggests that this contribution can be neglected. This means 

that, Lactate consumption can be described solely based on its concentration. 
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3.8.3 Fixed parameter values estimation 

In this Section, the results of the estimation for fixed parameter are presented for each group 

and compared. The estimation procedure for the fixed parameters follows the indication 

previously described. Fitted parameters are reported in Table 3.9. No significant changes with 

respect to the adjusted literature values are obtained for cluster of standard productivity cell 

line.  

Table 3.9. Value of fixed parameters for the three groups of cell cultures. Parameters 

underline exhibit greater changes respect to adjusted literature parameters. 

Parameter 

Adjusted 

literature  

value 

Standard 

productivity 

 cell lines 

High 

performing  

cell lines 

Low 

performing 

cell lines 

𝜇𝑑𝑚𝑎𝑥 5.167 ∙ 10−1 5.012 ∙ 10−1 2.443 ∙ 10−1 2.774 ∙ 10−1 

𝐾𝑔𝑙𝑐  0 0 0 0 

𝐾𝑔𝑙𝑢  1.983 ∙ 10−1 7.721 ∙ 10−1 𝟒. 𝟔𝟖𝟎 ∙ 𝟏𝟎𝟏 1.490 ∙ 101 

𝐾𝐼𝑙𝑎𝑡 2.819 ∙ 104 4.554 ∙ 104 𝟏. 𝟖𝟔𝟒 ∙ 𝟏𝟎𝟕 6.322 ∙ 104 

𝐾𝑑𝑙𝑎𝑡  0 0 0 𝟗. 𝟒𝟖𝟐 ∙ 𝟏𝟎𝟏 

𝐾𝑑𝑎𝑚𝑚 2.255 ∙ 101 2.540 ∙ 101 1.784 ∙ 101 2.456 ∙ 101 

𝑚𝑔𝑙𝑐 0 𝟏. 𝟖𝟏𝟒 ∙ 𝟏𝟎−𝟑 6.700 ∙ 10−4 6.105 ∙ 10−3 

𝑌𝑙𝑎𝑡𝑔𝑙𝑢 8.906 ∙ 102 4.242 ∙ 103 𝟑. 𝟔𝟓𝟖 ∙ 𝟏𝟎𝟒 2.591 ∙ 104 

𝑌𝑋𝑙𝑎𝑡 7.906 ∙ 10−2 8.917 ∙ 10−2 9.790 ∙ 10−3 𝟒. 𝟎𝟓𝟎 ∙ 𝟏𝟎𝟏 

𝐾𝑐𝑙𝑎𝑡  1.691 ∙ 102 1.661 ∙ 102 3.341 ∙ 102 1.433 ∙ 104 

𝐾𝑐𝑔𝑙𝑐  1.000 ∙ 1015 1.000 ∙ 1015 1.000 ∙ 1015 1.000 ∙ 1015 

𝑘1 6.388 ∙ 10−2 1.041 ∙ 10−1 3.228 ∙ 10−2 𝟕. 𝟐𝟖𝟑 

𝑘2 6.487 ∙ 10−3 1.760 ∙ 10−2 5.489 ∙ 10−3 1.992 ∙ 10−1 

𝑚𝑔𝑙𝑢 4.320 ∙ 10−5 7.428 ∙ 10−5 4.558 ∙ 10−7 9.090 ∙ 10−6 

𝑌𝑋𝑔𝑙𝑛 1.000 ∙ 1015 1.000 ∙ 1015 1.000 ∙ 1015 1.000 ∙ 1015 

𝑚𝑔𝑙𝑛 1.425 ∙ 10−3 3.890 ∙ 10−3 1.921 ∙ 10−3 2.553 ∙ 10−3 

𝑌𝑎𝑚𝑚𝑔𝑙𝑢 1.170 1.807 𝟏. 𝟎𝟓𝟓 ∙ 𝟏𝟎𝟐 3.652 ∙ 101 

𝑌𝑎𝑚𝑚𝑔𝑙𝑛 9.417 ∙ 10−1 1.030 5.760 ∙ 10−1 5.884 ∙ 10−2 

 

For the high overperforming cell cultures, the most significant changes are related to how the 

cell culture responds to Lactate, Ammonia, and Glutamate. These batches are characterized by 

distinct feeding strategy that is less consistent in terms of Glutamate. As a result, 𝐾𝑔𝑙𝑢 has a 

greater value compared to standard productivity batches, meaning that Glutamate is consumed 

more efficiently in high performing cell culture. Furthermore, the improved performance of 

these batches appears to be associated with a great resilience to Lactate. In this cell lines Lactate 

concentration is similar to standard productivity cultures, however the high value of parameter 

𝐾𝐼𝑙𝑎𝑡 indicates that cells are inhibited only at very high Lactate level. Additionally, the levels 

of Lactate and Ammonia remain consistent. To counterbalance the low Glutamate consumption, 

the yield constant associated with Glutamate (𝑌𝑙𝑎𝑡𝑔𝑙𝑢, 𝑌𝑎𝑚𝑚𝑔𝑙𝑢) has higher values 

𝑌𝑙𝑎𝑡𝑔𝑙𝑢, 𝑌𝑎𝑚𝑚𝑔𝑙𝑢.  

Finally, comparing the fixed parameter values of low productivity cell cultures, the most 

relevant differences are related to parameter: 𝐾𝑑𝑙𝑎𝑡. This parameter influences the death of the 

cell culture in response to Lactate concentration. In standard productivity and high performing 
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cultures, the fitted value is equal to zero (not relevant), but in low performing batches it becomes 

significantly different from zero. It seems that for this cell cultures Lactate has not only a 

contribution to the inhibition of the cell growth, but it contributes also to the death of the cell 

culture, and this is the main reason for which both VCC and Product Titer are low. 

3.8.4 Cell culture most characterizing parameters estimation 

In this Section, the estimation of the subset of the seven characterizing parameters is performed 

for each cell line. In Figure 3.10 is reported an example of fitting proposed for the cell culture 

#47 (standard productivity cell line). The model effectively captures the decreasing profile of 

Glucose consumption (Figure 3.10a) and the trend of VCC, both during first half of cell culture 

and at variable peak (Figure 3.10c). The model successfully predicts the maximum of the 

Lactate profile; however, it struggles to accurately identify the Lactate trend in the later time 

points (Figure 3.10b). On the other hand, the model performs very well in capturing the 

production trend of the monoclonal antibody (Figure 3.10d). 

The fitting performance is presented in Table 3.10, which provides the average (between all 

time points) fitting error in terms of MRE and the MEA scaled to the maximum response for 

each process variable. Both VCC and Product Titer show a highly accurate fit, with low error. 

The MRE of lactate is higher, primarily due to the low fitting performance in the final time 

instants of the cell culture. However, it is important to consider that the MRE value can be 

influenced by very low values. Therefore, it is crucial to double-check and verify the goodness 

of fitting using the MEA value, which certify the accuracy of the fit for Lactate. 

Table 3.10. Statistics of the fitting for cell culture n° 47. MRE and MEA/max(y) for 

each process variable. 

 VCC 
Product 

Titer 
Glucose Lactate 

𝑴𝑹𝑬 11.5% 16.3% 24.8% 105% 

𝑴𝑬𝑨 / 𝒎𝒂𝒙(𝒀) 6.65% 2.75% 8.46% 10.6% 

 

Given that the estimation results are obtained by fitting only seven parameters while keeping 

the fixed parameters constant, the overall fitting results can be considered satisfactory. 
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(a) (b) 

 

 
(c) (d) 

Figure 3.10. Results of the parameter estimation and process variables fitted 

procedure for cell line #47. In the figure different behaviors are described: Glucose 

(a), Lactate (b), VCC (c) and the final product (d). 
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Chapter 4 

Relating cellular metabolism to chemical, 

physical and biological phenomena in 

CHO cultures  

In this Chapter, metabolomics data and process information derived from the first-principle 

model of Chapter 3 are integrated to extract valuable insight on how cell metabolism relate to 

the chemical, physical and biological phenomena occurring into the cell culture. This is 

achieved by building multivariate regression models that relate the estimated first-principles 

model parameters and the metabolomics data.  

4.1 Relating cell line metabolism to chemical-physical and biological 

phenomena using PLS modelling 

This Section presents the construction of the PLS model to investigate the relationships between 

physical, chemical, and biological phenomena of cell culture and cell metabolism. This 

investigation is performed by a mathematical regression model that relates metabolomics data 

to first-principles model parameters.  In this Thesis, seven PLS models are considered, each 

one relating one of the 7 highly characterizing parameters to the metabolomics data. The 

models are built on the batchwise unfolded metabolomics dataset (X = 𝐗𝑰𝑪 [96 × 27522])  and 

regress the value of first-principle model parameter (Y = 𝐗𝐄𝐏 [96 × 7]).In each model, 𝐗𝐈𝐂 is 

mean-centered and Pareto-scaled, while 𝐗𝐄𝐏 are auto scaled.  

Table 4.1. PLS model calibration. Statistics of all models built for each first-principle 

parameter. 

 𝝁𝒎𝒂𝒙 𝒀𝒙𝒈𝒍𝒄 𝒀𝒎𝑨𝒃𝒈𝒍𝒄 𝒀𝒙𝒈𝒍𝒖 𝒀𝒈𝒍𝒖𝒙 𝑲𝑰𝒂𝒎𝒎 𝒀𝒍𝒂𝒕𝒈𝒍𝒄 

LV 5 2 7 6 4 7 4 

𝑹𝒚
𝟐  0.983 0.722 0.969 0.99 0.953 0.989 0.972 

 

Calibration results for each of the seven PLS models are presented in Table 4.1, in all cases, the 

number of latent variables is selected by minimizing the RMSECV through venetian blind 

cross-validation.  
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To obtain these results, before constructing the PLS model, 𝐗𝑰𝑪 undergoes a data enhancement 

process to handle missing data, as described in Section 4.1.1. Then, 𝐗𝑰𝑪 is used to build a 

multiway PLS model to regress the value of X_EP.  

Additionally, the quality of PLS models is improved through an iterative process that focuses 

on retaining only the most informative ions to predict the values of the first-principles model 

parameters (Section 4.1.2). This iterative process ensures a strong relationship and enables 

reliable results when investigating the link between cell metabolism and cell biological 

phenomena.  

4.1.1 Address missing data in the ion dataset for improved analysis 

In this Section, the procedure applied for preprocessing metabolomics dataset is explained. Pre-

processing is essential to handle potential missing information and to ensure the reliability and 

validity of the model. In the original metabolomics dataset a replacement technique for ions 

with missing intensities is used to ensure a reliable analysis (Barberi et al., 2022a). This method 

involves imputing the missing values by calculating the weighted average intensity of 15 

metabolites that have intensity profiles similar to the metabolite of interest. However, to prevent 

the introduction of artifacts due to an excessive number of missing values, additional 

preprocessing is considered. This involves comparing the missing data values in the two 

replication matrices; the procedure (Figure 4.1) is built on a three-step operation: 

1. ions are excluded from the analysis if a number of missing data greater than 20% in both 

replicates, (Figure 4.1a) is found. This happens when the ion was not identified by the mass 

spectrometer; 

2. if an ion has a missing data count exceeding 20% in only one of the two replicates, the mean 

of relative difference between the ion intensity of the two replicates is calculated. If the 

difference is >20%, the ion is excluded from the analysis (Figure 4.1b), because it is 

considered as poorly repeatable and detectable;  

3. ions are removed from the analysis if they have a mean relative difference in the intensity 

larger than 25% between the two replicates (Figure 4.1c). For those ions, the same m/z does 

not provide consistent and repeatable information within the two replicates. 

Following this rationale, the 4.44% of the original ions are removed.  
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(a) 

 
(b) 

 
(c) 

Figure 4.1. Preprocessing procedure: a) ions with excessive number of missing values 

in both replicates are removed; b) ions with an excessive difference in missing data 

between the two replicates are removed; c) ions with large intensity differences 

between the replicates are removed. 
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4.1.2 Improve model performance by selecting the most informative ion lines 

This Section shows how the PLS model built on the metabolomics data (𝐗𝑰𝑪) is improved 

through variable selection. Since the number of the original ions (4587 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ×

6 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠) compared to the number of cell lines (96) is very large, variable selection 

needs to be performed to reduce the number of ions by retaining only the ones that maximize 

the performance of the models.  

Variable selection is applied to each model using a backward iterative elimination, which has 

been used in previous works on this dataset (Barberi, 2023) . In this procedure, three indices 

are used for variables removal: 

• selectivity ratio; 

• the beta-value, namely the value of the coefficient for the regressor in the PLS procedure; 

• VIP index. 

The variables selection is performed as follows:  

1. initially the model is cross validated with all available variables;  

2. using the indices of variable importance calculated during cross-validation (step 1) three 

different datasets are created by removing a defined percentage 𝑝 = 25% of less important 

variable; 

3. three PLS models are built on the datasets generated at step 2 and cross-validated.  

4. only the model (and the associated variables) that demonstrates the best performances 

(minimum RMSECV) is retained for further iterations. If the exclusion of unimportant 

variables does not improve the performance of the model (increase in RMSECV) the 

percentage of variables to remove is decreased and the excluded variables are reinserted 

into the dataset. The procedure continue with a new iteration (step 1). 

5. the procedure is stopped when the exclusion of a single unimportant variable does not 

produce model performance improvement.  

After the variable selection, some additional operations (Table 4.2) are performed to improve 

the quality of each resulting PLS models. These operations include: 

6. excluding a subset of batches during the model building process. Since some parameters 

are two or more orders of magnitude different with respect to the average parameter value, 

they are excluded from the PLS models to limit the leverage of these parameters with 

unusual value. This enhances the robustness of the PLS model and improves the overall 

quality of the outcomes; 

7. logarithmic transformation of the response. The PLS models for factors: 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 and 

𝑌𝑔𝑙𝑢𝑥 are built on the logarithm of the parameter rather than on the parameter itself. In fact, 

these parameters exhibit a very large variability that ranges from very low value to very 

high value. This numerical transformation is able to make the response more normally 

distributed and allows obtaining better final results. 
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Table 4.2. Specific parameter's operations performed before the application of the 

PLS model. 

parameter 
ratio of excluded batches over 

 the total number of batches 
𝐥𝐨𝐠𝟏𝟎(𝒀) 

𝜇𝑚𝑎𝑥 0  

𝑌𝑚𝐴𝑏𝑔𝑙𝑐 5/96  

𝑌𝑥𝑔𝑙𝑐  5/ 96  

𝑌𝑥𝑔𝑙𝑢 5/96  

𝐾𝐼𝑎𝑚𝑚 5/96  

𝑌𝑙𝑎𝑡𝑔𝑙𝑐  5/96 ● 

𝑌𝑔𝑙𝑢𝑥  5/96 ● 

The optimized models are able to improve the estimation performance using a lower number of 

latent variables.  

4.2 Validation of the influence of cell line metabolism on cell chemical, 

physical and biological phenomena 

In this Section, the validation performance of the improve PLS models predicting first principle 

model parameters are presented. Model validation is an essential step in evaluating the 

effectiveness of PLS models. During this validation process, the performance of a model 

calibrated using a reduced number of cell lines is evaluated by predicting the behavior of the 

cell lines that were excluded during calibration. Model validation is conducted through a Monte 

Carlo procedure, in which 5 cell lines are randomly selected as validation dataset, while the 

remaining 91 cell lines are used to calibrate the improved model, while the validation dataset is 

used evaluate the prediction performance of the model. This procedure is repeated for 1 ∙ 105 

iterations. 

Prediction performance of the PLS models built for each first principle model parameter are 

reported in Table 4.3. 

Overall, the estimation performance are satisfactory, as indicated by the high 𝑄2 index and the 

Mean Absolute Error (MEA) values that are often much lower than the standard deviation of 

the parameters values. However, two parameters, namely 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 and 𝑌𝑥𝑔𝑙𝑐, show worse 

validation performance, resulting in a low 𝑄2 (<  50%). Lower performance may be due to a 

reduced correlation between metabolites and 𝑌𝑚𝐴𝑏𝑔𝑙𝑐, leading to a small portion of metabolite 

variability associated to that parameter. 
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Table 4.3. PLS model validation results for all first principle model parameters. 

Parameter  μ σ Mean of MEA/σ Median of MEA/σ 𝑸𝟐 

𝜇𝑚𝑎𝑥  0.489 0.255 10.90% 8.64% 75.20% 

𝑌𝑚𝐴𝑏𝑔𝑙𝑐   10.500 8.630 8.96% 7.10% 50.00% 

𝑌𝑥𝑔𝑙𝑐   1.840 0.710 8.79% 6.67% 45.80% 

𝑌𝑥𝑔𝑙𝑢  382.000 348.000 23.30% 16.30% 90.40% 

𝐾𝐼𝑎𝑚𝑚  1.810 2.290 51.20% 34.70% 76.40% 

𝑌𝑙𝑎𝑡𝑔𝑙𝑐  1.290 1.150 100.00% 41.30% 80.90% 

𝑌𝑔𝑙𝑢𝑥   3.910 4.850 51.20% 32.90% 82.20% 

 

PLS models results can be further assessed by examining the parity plots in Figure 4.2. The red 

point represent the average prediction between several iterations, while the blue bars width 

represent twice the predictions standard deviations. Particularly, Figure 4.2a describe the results 

for 𝜇𝑚𝑎𝑥, which exhibits a Q2 index of 75.2%. The mean predicted values are in good agreement 

with true parameter values, as indicated by the closeness of the points to the diagonal line. 

Additionally, the error bands consistently intersects with the plot diagonal, indicating that the 

error between the true parameter value 𝜇𝑚𝑎𝑥 and the predicted oner is statistically not different 

from zero. However, it is important to note that higher variability of predictions tend to occur 

when the parameter exhibit extreme value (close to zero or close to one). This issue could be 

attributed to the fact that model has few examples at the extreme of the interval; for this reason 

it tends to extrapolate more parameters value, committing larger error.  

In Figure 4.2b, the parity plot represents the results for parameter 𝐾𝐼𝑎𝑚𝑚. Similarly, to previous 

case, the Q2 index is high. However, upon closer examination of the parity plot, it is evident 

that the first-principle model parameter are not normally distributed. In fact their values are 

highly concentrated around the zero. For that reason, the PLS models struggles to provide 

accurate estimations of the parameter when its values are very low. Proper parameter scaling 

may be useful to improve predictive capability and prediction of value close to zero. 
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(c) 

Figure 4.2. Parity plot PLS validation. (a) 𝜇𝑚𝑎𝑥, (b) 𝐾𝐼𝑎𝑚𝑚 and (c) 𝑌𝑥𝑔𝑙𝑢. 

Additionally, interesting result comes from the observation of 𝑌𝑥𝑔𝑙𝑢 (Figure 4.2c) In the parity 

plot, a clear distinction between two clusters appears. The parameter follow a bi-modal 

distribution. This subdivision is related to the fact that the parameter is extremely sensitive to 

Glutamate consumption. All high performing cell cultures have a more efficient nutrient 

consumption and consequently, high value of 𝑌𝑥𝑔𝑙𝑢, while low performing cell lines have a less 

efficient Glutamate consumption. Despite the parameter distribution is not normal, model 

performances are good (𝑄2  =  90%). For this reason, the results of the PLS model for 𝑌𝑥𝑔𝑙𝑢 

can also be used to discriminate cell lines according to their performances. 

Parity plots for all the remaining parameters can be found in Appendix C. 

4.3 Biological understanding on how CHO cell metabolism is related to 

cell culture chemical-physical and biological phenomena  

In this Section, the results of the PLS model are used to better understand cell metabolism and 

how it is related to the chemical, physical and biological phenomena occurring into the cell 

cultures. The data-driven PLS model links metabolites (and thus metabolic traits) to parameters 

that serve as indicators of a specific biological phenomenon, allowing the investigation of 

metabolites associated with desired cell culture behaviors. For example, the prediction of 𝜇𝑚𝑎𝑥 

from the metabolomics data associates the phenomenon of the cell growth with the metabolism 

of each cell line through the respective -omics data. This analysis is performed by analyzing 

the VIP index of the PLS models, namely the ion importance in the prediction of a first-principle 
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model parameter. In addition, the VIP indices are coupled with the regression parameters (β) 

to assess how a particular metabolite directly affects the biological phenomena and cell 

behavior over time. 

4.3.1 Biological understanding for 𝜇𝑚𝑎𝑥 – cell growth 

In this Section, the metabolites associated with the parameter 𝜇𝑚𝑎𝑥, which describe cell growth, 

are presented, and analyzed. The heatmap of Figure 4.3 shows the importance over time for 

metabolites of 𝜇𝑚𝑎𝑥.  

 
Figure 4.3. VIP along culture time of metabolites from PLS model predicting 𝜇𝑚𝑎𝑥. 

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

Arginine is identified as one of the most important metabolites. The analysis shows that 

Arginine VIP values are high during the cell growing phase with positive β-values at time 2 

and 3. This indicates that high Arginine content during growing phase are correlated to a fast 

cell population increase. On the other hand, the β is negative at time 4. In fact, high Arginine 

content in later stages means that the component has not been efficiently consumed; 

consequently, slower cell grow and lower first-principle model parameter 𝜇𝑚𝑎𝑥 are obtained. 

This result are consistent to literature findings. Arginine is found to be one of the most 

significant metabolites associated with the growth of the cell culture (González-Leal et al., 

2011).  

Also Taurine’s VIP values are high, especially at time 3 and 6. Taurine plays a crucial role in 

the central and final phases of the cell culture (peak of VCC and product formation) with always 

positive β. This means that higher content of Taurine is associated to large cell growth and 

consequently high VCC value, and to a more consistent product formation. The biological role 

of Taurine is in accordance with expectation, since a positive effect on increasing both VCC 

and Product Titer has been previously observed (M. Liu et al., 2018). Additionally, Taurine has 

Arginine 0 1.19 1.89 2.59 0 0

Taurine 0 0 1.91 0.72 0.88 1.39

Deoxyuridine 0 0 1.50 1.21 0 1.41

dIDP 0 0 0.45 0 2.54 0

CMP-N-glycoloylneuraminate 2.82 0 0 0 0 0

Inositol cyclic phosphate 0.94 0 0 0 0 1.88

Ureidosuccinic acid 0 0 0.74 0 2.01 0

Glycine 0 0 0.50 0 1.42 0.79

Glycerylphosphorylethanolamine 0 0 1.09 0 1.49 0

Sepiapterin 0 1.48 0.72 0 0 0

L-Glutamic acid 5-phosphate 0 0 0 0 0 1.76

Uridine diphosphate 0 0 0 1.64 0 0

Thiamine monophosphate 1.56 0 0 0 0 0

Acetic acid 1.01 0 0 0 0 0.43

Phosphocreatine 0 0 0 0 0 1.41

Deoxycytidine 0 0 1.09 0 0 0

1 2 3 4 5 6

time
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a relevant impact on all first-principle parameters relating biomass growth to nutrient 

consumption (i.e., Glucose and Glutamate). These results prove the beneficial effect of Taurine 

in different cell culture phenomena. 

Similar considerations can also be done for Deoxyuridine. High VIP values at times 3, 4 and 6 

and positive β of the PLS model in the late part of the cell culture correlate to high component 

concertation with a fast cell growth. Similarly to Taurine, Deoxyuridine has also been proven 

to be a positive effect for efficient antibody production (Takagi et al., 2017).  

Other metabolites, such as Inositol, Glutamic acid, Uridine and Thiamine phosphate, associated 

with Glucose metabolism are identified as important in different time instant having a high VIP 

index. This is something expected, because being Glucose the main nutrient of the cell culture, 

the byproducts of its metabolism can be associated with the progress of the cell growth. 

Finally, dIDP (Diisodecyl phthalate) has a very high VIP index at time 5, and a negative value 

of the β, meaning that high dIDP concertation correlates with a limited cell growth. This result 

is consistent to the fact that this metabolite has proven to bring a negative effect on cell cultures 

growth (Phillips et al., 1982).  

4.3.2 Biological understanding for 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 – antibody production due to 

Glucose consumption 

In this Section, the metabolites associated with the parameter 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 are presented and 

discussed. This parameter describes the production of antibody associated with Glucose 

consumption. The importance over time of metabolites for 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 is shown in Figure 4.4. 

Thiamine monophosphate is found to be a very important metabolite as its VIP values are 

significantly larger than one from time 1 to 4. Its β values are always positive, indicating that 

Thiamine is positively correlate to high product formation. Accordingly, the presence of this 

compound during the first half of the cell culture is identified as having a large impact on the 

formation of monoclonal antibody.  

Propynol adenylate is an essential metabolite for the system under study as indicated by its VIP 

indices, which are > 1 in the first half of cell culture. The positive βvalues indicate that high 

Propynol concentration correlated to large product formation and large 𝑌𝑚𝐴𝑏𝑔𝑙𝑐. Additionally, 

Propynol is found to be a key metabolite for parameters 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 and 𝑌𝑔𝑙𝑢𝑥 that, similarly to 

𝑌𝑚𝐴𝑏𝑔𝑙𝑐, regulate the production of other cell components. These observations are consistent 

with previous studies, which identified Propynol adenylate as an important enzyme involved in 

the production of essential and complex molecules such as monoclonal antibody, Lactate and 

Glutamate (D’Ambrosio & Derbyshire, 2020).  

Other metabolites, such as 3-Dehydro L-Gulonate, Glyceric acid and Gluconic acid, have a VIP 

index with increasing importance in late stages of the cell culture. These metabolites, which are 
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associated to Glucose metabolism, highlight the important relationship between the Glucose 

and antibody formation.  

 
Figure 4.4. VIP along culture time of metabolites from PLS model predicting 𝑌𝑚𝐴𝑏𝑔𝑙𝑐. 

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

Additionally, Formiminoglutamic acid has high VIP values during the exponential growth and 

stationary phase. The accumulation of this compound has been identified as mainly related to 

Glutamate consumption in previous studies (Coulet et al., 2022). This indicates that there is 

also a relationship between Glutamate and product formation, even though antibody production 

is modeled only as a result of glucose consumption. This fact may be due to the simplified 

nature of the monoclonal antibody model balance, which makes the parameter also capture 

lumped metabolic traits associated with antibody production. This suggests a refinement of the 

model by improving the product formation associated with Glutamate consumption. 

4.3.3 Biological understanding for 𝐾𝐼𝑎𝑚𝑚 – Ammonia inhibition in the cell 

culture 

In this Section, the metabolites associated with the parameter 𝐾𝐼𝑎𝑚𝑚, which describe Ammonia 

inhibition, are identified. The heatmap of Figure 4.5 shows the importance over time of 

metabolites for 𝐾𝐼𝑎𝑚𝑚 prediction. 

Thiamine monophosphate 2.76 1.62 1.62 1.25 0.60 0.00

Arginine 4.36 0.00 0.00 0.00 2.67 0.00

Propinol adenylate 1.07 1.79 0.89 1.06 0.00 1.14

Formiminoglutamic acid 1.45 1.54 0.00 1.12 0.60 0.89

L-Asparagine 0.96 2.31 1.46 0.52 0.00 0.00

CMP-N-glycoloylneuraminate 3.82 0.00 0.58 0.00 0.00 0.74

3-Dehydro-L-gulonate 0.00 0.00 0.91 2.80 1.10 0.00

Glycerylphosphorylethanolamine 0.69 0.89 1.50 0.00 1.52 0.00

Glyceric acid 1,3-biphosphate 0.00 1.48 0.00 0.00 0.00 2.62

Flavin Mononucleotide 0.00 3.05 0.59 0.00 0.00 0.00

L-Aspartic acid 0.00 2.50 0.90 0.00 0.00 0.00

Inositol cyclic phosphate 0.00 0.00 1.64 0.00 0.00 1.56

dTDP-D-glucose 0.00 0.00 2.39 0.00 0.00 0.76

Deoxycytidine 0.00 1.39 1.37 0.00 0.00 0.00

Hippuric acid 0.00 0.83 0.86 1.03 0.00 0.00

Uridine diphosphate-N-acetylglucosamine 0.00 0.00 1.91 0.00 0.00 0.79

Inosine 1.69 0.72 0.00 0.00 0.00 0.00

GDP-glucose 0.00 0.00 1.67 0.00 0.00 0.66

Diadenosine triphosphate 0.00 0.00 0.00 0.49 0.00 1.72

Gluconic acid 0.00 0.00 0.75 0.00 0.00 1.01

Ureidosuccinic acid 0.41 0.00 1.02 0.00 0.00 0.00

Saccharopine 0.00 0.00 1.27 0.00 0.00 0.00

Adenosine diphosphate ribose 0.00 0.00 0.00 0.00 0.00 1.23

1 2 3 4 5 6

time
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Figure 4.5. VIP along culture time of metabolites from PLS model predicting 𝐾𝐼𝑎𝑚𝑚. 

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

Arginine is found to be one of the most important metabolites associate to 𝐾𝐼𝑎𝑚𝑚, having a 

high VIP at time 2 and 3. The β values associated to the metabolite are positive, indicating that 

low concentration of Arginine is correlated to low values of the parameter and consequently to 

a larger Ammonia inhibition. In the studied system, low Arginine levels resulted in a reduction 

in cell resistance to Ammonia and consequently slow culture growth at high Ammonia 

concentrations. This result is consistent with previous studies, which showed that Arginine 

deprivation can cause the death of the cell culture (Scott & al, 2000). 

Different amine (i.e., Glucosamine and Ethanolamine) and aminate compounds have large VIP 

values in the first half of the cell culture (𝑉𝐼𝑃 > 1). Their β are positive, indicating that high 

concentration of these metabolites are associated to large parameter values and consequently to 

a high resistance of the system towards Ammonia, suggesting that having greater amount of 

Nitrogen stored other compounds rather than as Ammonia, reduced the inhibition of cell growth 

due to ammonia.  

Arginine 0.71 3.41 0.00 1.09 0.00 0.00

Flavin Mononucleotide 0.00 0.81 0.62 1.38 1.22 0.00

Phosphocreatine 1.23 1.43 0.00 0.00 1.27 0.00

dTDP-D-glucose 0.00 1.80 1.78 0.00 0.00 0.00

Uridine diphosphate-N-acetylglucosamine 0.00 1.73 1.77 0.00 0.00 0.00

Glycerylphosphorylethanolamine 0.00 1.68 0.00 0.00 0.00 1.71

Deoxycytidine 0.00 1.67 1.09 0.00 0.00 0.00

Taurine 0.00 0.00 0.00 2.53 0.00 0.00

CMP-N-glycoloylneuraminate 0.97 1.52 0.00 0.00 0.00 0.00

Uridine 5''-diphosphate 0.99 0.00 0.00 0.00 0.00 1.46

Propinol adenylate 1.56 0.00 0.00 0.00 0.00 0.81

Sepiapterin 2.30 0.00 0.00 0.00 0.00 0.00

Hippuric acid 0.00 0.00 1.79 0.00 0.00 0.00

Adenosine diphosphate ribose 0.59 0.00 0.00 1.00 0.00 0.00

Deoxyinosine 0.42 0.00 0.00 0.00 0.00 1.16

GDP-glucose 0.00 1.52 0.00 0.00 0.00 0.00

L-Aspargine 0.00 1.44 0.00 0.00 0.00 0.00

GDP-4-Dehydro-6-deoxy-D-mannose 0.00 1.44 0.00 0.00 0.00 0.00

L-Aspartic acid 0.00 1.27 0.00 0.00 0.00 0.00

4-Aminobutyraldehyde 0.00 0.00 1.26 0.00 0.00 0.00

L-Alanine 0.00 0.00 1.25 0.00 0.00 0.00

Acetic acid 1.15 0.00 0.00 0.00 0.00 0.00

Ureidosuccinic acid 0.00 1.10 0.00 0.00 0.00 0.00

Gluconic acid 0.00 0.00 0.00 0.00 1.02 0.00

1 2 3 4 5 6

time
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4.3.4 Biological understanding for 𝑌𝑥𝑔𝑙𝑐 – biomass growth due to Glucose 

consumption 

This Section presents and analyzes the metabolites associated with 𝑌𝑥𝑔𝑙𝑐, which describes the 

yield of biomass associate to Glucose consumption. The heatmap of Figure 4.6 shows the 

importance over time of metabolites for 𝑌𝑥𝑔𝑙𝑐.  

 
Figure 4.6. VIP along culture time of metabolites from PLS model predicting 𝑌𝑥𝑔𝑙𝑐  

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

In this case, all identified metabolites have high VIP values in single time points. L-Glutamic 

acid has large VIP index at time 2, ADP at time 3, Uridine-diphosphate at time 5, and Glyceric 

acids at time 6. This phenomenon may be related to the fact that many intermediates are 

involved in the metabolism of Glucose, and different intermediates can be influential at 

different instants. Monitoring these compounds provides the capability to assess cell 

performance with respect to Glucose consumption. Additionally, L-Asparagine has very high 

VIP value at time 2, highlighting it is a good predictor of Glucose consumption. Furthermore, 

its negative β value, indicates that L-Asparagine content is anticorrelated to Glucose 

consumption, meaning that the higher L-Asparagine concentrations, the lower the parameter 

values, and the lower the Glucose consumption. Furthermore, Asparagine VIP is not negligible 

for the parameter that controls the production of antibody, 𝑌𝑚𝐴𝑏𝑔𝑙𝑐,. The results are consistent 

with what has been reported in previous studies, where Asparagine, being a standard amino 

acid used in protein synthesis, provided useful indication on the production of monoclonal 

antibody (Duarte et al., 2014).  

4.3.5 Biological understanding for 𝑌𝑥𝑔𝑙𝑢 – biomass growth due to Glutamate 

consumption 

This Section presents and analyzes the metabolites associated with 𝑌𝑥𝑔𝑙𝑢, which describes the 

yield of biomass associated with Glutamate consumption. The heatmap of Figure 4.7 shows the 

importance over time of metabolites for 𝑌𝑥𝑔𝑙𝑢 prediction.  

L-Asparagine 0.00 2.38 0.00 0.00 0.00 0.00

L-Glutamic acid 5-phosphate 0.00 2.26 0.00 0.00 0.00 0.00

Glyceric acid 1,3-biphosphate 0.00 0.00 0.00 0.00 0.00 2.08

Uridine 5''-diphosphate 0.00 0.00 0.00 0.00 1.42 0.00

Sepiapterin 1.17 0.00 0.21 0.00 0.00 0.00

Taurine 0.00 1.10 0.00 0.00 0.00 0.00

L-Aspartic acid 0.00 0.00 0.00 0.00 1.08 0.00

Adenosine diphosphate ribose 0.00 0.00 1.03 0.00 0.00 0.00

1 2 3 4 5 6

time
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Figure 4.7. VIP along culture time of metabolites from PLS model predicting 𝑌𝑥𝑔𝑙𝑢. 

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

Inosine is a very important metabolite in the initial part of the cell culture, when large Glutamate 

consumption is occurring. Inosine β values have negative values meaning that high levels of 

this metabolite are associated with low Glutamate consumption. Consequently, high performing 

cell cultures (characterized by larger 𝑌𝑥𝑔𝑙𝑢 values), show low levels of Inosine. Inosine 

significance is consistent to literature expectation, since it was found to be an alternative carbon 

source when limited Glucose is available (Wang et al., 2020). Accordingly, the high importance 

of Inosine associated with Glutamate consumption confirms the key role of Glutamate as 

nutrient for cell cultures.  

Other compounds, related to cell energy storage and viability, are important for 𝑌𝑥𝑔𝑙𝑢. Of those, 

Phosphocreatine, dTDP-D-glucose, and others phosphate components have non negligible VIP 

values. This further supports the observation that Glutamate plays a crucial role as backup 

nutrient for cell cultures.  

Additionally, the presence of metabolites such as Propinol Adenylate and Arginine suggest a 

relationship between Glutamate and the synthesis of monoclonal antibodies, highlighting the 

dual nature of Glutamate's role in cell culture.  

4.3.6 Biological understanding for 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 – Lactate production due to Glucose 

consumption 

This Section reported the metabolites associated with the parameter 𝑌𝑙𝑎𝑡𝑔𝑙𝑐, which describe the 

yield of Lactate due to Glucose consumption. The importance over time of metabolites for 

𝑌𝑙𝑎𝑡𝑔𝑙𝑐 prediction is shown in Figure 4.8. 

Inosine 1.45 2.57 0.00 0.00 0.00 1.06

Phosphocreatine 0.56 0.00 2.05 0.00 0.00 1.10

Arginine 0.00 1.56 0.00 1.95 0.00 0.00

Propinol adenylate 0.00 1.44 1.66 0.00 0.00 0.00

L-Alanine 0.00 0.00 0.00 1.46 1.72 0.00

dTDP-D-glucose 0.00 1.52 1.48 0.00 0.00 0.00

Deoxycytidine 0.00 1.92 0.00 0.00 0.00 1.00

4-Aminobutyraldehyde 0.00 0.00 0.00 1.65 1.26 0.00

Flavin Mononucleotide 0.00 0.00 1.41 0.00 1.44 0.00

'Uridine diphosphate-N-acetylglucosamine' 0.00 1.52 1.36 0.00 0.00 0.00

Diadenosine triphosphate 1.28 0.00 0.00 0.62 0.69 0.00

GDP-4-Dehydro-6-deoxy-D-mannose 1.62 0.00 0.82 0.00 0.00 0.00

Thiamine monophosphate 1.11 0.00 1.19 0.00 0.00 0.00

Uridine 5''-diphosphate 1.16 1.37 1.07 0.00 0.00 0.00

Deoxyinosine 0.00 0.00 0.00 1.69 0.00 0.00

Hippuric acid 0.00 0.00 1.35 0.00 0.00 0.00

Taurine 0.00 0.00 0.00 1.19 0.00 0.00

Glycerylphosphorylethanolamine 0.00 0.00 0.00 0.00 0.00 1.04

1 2 3 4 5 6

time
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Figure 4.8. VIP along culture time of metabolites from PLS model predicting 𝑌𝑙𝑎𝑡𝑔𝑙𝑐  

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

Among these, Phosphocreatine and Gulonate, which are Glucose derivatives, have negative β 

values. This means that large amount of these metabolites correlates to a low value of the 

parameter and to low Lactate production due to the consumption of Glucose. Having multiple 

Glucose intermediates as important indicators of Lactate behavior suggests that the course of 

Glucose metabolism is an important indicator of Lactate production. 

Diisodecyl phthalate (dIDP) has positive β, indicating that high metabolite levels are linked to 

a larger Lactate secretion, which limits the growth of the culture and increases cell death, as 

supported by previous studies, which identified that dIDP is a component usually associated 

with cell death (Section 4.3.1).  

4.3.7 Biological understanding for 𝑌𝑔𝑙𝑢𝑥 – Glutamate production due to cell 

activity 

In this Section, the metabolites associated with the parameter 𝑌𝑔𝑙𝑢𝑥, which describe Glutamate 

production due to cell activity, are presented and analyzed. The heatmap of Figure 4.9 shows 

the importance over time of metabolites for 𝑌𝑔𝑙𝑢𝑥 prediction.  

 
Figure 4.9. VIP along culture time of metabolites from PLS model predicting 𝑌𝑔𝑙𝑢𝑥  

Red color is associated with important metabolites, while a more orange one indicates 

a less important metabolite. 

Phosphocreatine 2.49 0.00 0.00 0.00 0.00 0.00

dIDP 0.00 0.00 0.00 0.00 1.81 0.00

3-Dehydro-L-gulonate 1.55 0.00 0.00 0.00 0.00 0.00

Arginine 0.00 0.00 1.27 0.00 0.00 0.00

Propinol adenylate 0.00 0.00 0.00 1.12 0.00 0.00

1 2 3 4 5 6

time

3-Dehydro-L-gulonate 1.19 0.70 1.12 1.24 2.11 2.09

L-Asparagine 0.73 0.00 0.00 1.87 1.93 1.63

Propinol adenylate 0.00 0.94 1.31 0.00 2.15 1.53

Gluconic acid 0.00 0.86 0.97 1.11 1.27 1.43

Ascorbic acid 0.00 0.00 0.00 0.00 1.76 1.90

CMP-N-glycoloylneuraminate 2.20 1.27 0.00 0.00 0.00 0.00

Formiminoglutamic acid 1.03 0.00 0.00 1.25 1.18 0.00

Sepiapterin 2.96 0.00 0.00 0.00 0.00 0.00

L-Aspartic acid 0.62 0.00 0.00 0.00 1.66 0.53

dIDP 0.00 0.00 0.89 0.00 0.00 1.35

L-Glutamic acid 5-phosphate 0.00 0.00 0.00 0.00 0.00 2.05

Acetic acid 0.00 1.19 0.00 0.00 0.84 0.00

Arginine 0.00 0.00 0.00 1.89 0.00 0.00

Glycerylphosphorylethanolamine 0.00 0.00 0.00 0.00 0.00 1.87

Ureidosuccinic acid 0.00 0.00 0.00 0.00 1.79 0.00

GDP-4-Dehydro-6-deoxy-D-mannose 1.75 0.00 0.00 0.00 0.00 0.00

4-Aminobutyraldehyde 0.00 0.60 0.00 1.11 0.00 0.00

Adenosine diphosphate ribose 0.00 0.00 1.43 0.00 0.00 0.00

Hippuric acid 0.00 0.00 0.00 0.00 0.00 1.27

Deoxyinosine 0.00 0.00 0.00 1.10 0.00 0.00

Phosphocreatine 0.00 1.07 0.00 0.00 0.00 0.00

1 2 3 4 5 6

time
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VIP values for L-Gulonate are high in all time instants, suggesting that it is an important 

indicator of the metabolic pathway associated with Glutamate production. Literature studies 

show that L-Gulonate is a component produced by Glucose metabolism (Grindley et al., 1988). 

This may suggest that Glucose intermediates might be somehow involved in Glutamate 

production during cell activity.  

Similarly, Gluconic acid and Ascorbic acid that have high VIP index in the late stages of the 

cell culture. Their β are always negative suggesting that low metabolites levels are associated 

to high Glutamate production. Since these components are directly produced from Glucose 

(Yadav et al., 2022), this enforces the relationships between Glucose intermediates and 

Glutamate synthesis.  

Other important components in determining 𝑌𝑔𝑙𝑢𝑥 are Asparagine and Propynol Adenylate. As 

said before (Section 4.3.2), these metabolites have relevant VIP values for other parameters, 

such as 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 and 𝑌𝑚𝐴𝑏𝑔𝑙𝑐. Accordingly, these metabolites have a central role in determining 

the synthesis of several cell compounds, such as cell components and proteins like monoclonal 

antibodies. 

 

 

 

 

 



 

Conclusion 

The primary objective of this Thesis is to explore an innovative way to integrate metabolomics 

data into the framework of first-principles models for CHO cell lines. This integration aims to 

gain valuable insights into processes by examining it from a new perspective and reveal the 

relationships between chemical, physical and biological system phenomena and cell 

metabolism. 

In this context, a new model for CHO cells is proposed that enhances existing Literature models 

by refining the role of Glutamate and Lactate. The model includes additional contributions by 

modifying the governing equations of the system. Structural identifiability results show that all 

parameters of the model can be estimated from process data. 

The proposed model effectively captures the behavior of important process variables, such as 

Viable Cell concentration and Product titer, and provides improved results for fitting the system 

under study. The estimation results are obtained by fitting only seven parameters while keeping 

the fixed parameters constant. By carefully selecting the most significant parameters to be 

estimated and assigning appropriate values to the fixed parameters, the overall fitting results 

are quite satisfactory (Chapter 3). At this phase, the metabolomics data are integrated into the 

procedure and bridged to first-principles model parameters using a PLS model. The PLS model 

is accurately calibrated by preprocessing the regressor dataset and by retaining only the most 

informative ions (Chapter 4). The outcomes of this process reveal a robust association between 

the metabolites and parameter values, which embeds chemical-physical and biological 

phenomena characteristic of the system. 

The main objective of the Thesis can be achieved by examining this relationship, as it provides 

access to valuable new insights on the system under study. The most relevant regressors (ions) 

associated with a parameter are identified using the VIP value that allows understanding of 

which metabolites and metabolic traits are most relevant to a particular phenomenon. 

Additionally, a cross-consideration of the PLS beta values allows understanding of the effect 

of each metabolite on the parameter value, specifically the positive or negative effect in 

enhancing or not a particular cellular phenomenon. 

Final results are available only for the subset of the 7 most characteristic parameters, since the 

main limitation of this work is the limited number of experimental points, nevertheless the 

obtained results can serve as a valuable starting point for new considerations related to the CHO 

cell system. An additional constraint is mainly related to the type of cellular system used. 

Enhancing the CHO models can provide significant improvements by strengthening the 

relationships between the model's parameters and the metabolites. 
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This approach, however, is considered quite flexible and can be utilized to study one or more 

cellular phenomena at a time. The potential of this method can easily be improved by having 

many experimental points. Moreover, this strategy allows to approach the problem in an 

innovative way by linking metabolomics data to first-principles model parameters. This offers 

the possibility to investigate the system from a new perspective and generate new insights that 

can be used to improve this type of system. 



 

Appendix A 

Proposed CHO cellular model 

The proposed CHO cell model improves the existing model (Kontoravdi et al., 2010b) for 

describing CHO cell lines. The improvement of the model mainly concerns the role of Lactate 

and Glutamate, but all the introduced changes are fully described in Section 3.4. In this Section, 

the complete structure of the model is presented.  

The model proposed and used in this work is composed of: 

• eight state variables (Table A.1) :𝑉, 𝐶𝑔𝑙𝑐 , 𝐶𝑔𝑙𝑢, 𝐶𝑙𝑎𝑡, 𝐶𝑎𝑚𝑚, 𝑋𝑉, 𝐶𝑚𝐴𝑏 , 𝐶𝑔𝑙𝑛 

• four input conditions (Table A.1): 𝐹𝐼𝑁 , 𝐹𝑂𝑈𝑇 , 𝐶𝑔𝑙𝑐,𝑖𝑛, 𝐶𝑔𝑙𝑢,𝑖𝑛 

• twenty-five parameters (Table A.2Table A.). 

Table A.1. Proposed CHO cell model. List of variables used by the model. 

 Variable 

𝑉  Fedbatch volume 

𝐶𝑔𝑙𝑐  Glucose concentration 

𝐶𝑔𝑙𝑢  Glutamate concentration 

𝐶𝑙𝑎𝑡   Lactate concentration 

𝐶𝑎𝑚𝑚  Ammonia concentration 

𝑋𝑉  Viable cell concentration 

𝐶𝑚𝐴𝑏   Product titer 

𝐶𝑔𝑙𝑛  Glutamine concentration 

𝐹𝐼𝑁  Inlet flowrate 

𝐹𝑂𝑈𝑇   Outlet flowrate 

𝐶𝑔𝑙𝑐,𝑖𝑛  Feed Glucose concentration 

𝐶𝑔𝑙𝑢,𝑖𝑛  Feed Glutamate concentration 
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Table A.2. Proposed CHO cell model. List of parameters used by the model. 

 Parameter 

Kc,lat Control factor to Lactate consumption (high Lactate concentration) 

Kc,glc Control factor to Lactate consumption (low Glucose concentration) 

Yammgln Yield of Ammonia production due to Glutamine consumption 

Yammglu Yield of Ammonia production due to Glutamate consumption 

Ylatglc Yield of Lactate production due to Glucose consumption 

Ylatglu Yield of Lactate production due to Glutamate consumption 

YmAbglc Yield of Product formation due to Glucose consumption 

Yxlat Yield of biomass growth due to Lactate consumption 

k1 Glutamate to Glutamine constant 

k2 Glutamine to Glutamate constant 

Kglc Glucose contribution to cell growth 

Kglu Glutamate contribution to cell growth 

KIlat Lactate contribution to cell inhibition 

KIamm Ammonia contribution to cell inhibition 

Kd,lat Lactate contribution to cell death 

Kd,amm Ammonia contribution to cell death 

µmax Maximum cell growth rate 

µd,max Maximum cell death rate 

Yxglc Yield of biomass growth due to Glucose consumption 

mglc Glucose maintenance factor 

Yxglu Yield of biomass growth due to Glutamate consumption 

mglu Glutamate maintenance factor 

Yxgln Yield of biomass growth due to Glutamine consumption 

mgln Glutamine maintenance factor 

Yglux Yield of Glutamate production due to cell activity 

 

The complete set of equation is here reported: 

 
𝑑𝑉

𝑑𝑡
= 𝐹𝐼𝑁 − 𝐹𝑂𝑈𝑇 ( 4.1 ) 

 𝑑𝑋𝑉
𝑑𝑡

= (𝜇 − 𝜇𝐷)𝑋𝑉 −
𝐹𝐼𝑁
𝑉
𝑋𝑉 ( 4.2 ) 

 

𝜇 = 𝜇𝑚𝑎𝑥 (
𝐶𝐺𝐿𝐶

𝐾𝐺𝐿𝐶 + 𝐶𝐺𝐿𝐶
) (

𝐶𝐺𝐿𝑈
𝐶𝐺𝐿𝑈 + 𝐾𝐺𝐿𝑈

) (
𝐾𝐼𝑙𝑎𝑡

𝐾𝐼𝑙𝑎𝑡 + 𝐶𝑙𝑎𝑡
) (

𝐾𝐼𝑎𝑚𝑚
𝐾𝐼𝑎𝑚𝑚 + 𝐶𝑎𝑚𝑚

) ( 4.2a ) 

 
μ𝐷 = μ𝐷,𝑚𝑎𝑥 (

𝐶𝑎𝑚𝑚
α𝑛

𝐶𝑎𝑚𝑚
α𝑛 + 𝐾𝐷,𝑎𝑚𝑚

α𝑛
)(

𝐶𝑙𝑎𝑡
𝐶𝑙𝑎𝑡 + 𝐾𝐷,𝑎𝑚𝑚

) ( 4.2b ) 

 𝑑𝐶𝐺𝐿𝐶
𝑑𝑡

=
𝐹𝐼𝑁
𝑉
(𝐶𝐺𝐿𝐶,𝐼𝑁 − 𝐶𝐺𝐿𝐶) − 𝑄𝐺𝐿𝐶𝑋𝑉 ( 4.3 ) 

 
𝑄𝐺𝐿𝐶 =

μ

𝑌𝑥,𝐺𝐿𝐶
+𝑚𝐺𝐿𝐶 ( 4.3a ) 

 𝑑𝐶𝐿𝐴𝑇
𝑑𝑡

= −
𝐹𝐼𝑁
𝑉
𝐶𝐿𝐴𝑇 + 𝑄𝑙𝑎𝑡,𝑔𝑙𝑐𝑋𝑉 + 𝑄𝑙𝑎𝑡,𝑔𝑙𝑢𝑋𝑉 − 𝑄𝑙𝑎𝑡,𝑐𝑜𝑛𝑠𝑋𝑉 ( 4.4 ) 

 
𝑄𝑙𝑎𝑡,𝑔𝑙𝑐 = 𝑄𝐺𝐿𝐶𝑌𝑙𝑎𝑡,𝑔𝑙𝑐 ( 4.4a ) 
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𝑄𝑙𝑎𝑡,𝑔𝑙𝑢 = 𝑄𝐺𝐿𝑈𝑌𝑙𝑎𝑡,𝑔𝑙𝑢 ( 4.4b ) 

 

𝑄𝑙𝑎𝑡,𝑐𝑜𝑛𝑠 =
1

𝑌𝑥,𝑙𝑎𝑡
(

𝐶𝑙𝑎𝑡
𝐾𝑐,𝑙𝑎𝑡 + 𝐶𝑙𝑎𝑡

)(
𝐾𝑐,𝑔𝑙𝑢

𝐾𝑐,𝑔𝑙𝑢 + 𝐶𝐺𝐿𝑈
) ( 4.4c) 

 𝑑𝐶𝐺𝐿𝑈
𝑑𝑡

=
𝐹𝐼𝑁
𝑉
(𝐶𝑖𝑛,𝑔𝑙𝑢 − 𝐶𝐺𝐿𝑈) − 𝑄𝐺𝐿𝑈𝑋𝑉 + 𝑄𝑔𝑙𝑢,𝑥 + 𝑘1𝐶𝐺𝐿𝑁

− 𝑘2𝐶𝐺𝐿𝑈𝐶𝐴𝑀𝑀 
( 4.5 ) 

 
𝑄𝐺𝐿𝑈 =

𝜇

𝑌𝑥,𝑔𝑙𝑢
+𝑚𝐺𝐿𝑈 ( 4.5a ) 

 
𝑄𝑔𝑙𝑢,𝑥 = 

𝜇

𝑌𝑔𝑙𝑢,𝑋
 ( 4.5b ) 

 𝑑𝐶𝐺𝐿𝑁
𝑑𝑡

= −
𝐹𝐼𝑁
𝑉
𝐶𝐺𝐿𝑁 − 𝑘1𝐶𝐺𝐿𝑁 + 𝑘2𝐶𝐺𝐿𝑈𝐶𝐴𝑀𝑀 −𝑄𝐺𝐿𝑁𝑋𝑉 ( 4.6 ) 

 𝑄𝐺𝐿𝑁 =
μ

𝑌𝑥,𝑔𝑙𝑛
+𝑚𝑔𝑙𝑛 

( 4.6a ) 

 𝑑𝐶𝐴𝑀𝑀
𝑑𝑡

= −
𝐹𝐼𝑁
𝑉
𝐶𝐴𝑀𝑀 + 𝑘1𝐶𝐺𝐿𝑁 − 𝑘2𝐶𝐺𝐿𝑈𝐶𝐴𝑀𝑀 + 𝑄𝑎𝑚𝑚,𝑔𝑙𝑢𝑋𝑉

+ 𝑄𝑎𝑚𝑚,𝑔𝑙𝑛𝑋𝑉 
( 4.7 ) 

 
𝑄𝑎𝑚𝑚,𝑔𝑙𝑢 = 𝑌𝑎𝑚𝑚,𝑔𝑙𝑢𝑄𝑔𝑙𝑢 ( 4.8 ) 

 
𝑄𝑎𝑚𝑚,𝑔𝑙𝑛 = 𝑌𝑎𝑚𝑚,𝑔𝑙𝑛𝑄𝑔𝑙𝑛 ( 4.9 ) 

 𝑑𝐶𝑚𝐴𝑏
𝑑𝑡

= −
𝐹𝑂𝑈𝑇
𝑉
𝐶𝑚𝐴𝑏 + 𝑄𝑚𝐴𝑏𝑋𝑉

2 ( 4.30 ) 

 
𝑄𝑚𝐴𝑏 = 𝑌𝑚𝐴𝑏,𝑔𝑙𝑐𝑄𝐺𝐿𝐶 (4.10a ) 

 

 

 

 

 

 

 

 

 



 

 

 



 

Appendix B 

Results of the EET sensitivity analysis 

In this Section, all the results of the EET sensitivity analysis performed in this Thesis are 

reported. 

 
Figure B.1. Results of the EET sensitivity analysis for the Product Titer. 
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Figure B.2. Results of the EET sensitivity analysis for the Viable Cell Concentration. 

 

 
Figure B.3. Results of the EET sensitivity analysis for the Glucose.. 
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Figure B.4. Results of the EET sensitivity analysis for the Glutamate. 

 

 
Figure B.5. Results of the EET sensitivity analysis for the Lactate. 
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Appendix C 

Parity plot for PLS validation 

In this Section, all the parity plots derived for all the PLS models developed in this Thesis are 

presented. 

 
Figure C.1. Parity plot PLS validation for 𝜇max 
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Figure C.2. Parity plot PLS validation for 𝑌𝑚𝐴𝑏𝑔𝑙𝑐 

 

 
Figure C.3. Parity plot PLS validation for 𝑌𝑥𝑔𝑙𝑐  
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Figure C.4. Parity plot PLS validation for 𝑌𝑥𝑔𝑙𝑢 

 

 
Figure C.5. Parity plot PLS validation for 𝐾𝐼𝑎𝑚𝑚 
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Figure C.6. Parity plot PLS validation for 𝑌𝑙𝑎𝑡𝑔𝑙𝑐 

 

 
Figure C.7. Parity plot PLS validation for 𝑌𝑔𝑙𝑢𝑥 
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