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Abstract 

After having realized that climate change does not affect all economic sectors in the same way 

and that financial instruments already existing are not able to fulfill the need of hedging climate 

risks, a possible solution has been found in climate derivatives. A market for these novel 

financial instruments still does not exist: they have been only theoretically conceived. Once 

explored the literature of climate derivatives and highlighted strengths and weaknesses of each 

prototype presented, an alternative pricing method for a type of climate derivative, namely 

temperature option, is proposed and tested through Matlab simulations.  
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Introduction 

In the recent years much has been said about the climate change. In this respect, the birth of the 

Friday for Future or the various COPs (Conference of the Parties) may come to mind. The Paris 

Agreement is surely a landmark in the recent debate about climate change. Its importance is 

due to the fact that it is a legally binding international treaty on climate change. For the first 

time, a binding agreement commits all nations at once to put in effort to counter climate change 

and adapt to its effects. It was adopted by 196 Parties at COP 21 in Paris, on 12 December 2015 

and entered into force on 4 November 2016. The long-term goal consists in keeping the increase 

in global average temperature below 2°C above pre-industrial levels and to pursue efforts to 

limit it to 1.5°C.  

Debates and discussions on the matter have become more numerous: many of them are aimed 

at finding solutions for climate adaption and climate change mitigation. Adaption consists in 

anticipating the climate change adverse effects and in taking measures in order to 

prevent/minimize the possible damages, while mitigation consists in lessening climate change 

impact by preventing/reducing GHG emissions. 

The present thesis fits into this context with the purpose of illustrating a new type of derivatives 

which is intended to facilitate the sharing of climate risks, the climate derivatives. Since climate 

change effects are visible over the long term, these financial instruments ought to be 

characterised by a long maturity (measurable in decades) and pay-off indexed to climate-related 

variables. The use of climate derivatives can in fact be helpful in the raising of funds for 

financing adaption projects for instance. 

In Chapter 1, the climate change problem is presented. Impacts on economy are examined 

through a sector-based approach. Insurance sector and all other sectors are separately discussed 

because of the different financial instruments that can be used to bring short-term relief: CAT 

bonds and weather derivatives, respectively. These instruments are not suitable for hedging 

climate risks given their short maturities (from months to 5 years at most). Indeed, climate 

change effects are barely visible in these limited time spans. The validity of these instruments 

in the context of the changing climate is also discussed. 

In Chapter 2, the climate derivatives are introduced with the purpose of making up for the lack 

of instruments able to cover the long-term. Indeed, climate change effects are clearly visible 

right about that time. The analysis of the literature is done: the climate derivatives considered 

are those ones presented in Bloch, Annan, and Bowles (2010) (and Bloch, Annan, and Bowles 

(2011)), Chikhani and Renne (2021) and Little et al. (2015).  
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These three models are discussed highlighting the potentialities and the criticalities of these 

novel financial instruments. Anyway, there is still no proofs of their performance on the market 

because they are just theoretical instruments. Many assumptions of these models are debatable: 

there is no question of finding the perfect instrument, but it is about finding a credible 

instrument.  

Climate linkers, as presented in Chikhani and Renne (2021), are the climate derivatives which 

have inspired the present thesis: they are credited with the attempt of enhancing the sharing of 

the risks related to climate change which notably affect some economic sectors and some areas 

of the world. Even though closed-form solutions are provided for their pricing, the model for 

pricing requires not only financial and mathematical knowledge, but also physical and 

climatological understanding.  

In Chapter 3, among the range of products presented in the previous chapter, the possibility of 

pricing temperature options (which is one of the climate linkers proposed in Chikhani and 

Renne (2021)) in a manner similar to standard options is explored. As we will discuss, the 

pricing method proposed by the authors is not devoid of criticalities because of the high number 

of assumptions concerning the climate and economic blocks of the model, the chosen 

calibration parameters and the use of IAMs outside the scope of first best policy estimation. 

Two stochastic models, namely the Vasicek model and the Hull-White one, are used to generate 

the underlying temperature processes. Monte Carlo simulations are performed in Matlab to 

simulate the global average temperature paths, compute temperature options prices and test 

their response to changing inputs. After having discussed the results, the preference is given to 

one of the two stochastic models by reason of greater capacity to represent climate dynamics.  

Although the assumption of an ad hoc climate risk premium is a relevant limitation of the 

pricing method proposed, it is necessary since the climate derivatives market still does not exist 

in reality. Assuming a null risk premium would weaken the validity of the pricing model since 

the reference probability would remain the real-world one.   
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CHAPTER 1 Climate change for everyone?  

1.1 The climate change numbers 

By the expression “climate change” is meant the long-term shifts in temperatures and weather 

patterns. Although these shifts may be natural (due to variations in the solar cycle) as seen many 

times during the Earth history, human activities have been the main driver of the acceleration 

of climate change since 19th century, mainly due to burning fossil fuels.1 

To understand the seriousness of the climatic problem, we just need a quick look at some 

relevant indexes such as the global land-ocean temperature and sea level ones. 

Figure 1: Global land-ocean temperature 

                Source: climate.nasa.gov 

Looking at Figure 1, it is possible to understand the magnitude of climate change: the graph 

shows the change in global surface temperature relative to 1951-1980 average temperature. 

Using this reference temperature, the global temperature change is computed taking the 

difference between 0.85 (2021) and -0.16 (1880): the global temperature in 2021 proves to be  

1.01°C higher than in 1880.  

 

 

 

 

 

 

 
1 ‘What Is Climate Change?’, United Nations, accessed 3 May 2022, https://www.un.org/en/climatechange/what-

is-climate-change. 
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Although the global warming is evident even on land, 90% of it is occurring in the ocean. Since 

modern record-keeping began in 1955, water internal heat has been increasing, as shown in 

Figure 22. One-third to one-half of global sea level rise is due to the expansion of water caused 

by the heat stored in the ocean. Each data point in the chart represents a five-year average (e.g., 

the 2019 value represents the average change in ocean heat content in the period 2017 – 2021). 

The last ten years have been the ocean's warmest decade since at least the 19th century with the 

peak of 2021, the ocean's warmest recorded year.3 The vast majority of this added energy is 

stored at the surface (in the range of depth from zero to 700 meters). 

This phenomenon is evident in Figure 3 which shows the annual ocean heat content for the 

period 1993-2019 compared to the 1993 average.  

 

 
2 The shaded blue area indicates the 95% margin of uncertainty. 
3 NASA, ‘Ocean Heat Content | NASA Global Climate Change’, Climate Change: Vital Signs of the Planet, 

accessed 26 April 2022, https://climate.nasa.gov/vital-signs/ocean-heat. 

Source: NOAA climate.gov, adapted from SOTC 2019 

Figure 3: Ocean heat content compared to 1993 average 

Figure 2: Sea heating 

Source: climate.nasa.gov 
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It is based on multiple data sets: surface to depths of 2,300 feet (700 meters) in warm colours; 

from 2300 to 6560 feet (700-2000 meters) in cold colours and below 6,650 feet (2,000 meters) 

as a grey area.4 

The most evident effect of global warming on land is the melting of ice sheets and glaciers. 

According to ice mass measurement by NASA's GRACE satellites, Antarctica mass variation 

since 2002 is proved to consist in a decrease of 152 billion metric tons per year (Figure 4), 

while Greenland one consists in a decrease of 275.0 billion metric tons per year (Figure 5).5 

NSIDC/NASA satellite observations show that September Arctic Sea ice extent6 is declining at 

a rate of 13% per decade, relative to the 1981 to 2010 average.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4 ‘Climate Change: Ocean Heat Content’, Climate.gov, accessed 2 May 2022, https://www.climate.gov/news-

features/understanding-climate/climate-change-ocean-heat-content. 
5 NASA, ‘Ice Sheets| NASA Global Climate Change’, Climate Change: Vital Signs of the Planet, accessed 26 

April 2022, https://climate.nasa.gov/vital-signs/ice-sheets. 
6 Arctic sea ice reaches its minimum each September. 
7 NASA, ‘Arctic Sea Ice Minimum | NASA Global Climate Change’, Climate Change: Vital Signs of the Planet, 

accessed 26 April 2022, https://climate.nasa.gov/vital-signs/arctic-sea-ice. 

Figure 5: Greenland mass variation since 2002 

Source: climate.nasa.gov  

Figure 4: Antarctica mass variation since 2002 

Source: climate.nasa.gov  



6 
 

The additional water deriving from melting ice sheets and glaciers and the expansion of 

seawater due to its warming are the two factors mainly causing the sea level rise.8  

 

 

 

 

 

 

 

 

 

 

Figure 6 tracks the change in sea level and reports the main causes. The signs + and − are used 

to distinguish factors that cause global mean sea level to increase and those that cause sea level 

to decrease. The orange line, starting from 1993, represents the data collected by satellites 

which are characterised by greater accuracy. In the period 1993-2017 sea level is risen of about 

101 millimetres. 

It is easy to understand that these phenomena cannot be considered in isolation because they 

are strongly interconnected . In addition to their strong interconnection, another serious problem 

is related to the speed at which they are occurring. 

Quoting the words of D. Fagre9:  

"Things that normally happen in geologic time are happening during the span of a human 

lifetime". 

Indeed, as stated in IPCC (2012), the frequency and the intensity of most types of extreme 

events are thus expected to significantly change. Climate change will in fact lead to changes in 

the spatial extent, duration and timing of extreme weather and climate events. Unprecedented 

extremes are expected. Changes in extremes can be related to changes in their mean, variance, 

shape of the probability distribution, or all of these. Moreover, weather or climate events which 

 
8 NASA, ‘Sea Level| NASA Global Climate Change’, Climate Change: Vital Signs of the Planet, accessed 26 April 

2022, https://climate.nasa.gov/vital-signs/sea-level. 
9 research scientist from the U.S. Geological Survey Global Change Research Program 

Figure 6: Sea level rise and causes 

Source: climate.nasa.gov   
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are not extreme (when considered individually) may result in climate extremes as a 

consequence of their accumulation.  

Anyway, it should be reminded that natural variability is still the cause of many extreme 

weather and climate events: these extremes would still occur even if there were no 

anthropogenic changes in climate. Thus, it can be said that anthropogenic changes are additional 

to natural multi-decadal variations in climate. 

Figure 7: Billion-dollar disasters by year (CPI adjusted) 

 

     Source: NOAA/NCEI National Centre for Environmental Information (2016) 

Looking at the period 1980-2016 shown by Figure 7, it is noticeable that in the last decade 

there has already been an increase in the frequency/intensity of extreme events as the spike in 

the amount of disaster-related losses with respect to the previous decades witnesses. The item 

which has registered the most relevant rise and so has the biggest impact on the increase in the 

amount of billion-dollar losses is that one related to severe storms. Indeed, the other items have 

remained almost constant. 

1.2 Insurance difficulties 

In 1992 Dr Gerhard Berz, at that time Head of Munich Re's Geoscience Research Group, in  

Berz (1992) already recognised that “the increased intensity of all convective processes in the 

atmosphere will force up the frequency and severity of tropical cyclones, tornados, hailstorms, 

floods and storm surges in many parts of the world” as a result of climate change and warned 

about the consequences for all types of property insurance. Anyway, quoting Ceres (2013), in 

2012 few insurers had “explicit policies to identify or manage the trends of global climate 

change” and many did not “seem to understand the difference between climate variability and 

climate change”. 
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The results of the “Insurance Regulator State of Climate Risks Survey”, conducted by the 

Deloitte Centre for Financial Services and reported in Deloitte United States (2019), reveal that 

still in 2019 many regulators either were not aware of how prepared insurers were to deal with 

this threat or were not fully confident that they were indeed prepared. One-third of the regulators 

surveyed in fact was unaware of insurers’ preparedness to deal with the potential impacts of 

climate change on their financial stability and less than 15% of the regulators believed that 

insurers were largely or fully prepared. Moreover, one-third of them did not know whether 

insurers’ risk models were up to the challenge of capturing and testing climate related risks. 

It is important to note that, regardless of their awareness, the insurers ‘exposure to risks 

associated with climate change is massive. According to rating agencies, whose attention has 

been increasingly drawn by those risks to the insurance industry, the volatility for these firms 

will be magnified by the effects of the climate change and thus risk management challenges 

will proliferate. Existing lines of insurance are already being affected by a dramatic surge of 

pay-outs. According to Swiss Re Institute 2018 Sigma study, as reported in Collier, Elliott, and 

Lehtonen (2021) and shown by Figure 8, disasters produced the record-high amounts of $144 

billion in insured losses and of $337 billion in economic losses that were mainly concentrated 

in the southeast United States and the Caribbean. The 10-year averages were of the much 

smaller amounts of $58 billion and $190 billion, respectively. 

Figure 8: Insured losses in US$ billion at 2020 prices 

        Source: Swiss Re Institute (2020). News release 

Although not all the losses suffered by insurers are weather-related, the authors link the largest 

part of the drastic increase of losses to climate change. They believe that losses will keep 

increasing dramatically in the future due to the impact of climate change on the frequency and 

the severity of natural catastrophes which will likely cause the sharp increase in the number and 

the size of claims.  
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Potential un-insurability associated with increasing frequency and magnitude of extreme 

weather events was already recognised before 2009. The United Nations Environment 

Programme ́s Finance Initiative (UNEPFI) reported that by 2025, insurers may have withdrawn 

from markets where the risks would have become too high for the pool of premium available. 

Warner et al. (2009) reports that CERES10, a sustainability non-profit organization based in the 

US, had identified a growing move by insurers to reduce coverage in coastal areas in its country. 

Regulators are becoming concerned about insurer solvency due to these increasingly severe 

weather-related losses and systemic risks to the insurance industry. They are also sensitive to 

the possibility that spiking insurance premiums and partial or even total withdrawal of coverage 

in certain areas (certain risks will be de facto uninsurable) could limit the insurance availability 

and affordability for consumers.11 

To be more precise, in the short term, theoretically, insurance premiums would rise gradually 

as long as the underlying trend would be properly considered and the insurance market would 

absorb such changes without disruption. However, it cannot be excluded that risk knowledge 

may advance in ‘steps’ leading to jumps in the price over a short period. 

In the long term, insurance premiums could become unaffordable for a part of the population 

in particular for sectors and areas at greater climatic risk. We could say that the changing climate 

would indirectly increase social disparities.12 Not only soaring insurance premiums can lead to 

the impossibility of insuring for the population: as stated by the UN Global Commission on 

Adaption, not all localized effects of climate change are insurable. Quoting Jarzabkowski et al. 

(2019), there may not simply be enough (re)insurance capital to let (re)insurance companies 

remain solvent ensuring the reliability of insurance pay-outs. If this is indeed the case, they 

would not be able to provide in full for the global effects of climate change, even though the 

population could afford the premiums. Anyway, insurance companies still can have an 

important role signalling, through prices, the increasing unsustainability of some areas under 

climate change and bridging the gap between the local adaptation to climate change and the 

policies and development agendas to make it more effective.  

 
10 Coalition for Environmentally Responsible Economies 
11 C. Flavelle, “As Wildfires Get Worse, Insurers Pull Back from Riskiest Areas”, New York Times, 20 August 

2019, accessed 14 May 2022, https://www.nytimes. com/2019/08/20/climate/fire-insurance-renewal.html 
12 European Commission, ‘Sectors affected’, accessed 27 April 2022, https://ec.europa.eu/clima/eu-

action/adaptation-climate-change/how-will-we-be-affected/sectors-affected_en 
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Why will certain risks be “uninsurable”?  The main problem is that the climate change 

undermines the “mutualization of risks” by the insurer. This problem has already been discussed 

many times in the literature concerning the standard natural catastrophe risk.  

A type of risk is not insurable when it does not meet certain criteria which are called insurability 

criteria.  

In Biener and Eling (2012), the insurance criteria, which are presented in Table 1, are 

categorized into three classes: 

• Actuarial 

• Market 

• Societal 

Natural catastrophe (from here, Nat Cat) risk easily violates the insurability criteria. Indeed, the 

losses caused by a Nat Cat are not independent in both time and magnitude. Although the large 

size of the total loss might seem the main uninsurability cause, it per se does not make the risk 

uninsurable. Indeed, Charpentier and Le Maux (2014) reports that  the factor which makes these 

losses too large to be manageable by most insurers is their simultaneity. For this reason, 

Table 1: Insurability criteria and their requirements 

Insurability Criteria Requirements 

Actuarial 

(1) Randomness (of loss occurrence) Measurable and independent 

(2) Maximum possible loss Manageable 

(3) 
Average loss amount and loss 

frequency 

Moderate average loss amount and 

low loss frequency 

(4) Loss exposure Loss exposure must be large 

(5) Information asymmetry 
Moral hazard and adverse selection 

not excessive 

Market 
(6) Insurance premium Cost recovery and affordable 

(7) Cover limits Acceptable 

Societal 
(8) Public policy 

Consistent with societal values and 

availability of services 

(9) Legal restrictions Allow the coverage 

  Source: Tavanaie Marvi, Linders (2021) 
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catastrophe coverage is offered by only large insurance companies which have easier access to 

capital and the possibility to pool the risks with independent ones from other regions.  

The positive correlation among losses is thus the primary reason that makes Nat Cat risks 

uninsurable. As a result of this positive correlation, insurers cannot rely on the law of large 

numbers and so reduce losses variability around their expected value by selling more policies. 

Moreover, the positive correlation increases the likelihood of observing extremely large losses 

in an event which creates a heavy-tail loss distribution for a Nat Cat risk. Given the industry 

regulations requirements about the maintenance of a reserve commensurate with the risk borne, 

a Nat Cat risk with a heavy-tail distribution is not conducive for insurers. Indeed, it can easily 

make the required reserve increase by a significant amount. Referring to Table 1, it is possible 

to say that only criteria 5 and 8, concerning the information asymmetry and the public policy 

respectively, are properly met. In fact, insurers are deemed to have superior understanding about 

the risk and there is no conflict with societal values in their activity. Clearly, there is no room 

for an improvement in a situation of climate change and in the future even criterion 5 might be 

not met due to the worsening of the insurers’ understanding about the risk. 

Insurance companies’ way to deal with natural catastrophes was found almost 30 years ago. 

They were aware of their need to distribute the catastrophe risk going over to small and 

geographically limited populations of policyholders. The financial instruments so far used to 

distribute catastrophe risks into large pools of financial capital are the CAT bonds. 

In section 1.4, these financial instruments are illustrated and the reason why their effectiveness 

is challenged by climate change is discussed. 

1.3 Other sectors difficulties 

Clearly, not only insurance sector will be affected by climate change: the global economy as a 

whole will suffer its impact. Just to get an idea, it is useful to consider the concept of climate 

damage function as exposed by Wade and Jennings (2016) and Neumann et al. (2020). Climate 

damage functions express the economic damages as function of climate inputs: they quantify 

the economic risks resulting from climate change and plot the output level lost over a range of 

warming estimates. They are based on regression analyses using only the damage output of 

more detailed and complex sectoral models, the so-called process based models, which aim at 

reflecting the complex structural, biological, physical and economic relationships explaining 

the way climate change affects economy. Thus, climate damage functions can be a simpler 

alternative (while not a perfect substitute) to process-based models. An economic climate 

damage is measured as the fractional loss in annual economic output at a given level of warming 

with respect to the output in the same economy with no warming. Although all climate damage 
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functions predict a greater loss in annual economic output as the warming level rises, among 

the different estimated climate damage functions there is no consensus for what concerns the 

way in which damages evolve as warming gradually increases. The differences are really 

noticeable in Figure 9 which shows the climate damage forecasts at a given level of warming 

based on estimates by Dietz and Stern (2014), Weitzman (2012) and Nordhaus (2013). 

 

 

 

 

 

 

 

Additional benchmark studies aiming to address the economic impacts of climate change 

from the literature are reported and summarized in Table 2. 

Table 2: Estimates of economic losses from climate change 

Study Warming 
Impact as % on 

GDP 
Comment 

Mendelsohn, 

Schlesinger, 

Morrison and 

Andronova 

(2000) 

2.0°C by 2060 

A cumulative effect 

of a loss of 0.3% of 

GDP in 2060 

Most damages will involve 

agricultural sector. Only OECD13 

economies may gain from 

warming. Individual  countries’ 

damages can be different with 

respect to continental averages. 

Mendelsohn, 

Schlesinger 

and Williams 

(2000) 

2.5°C by 2100 

Cumulative market 

impact costs do not 

exceed 0.1% of GDP 

in 2100 

The market impact costs will 

vary from country to country. 

High latitude countries are 

expected to gain, while low 

latitude ones are expected to lose.  

 
13 Organization for Economic Co-operation and Development 

Source: Covington and Thamotheram (2015) 

Figure 9: Climate damage functions 
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Stern (2005) 

Baseline 

scenario of 

between 2.4°C 

and 5.8°C by 

2100 

An average loss of 

5% of global GDP 

per annum over the 

next two centuries 

Estimates are based on a no 

action scenario. Costs of extreme 

weather alone could reach 0.5 – 

1% of world GDP per annum by 

2050. 

IPCC, Fifth 

Assessment 

(2014) 

Approximately 

2.0°C 

A loss of 0.2% - 

2.0% of GDP per 

annum 

There are large differences of 

impact among countries. 

Delaying mitigation efforts to 

2030 is estimated to increase the 

difficulty of transitioning to low 

long-term emission levels. 

Source: Wade and Jennings (2016) 

However, as also reported in some of the papers shortly summarized in Table 2, the effects are 

tougher in certain sectors.  

In particular, the sectors hard hit are: 

• Agricultural 

• Energy 

• Tourism  

Agricultural sector 

Agriculture is highly dependent on the climate: climate change and climate variability impacts 

on agricultural production would surely concern the crop yields and the location where crops 

can be grown. The crop season has lengthened and will keep lengthening resulting in earlier 

onset of growth in spring and longer growing season in autumn. For any particular crop, the 

increased temperature will have a different effect depending on the crop’s optimal temperature 

for growth. In some areas, warming may benefit the types of crops that are typically planted 

there or, if temperature exceeds those crops' optimum temperature, may force farmers to shift 

to crops not previously suitable because growing in warmer areas.14                                                                                           

Some areas (e.g., southern Europe) will suffer a negative impact altogether because of high 

temperatures, water shortage and extreme weather events: they may trigger lower yields, higher 

yield variability and, over the long haul, the reduction in areas suitable for cultivation. Extreme 

temperatures and precipitation patterns can harm crops and reduce yields especially when 

 
14 OA US EPA, ‘Climate Impacts on Energy’, Overviews and Factsheets, accessed 5 May 2022, 

https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-energy. 
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causing extreme events such as floods and droughts. Other areas (e.g., northern Europe) may 

experience the growth of the agricultural sector due to new crop varieties, higher yields and 

expansion of suitable areas for crop cultivation.15 It would be possible thanks to longer crop 

seasons, more frost-free periods and fewer cold spells.  

Tourism sector 

Climate change will also affect tourism and recreational activities causing important damages 

to regions where tourism plays an important role in the economy. Extreme temperatures will 

considerably make southern Europe less suitable for tourism during the key summer months. 

Conversely, its suitability will improve in other seasons. Moreover, sea level rise and storm 

surge would worsen beach erosion phenomenon.16 Areas living off winter tourism will be 

negatively affected due to the reduction in snow cover and the shortening of the cold season. 

The number of days ideal for recreational snow activities in fact will likely decrease due to the 

warming climate and changes in precipitation patterns. 

Hiking and recreation in parks (e.g., in the Southwest and Mountain West in the U.S.) could be 

affected by the increasing number of wildfires.17 Fires’ impact will also be strong on degraded 

ecosystems in southern Europe: longer and more severe fire seasons are expected in the future. 

Energy sector 

The energy system has to deal with climate threats which not only already exist, but also are 

projected to increase. Indeed, climate change is expected to reduce demand for heating in some 

areas (e.g., northern and north-western Europe and northern U.S.) and to strongly increase 

energy demand for cooling in other areas (e.g., southern Europe and southern U.S.), which may 

further exacerbate peaks in electricity supply in the summer. 

The increase in intensity and frequency of heat waves will make energy supply and demand 

patterns shift, often in opposite directions.  

Taking the U.S. energy sector as an example, Wilbanks et al. (2007) reports that an increase of 

about 5-20% of the demand for energy used for cooling is expected with a 1.8°F (1°C) 

temperature rise, while a decrease of about 3-15% of natural gas, oil and wood for heating is 

expected with the same temperature rise. Dell et al. (2014) revised slightly downwards the 

estimates: a 4.5°F (2.5°C) warming by the end of the century may entail an increase of 10% of 

 
15 European Commission, ‘Sectors affected’, accessed 27 April 2022, https://ec.europa.eu/clima/eu-

action/adaptation-climate-change/how-will-we-be-affected/sectors-affected_en 
16 European Commission, ‘Sectors affected’, accessed 27 April 2022, https://ec.europa.eu/clima/eu-

action/adaptation-climate-change/how-will-we-be-affected/sectors-affected_en 
17 OA US EPA, ‘Climate Impacts on Energy’, Overviews and Factsheets, accessed 5 May 2022, 

https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-energy. 
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expenditure in annual heating and cooling, while a warming of 9.0°F (5°C) may entail an 

increase of 22% of that expenditure. 

The balance in energy delivery is likely to change: a shift from natural gas and fuel oil to 

electricity is expected because of the greater air conditioning need than heating one.  

Increases in temperature and droughts may reduce the efficiency of power production for fossil 

fuel, thermal and nuclear power plants due to the limited availability of necessary cooling 

water in summer.18 The increased uncertainty in weather patterns deriving from climate change 

will have a direct negative impact on the production of renewable energy in the long term. Solar 

and wind power plants will indeed suffer the resulting sunlight and wind reduction. Heat and 

droughts will harm the production of biomass energy since the crops intended for this purpose 

will be directly affected.19  

Climate change will surely also generate cross-cutting issues for businesses, which will be 

affected in many ways. In particular, climate change is expected to hit disproportionately hard 

small and medium enterprises causing business operations disruptions, property damages, 

supply chains and infrastructures disruptions (which will result in increased costs of 

maintenance and materials) and price rises.20 

However, it is no coincidence that the sectors considered in this section since impacted by the 

long run climate risk are primarily affected by weather risks. Indeed, climate change is clearly 

reflected in weather conditions either in the form of increase in frequency and severity of related 

catastrophic events or their gradual change.  

Anyway, it is certainly easier to hedge the weather risk than the climate one. Nevertheless, it 

should be remembered that hedging weather risk does not respond to the same need that hedging 

climate risk would respond to. The financial instruments so far used by many economic 

activities to hedge the short-term risk deriving from weather phenomena are the weather 

derivatives. They are not new: these instruments have been on the market for almost 25 years.  

In section 1.5, these financial instruments are illustrated and the reasons why they are not 

suitable to hedge the climate risk are discussed. 

 
18 OA US EPA, ‘Climate Impacts on Energy’, Overviews and Factsheets, accessed 5 May 2022, 

https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-energy. 
19 European Commission, ‘Sectors affected’, accessed 27 April 2022, https://ec.europa.eu/clima/eu-

action/adaptation-climate-change/how-will-we-be-affected/sectors-affected_en 
20 European Commission, ‘Sectors affected’, accessed 27 April 2022, https://ec.europa.eu/clima/eu-

action/adaptation-climate-change/how-will-we-be-affected/sectors-affected_en 
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1.4 Transferring the risk: CAT bonds 

Given that the economic viability of traditional insurance companies’ activity is challenged by 

catastrophe risks, transferring large risks exceeding a predefined limit seemed to be a solution. 

Through reinsurance and ‘alternative risk transfer’ instruments such as catastrophe bonds and 

other insurance-linked securities, catastrophe risks are in fact distributed into vastly larger pools 

of financial capital rather than over relatively small and geographically limited populations of 

policyholders.  

In order to illustrate the factors which make reinsurance possible and the ones which cast doubts 

on its effectiveness in the future due to climate change, this section mainly relies on Tavanaie 

Marvi and Linders (2021) and Kurniawan et al. (2021). 

Tavanaie Marvi and Linders (2021) considers the direct impacts of natural catastrophes on 

buildings pertaining to property and casualty type insurance (P&C) to present the possibility of 

transferring the systematic risk to the capital markets.  

For an individual building, the size of the loss depends on the physical features of the building 

(construction material, floor plan, etc.) and the hazard intensity at the property specific 

geographical location in the region. Categorizing buildings into classes according to their 

response to the hazard let the physical characteristics be captured. The loss estimation function, 

which presents the relationship between the loss size of a building and the specific natural 

hazard intensity at the property location, is composed of two parts: 

1. the deterministic non-decreasing trend g(·) which is function of X, the intensity of a 

natural hazard. Given that the intensity of the hazard varies in the region, X is the local 

evaluation of the intensity at the building location.  

2. the stochastic term , whose variance may change by the hazard intensity. 

For simplicity, the following assumptions are made by the authors:  

• ε is a random variable with standard normal distribution 

•  is the loss standard deviation given the intensity of X around its average value or ( ).  

For a specific natural hazard, the building i in a region will suffer the random loss  as 

= ( ) +  

Although the intensity of a natural hazard is varying across a region, its local realizations are 

related to each other. The intensity variability can be featured by the physical model that 

underlies the natural phenomenon (also called hazard model), while the event parameters 

reflecting the characteristics of the specific natural hazard considered can be featured by initial 



17 
 

values and/or boundary conditions of the model. The hazard model is clearly different for each 

hazard type (e.g., flood, hurricane, earthquake) and requires the calibration for the specific 

region in which the hazard takes place. The events parameters required for estimating the 

intensity in a region are indicated by the specific hazard physical model. Given the random 

magnitude of natural phenomena, the events parameters will be a set of random variables in 

order to represent such characteristic. The calibrated hazard model determining the intensity of 

the hazard in any part of the region considered is assumed to be known and denoted by the 

deterministic function . Thus, each hazard intensity local evaluation, , can be defined as = ( ; ), where the vector Θ denotes the event parameters required by the model, while 

the vector  encompasses the buildings’ location in the region. So, the s are all dependent, 

through the deterministic physical model , on the event parameters Θ and on the buildings’ 

fixed geographical location .  

Since , for any s, is non-decreasing as Θ changes to the event parameters representing an 

event with lower exceedance probability (so, a less frequent event), s and subsequently ( )s are correlated. Functions (·)s are non-decreasing. Even the s are non-decreasing 

with increasing hazard intensity. 

There is a positive correlation among building losses which can be attributed to the event 

intensity (captured by parameters in Θ). Given a specific hazard intensity , the part ( ) is 

the deterministic term of the building loss called systematic loss. Aggregating the correlated 

systematic part of the loss for the individual buildings, the systematic loss of the region can be 

expressed as  

= ( ) = ( ; ) = ( ) 

, which represents the systematic loss of the region (assuming the presence of  buildings in 

the region), is a deterministic function of Θ given that the location of the buildings , their 

structural characteristics (captured by (·)) and the hazard model of the region (captured by 

(·)) do not change. So, it can be simplified to (Θ).  

Summing the residual losses of the buildings in the region, the residual loss of the region ( ) is 

obtained as shown in  

= ~ 0,   (0, ) 

, which is the sum of  normally distributed random variables, is a normal random variable 

with ( )  = 0 and ( ) = ∑ . For simplicity, its standard deviation is written as 
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σΘ. The part , which is uncorrelated among the buildings of the region, is the stochastic 

term of the building loss called residual loss.  

So, in the end, the total loss of the region ( ) is equal to the sum of the systematic and the 

idiosyncratic residual loss of the region as it is possible to see in 

= = ( ) + = +  

The part of the natural catastrophe risk which can be transferred to the capital markets by issuing 

parametric CAT bonds is the systematic one. By transferring the systematic risk to the capital 

markets, given that the residual loss is uncorrelated among the buildings of a region, the 

remaining part of the risk, namely the residual risk, becomes idiosyncratic and hence insurable. 

After hurricane Andrew hit the Bahamas, Florida and Louisiana in 1992, CAT bonds were 

created. The effects of the hurricane were disastrous. The hurricane in fact sent eleven insurance 

companies into bankruptcy. The insurance industry understood that the tail risk linked with 

natural disasters could have been so severe to jeopardize insurance companies’ solvency due to 

the lack of sufficient reserves to cover it. Entering into a reinsurance treaty with a special 

purpose vehicle (SPV) let the insurance company diversify natural disaster risk through 

financial markets and investors. Through a SPV, an insurance securitization is performed: 

insurance risk is converted into financial or investment risk. The SPV, which would cover losses 

if an event were to happen, issues securities to finance this coverage, the catastrophe bonds. In 

exchange for possible loss payments, the cedent insurer pays a premium to the SPV. 

Catastrophe options are very similar to excess reinsurance as far as the functioning is concerned: 

the right to a cash payment is given to the purchaser in the event that a specified index of 

catastrophe losses reaches the strike price previously specified.  

CAT bonds potential is undoubtedly huge in a normal situation and the market data prove that 

it has already been seen.  

Swiss Re (2021) reports that the overall market keeps growing and it is well on its way toward 

its third consecutive year of growth (Figure 10). Since 2011, the catastrophe bond market has 

achieved a Compound Annual Growth Rate (CAGR) of 9.9%. This pace of growth may make 

a USD 50 billion market possible by the end of 2025. 
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Anyway, it’s not all roses because we still have not considered climate change and CAT bonds 

are surely not invulnerable to it and its consequences. At the moment, according to Morana and 

Sbrana (2019), climate change risk may not yet have been properly incorporated in CAT bond 

multiples (or return per unit of risk), that is to say the coupon to expected loss ratio. This ratio 

yields a measure of CAT bonds riskiness. Falling CAT bond multiples observed were mainly 

related to the Fed’s expansionary monetary stance and to portfolio shift effects: natural disaster 

risk is evidently and significantly undervalued. This is consistent with the inconclusive 

available empirical evidence on the pricing of climatic change in financial markets reported in 

Monasterolo and De Angelis (2018). To be clearer, the problem would not concern the single 

issued CAT bond: it would not directly suffer the effects of the climate change because of its 

short maturity (from one to five years, but usually not higher than 3 years). The real problem 

would concern the validity of the instrument in itself in the future. 

Recovering the model presented for flood losses and the CAT bond price sensitivity analysis 

performed in Kurniawan et al. (2021), some climate change implications for these instruments 

are shortly discussed. 

According to its regular functioning if a natural disaster occurs during the CAT bond contract 

and it causes a loss to the sponsor exceeding the threshold  specified in the contract, the loss 

will be paid by the issuer to the sponsor. Conversely, if no disaster triggers the CAT bond, all 

money deposited by the issuer as part of the CAT bond will be returned to the investor. Looking 

for expectations of the formed cash flow structure it is possible to obtain the CAT bond price 

formula as follows ( , ) = ℚ ( , ) ∙ Ψ|ℱ  

Figure 10: Catastrophe bond market issued vs outstanding notional 

Source: Swiss Re Capital Markets Deal Database, as of June 30, 2021 
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 where:  

• ( , ) is the price of CAT bond at time  with the end time of the contract   

• ( , ) is the discount factor 

• Ψ represents the cash flow 

• ℱ  is a filtration, which is an increasing family of sigma-algebras on the set of states of 

the world, so that ℱ ⊆ ℱ , for all 0 ≤ ≤  

• the conditional expectation ℚ  ∙ |ℱ  represents the expectation under the risk-neutral 

probability measure ℚ given the information available at time  . 
The cash flow can be also written as Ψ = − 1 = ∙ (1 − 1 ), where: 

•  is the face value of the CAT bond  

•  is the trigger time for CAT bond, whose value is the minimum  where the cumulative 

loss value reaches the threshold  

•  is the proportion of the invested money  deducted by the issuer as part of the 

compensation to the sponsor  

• 1 is the indicator function of the event <  which means that 1            <0       ℎ  

If a natural disaster occurs after the contract ends ( > ), at the end of the contract the investor 

will get all his money back and thus the cash flow will be Ψ = . If a natural disaster occurs 

before the contract expires ( < ), the investor will get his money back after deducting the 

proportion ω, whose value is between 0 and 1 depending on the amount of loss incurred. Thus, 

the cash flow will be Ψ = (1 − ). 

Substituting the cash flow formula in the CAT bond price formula and assuming that the 

discount factor is independent of the random variable, the following formula for CAT bond 

pricing at time = 0 is obtained: 

(0, ) = (0, ) ∙ ∙ ℚ (1 − 1 )|ℱ  

Given that the CAT bond presented in Kurniawan et al. (2021) is designed for floods, a model 

for describing flood losses is needed. Flood losses are modelled by following Merton’s Jump 

Diffusion Process model21, which can be written as  

= + + ( − 1)  

where:  

• μ is the drift or trend, whose value can be found from the average loss 

 
21 Jump processes are used to address the problem of fat tails in losses distribution. 
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• σ is the volatility, whose value can be found from the standard deviation of losses 

•  represents the Brownian motion 

• Y represents the jump factor which is normally distributed with a μ  average and a 

σ  standard deviation 

•  declare a standard Poisson process with the parameter λ 

Given that the cumulative loss curve must be an increasing monotonous curve, an adjustment 

procedure is needed to avoid curve downwards movements which may be possible due to model 

randomness. So, if the loss recorded at time  is lower than the loss recorded at time − 1, then 

the loss at time  will be reported as equal to the loss recorded at time − 1. 

A jump detection is performed by the Sequential Average (SEQAVG) algorithm in order to 

obtain the jump frequency λ, the average jump μ  and the jump standard deviation σ . In Riley 

(2008), SEQAVG algorithm is explained in detail. At first, the length of the data group (or 

group size) is specified. Denote it as ℎ. The default ℎ , that is the number of data divided 

by 10, can be used. The jump threshold limit can be set manually. Denote it as . Anyway, 

in Kurniawan et al. (2021), it is the default one, that is  = 3 ∙  at Averaging Factor (AF), 

with AF equal to the number of data divided by ℎ . Then, the average of the first group is 

computed. Thus, the jump limits, which will be considered to detect a jump, are defined as   =   ±  . Looping through all data starting from  =  ℎ +  1, the 

exceedance of jump limits is verified. If they are exceeded and so there is suspicion of a possible 

jump at   =    , the local average, which is the average over from 1 to ℎ points starting at 

the suspected jump, is computed in order to precisely verify the jump limits exceedance. If the 

limits are not exceeded and so the jump is disproved, the loop restarts from  =   +  1. On the 

contrary, if the limits are exceeded, the local average computation is performed from  =   to  =   +  ℎ –  1. In the event that the jump is confirmed, the new average, which will 

become the new base in determining the  , is computed. The loop restarts from  =  +  1. After all data are tested, it is possible to compute the actual frequency averages between 

jumps and the other parameters. 

After having defined the stochastic model for flood losses, the authors have performed a Monte 

Carlo simulation in order to obtain cash flow expectations and so to compute CAT bond prices. 

Then, other simulations have been performed to analyse the relationship between CAT Bond 
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prices and the input parameters , ,  and . The simulations have been performed using the 

set of parameters presented in Table 3.  

Given that the contract for the bond is assumed to be one year, the value of  is 1. The face 

value  must be determined by the bond issuer: the authors has chosen 10 × 10  rupiahs as a 

plausible value for the simulation since the loss deriving from floods in 2019 is in billions of 

rupiahs. The other five parameters are based on the computations performed in the Jump 

Detection process. The model relies upon maximum rainfall data of the 10-year period 2009-

2019 from six urban villages (Keputih, Kedung Cowek, Gubeng, Wonorejo, Wonokromo, and 

Gunung Sari) in Surabaya, the second-largest city in Indonesia.  

Checking the results, it is possible to state that the number of iterations  does not really affect 

the price of CAT bond and that price changes are not too significant for different values of . 

As shown in Figure 11 and Figure 12, the parameters greatly influencing the CAT bond price 

are the threshold  (even if over 2 × 109 the price remains almost constant) and the proportion 

ω.  

In Figure 11, the simulation has been performed setting the value of ω at 0.8, with N = 1000 

and r = 0.05.  

Table 3: Kurniawan et al. (2021) simulations' parameters 

Parameter Value 

T 1 

V 10 × 10  

 8.5802 × 10  

 1.8201 × 10  

 0.0055 

 4.8758 × 10  

 3.3335 × 10  
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In Figure 12, the simulation has been performed setting the value of  at 6 × 108, with 

N = 1000 and r = 0.05. 

 
 

 

 

 

 

 

 

 

 

Decreasing the threshold and increasing the proportion could be a reasonable move for 

reinsurance companies because of the increasing frequency and intensity of natural disasters, 

even if it would have negative effects on prices. Given that CAT bonds’ prices are paid by 

investors to reinsurance companies, very low prices would consist in lower income for 

reinsurance companies. As the size of catastrophes increases, the limitation of reinsurance 

markets could emerge: if the risk is too large to aggregate and diversify, the reinsurance industry 

in its entirety may not be able to provide sufficient capital to cover a loss.  

Source: Kurniawan et al. (2021)  

Source: Kurniawan et al. (2021)  

Figure 11: Price curve by threshold H 

Figure 12: Price curve by proportion ω 
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1.5 Weather derivatives, not climate ones 

Weather can be either catastrophic or non-catastrophic according to its severity of impact. 

Catastrophic weather includes the above-mentioned low probability extreme events. These 

events (e.g., hurricanes) cause massive financial damages threatening lives and properties. 

Catastrophic weather risk is covered by insurance contracts, offered by insurance companies 

thanks to the possibility of resorting to insurance securitization.  

Non-catastrophic weather concerns seasonal deviations in average, minor deviations from usual 

or normal weather (e.g. warmer than usual winters). It affects companies’ performance resulting 

in uncertainty in future cash flows. As regards weather derivatives, non-catastrophic weather is 

concerned. Businesses interested in weather derivatives are mainly belonging to the weather 

(and climate) sensitive sectors which have been presented in section 1.3.  

What does “weather sensitivity” refer to? It refers to the sensitivity of sales, production or costs 

to meteorological elements such as temperature, rainfall, snowfall, wind, etc. If the volatility of 

the output of a sector is due to changes in weather, the sector is said to be weather sensitive. 

The underlying of these derivatives consists of weather data (e.g., daily temperature). Weather 

derivatives are not created to hedge the price of the underlying: they are suitable for hedging 

other risks on which the weather has a major influence (e.g. decline in sales in the energy and 

power sector as a result of a cooler summer than average). Indeed, weather mostly affects the 

quantity of production and/or demand for a given good, not its sale price: weather derivatives 

primary objective is thus to hedge volume risk rather than price risk.  

Going into detail, they are usually based on HDD and CDD: these acronyms stand for “heating 

degree day” and “cooling degree day”, respectively. In Hull (2015), a single HDD is defined as HDD = max (0, 65 − A), while a single CDD is defined as CDD = max (0, A − 65).22 In these 

short formulas, A denotes, respectively, the average of the highest and lowest temperature 

recorded during the day in a specific weather station. In this case the temperatures are measured 

in degrees Fahrenheit. To summarize, a degree day is a measure of how much a day’s average 

temperature deviates from 65 degrees Fahrenheit/18 degrees Celsius and thus of the volume of 

energy required for heating or cooling during the day. Monthly HDD and CDD index values 

consist of the sum of each daily HDD or CDD value. Each daily HDD or CDD value is simply 

calculated according to how many degrees an average daily temperature deviates above or 

below respectively from the baseline of 65° Fahrenheit (in the US) and 18° Celsius (in Europe). 

In Europe, the summer cooling month contracts are not based on CDD, rather they are based 

 
22 The number in the formula is clearly linked to the unit of measurement to which we refer. If the degrees Celsius 

are used, 65 is replaced by 18.  
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on a cumulative average temperature (CAT). Each monthly CAT index includes the daily 

average temperatures’ accumulation over a calendar month: the accumulation period starts from 

the first calendar day of the contract month and ends on the last day of the contract calendar 

month. A seasonal strip contract is built on the cumulative HDD or CDD values recorded during 

a five-month period within the season. The traditional heating season for HDD Seasonal Strips 

runs from November through March. Another heating season encompasses the period 

December - February. The traditional cooling season for CDD Seasonal Strips runs from May 

through September. Another cooling season encompasses the period July - August. Likewise, 

a CAT seasonal strip is built on the cumulative average recorded during the five-month period 

within the season. CAT seasonal strip’s seasons are typically the same of HDD and CDD 

seasonal strips.23 Seasonal strips’ traditional seasons are summarized in Table 4. 

Table 4: Seasonal strips’ seasons 

Strip Seasons 

HDD Seasonal Strip – Winter November - March December - February 

CAT Seasonal Strip – Winter November - March December - February 

CDD Seasonal Strip – Summer May – September July - August 

CAT Seasonal Strip – Summer May - September July - August 

Source: CME group website 

The derivatives shortly described above are just the most common ones because standardized 

and traded in the market. As shown in Table 5, the weather derivatives traded are slightly 

different depending on the area of the world for which they are created and on the customization 

required.  

  Table 5: Weather derivatives range for different areas 

City 

Locations 

Index Used 

Winter 

Index Used 

Summer 
Time Frames for Contracts 

United States HDD CDD 

Weekly, Monthly, Seasonal Strip: A customized 

season of two to seven consecutive months within 

the same general season – October through April 

for Winter, April through October for Summer 

 
23 ‘Managing Climate Risk with CME Group Weather Futures and Options – CME group’, CME group, accessed 

07 May 2022, https://www.cmegroup.com/content/cmegroup/en/education/articles-and-reports/managing-

climate-risk-with-cme-group-weather-futures-and-options.html 
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Canada HDD CAT, CDD Monthly, Seasonal Strip: Same as U.S. contracts 

Europe HDD CAT Monthly, Seasonal Strip: Same as U.S. contracts 

Asia Pacific CAT24 CAT24 

Monthly, Seasonal Strip: A customized season of 

two to seven consecutive months within the same 

general season – October through April for 

Winter, April through October for Summer 

Australia HDD CDD Monthly, Seasonal Strip: Same as U.S. contracts 

Source: CME group website 

Other examples of weather derivatives offered by CME group are:  

• Hurricane futures and options 

• Hurricane seasonal futures and options 

• Hurricane seasonal maximum futures and options 

• Frost and snowfall indexes 

Outside CME group product range, it is possible to arrange derivatives based on other weather 

phenomena such as rainfall and wind. 

One of the main drivers behind the weather derivatives’ market growth is the convergence of 

capital markets with insurance markets as already shown by the spread of catastrophe bonds. 

Starting from their introduction in 1997, as shown in Figure 13, weather derivatives 

experienced periods of great popularity as the widening of the range of contracts offered by 

CME group through the years shows. Their popularity ultimately faded leading to only 10 US 

and 2 European cities traded nowadays.  

 

 
24 CAT index is formed slightly different: the daily average temperature is defined as the arithmetic average of the 

hourly temperatures accumulated over a 24-hour period as reported by EarthSat using data received from the Japan 

Meteorological Agency for the meteorological stations of Tokyo, Osaka and Hiroshima. 
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Anyway, most of the volumes of weather derivatives business are being traded in OTC market. 

One main reason behind this shift is the basis risk which is the risk resulting from the differences 

in weather patterns between the traded location and the hedged location. Weather risk is in fact 

highly geographically localised: weather varies significantly even considering small distances 

between locations. 

From this simple description it is easy to understand that weather derivatives are very short-

term hedging instruments. Their maturities are often expressed in months. In such short 

maturities it is not possible to clearly see the effects of climate change. Therein lies the problem 

because climate change has been proving that weather does not necessarily need to be extreme 

to have serious financial consequences on companies’ performance. Indeed, even small but 

continual adverse weather deviations can cause negative impacts on companies’ cash flows and 

value in the long term. In the future it might be necessary to move the thresholds of these 

contracts forward because of the progressive extreme climate new ordinariness. Anyway, 

moving the threshold just means adapting the reference point to changing climatic conditions: 

the long-term climate risk would be still uncovered and the economic activities would be 

jeopardized in any case in the long run. 

Considering for example the energy sector, weather derivatives can be an efficient way to hedge 

a problem of one season every now and then. As mentioned in Dell et al. (2014), energy 

companies sell HDD or CDD contracts in order to manage the risk of diminished revenues 

under mild weather conditions given that the quantity of energy sold is strongly dependent on 

consumer demand which is, in turn, driven by temperatures. HDD or CDD contracts can be 

utilized to guard against the volumetric risks which are based upon the quantity of energy that 

might be expected to be marketed throughout the course of a heating or cooling season. 

Anyway, given that warming will likely increase summer peak electricity demand, meeting 

Figure 13: Number of listed contracts at the Chicago 

Mercantile Exchange, by continent, from 1999 to 2018 

Source: CME group website 
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increases in demand sooner or later may require investments in new energy generation and 

distribution infrastructure. Moreover, the system reliability and peak demand management, 

through new mechanisms to be put in place, will be necessary. This activity can be more 

expensive than average demand levels.  

Although their recently limited popularity and their unsuitability to hedge long term climate 

risks, there is still room for weather derivatives, especially for what concerns the hedging of the 

short-term climate change effects. Clearly, they are a transitional solution to face the climatic 

problem satisfying the short term needs of protection.  

The best way to tackle the climatic change would undoubtedly be to speed up the transition to 

a low carbon economy. In order to limit global warming, GHG emissions, which mainly consist 

of carbon dioxide (CO ) and methane (CH ), must be significantly reduced. Carbon dioxide 

enters the atmosphere mainly through the burning of fossil fuels and natural materials for 

transportation, energy production and industrial processes, while the production of natural gas 

and oil entails the largest part of methane emissions. To realize the low-carbon economy and 

achieve the zero GHG emissions objective by 2050, according to IEA (International Energy 

Agency) estimates, total CO2 emissions need to fall by approximately 45% from 2010 levels 

by 2030 and, to do so, the demand for coal will need to fall by 60% by 2030 with developed 

markets shifting away from reliance on it as a fuel source to renewables.25 

It is clear that until the achievement of these challenging goals climate risks will not be spread 

equally among sectors and areas of the world. The need of instruments which can spread long 

term climate-related risks is evident. Anyway, these instruments still are not available in the 

market although some instruments have been theorized. In the following chapter, these 

hypothetical climate derivatives will be illustrated.  

 

 

 

 
25 ‘Climate Risk and the Transition to a Low-Carbon Economy’, The Harvard Law School Forum on Corporate 

Governance, accessed 13 May 2022, https://corpgov.law.harvard.edu/2021/03/02/climate-risk-and-the-transition-

to-a-low-carbon-economy/ 
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CHAPTER 2: Climate Derivatives 

2.1 Are they really different? 

The problems we faced in shortly examining the financial instruments already on the market 

which might seem suitable to hedge and protect from climate change are mainly their short 

maturity and so the inability by the indexes they are built on to properly encompass the climate 

change dynamics.  

As shown by Figure 14, there are no financial instruments able to cover the long-term. Without 

climate derivatives, climate change issue would not be covered: only its short-term effects 

would be. 

 

 

 

 

 

 

 

 

 

For a long time, the expression “climate derivatives” was used with a similar meaning or even 

as a synonym of “weather derivatives”. This misconception is still widespread as a September 

2021 “Investment Executive” article by “The Canadian Derivatives Institute” testifies. This 

article, titled “Hedging against climate risks using weather derivatives”26, reports that 

 “Weather derivatives — also known as climate derivatives — were launched in 1999 as a way 

to hedge against financial losses related to climate risks. Weather derivatives work similarly to 

insurance.” 

 
26 “Hedging against climate risks using weather derivatives”, Investment Executive, The Canadian Derivatives 

Institute, 10 September 2021, https://www.investmentexecutive.com/inside-track_/the-canadian-derivatives-

institute/hedging-against-climate-risks-using-weather-derivatives/ 

Figure 14: Comparison between weather and climate 

impacts’ timescales and economic and risk management 

Source: Franzke (2017), modified 
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The misunderstanding is evident. In addition to the usage of the two expressions as synonyms, 

in the article it is also implied that even “climate risk” is a synonym of “weather risk”.  

Another example easily found on the Internet is: 

 “Climate derivatives are financial instruments used to hedge against financial losses related 

to adverse weather conditions, such as droughts, hurricanes, and monsoons. Climate 

derivatives, also known as weather derivatives, work in a similar fashion to insurance. The 

buyer of a climate derivative will receive a monetary payment (as stipulated by the derivative 

contract) by the seller of the derivative in the event a certain climate-related event occurs or if 

the buyer suffers any financial loss due to a climate event.” 27 

In this case, in addition to the above-mentioned misunderstanding related to “weather” and 

“climate”, climate derivatives seem to have more in common with CAT bonds than with 

weather derivatives: the payment is subordinated to the occurrence of a predetermined climate 

event.  

Even in academic publications there is no clarity on what climate derivatives are. In Bressan 

and Romagnoli (2021), published in the “Journal of Financial Stability”, without going into 

much detail, the only distinction between a weather derivative and a climate derivative concerns 

the higher riskiness of the latter financial instrument. No distinction is made for what concerns 

the features and the pricing methodology.  

Maybe the lack of clarity is due to the fact that at the present time there is no financial instrument 

on the market with characteristics suitable to hedge climate risk in the long term. Anyway, this 

is only partially true because it is possible to find that the concept of “climate derivative”, even 

if in a very early phase, was envisioned right a few years after the birth of the weather 

derivatives’ market. In Thornes (2003) climate derivatives, although envisioned as an advisable 

evolution of weather derivatives, were described as financial instruments having the potential 

to cope with climate fluctuations since multi-year contracts. In particular, they were expected 

to hedge against changes in the climate mean and/or standard deviation. The potential great 

interest by companies having long-term exposure to the climate (e.g., power companies) was 

already recognised given their sizeable amount of capital related to infrastructures. These 

instruments were deemed to be of possible interest to companies in need of forecasting the long-

term future demand level for their products to plan investments (e.g., water companies). 

Anyway, there was no model behind the concept of “climate derivative” and for many years 

this idea remained in the shadows. There are still not so many examples of climate derivatives 

 
27 “Weather Derivative”, Investopedia, J. Chen, 20 May 2022, accessed 14 June 2022, 

https://www.investopedia.com/terms/w/weatherderivative.asp 
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in the literature and there is no record of climate derivatives on the market. It is reminded that 

climate derivatives that will be discussed in the following sections have only been theoretically 

projected.  

Anyway, this lack cannot be an excuse. In the examples provided above the misconception is 

not just a matter of naming: the proper insight of the key characteristics of climate change is 

missing. It is evident that there is no consideration of the fact that the long run matters and that 

climate change effects are strongly correlated and cannot be considered in isolation as a single 

visible event.  

Bloch, Annan, and Bowles (2010) and Bloch, Annan, and Bowles (2011) provide one of the 

earliest models of proper climate derivatives. After having designed a climate model and the 

financial instruments in the former paper, an example of application is provided by the authors 

in the latter paper. They are presented in section 2.2. 

The model of climate derivative (“climate linker”) which has inspired the present thesis is 

presented in Chikhani and Renne (2021). As we will see in section 2.3, climate linkers are 

credited with the attempt of enhancing the sharing of the risks related to climate change which 

notably affect some economic sectors and some areas of the world. Closed-form solutions are 

provided for their pricing. 

An alternative model of climate derivative is presented in Little et al. (2015). As we will see in 

section 2.4, this financial instrument maintains the location specificity which characterises 

weather derivatives, while a wider time span is covered. Its maturity can in fact reach one or 

two decades.  

2.2 Climate derivatives from Bloch, Annan, and Bowles 

(2010; 2011) 

Sea-level rise is the climate change effect addressed in papers by Daniel Bloch and other authors 

(see Bloch, Annan, and Bowles (2010) and Bloch, Annan, and Bowles (2011)). Each project 

manager involved in coastal developments in designing such developments decides the degree 

of sea level rise they must defend against over their useful life. Anyway, the only application 

of cost-benefit analysis and economic optimization techniques in the decision-making process 

is suboptimal from an economic welfare perspective because projects are treated in isolation. 

The cost of such defence, which have multi-decade life-span, is a non-linear function of the 

degree of sea level rise. The authors believes that, thanks to the introduction of climate 

derivatives, it would be possible to redistribute risks between projects (both already built 

projects and newly planned ones). In this way, governments and sea-front developers could 

hedge the financial disruption due to climate events. In fact, given the immediate disbursement 
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of funds conditional on meeting certain conditions characterising derivatives (e.g., a 

predetermined level of sea rise), no assessment of the actual loss incurred is required setting 

climate derivatives apart from traditional insurances.  

Pricing climate derivatives is not like pricing weather derivatives. For weather derivatives 

pricing, the standard method of combining classical market approaches with a weather forecast 

model is used. Given their non-tradable underlying, pricing weather products must be based on 

the actuarial pricing approach of marked-to-model. Anyway, weather data are generally non-

stationary and, hence, forecasting weather in the long term is really difficult.  

Instead, as regards climate data, the authors believe that they are closer to stationary given the 

fact that short-term and seasonal variations are filtered out. Thus, climate data can be 

approximated with a Markov process. To some extent, global mean temperature and, in general, 

climate predictions are more reliable than few days weather forecasts. In the following sub-

sections, the financial instruments and the model upon which they rely are described.  

2.2.1 The model 

The probability space (Ω, ℱ, ℙ), where ℱ  is a right-continuous filtration including all ℙ 

negligible sets in ℱ is considered. Given the market price of risk λ (recalled from Alaton, 

Djehiche, and Stillberger (2002) and assumed to be 0 in Bloch, Annan, and Bowles (2011) for 

simplicity of exposition), the existence of an equivalent martingale measure ℚ is assumed. As 

a result of the absence of arbitrage opportunities, contingent claims can be valued by taking 

expectation of their discounted payoffs under the risk-neutral measure. 

The global mean temperature can be modelled continuously with a diffusion process. In some 

cases, the Atmosphere Ocean General Circulation Models (AOGCMs) can be approximated 

successfully with some linear Markov dynamics. 

Bloch, Annan, and Bowles (2010) considers an Ornstein–Uhlenbeck process for the dynamics 

of the global mean temperature and proposes a realistic semi-empirical model28 for estimating 

the global sea-level response.  

Chaiyapo and Phewchean (2017) is referred for the mathematical definition of an Ornstein-

Uhlenbeck (OU) process. The OU process is the stationary and continuous in probability 

 

28 According to the semi-empirical method, the change in global sea level is related to the change in temperature. 

It assumes the existence of a statistical relationship between the two which can be extrapolated into the future 

using the temperature rise simulated by global climate models.   
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stochastic process which describes the characteristic of a mean-reverting process (it drifts 

toward the mean). The stochastic differential equation of the OU process is  

= ( − ) +  

where: 

•  is the rate of mean reversion 

•  is the long-run mean 

•  is the process volatility 

•  is the Wiener process 

Returning to the original notation and denoting as ( )  the global mean temperature (valued 

in the open subset  under the historical measure ℙ), as ( )  the sea-level process and as ( )  the baseline temperature, the following SDEs are obtained relying on the definition of 

the OU process. 

= ( − ) + ( ) ( ) 

= ( − ) + ( ) ( ) 

= ( − ) , =  , <  

The Brownian motions are uncorrelated, that is 〈 , 〉 = 0. 

For the sake of clarity: 

•  is the equilibrium or mean value supported by fundamentals (the long-run mean) 

•  and  are the volatilities caused by the shocks 

• > 0 is the rate of mean reversion, which means the rate by which the shocks dissipate 

and the variable reverts toward the mean 

•  is the deviation of spot price from its long-term value. It is a base temperature at 

which sea level is in equilibrium with climate, so that the rate of change of sea level is 

proportional to the warming above that level. The baseline temperature at which there 

is no sea-level rise is assumed to be 0.5°C below the mean temperature of the period 

1951–1980.  

• > 0 is the rate of mean reversion of the base temperature. 

For the model viability, it is necessary that < , so the speed of mean reversion of the baseline 

temperature must be smaller than that of the global temperature. 

Integrating the SDEs, the following solutions are obtained 

= (0, ) + ∗(0, ) 
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= (0, ) + (0, ) 

where: 

• (0, ) = + ( ) , 
• (0, ) = + ( ) + 1 − ( ) − , 
• ∗(0, ) is normally distributed with mean equal to zero and variance equal to ∗ ( ) =

( ) ( )  

•  (0, ) is normally distributed with mean equal to zero and variance equal to  

( ) = ( ) + ( ) ( ) with ( ) = ( )( ( ) − 1)   and 

( ) = ( ) .  
• The weight  is a function of time tending to zero. 

2.2.2 The products 

After having illustrated the model, the types of financial instruments proposed in Bloch, Annan, 

and Bowles (2011); Bloch, Annan, and Bowles (2010) are presented: they are the digital coupon 

swap, the climate default swap and the climate bond. 

Digital coupon swap 

The maturity is discretized into  time-steps representing the fixing period such that = ∆ , 

that is < < ⋯ < .  

For every path of the simulation, the digital coupon swap present value is 

= ( ) { ( )} − ( ) { ( )}  

The coupon  is paid by the buyer of protection in the event that the underlying index  

does not reach the strike value ( ), while the coupon  is paid by the seller of protection 

in the event that the underlying index  reaches and passes the strike value ( ). For ∈
0, , the strike ( ) is piecewise constant given by ( ) = ∑ , ( ) where  is a 

positive constant. Either the coupon  and the coupon  are paid at the considered 

fixing date  . Moreover, they can either be a cash value or a function of time.  

Given the linearity of this product, its present value at time  = 0 can be rewritten as a sum of 

digital options 

= ( , ) ( ) ( ) − ( ) ( )  
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It is the sum of the difference between the present value of two floating legs where each leg is 

expressed as a coupon weighted by a probability of exercise.  

Letting the coupon ( ) be given by ( ) = ( ) + ( ) 

where the spread  is determined at  and maintains the same value regardless of the reference 

date  (thus, it is a positive constant), then the par value is 

, ( ) = ∑ ( , ) ( ) 2 ( ) − 1
∑ ( , ) ( )  

Given the choice of underlying process’ Gaussianity, the pricing framework is similar to that 

one of the Bachelier model. The swap pricing is explained under the risk-neutral measure. 

As results from the reformulation of swap in terms of digital options, the swap price depends 

on the price of a digital option. Given the maturity  and the strike ( ), the digital option at 

time  = 0 is 

( , ( ), ) = ( , ) ( ) = ( , ) ( ≥ ( )) 

where from  = (0, ) + (0, ),  the set of exercise becomes  

{ ( , ) + ( ) ≥ ( )} 

where  ∼  (0, 1) is a standard Normal random variable.  

Therefore, the price of the digital option becomes 

( , ( ), ) = ( , ) 1 − Λ( )  

where Λ( ) = ( ) ( , )( )  and (∙) is the cumulative distribution function of the standard 

normal distribution. 

Putting terms together, the digital coupon swap becomes 

( ) = ( , ) ( ) Λ( ) − ( ) 1 − Λ( )  

In the special case where ( ) = ( ) + ( ) the par value simplifies to 

( ) = ∑ ( , ) ( ) 2 Λ( ) − 1 ∑ ( , ) (1 − (Λ( )))  
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Climate default swap 

The climate default swap allows one to transfer the climate risk of a reference entity named C 

between two counterparties A and B. Based on climate data, the swap transparently lists the 

trigger events to recover part of the value of the risky asset.  

Assume that: 

• A buys protection until swap maturity against the risk of a loss in the event that reference 

C defaults. 

• As a result, A pays a coupon, called the fixed leg of the swap, to the seller B on fixed 

event dates until the reference C defaults or swap maturity is reached.  

• In the event that C defaults before maturity of the swap, the seller of the protection B pays 

the buyer protection to A.  

Payment can be made in two ways, physical settlement or cash settlement, and it is 

equivalent to the difference between the nominal of the debt covered by the swap and the 

recovery rate observed at default time.  

1. In the first case, the buyer of protection A delivers the seller of protection B a 

number of bonds issued by C corresponding to the nominal of the swap and 

receives in return the nominal of the swap paid in cash.  

2. In the second case, the seller of protection B provides cash payment 

corresponding to par value minus the recovery rate (1 −  R) to the buyer of 

protection A. The recovery rate is calculated from quotations obtained after the 

default event. The spread or margin that cancels the climate default swap (CDS) 

is called the fair spread or fair margin.  

Assuming coupons are paid until default, ignoring the running coupon and 

recovery payment at default time, the fair spread, computed equating the fixed 

leg and the floating leg, would be  

∗ = (1 − ) ∈∑ ( − ) ( , ) ( > ) 

where the probability that the underlying reaches the barrier level during the time 

increment  is = , which is the density of the random variable  that can 

be obtained once known the distribution function ≤ . 

The similarities between climate and credit default swap are evident. Maintaining the same 

notation, the credit default swap can be defined, quoting e.g., Amadei et al. (2011), as a contract 

aimed at transferring a credit exposure on a bond issuer, which is the “reference entity” C, in 

relation to a given nominal value. The swap buyer A, in exchange for the recurrent payments 
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of the premium to the seller B until the credit maturity date, will receive a positive payoff from 

the seller B in the event that a credit event occurs in relation to the reference entity C.  

When a credit event occurs, the contract is terminated and the seller B must pay the buyer A 

the nominal contract value. Again, payment can be made in two ways: 

• physical settlement, according to which the swap buyer A delivers the reference entity 

bonds in exchange for their nominal contract value 

• cash settlement, according to which there is no exchange of the underlying securities 

and the seller B pays the buyer A the difference between the nominal value and the 

underlying bond market value. 

Thus, CDS pricing methodology has been developed similarly to credit default swap one. It 

would be possible to apply the logic of pricing credit derivative products to climate derivatives 

replacing the survival probabilities and default time densities with the first-passage 

complementary distributions and first-passage time density. 

The distribution of the first passage time is of critical importance in the valuation of the contract. 

With the sea-level issue, company A is long the protection against the underlying reaching an 

up-barrier level   with = , where λ is a positive constant and ( )  is the underlying 

process defined on (Ω, ℱ, ) and the default is the first passage time of the barrier τ =inf {t; > b }, which is, for instance, the first time the sea level rises above the barrier level 

at a given fixing date. On one hand, company A would pay company B the fixed payment  

at time at , = 1, … ,  where  is the number of payments up to time . Thus, the fixed 

payment would be { } at . On the other hand, company B would pay the recovery 

value R to company A conditional on the underlying passing of the barrier. 

The fixed leg of the climate default swap, assuming continuous payment for simplicity, can be 

written as  

 = ( ) > |ℱ  

The floating payment is { } at τ, so the floating leg of the climate default swap can 

be written as   

 = (1 − ) ∈ |ℱ  

It is linear in the recovery value .  

Equating the fixed leg and the floating one at time  the default climate rate ( ) at maturity 

 is obtained. Therefore, the par default climate rate is given by  
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, ( ) = (1 − ) ( , ) ∈( , ) >  

The underlying probability of reaching the barrier level during the time increment  

is = =    .  
Given that no analytical survival probability29 for an Ornstein-Uhlenbeck process is known by 

the authors, numerical tools should be used to estimate the first passage time of the sea level 

process . 

Climate Default Bond  

A special case of the climate default swap is the climate default bond.  Recalling the first 

passage time τ with barrier level , denote the bond maturity as  and the protection maturity 

as ∗such that ∗ ≤  . The protection maturity ∗, associated the first passage time τ of the 

barrier level , is relevant for determining the bond payoff at bond maturity .  

Assuming a unity face value and following Longstaff and Schwartz (1995)30, the payoff at 

maturity is = { ∗} + { ∗}(1 − ) 

The payoff would be 1 in the event that the first passage takes place when the protection is 

ended, while it would be (1 − ) in the event that the first passage takes place before the ending 

of the protection. 

So, the climate default bond at time  in the risk-neutral measure is: 

( , ∗, ) = − { ∗}  

Since interest rates are independent of the climatic variable and thus deterministic, it is possible 

to simplify the notation of the price of the climate default bond as 

( , ∗, ) = ( , ) 1 − ( ≤ ∗) . 
It consists in the estimation of a default event occurrence probability. In the limit, when → 0, 

the risk-free bond is recovered. Given that the yield at time  is ( , ) =
 

29 The proportion of units that survive beyond a specified time. 

30
 In particular, the payoff structure for the valuation of floating-rate debt is recovered. Denote as ( , ,  , ) the 

value of one floating-rate coupon payment to be made at time  with the floating rate determined at time , ≤  . 
The payoff on this claim at time  is the value of  at time  if default does not occur prior to , and (1 − )  if 

it does. The payoff of this claim at time  can be expressed as 1 −  ,where  is the indicator function 

which takes value 1 if first-passage time  is less than or equal than  and 0 otherwise. 
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 − ( , ∗, ), the spread with a risk-free bond is ( ) = ( , ) +
( , ). The spread, recalling the simplified version of climate default bond price 

formula, can be written as ( ) = − log (1 − ( ≤ ∗)). 

2.2.3 The estimation 

Although the model is a continuous stochastic one, in order to infer the model parameters, the 

authors have chosen an alternative approach to the Linear Inverse Modelling (LIM) method 

described by Penland and Magorian (1993) to estimate mean reversion speed of the model. This 

alternative approach consists in exploiting the fact that the AR(1) model is the discrete 

equivalent of the Ornstein–Uhlenbeck process. Thus, the Ornstein–Uhlenbeck process is 

discretized and the AR(1) model is recovered. 

To price climate derivatives, an appropriate time scale is needed. Sub-annual time scale does 

not matter for the long-term predictions required by these financial products. It is not just about 

the need; it is about the correctness. In fact, the longer-term climate variations are not correctly 

represented looking at the lag-1 autocorrelation of monthly data. Moreover, the annual cycle in 

mean temperature must be correctly removed. To avoid any of these problems, annual data are 

considered. The chosen unit of time ( ) is the sampling interval, presently 1 year. The SDEs 

are integrated using 50-time steps per sampling interval (∆  =  ). 

In order to simulate the model trajectories, parameters’ estimates to some historical data are 

needed. Thus, artificial data are constructed using different climate models: these climate 

models are allowed to run freely under fixed boundary conditions, that is fixed greenhouse gas 

concentrations, and no changes in any of the other external factors (volcanic eruptions, changes 

in solar forcing and human factors are considered so). Excluding changes in the external factors 

and fixing GHG concentration, since factors influencing the balance of energy entering and 

leaving the Earth system, allows to work under constant forcing conditions. Indeed, climate 

forcing is, quoting Denning (2018), “the difference between the rate of energy received by 

absorption of solar radiation and the rate of energy emitted by the top of the Earth's 

atmosphere”. Effects deriving from occasional and unpredictable events (e.g., volcanic 

eruptions) are thus excluded.  In this way, the purely internal variability of the atmosphere–

ocean system is estimated.  

In the example presented in Bloch, Annan, and Bowles (2011), annual mean temperature data 

are generated by the UK Hadley Centre (HadCM3) and the Japanese MIROC climate models 

run for 2000 years. 



40 
 

Assuming ( )  is an Ornstein–Uhlenbeck process with positive constant parameters  and 

, the dynamics of the model are  

= ( − ) +  

The authors assume that, letting = Δ , these dynamics can be discretized as   

= Δ + (1 − Δ ) + √Δ                 = 1, … ,  

where  ~ (0,1), which means that the distribution of  is time-independent. Given , the 

parameters  and  are unknown and must be estimated.  

Setting = ≈ (1 − Δ ) and = √Δ , the process is rewritten as  

= + +  

for = (1 − ) . The sequence , … ,  is a first-order autoregressive sequence with lag-1 

correlation coefficient . Linearly interpolating the values = ( Δ ) for  ∈ 1, , the 

desired path is recovered. The equation for  is the recursive representation of the AR(1) 

process with conditional mean and variance 

| = +  

| = . 
Lagging that equation by  period (where = 1 is the original equation) and recursively 

substituting the result in the original equation, one obtains the following formula 

= + +  

where  

= (1 − ) = − = −  

Assuming stationarity, which occurs in the event that | | < 1, and taking the limit → ∞,
 will approach zero. From the infinite geometric series, one obtains the following formula 

= +  

since = , which is an infinite-order moving average.  
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Recalling Hamilton (1994), in fact, an infinite-order moving average process, which is denoted 

as MA(∞) process, is described as 

= + = + + + + ⋯ 

When the coefficient | | < 1, the condition ∑ < ∞ is satisfied: a sequence of numbers 

 satisfying this condition is absolutely summable (and so also square summable). 

Therefore, the variable  can be written as an infinite sum of past shocks, whose most distant 

shocks have increasingly smaller weights. Since | | < 1, the coefficients are geometrically 

declining . When = 1 the unit root case is obtained and  has infinite memory, which 

means that past shocks never die out. Thus, the closer  is to unity, the more distant past 

matters. 

According to Hamilton (1994), an MA(∞) process which satisfies the condition ∑ < ∞ 

is ergodic for the mean and if the  are Gaussian the process is ergodic for all moments. Since 

in the model we are exploring each  is an i.i.d. standard normal and | | < 1, the 

unconditional mean and variance can be computed as 

=  

( ) = = 1 −  

It can be noted that the unconditional variance is larger than the conditional one when ≠ 0. 
Going forward to the future the number of shocks increases so that the variance grows as a 

function of . 
The equations on the process  are simpler if the time series is first reduced to zero mean by 

subtracting the sample mean as 

= −  for = 1, … ,  

where  is the original time series,  is the sample mean and  is the mean-adjusted series. 

The AR(1) model for the mean-adjusted series in year n becomes 

= +  

Then, a time series of random noise is generated by sampling from an appropriate distribution. 

Assuming some starting values for , a time series of  is recursively generated. The usual 

assumption is that the noise is normally distributed with mean zero and variance equal to the 

variance of the residuals from fitting the AR(1) model to the data. Simulations can be used to 
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generate empirical confidence intervals of the relationship between the observed time series 

and the climate variable. A prediction form of the AR(1) model is = , where the hat 

indicates an estimate. The equation can be applied one step ahead to get the estimate  from 

the observed  while k-step-ahead prediction can be made by applying the above equation 

recursively. The resulting anomaly temperature from the zero mean time series representation 

is more easily measurable than the true global temperature because the former is homogeneous 

over large scales showing no predictable trends or seasonality, while the latter varies much 

more rapidly given the observing stations ‘incomplete coverage. Given that the autoregressive 

parameter of global temperature is estimated by modelling the time series with an 

autoregressive process AR( ) for  >  1, an autocorrelation analysis is performed to determine 

the order : in particular, an autocorrelation function (acf) test called correlogram is performed, 

measuring the correlation  between observations at different times, for lags  ranging from 

0 to 9 years. The acf of an AR(1) model declines geometrically as a function of lag: the chosen 

climate model should exhibit the same behaviour (in the example for the MIROC model the 

same behaviour is observed, for the HadCM3 model not completely). Thus, the Maximum 

Likelihood (ML) method is followed for estimating the parameters of the AR(1) model with 

data generated from the statistically more significant climate model (MIROC one in the 

example). From the estimated parameters it is possible to infer the parameters of the 

temperature process described above. From the estimated autoregressive parameter ,  the 

speed of mean reversion =  for the temperature process is obtained. In the AR(1) model, 

the estimated first order autoregressive coefficient  is normally distributed with variance 

 = ( )
. Therefore, the 95% confidence interval for  is 95%  = ±

2 ( ). Given that the noise in the change of temperature  is assumed to be normally 

distributed with mean zero and variance equal to the variance of the residuals from fitting the 

AR(1) model to the data, hence, knowing the estimated volatility   and that  =  1, the 

instantaneous volatility of the temperature process  is derived. Then, knowing the model 

parameters, a Monte Carlo simulation can be performed to simulate the trajectories ,  

and  of the model and so the climate default bond/swap can be computed. 

2.3 Climate linkers from Chikhani and Renne (2021)  

Climate linkers, which have been designed in Chikhani and Renne (2021), are defined as “long-

dated financial instruments (bonds, swaps, and options) with payoffs indexed to climate-related 

variables, e.g., temperatures, sea levels, or carbon concentrations” by the authors themselves.  
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2.3.1 The rationale 

In the authors’ intentions these financial instruments would serve three main purposes: 

1) They would facilitate the sharing of (physical) long-term climate risks. Indeed, they 

would be an additional source of reinsurance capacity for the insurance industry and 

would provide direct capacity to those seeking to transfer long-term climate-related 

exposure. 

2) The existence of a novel market for climate risks may stimulate investors to better 

understand climate risks and take them into account in their analyses. 

3) They would offer a public good by making market participants reveal their 

expectations regarding future climate. From this information, which would be 

captured in real-time at high frequency, it would be possible to extract expected 

trajectories of future temperatures from market quotes of temperature-indexed swaps 

or bonds31 and so to judge the perceived credibility and effectiveness of international 

commitments to climate targets. 

For what concerns the first point, it is important to remind that insurance-linked securities (ILS) 

are typically short-term instruments (most CAT bonds have three years maturity). Given that 

climate change is a slow-moving and long-term phenomenon, over such limited horizons it is 

essentially predictable. An ILS risk level does not change between inception and redemption. 

Although ILS enhance the insurance sector capacity to deal with natural catastrophes reducing 

the insurance gap32, they are not helpful for transferring long-term climate risks. Reinsurance 

capacity would be enhanced by climate linkers because of their distinctive capacity of 

transferring these risks.   

Moreover, climate linkers’ availability would help the (re)insurance industry address worse-

than-expected long term scenarios and provide new diversification opportunities for long-term 

investors.   

For what concerns second and third points, it is worth noting that expectations and trajectories 

would be adjusted for risk: risk premiums are embedded in expectations extracted from market 

prices. These market-based expectations may not coincide with future climate physical 

expectations. Changes in climate linkers may be interpreted as changes in expectations in the 

event that risk premium components of their prices vary relatively slowly through time. 

 

31 In the same manner as inflation expectation measures are currently extracted from inflation linkers. 

32 The difference between insured and total losses. 
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Moreover, models could be used to try and extract risk premiums from observed market prices 

to recover the corrected physical expectations. Naturally, such market-based measures would 

not directly improve climate change understanding.  

Market-based measures would however be valuable for the following reasons: 

• Considering that market participants would need climate models for the pricing of these 

instruments, they would engage in their development contributing to research efforts on 

climate modelling. Assuming similarities in the launch phase between weather 

derivatives and climate linkers, it may be useful to refer to Purnanandam and Weagley 

(2016) which reports that the launch of a weather derivative on a city’s temperature 

results in more precise temperature measurement by the dedicated weather station. 

Given that data collected by weather stations become reference points for many 

contracts, the increase in third parties ‘interest and scrutiny creates even more pressure 

on weather stations to produce better measures. Following this reasoning, climate 

models would be refined after the launch of climate linkers on the market to better 

reflect climate dynamics. 

• The observation of changes in these prices (available at high frequency) would allow 

measuring the influence of different types of news on agents’ expectations. Typically, 

one could observe how markets evaluate the effectiveness of policies announced during 

international summits.  

• The trajectories of climate-related variables extrapolated from observed prices may be 

used to construct “market-based” scenarios. These scenarios constructed from market 

data, in addition to model-based scenarios constructed from model output data, may be 

used to price long-term insurance premiums or assets exposed to climate risks.  

Importantly, if climate options were available, the definition of worst-/best-cased 

scenarios (corresponding to specific probabilities) could also be derived. The latter may 

for instance help design climate stress tests. 

According to the authors, governments may be the initial issuers of climate-indexed debt 

instruments. The major benefits of the issuance of these novel types of bonds for governments 

are the potential widening of the investor basis which would support the demand for sovereign 

debt, the strengthening of their incentives to implement policies fighting climate risks given the 

increase in their long-term exposure to these risks and the expectation of earning climate-risk 

premiums when issuing such instruments. 

For what concerns the latter reason, higher payoffs would be delivered in “bad states of nature”. 

Although expected returns of these assets are lower than standard bonds’ ones, investors should 
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be willing to buy these bonds. Moreover, these issuances should be expected to result in lower 

debt service for the government as of the date of issuance.  

Anyway, this reasoning has two main drawbacks: 

1. the premium would be reduced/cancelled in the early years because of the empirically 

observed negative “novelty premium”. Investors in fact tend to ask for higher premiums 

to hold new issued type of assets. 

In Costa, Chamon, and Ricci (2008) the so called novelty premium is hypothesized to 

be due to “the novelty of the instrument, the complexity of the pricing valuation, its 

liquidity, market concerns about the accuracy of variables that affect the payment, co-

movements of return with other assets, the difficulty of fitting this new financial product 

in the overall asset-liability management, and potentially risk aversion”. Novelty 

premium declines as the markets deepen. For example, novelty premium on Argentina’s 

GDP-linked warrants recorded a decline of about 600bp during the first 18 months after 

issuance. 

2. public debt managers ought not to only target the minimization of the average debts’ 

costs. They ought to consider borrowing costs in relation to risk. As reported in Coe, 

Pesaran, and Vahey (2003), according to the World Bank-IMF Guidelines (2001) public 

debt management main objective is “to ensure that the government’s financing needs 

and its payment obligations are met at the lowest possible cost over the medium to long 

run, consistent with a prudent degree of risk”.  

However, the introduction of sovereign climate-indexed bonds would encourage the 

development of climate derivatives markets as it happened for the market of inflation indexed 

derivatives following the introduction of U.S. government inflation-linked bonds. Thus, 

governments could have an important role in reducing entry costs paving the way for private 

issuances. Issuers would be likely firms involved in climate-risk mitigation activities such as 

renewable-energy producers and electric vehicle makers. 

2.3.2 The products 

The range of financial instruments proposed encompasses swaps, bonds and options in order to 

satisfy different investors and hedgers needs. 

Temperature Indexed Swap 

A zero-coupon Temperature Indexed Swap (TIS) is a derivative product which represent the 

agreement between two counterparties to exchange, at predetermined dates, a fixed rate 

payment on the notional amount , which is determined at the time the swap is negotiated, for 

a payment indexed to the reference index, the temperature measure , which is observed after 
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the negotiation. Current negotiation date is denoted by . The indexed payment is made by the 

protection seller to the protection buyer. Given that the maturity date is  +  ℎ, the temperature 

seller will pay  to the temperature buyer on date + ℎ (this is the protection leg of the 

swap). The fixed rate payment is paid by the protection buyer to the protection seller. The 

protection buyer pays ,  to the protection seller (this is the premium leg of the swap). So, 

just to summarize, the protection buyer receives ( − , )  on date  +  ℎ, while the 

protection seller receives ( , − )  on date  +  ℎ. The temperature swap rate , , which 

is negotiated by the two counterparties on date , is such that the two legs’ values are equal on 

date . 

Considering the baseline case with risk-neutral agents and risk-free interest rates independent 

from temperatures, it is possible to state that , =  under the absence of arbitrage 

opportunities, where  denotes the expectation conditional on the information available on 

date . Thus, rewriting previous formulas, the protection buyer receives ( − ( ))  at 

maturity. When temperature rises above its expected path, the temperature buyer receives more 

from the temperature seller than what he pays, and vice versa.  

Relaxing the risk-neutral assumption and denoting by ℳ ,  the stochastic discount factor 

(s.d.f.) between dates  and  +  ℎ, the price of the protection leg is , ℳ , , while the 

price of the premium leg is , ℳ , . Given that the two legs of the swap have the same 

value at date , the following formula is obtained:  

, = ℳ ,ℳ , . 
Thus, the TIS rate can be seen as a risk-adjusted expectation of , and that the risk-

adjustment depends on 
ℳ ,ℳ , . Formally, ,  is called h-forward risk-neutral expectation of 

, and 
ℳ ,ℳ ,  is the Radon-Nikodym derivative linking the physical and risk-neutral 

measures. The h-forward risk-neutral measure ℚ  is equivalent (in the measure sense) to the 

physical one.  So, ,  can be rewritten as  , =  + , , with , =
+ℎ,ℳ , +ℎ  ℳ , +ℎ . This formulation shows that , , the difference between the swap-implied 

temperature ( , ) and the expected temperature ( ), depends on the covariance between 

temperatures and the s.d.f.. So, if states of higher temperature are perceived as “bad states of 

the world” (states of high marginal utility, or high s.d.f.) then the swap-implied temperature is 

above its expectation because the covariance term is then positive. In that case, the protection 

buyer is willing to lose money, on average, to be hedged against temperature risk. 
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Temperature Indexed Bond  

A zero-coupon Temperature Indexed Bond (TIB) is a debt instrument whose payoff is indexed 

to a given measure of temperature. Denoting the issuance date by  and the maturity at issuance 

by ℎ, the payoff, settled on date  +  ℎ, is of the form: 1 + ( − , ) 

where ,  is a temperature defined by the issuer on the issuance date and parameter χ is a 

leverage factor. The temperature ,  could for instance be set to the expected temperature on 

date  +  ℎ (as of date ), that is , =  . In that case, the expected payoff of the TIB 

would be equal to 1. While the expected payoff of the TIB is equal to that of a standard zero-

coupon bond when , = , the price of the two types of bonds (with matching 

maturities) are not necessarily equal. Formally, the TIB price is then given by: 

ℳ , {1 + ( − ( ))} = ℳ , + ,  

where ,  is defined, as before, , = +ℎ,ℳ , +ℎ  ℳ , +ℎ  and ℳ ,  is the price of a 

zero – coupon bond with a deterministic payoff of 1 at maturity. Therefore, the difference 

between the TIB price and ℳ ,  is equal to , . It can be noted that the TIB payoff 

1 + − ,  turns negative if < , −  . To prevent this, TIBs could embed 

options for the payoff to be equal to 1 +  ( − , ), 0 . 
Temperature options 

A temperature option is a derivative instrument whose payoff is nonlinearly indexed to a given 

temperature measure. 

Three option types are considered as shown in Table 6. 

Table 6: Temperature options 

Option type Price (notation) Payoff (settled on maturity date + ) 

Digital , ( ) { } 
Call , ( ) ( − ) = { }( − ) 

Put , ( ) ( − ) = { }( − ) 

Source: Chikhani and Renne (2021)  

 is the temperature option strike level determined during the negotiation phase at initial date 

 , while  is the temperature option underlying level at maturity date  +  ℎ . For example, 

a temperature call of strike 2◦C allows, for instance, to get the payoff (  − 2) on date  +
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 ℎ if  >  2, while a temperature put of strike 2◦C allows to get the payoff (2 −  ) on 

date  +  ℎ if  <  2. 

2.3.3 The model 

Chikhani and Renne (2021) designs climate linkers relying on DICE (Dynamic Integrated 

Climate-Economy) model as proposed in Nordhaus (2016). Since its initial development, the 

DICE model has been revised many times: the last available version is indeed DICE-2016R.  

The DICE model is one of three integrated assessment models used to estimate the Social Cost 

of Carbon (SCC) in the United States. Integrated assessment models (IAMs) are practical 

frameworks trying to combine multidisciplinary knowledge, which seek to achieve, as stated in 

Grobecker, Coronili, and Cannon (1974), three main objectives: 

1) coordinated exploration of possible future paths of human and natural systems 

2) knowledge development about key issues of policies formation 

3) research needs’ prioritization in order to enhance the ability to identify solid strategic 

options 

The DICE model was proposed for the first time in Nordhaus (1992): it attempts to use 

economics tools in order to determine an efficient strategy for addressing the global warming 

issue. According to the author, societies should undertake environmental policies only when 

their benefits exceed their costs: the level of environmental control should be at that point where 

the incremental benefits of additional controls no longer exceed the incremental costs. For what 

concerns the global warming, this approach is easy to articulate, but difficult to execute. Given 

the need of an economic model of climate change capable of considering the long-time lags 

between actions or policies and responses, the basic approach is to use an adjusted Ramsey 

model of optimal economic growth and to calculate the optimal path for both capital 

accumulation and GHG-emission reductions. The Ramsey model is modified to include climate 

investments, which are analogous to capital investments in the standard model. 

Indeed, in the neoclassical growth model, society invests in tangible capital goods cutting down 

on consumption today in order to increase consumption in the future. So far as the climate 

change issue is concerned, by analogy, society must take action today reducing consumption 

by devoting resources to GHG emissions reduction. In this way, economically harmful climate 

change effects would be prevented and, therefore, consumption possibilities would be increased 

in the future. The resulting trajectory could be interpreted as either the most efficient path for 

slowing climate change given initial endowments or as the competitive equilibrium among 

market economies where the externalities are internalized using the appropriate social shadow 
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prices for GHGs. This model allows for different policies in the transition path from those in 

the ultimate steady state. Thus, it allows a range of sensitivity analyses. 

Returning to Chikhani and Renne (2021), in Figure 15, the authors’ intentions as well as the 

awaited results are highlighted. 

Figure 15: Approach 

                 Source: Chikhani and Renne (2021), slides 24 March 2022 

So, the model consists in the extension of the standard tools of modern economic growth theory 

with the addition of both a climate sector and a closed-loop interaction between the climate and 

the economy. In Nordhaus (1992) and in Nordhaus subsequent papers the specific list of DICE 

model’s equations is provided. The equations are divided into three groups representing the 

main building blocks: the objective function, the economic relationships and the climate-

emissions relationships. The parameters’ empirical derivation is also provided. The same 

structure is maintained in Chikhani and Renne (2021).  

In Figure 16, the model is schematically represented highlighting the main channels relating 

climatic and economic variables. 
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   Source: Chikhani and Renne (2021) 

The letters indicate the chronological order of the detrimental effects. At first, production 

involves CO  emissions, even though mitigation reduces the magnitude of the positive relation 

production - emissions (a). As a consequence of the increase in emissions, the temperature 

anomaly increases (b). Larger temperatures are linked to an increase in the probability of 

climate related damages (c), which have a negative impact on production because of the 

resultant reduction in the quality of capital (d). In the meanwhile, temperature increase raises 

emissions because it is associated to an increase in the probability of triggering a climate change 

positive feedback loop (e).  

Positive feedback loops are processes that amplify the effects of climate forcings and thus cause 

a further increase in temperatures as compared to an initial warming.33 Steffen et al. (2018) 

reports that most of the feedbacks can show both continuous responses and tipping point 

behaviours. In the latter behaviour, the feedback process becomes self-perpetuating after a 

critical threshold is crossed and so the change is abrupt. Subsystems exhibiting this behaviour 

are called “tipping elements”. The type of behaviour (i.e., continuous response or tipping point) 

can depend on the magnitude or the rate of forcing, or a combination of the two. Just to give an 

idea, the forcing is the difference between incoming and outgoing radiation. Since Earth absorbs 

energy from the sun, it must eventually emit an equal amount of energy to space. Climate 

 

33 NASA, “The Study of Earth as an Integrated System”, accessed 07 August 2022, 

https://climate.nasa.gov/nasa_science/science/ 

Figure 16: Model representation 
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forcing factors change the climate system altering the energy balance: when incoming energy 

is greater than outgoing energy, the planet warms.34 

Anyway, feedbacks may exhibit gradual changes before the tipping point is reached. 

As Figure 17 shows, the tipping elements are classified into three groups according to the 

estimated threshold temperature. Potential tipping cascades can be triggered by the global 

temperature rise up to the level of the low temperature cluster. The global average temperature 

could be pushed even higher if tipping in mid and high temperature clusters is induced by the 

low cluster tipping elements and non-tipping elements feedbacks (with no apparent thresholds) 

such as the change in the land and ocean physiological carbon sinks. 

After having triggered a feedback tipping point, as reported in Lemoine and Traeger (2016), 

even though the level of emissions is reduced, the climate sensitivity to CO  is increased. So, 

despite the emissions reduction, the temperature will increase more strongly than in the situation 

where no tipping point has been triggered. This additional warming due to, for example, the 

release of CO  and methane trapped in the permafrost illustrates the strong domino effect 

deriving from the feedback tipping point.  

By going into the detail of the model, temperatures are taken into account as temperature 

anomalies from the 1850 – 1900 baseline period which can be considered as an approximation 

 

34 NOAA, “Climate forcing”, accessed 10 August 2022, https://www.climate.gov/maps-data/climate-data-

primer/predicting-climate/climate-forcing 

Figure 17: Global map of potential tipping cascades 

Source: Steffen et al. (2018) 
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of the pre-industrial period. This choice is consistent with the Paris Agreement’s objectives 

formulation.  

Following the original DICE model, the focus is on two global temperatures lower ocean ( ) 

and atmosphere (  ), whose dynamics depend on radiative forcings due to greenhouse gases 

( ). The atmosphere temperature, which is the main driver of damages to the economy, can be 

determined as: 

, = , + − , − , − ,  

where:  

•  is the climate equation coefficient for upper level 

•  is the transfer coefficient upper to lower stratum 

•  represents the dynamics of radiative forcings 

•  represents the forcings of equilibrium CO  doubling 

•  is the equilibrium temperature impact 

This equation is recalled from Nordhaus (1992) with some slight changes (mainly in the 

notation). In Nordhaus (1992), in fact, the atmosphere and upper ocean temperature is presented 

as follows 

( ) = ( − 1) + (1⁄ ){ ( ) − ( − 1) − ( ⁄ ) ( − 1) − ∗( − 1) } 
where: 

• ∗( ) is the deep oceans temperature 

•  is the thermal capacity of the upper stratum 

•  is the thermal capacity of the deep oceans 

•  is the transfer rate from the upper layer to the lower layer  

•  is a feedback parameter 

The dynamics of radiative forcings  are considered in the linear approximation: 

= ( ) + log (2) , − + , + ,  

where: 

• ,  is the (exogenous) part of radiative forcings that is due to non-CO  greenhouse 

gases 

• ,  is the mass of carbon in the atmosphere, constituting one of the three reservoirs 

used to capture the carbon cycle 

•  is its preindustrial level 
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•  is the value of ,  at which the linearization is performed  

• ,  is the persistent Gaussian shock aimed at capturing the uncertainty associated with 

the climate sensitivity parameter characterising the relationship between atmospheric 

carbon concentrations and temperatures.  

The abovementioned carbon cycle consists in a loop between atmosphere, land, and ocean 

describing the journey of carbon atoms (mainly in the form of carbon dioxide (CO2) and 

methane (CH4)) on the Earth. Thus, vector  components are the carbon masses in atmosphere 

(  ), upper ocean ( ), and lower ocean ( ). 

The carbon cycle is described as 

= ,,,
= + Δ3.666 00  

where:  

• φ is a square matrix, whose column components sum to one, describing yearly 

transfers of carbon between atmosphere and oceans.  

•  accounts for total carbon dioxide (CO2) emitted into the atmosphere for each 

year of period  (one period lasts ∆  =  5 years), converted into carbon masses by 

applying the conversion rate . .  

Total emissions  are defined as  = , + , +  

where:  

o ,  is an endogenous component representing the industrial emissions due to 

human activity  

o ,  is an exogenous component also representing emissions due to deforestation 

o  is a persistent shock whose probability of occurring increases with temperature 

in the atmosphere. It is meant to account for feedback effects related to tipping 

points’ literature.  

In order to do this,  is drawn from a gamma-zero distribution35, which is a 

distribution featuring a Dirac mass at zero. The probability of having a non-zero  

 

35 From Monfort et al. (2015), letting X be a non-negative random variable. X is said to follow a Gamma-zero 

distribution with parameters  >  0 and  >  0, denoted  ∼  ( , ), if its conditional distribution given  ∼ ( ) is  |  ∼  ( ). 
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depends on . Although this probability is typically small,  still can jump: when 

it happens, a large and sudden increase in emissions takes place, which further 

increases temperature, and so on. 

Formally,  can be written as 

= + ( )+ , , . 
The model also encompasses the global mean sea level, which is denoted by . Following the 

specification proposed by Vermeer and Rahmstorf (2009), it is 

= + Δ × , − , + ∆ , + ,  

where ,  is the average atmospheric temperature for the period 1951 – 1980. 

It is a semi-empirical equation: it exploits the link between global sea level and global 

temperature in past observational data for projecting the future. 

For what concerns the economic block underlying the model, a standard production economy 

where capital quality can be damaged by climatic disasters is considered. On each period, agents 

allocate production ( ) between consumption ( ), investment in productive capital ( ) and 

investment in low carbon emissions technologies (Ψ ).  

The production of date  is given by:  

=     with  = ̅ + ,   
where: 

•  is the productivity 

•  is the quantity of productive capital 

• ̅ is the average productivity 

• ,  ~ (0,1) is a productivity shock 

The dynamics of productive capital are governed by:  

∗ = (1 − ) +   = exp (− ) ∗   
 

The p.d.f. ( ; , ) is given by ( ; , ) = ∑ ( / )  ( )!  ×  ( )! 1{ } + exp (− )1{ }, while 

the Laplace transform of X  ( ; , ) is given by ( ; , ) = exp ( ) < . Even though the 

density function of the p.d.f. is complex, the Laplace transform of the Gamma-zero distribution is easy to 

manipulate. The Gamma-zero distribution, as can be noted from the p.d.f. formula, has a point-mass located at  =  0 and so ( = 0) = exp(− ). 
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where: 

•  is the depreciation rate 

•  (≥  0) represents climatic disasters.  

• ∗ represents planned capital 

The productive capital  is smaller than ∗ when > 0, that is to say when a climatic disaster 

occurs. So, the production is persistently affected by climatic disasters. Even variable  is 

drawn from a gamma-zero distribution (which features a Dirac mass at zero). The probability 

of having = 0 is equal to exp(− ( )− ( ) , ). The probability of > 0 positively 

depends on the atmospheric temperature. Knowing that the increase in industrial emissions 

pushes temperatures upwards increasing the likelihood of disasters which are harmful for the 

production, agents are prompted to invest in low-carbon technologies. For a given production 

level, these technologies allow reducing carbon emissions. Specifically, investing in these 

technologies allows to reduce the emissions arising out of the production of one unit of goods 

by the mitigation rate factor  (with  0 ≤ ≤  1), whose enhancement is costly. Associated 

abatement costs are given by: 

Ψ = Λ ,    with  Λ =  

where:  

•  decreases through time in a deterministic way reflecting the fact that the 

technological progress will reduce the backstop price.  

• captures the fact that the marginal cost of mitigation is increasing on a certain date 

(with > 1). 

The agents’ output allocation decision between mitigation (Ψ ), investment in productive 

capital ( ), and consumption ( ) depends on their preferences. In order to facilitate 

resolution, it is assumed that agents have Epstein-Zin preferences with a unit elasticity of 

intertemporal substitution (EIS). 

The agents’ optimization problem is simplified: on the initial date  =  0, agents decide on a 

parametric path for the mitigation rate . So, the parametric path, based on the shapes of 

emission control rates obtained in standard IAMs, is 

= min exp − , + , × ; 1 . 
where , > , ∗, with ∗ = 12 in order to ensure that complete mitigation is not 

obtained before 2080 ( ∗ = 12). ,  and ,  are chosen by agents on  =  0 with the aim 
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of maximizing their utility. Agents commit to the parametric path and dynamically adjust   

and  over time. 

However, the equations presented above do not cover the entire model, which is composed of 

many other endogenous and exogenous (e.g., carbon intensity , backstop price , 

exogenous land emissions , , exogenous radiative forcings , , abatement costs Λ ) 

equations describing the behaviour of all the variables contained in the formulas above reported. 

For viewing all formulas, please refer to Chikhani and Renne (2021), namely Section 4 and 

Appendix A. 

Solving the model essentially amounts to determining the law of motion of consumption. The 

consumption growth can be expressed as  

Δ = , + , , −  

where ,  and ,  are deterministic functions of the model parameters.  

The authors made the model conditionally affine: in this way, closed-form solutions are 

obtained for conditional moments and distributions. This approach is similar to that one 

followed in Traeger (2021) for the Analytic Climate Economy (ACE) model (an IAM really 

close to Nordhaus DICE) which combines a general production system with cutting-edge 

climate dynamics and solves in closed form thanks to an affine value function. 

Affine models are mainly used for what concerns interest rates and in particular term structure 

models. Recalling Piazzesi (2010), in the context of factor models of the yield curve, the 

dynamics of the short rate  are replaced by the assumption that the short rate  is a function ( ) of  and  ∈  ℝ  is a time-homogeneous Markov process all under the risk neutral 

measure. So,  is the state vector. The assumption implies that the conditional expectation in 

the formula of the price of a zero-coupon bond (whose pay-off is 1 at maturity) ( ) =
∗ −  is some function  of time-to-maturity  and the state  at time ,or 

( ) = ( , ). Functional-form assumptions are made in affine term structure models. The 

functional-form assumptions are on the short-rate function ( ) and the process  for the state 

vector under the risk-neutral measure. The short rate is given by  =  ( )  =   +   for 

 ∈  ℝ and  ∈  ℝ , where the choice of short-rate parameters  and  depends on the 

number of factors in the model. The main advantage of making functional-form assumptions 

lies in the fact that it leads to tractable pricing formulas. 

Given that the law of motion of the state vector  (gathering all economic and climatic 

variables) is of the affine class and that the underlying stochastic discount factor ℳ ,  is 
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exponential affine in , Chikhani and Renne (2021) framework is tractable: it is possible to 

calibrate this theoretical model and find a solution to it without using the computationally costly 

Monte Carlo method. 

In particular, the state vector  is affine conditional on some deterministic processes (e.g., the 

backstop price). The affine property of the state vector does not preclude disasters such as falls 

in consumption due to climate events and adverse feedback loops. 

The conditional Laplace transform of  characterizing the state vector dynamics is of the form 

exp( ) = exp ( ( ) + ( )′ ) 

where functions  and  deterministically depend on the model parameters. It is affine in its 

past values in a time dependent but deterministic fashion. Knowing these functions, the multi-

horizon Laplace transform can be easily deduced as  

exp( ) = exp ( , ( ) + , ( )′ ) 

where functions ,  and ,  are recursively defined. Knowing the multi-horizon Laplace 

transform is equivalent to knowing the distribution of  conditional on . Thus, through 

the inverse Fourier transform, as shown in Duffie, Pan, and Singleton (2000), the conditional 

distribution of any of the state variable (also including any variables’ linear combination) at any 

horizon can be recovered.  

2.3.4 The pricing 

As already mentioned, the existence of recursive formulas to price long-term assets results 

from: 

a) the affine property of   

b) the fact that the underlying stochastic discount factor ℳ ,   is exponential affine in 

.  

Exploiting these framework characteristics, pricing methodology is provided for each type of 

climate linkers illustrated in section 2.3.2. Pricing formulas are directly recalled from section 

III of Chikhani and Renne (2021) online appendix. 

Temperature Indexed Swaps 

Thanks to Corollary 1 the computation of the two conditional expectations in , =
ℳ ,ℳ ,  is possible. In the model, the s.d.f. ℳ ,  is available in closed form. 

Corollary 1 

Considering an asset whose payoff, settled on date + ℎ, is  , the date-t price of 

this asset is: 
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( )( ) = →
( )( ) − ( )(0) , 

where the computation of ( )( ) is given by Proposition 2. 

Temperature Indexed Bonds 

Temperature Indexed Bonds pricing relies on Corollary 2, which is reported below.  

Corollary 2 

Denoting by  the vector that is such that = , the date-t price of the TIB 

considered is:  

1 − , ( )(0) + ( )( ) 

where the computation of ( )(0) and 
( )( ) is explained by Corollary 1 and 

Proposition 2. 

Temperature options 

Temperature options pricing relies on Proposition 1, which is reported below. 

Proposition 1 

Consider an asset whose payoff, settled on date + ℎ, is ( ) 1{ } 
The date-t price of this asset is given by:  

( )( , , ) = ( )( )2 − 1 ( )( + )  (− ) , 
where ( ) denotes the imaginary part of x and where ( ) is defined as in Proposition 

2. 

The common pricing part of all the instruments, mainly consistent in Proposition 2 and 

Proposition 3, provides the computation procedure of the variables contained in the formulas 

above and illustrates the assumptions made by the authors. Thus, they are reported afterward. 

Proposition 2 is referred for what concerns the computation of ( )which is recurrent in all 

pricing formulas. 

Proposition 2 

Considering an asset whose payoff, settled on date + ℎ, is ( ), the date-t 

price of this asset is given by: 

( )( ) ≔ ,( )( ) + ,( )( ) , 
The functions ,( )( ) and ,( )( ) are defined as 
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,( )( ) = − , − ( ) − ⋯ − − , − ( ) + ,( )( , … , ) ,( )( ) = − , − ( ) + ,( )( , … , ),                                                                     
where:  

• the , s, the , s and the , which is the vector of prices of risk, are defined as 

  = (1 − ) , , − , ,                                                                                              
, = − + , , + {(1 − )( , , + , , )} − ( )
, = {(1 − )( , , + , , )} − ( )                                       

The (recursive) computation of , ,  results from Proposition 3. 

 denotes the rate of preference for present. 

• the functions ,( ) and ,( ) are defined, for all  and for ℎ > 1, as 

  ,( )( , … , ) = ,( )( , … , ) + + ,( )( , … , )
,( )( , … , ) = + ,( )( , … , ) ,                                       

•  is defined as  

   − , − ( ) +      = 1, … , ℎ − 1+                       = ℎ  

Proposition 3 is reported in order to provide all the elements for a clear and complete 

understanding of Proposition 2 since the (recursive) computation of , ,  is needed. 

Proposition 3 

As already stated, an agent featuring Epstein and Zin (1989) preferences, with a unit 

elasticity of intertemporal substitution (EIS), is considered.  

The time-t utility  of a consumption stream ( ) is recursively defined by: 

= (1 − ) + 1 − log( (1 − ) ), 
where: 

•  denotes the logarithm of the agent’s consumption level  

•  denotes the time discount factor 

•  denotes the risk aversion parameter 

Knowing that Δ  is affine in , it can be written as 

Δ = − = , , + ′ , ,  

where: 

•   is the state vector, which admits an exponential affine log-Laplace transform  ( , ) ≔ (exp( )) = ( ) + ( )′  with functions  and     deterministic.  



60 
 

• , ,  and , ,  are deterministic processes 

In this context and for ≥ , 

, , ≡ , , , , ≡ , ,
, , ≡ , ,  , , ≡ , , (∙) ≡ (∙)  (∙) ≡ (∙), 

we have: = + , , + ′ , , , 
where the computation of , ,  and , ,  is described as 

⎩⎨
⎧   , , = , , + , , + 1 − (1 − ) , , + , ,

, , = 1 − (1 − ) , , + , ,                                               
and where, for ≥ , , ,  solves: 

, = 1 − (1 − ) , + ,  

and , ,  satisfies: 

, = 1 − , + 1 − 11 − (1 − ) , + , . 
Many parameters (which can be found in Chikhani and Renne (2021), Table 4 of Appendix A) 

in these formulas are directly taken from existing literature and in particular from DICE16. 

Meanwhile, some parameters, which are specific to the model and thus have no equivalent in 

other studies (e.g.,  and , the parameters representing, respectively, economic damages and 

feedback loops) are determined through a moment-fitting approach (the results can be found in 

Chikhani and Renne (2021) Table 2 of Appendix B) by minimizing a loss function reflecting 

the distance between targeted moments found in the literature and their model-implied 

equivalents. This calibration approach is not feasible in standard IAMs which require 

simulations to compute long-term moments since they are not available in closed-form.  

Solving the following optimization problem, the calibrated parameters  are obtained as 

= −  ( ) Ω −  ( ) , 
where:  

•  is the vector of targeted moments 

•  is the vector of free parameters 

• ( ) are the model-implied moments.  
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• Ω is a diagonal matrix whose diagonal entries are the moments’ weights  

The loss function −  ( ) Ω −  ( )  is minimized for = . 

As already mentioned above, Chikhani and Renne (2021) has the merit of offering quasi-closed-

form valuation formulas relying on Fourier analysis. Indeed, it provides the possibility of 

recovering the probability density function (p.d.f.) of any state variables’ linear combination, 

at any horizon. 

Figure 18 represents the physical p.d.f. of atmospheric temperatures in comparison with two 

RCP (Representative Concentration Pathways) scenarios. These emissions scenarios define 

trajectories representing greenhouse gas and aerosol concentrations for particular radiative 

forcing values in the years 2100. In particular, RCP4.5 and RCP6.0 are two intermediate 

stabilisation pathways. Radiative forcing is respectively stabilised at approximately 4.5 ⁄  and 6.0 ⁄  after 2100.36 The 50%, 80%, 90% and 95% confidence intervals 

are represented as shaded areas. 

 
36 ‘Glossary’, IPCC Data Distribution Centre, accessed 21 May 2022, https://www.ipcc-

data.org/guidelines/pages/glossary 

Figure 18: Physical p.d.f of atmospheric temperatures 

Source: Chikhani and Renne (2021) 

Figure 19: Risk-adjusted p.d.f. of atmospheric temperatures 

Source: Chikhani and Renne (2021) 



62 
 

Figure 19 represents the risk-adjusted p.d.f. of atmospheric temperatures (in orange) in 

comparison with the physical one seen in Figure 18 (in cyan), up to 2100. The risk-adjusted 

distribution represented consists in the term structure of temperature swap prices , .  

The 50%, 80%, 90% and 95% confidence intervals using risk-adjusted probabilities are 

represented as shaded areas. Risk-adjusted p.d.f. is shifted up with respect to the physical one. 

This means that in the process of pricing temperature-indexed instruments the states of the 

world characterised by higher temperature are overweighted by risk-adjusted probabilities. The 

model is able to recognize that high temperatures are associated to states of high marginal utility 

and so lower consumption: this tends to result in an increase in the risk-adjusted probabilities. 

Figure 20 plots the conditional distributions of atmospheric temperatures in 2100 under 

physical and risk-adjusted p.d.f.. As seen before, risk-adjusted p.d.f. is shifted to the right w.r.t. 

the physical one. Moreover, the risk-adjusted p.d.f. is flatter than the physical one, indicating 

that the overall quantity of risk is higher in the risk-adjusted world. In the risk-neutral measure, 

the p.d.f has a heavier right tail, which means that high temperatures extreme scenarios are 

particularly risk-sensitive. 

Getting to the valuation issue, digital options are considered for expository purposes. 

Recalling Table 6, the payoff of this option type (settled on maturity date + ℎ) is expressed 

as { }. The price is denoted as , ( ). 

Digital options prices can be interpreted as risk-adjusted probabilities of exceedance of a 

predetermined threshold, the strike , by future temperatures. It is important to note that the 

option strike is defined as the increase in temperatures with respect to the starting period. This 

clarification is necessary because in the following chapter the notation will be changed for 

easier readability of the results. 

Figure 20: Conditional distribution of atmospheric temperature in 2100 

Source: Chikhani and Renne (2021) 
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Figure 21: Price of digital options 

             Source: Chikhani and Renne (2021) 

Figure 21 plots digital options prices for different strikes, notably = 2.5, = 3,  = 4, 

and maturities up to 2100. More precisely, the solid lines display , ( ) ,⁄  for different 

maturities ℎ: the option prices , ( ) are divided by the prices of zero-coupon bond of the 

same maturities , = ℳ ,  in order to make these prices comparable to probabilities. 

The probabilities obtained through this computation are the risk-adjusted ones. Risk-adjusted 

probabilities are once again higher than the physical ones (represented by the dashed lines). 

Moreover, ratios between risk-adjusted and physical probabilities increase with the temperature 

strike, reaching substantial levels for high temperature. The deviations between solid and 

dashed lines indeed represent climate risk premiums. 

2.4 Climate derivatives from Little et al. (2015) 

Although Little et al. (2015) was published in the time that elapses the publication of the two 

papers presented in the previous sections, it is presented last because of the slightly different 

concept behind the model employed.  

2.4.1 The rationale 

The issue addressed in Little et al. (2015) is related to susceptibility of the Tasmanian salmon 

aquaculture industry to warming ocean temperatures: salmon were in fact grown in coastal 

waters occasionally exceeding a thermal limit of about 18 °C. Anyway, there was little doubt 

about the further coastal warming which was going to come. The authors propose a solution to 

sustain the efforts already underway to reduce the risk of warming coastal waters by aquaculture 

companies suggesting the sale of climate derivatives which could provide additional capital for 

these efforts. Clearly, this model can be modified and adapted to other indexes and other 
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locations maintaining the same setup.  Climate derivatives include Call and Put options, which 

are both considered in American and European type. It is necessary to highlight that, even 

though it may seem pretty similar to a weather derivative in the functioning, this financial 

instrument generically called climate derivative stands out for its long maturity (10 – 20 years) 

which let it satisfy totally different investors’ needs with respect to weather derivatives (which 

have 1 – 3 years maturities, as discussed in section 1.5) being able to account for climate change 

effects.  

The up-front payment would be used by aquaculture companies to invest in adaption measures 

to climate change such as the relocation of production facilities to cooler open-ocean areas or 

the selective breeding of thermally tolerant fish. Considering a European Put option, if the 

underlying temperature measure at maturity did not exceed the strike threshold, a pay-out would 

be made by the contracted aquaculture company to the contract owners or investors. The total 

pay-out would be computed as   

 = ( ∗ #   ℎ  ) ∗  ∗ #  . 

Despite the due payment, the aquaculture company would not incur the risks and costs 

associated with a higher temperature benefitting from this fact. On the contrary, if underlying 

temperature measure exceeded the strike threshold, the contracted aquaculture company would 

benefit from the investment made for adaption to higher water temperatures and no pay-out 

would be required. The counterparties/investors would benefit from climate derivatives: these 

instruments, quoting authors ‘words “offer the opportunity to hedge against potential economic 

losses, or take advantage of different climate outlooks or risk tolerances, and align incentives 

to provide a mutual benefit”. In this specific case, possible counterparties for a European put 

option contract offered by the aquaculture industry would be those who would suffer 

economically if warming did not occur and so may wish to offset this risk (e.g., agricultural 

businesses making investments in warm climate crops).  

2.4.2 The pricing 

he derivative trade price relies on the underlying index/asset price forecast, the pay-out and 

exercise conditions, the strike and the maturity. 

The strike temperature is set to 18°C. The underlying index is defined as the average annual 

summer (January, February, March) sea surface temperature (SST) in the D’Entrecasteaux 

Channel of south east Tasmania (43.05°S, 147.18°E).  It is necessary to specify that, in order to 

better reflect the risk of a general temperature trend crossing the threshold, a 4-year average 

summer SST is used as the underlying index. Using summer SST of each year may 

overemphasize the influence of interannual variability. 

T 
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Model forecasts for SST are obtained from the Climate Futures for Tasmania based on an 

ensemble of 12 GCM forecasts consisting of two IPCC Emission scenarios (A2, B1) and six 

different GCMs (CSIRO-Mk3.5, GFDL-CM2.0, GFDL-CM2.1, ECHAM5/MPI-OM, 

MIROC3.2, UKMO-HadCM3). As specified in Grose et al. (2010), the A2 emissions scenario 

results in higher emissions and a stronger climate response, while the B1 emissions scenario 

results in lower emissions and a weaker climate response. These two emissions scenarios are 

chosen because they are the highest and lowest emissions scenarios where GCM simulations 

are available, thus gives a range of possible future climate responses. It is reported that, quoting 

Le Quéré et al. (2009), in the period 2000 – 2010 human emissions mimicked the A2 emissions 

scenario. 

A single modelling simulation gives a single projection of an emissions scenario, analogous to 

a single replication of an experiment. More simulations give further replicates of that 

experiment and help to give an estimate of the range of possible outcomes for a given emissions 

scenario. For this reason, the project has undertaken the maximum number of modelling 

simulations that computation time allows, with the downscaling of six GCMs (CSIRO-Mk3.5, 

GFDL-CM2.0, GFDL-CM2.1, ECHAM5/ MPI-OM, UKMO-HadCM3 and MIROC3.2) for 

both the A2 and B1 emissions scenarios. The good performance over the Australian region is 

the reason for which these six models have been chosen. Multi-model ensemble simulations are 

reported to generally provide more robust information than simulations from any single model. 

Given the focus on the change with respect to the mean state of the general climate, the results 

of the ensemble of all the models (rather than any one particular simulation) are considered. 

The data from these models are dynamically downscaled to the region using the CSIRO 

stretched-grid global atmospheric CCAM (Conformal Cubic Atmospheric Model) for the 

period from 2010 to 2050. 

Generally speaking, the dynamical downscaling is a method which uses a limited-area high-

resolution model, which is called regional climate model (RCM), driven by boundary 

conditions from a GCM and using physical principles to obtain smaller-scale climate 

information. 

The above mentioned CCAM is a three-dimensional atmospheric model which is able to 

simulate climate and weather at fine spatial resolutions (down to/beyond kilometre scales) also 

accounting for the differences in the predictions of global climate models characterised by 

lower resolution. This detail is achieved by employing a variable resolution and global cubic 

grid design. The Conformal Cubic grid is realised by projecting a cube onto the surface of a 

sphere.  
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As reported in Thatcher and McGregor (2009), the relationship between conformal cubic 

coordinates ( ,  ,  ) on the surface of a unit cube and Cartesian coordinates ( ′,  ′,  ′) on 

the surface of a sphere is described by 

( , , ) = ( , , )( + + )  

where A, B, and C values lie between −1 and 1 and R is the radius of the sphere (the Earth). 

In CCAM, the degree of grid stretching is controlled by the Schmidt (1977) transformation, 

which allows the global grid to be focused over a particular region. Anyway, improving the 

resolution for the region requires reducing the resolution for the opposite side of the globe. The 

stretched ( ,  ,  ) Cartesian grid coordinates are related to the unstretched ones ( ′,  ′,  ′) through the Schmidt factor. In addition to the use of highly stretched grids (e.g., 

Schmidt factor > 3), CCAM also uses a multiply nested grid approach, which consists in placing 

finer grids (sub-grids) inside a given grid, where each sub-grid can contain several nested grids. 

As stated in Yorke and Kaisig (1995), this hierarchy of nested grids makes the spatial resolution 

increase. This approach is particularly effective for simulating the regional climate. Using it, the 

CCAM in fact can better represent topography including mountainous regions and can also 

account for local atmospheric processes and their associated climate impacts, such as reduced 

rainfall in some elevated areas. In addition, thanks to this approach, CCAM can also better simulate 

extreme weather features, such as tropical cyclones or bushfire weather.37 

Coming back to the pricing framework, three autoregressive moving average (ARMA) models 

of order 0 − 2 are fitted to each GMC forecast generating the probabilities associated with SST 

projections for the period 2010 − 2050. GCM trajectories can be visualized in Figure 22: each 

panel represents one of the twelve downscaled GCM trajectories (in blue), its mean (in black) 

± 1 SD (in grey) forecast for the period 2010 − 2050 and the 18 °C strike (in red).   

 

 

 

 

 

 

 

 

 

37 ‘Conformal Cubic Grid’, CSIRO Confluence, accessed 27 May 2022, 
https://confluence.csiro.au/display/CCAM/Conformal+Cubic+Grid  
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Then, from the three fitted ARMA models, for each GCM forecast, one model is selected. The 

choice was based on the lowest Akaike Information Criterion (AIC) value38.  

Parameters’ estimates can be found in Little et al. (2015), p.11, Table 1. Afterwards, 100 

multivariate normal samples of the estimated parameter coefficients (intercept, trend, 

autoregressive, and moving average) for each selected ARMA model are taken. They are used 

to obtain an ARMA simulation of SST from 2010 to 2050. So, on the whole, a set of 1200 

downscaled time series of SST is produced.  

Prices are calculated by discretizing the real-valued underlying index ,  from simulation  of 

the set in year . The discretization is done into 1000 discrete bins, so  = 1 … 1000, as , , =
 

38 AIC values are computed as  = −2 ln( ) + 2 , where  =  ℎ  and  =   . The lowest possible AIC indicates the best balance of model fit with generalizability. 
This serves the eventual goal of maximizing fit on out-of-sample data. 
  

Figure 22: Summer SST forecasts 

Source: Little et al. (2015) 
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1, such that  ≤ , < ( ) , with  and ( )  representing the underlying index at time 

, of two discrete contiguous bins , and + 1. For clarity, , ,  takes value 1 when the 

underlying index of the simulation  at time  occurs in bin . 

The derivative price is the payment the writer of the contract requires as compensation for 

incurring the risk of a pay-out. This risk depends both on the probability of the pay-out 

occurring and the size of the potential pay-out.  

The probability of pay-out is computed from the set of 1200 time series trajectories and it is, as 

well as all probabilities considered, the statistical physical probability. Although this choice is 

questionable, it is not new to some of the authors as Little et al. (2014) demonstrate. The choice 

of using this probability is viable only when it is implicitly assumed a zero risk premium. 

Anyway, assuming a null risk premium is a simplistic approach, which surely would not reflect 

reality. 

The pay-out size for a Put option is defined as a function based on the underlying index relative 

to the strike, 

, = −          if  <0                              if  ≥  

where: 

•  is a scaled pay-out parameter 

• is the discretized value for the bin representing the strike 

•  is the discretized value of the underlying index for bin  at time .  

This pay-out function implies that pay-out increases with the deviation of the underlying index 

from the strike.  

Conversely, the pay-out size for a Call option is defined as  

, = −          if  >0                              if  ≤  

where the inequality conditions in the pay-out function are reversed. 

In order to calculate prices, the probability of the discretized underlying index occurring in bin 

 at time   is determined as: 

= 1 , ,  
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where  is the number of simulations in the set. In simple terms, probability  is 

computed counting how many times, checking all the  simulations, the discretized underlying 

index occurs in bin  at time  and dividing the count number by the number of simulations. 

Then, the present value of the expected pay-out at maturity date  =   is calculated and 

discounted using a backward induction process to time  =  0 recurrently. 

The first backward induction process step can be written as 

, = , ( | ) 

where:  

• ,  denotes the expected pay-off for discrete bin  at time − 1 

• ( | ) is the conditional probability that the index value will be in bin  at time 

, knowing that it was in bin  at time − 1. It is calculated as ( | ) =( , )/ ( ) denoting as ( , ) the probability of the index being in bin  at time − 1, and bin  at time .  

•  is the discount rate. 

A European option contract can be exclusively exercised at maturity since not allowing the 

exercise time choice: its price is independent of the underlying index state prior to maturity and 

can be easily computed as the expected pay-off at time .  

It is not necessary to compute the expected pay-off at time  as , =
max 0, ,  at each  (relying on the backward induction) because the pay-off 

obtained at each time step  in the backward induction process to = 0 is non-negative since 

, ≥ 0 by construction. 

An American option contract can be exercised prior to the maturity date : it is path dependent 

and the decision on whether to exercise the contract taking the pay-out or wait is required at 

each time . This decision is embedded in the expected pay-off of each time  ,  which 

consists in the maximum between the pay-out expected exercising the contract ,  or that one 

expected waiting , . To clarify, each time  expected pay-off for an American 

option can be expressed as 

, = max , , , . 
Formally, the price is defined as , . 

In the event of initial state uncertainty at time  =  0, the price can be determined as the 

expected outcome across all possible initial states, 
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= ( ) ,  

The example provided in the paper considers a European put option which can be exercised at 

maturity to give a C = $100 pay-out for each degree deviation of the summer SST from the 

strike level of 18 °C. Prices are calculated over the maturity periods T of 10 and 20 years, 

discounted to present value at a rate of 7%. 

In Figure 23, the computed derivative prices are shown. The forecasts upon which the prices 

are computed have been obtained from ARMA simulations performed with and without the 

temperature long-term trend for 10 and 20-year to maturity options. Without the warming trend 

(the trend is set to 0), the prices are higher and so lower SSTs and a higher likelihood of a pay-

out are expected.  

2.5. A short discussion 

After having illustrated the different financial instruments and the models which can be used 

for their valuation, the strength points and the criticalities of each climate derivative prototype 

are shortly discussed. 

Bloch, Annan, and Bowles (2010) and Bloch, Annan, and Bowles (2011) 

Bloch model is to be praised because it offers one of the earliest examples of climate derivatives 

designing different instruments in order to cover different investors ‘needs.  

In these papers the existence of a rightly understood climate risk is recognised: it is defined as 

the risk of loss when a climate variable (e.g., temperature or sea level) rises above a defined 

level. 

Applying the logic of pricing credit derivative products to climate derivatives allows for an 

efficient solution to be reached across multiple projects (already built and newly planned 

Source: Little et al. (2015) 

Figure 23: Little et al. (2015) European Put option prices 
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projects) redistributing risks to parties in a position to shoulder them at minimum cost: a market 

between natural hedgers on both sides of the trade would arise. As a result, new-build projects 

may defend against a higher sea-level-rise outcome through relatively modest expenditures at 

inception. In fact, they could monetize their guaranteed future cash flows by underwriting the 

risks of previously built projects which may be subject to large retrofitting expenditures in the 

event that the high sea-level outcome occurs. 

Anyway, one of the criticalities of this model consists in the fact that the estimation of the 

parameters relies on only one global climate model (GCM). As shown in Little et al. (2015) and 

in particular in Figure 22, GCM forecasts trajectories can exhibit quite different behaviours: 

the differences in that case do not matter given that prices are computed on a set of 1200 time 

series trajectories, but in this case they can lead to very different results.  

Chikhani and Renne (2021) 

This paper has the great merit of offering a new category of financial instruments able to 

encompass climate variables and their economic effects. This model of climate derivative does 

not cover any specific climate change effect since it is said it incorporates equations describing 

all climate dynamics. Given the generality of the risks covered, a wide range of investors may 

be interested. Even though it is mainly a theoretical proposal, it may open the way to similar 

financial instruments relying on more advanced climate models in the future able to avoid the 

bias identified in IAM assumptions. It is to say that this model relies upon a huge number of 

assumptions and data recovered from other studies and papers.  

The choice of relying on IAMs is debatable as also admitted by Jean Paul Renne during the 

seminar about its paper on 24th March 2022, part of the Virtual Seminar on Climate economics 

series hosted by the Federal Reserve Bank of San Francisco. The author did not deny the 

possibility of improvement and revision of the model in the future. On that occasion, Richard 

Tol, Professor of Economics at the University of Sussex and of Economics of Climate 

Change at the Vrije Universiteit Amsterdam, expressed his concern about the model. One of 

the main issues he raised was the mismatch between what the authors had said they wanted to 

do and what they actually did. He casted doubts on the whole underlying idea of the model. 

Given that the authors, directly quoting R. Tol speech, “have tried to link things it is possible 

to observe in the financial markets to what goes on in integrated assessment models (IAM), this 

attempt clearly presumes that there is a link in the first place. In reality, climate policy is not 

even close to IAM. Governments set a target, which is surely not a cost-benefit analysis: at best 

they do cost effectiveness analysis.” Although these two techniques look similar, the difference 

between cost effectiveness analysis and cost benefit analysis is that the former compares the 
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relative costs and outcomes (effects) of a project checking how much it costs to get a certain 

amount of output from a policy whereas the latter assigns a monetary value to the measure of 

the effect of a project checking whether the economic benefits outweigh the economic costs of 

a given policy. Keeping on quoting the speech “the approach is naïve because what goes on in 

the real world in terms of markets has nothing to do with what is done in IAM that is computing 

first best climate policy”. This speech should be considered as part of the already established 

criticism literature of the integrated assessment models.  

Ackerman et al. (2009) points out that the costs of environmental protection and mitigation 

consist of well-defined monetary expenditures, while its benefits are difficult to quantify since 

intrinsically unpredictable and unpriceable. The adoption of energy-efficient industrial 

machineries, household appliances and vehicles as well as the higher and more widespread 

exploitation of renewable sources of energy require purchases of marketed goods and services: 

the resulting cash flows can be easily accounted. But, either way, the evolution of these 

technologies is uncertain over the long term, which is the time span mainly involved in climate 

modelling. Mitigation costs’ forecasts depend on assumptions about the pace of development 

of new (and existing) technologies and their costs. Given that AIMs typically adopt 

conservative assumptions about the pace of technical change, IAMs overestimate the costs of 

achieving stabilization targets.                                    

Another relevant IAMs’ issue concerns the significant degree of subjective judgment involved 

in estimating the value of climate damages. Indeed, IAMs are completely dependent on the 

shape of their assumed damage functions. The damage function shape issue is also addressed 

in Pindyck (2013). Greatest uncertainties in IAMs are related to the economic impact of higher 

temperatures. Quoting Nordhaus (2008), the damage functions continue to be a major source 

of modelling uncertainty in the DICE model. Many different damage functions have been 

proposed in IAMs. For example, Nordhaus (2008) DICE model uses an inverse-quadratic loss 

function which can be written as  

= 11 + + ( )  

Moreover, Weitzman (2009) proposed an exponential-quadratic loss function, which can be 

written as ( ) = exp − ( )  

 and which records greater losses with large s.   

Anyway, these loss functions and those ones proposed in other IAMs are not based on any 

economic theory. The damage functions used in most IAMs are just arbitrary functions with 
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low theoretical or empirical foundation describing how the level of GDP goes down when T 

goes up (even though it would be more correct make T affect the growth rate of GDP). The 

criticality emerges not so much when temperature increases of 2 or 3°C, but when it largely 

increases (5°C or more) because the damage functions do not provide meaningful results about 

the damages that should be expected. IAM damage functions are in fact calibrated to give small 

damages for small temperature increases. The models ignore the possibility of a catastrophic 

climate outcome for what concerns the size of the economic effect in terms of human welfare 

decline deriving from climate change effects (so, not in terms of the size of the temperature 

increase). 

The difficulties in the new market creation may be uniquely solved by the initial government 

initiative. Governments will need to commit themselves to the respect of climate targets. 

Anyway, climate targets are surely not the main matter for governments’ policy and, in case of 

geopolitical issues, they can be set aside. The proposals to limit the energetic consequences of 

the sanctions on Russia after the outbreak of the Ukrainian War such as the re-commissioning 

of some decommissioned coal power plants are illustrative. Theoretically, given that prices 

would be available at high frequency, the observation of their changes would allow measuring 

the influence of different types of news on agents’ expectations. But how would such a news 

be reflected in climate linkers’ prices? 

Little et al. (2015) 

As recognised by the authors, climate derivatives, after the appropriate changes, could be used 

to manage climate risk in situations other than coastal aquaculture (e.g., coastal defences 

referring to Bloch, Annan, and Bowles (2011)). However, for the sake of consistent treatment, 

the coastal aquaculture case continues to be considered. 

Regardless of the occasion of use, climate derivatives presence on the market would benefit 

both issuers and investors. For what concerns issuers’ benefit, two main risk management 

strategies can be distinguished: the proactive risk management strategy and the reactive one. 

The proactive risk management strategy would consist in raising money selling European put 

option type climate derivative contracts.  

The alternative reactive risk management strategy would consist in selling American call option 

type climate derivative contracts. If the average summer SST during the lifetime of the contract 

rose above the strike level, the issuing company would pay-out to the contract owners. The 
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issuing company would purchase a contract (e.g., insurance policy) with the aim of having a 

compensation if the average summer SST rose above the strike level. 

For what concerns investors’ benefit, as already stated, climate derivatives would provide the 

opportunity of:  

• hedging against potential economic losses 

• taking advantage of different climate outlooks/risk tolerances 

• aligning incentives to provide a mutual benefit.  

Quoting the words of the authors, this type of climate derivatives can be applied “wherever 

there is a well-defined index, threshold, and a basis for predicting future probabilistic 

outcomes”. The Tasmanian example is surely remarkable, but it is not easily replicable. For the 

correct functioning of the pricing methodology employed, which encompasses process-based 

climate models, great accuracy of local climate data is clearly required.  

As reported in Tabor and Williams (2010), regional climate model used in the dynamical 

downscaling are computationally expensive because they must numerically solve many 

thermodynamic equations e.g., those describing the passage of radiation through the 

atmospheric and cloud formation) at a short time step, at a high spatial resolution and across 

multiple layers of the atmosphere. Consequently, for many regions only a limited number of 

RCM simulations currently are available. Dynamical downscaling cost is deemed by UNFCCC 

to be high and impractical except for academic or government institutions.39  

And, even if it were possible to obtain the same data for any location, the great geographical 

specificity of this instrument would cast doubts on the liquidity of the market associated. This 

issue cannot be underestimated, especially considering the area with low population and/or 

economic activity density.  

Moreover, the authors outlined the risk market in climate derivatives for supporting climate 

adaptation strategies, but they left open questions about the merits, risks and institutional design 

of the market. For managing the risk associated with counterparty capability of settling their 

obligations, the establishment of institutions such as clearinghouses would also be required.  

The main problem of the pricing framework the authors proposed is that there is no 

consideration of any risk premium and so the reference probability remains the real-world one.  

Estimating the risk premium, which is realistically non-null, and changing probability measure 

to risk-neutral one would give strength to the methodology employed, which otherwise is weak. 

 

39 “Dynamical Downscaling”, UNFCCC, accessed 2 August 2022, 

https://unfccc.int/files/adaptation/methodologies_for/vulnerability_and_adaptation/application/pdf/dynamical_do

wnscaling.pdf 
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These changes are surely not easy, but they are necessary to allow the model to go beyond the 

current status of first approximation by providing solidity. 
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CHAPTER 3: Models for pricing temperature 

options  

After having seen the different prototypes of climate derivatives, temperature options designed 

in Chikhani and Renne (2021) have been chosen as the instrument of reference for this chapter. 

Exploiting the fact that a market for this type of derivatives still does not exist, there are many 

possibilities to explore for what concerns the models which can be applied for the valuation. In 

fact, although climate derivatives have been jointly presented with specific models for 

temperature or, more broadly, climate forecasts, they do not depend on those models. As it will 

be possible to see simplifying the pricing method comes at the cost of richness of information 

retrievable. Nonetheless too expensive and complex, albeit accurate, techniques may be 

disadvantaged in favour of simpler and quicker techniques. Chikhani and Renne (2021) model 

for pricing indeed requires not only financial and mathematical knowledge, but also physical 

and climatological understanding. Moreover, it should be recalled that Chikhani and Renne 

(2021) original pricing method is not devoid of criticalities: the high number of assumptions 

concerning the climate and economic blocks, the chosen calibration parameters and the use of 

IAMs outside the scope of first best policy estimation are a cause for concern. Thus, it is even 

further worth exploring another possibility for pricing temperature options.  

Thus, temperature options designed in Chikhani and Renne (2021) will be priced in a manner 

as close as possible to the traditional options’ pricing technique. Clearly, the stochastic model 

which is behind the underlying needs to be chosen in order to reflect the temperature behaviour. 

After having defined the stochastic models leading the temperature path, Call and Put 

temperature options are priced starting from the payoffs already presented in Table 6. For 

practicality, the payoffs are recalled hereafter in Table 7.  

                     Table 7: Payoffs of the options to be priced 

  

 

 

 

3.1 The Vasicek model  

3.1.1 The model 
Temperature is assumed to be driven by an Orstein-Uhlenbeck process. Although this choice is 

based on the literature of stochastic modelling of temperature, appropriate modifications have 

been made. 

Option type Payoff (settled on maturity date + ) 

Call ( − ) = { }( − ) 

Put ( − ) = { }( − ) 
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In Tong et al. (2020), letting ( , , ) be a probability space with an information 

filtration (ℱ ) , the temperature process  is modelled as 

( ) = ( ) + ( ) 

where ( ) is the seasonal trend term and ( ) is the de-seasonalized temperature 

process specified as a time-changed OU process, that is 

( ) = ( ) , 
where  is a time change process and  is an OU process 

( ) = − ( ) + ( ). 
In Zahrnhofer (2009), temperature is the solution of the following stochastic differential 

equation (SDE):   ( )  =  (  −  ( ))  +  ( ) ( ), 
According to this SDE, the temperature process reverts to the constant . For modelling the 

trend and seasonality of the temperature, the author replaced the constant  with the 

deterministic function ( ). To obtain a stochastic process reverting to  ( ), the term 
 ( ) 

 

is added. 

So, the model for the evolution of temperature as an Ornstein Uhlenbeck process  

( )  =  ( (  ( )  −  ( ))  +   ( )   +  ( ) ( ) 

The author has chosen  ( )  as follows  

 ( ) =   +   +   (  +  ) 

with  =  . After appropriate modifications of the previous equation, the parameters are 

estimated through OLS. Using the parameters estimated in this way is said to give a good fit of 

periodic temperature data. 

In Chikhani and Renne (2021) the authors envisioned an instrument which ought to take into 

account the global mean temperature avoiding geographical specificities. Temperature models 

are often created to price short-term maturity instruments such as weather derivatives for which 

seasons have a great importance. In our case, given that global mean temperature is considered 

and that maturities number decades of years, the parameters used to model seasonality are not 

necessary and so, recovering the original specification of Ornstein-Uhlenbeck processes, a 

constant is used for the moment. 



78 
 

The Ornstein-Uhlenbeck stochastic differential equation for the global average temperature (so, 

de-seasonalized) ( ) has the following form: 

( ) = − ( ) + ( ) 

where: 

•  is a non-negative decay rate which represent the speed of response of the process 

•  is a mean value for  towards which it tends to move (long-term mean); 

•  measures the strength of the stochastic perturbation 

• ( ) is a standard Brownian motion. 

The choice of using a constant parameter  is not without critics: even though it is possible to 

set the long-term mean in a way that is deemed to reflect the increase in the mean global 

temperature, this would require the knowledge of the long-term mean at maturity with certainty. 

A question remains as to the calibration of the mean-reversion rate parameter  to provide a 

realistic increase in the average global temperature.  

The above model specification is also known as Vasicek model. The Vasicek model is mainly 

used for modelling the evolution of interest rates. It is a single-factor model, which means that 

the movement of the interest rates is modelled based on a single stochastic factor which is the 

so-called market risk factor, represented by the Wiener process. This is surely a limitation when 

it comes to interest rates because in the real-world interest rates may be affected by multiple 

factors. The major drawback of the Vasicek model consists in the fact that the short rate , for 

each time , can be negative with positive probability (since negative interest rates have been 

observed in reality in recent years, it is no longer a real issue). Anyway, given the difficulty of 

predicting the interest rates evolution, the Vasicek interest rate model is still a useful model 

available to investors and analysts.  

Going back to the temperature path, following the Euler method as in Higham (2001), the SDE 

can be discretized and approximated as  

= + ( − )Δ + Δ . 
The interval is discretized in order to apply a numerical method to the SDE over 0,  as ∆  =  / , where  denotes the maturity of the option and  denotes the number of the chosen 

discretization points. So, the discretized Brownian path uses a constant step-size: Δ  should 

be interpreted as ( − ). 
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In order to assess the plausibility of the choice of using this model in order to describe the 

temperature evolution, at first, the calibration of the model is performed using the global 

average temperature time series data40 for the last 20 years (yellow line in Figure 24). The data 

source is the NASA's Goddard Institute for Space Studies (GISS). As anticipated, temperature 

measures are no longer denoted as anomaly with respect to a base level: they are expressed as 

the effective temperature summing the anomaly value to the temperature base level one for 

better readability. 

Looking at Figure 24, there is clearly the presence of a growing trend since the 1970s, which 

supports the doubts concerning the use of mean-reverting process at a constant level.  

Anyway, before arriving to conclusions, it appears appropriate to calibrate the parameters and 

check the results of the simulations. The parameters ,  and  have been calibrated through 

the maximum likelihood estimation (MLE). Hereafter the final formulas are provided. Denote 

 as an observation. Based on Bernal (2016) and van den Berg (2011) in order to calibrate the 

parameters, the following preliminary computations are required:  

=  

=  

=  

 

40
 NASA, “Global Temperature”, accessed 15 July 2022, https://climate.nasa.gov/vital-signs/global-temperature/ 

Figure 24: Global average temperature time series (1880 - 2021) 
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=  

=  

The long-term mean is computed as 

= −− − ( − ). 
The mean reversion rate is computed as 

= 1Δ ∗ − − +− 2 + . 
The variance is computed as 

= 1 ∗ − 2 + − 2 (1 − ) − + (1 − )  

= ∗ 21 −  

with = 1 − ∗ Δ . 

After having performed the calibration, whose results are reported in Table 8, it is possible to 

obtain the temperature paths through a Monte Carlo simulation.  

Table 8: Parameters obtained through MLE 

 

 

 

 

 

 

The time horizon of this simulation is 20 years, from 2002 to 2021. Given that global average 

temperature time series is constituted of annual data, it has been decided to use 20 discretization 

points in the simulation for 0, , where  =  20, in order to maintain the same Δ  of the real 

time series. Anyway, generating daily ( = 7300, neglecting leap years) or weekly data ( =1040) and then considering only those corresponding to yearly data leads to pretty much the 

same results. In order to start the simulation of the temperature paths, a starting point is needed: 

parameter value 

 0.8030 

 14.7930 

 0.1736 
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 denotes the value of  in the first of the 20 discretization points constituting the temperature 

path. The starting point  is set to the 2002 global average temperature, which is 14.62°C41.  

After having determined and computed the time step given by the ratio between the maturity of 

the options and the number of discretization points, the discretized  trajectories of the 

Brownian motion over 0,  are simulated. To sum up, these furher required parameters are 

summarized in Table 9. 

Table 9: Other required Monte Carlo simulation inputs 

 

 

 

 

 

 

 

,  and σ in the code are respectively denoted as theta, mu and sigma.  

The Matlab code lines directly concerning the temperature paths simulation are the following: 

for j = 1 : n-1 

    for s = 1 : M 

 x(s,1)=x0; 

 x(s,j+1) = x(s,j) + dt * theta * ( mu - x(s,j)) +  

 sigma * dw(s,j); 

    end 

end 

At this point, we may be tempted to directly compare real time series and simulated paths. Well, 

comparisons between real time series and simulated paths are difficult because there is no 

telling whether the real time series represents an outlier.  

Constructing a confidence interval based on our simulations gives us a glimpse of the capability 

of the model to produce data similar to real ones. The objective is to demonstrate that the real 

time series is a plausible output of the model: it is pursued by gradually reducing the interval 

 

41
 The global mean surface air temperature for the base period 1951-1980 was 14°C with an uncertainty of several 

tenths of a degree. In 2002, the annual average anomaly was about 0.62°C. (Earth Observatory Nasa, accessed 16 

July 2022, https://earthobservatory.nasa.gov/world-of-change/global-temperatures) 

Although the uncertainty about the precise global mean temperature for the period 1951-1980, the value of 

14.62°C has been chosen as starting point for temperature path simulations. 

parameter value 

 14.62 

t 20 

n 20 

M 10000 
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of the simulations’ values considered, while checking whether real time series is still in the 

range.  

After having calculated different confidence intervals, it is proved that the minimum percentage 

of simulations’ values to be considered in order to observe that the real time series is still 

contained in the interval is 85%. 

Indeed, Figure 25 shows that, even though the upper 7,5% and the lower 7,5% of the values of 

 in each date are not considered, real time series is contained in the interval. Since the 

temperature evolution is contained in this narrow interval, we may say that what it is observed 

in reality represents a typical trajectory generated by the model. 

It is necessary to consider that using the same parameters calibrated from the real time series 

for performing simulations in the risk-neutral probability amounts to implicitly assuming the 

coincidence of the risk-neutral probability with the physical-statistical one. As discussed in 

section 2.4, this coincidence would imply a null risk premium. As it will be possible to see in 

the following simulations, we observed that for low levels of  prices are much higher than for 

levels close to that one computed from MLE. A slightly higher level of  than the real one may 

respond to our need of representing prices computed in the risk neutral measure. This choice 

would be highlighted in defining the parameters for the base scenario simulation.  

As already mentioned, the chosen technique for pricing these options is the Monte Carlo 

method. A Monte Carlo simulation is performed in Matlab using the inputs presented in Table 

10. 

                                  

 

 

Figure 25: Confidence interval 
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Table 10: Monte Carlo simulation inputs, Vasicek model 

 

 

 

 

 

 

 

 

 

 

 

where: 

•  is the temperature strike 

• r is the discount rate  

• t is the maturity of the option 

For the supposed adjustment to risk-neutral measure,  is 0.1 higher than the calibrated value.  

This slightly higher level of  than the real one is assumed to respond to the need of representing 

prices computed in the risk neutral measure which thus consider the risk premium. 

After having computed the paths, given that European options are being priced, final 

temperature values are taken to compute Call and Put options’ payoffs. Thus, the option 

exercise is not allowed before maturity.  

Considering the paths ‘final values  , for each single path, Call option payoff is computed as 

the maximum between −  and 0, while Put option payoff is computed as the maximum 

between −  and 0. 

Computing Monte Carlo prices consists in discounting to the present the mean of all Call or Put 

payoffs. The resulting prices of this first simulation are respectively 0.0446 for Call option and 

0.0439 for Put option. These results in themselves means little: that is why the discussion about 

 

42
 In 2021, the annual average anomaly was about 0.84°C. (Earth Observatory Nasa, accessed 16 July 2022, 

https://earthobservatory.nasa.gov/world-of-change/global-temperatures) 

Although the abovementioned uncertainty about the precise global mean temperature for the period 1951-1980, 

the value of 14.84°C has been chosen as starting point for temperature path simulations. 

 

parameters value 

 0.9 

 15 

 0.18 

42 14.84 

 15 

r 0.01 

t 20 

n 1000 

M 10000 
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Call and Put prices is postponed to the following subsection after having gained further 

information. 

3.1.2 Changing inputs 
Once having defined the base scenario, it is possible to test the response of prices changing 

one input at a time.  

In particular, inputs changed in the following simulations are respectively ,  and .  

The first input considered is , the nonnegative decay rate representing the speed of response 

of the temperature process. The values of  employed in the simulation ranges from slower 

(0.5) to quicker (1.3) mean-reversion, represented as  

theta=[0.5:0.1:1.3]'. 

In order to compute the prices for each value of theta, it would be necessary to make some 

small adjustments to the code: in particular, another for loop is added.  

The resulting process is 

for k=1:size(theta,1) 

    for j = 1 : n-1 

        for s=1:M 

x(s,1) = x0; 

x(s,j+1) = x(s,j) +  theta(k) * ( mu - x(s,j) ) * dt + 

sigma * dw(s,j); 

        end 

    end  

x_T(:,k)= x(:,end); 

payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

MC_price_Call(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

MC_price_Put(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

So, the procedure is exactly equal to that one seen for the base scenario except the fact that, 

given the need to compute payoffs and prices for each value of theta, even the code lines 

referred to them have been included into the additional for loop. 

For the overall view of the code lines describing this model, section A.1 of the Appendix should 

be referred. 
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From Figure 26 it is possible to note that Call and Put prices exhibit the same behaviour to 

changes in theta. As the steepness of the curve proves, changes in theta when its value is low 

(e.g., = 0.5 and = 0.6) have a greater impact on prices than changes when its value is high. 

It should be noted that the similarity between Call and Put prices and thus the corresponding 

lines just comes from the initial choice of the parameters  and . 

After having set each of the other input parameters to its base scenario value, the second input 

considered is ,  the mean value towards which temperature tends to move in the long run. The 

values of  employed in the simulation are ranging from 15 to 16, represented as  

mu=[15:0.1:16]'. 

Although an increase of just over 1°C may not seem so high, it should be remembered that the 

considered time horizon is 20 years. Thus, an increase of just over 1°C would represent an 

extreme scenario. 

After having assigned the for loop variable to the correct parameter, the temperature paths 

are computed as usual. The results are shown in Figure 27. 

Figure 26: Call and Put prices sensitivity to θ 
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It is possible to see that the parameter  greatly influences the Call price. This is pretty obvious 

due to the fact that the temperature strike is fixed to 15: the more the mean towards which the 

path will move increase the more payoff enlarges and so does the price. Using the same 

temperature strike for Put options would make little sense. The temperature strike value is 

almost equal to the starting value: buying such an option would be little profitable in a world 

affected by climate change because future temperature level would hardly remain pegged to the 

current temperature level. Only for <  15.2 Put prices appear visually more than 0, even if 

close. Moreover, the decrease in prices is evident as soon as  leaves the temperature strike 

value.  

In order to produce meaningful results for Put options, the temperature strike must be changed. 

The chosen temperature strike is the largest value of the set of values of  employed in the 

simulation. So,  is set to 16. 

Figure 27: Call and Put prices sensitivity to μ ( = ) 
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As showed in Figure 28, we now obtain meaningful results for Put options. This situation 

corresponds to the reverse of the previous one: only for values of  close to the temperature 

strike Call prices are different from 0 even if very close. Put option payoff is clearly maximized 

when the mean is at the farthest point from the temperature strike and so does the price.  

Then, after having seen the extreme cases with = 15 and = 16,  is set to the 

intermediate level of 15.5 for completeness. The results are plotted in Figure 29.  

Entering such a strike value makes both types of option valuable. By the way, their respective 

maximum prices are halved with respect to the previous cases. For a Call option, the price is 

maximized when = 15 and = 16, while for a Put option the price is maximized when = 16 and = 15. In both cases the gap between  and  is the widest: this means that the 

pay-offs are likely to be high given that temperature paths move towards . In the set of this 

Figure 28: Call and Put prices sensitivity to μ ( = ) 

Figure 29: Call and Put prices sensitivity to μ ( = . ) 
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simulation, the pay-offs are as high as possible and so are the prices. Hence, reducing the gaps 

between  and  entails reducing the maximum possible pay-offs. As a consequence, the 

highest prices’ level is lower than before.  

The third input considered is , the strength of the stochastic perturbation.  

Before starting, the temperature strike has been set again to = 15 as well as other parameters 

are set to their base scenario values.  

The values of  employed in the simulation ranges from weaker (0.1) to stronger (0.5) 

stochastic perturbations. They are set as follows 

sigma = [0.1:0.05:0.5]'. 

In Figure 30, it can be noted that the increase in σ is associated to a positive and linear increase 

in both Call and Put prices. This is due to the fact that the oscillations of the simulated paths 

are wider: as a consequence, for both type of options, the payoffs are wider and so are the prices. 

To sum up, the parameters which have greater impact on prices are  and . Naturally, the 

change of parameter  has a different impact on Call and Put prices, while the change of the 

parameters  and  seems to have the same impact on Call and Put prices.  

3.2 The Hull-White model 

3.2.1 The model 
The use of Hull-White model for modelling the temperature path already exists in the literature 

(e.g., Dischel (1998), McIntyre and Doherty (1999)).  

Anyway, this model is mainly used for modelling the evolution of interest rates. It has been 

designed in Hull and White (1990) to overcome the limitation of the Vasicek model consisting 

in the poor fit of the initial term structure. As Hull and White (1994) reports, although negative 

Figure 30:  Call and Put prices sensitivity to σ 
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interest rates can occur in this model, it is both capable of fitting an arbitrary initial term 

structure and analytically tractable. As the Vasicek model, it a single-factor Markov model. It 

is also called extended Vasicek model because it is a version of that model which let parameters 

vary through time. Moreover, many specifications of the Hull-White model can be found. 

In Hull and White (1996), the stochastic differential equation is represented as 

= ( ) − +  

where ( ) denotes the time-varying long-term mean towards  reverts,  denotes the reversion 

rate and  denotes the volatility factor.  

In this specification, the parameters  and  are not time-varying because, when they are, 

volatility term structure could be non-stationary: the model implied future volatility structure 

can somewhat differ from the current volatility structure. Thus, when they are constant, the 

volatility structure stays stationary (although the model consistency with market prices is 

weakened). 

The Hull-White model which is used in the following simulations for modelling the global 

average temperature is the following 

( ) = ( ) − ( ) + ( ) 

In simple terms, the only difference between the Hull-White model and the Vasicek model used 

in the simulations performed in section 3.1 consists in the fact that the long-term mean  

becomes a time-dependent variable. Although the introduction of this time-dependence may 

seem a minor change, it let us consider further scenarios in which worse-than-expected climate 

conditions occur. The now time-dependent variable  is assumed to follow a linear evolution 

through time for simplicity. In addition to the base scenario with constant , four additional 

scenarios have been conceived: each of them is characterised by an increase of +0.25°C at 

maturity with respect to the previous one. So, starting from a long-term mean of 15°C and 

considering its increase of, respectively, +0.25°C, +0.5°C, +0.75°C and +1°C, the long-term 

mean values are 15.25°C, 15.5°C, 15.75°C and 16°C. 

In the code, these increases in temperature are stored in the variable wrs, which is defined as 

wrs=[0:0.25:1]'. 

Hereafter the code lines are partially reported in order to highlight the changes. 

for z=1:size(wrs,1); 

    for j = 1 : n-1  

        mu(z,1) = stmu; 

        mu(z,j+1) = mu(z,j) + wrs(z)/(n-1); 

        for s=1:M 
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        ⋮ 
        x(s,j+1) = x(s,j) + dt * theta * ( mu(z,j) - x(s,j) ) + 

sigma * dw(s,j); 

        end 

     end 
     ⋮ 
end 

So, each value of  is computed as its previous value, to which is added the 1 − 1 part of the 

conceived increase. Small changes have been made to the rest of the code: they mainly concern 

the necessary changes for including the time-dependent  in the simulation of temperature 

paths. For the overall view of the code lines describing this model, section A.2 of the Appendix 

should be referred. 

In Table 11 the inputs employed for the first Monte Carlo simulation are listed. 

Table 11: Monte Carlo simulation inputs, Hull-White model 

 

 

 

 

 

 

 

 

 

where the starting  is the value from which the long-term mean evolution starts and it 

corresponds to stmu in the code. The results of this first simulation are shown in Figure 31. 

parameters value 

 0.9 

starting  15 

 0.18 

 14.84 

 15 

r 0.01 

t 20 

n 1000 

M 10000 
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It is clear that, since = 15, Call prices increase with the increasing deviation from the initial 

. Indeed, the more the gap between the strike and the long-term mean widens during the time 

to maturity the more pay-offs are higher near maturity.  

Entering = 15 for a Put option when  has a constant value of 15 is a questionable, but 

legitimate choice given the oscillations of the temperature path. The price is indeed slightly 

higher than zero. Entering = 15 for Put options when  deviates from this starting level in 

a more or less wide fashion would lead Put prices to zero right away.  

Setting = 16, the situation would be at the opposite extreme as shown in Figure 32.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Call and Put prices with evolving μ ( = ) 

Figure 32: Call and Put prices with evolving μ ( = ) 
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Call prices would remain equal/close to zero for all scenarios except on the +1°C scenario with = 16 at maturity. In this case, the price is in fact slightly higher than zero due to the 

oscillations of the temperature path. Put prices would decrease with the increasing deviation 

from the initial . The more the gap between the strike and the long-term mean narrows during 

the time to maturity the more pay-offs are lower near maturity and so are the prices. 

Setting = 15.5, as shown in Figure 33, Call and Put prices are comparable, even though the 

Call and Put maximum prices are lower than Call option maximum price with = 15 and Put 

option maximum price with = 16. 

 

3.2.2 Changing inputs 
Given the results of the above simulations and the discussion about the fair strike level to be 

used in simulations with the parameter  evolving through time, we have decided to additionally 

perform the simulations for = 15.5. Simulations for  = 15 cannot be ruled out for 

purposes of comparability with the results obtained for the Vasicek model. 

Other parameters are initially set to their base scenario level (see Table 11). Indeed, the 

response of prices is tested changing one input at a time.  

The first input considered is the speed of reversion rate . The values of  employed in the 

simulation ranges from 0.5 to 1.3, as in the Vasicek model analysis. They are represented as 

theta=[0.5:0.1:1.3]'.  

Figure 33: Call and Put prices with evolving μ ( = . ) 
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As shown in Figure 34, an increase in  is associated to a slightly decrease in Call prices when 

 is constant and so the model corresponds to the Vasicek-type one. Anyway, when  increases 

during the time to maturity of the option, an increase in  is associated to a slightly increase in 

Call prices. This behaviour is more pronounced for scenarios with higher  at maturity. 

Looking at Figure 35, an increase in  is associated to a decrease in Put prices. This 

behaviour is observed both in the case  is constant and so the model corresponds to the 

Vasicek-type model and in the case  increases during the time to maturity of the option. 

Only the price +0.25°C scenario, among the evolving  scenarios, is visible. 

Figure 35: Call prices with evolving μ changing θ ( = ) 

Figure 34: Put prices with evolving μ changing θ ( = ) 
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Now, the simulation is performed again setting the temperature strike to T = 15.5 

As shown in Figure 36, an increase in  is associated to a slight decrease in Call prices in 

+0.25°C and +0.5°C scenarios. Anyway, when  increases more (i.e., +0.75°C and +1°C) 

during the time to maturity of the option, the increase in  is associated to a slight increase in 

Call prices. This behaviour is more pronounced in the +1°C scenario. 

Looking at Figure 37, an increase in  is associated to a slight decrease in Put prices. This 

behaviour is mainly observed in the case  increases during the time to maturity of the option. 

In the case  is constant and so the model corresponds to the Vasicek-type model, despite the 

increase in , the price line is almost flat. 

Some scenarios lines in Figure 35, Figure 36 and Figure 37 are not visible: this is not due to 

the effect of the change of  value on prices, but rather to the effect of the evolution of  through 

Figure 36: Call prices with evolving μ changing θ ( = . ) 

Figure 37: Put prices with evolving μ changing θ ( = . ) 
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time. Even in the base scenario simulations with = 15 and with = 15.5 in fact the prices 

associated to these scenarios were close/equal to zero. 

Considering prices for different values of starting  is hardly compatible with the current 

model. Surely there is no problem in simulating temperature paths with different values of 

starting  and maintaining the linear evolution of  during the time to maturity of the option. 

The problem is that it would make little sense because of the huge and highly unrealistic 

increases in the long-term mean implied.  

The second input considered is thus the parameter , which represents the strength of the 

stochastic perturbation. Before starting, the speed of reversion rate  has been set again to  = 

0.9. 

The values of  employed in the simulation are ranging from 0.1 to 0.5, as in the Vasicek model 

analysis. They are set as follows 

sigma = [0.1:0.05:0.5]'.   

 

                                

 

 

 

 

 

Looking at Figure 38, the constant  scenario exhibits a linear increase in Call prices for 

increasing values of  as seen in the Vasicek model analysis. This behaviour is not observed in 

the other scenarios: actually, the increase in  through time seems to dampen the effect on prices 

deriving from the increase in . Indeed, the lines for the +1°C and +0.75°C scenarios are only 

slightly increasing.  

Figure 38: Call prices with evolving μ changing σ ( = ) 
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Figure 39 shows that, again, the constant  scenario exhibits a linear increase in Put prices for 

increasing values of  as seen in the Vasicek model analysis. In other scenarios the effect of 

the increase in  on prices is damped by the decrease in prices associated to the increase in  

through time.  

Now, the simulation is performed again setting the temperature strike to T = 15.5. 

In Figure 40, the +0.5°C scenario line in both graphs exhibits a linear increase for increasing 

values of . This behaviour is not observed in the other scenarios.  

Concerning Call prices, for scenarios with an increase in  above 0.5°C, the more  increases 

during the time to maturity, the more  seems required to be high to begin affecting the Call 

price. For scenarios with an increase in  below 0.5°C, the more  increases during the time 

to maturity, the less  seems required to be high to begin affecting the Call price.  

Figure 39: Put prices with evolving μ changing σ ( = ) 

Figure 40: Call and Put prices with evolving μ changing σ ( = . ) 
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Concerning Put prices, for scenarios with an increase in  below 0.5°C the less  increases 

during the time to maturity, the more  seems required to be high to begin affecting the Call 

price. For scenarios with an increase in  above 0.5°C the more  increases during the time to 

maturity, the more  seems required to be high to begin affecting the Call price.  

The results obtained for all simulations with = 15.5 can be better understood looking at 

Figure 33: Call and Put prices’ lines are just about vertically symmetrical. This characteristic 

is represented in the graphs for simulations with different values of  and, more visibly, . 

3.3 A short discussion                 

From the Appendix it is apparent that this pricing method which employs a stochastic model to 

describe the temperature process and simulates it using a Monte Carlo simulation is both 

conceptually and algorithmically simple. It can adjust well to the need of reviewing the future 

temperature estimates: changes to the temperature process’ dynamics are easily implementable. 

Anyway, side by side with the conceptual and algorithmic simplicity of Monte Carlo technique 

stands the high (and potentially extreme) computational costs associated to it, as also stated in 

Shonkwiler and Mendivil (2009). In general, requiring many samples for good approximation 

purposes is in fact translated into the possibility of a large total runtime in the event that each 

single sample runtime is high. In our context this is not an issue: the computational speed is 

extremely high due to the fact that the model and the payoffs are pretty simple. It can be an 

issue in the case that stochastic models more complicated than Hull-White model are employed. 

For our purposes, the possibility of verifying the response to single input changes and the 

conceptual and algorithmic simplicity of the method (thus also the transparency of the results) 

are elements in favour of the temperature paths’ modelling using the Vasicek and the Hull-

White stochastic models and the simulation of these paths using the Monte Carlo method for 

pricing temperature options.  

Now, we need to distinguish between the Vasicek model and the Hull-White one.  

The Vasicek model could be useful in a situation in which the long-term mean is already known 

at = 0. This is surely not the case in a climate-worsening situation, when the long-term mean 

can vary after = 0. So, although the results of the comparison between the real time series 

and the paths simulated entering the calibrated parameters from it are quite encouraging, the 

limits of the model are apparent for what concerns the simulation of evolving scenarios.  

The Hull-White model employed is able to overcome the limit imposed by the constant long-

term mean parameter  encompassing different intensity levels of increase through time in that 

parameter. Imposing a linear increase in that parameter is surely a great simplification of reality, 

but it still succeeds in conveying the idea of the effect of the climate worsening on the prices of 
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these derivatives. Anyway, it would be possible to adapt the simulations for the Hull-White 

model assuming different non-linear functional forms for the evolution of the long-term mean 

parameter in order to represent the dynamics of the temperature path in a more realistic way. 

The capacity to represent the climate change effect is essential for the stochastic model 

describing the underlying process: temperature options are purposely designed for hedging the 

climate risk in the long term. So, using a stochastic model unable to represent such a factor 

would completely invalidate the pricing of these instruments. Between the two models 

presented in chapter 3, thus, Hull-White model is to be preferred considering also that non-

linear functional forms for the evolution of  through time can be implemented.  
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Conclusion 

Although climate change effects are not only related to economic activities, the birth of the 

market of climate derivatives is highly desiderable: they can be useful to raise money to be 

invested in climate adaption and mitigation projects, whose aim go beyond the mere economic 

objective. For example, hyphotetical derivatives which take into account the sea water rise can 

surely be helpful at raising money for the construction of coastal defences. These defences, 

apart from protecting crops near the sea and fish farms, can also prevent the abandonement of 

houses, health issues due to new marshy areas and so on. 

There are still no news about the potential issue of these instruments. It is clear that many 

chances are being lost given that climate change effects are already significantly affecting 

certain sectors of the economy with no relief apart from traditional insurances or short term 

instruments such as the weather derivatives. The upward trend in global temperature has started 

decades ago: if climate derivatives market had been operational, it would have had a relevant 

impact in the economy letting economic activities to cover the long term risk or invest in 

mitigation projects. 

As discussed in Chapter 1, indeed, the already-existing financial instruments are not able to 

take into account the climate change and its effects. Furthermore, their validity may be 

jeopardised. 

Difficulties have been encountered in gathering material in order to offer a comprehensive view 

of this potentially new financial instruments because there are few examples of climate 

derivatives in the literature and none in the reality. The reason may lie in the awareness of the 

difficulties in starting a new market and, after the initial phase, of the possible low liquidity of 

this market.  

In the last chapter, a different methodology for pricing temperature options is proposed. Two 

stochastic models are used to represent the dynamics of the underlying process, the Vasicek 

model and the extended Vasicek model, i.e. the Hull-White model. The Hull-White model is in 

fact the extended version of the Vasicek model since it encompasses a time-varying long term 

mean. This characteristic is proved to improve the capacity of the model to represent climate 

dynamics and thus the Hull-White model should be preferred for pricing climate derivatives. 

For the models considered, it would be possible to obtain explicit option valuation formulas 

and thus analytically compute option prices without resorting to Monte Carlo method. Anyway, 

the great advantage of using Monte Carlo method is that it can be used even when much more 

complicated models which do not admit explicit formulas are considered. 
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It is worth highlighting that the major limitation of the analysis performed surely lies in the 

modelling of the risk premium, which is just based on hypotheses given that the market for 

these derivatives still does not exist.  

Even though the results obtained can not be evaluated with regard to their correctness, intended 

in absolute terms, it is possible to see that there are viable opportunities to price temperature 

options, and by extension climate derivatives, even outside the frameworks conceived by their 

authors. The complexity of the pricing method and of the model describing the underlying’s 

dynamics as originally proposed by the authors may have played a role in the 

cooling of interest for the introduction of these financial instruments on the market. Their 

chances of being introduced on the market may increase in the future as a result of the 

occurrence of some conditions such as the achievement of a credibile intrument, the occurrence 

of several damages undeniably related to climate change in sectors most exposed to climate 

change and so the increase in pressure for a fair solution that allows the sharing of the risks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

Appendix – Matlab code 

A. Computations 

A.1 Vasicek Model 
%% Uploading and organising data  

readtable('globalaveragetimeseries.xlsx'); % read the Excel sheet where 

the data copied from NASA website are stored 

dates=table2array(ans(1:end,1)); 

LAST20Y_AN = table2array(ans(123:end,2)); 

last20y_an = str2double(LAST20Y_AN); 

for i=1:size(last20y_an,1) 

    last20y(i,1) = last20y_an(i,1)+14; 

end 

 

ALL_AN = table2array(ans(:,2)); 

all_an = str2double(ALL_AN); 

for i=1:size(all_an,1) 

    all(i,1)=all_an(i,1)+14; 

end 

 

%% Calibration using Maximum Likelihood Estimators 

n=size(last20y,1)-1; 

X_x=sum(last20y(1:end-1)); 

X_y=sum(last20y(2:end)); 

X_xx=sum(last20y(1:end-1).^2); 

X_xy=sum(last20y(1:end-1).*last20y(2:end)); 

X_yy=sum(last20y(2:end).^2); 

 

mu=(X_y*X_xx - X_x*X_xy)/(n*(X_xx - X_xy)-(X_x^2-X_x*X_y)); 

dt=1; 

theta = (( X_xy - mu*X_x - mu*X_y + n*mu^2) / ( X_xx - 2*mu*X_x + n*mu^2) 

) / dt ; 

a = 1 - theta* dt ; 

sigmahat2 = (X_yy - 2*a*X_xy + a^2*X_xx - 2*mu*(1-a)*(X_y-a*X_x) + 

n*mu^2*(1-a)^2)/n ; 

sigma = sqrt (sigmahat2*2*theta/(1-a^2)); 

 

%% SIMULATION OF CALIBRATED PARAMETERS  

% set time horizon 

t = 20; 

% set number of discretization points of the interval [0,t] 

n = 20; 

dt = t / n; 

% set number of simulations 

M= 10000; 

% simulate M discretized trajectories of Brownian motion over [0,t] 

dw = sqrt ( dt ) * randn ( M, n ); 
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% set parameters and strike price 

theta = 0.8030; % nonnegative decay rate which determines how fast x(t) 

will move towards mu. 

mu = 14.793; % mean value towards which the process tends 

sigma = 0.1736; % relative magnitude of stochastic perturbations. 

x0 = 14.62; % starting value  

T_K=15; 

r=0.01; 

 

% Euler approximate integration process for temperature path 

x = zeros ( M , n ); 

for j = 1 : n-1 

    for s=1:M 

        x(s,1)=x0; 

        x(s,j+1) = x(s,j) + dt * theta * ( mu - x(s,j) )+ sigma * dw(s,j); 

    end 

end 

 

% confidence interval real time series 

for i=1:size(x,2) 
    meansim(i)=mean(x(:,i)); 
    SEM(i) = std(x(:,i));   

    ts(i,:) = tinv([0.075  0.925],length(x(:,i))-1); 
    CI(i,:) = meansim(i) + ts(i,:)*SEM(i);    
end 

 

%% FIRST SIMULATION  

% set time horizon 

t = 20; 

% set number of discretization points of the interval [0,t] 

n = 1000; 

dt = t / n; 

% set number of simulations 

M= 10000; 

% simulate M discretized trajectories of Brownian motion over [0,t] 

dw = sqrt ( dt ) * randn ( M, n ); 

% set parameters and strike price 

r=0.01; 

theta = 0.9; % nonnegative decay rate which determines how fast x(t) will 

move towards mu. 

mu = 15; % mean value towards which the process tends 

sigma = 0.18; % relative magnitude of stochastic perturbations. 

x0 = 14.84; % starting value  

T_K=15; 

 

%  Euler approximate integration process 

x = zeros ( M , n + 1 ); 

for j = 1 : n 

    for s=1:M 
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x(s,1)=x0; 

x(s,j+1) = x(s,j) + dt * theta * ( mu - x(s,j)) + ... 

sigma * dw(s,j); 

    end 

end 

 

% compute M realizations of the payoffs (Call and Put) 

x_T= x(:,end); 

payoff_Call= max(x_T-T_K,0); 

payoff_Put= max(T_K-x_T,0); 

 

% compute Monte Carlo price 

MC_price_Call=mean(payoff_Call)*exp(-r*t); 

MC_price_Put=mean(payoff_Put)*exp(-r*t); 

 

%% SIMULATION FOR DIFFERENT VALUES OF THETA 

t = 20; 

n = 1000; 

dt = t / n; 

M= 10000; 

dw = sqrt ( dt ) * randn ( M, n ); 

theta=[0.5:0.1:1.3]';  

mu = 15; 

sigma = 0.18;  

x0 = 14.84; 

T_K=15; 

r=0.01; 

 

% Euler approximate integration process for temperature path 

x = zeros ( M , n ); 

for k=1:size(theta) 

    for j = 1 : n-1 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) + theta(k) * ( mu - x(s,j) ) * dt ... 

+ sigma * dw(s,j); 

        end 

    end  

% take realizations of x at maturity 

x_T(:,k)= x(:,end); 

% compute they payoffs 

payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

% compute Monte Carlo price 

MC_price_Call(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

MC_price_Put(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 
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%% SIMULATION FOR DIFFERENT VALUES OF MU 

t = 20; 

n = 1000; 

dt = t / n; 

M= 10000; 

dw = sqrt ( dt ) * randn ( M, n ); 

theta = 0.9; will move towards mu. 

mu=[15:0.1:16]'; % mean value towards which the process tends 

sigma = 0.18; % relative magnitude of stochastic perturbations. 

x0 = 14.84; % starting value  

T_K=15; 

r=0.01; 

 

%  Euler approximate integration process for temperature path 

x = zeros ( M , n ); 

for k=1:size(mu,1) 

    for j = 1 : n-1 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu(k) - x(s,j) ) * dt ...  

+ sigma * dw(s,j); 

        end 

    end  

% take the realizations of x at maturity 

x_T(:,k)= x(:,end); 

% compute the payoffs 

payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

% compute Monte Carlo price 

MC_price_Call(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

MC_price_Put(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

%% SIMULATION FOR DIFFERENT VALUES OF SIGMA 

t = 20; 

n = 10000; 

dt = t / n; 

M= 10000; 

dw = sqrt(dt) * randn(M,n); 

theta = 0.9;  

mu = 15;  

sigma = [0.1:0.05:0.5]';  

x0 = 14.84; 

T_K=15; 

r=0.01; 

 

%  Euler approximate integration process for temperature path 

x = zeros(M,n); 
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for k=1:size(sigma,1) 

    for j = 1 : n-1 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu - x(s,j) ) * dt ... 

+ sigma(k) * dw(s,j); 

        end 

    end  

% take the realizations of x at maturity 

x_T(:,k)= x(:,end); 

% compute they payoffs 

payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

% compute Monte Carlo price 

MC_price_Call(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

MC_price_Put(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

A.2 Hull-White model 
%% FIRST SIMULATION with mu evolving through time 

% set time horizon 

t = 20; 

% set number of discretization points of the interval [0,t] 

n = 1000; 

dt = t / n; 

% set number of simulations 

M= 10000; 

% simulate M discretized trajectories of Brownian motion over [0,t] 

dw = sqrt ( dt ) * randn ( M, n-1 ); 

% set parameters and strike price 

theta = 0.9; % nonnegative decay rate which determines how fast x(t) will 

move towards mu. 

sigma = 0.18; % relative magnitude of stochastic perturbations. 

r=0.01; 

x0 = 14.84; % starting value  

T_K=15; %or T_K=16 or T_K=15.5 

stmu=15; % mu starting value 

 

% Euler approximate integration process for temperature path 

x = zeros ( M , n ); 

wrs=[0:0.25:1]'; % different final levels of increase in mu  

 

for z=1:size(wrs,1); 

    for j = 1 : n-1  

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 
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            x(s,1)=x0; 

            x(s,j+1) = x(s,j) + dt * theta * ( mu(z,j) - x(s,j) ) + sigma 

* dw(s,j); 

        end 

    end  

    % compute M realizations of the payoffs (Call and Put) 

    x_T(:,z)= x(:,end); 

    payoff_Call(:,z)= max(x_T(:,z)-T_K,0); 

    payoff_Put(:,z)= max(T_K-x_T(:,z),0); 

    % compute Monte Carlo price 

    MC_price_Call(z,1)=mean(payoff_Call(:,z))*exp(-r*t); 

    MC_price_Put(z,1)=mean(payoff_Put(:,z))*exp(-r*t); 

end 

 

%% SENSITIVITY THETA 

t = 20; 

n = 1000; 

dt = t / n; 

M= 10000; 

% simulate M discretized trajectories of Brownian motion over [0,t] 

dw = sqrt ( dt ) * randn ( M, n ); 

% set parameters and strike price 

theta=[0.5:0.1:1.3]';  

stmu = 15;  

sigma = 0.18;  

x0 = 14.84;  

T_K=15; %or T_K=15.5 

r=0.01; 

 

% Euler approximate integration process for temperature path 

x = zeros ( M , n ); 

wrs=[0:0.25:1]';  

% constant scenario 

for k=1:size(theta,1) 

    for j = 1 : n-1 

        z=1; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta(k) * ( mu(z,j) - x(s,j) ) * dt + 

sigma * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 
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    MC_price_Call1(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put1(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +0.25 scenario 

for k=1:size(theta,1) 

    for j = 1 : n-1 

        z=2; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

            x(s,1)=x0; 

            x(s,j+1) = x(s,j) +  theta(k) * ( mu(z,j) - x(s,j) ) * dt + 

sigma * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call2(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put2(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +0.5 scenario 

for k=1:size(theta,1) 

    for j = 1 : n-1 

        z=3; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta(k) * ( mu(z,j) - x(s,j) ) * dt + 

sigma * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call3(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put3(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +0.75 scenario 

for k=1:size(theta,1) 

      for j = 1 : n-1 

        z=4; 
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        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta(k) * ( mu(z,j) - x(s,j) ) * dt + 

sigma * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call4(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put4(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +1 scenario 

for k=1:size(theta,1) 

    for j = 1 : n-1 

        z=5; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

 x(s,1)=x0; 

 x(s,j+1) = x(s,j) +  theta(k) * ( mu(z,j) - x(s,j) ) * dt + 

sigma * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call5(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put5(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

%% SENSITIVITY SIGMA 

t = 20; 

n = 1000; 

dt = t / n; 

M= 10000; 

% simulate M discretized trajectories of Brownian motion over [0,t] 

dw = sqrt ( dt ) * randn ( M, n ); 

% set parameters and strike price 

theta = 0.9;  

stmu = 15;  

sigma = [0.1:0.05:0.5]';  

x0 = 14.84;  
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T_K=15; %or T_K=15.5 

r=0.01; 

 

%  Euler approximate integration process for temperature path 

x = zeros ( M , n ); 

wrs=[0:0.25:1]'; 

 

% constant scenario 

for k=1:size(sigma,1) 

    for j = 1 : n-1 

        z=1; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu(z,j) - x(s,j) ) * dt + 

sigma(k) * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call1(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put1(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +0.25 scenario 

for k=1:size(sigma,1) 

    for j = 1 : n-1 

        z=2; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu(z,j) - x(s,j) ) * dt + 

sigma(k) * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call2(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put2(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +0.5 scenario 
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for k=1:size(sigma,1) 

    for j = 1 : n-1 

        z=3; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu(z,j) - x(s,j) ) * dt + 

sigma(k) * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    % compute Monte Carlo price 

    MC_price_Call3(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put3(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +0.75 scenario 

for k=1:size(sigma,1) 

    for j = 1 : n-1 

        z=4; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu(z,j) - x(s,j) ) * dt + 

sigma(k) * dw(s,j); 

        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    MC_price_Call4(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put4(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

% +1 scenario 

for k=1:size(sigma,1) 

    for j = 1 : n-1 

        z=5; 

        mu(z,1) = stmu; 

        mu(z,j+1)=mu(z,j)+wrs(z)/(n-1); 

        for s=1:M 

x(s,1)=x0; 

x(s,j+1) = x(s,j) +  theta * ( mu(z,j) - x(s,j) ) * dt + 

sigma(k) * dw(s,j); 
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        end 

    end  

    x_T(:,k)= x(:,end); 

    payoff_Call(:,k)= max(x_T(:,k)-T_K,0); 

    payoff_Put(:,k)= max(T_K-x_T(:,k),0); 

    MC_price_Call5(k,1)=mean(payoff_Call(:,k))*exp(-r*t); 

    MC_price_Put5(k,1)=mean(payoff_Put(:,k))*exp(-r*t); 

end 

 

B. Figures 

B.1 Vasicek model 
% plotting the real time series 

figure  

set(gcf,'Position',[100,100,1300,600]) 

plot(dates,all,'LineWidth',4) 

hold on 

plot(dates(123:end),last20y,'LineWidth',1,'Color','y') 

xlim([1880 2021]) 

xlabel ( 't', 'FontSize', 16 ) 

ylabel ( 'temperature', 'FontSize', 16 ) 

title ( 'Global average temperature', 'FontSize', 16 ) 

grid ( 'on' ); 

 

% confidence interval real time series 

figure 
set(gcf,'Position',[100,100,1300,600]) 
plot(dates(123:end),last20y,'LineWidth',2,'Color','b'); 

hold on 
plot(dates(123:end),meansim,'LineWidth',2,'Color','g'); 
hold on 

plot(dates(123:end),CI(:,2),'LineWidth',2,'Color','r'); 
hold on 
plot(dates(123:end),CI(:,1),'LineWidth',2,'Color','m'); 

legend('real time series','mean simulated temperature',... 
    '85% upper bound','85% lower bound','Location','northeastoutside') 
xlim([2002 2021]); 

 

% plotting the first simulation approximate solution. 

tplot = linspace ( 0, t, n + 1 ); 

plot ( tplot, x, 'LineWidth', 1) 

xlabel ( 't', 'FontSize', 16 ) 

ylabel ( 'X(t)', 'FontSize', 16, 'Rotation', 0, 'HorizontalAlignment', 

'right' ) 

title ( 'Ornstein-Uhlenbeck temperature paths', 'FontSize', 16 ) 

grid ( 'on' ); 

 

% plot the prices for different theta values 

figure 

plot(theta,MC_price_Put,'LineWidth',2,'Color','g'); 
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hold on 

plot(theta,MC_price_Call,'LineWidth',2,'Color','r'); 

legend('Put price','Call price'); 

xlabel('theta') 

ylabel('Price') 

 

% plot the prices for different mu values 

figure 

plot(mu,MC_price_Put,'LineWidth',2,'Color','g'); 

hold on 

plot(mu,MC_price_Call,'LineWidth',2,'Color','r'); 

legend('Put price','Call price'); 

xlabel('mu') 

ylabel('Price') 

 

% plot the prices for different sigma values 

figure 

plot(sigma,MC_price_Put,'LineWidth',2,'Color','g'); 

hold on 

plot(sigma,MC_price_Call,'LineWidth',2,'Color','r'); 

legend('Put price','Call price'); 

xlabel('mu') 

ylabel('Price') 

 

B.2 Hull-White model 
% plot the prices for first simulation with evolving mu 

figure 

plot(wrs,MC_price_Call,'LineWidth',2,'Color','r'); 

hold on 

plot(wrs,MC_price_Put,'LineWidth',2,'Color','g'); 

legend('Call price','Put price'); 

xlabel('final \mu deviation from initial \mu','FontSize', 16) 

xticks([0 0.25 0.5 0.75 1]) 

ylabel('Price','FontSize', 16) 

grid on 

 

% plot the prices with evolving mu through time and changing theta 

figure 

plot(theta,[MC_price_Call1 MC_price_Call2 MC_price_Call3 MC_price_Call4 

MC_price_Call5],... 

    'LineWidth',2); 

legend('constant','+0.25^{\circ}C','+0.5^{\circ}C','+0.75^{\circ}C','+1^{\

circ}C','Location','bestoutside') 

xlabel('\theta', 'FontSize', 20, 'Rotation', 0, 'HorizontalAlignment', 

'right') 

ylabel('Price', 'FontSize', 16) 

xlim([0.5 1.3]) 
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grid on 

figure 

plot(theta,[MC_price_Put1 MC_price_Put2 MC_price_Put3 MC_price_Put4 

MC_price_Put5],... 

    'LineWidth',2); 

legend('constant','+0.25^{\circ}C','+0.5^{\circ}C','+0.75^{\circ}C','+1^{\

circ}C','Location','bestoutside') 

xlabel('\theta', 'FontSize', 20, 'Rotation', 0, 'HorizontalAlignment', 

'right') 

ylabel('Price', 'FontSize', 16) 

xlim([0.5 1.4]) 

grid on 

 

% plot the prices with evolving mu through time and changing sigma 

figure 
set(gcf,'Position',[100,100,1300,600]) 
subplot(1,2,1) 

plot(sigma,[MC_price_Call1 MC_price_Call2 MC_price_Call3 MC_price_Call4 
MC_price_Call5],... 
    'LineWidth',2); 

xticks([0.1:0.05:0.5]) 
xlim([0.1 0.5]) 
xlabel('\sigma', 'FontSize', 20, 'Rotation', 0, 'HorizontalAlignment', 

'right') 
ylabel('Price', 'FontSize', 16) 
grid on 

title('Call','FontSize', 16) 
lgnd1=legend('constant','+0.25^{\circ}C','+0.5^{\circ}C','+0.75^{\circ}C',
'+1^{\circ}C','Location','southoutside','Orientation','horizontal') 

subplot(1,2,2) 
plot(sigma,[MC_price_Put1 MC_price_Put2 MC_price_Put3 MC_price_Put4 
MC_price_Put5],... 

    'LineWidth',2); 
xlabel('\sigma', 'FontSize', 20, 'Rotation', 0, 'HorizontalAlignment', 
'right') 

ylabel('Price', 'FontSize', 16) 
xlim([0.1 0.5]) 
xticks([0.1:0.05:0.5]) 

grid on 
title('Put','FontSize', 16) 
lgnd2=legend('constant','+0.25^{\circ}C','+0.5^{\circ}C','+0.75^{\circ}C',

'+1^{\circ}C','Location','southoutside','Orientation','horizontal') 
lgnd2=legend('hide') 
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