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Introduction

The discover in 1965 that the Earth is bathed in all directions by an ex-
tremely uniform radiation with a black-body-like spectrum with the tem-
perature of 2.7K constitutes one of the biggest advances in the last century
Cosmology, providing one of the most convincing proofs for the Big Bang
cosmological model. In 1992 the COBE satellite showed temperature fluc-
tuations in the Cosmic Microwave Background radiation at the level of 1
part in 105. Furthermore, in 2002, the DASI experiment revealed a degree
of linear polarization of the CMB photons. Over the last decades satisfy-
ing theoretical explanations for these anisotropies have been provided and
the data analysis has led to the constrain of many cosmological parameters.
Besides, the CMB polarization is considered to be one of the main actors in
the quest for an experimental proof of one of the biggest open problems in
modern Cosmology, the theory of inflation.

The CMB polarization is a complex subject and a formal description of
all his aspect request mathematical techniques that vary from differential
geometry to statistical mechanics. For this reason, especially in the last
Chapter, we will sometimes avoid a mathematically exhaustive treatment in
favour of a qualitative description that, in our hope, still manages to deliver
a good understanding of the physics behind this phenomena.

Our work is organized in the following order: in Chapter 1 we will present
some fundamental concept in modern Cosmology and in Chapter 2 we will
introduce the statistical formalism that we will need for description of the
CMB anisotropies. A description of the CMB, its relationship with the ther-
mal history of the Universe and its most important properties will be given in
Chapter 3, along with a dissertation about the temperature anisotropies and
a qualitative explanation of the origin of these fluctuations. Chapter 4 will
be devoted to Thomson scattering, how it can lead to a linear polarization
pattern under certain conditions and the development of a mathematical
formalism to describe a general polarization state. Finally, in Chapter 5
we will focus on the polarization of the CMB, we will build intuition about
the possible causes of various polarization patterns generated by a single
electron and the differences between them. Another formalism will be in-
troduced in order to describe the polarization without the need of a specific
reference frame and it will be used to explain the modulation of the polar-
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vi INTRODUCTION

ization modes over the last scattering surface. We will then understand how
the detection of a B-mode in the CMB can be interpreted as the footprint
of a primordial gravitational wave and so a strong proof of the theory of
inflation.



Chapter 1

Cosmology

1.1 Cosmological Principle

The fundamental idea behind modern cosmology is the assertion that the
place which we occupy in the Universe is not special in any way, a con-
cept known as the cosmological principle. This leads to the belief that, on
sufficiently large scales, the Universe is both homogeneous and isotropic. Ho-
mogeneity is the property of being identical everywhere in the space, while
isotropy is the property of looking the same in every direction. Only in the
last few decades technology advancements have led to convincing observa-
tional proofs that the Universe appears to be smooth on scales of hundreds
of megaparsecs and more.

It is important though to stress the limits of this principle, the Universe
is clearly not exactly homogeneous; homogeneity has to be defined in an av-
erage sense. As a matter of fact tiny variations from the average smoothness
will be the key focus of this thesis.

1.2 Expansion of the Universe

The radial velocity of a celestial object can be measured thanks to the
Doppler effect, for a receding luminal source the observed radiation will be
redshifted by a factor

z =
λr − λe
λe

, (1.1)

where λe and λr are respectively the emitted and the observed wavelength.
It is an observational evidence that almost everything in the Universe ap-
pears to be moving away from us, and the recession grows linearly with the
distance between the object and the observer. The discovery of this phe-
nomenon is due to Edwin Hubble and is this described mathematically by
the

~v = H0~r , (1.2)

1



2 CHAPTER 1. COSMOLOGY

where H0 is known as Hubble’s constant. This led cosmologists to believe
that our Universe is not static at all, but indeed it is currently expanding.

It is crucial to note that in an expanding Universe every observer sees all
objects moving away, Hubble’s law is not in contrast with the cosmological
principle.

1.3 Friedmann Equations

1.3.1 First Friedmann Equation

Using only the cosmological principle and Newtonian gravity we can derive
an equation that describes the expansion of the Universe.

First of all we consider an observer in an uniform expanding medium
with mass density ρ and a particle of mass m at a distance r. The particle
feels a force

F =
GMm

r2
=

4πGρrm

3
; (1.3)

the total energy of the particle will be

U = T + V =
1

2
mṙ2 − 4π

3
Gρr2m, (1.4)

where T in the kinetic energy and V the potential energy. Clearly U is
conserved because the system is isolated.

Now we move to a different coordinate system, the comoving coordinates
~x. These new coordinates are carried along with the expansion so objects
remains at fixed location in the ~x system (in other words ẋ = 0). The
relationship between the comoving coordinates and the ~r, also known as
physical coordinates, is

~r = a(t)~x (1.5)

and the homogeneity property ensures that a(t) is a function of time alone.
The quantity a(t) is the scale factor of the Universe and it is a measure of
the expansion rate.

So we can rewrite the total energy of the particle

U =
1

2
mȧ2x2 − 4π

3
Gρa2r2m. (1.6)

Multiplying both sides by 2/ma2x2 and rearranging we obtain the Friedman
equation (

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
, (1.7)

where kc2 = −2U/mc2x2

Since all the others terms in (1.7) are independent of x, in order to
maintain homogeneity k must be x independent too. Furthermore both U
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and x are time independent (the total energy is conserved and the comoving
separation is fixed) so k must be a constant. Every expanding Universe has
a fixed value of k, called curvature, and his signature defines the geometry
of the Universe that can be flat, spherical or hyperbolic corresponding to
K = 0, > 0, < 0 respectively.

1.3.2 Fluid Equation

In addition to the Friedmann equation (1.7) we need to account for the
evolution of the density ρ, related to the pressure p of the material. We
start by considering the first law of thermodynamics

dE + pdV = TdS (1.8)

applied to an expanding volume V of unit comoving radius (so that the
physical radius is a). From E = mc2 we obtain

E =
4π

3
a3ρc2 (1.9)

and so, deriving in dt

dE

dt
= 4πa2ρc2

da

dt
+

4π

3
a3
dρ

dt
c2 , (1.10)

while for the volume
dV

dt
= 4πa2

da

dt
. (1.11)

Assuming a reversible expansion dS = 0 and substituting these into (1.8)
gives

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (1.12)

1.3.3 Equation of State

In order to solve this equations a relationship between the density and the
pressure is needed, know as the equation of state. The most general function
can be written as p = p(ρ), once it is specified the evolution of the Universe
is determined by (1.7) and (1.12).

Usually in cosmology, to obtain such a relationship, two opposite limits
are considered for the particles in the Universe:

• Matter: any type of material which exerts negligible pressure, also
known as ”non-relativistic matter”. In this approximation p = 0 and
the only non negligible interaction is the gravitational one;

• Radiation: particles moving at highly-relativistic speeds, their kinetic
energy has to be taken into account. For example, the radiation pres-
sure of the photons is p = ρc2/3.

A more general solution can be obtained with mixtures of these two, using
a ρ = ρmat + ρrad.
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1.3.4 Acceleration Equation

Using the Friedmann and the fluid equations we can obtain a formula for the
acceleration of the scale factor. Differentiating (1.7) with respect to time we
obtain

2
ȧ

a

aä− ȧ2

a2
=

8πG

3
ρ̇+ 2

kc2ȧ

a3
(1.13)

then we explicit ρ̇ from (1.12)

ä

a
−
(
ȧ

a

)2

= −4πG
(
ρ+

p

c2

)
+
kc2

a2
(1.14)

where we have simplified the factor 2ȧ/a. Using again the (1.7) we have the
acceleration equation

ä

a
= −4πG

3

(
ρ+

3p

c2

)
. (1.15)

From this equation it is easy to understand why the fact that the matter
has a non zero pressure helps decelerate the expansion because the gravi-
tational force is increased. It should also be noted that this new equation,
which of course is not independent of (1.7) and (1.12), does not feature the
constant k.

1.4 Hubble’s Law Revisited

Given the velocity ~v = d~r/dt and remembering the (1.2), we can immediately
write

~v =
|~̇r|
|~r|
~r =

ȧ

a
~r . (1.16)

So the parameter in the Hubble’s law is

H(t) =
ȧ

a
(1.17)

and it is important to notice that it is not a constant because of its time
dipendency and his evolution is given by the Friedmann equation.

1.5 Hints of General Relativistic Cosmology

The natural playground for the study of cosmology is General Relativity,
in order to obtain the Friedmann’s equations in the most rigorous way one
should have started considering the Einstein’s field equations and not their
approximation, Newton’s theory of gravity. But this formal approach goes
beyond the aim of this thesis; moreover, it could be shown that the Fried-
mann’s equations calculated using General Relativity are exactly the same
that we obtained using the Newtonian limit in our euristic derivation.

Nevertheless we will now use this formalism to obtain a relation between
the redshift and the scale factor.
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1.5.1 Redshift and scale factor

The most general solution of Einstein’s equations for an homogeneous, isotropic
expanding Universe is given by the Robertson-Walker metric

ds2 = −c2dt2 + a(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.18)

where spherical comoving coordinates are being used and a(t) is the scale
factor.

A key concept in both special and general relativity is that a light ray
obeys

ds2 = 0 . (1.19)

Considering a radial ray, which means that dθ = dφ = 0, this equation gives
in the R-W metric

c dt

a(t)
=

dr√
1− kr2

. (1.20)

In order to find the time it takes to get from r = 0 to r = r0 we simply
integrate ∫ tr

te

c dt

a(t)
=

∫ r0

0

dr√
1− kr2

(1.21)

where ”e” stands for emission and ”r” reception.

If we consider another light ray emitted after a short time interval dte
and thus received a dtr after the first ray reception∫ tr+dtr

te+dte

c dt

a(t)
=

∫ r0

0

dr√
1− kr2

, (1.22)

because in the limit dte,r → 0 all objects are still at the same coordinates.
So we can write ∫ tr

te

c dt

a(t)
=

∫ tr+dtr

te+dte

c dt

a(t)
(1.23)

and rearranging ∫ te+dte

te

c dt

a(t)
=

∫ tr+dtr

tr

c dt

a(t)
. (1.24)

In the limit dte,r → 0 we finally obtain

dtr
a(tr)

=
dte
a(te)

. (1.25)

If the Universe is expanding then a(tr) > a(te), that gives dtr > dte, which
means that the time interval between the two rays increases as the Universe
expands.
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Now, if we consider the two rays being on consecutive crests of a single
wave and keeping in mind that λ ∝ dt ∝ a(t), we can thus write

λr
λe

=
a(tr)

a(te)
. (1.26)

Confronting this result with the (1.1) we can relate the redshift to the
scale factor

a(tr)

a(te)
≡ 1 + z . (1.27)

In cosmology is quite common to use the term ”redshift” to describe both
distances from objects and epochs in the life of the Universe. For example,
saying that an object is at redshift z means that it is at a distance such that
its light has redshifted by a factor (1 + z) in the time it has taken to reach
us. When referring to the Universe, a redshift of z means the time when the
Universe was 1/(1 + z) of its present size.



Chapter 2

Perturbations

In this chapter we will introduce some statistical tools that are going to
be widely used in the discussion of CMB anisotropies. The key idea is
that a generic perturbation can be represented as a superposition of plane
waves which, while they are evolving linearly, evolve independently of each
other. Thus we will describe linear perturbations in terms of their spectral
composition and analyze their spectral properties.

2.1 Density Perturbations

In this section we will focus on a perturbation in the density of matter in
the Universe.

We can start by considering a volume Vu, for example a cube of side L.
Vu can be said to be a ’fair sample’ of the Universe if L� ls, where ls is the
maximum scale at which there is significant structure due to perturbations.
If we denote with 〈ρ〉 the mean density in Vu and with ρ(~x) the density in a
specific point, we can define the fluctuation as

δ(~x) =
ρ(~x)− 〈ρ〉
〈ρ〉

. (2.1)

We then express this as a Fourier series

δ(~x) =
∑
~k

δ~k exp (i~k · ~x) =
∑
~k

δ∗~k exp (−i~k · ~x) . (2.2)

Assuming periodic boundary conditions δ(L, y, z) = δ(0, y, z) et simila re-
quires that the components of the wavevector ~k must be

ki = ni
2π

L
. (2.3)

with i = 1, 2, 3 and ni integer.

7



8 CHAPTER 2. PERTURBATIONS

The coefficients δ~k are complex quantities given by

δ~k =
1

Vu

∫
Vu

δ~x exp (−i~k · ~x)d~x (2.4)

with two additional conditions: conservation of mass in Vu gives δ~k=0
= 0

and reality of δ~x gives δ∗~k
= δ−~k.

2.2 Power Spectrum

Choosing a different volume V ′u, the perturbation in this volume will be again
represented by a series like (2.2) but the coefficients δ~k will be different. If we
consider a large number of these volumes the mean value of the fluctuation
δ(~x) ≡ δ across the ensemble will be identically zero by definition, but its
mean square value, called its variance, will be not. One could indeed show
that

σ2 ≡ 〈δ2〉 =
∑
~k

〈|δ~k|
2〉 =

1

Vu

∑
~k

δ2~k . (2.5)

If we now take the limit Vu →∞ assuming that there is no dependence
on the direction of ~k but only on k = |~k| (this means that the density field
is statistically homogeneous and isotropic, according to the cosmological
principle)

σ2 =
1

Vu

∑
~k

δ2~k →
1

2π2

∫ ∞
0

P (k)k2dk (2.6)

where we defined δ2k = P (k). This quantity is called the power spectrum and
describes the amplitude of fluctuations on different length scales. Usually
one assumes that the power spectrum is given by a power law P (k) = Akn

and the exponent n is called the spectral index.
We can also write equation (4.10) in the form

σ2 =
1

2π2

∫ ∞
0

P (k)k2dk =

∫ ∞
0

∆(k)d ln(k) , (2.7)

where the dimensional quantity

∆(k) =
1

2π2
P (k)k3

represents the contribution to the variance per unit logarithmic interval in
k.



Chapter 3

The Cosmic Microwave
Background Radiation

In 1965 Penzias and Wilson accidentally discovered that the Earth is bathed
in all directions by a radiation whose spectrum is extremely close to the one
generated by a black-body with temperature

T0 = 2.725± 0.001K . (3.1)

Figure 3.1: Data measured by the FIRAS experiment on the COBE satel-
lite show a perfect fit with a black-body curve. The error bars had to be
multiplied by 400 to make them visible on this plot.

This discovery had a huge impact on modern cosmology, it definitely
ruled out the Steady State Universe hypothesis in favour of the Hot Big
Bang hypothesis to explain the origin of the Universe. Furthermore the
uniformity of the radiation is the best evidence of the cosmological principle
for large scales.

9



10 CHAPTER 3. THE CMB RADIATION

3.1 Origin of the CMB

3.1.1 Decoupling

According to the Hot Big Bang theory, the Universe started hot and dense
and then expanded and cooled. In the early Universe the typical energy
of a photon in the thermal distribution was a lot higher than the 13.6eV
needed to ionize hydrogen atoms, so it was not possible for atoms to exists
at that epoch. The Universe was therefore a ionized plasma of electrons
and nuclei (also called a photon-baryon fluid), in which electrons can be
considered free. Because photons interact strongly with free electrons via
Thompson scattering 1, the mean free path of any electron was thus very
short; we could say that photons were tightly glued to matter and the Uni-
verse was opaque to radiation. As the Universe expanded and cooled down,
the photons lost more and more energy due to redshift. When the Universe
was about 300′000 years old the temperature dropped below 3000K allowing
atomic hydrogen to form in a process known as recombination. Because the
interaction between photons and electrons in a atom (also know as Rayleigh
scattering) is much weaker, photons where then able to travel uninterrupted
and finally reach us. Cosmologist use to say that the Universe switched from
being opaque to being transparent and this epoch is known as decoupling.

3.1.2 Last Scattering Surface

The photons observed in the CMB come from a distance close to the size
of the observable Universe; because of this we see them originated on the
surface of a very large sphere centred in our position, called the surface of
last scattering. As we said when talking about Hubble’s law in Chapter
1, there is nothing special about our position, photons originated in every
point of the Universe and every possible observer will see them coming from
a sphere centred in his location.

3.1.3 Redshift of CMB photons

It is a well known result that for a black-body at temperature T the energy
density in a frequency interval dν is

ε(ν) dν =
8πh

c3
ν3 dν

exp(hν/kBT )− 1
, (3.2)

where h and kB are respectively the Plank and the Boltzmann constant.
The total energy density can be obtained setting y = hν/kBT and then

integrating

εrad =
8πk4B
h3c3

T 4

∫ ∞
0

y3 dy

ey − 1
= αT 4 , (3.3)

1For a mathematical explanation of this process see the next chapter
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Figure 3.2: Schematic view of the last scattering sphere

where the constant is

α =
π2k4B
15~c3

. (3.4)

The energy density is related to the mass density via the

εrad ≡ ρradc2 , (3.5)

but for a radiation dominated Universe the Friedmann equations tell us that
the density radiation evolves with the expansion

ρrad ∝
1

a4
, (3.6)

where a is the scale factor.

Combining with the (3.3) we obtain

T ∝ 1

a
. (3.7)

This means that the Universe cools down as it expands, the frequency ν is
redshifted in proportion to 1/a but the black-body form is preserved in a
lower temperature

Tfinal = Tinitial
ainitial
afinal

. (3.8)

This property can be understood by looking carefully at equation (3.3):
firstly, the exponential is a function of ν/T so it is a-independent. Secondly,
the ν3 on the numerator scales as the inverse volume, exactly like the energy
density on the left-hand side.
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Figure 3.3: Evolution of the black-body spectrum during the expansion of
the Universe.

3.2 CMB Temperature Anisotropies

We said that the CMB was found to be remarkably uniform across the sky.
As a matter of fact, it was not until 1992 that the COBE satellite discovered
temperature variations at the level of 1 part in 105. In analogy with the
density fluctuations described in Chapter 2, we can define a temperature
fluctuation function of the position in the sky n̂ = (θ, φ)

Θ(n̂) =
∆T

T
(θ, φ) =

T (θ, φ)− T̄
T̄

. (3.9)

We now want to carry out an expansion like we did in (2.2) but this time
we must use spherical harmonics Ylm(θ, φ) because we are operating on the
surface of a sphere

Θ(n̂) =
∞∑
l=1

l∑
m=−l

ΘlmYlm(n̂) , (3.10)

where the multipole moments of the temperature field are

Θlm =

∫
dn̂Ylm

∗(n̂)Θ(n̂) (3.11)

and, if the fluctuations are Gaussian, they are fully charaterized by their
radiation angular power spectrum Cl defined by

〈Θ∗lmΘl′m′〉 = δll′δmm′Cl . (3.12)

Note that the Cl cannot depend on the m index because of the rotational
invariance of the statistical properties.
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From a theoretical point of view, the (3.12) could be thought as an
average over all the possible observers in our Universe (every observer sees
his last scattering surface). But all the possible experiments can only study
the CMB as seen from Earth so all they can do is average over the possible
values of index m. The difference between our region of the Universe as
compared to the average is known as cosmic variance. This sets a limit to
the accuracy of power spectra measurements, there are only 2l+1 m-samples
of each multipole moment, and leads to an inevitable error of

∆Cl =

√
2

2l + 1
Cl . (3.13)

On small sections of the sky, the spherical harmonic analysis becomes
ordinary Fourier analysis in two dimensions, in this limit the variance of the
field is

∫
d2lCl/(2π)2 and the power spectrum is conventionally displayed as

∆2
T ≡

l(l + 1)

2π
ClT

2 (3.14)

the power per logarithmic interval in wavenumber for l � 1.

Figure 3.4: Planck 2015 TT power spectrum. The x̂-axis is logarithmic up
to l = 30 and linear at higher l. The red line is the Planck best-fit primordial
power spectrum. Residuals with respect to this model are shown in the lower
panel. The error bars show ±1σ uncertainties.

3.2.1 About the Dipole

The most prominent feature in the CMB is the l = 1 perturbation, known
as the dipole. But this pattern is generated simply because the Earth is
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moving with respect to the CMB and so the observed temperature appears
redshifted or blueshifted because of the Doppler effect. As a matter of fact
calculations that take into account the Sun’s revolution around the galaxy
explains very well the dipole data. For this reason l = 2 is the smallest value
considered when studying the intrinsic properties of the background. Maps
of the CMB are always shown with the dipole already removed.

(a) (b) (c)

Figure 3.5: Temperature maps of the CMB: no variations whatsoever at
the level of 1 part in 1000 (a), if we turn up the contrast a dipole pattern
appears (b), when the dipole is removed anisotropies emerges (c). The line
around the equator is a contamination from our own galaxy.

3.3 Origin of the Fluctuations

3.3.1 Inflation and Acoustic Oscillations

The theory of inflation was introduced in the ’80s by various authors in order
to solve some critical issues in the Standard Cosmological Model such as the
horizon problem and the flatness problem. According to this theory the
early Universe went through a phase of exponential expansion that ended
10−34 seconds after the Big Bang that can be described as the action of a
scalar field Φ generating a negative pressure.

An exhaustive presentation of inflationary theories is not the aim of this
thesis but there is a key point that needs to be stressed. In this period of
rapid expansion random quantum fluctuations were stretched into cosmic
scales, creating fluctuations in the energy density. But these variations
imply anisotropies in the local gravitational potential, regions of high density
generate potential wells while regions of low density generate potential hills.

As we said in the previous sections, before recombination the matter in
the Universe can be described as a photon-baryon fluid. In the potential
wells gravity tends to compress the fluid but its radiation pressure opposes
to it, this results in acoustic oscillations. Like a gas, the fluid will heat up
when compressing while it will cool down when expanding. This leads to
temperature anisotropies in the CMB that follow the oscillations. These
oscillation modes can be linked to the peaks in the temperature power spec-
trum (see fig. 3.4), the first peak represents the mode that compressed once
inside potential wells before recombination, the second the mode that com-
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pressed and then rarefied, and so one. The measurement and analysis of
these peaks leads to precise estimation of various cosmological parameters.

Figure 3.6: Potential wells and hills cause the fluid (here depicted as spings)
to compress and expand, this leads to oscillations. Temperature fluctuations
follow density variations. In this picture color blue means hot while red is
cold.

Because inflation lays down potential fluctuations on all scales we can
decompose the fluctuations into plane waves using the Fourier transform.
According to the mathematics each mode behave independently and so we
can think of each individually. From now on then we will focus on only one
plane wave perturbation.

3.3.2 Inflation and Gravitational Waves

Another important prediction of any inflationary model is the production
of primordial gravitational waves. The explosive expansion during inflation
would have created ripples in the fabric of spacetime, perturbation that can
be viewed as gravitational waves. The amplitude of these waves is predicted
to be proportional to the expansion rate during inflation, which in turn is
proportional to the inflation energy scale squared. In the last Chapter we
will see that some patterns in the CMB polarization can be linked to these
primordial gravitational waves, the future detection of these patterns would
be an important proof in support of the theory of inflation.

3.3.3 From Spatial Inhomegeneity to Angular Anisotropy.

The fluid stop oscillating at recombination, the photons are no longer strictly
coupled with the baryons and (after a little period of random walk because
recombination does not occur instantaneously) they start streaming unim-
peded.

Let consider a generic observer, right after recombination he will see
an isotropic CMB but, as time passes, he will be reached by photons from
more and more distant regions. With reference to the figure below, consid-
ering a single plane wave mode, the CMB pattern becomes a dipole, then a
quadrupole and so on. After billions of years every observer in the Universe
see a fine angular scale structure in the CMB temperature
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(a) (b)

(c) (d)

(e)

Figure 3.7: Oscillations before recombination (a). After recombination pho-
tons (yellow lines) start moving and reach the observer who will see the
CMB pattern evolve from a monopole (b), to a dipole (c), quadrupole (d)
and so on. Today we see a fine angular structure (e)



Chapter 4

Polarization

4.1 Thomson Scattering From a Single Wave

Thomson scattering is the scattering of electromagnetic radiation by a free
electron. If an electromagnetic wave is incident on a free charged particle,
the particle will be accelerated by the electric field and in response emit
radiation. This process is the low energy limit of Compton scattering and
can be described in a classical, non-relativistic way.

An useful tool to describe this phenomena is the differential cross section,
defined as the radiated intensity per unit solid angle divided by the incoming
intensity per unit area

dσ

dΩ
=

1

I0

dW

dΩ
(4.1)

where I0 and W are respectively the incident energy flux and the emitted
power.

4.1.1 Linearly Polarized Incident Wave

For an incident linearly polarized plane wave propagating in the ẑ direction

~Ein = ~E0 cos(ω(t− z)) ; ~Bin = ẑ × ~Ein (4.2)

the incident flux is the time-averaged Poynting vector

I0 = 〈|~S|〉 = 〈| ~E0|2〉 = 〈| ~E0 cos(ω(t− z))|2〉 =
1

2
E2

0 (4.3)

where we have denoted with 〈·〉 the time average over a period.
In our hypothesis the velocity v of the electron (we will reintroduce units

of c at the end of this section), when moved by the incident radiation, is
v � 1. We can thus use the dipole approximation.

The force on the electron is, from the Lorentz formula

m
d2

dt2
~y(t) = e( ~Ein + ~v × ~Bin) ; (4.4)

17
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since in a plane wave | ~Ein| = | ~Bin| and v � 1 we can neglect the magnetic
field

m
d2

dt2
~y(t) = e ~Ein(t, ~y(t)) ' e ~Ein(t, 0) = e ~E0 cos(ωt) . (4.5)

The last approximation is valid because ~E, ~B ⊥ ẑ. The particle will then
move in a direction orthogonal to ẑ while the fields depend only on the z
coordinate.

The equation of motion can be easily obtained from integration

~y(t) = − e

mω2
~E0 cos(ωt) . (4.6)

Besides, we can write the emitted radiation fields in terms of the dipole
moment ~D(t) = e~y(t)

~E(t, r) = − 1

4πr

[
~̈D −

(
~n · ~̈D

)
~n
]

= − e

4πmr

[
~E0 −

(
~n · ~E0

)
~n
]

cos(ω(t− r))
(4.7)

~B(t, r) = ~n× ~E(t, r) (4.8)

where ~n is the observation vector.

The average power per unit solid angle is〈
dW

dΩ

〉
= r2〈| ~E|2〉 =

1

2

e4

16π2m2

[
| ~E0|2 −

(
~n · ~E0

)2]
(4.9)

If we name Θ the angle between ~n and ~E0 we have〈
dW

dΩ

〉
=

e4

32π2m2
| ~E0|2 sin2 Θ (4.10)

and the cross section becomes

dσ

dΩ
= r20 sin2 Θ , (4.11)

where r0 is the classical electron radius defined as (reintroducing the c)

r0 =
e2

4πmc2
. (4.12)

From (4.7) we note that the scattered radiation is polarized in the plane
of the incident polarization (the direction of the electric field) and the scat-
tering direction ~n.
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4.1.2 Unpolarized Incident Wave

If the incident wave is unpolarized there will not be a preferred direction for
E0, every plane orthogonal to ẑ is equiprobable. We will have to average
(denoted as 〈〈·〉〉 ) over all the possible orientations

〈〈E0,x〉〉 = 〈〈E0,y〉〉 = 0 (4.13)

〈〈E2
0,x〉〉 = 〈〈E2

0,y〉〉 =
1

2
| ~E0|2 (4.14)

〈〈E0,xE0,y〉〉 = 0 . (4.15)

If ~E0 has no fixed direction, the angle Θ used in the previous section is not
well defined. Let θ be the angle between ẑ and the observation vector ~n, we
can write

〈〈(~n · ~E0〉〉 =n2x〈〈E2
0,x〉〉+ n2y〈〈E2

0,y〉〉+ 2nxny〈〈E0,xE0,y〉〉 =

=
1

2
| ~E0|2(n2x + n2y) =

1

2
| ~E0|2 sin2 θ (4.16)

For an unpolarized incident wave equation (4.10) becomes〈
dW

dΩ

〉
np

=
e4

32π2m2
| ~E0|2(1−

1

2
sin2 θ) =

e4

64π2m2
| ~E0|2(1 + cos2 θ) (4.17)

and
dσnp
dΩ

= r20
1 + cos2 θ

2
. (4.18)

For a non polarized incident wave the polarization of the scattered ra-
diation depends on θ. Along the incident direction θ = 0 we see no net
polarization since all directions in the plane are equivalent. On the other
hand, if we look at θ = π/2, perpendicular to the incident wave, we see
complete linear polarization, because the electron’s motion is confined to a
plane normal to the incident radiation.

4.1.3 Total Thomson Cross Section

Integrating the (4.18) over the solid angle we obtain

σTnp =

∫
dσnp
dΩ

dΩ = 2π

∫ 1

−1

dσnp
dΩ

d cos θ = 2πr20

∫ 1

−1

1 + cos2 θ

2
d cos θ =

8π

3
r20 .

(4.19)
The same result can be obtained integrating the cross section for a polarized
incident wave (4.11)

σT =

∫
dσ

dΩ
dΩ = 2πr20

∫ 1

−1
(1− cos2 Θ)d cos Θ =

8π

3
r20 , (4.20)
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but one must be careful defining different polar coordinates for the two
angles.

An intuitive explanation for this equality is that at rest has no net di-
rection intrinsically defined.

We can express the cross section in another way, with focus on the po-
larization

dσ

dΩ
=

3σT
8π
|ε̂′ · ε̂| (4.21)

where ε̂′ and ε̂ are the directions of incoming and outgoing polarization,
respectively.

4.2 Polarization From Thomson Scattering

Starting from this section we are going to consider not a single incident wave
but an incoming radiation field.

Thomson scattering produces polarization only when the incident field
has a quadrupole moment. The reason why this happen can be intuitively
understood. With references to the following pictures, we consider incoming
radiation from the left being scattered by 90 degrees out of the screen.
Since light cannot be polarized along its direction of motion, only one linear
polarization state gets scattered (a).

But there is nothing particularly special about light coming in from the
left, if we consider also light coming in from the top the outgoing radiation
will possesse both polarization states. If the incoming radiation from the left
and top are of equal intensity, the result is no polarization in the outgoing
direction (b).

Only if the intensity of the radiation varies at 90 degrees, in other words
the distribution has a quadrupole pattern, does a net linear polarization
result (c).

In the next sections we will show how such a behaviour can be described
mathematically, but first we need to introduce some parameters to quanti-
tatively describe polarization.
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(a)

(b) (c)

Figure 4.1: Thomson scattering on a single electron, only a quadrupole
anisotropy in the incident field produced net linear polarization scattered

4.3 Stokes Parameters

A monochromatic electromagnetic wave propagating in the ẑ direction has
an electric field whose components are

Ex = ax cos(ωt+ εx) ; Ey = ay cos(ωt+ εy) . (4.22)

We can then define the Stokes parameters in a plane orthogonal to the
direction of propagation as following

I = a2x + a2y (4.23)

Q = a2x − a2y (4.24)

U = 2axay cos(εx − εy) (4.25)

V = 2axay sin(εx − εy) (4.26)

where I is the intensity of the wave, Q and U are the linear-polarization pa-
rameters and V is the circular-polarization parameter. Thomson scattering
induces no circular polarization, so V will not play a role in our analysis.
Q represents the polarization in the x − y direction while U represents its
component along axes rotated by 45◦.
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Figure 4.2: Various combinations of Q and U describe different linear po-
larization states.

4.3.1 Behaviour under rotations

If we consider a rotation of the x−y axes by an angle α the new coordinates
will be (

x′

y′

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
. (4.27)

But the Stokes parameters (Q,U) will transform as(
Q′

U ′

)
=

(
cos 2α sin 2α
− sin 2α cos 2α

)(
Q
U

)
. (4.28)

So (Q,U) behave like the components of a symmetric trace-free 2 × 2
tensor Pij that, under a generical coordinate transformation

x′i = Aki xk , (4.29)

transforms as

P ′ij = AkiA
l
jPkl . (4.30)

More explicitly(
Q′ U ′

U ′ −Q′
)

=

(
cosα sinα
− sinα cosα

)(
Q U
U −Q

)(
cosα − sinα
sinα cosα

)
. (4.31)

We can define the polarization amplitute |P |2 =
√
Q2 + P 2 and his

orientation to the x̂ axes α = 1
2 arctan(U/Q). Note that it is an headless

vector, it transforms into itself for a π rotation, it behaves like a spin-2
object (or a 2× 2 vector). We can also write the polarization as a complex
number

P = |P |e2iα = Q+ iU . (4.32)
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4.4 Polarization and Quadrupoles

In this section we will show that, if we consider a radiation field with inten-
sity I(n̂′) =

∑
almYlm(n̂′) incident on an electron e−, the radiation scattered

in the ẑ direction will be linearly polarized only if the incident radiation has
a quadrupole moment.

We will denote the incoming polarization vectors with ε̂′i and the outgoing
with ε̂i. Because we are considering outgoing photons in the ẑ direction
we can chose the outgoing polarization axes as ε̂1 = x̂ and ε̂2 = ŷ. For
an incoming photon from a general direction n̂′ we will take the incoming
polarization vectors to be ε̂′1 = θ̂′ and ε̂′2 = φ̂′ the standard unit vectors
perpendicular to the position vector. In Cartesian coordinates this three
vectors are:

n̂′(θ′, φ′) = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) (4.33)

ε̂′1(θ
′, φ′) = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′) (4.34)

ε̂′2(θ
′, φ′) = (− sinφ′, cosφ′, 0) (4.35)

where φ is the azimuthal angle. It is easy to verify that these three vectors
are orthonormal.

Figure 4.3: Incoming photon in the n̂′ direction. Scattering produces an
outgoing photon in the n̂ = ẑ direction.

The cross-section for outgoing photons polarized in the êi direction is
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proportional to
2∑
j=1

|êi(n̂) · ê′j(n̂′)|
2 (4.36)

The Q polarization is the difference between the cross section for i = 1 and
i = 2

2∑
j=1

|ê1(n̂) · ê′j(n̂′)|
2 −

2∑
j=1

|ê2(n̂) · ê′j(n̂′)|
2 =

2∑
j=1

(
|x̂ · ê′j(n̂′)|

2 − |ŷ · ê′j(n̂′)|
2
)
.

(4.37)
Integrating over all incoming directions n̂′ we obtain

Q(ẑ) = A

∫
dΩ′ I(n̂′)

2∑
j=1

(
|x̂ · ê′j(n̂′)|

2 − |ŷ · ê′j(n̂′)|
2
)
. (4.38)

where A is a normalization constant. Note that I depends only on n̂′, not
on the ê′j , we have assumed that the incoming radiation is unpolarized.

If we express ê′1 and ê′2 in Cartesian coordinates using the (4.4), the dot
products become

Q(ẑ) = A

∫
dΩ′ I(n̂′)

(
cos2 θ′ cos2 φ′ + sin2 φ′ − cos2 θ′ sin2 φ′ − cos2 φ′

)
= −A

∫
dΩ′ I(n̂′) sin2 θ′ cos 2φ′ . (4.39)

Now is crucial to recognise this combination of sines and cosines as being
proportional to the sum of the spherical harmonics

Y2,2+Y2,−2 = −
√

15

32π

(
sin2 θe+2iφ + sin2 θe−2iφ

)
= −

√
15

32π

(
sin2 θ cos 2φ)

)
.

(4.40)
We can then expand the incident radiation field in spherical harmonics

I ′(θ′, φ′) =
∞∑
l=0

l∑
m=−l

almYlm(θ′, φ′) . (4.41)

Since the spherical harmonics are orthogonal, the integral will select
only the l = 2, m = ±2 components of the distribution I. Because of this,
nonzero Q will be produced only if the incident radiation has a quadrupole
moment.

The same derivation could be done, mutatis mutandis, for the U com-
ponent (x̂ and ŷ must be replaced by unit vectors rotated π/4, i.e (x̂+ ŷ)/2
and (x̂− ŷ)/2), one will find

U(ẑ) = −A
∫
dΩ′ I(n̂′) sin2 θ′ sin 2φ′ . (4.42)
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where the sines are proportional to Y2,2−Y2,−2. Again, an incident quadrupole
is needed.

Remembering the definition (4.32) we can write

Q(ẑ) + iU(ẑ) ∝ Y2,2(n̂′) ; Q(ẑ)− iU(ẑ) ∝ Y2,−2(n̂′) (4.43)

and so
Q(ẑ) ∝ <(a22) ; U(ẑ) ∝ =(a22) . (4.44)

Thus polarization is generated along the outgoing z-axis provided that
the a22 quadrupole moment of the incoming radiation is non-zero.

4.4.1 Arbitrary Scattering Direction

If we want to compute the outgoing polarization in a direction making an
angle β with the ẑ-axis, the incoming radiation must be expanded in a
coordinate system rotated through the Euler angle β. The rotated multipole
coefficient are

ãlm =

∫
dΩY ∗lm(RΩ)I ′(Ω) =

m∑
m′=−m

Dl ∗
m′m(R)

∫
dΩY ∗lm′(Ω)I ′(Ω) ; (4.45)

where R is the rotation operator and Dl
m′m is the Wigner D-symbol. In this

new frame we can thus use the previous result where, instead of a22, the
multipole coefficient generating polarization will be ã22.

If the incoming radiation has an azimuthal simmetry, in other words is
independent of φ, then the only non-zero component of the multipole is

ã22 = a20d
2 ∗
02 (β) =

√
6

4
a20 sin2 β . (4.46)

And the related Stokes parameter will be

Q(n̂) + iU(n̂) ∝ a20 sin2 β ; (4.47)

but since the incoming field is real, a20 will be real, and so it must be U = 0.
An azimuthally-symmetric radiation field will thus generate a pure Q

scattered field, which means that the polarization orientation will be in the
plane of the ẑ-axis and the scattering direction and its magnitude will be
proportional to sin2 β.

4.4.2 Scattering From an Electron Cloud

Up to now we have considered the polarization emerging in a certain direc-
tion from an incoming radiation field scattered by a single electron. But
the reality of the CMB is way more complicated, there are lots of electrons
coupled to the photon distribution. The formal approach to this type of
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problems would request the use of the Boltzmann equation to describe the
evolution of the various particles distributions in the phase space giving the
interaction between them. We will not go down this path. In the following
chapter we will show that the physics of the CMB polarization can be un-
derstood, at least in a intuitive way, by focusing on a single electron and a
single plane wave mode of the density perturbation.



Chapter 5

CMB Polarization

In the previous Chapter we have seen how linear polarization can be gen-
erated by Thomson scattering if the incident field possesses a quadrupole
anisotropy. Since electron-photon scattering stops at recombination, observ-
ing polarization in the CMB radiation means looking directly at the last
scattering surface of the photons. For this reason detection and analysis
of the polarization power spectrum provides an important tool for under-
standing the origin an the evolution of the early Universe. Besides providing
more constrains for the estimations of cosmological parameters, the study
of CMB polarization (in particular an eventual detection of a B-mode) in
would be the smoking gun for the existence of primordial gravitational waves,
thus giving an experimental proof for the theory of inflation. The degree
of polarization depends on the duration of last scattering, according to the
Standard Cosmological Model 10% of the anisotropies should be polarized.
Since the temperature anisotropies are at the 10−5 level, the upper limit for
the polarized signal is 10−6, meaning µK. Although this represent a signif-
icant experimental challenge, the DASI experiment detected E polarization
modes in 2002.

In this Chapter we will present an introduction to the polarization of
the CMB, its origin and how quadrupole moments are generated. We will
introduce the E-B decomposition of the polarization tensor and understand
how these patterns are modulated over the last scattering surface. Finally,
we will describe why B modes are related to primordial gravitational waves.

As we already said, the formal approach to this topic would request the
use of the Boltzmann equation. Instead, we will focus on a single electron
and a single plane wave modulation of the anisotropies, following a deriva-
tion that, even if it could appear too much intuitive and qualitative, let us
understand quite well the physics behind the CMB polarization.

27
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5.1 Local Quadrupoles

In terms of a decomposition of the incident radiation field into spherical
harmonics Y 2

l (θ, φ), the quadrupole is represented by l = 2, m = 0,±1,±2.
This values of the index m correspond to scalar, vector and tensor perturba-
tions in the temperature distribution, respectively. Since it could be shown
that vector mode are supressed in the modulation, we will focus only on
scalar and vector modes.

5.1.1 Scalar Modes

Let consider a single Fourier component of the temperature fluctuation, a
single plane wave in the form exp(i~k · ~x). The temperature and the gravita-
tional potential gradients will cause a bulk flow of photons. We can group
this two effect defining an effective temperature

(∆T/T )eff = ∆T/T + Ψ , (5.1)

where Ψ is the gravitational potential, so the flows will always be from
hot to cold effective temperature regions. Let consider an electron located
in a trough of a plane wave, with reference to the figure (3.6) it will see a
quadrupole anisotropy in the temperature pattern with azimuthal symmetry
along ~k, because hotter photons from the crest flow into the through from
the ±~k directions while cold photons surround the electron in the plane.
The pattern is a m = 0 quadrupole

Y 0
2 ∝ 3 cos2 θ − 1 , (5.2)

where cos θ = n̂ · k̂.

If the electron is on a crest, the flow is the opposite direction. This means
a reverse sign in the quadrupole but does not change the m = 0 nature. The
full effect is thus described by a m = 0 quadrupole modulated by a plane
wave

−Y 0
2 exp(i~k · ~x) , (5.3)

where the minus sign is because the photons flow from hot to cold regions.

In term of the Stokes parameters, the scalar pattern represent a pure Q
field

Q = sin2 θ; U = 0 . (5.4)

The reason of the sine can be understood remembering that the polariza-
tion peaks when the incident field varies in the direction orthogonal to the
observation vector n̂.
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Figure 5.1: The scalar quadrupole moment m = 0. The bulk velocity ~v is
perpendicular to the wave vector ~k.

5.1.2 Tensor Modes

Tensor modes are generated by plane gravitational waves, transverse-traceless
perturbation to the metric that distort a circle of test particles into an ellipse
whose axes vary in time. This leds to a stretching of the wavelength of the
photons, producing a m = ±2 pattern

Y ±22 ∝ sin2 θe±2iφ (5.5)

where (θ, φ) are polar coordinates defined along k̂. Here the polarization is
maxim at the pole and the Stokes parameters are

Q = (1 + cos2 θ)e2iφ; U = −2i cos θe2iφ . (5.6)

5.1.3 Superposition

Polarization patterns separate cleanly into m = 0,±1,±2 patterns for a
single plane wave perturbation, where the coordinate system is defined by
~k. But if we consider a superposition of various fluctuations with different
~k, the polarization does not separe into m = 0,±1,±2 modes. On the
contrary, because of statistical isotropy, the ensemble average power for each
multipole l is independent of m. Nonetheless, the parity of the polarization
patterns and its correlation with the temperature fluctuations survive the
superposition. In the following section we will develop a formalism that will
allow us to describe such a superposition.
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Figure 5.2: The tensor quadrupole moment m = 2. The circle of test
particles is deformed by the passing gravitational wave, passing from crest
to trough the major/minor axes are inverted.

5.2 E-B Decomposition

We have shown how the polarization can be quantified by the Stokes pa-
rameters Q(n̂) and U(n̂) measured as a function of position n̂ = (θ, φ) in
the sky. But they depend on the coordinate system that we choose, in this
section we will thus develop a coordinate-system-indipendent representation
of the tensor field Pab.

5.2.1 Flat Sky

On a flat sky (which is a good approximation for a small region of sky) the
polarization tensor as a function of the position ~θ = (θx, θy) is

Pab =
1

2

(
Q(~θ) U(~θ)

U(~θ) −Q(~θ)

)
. (5.7)

We now define gradient ’E’ and curl ’B’ components of the tensor field as
follows:

∇2PE = ∂a∂bPab (5.8)

∇2PG = εac∂b∂cPab (5.9)

where εac is the two dimensional Levi-Civita tensor.
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If we write the Fourier transform for Pab

Pab(~θ) =

∫
d2~l

(2π)2
P̃ab(~l)e

−i~l·~θ (5.10)

P̃ab(~l) =

∫
d2~θP̃ab(~θ)e

i~l·~θ (5.11)

the right member of equations (5.8) becomes

∂a∂bPab(~θ) = ∂a∂b

∫
d2~l

(2π)2
P̃ab(~l)e

−i~l·~θ =

∫
d2~l

(2π)2
P̃ab(~l)∂a∂be

−i~l·~θ =

=
1

2

∫
d2~l

(2π)2

[
Q̃(~l)l2x + 2lxlyŨ(~l)− Q̃(~l)l2y

]
e−i

~l·~θ (5.12)

where in the last passage we have written the explicit components of (5.7).
But the left member of (5.8) is simply the operator ∇2 applied to the

(5.10)

∇2PE(~θ) =

∫
d2~l

(2π)2
(l2x + l2y)P̃ab(

~l)e−i
~l·~θ . (5.13)

Imposing equality between (5.12) and (5.13) we find an expression for
P̃E(~l). The same calculations can be done for P̃E(~l). We have thus demon-
strate that the Fourier components of PE(~θ) and PG(~θ) are

P̃E(~l) =
1

2

(l2x − l2y)Q̃(~l) + 2lxlyŨ(~l)

l2x + l2y
(5.14)

P̃G(~l) =
1

2

2lxlyQ̃(~l)− (l2x − l2y)Ũ(~l))

l2x + l2y
. (5.15)

Invariance Under Rotations

We want to verify that the Fourier components P̃E and P̃B are invariant
under a rotation of the θx − θy axes.

In the previous chapter we have shown how objects transform under a
rotation R(α), recalling equation (4.27) and (4.28)(

l′x
l′y

)
=

(
cosα sinα
− sinα cosα

)(
lx
ly

)
(5.16)

(
Q′

U ′

)
=

(
cos 2α sin 2α
− sin 2α cos 2α

)(
Q
U

)
. (5.17)

Rotation invariance for P̃E is proved if

P̃ ′E(~l ′) =
1

2

(l2′x − l2′y )Q̃′(~l′) + 2l′xl
′
yŨ
′(~l)

l2′x + l2′y
= P̃E(~l) . (5.18)
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Note that l2′x + l2′y is manifestly invariant, we will then focus only on the
numerator.

(l2′x − l2′y ) = (lx cosα+ ly sinα)2 − (−lx sinα+ ly cosα)2

= l2x cos2 α+ l2y sin2 α+ 2lxly cosα sinα− l2x sin2 α− l2y cos2 α+ 2lxly cosα sinα

= (l2x − l2y)(cos2 α− sin2 α) + 4lxly cosα sinα

= (l2x − l2y)(cos 2α) + 2lxly sin 2α (5.19)

(l′xl
′
y) = (lx cosα+ ly sinα)(−lx sinα+ ly cosα)

= −l2x cosα sinα+ lxly cos2 α− lxly sin2 α+ l2y cosα sinα

= (lxly)(cos2 α sin2 α)− (l2x − l2y) cosα sinα

= lxly cos 2α−
(l2x − l2y)

2
sin 2α . (5.20)

And so, substituting in the numerator

[(l2x − l2y)(cos 2α) + 2lxly sin 2α](Q̃ cos 2α+ Ũ sin 2α)+

+ [2lxly cos 2α− (l2x − l2y) sin 2α](−Q̃ sin 2α+ Ũ sin 2α) =

= (l2x − l2y)Q̃ cos2 2α+ 2lxlyQ̃ sin 2α cos 2α+ (l2x − l2y)Ũ cos 2α sin 2α+ 2lxlyŨ sin2 2α+

− 2lxlyQ̃ sin 2α cos 2α+ (l2x − l2y)Q̃ sin2 2α+ 2lxlyŨ cos2 2α− (l2x − l2y)Ũ cos 2α sin 2α =

= (l2x − l2y)Q̃(~l) + 2lxlyŨ(~l) . (5.21)

That proves the invariance. The calculations for P̃G are exactly the
same.

5.2.2 Power Spectra and Parity

As we saw in Chaper 3 the temperature power spectrum CTTl is defined
from

〈T̃ (~l)T̃ (~l′) = (2π)2δ(~l +~l′)CTTl . (5.22)

Likewise, we can define the polarization power spectra as

〈P̃E(~l)P̃E(~l′) = (2π)2δ(~l +~l′)CEEl (5.23)

〈P̃B(~l)P̃B(~l′) = (2π)2δ(~l +~l′)CBBl (5.24)

〈P̃E(~l)P̃B(~l′) = (2π)2δ(~l +~l′)CEBl . (5.25)

If we also consider cross-correlation of the polarization with temperature,
then we have six power spectra

〈X̃1(~l)X̃2(~l
′) = (2π)2δ(~l +~l′)CX1X2

l (5.26)
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where X1, X2 = {T, PE , PB}
Now consider a parity inversion, for example a reflection about the x-

axis. Then we have

θy → −θy; Q→ Q; U → −U ; lx → lx; ly → −ly (5.27)

and also

T̃ (~l)→ T̃ (~l); P̃E(~l)→ P̃E(~l); P̃B(~l)→ P̃B(~l) . (5.28)

This means that E and T are parity even, while B is parity odd. Thus, if
the physics that gives rise to the fluctuations conserves parity we will have
that

CTBl = CEBl ≡ 0∀l . (5.29)

So the statistic of the T/P map is entirely determined by the four power
spectra CTTl , CTEl , CEEl and CBBl .

5.2.3 Full Sky

The result we obtained in the previous section are valid only if we consider a
small region of the sky, for bigger areas we need to account for the curvature
of the celestial sphere. Thus, we will now develop the E-B formalism on the
2-sphere.

Using spherical polar coordinates (θ, φ) the 2-sphere has a metric

gab =

(
1 0
0 sin2 θ

)
. (5.30)

The polarization tensor is defined on the tangent plane to photon prop-
agation and it must be symmetric Pab = Pba and trace-free gabPab = 0,
hence

Pab(n̂) =
1

2

(
Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

)
. (5.31)

If we denote with ’:’ the covariant derivative ∇a and with ’,’ the ordinary
one ∂a, we can write the covariant derivatives of scalar, vector and tensor
fields as

S:a = S,a (5.32)

V a
:b = V a

,b + V cΓabc (5.33)

T ab:c = T ab,c + T dbΓacd + T adΓbcd (5.34)

where the Christoffel symbols are

Γabc =
1

2
gad(gdb,c + gdc,b − gbc,d) . (5.35)
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It can be proved that any STF 2×2 tensor can be written as the ’gradient’
of some scalar field A(n̂) plus the ’curl’ of some other scalar field B(n̂)

Pab = [A:ab −
1

2
gabA

:c
c ] +

1

2
[B:acε

c
b +B:bcε

c
a] (5.36)

where the antisymmetric tensor is defined as

εab =
√
g

(
0 1
−1 0

)
. (5.37)

Since any scalar field in the sphere can be expanded in spherical har-
monics, it follows that the polarization tensor can be expanded in terms of
gradients and curls of spherical harmonics

Pab(n̂)

T0
=

∞∑
l=2

l∑
m=−l

[
aE(lm)Y

E
(lm)ab(n̂) + aB(lm)Y

B
(lm)ab(n̂)

]
. (5.38)

The expansion coefficients are given by

aJlm =
1

T0

∫
dn̂Pab(n̂)Y J ab ∗

lm (n̂) with J = {E,B} (5.39)

and

Y E
(lm)ab = Nl

(
Y(lm):ab −

1

2
gabY

c
(lm):c

)
(5.40)

Y B
(lm)ab =

Nl

2

(
Y(lm):acε

c
b + Y(lm):bcε

e
a

)
(5.41)

where the normalization factor Nl is

Nl =

√
2(l − 2)!

(l + 2)!
. (5.42)

Note that the reality of T , Q and U implies

aX ∗(lm) = (−1)maX(l,−m) where X = {T,E,B} . (5.43)

The T/P power spectra are now

〈aX ∗(lm)a
X′

(l′m′)〉 = CXX
′

l δll′δmm′ for X,X ′ = {T,E,B} . (5.44)

As in the flat sky approximation, TB and EB are zero if parity is con-
served.

5.2.4 Rotations

Note that if we rotate the polarization tensor Pab by 45◦, which means
(Q,U)→ (U,−Q), then E → B and B → −E.
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Figure 5.3: Examples of E (top) and B (bottom) polarization patterns.
Clearly E modes are invariant under parity, while B modes are odd

5.3 Modulation Over the Last Scattering Surface

Because the spherical harmonics that describe the temperature anisotropy
have (−1)l electric parity, Thomson scattering can only produce E-modes
locally. Until now we have described the polarization patterns generated by
a single electron on the last scattering surface, but the pattern we see in
the sky is the modulation of all the local modes by the plane wave spatial
dependence of the perturbation.

Figure 5.4: Modulation of a scalar local patter on the last scattering surface.

This modulations changes the amplitude and sign of the polarization
but does not mix Q and U patterns. However, if the local pattern possesses
a Q component, a B mode can be generated in the superposition. The
reason why this occur can be understood by analyzing the local distinction
between E and B modes. The definition (5.8) and (5.9) of these modes
inolves the second derivatives of the polarization tensor and it could be
shown that the Hessian of the polarization amplitude has principle axes on
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the same sense as the polarization for E and 45◦ crossed with it for B. In
a less mathematical way, it means that near a maximum of the polarization
direction of change in the polarization is parallel/perpendicular and at 45◦

degree for E and B modes, respectively. But the plane wave modulation
changes the polarization in the direction k̂ (N-S) of the sphere, so a local Q
pattern is needed to obtain a global B mode.

This superposition can be formally described and quantified by describ-
ing the plane wave modulation as the addition of an angular momentum
Y 0
l from the plane wave. This takes the l = 2 local angular dependence to

higher l and splits the signals into E and B modes with ratios related to the
Clebsch-Gordan coefficients.

What matters to us is the fact that, for scalars, the modulation is a pure
Q-field and thus its E-mode nature is preserved. Local tensors patterns on
the other hand are composed by both Q and U , which imply a nearly equal
amount of E and B modes in the total pattern.

Figure 5.5: Modulation of locals scalar and tensor E-modes (a) by a single
plane wave and the resulting predicted power spectrum (b).

A future detection of B modes in the CMB polarization pattern will
thus be clear indication of the existance of primordial gravitational waves,
leading to a strong experimental proof for the theory of inflation and an
estimate of its energy scale.

5.4 Experimental Data

At the present time there are no accurate measurements of B-modes polar-
ization, the 2014 data from the BICEP2 experiment were thought to be a
clear sign of these modes but, later in the same year, it was understood that
these result can be fully attributed to cosmic dust.

On the other hand, EE and TE power spectra are experimentally known
since 2002, the following data are from the 2015 Plank’s data release.



5.4. EXPERIMENTAL DATA 37

Figure 5.6: Planck 2015 EE power spectrum. The red line is the Planck
best-fit primordial power spectrum. Residuals with respect to this model
are shown in the lower panel. The error bars show ±1σ uncertainties.

Figure 5.7: Planck 2015 TE power spectrum. The red line is the Planck
best-fit primordial power spectrum. Residuals with respect to this model
are shown in the lower panel. The error bars show ±1σ uncertainties.
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