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Introduction

Historically physics and biology aim to describe, characterize and understand the matter
(animated or inanimate, using an obsolete nomenclature) starting from its constituent
elements. Both sciences built their own set of experimental and theoretical techniques
which are usually relegated to own context. Despite of this, in the last 50 years, the
knowledge of biology and physics merged tighter in what is called biophysics, which aims
to investigate biological systems through the methods typical of physics. One example
out of many: replication process of DNA which involves complex mechanisms like DNA
unwinding, denaturation (the DNA strands are separated by specific protein), formation
of the biomolecules and restoring the original molecular conformation. This well-known
process can be analyzed in a new light from the physical point of view. As a mat-
ter of fact, the energy values typically encountered in such reactions are in the order
of few kBT units and therefore they are strongly affected by energetic fluctuations in-
duced by the presence of the aqueous environment. Statistical thermodynamics, that
is a well-established approach for describing complex biological systems, can be useful
to investigate this processes. More recently, a new interesting area in biophysics has
received great attention from the scientific community, that is the non-equilibrium ther-
modynamics of small systems, which aims to investigate the thermodynamic properties
of small system, above all at the single-molecule level[1]. Indeed, the recent technological
developments has allowed the transition from bulk experiments (in which the molecular
information are derived as average over a number of molecules of the order of Avogadro’s
number) to single-molecule experiments (SME). In this case an individual molecule at a
time is investigated and, from its behavior, processes which are usually invisible can be
derived.

Nowadays, there are many techniques that can be used to manipulate single molecules,
such as Atomic Force Microscopy (AFM) and Magnetic Tweezers, and among them
Optical Tweezers (OT) surely merit the attention they heve recently received, thanks to
their incredible high spatial (0,2 nm) and time resolution (0,1 ms). Optical tweezers use
focused gaussian beams to trap and manipulate biological systems and they can exploit
the momentum conservation law to control and monitor the applied forces (from 0,02 pN
to 150 pN)

Single-molecule experiments are used to investigate mechanical and thermodynamical
properties of many types of biomolecules, such as proteins, molecular motors, RNA and
DNA and this thesis fits into this context. In particular, in this thesis work the elastic
response of double-stranded DNA molecules are investigated by means of high-frequency
force spectroscopy with optical tweezers. Understanding the DNA elasticity properties is
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iv INTRODUCTION

the cornerstone for a better comprehension of its biological properties and functionalities.
Nowadays three main questions are still under debate, that are the behavior of the DNA
when it is subject to a force around 67 pN, in the so called over-stretching regime, its
elastic response above this range and the role played by the coupling of the stretch
and twist of the molecule. In particular this last aspect has been recently investigated by
means of molecular dynamics simulations[2] and magnetic tweezers[3, 4], but these results
partially contradict previous investigations and a clear and widely-accepted theoretical
model explaining this effect is still lacking. Therefore the main goal of this thesis was
the demonstration of the feasibility of a new experimental approach for shedding light
on some unsolved problems on DNA elastic behavior.

The experimental protocol uses DNA molecules tethered between two beads that are
trapped by a costume made micro-pipette and the optical tweezer laser beam. By moving
the position of the trap, the DNA is elongated and the force exerted is recorded by the
high sample rate acquisition system. The experiments take place in a fluidic chamber
which has been optimized in order to have the optimum set-up conditions. As a metter
of fact, and any misalignment or leaks in the fluidic chamber can compromise the data
acquisition.

The first step was the calibration and the characterization of the apparatus and then
the experimental protocol was optimized by tuning the dilution ratio used for beads
incubation, a procedure in which the DNA is directly bond to one of the two beads.

The acquired data were analyzed transforming the raw voltage signal of the electronic
board into the force spectrum signal and this was interpolated with a lorentzian curve
in order to extract its amplitude and the corner frequency. These parameters were
correlated to the elastic parameters of the DNA by means of a theoretical model and the
role played by the size of the DNA was investigated by performing the experiments on
molecules with different lengths.

The thesis is so organized:

Chapter 1: In the first chapter the physical principles of the optical tweezer and the
theory of the direct force measurement will be presented.

Chapter 2: In the second chapter the optical tweezer set-up, the calibration procedure
and the preliminary steps of the experimental protocols will be described

Chapter 3: In the third chapter some basic notions about the DNA structure will be
presented, then the DNA molecules used in this work will be introduced, and finally
the theoretical models that describe the elastic properties of DNA will be discussed.

Chapter 4: In the last chapter the results obtained through the experimental protocol
will be presented and discussed.



Chapter 1

Physical principle of optical tweezer

The underlying physical theory of optical trap is based on the interaction of mesoscopic
particles and the electromagnetic field, which, as is known from the theory, carries mo-
mentum and energy.

Although the first hypotheses[5] about the existence of radiation pressure were known
already in the sixteenth century with Kepler and in the seventeenth with Newton and
Euler, who were interested in the study of the tail of comets, and corroborated by ex-
perimental observations such as Crookes radiometer (1873), the general theory of the
phenomenon found its general theoretical framework in Maxwell’s 1865 treatise on the
dynamic theory of the electromagnetic field, which formalizes classical electromagnetism.
An independent explanation of the movement produced by light and heat through a ther-
modynamic approach was provided, independently, also by the Italian Bartoli [6] (1876).

The interaction between electromagnetic waves and matter was studied by Lorenz[7,
8] which, using a mechanical approach, found a equivalent description to the Mie’s rig-
orous electromagnetic approach for plane waves scattered by a sphere[9, 10]. The the-
ory was tackled by Debye[11] who discussed the force due to radiation pressure. This
theory, called[12] Lorenz-Mie theory (LMT), describes the interaction between a plane
electromagnetic wave propagating in a homogeneous and non-absorbent medium, with
a homogeneous spherical particle characterized by its radius and refractive index. With
the rise of laser, in the 1960 by Maiman, began the first applications of this technology
for characterization experiments, such as the estimation of the velocity of a liquid via the
tracking of particles transported by the flow[13] or simultaneous measurement of velocity
and size of spherical particles in certain multiphase flows[14]. From these first studies
emerged the limits of the theory of Lorenz-Mie when the transversal dimension of the
laser beam was comparable with that of the interacting particle. Therefore it was nec-
essary to extend the theory in what is nowadays called Generalized Lorenz-Mie theory
(GLMT)[15].

The first studies on the mechanical effect of laser light on particles were made by
Arthur Ashkin, awarded of the Nobel Prize in 2018, together with the physicists Donna
Strickland and Gérard Mourou in the field of lasers, "for optical tweezers and their appli-
cation to biological systems". In a first article in 1970[16] was described the interaction
of a semitransparent spherical ball (radius a = 2,68 µm) with a focused laser beam of
a few milliwatts (λ = 514,5 nm, TEM00 mode and waist w0 = 6,2 µm) observing that
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2 CHAPTER 1. PHYSICAL PRINCIPLE OF OPTICAL TWEEZER

when the particle moved away from the optical axis, it experienced both a force which
attracted it towards the region of higher light intensity (that is the center of the laser
beam) and a force which pushed the particle along the propagation direction of the beam
(already known as pressure force, or scattering force). A first theoretical treatment of
the phenomenon uses a geometric optics approach. The laser beam is decomposed into
light rays which are reflected and refracted, thus determining the forces responsible for
the observed phenomenon. Considering the refractive index of the particle greater than
the one of the medium, that is when the relative refractive index m = np/nm > 1, it is
possible to consider the sphere as a converging lens which determines the acceleration of
the particle towards the region of highest intensity of the beam and in the direction of its
propagation. It is predicted, and confirmed experimentally by observing air bubbles of
diameter 8 µm in a high viscosity medium, that by swapping the magnitude of refractive
indices, the spherical particle behaves like a divergent lens, reversing the direction of the
radial forces and driving the particle away from the optical axis. To cancel the trans-
verse force in the direction of the beam a second laser, identical to the first except for the
counterpropagating direction, is introduced allowing thus to obtain an optical potential
well or "optical bottle". Subsequent studies[17–19] considered the levitation of small
transparent spheres in air and vacuum (∼ 7 Torr and ∼ 10−6 Torr) investigating their
stability. In 1986[20] Ashkin et al. reported the experimental evidence on the possibility
of trapping with a single ray a particle of size from 10 µm to 25 nm. Appears, for the first
time, the distinction between scattering force (the one in the beam direction proportional
to the light intensity) and gradient force (directed towards the region of maximum beam
intensity, which is dependent on the gradient of the light intensity), an the observation
that the latter, for a strongly focused beam, has an axial component that dominates
the former, thus making the trap more stable. In 1992[21] was published the analysis,
again under hypotheses of geometric optics regime, where scattering and gradient forces
were provided depending on the position of the spherical particle in relation to the laser
fire. The effects of the mode TEM00 and TEM∗00 as well as the role of the refractive
index were analyzed. For the first time the laser trap of a single beam was defined as
"optical tweezers". Further work of Ashkin focused on the use of radiation pressure on
non-ionized atoms, and in 1987 he studied the application of optical tweezers in biological
systems for the manipulation of bacteria and viruses in aqueous solutions[22], both with
visible argon laser light and infrared systems to reduce the optical damage of systems
such as cellular ones.

1.1 Theoretical models of optical trapping

From the theoretical point of view, the interaction of the electromagnetic field with the
dielectric particle can be approached using three models depending on the ratio between
the diameter of the sphere and the wavelength of the radiation used. In all cases, the
system under investigation is well described by classical physics, except the description
the optical beam as a photons flow.

Mie regime or geometrical optics When the size of the dielectric particle, i.e. its
diameter 2a, is greater than the wavelength λ of the light used, 2a � λ, it’s possible
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Figure 1.1
Interaction of a homogeneous beam with a spherical particle, whose radius is much greater than the
wavelength from the light source (mode of Mie or geometric optics). The variation of the momentum
(b) gives origin to a force (c) that can be decomposed in the parallel and same direction and equals
the beam and the orthogonal component.

neglect undulatory aspects of light and apply the principles of the geometrical optics
regime, also called Mie regime.[21, 23–25]

The assumptions of this model consider the optical beam as the composition of light
rays each of them characterized by certain light intensity, polarization and traveling in a
straight line in a homogeneous medium. In accordance with Fresnel’s theory, the inter-
action with an interface can change the direction of the beam by reflection or refraction,
as also its polarization. In this model it is possible to ignore diffraction phenomena.
The beads, made of dielectric material, is considered transparent with a real refractive
index (there are no complex terms that would describe the absorption of light) making
only reflection or refraction possible. The simplest model that can be introduced to
explain the nature of scattering and gradient forces, considers a uniform beam of light
which interacts with a transparent bead by partially transferring its linear momentum
(see Figure 1.1). Said Qi, Qr, Qt e Qb the linear momentum carried by the incident
ray, the reflected and refraction ones and that of the bead, respectively, the law of the
conservation of momentum states that:

Qi = Qr + Qt + Qb

or that the momentum transferred to the particle is equal to:

Qb = Qi − (Qr + Qt)

from which the force experienced by the particle is derived:

Fb =
dQb

dt

Usually the light intensity of the reflected ray is much more feeble than the refracted ray
and therefore, with good approximation, the force is given by the difference between the
linear momenta of the incident and refracted light. The vector obtained can be decom-
posed along the propagation direction of the incident beam and along the orthogonal
component. The first is called scattering force or axial force, while the second is defined
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Figure 1.2
The interaction of a homogeneous light beam, (a), and beam with gaussian profile, (b) and (c), with
a spherical particle having a radius much greater than the wavelength from the light source (Mie
regime or geometrical optics). In the first case the total force acting on the particle is only in the
direction of propagation of the beam; in the case of a gradient of intensity, a term of force that lead
the center of the sphere to coincide with the beam optical axis.
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Figure 2.3: Optical trapping with a focused Gaussian beam. The reflection e↵ects have
been neglected. In all cases, the reflection would just push the particle a little bit along
the direction of propagation of the beam light. (a) A particle centered at the focus of
the Gaussian beam. The marginal rays a and b are not deviated by the particle because
they cross the surface of the particle perpendicularly (this is a consequence of Snell’s law).
No force is exerted on the particle. (b) A particle located before the focus of the laser
beam. The focus is located at the expected crossing point of the rays (where the dashed
lines cross each other). The marginal rays a and b are deviated in such a way that the
radial forces cancel each other and the axial ones push towards the focus of the laser beam.
Other pairs of symmetric rays of the beam have di↵erent intensities and also contribute
to the axial total force exerted on the bead. (c) A particle located after the focus of the
laser beam. The force exerted has an opposite direction than in panel b and pulls the
particle towards the focus. (d) A particle located o↵-axis. The di↵erent intensity between
the centered and o↵-axis rays induce the radial restoring force. Therefore, the particle still
tends to align with the axis of a focused (not collimated) Gaussian beam.

The Rayleigh regime

In this regime, the trapped particle is much smaller than the wavelength of
the light beam. The electromagnetic field is uniform within the particle and
it can be treated as a small spherical dipole. Although very few experiments
in biophysics are done under this regime, it is useful because it provides
simple and separate expressions for the scattering and gradient forces. The
scattering force is the result of the change in light momentum after the inter-
action with the particle, which absorbs and reemits the light in all directions
(according to Rayleigh dispersion). The scattering force of a spherical dipole
in a medium of index of refraction nm is given by [8]:

~Fscat = nm
�I0

c
k̂ (2.3)

where I0 is the intensity of the laser beam, c is the speed of light, k̂ is the
unitary vector that points along the direction of propagation of the light
beam, and � is the scattering cross section of a Rayleigh particle which in

Figure 1.3
By focusing a beam it is possible to obtain an overall pull force that tends to trap the sphere at the
focus of the lens.

as gradient force or radial force. The sum of the forces originating from all rays deter-
mines the total force acting on the bead. As shown in Figure 1.2a, in the case of a uniform
beam of light, the symmetry of the system makes the non-axial components of the force
to cancel each other out, so that the total final force is the scattering one, which is ori-
ented along the propagation direction of the laser beam. Even in the case of collimated
Gaussian beam which presents a non-zero gradient force, the scattering force is usually
dominant, so that the particle is still pushed along the light propagation direction and a
stable confinement is not achieved. In the case of single collimated beams, therefore, the
optical trapping could not be realized.

Focusing the beam (see Figure 1.3), however, it is possible to obtain a total force
directed from the center of the particle to the focus of the beam itself, thus giving rise to
a pull force that tends to align the two points and obtaining the trapping phenomenon.

Considering a beam focused in a geometric point through a high numerical aperture
lens (e.g. NA = 1,25), it is possible to determine the force due to the variation of the
momentum of a reflected and refracted ray. Let be P the beam power when it reaches
the interface of the sphere, forming an angle θ from the normal at the intersection point.
When the beam is reflected and refracted by the sphere, according to the usual laws of
geometric optics, the power will vary according to the Fresnel’s coefficients of reflection
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FIGURE 3 Geometry for calculating the force due to the scattering of
a single incident ray of power P by a dielectric sphere, showing the
reflected ray PR and infinite set of refracted rays PT2RW. FIGURE 4 Values of the scattering force Q5 gradient force Qg. and

magnitude of the total force Qrag for a single ray hitting a dielectric
sphere of index of refraction n = 1.2 at an angle 0.

striking the sphere at angle 0. One can show that the gradient force as
defined above is conservative. This follows from the fact that Fg, the
gradient force for a ray, can be expressed solely as a function of p, the
radial distance from the ray to the particle. This implies that the
integral of the work done on a particle in going around an arbitrary
closed path can be expressed as an integral of Fg (p)dp which is clearly
zero. If the gradient force for a single ray is conservative, then the
gradient force for an arbitrary collection of rays is conservative. Thus
the conservative property of the gradient force as defined in the
geometric optics regime is the same as in the Rayleigh regime. The
work done by the scattering force, however, is always path dependent
and is not conservative in any regime. As will be seen, these new

definitions of gradient and scattering force for beams of more complex
shape allow us to describe the operation of the gradient trap in the
same manner in both the geometrical optics and Rayleigh regimes.
To get a feeling for the magnitudes of the forces, we calculate the

scattering force Fs, the gradient force Fg, and the absolute magnitude
of the total force Fmag = (FS + Fg as a function of the angle of
incidence 0 using Eqs. 1 and 2. We consider as a typical example the
case of a circularly polarized ray hitting a sphere of effective index of
refraction n = 1.2. The force for such a circularly polarized ray is the
average of the forces for rays polarized perpendicular and parallel to
the plane of incidence. The effective index of a particle is defined as
the index of the particle n2 divided by the index of the surrounding
medium n1; that is, n = n2 /nj. A polystyrene sphere in water has n =

1.6/1.33 _ 1.2. Fig. 4 shows the results for the forces Fs, Fg, and Fmag
versus 0 expressed in terms of the dimensionless factors Q, Qg, and
Qmag = (Q2 + QI)"12, where

nip
F = Q-. (3)

The quantity n,P/c is the incident momentum per second of a ray of
power P in a medium of index of refraction n1 (19, 31). Recall that the
maximum radiation pressure force derivable from a ray of momentum
per second n1P/c corresponds to Q = 2 for the case of a ray reflected
perpendicularly from a totally reflecting mirror. One sees that for n =

1.2 a maximum gradient force of Qgmaas high as 0.5 is generated for

rays at angles of 0 _ 700. Table I shows the effect of an index of
refraction n on the maximum value of gradient force Qgma occurring at
angle of incidence 0gi,,. The corresponding value of scattering force Q,
at Ogmais also listed. The fact that Q, continues to grow relative to Q.,,
as n increases indicates potential difficulties in achieving good gradient
traps at high n.

FORCE OF THE GRADIENT TRAP ON
SPHERES

Trap focus along Z axis
Consider the computation of the force of a gradient trap
on a sphere when the focus f of the trapping beam is
located along the Z axis at a distance S above the center
of the sphere at 0, as shown in Fig. 2. The total force on
the sphere, for an axially-symmetric plane-polarized
input trapping beam, is clearly independent of the
direction of polarization by symmetry considerations. It
can therefore be assumed for convenience that the input
beam is circularly polarized with half the power in each
of two orthogonally oriented polarization components.
We find the force for a ray entering the input aperture of
the microscope objective at an arbitrary radius r and
angle 13 and then integrate numerically over the distribu-
tion of input rays using an AT&T 1600 PLUS personal
computer. As seen in Fig. 2, the vertical plane ZW which
is rotated by 13 from the ZY plane contains both the
incident ray and the normal to the sphere nr. It is thus the
plane of incidence. We can compute the angle of

TABLE i For a single ray. Effect of index of refraction n on
maximum gradient force Q,. and scattering force Q.
occurring at angle of Incidence 0W,.n

n Qgmax Q, ogmax
1.1 -0.429 0.262 790
1.2 -0.506 0.341 720
1.4 -0.566 0.448 640
1.6 -0.570 0.535 600
1.8 -0.547 0.625 590
2.0 -0.510 0.698 590
2.5 -0.405 0.837 640
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FIGURE 2 (A) Single beam gradient force trap in the ray optics model with beam focusflocated along the Z axis of the sphere. (B) Geometry of an
incident ray giving rise to gradient and scattering force contributions Fg and F,

perpendicular to the Gaussian beam phase fronts. Since the curvature
of the phase fronts vary considerably along the beam, the ray
directions also change, from values as high as 300 or more with respect
to the beam axis in the far-field, to 0° at the beam focus. This is
physically incorrect. It implies that rays can change their direction in a
uniform medium, which is contrary to geometrical optics. It also
implies that the momentum of the beam can change in a uniform
medium without interacting with a material object, which violates the
conservation of light momentum. The constancy of the light momen-
tum and ray direction for a Gaussian beam can be seen in another way.
If one resolves a Gaussian beam into an equivalent angular distribu-
tion of plane waves (see Section 11.4.2 of reference 28) one sees that
these plane waves can propagate with no momentum or direction
changes right through the focus. Another important point is that the
Gaussian beam propagation formula is strictly correct only for trans-
versely polarized beams in the limit of small far-field diffraction angles
0', where 0' = X/'nw. (w. being the focal spot radius). This formula
therefore provides a poor description of the high convergence beams
used in good traps. The proper wave description of a highly convergent
beam is much more complex than the Gaussian beam formula. It
involves strong axial electric field components at the focus (from the
edge rays) and requires use of the vector wave equation as opposed to
the scalar wave equation used for Gaussian beams (30).
Apart from the major differences near the focus, the model of

Wright et al. (27) should be fairly close to the ray optics model used
here in the far-field of the trapping beam. The principal distinction
between the two calculations, however, is the use by Wright et al. of
beams with relatively small convergence angle. They calculate forces
for beams with spot sizes w. = 0.5, 0.6, and 0.7 pLm, which implies
values of 0' of -29, 24, and 21° , respectively. Therefore, these are
beams having relatively small convergence angles compared with
convergence angles of 4mu 70° which are available from a high NA
objective.

Consider first the force due to a single ray of power P hitting a

dielectric sphere at an angle of incidence 0 with incident momentum

per second of n,Plc (see Fig. 3). The total force on the sphere is the
sum of contributions due to the reflected ray of power PR and the
infinite number of emergent refracted rays of successively decreasing
power PT2, PT2R, ... PT2RK.... The quantities R and T are the
Fresnel reflection and transmission coefficients of the surface at 0. The
net force acting through the origin 0 can be broken into F, and F,
components as given by Roosen and co-workers (3, 22) (see Appendix
I for a sketch of the derivation).

nip
Fz = Fs

n

|
+Rcos20

T2[cos(20 - 2r) + R cos 20]
1 + R2 + 2R cos 2r

Fy = Fg c

|sin 20 _-T[sin(20 - 2r) + R sin 20]
lJ? 1 + R2+2R cos 2r

(1)

(2)

where 0 and r are the angles of incidence and refraction. These
formulas sum over all scattered rays and are therefore exact. The
forces are polarization dependent since R and T are different for rays
polarized perpendicular or parallel to the plane of incidence.

In Eq. 1 we denote the Fz component pointing in the direction of the
incident ray as the scattering force component Fs for this single ray.
Similarly, in Eq. 2 we denote the Fy component pointing in the
direction perpendicular to the ray as the gradient force component Fg
for the ray. For beams of complex shape such as the highly convergent
beams used in the single-beam gradient trap, we define the scattering
and gradient forces of the beam as the vector sums of the scattering
and gradient force contributions of the individual rays of the beam.
Fig. 2 B depicts the direction of the scattering force component and
gradient force component of a single ray of the convergent beam

A. Ashkin Single-Beam Gradient Laser Trap 571~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

RAY

A. Ashkin Single-Beam Gradient Laser Trap 571

(b)

Figure 1.4
In (a) it is shown the analysis of the reflection and refraction of an incident beam on a semi-transparent
particle. The power P is distributed according to the reflection R and transmission T coefficients. In
(b) the force acting on the bead is decomposable into scattering and gradient components.

R and transmission T . When the beam is first reflected, its power will be PR, while
when the beam is transmitted, emerging from the beads and propagating forward into the
medium, it will have a power of PT 2 (because undergone into two refractions: medium
- beads, beads - medium). In general, the power of a ray that exits the particle after n
reflection will be PT 2Rn, and it will form an angle of α + nβ with the incident beam
direction, as can be seen form Figure 1.4. The force can be derived as the light momentum
variation over time and it can be decomposed into two perpendicular components, one
parallel to the beam propagation direction, Fz, and the other perpendicular to it, Fy,
thus obtaining:

Fz =
npP

c
−
[
npPR

c
cos(π + 2θ) +

∞∑
n=0

npP

c
T 2Rn cos(α+ nβ)

]

Fy = 0−
[
npPR

c
sin(π + 2θ) +

∞∑
n=0

npP

c
T 2Rn sin(α+ nβ)

]

If the problem is considered in the complex plane, and introducing the total force defined
as:

Ftot = Fz + iFy

so it can be write the total force as:

Ftot =
npP

c
[1 +R cos 2θ] + i

npP

c
R sin(2θ)− npP

c
T 2

∞∑
n=0

Rnei(α+nβ)
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obtaining, thus, a geometric series1 in the last term, whose results, as known, provides:

Ftot =
npP

c
[1 +R cos 2θ] + i

npP

c
R sin(2θ)− npP

c
T 2eiα

[
1

1−Reiβ
]

Rationalizing the denominator of the last addends and taking the real and complex part,
scattering and gradient forces could be obtained:

Fz = Fscattering =
npP

c

{
1 +R cos 2θ − T 2[cos(2θ − 2r) +R cos 2θ]

1 +R2 + 2R cos 2r

}
(1.1)

Fz = Fgradient =
npP

c

{
R sin 2θ − T 2[sin(2θ − 2r) +R sin 2θ]

1 +R2 + 2R cos 2r

}
(1.2)

where θ and r are incident and refractive angles respect to the optical axis.
This results are exact because no truncation has been performed in the terms of the

series; the dependence on the Fresnel coefficients R and T inherit the dependence on the
type of light polarization.

The proposed approach is also applicable to beams with complex geometries, such
as the strongly focused Gaussian one. Looking at Figure 1.5 it reports numerical simu-
lations[21] showing how the force experienced by the particle changes when this latter
moves from the center of the focused gaussian beam. In general, the total force is as-
sumed to be proportional to the dimensionless parameter Qt, whose components Qs and
Qg refers to the scattering and gradient force, respectively. As highlighted in Figure 1.5b,
the parameter Qs becomes relevant when the particle moves away from the focal point of
the focused beam. Moreover (ree Figure 1.5d), the parameter Qg dominates on Qs when
the particle is not perfectly align with the optical axis of the gaussian beam.

It can be shown that gradient force is conservative despite of scattering force whose
work is path dependent; this result will be more evident in the Rayleigh regime. Finally,
for Mie’s regime, the forces have no dependence on the size of the sphere (i.e. F ∝ a0).
Although the validity of this approach requires that 2a � λ, the comparison between
experimental measurements and numerical simulations confirmed the validity of this
approach within the limit of 2a/λ ≥ 7.[26]

Rayleigh regime When the condition required by the Mie regime is no longer valid,
but vice versa it’s observe 2a � λ, the wave nature of light and the interaction of
the electromagnetic field with matter must be taken into account in order to obtain a
model suitable for experimental observations. This is the so-called Rayleigh regime[23,
24, 27]. In the following the particle will be considered point-like and immersed in an
electromagnetic field variable in time. The electric field inside the particle is uniform,
while instantly the electric field around the particle remains unchanged and causes its
polarization by inducing an electric dipole. Under these assumptions the problem is
similar to the electrostatic case.

The time variation of the electromagnetic field produces a synchronous vibration of
the dipole of the particle which then produces scattering waves around it. This gives rise

1Due to energy conservation, Reiβ will be always positive value and less than the unit.
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BEAM AXIS

(A)

z

(B)

FIGURE 2 (A) Single beam gradient force trap in the ray optics model with beam focusflocated along the Z axis of the sphere. (B) Geometry of an
incident ray giving rise to gradient and scattering force contributions Fg and F,

perpendicular to the Gaussian beam phase fronts. Since the curvature
of the phase fronts vary considerably along the beam, the ray
directions also change, from values as high as 300 or more with respect
to the beam axis in the far-field, to 0° at the beam focus. This is
physically incorrect. It implies that rays can change their direction in a
uniform medium, which is contrary to geometrical optics. It also
implies that the momentum of the beam can change in a uniform
medium without interacting with a material object, which violates the
conservation of light momentum. The constancy of the light momen-
tum and ray direction for a Gaussian beam can be seen in another way.
If one resolves a Gaussian beam into an equivalent angular distribu-
tion of plane waves (see Section 11.4.2 of reference 28) one sees that
these plane waves can propagate with no momentum or direction
changes right through the focus. Another important point is that the
Gaussian beam propagation formula is strictly correct only for trans-
versely polarized beams in the limit of small far-field diffraction angles
0', where 0' = X/'nw. (w. being the focal spot radius). This formula
therefore provides a poor description of the high convergence beams
used in good traps. The proper wave description of a highly convergent
beam is much more complex than the Gaussian beam formula. It
involves strong axial electric field components at the focus (from the
edge rays) and requires use of the vector wave equation as opposed to
the scalar wave equation used for Gaussian beams (30).
Apart from the major differences near the focus, the model of

Wright et al. (27) should be fairly close to the ray optics model used
here in the far-field of the trapping beam. The principal distinction
between the two calculations, however, is the use by Wright et al. of
beams with relatively small convergence angle. They calculate forces
for beams with spot sizes w. = 0.5, 0.6, and 0.7 pLm, which implies
values of 0' of -29, 24, and 21° , respectively. Therefore, these are
beams having relatively small convergence angles compared with
convergence angles of 4mu 70° which are available from a high NA
objective.

Consider first the force due to a single ray of power P hitting a

dielectric sphere at an angle of incidence 0 with incident momentum

per second of n,Plc (see Fig. 3). The total force on the sphere is the
sum of contributions due to the reflected ray of power PR and the
infinite number of emergent refracted rays of successively decreasing
power PT2, PT2R, ... PT2RK.... The quantities R and T are the
Fresnel reflection and transmission coefficients of the surface at 0. The
net force acting through the origin 0 can be broken into F, and F,
components as given by Roosen and co-workers (3, 22) (see Appendix
I for a sketch of the derivation).

nip
Fz = Fs

n

|
+Rcos20

T2[cos(20 - 2r) + R cos 20]
1 + R2 + 2R cos 2r

Fy = Fg c

|sin 20 _-T[sin(20 - 2r) + R sin 20]
lJ? 1 + R2+2R cos 2r

(1)

(2)

where 0 and r are the angles of incidence and refraction. These
formulas sum over all scattered rays and are therefore exact. The
forces are polarization dependent since R and T are different for rays
polarized perpendicular or parallel to the plane of incidence.

In Eq. 1 we denote the Fz component pointing in the direction of the
incident ray as the scattering force component Fs for this single ray.
Similarly, in Eq. 2 we denote the Fy component pointing in the
direction perpendicular to the ray as the gradient force component Fg
for the ray. For beams of complex shape such as the highly convergent
beams used in the single-beam gradient trap, we define the scattering
and gradient forces of the beam as the vector sums of the scattering
and gradient force contributions of the individual rays of the beam.
Fig. 2 B depicts the direction of the scattering force component and
gradient force component of a single ray of the convergent beam
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(a)

incidence 0 from the geometric relation R sin 0 = S sin
4), where R is the radius of the sphere. We take R = 1
since the resultant forces in the geometric optics limit
are independent of R. Knowing 0 we can find Fg and FS
for the circularly polarized ray by first computing Fg and
FS for each of the two polarization components parallel
and perpendicular to the plane of incidence using Eqs. 1
and 2 and adding the results. It is obvious by symmetry
that the net force is axial. Thus for S above the origin 0
the contribution of each ray to the net force consists of a
negative Z component Fgz = -Fg sin and a positive Z
component Fsz = FS cos 4) as seen from Fig. 2 B. For S
below 0 the gradient force component changes sign and
the scattering force component remains positive. We
integrate out to a maximum radius rma for which 4) =

max = 700, the maximum convergence angle for a water
immersion objective of NA = 1.25, for example. Con-
sider first the case of a sphere of index of refraction n =

1.2 and an input beam which uniformly fills the input
aperture. Fig. 5 shows the magnitude of the antisymmet-
ric gradient force component, the symmetric scattering
force component, and the total force, expressed as Qg,
Qs, and Q, for values of S above and (-S) below the
center of the sphere. The sphere outline is shown in Fig.
5 for reference. It is seen that the trapping forces are
largely confined within the spherical particle. The stable
equilibrium point SE of the trap is located just above the

center of the sphere at S _ 0.06, where the backward
gradient force just balances the weak forward scattering
force. Away from the equilibrium point the gradient
force dominates over the scattering force and Qt reaches
its maximum value very close to the sphere edges at S _

1.01 and (-S) _ 1.02. The large values of net restoring
force near the sphere edges are due to the significant
fraction of all incident rays which have both large values
of 0, near the optimum value of 700, and large conver-
gence angle 4). This assures a large backward gradient
force contribution from the component Fg sin and also
a much-reduced scattering force contribution from the
component FS cos 4).

Trap along Y axis
We next examine the trapping forces for the case where
the focus f of the trapping beam is located transversely
along the -Y axis of the sphere as shown in Fig. 6. The
details of the force computation are discussed in Appen-
dix II. Fig. 7 plots the gradient force, scattering force,
and total force in terms of Qg, Q., and Q, as a function of
the distance S' of the trap focus from the origin along
the -Y axis for the same conditions as in III A. For this
case the gradient force has only a -Y component. The
scattering force is orthogonal to it along the +Z axis.
The total force again maximizes at a value Q, - 0.31
near the sphere edge at S' 0.98 and makes a small
angle = arctan FgIFs _ 18.50 with respect to the Y
axis. The Y force is, of course, symmetric about the
center of the sphere at 0.

BEAM RAY

(B)

FIGURE 6 (A) Trap geometry with the beam focus f located trans-
versely along the -Y axis at a distance S' from the origin. (B)
Geometry of the plane of incidence showing the directions of the
gradient and scattering forces F. and F, for the input ray.

Single-Beam Gradient Laser Trap 573

FIGURE 5 Values of the scattering force, gradient force, and total
force Q, Q., and Q, exerted on a sphere of index of refraction n = 1.2
by a trap with a uniformly filled input aperture which is focused along
the Z axis at positions +s above and -s below the center of the sphere.
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(b)

incidence 0 from the geometric relation R sin 0 = S sin
4), where R is the radius of the sphere. We take R = 1
since the resultant forces in the geometric optics limit
are independent of R. Knowing 0 we can find Fg and FS
for the circularly polarized ray by first computing Fg and
FS for each of the two polarization components parallel
and perpendicular to the plane of incidence using Eqs. 1
and 2 and adding the results. It is obvious by symmetry
that the net force is axial. Thus for S above the origin 0
the contribution of each ray to the net force consists of a
negative Z component Fgz = -Fg sin and a positive Z
component Fsz = FS cos 4) as seen from Fig. 2 B. For S
below 0 the gradient force component changes sign and
the scattering force component remains positive. We
integrate out to a maximum radius rma for which 4) =
max = 700, the maximum convergence angle for a water
immersion objective of NA = 1.25, for example. Con-
sider first the case of a sphere of index of refraction n =

1.2 and an input beam which uniformly fills the input
aperture. Fig. 5 shows the magnitude of the antisymmet-
ric gradient force component, the symmetric scattering
force component, and the total force, expressed as Qg,
Qs, and Q, for values of S above and (-S) below the
center of the sphere. The sphere outline is shown in Fig.
5 for reference. It is seen that the trapping forces are
largely confined within the spherical particle. The stable
equilibrium point SE of the trap is located just above the

center of the sphere at S _ 0.06, where the backward
gradient force just balances the weak forward scattering
force. Away from the equilibrium point the gradient
force dominates over the scattering force and Qt reaches
its maximum value very close to the sphere edges at S _
1.01 and (-S) _ 1.02. The large values of net restoring
force near the sphere edges are due to the significant
fraction of all incident rays which have both large values
of 0, near the optimum value of 700, and large conver-
gence angle 4). This assures a large backward gradient
force contribution from the component Fg sin and also
a much-reduced scattering force contribution from the
component FS cos 4).

Trap along Y axis
We next examine the trapping forces for the case where
the focus f of the trapping beam is located transversely
along the -Y axis of the sphere as shown in Fig. 6. The
details of the force computation are discussed in Appen-
dix II. Fig. 7 plots the gradient force, scattering force,
and total force in terms of Qg, Q., and Q, as a function of
the distance S' of the trap focus from the origin along
the -Y axis for the same conditions as in III A. For this
case the gradient force has only a -Y component. The
scattering force is orthogonal to it along the +Z axis.
The total force again maximizes at a value Q, - 0.31
near the sphere edge at S' 0.98 and makes a small
angle = arctan FgIFs _ 18.50 with respect to the Y
axis. The Y force is, of course, symmetric about the
center of the sphere at 0.

BEAM RAY

(B)

FIGURE 6 (A) Trap geometry with the beam focus f located trans-
versely along the -Y axis at a distance S' from the origin. (B)
Geometry of the plane of incidence showing the directions of the
gradient and scattering forces F. and F, for the input ray.

Single-Beam Gradient Laser Trap 573

FIGURE 5 Values of the scattering force, gradient force, and total
force Q, Q., and Q, exerted on a sphere of index of refraction n = 1.2
by a trap with a uniformly filled input aperture which is focused along
the Z axis at positions +s above and -s below the center of the sphere.
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(c)

I
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FIGURE 7 Plot of the gradient force, scattering force, and total force
Qg, Q, and Q, as a function of the distance S' of trap focus from the
origin along the -Y axis for a circularly polarized trapping beam
uniformly filling the aperture and a sphere of index of refraction n =
1.2.

General case: arbitrary trap location
Consider finally the most general case where the focusf
is situated arbitrarily in the vertical plane through the Z
axis at the distance S' from the sphere origin 0 in the
direction of the -Y axis and a distance S" in the
direction of the -Z axis as shown in Fig. 8. Appendix III
summarizes the method of force computation for this
case.

Fig. 10 shows the magnitude and direction of the
gradient force Qg, the scattering force Q., and the total
force Qt as functions of the position of the focus f over
the left half of the YZ plane, and by mirror image
symmetry about the Y axis, over the entire cross-section
of the sphere. This is again calculated for a circularly
polarized beam uniformly filling the aperture and for
n = 1.2. Although the force vectors are drawn at the
point of focus f, it must be understood that the actual
forces always act through the center of the sphere. This
is true for all rays and therefore also for the full beam. It
is an indication that no radiation pressure torques are
possible on a sphere from the linear momentum of light.
We see in Fig. 10A that the gradient force which is
exactly radial along the Z and Y axes is also very closely
radial (within an average of - 2 over the rest of the
sphere. This stems from the closely radially uniform
distribution of the incident light in the upper hemi-
sphere. The considerably smaller scattering force is
shown in Fig. 10 B (note the change in scale). It is strictly

x

LY

p

FIGURE 8 (A) Trap geometry with the beam focus located at a
distance S' from the origin in the -Y direction and a distance S" in
the -Z direction. (B) Geometry of the plane of incidence POV
showing the direction of gradient and scattering forces Fg and F, for the
ray. Geometry of triangle POB in the XY plane for finding 1' and d.

axial only along the Z and Y axes and remains predomi-
nantly axial elsewhere except for the regions farthest
from the Z and Y axes. It is the dominance of the
gradient force over the scattering force that accounts for
the overall radial character of the total force in Fig.
10 C. The rapid changes in direction of the force that
occur when the focus is well outside the sphere are
mostly due to the rapid changes in effective beam
direction as parts of the input beam start to miss the

574 Biophysical Journal Volume 61 February 1992~~~~~~~~~~~--
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z
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(d)

Figure 1.5
In (a) it is illustrated the interaction between a focused beam and a sphere aligned with the optical
axis, whose center deviates by an amount equal to S from the center from the focal point. In (b)
there are numerical estimates of the dimensionless term Q defined from the force: F = QnpP/c:
Qs indicates the one relative to the scattering force, Qg for gradient force and Qt for total force.
Although the term scattering is positive, the term gradient, which is antisymmetric, is dominant. The
total force, thus, has a minimum near S ' 0, that is when the center of the sphere is next to the fire.
In (c) and (d) the same amounts are reported in case the center of the sphere is outside the optical
axis in the ŷ direction. Again the total force presents a minimum when the center of the sphere is
close to the position of the fire.
Source: Ashkin [21]
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to deviations in the direction of the incident field with the consequent transfer of mo-
mentum from the incident wave to the induced dipole. From this variation the scattering
force is originated and it can be calculated as:

Fscattering(r) =
(nm
c

)
σprI(r)ẑ

where nm is the refraction index of the medium, σpr is the cross section between the
particle and the radiation, while ẑ is the unit vector of the propagation direction of the
light. For a spherical body, of radius a the cross section is:

σpr =
128π5a6

3λ4

(
m2 − 1

m2 + 2

)2

where m is the relative refractive index of the particles and is given by the ratio of the
refractive index of the particle to that of the medium: m = np/nm.

Fscattering(r) =
(nm
c

) 128π5

3λ4
a6

(
m2 − 1

m2 + 2

)2

I(r)ẑ (1.3)

As it is possible to notice, the scattering force changes according to the intensity profile
of the incident beam and therefore it is more intense in corrispondence fo the optical
axus of the beam, where the light intensity is higher.

The electric dipole of the particle interacts with the electric field also by the force of
Lorentz. Given a dipole p(r, t) the force is derived by F = −∇U = ∇[p(r, t) · E(r, t)]
where the electric dipole moment induced on the particle is given by:

p(r, t) = 4πn2
mε0a

3

(
m2 − 1

m2 + 2

)
E(r, t)

from which, taking the temporal average of the force, is obtained:

Fgradient(r, t) =
2πnm
c

a3

(
m2 − 1

m2 + 2

)
∇I(r) (1.4)

Since the gradient force attracts the particle towards the center of the beam, this force
can be also rewritten as an elastic force due to the interaction of the trapped particle
with an harmonic potential. In the following it will be assumed that the beam has a
Gaussian radial profile, whose intensity is therefore given by:

I(r) ' I0e
− 2r2

w2
0

where I0 is maximum intensity of the light beam and w0 is the diameter of the beam.
By replacing the above formula in equation (1.4), and approximating the exponential by
small deviations from the equilibrium point, it is found that the force can be rewritten
as:

Fgradient(r) = −kr (1.5)

k =
2πnm
c

a3

(
m2 − 1

m2 + 2

)
I0

w2
0

(1.6)
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where k is the stiffness of the optical trap. The equation (1.5) will be useful in the
following and will be considered as the total force acting on a trapped particle: this is
justified by the experimental use of two counter-propagating beams that allow to cancel
the scattering force thus improving the optical trap.

The scattering and gradient forces naturally emerge from the study of the interaction
between the electromagnetic field and the dipole induced in the illuminated particle. The
first of these two has the same direction of the beam and is proportional to its intensity
and the sixth power of the radius of the particle; while the conservative gradient force is
directed to the higher brightness position in systems where np > nm and is proportional
to the third particle radius power of F ∝ a3.

Although most experiments with biological systems are not within the Rayleigh
regime, this model together with the previous one provide the two theoretical endpoints.
The intermediate region needs a generalization of the theory of Lorenz-Mie.

Generalized Lorenz-Mie Theory regime In the Lorenz-Mie’s theory the scattering
of a plane wave is analyzed for a homogeneous sphere; however, when the dimension of
the beam is comparable with the particle, or for arbitrary beam geometry and positions
a generalization of the theory is required[15].

Using Maxwell’s theory, it is possible to study the interaction between a dielectric
medium and a variable electromagnetic field. As known, in presence of electric charges
in an electromagnetic field, the Lorentz’s force is:

F = q[E + v ×B]

that can be expressed as temporal evolution of the linear momentum of the particleQp:

F =
dQp

dt
= q[E + v ×B]

From the energetic point of view, it could be useful to write the time variation of kinetic
energy of the particle:

dEk
dt

= mv · dv

dt
= v · dqp

dt
= qE · v

Considering the Maxwell equations, depending on the macroscopic charges and cur-
rent ρf and Jc:

∇ ·D = ρl (1.7)

∇×E = −∂B
∂t

(1.8)

∇ ·B = 0 (1.9)

∇×H = Jc +
∂D

∂t
(1.10)

where E is the electric field, B is magnetic induction field, D electric displacement vector,
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H is the magnetic filed vector, respectively defined2 as:

D = ε0E + P

H =
B

µ0
−M

where P is electric polarization and M the magnetization. Shall be considered moreover,
the constitutive relationships, whose nature is not universal but which are useful for the
description of linear, homogeneous and isotropic medium as those considered:

Jc = σE

B = µH

P = ε0χE

where σ is the electric conductivity, µ the magnetic permeability and χ the susceptibility.
For a system presenting a continuous charge distribution of density ρ and electric

current density J = ρv, the previous equations become:

∂qp
∂t

= ρE + J×B

∂wp
∂t

= J ·E

where qp and wp are the momentum and kinetic energy density respectively. With this
equations the correlation between the variation of momentum and kinetic energy and the
the electromagnetic field is explicit.

Takin into account the vectorial identity:

∇ · (E×H) = −E · ∇ ×H + H · ∇ ×E

and by replacing the curls with the terms given by the Maxwell equation, the following
relation are derived:

∇ · (E×H) = −E ·
(
Jc +

∂D

∂t

)
+ H ·

(
−∂B
∂t

)
= −J ·E− ∂

∂t

(
1

2
E ·D +

1

2
H ·B

)
∇ · S = −∂wp

∂t
− ∂

∂t
wf

where the energy density of the field, wf , and the Poynting’s vector S were introduced.
The equation of continuity is thus derived:

∇ · S = − ∂

∂t
(wp + wf ) (1.11)∫

Σ=∂V

S · n̂ dΣ = − ∂

∂t

∫
V

(wp + wf ) dV (1.12)

2In the definition of D it is assumed that quadrupole moment and higher orders are negligible.
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where the second equation, obtained from Gauss’ theorem, expresses energy conservation:
the power flow coming out of a closed surface Σ, which encloses a volume V , is equal to
the energy decreasing of the system composed by the particle and the field in the volume
V .

An analogous equation can be derived for the flow of the momentum. As a matter of
fact, by considering the time variation of the Poynting’s vector, and replacing the terms
present in Maxwell’s equations:

∂S

∂t
=

∂

∂t
(E×H) =

∂E

∂t
×H + E× ∂H

∂t

µ0ε0
∂S

∂t
+ J×B = µ0(∇×H)×H + ε0(∇×E)×E

µ0ε0
∂S

∂t
+ J×B = ε0

[
(E · ∇)E− 1

2
∇2E2

]
+ µ0

[
(H · ∇)H− 1

2
∇2H2

]

µ0ε0
∂S

∂t
+ J×B + ε0E(∇ ·E) + µ0H(∇ ·H) =

− 1

2
∇[ε0E

2 + µ0H
2] + ε0[(E · ∇)E + E(E · ∇)]

+ µ0[(H · ∇)H + H(H · ∇)]

it could be obtained the formula, using dyadic notation:

∂

∂t
(µ0ε0S + qp) = −∇

[(
1

2
ε0E

2 +
1

2
µ0H

2

)
1− ε0EE− µ0HH

]
To simplify the previous formulae it is useful to introduce the Maxwell stress tensor T,
which represents the flux of the linear momentum of the electromagnetic field and the
linear momentum density of the electromagnetic field q that are defined as:

T = −
(

1

2
ε0E

2 +
1

2
µ0H

2

)
1− ε0EE− µ0HH

Tij = −1

2
δij(ε0E

2 + µ0H
2) + ε0EiEj + µ0HiHj

(1.13)

qf = ε0µ0S (1.14)

could be get the linear momentum conservation equation:

∇ ·T =
∂

∂t
(qp + qf ) (1.15)∫

Σ=∂V

T · n̂ dS =
∂

∂t

∫
V

(qp + qf ) dV (1.16)

The left-hand side of the equation, describes the total momentum change in the volume
V limited by the surface S, while the right-hand side is the force density acting on the
surface and depends solely on the electromagnetic field.

F =

∫
V

∇ · T =

∫
Σ=∂V

T · n̂ dS (1.17)
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E(r, t)

B(r, t)

dA
ẑ

x̂

ŷ

Figure 1.6
Schematic representation of electromagnetic field propagating in the ẑ direction.

On the basis of these results, the GLMT theory describes the interaction between an
arbitrary light beam and a dielectric particle.

From these general considerations it will be possible to derive the force acting on the
sphere starting from the variation of intensity and the position of the light emitted by
the particle on a detector.

1.2 Theory of the direct force measurement

The equation (1.16) generalizes the conservation of the momentum in non-insulated sys-
tems and in particular allows to determine the force acting on on a trapped particle based
on the variation over time of the momentum of the electromagnetic field and its stress
tensor flux:

Fp =
∂

∂t

∫
V

qp dV =

∫
Σ=∂V

T · n̂ dS − ∂

∂t

∫
V

qf dV

In particular, in the stationary field hypothesis the last term in the second member vanish
and the force calculation on the particle is reduced to the estimate of the momentum
flux through a surface S:

Fp =

∫
Σ=∂V

T · n̂ dS

With this in mind, it is evident that a direct measurement of the trapping force could
be made possible by the use of optical sensors able to monitor any change in the flux of
linear momentum of the light beam, due to its interaction with a trapped object. This
goal is more easily achieved when a plane wave linearly polarized is used as light source.
As a matter of fact, in this case the Maxwell stress tensor Tij in the last formula could
be replaced by the Poyinting vector S and, in practice, the estimation of the force would
not require to directly calculate the Maxwell stress tensor but only its flux through the
intensity of the scattered light, as explained in details in the following.[24, 28].

Considering a plane and linearly polarized electromagnetic wave:

E(r, t) = Ex(z, t) x̂ = E0e
i(ωt−kz) x̂

B(r, t) = By(z, t) ŷ = B0e
i(ωt−kz) ŷ
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the electromagnetic stress tensor (1.13) is reduced in the form:

T =

−
ε0
2 E

2
x + 1

2µ0
B2
y

+ ε0
2 E

2
x − 1

2µ0
B2
y

− ε0
2 E

2
x − 1

2µ0
B2
y


which can be further simplified by recalling the relation E0 = cB0:

T =

0 0 0
0 0 0
0 0 −ε0E2

x


Considered a surface element, dA of the particle, along ẑ direction (see Figure 1.6) the
force will be expressed as:

dFp = T · n̂ dA = −ε0Ex dA ẑ

Using the Poynting vector definition:

S = E×H = −cε0Ex ẑ

the force assumes the forms:
dFp =

nm
c

S dA

where the refractive index nm of the medium in which light propagated has been taken
into account. This result is valid only when the propagating direction of the electromag-
netic field is orthogonal to the surface S. Experimentally this condition can be achieved
by requiring the incident ray to be a focused spherical wave. It will be assumed that the
emitted ray is radiate as spherical wave from a point, i.e the particle, supposed to be
coincident with the focus of the focalizing lens.

By introducing the angular intensity distribution for light, I (θm, φ), where θm and
φ are the angles indicated in Figure 1.7:

I (θm, φ)r̂ dΩ = S dA

with dΩ = dA/R2 the solid angle element, the force felt by the particle can be written
as:

Fp =
nm
c

∫
S

I (θm, φ)(x̂ sin θm cosφ+ ŷ sin θm sinφ+ ẑ cos θm) dΩ (1.18)

By convention, it is assumed that the value of I (θm, φ) is positive for a ray leaving
the system, while it is negative for an incoming one; furthermore, if there is no particle
deflecting the beam I (θm, φ) = −I (−θm,−φ) and the integral vanish, as expected.

Although it remains a complicated problem to predict the value of I (θm, φ), it is
not complex to measure it. The Abbe’s sine condition states that a ray emanating from
the main focus of a lens, free of comatic aberrations, inclined by an angle θm from the
optical axis, but that still intercepts the lens, will exit from the main plane from the part
of the image with a radial distance r from the optical axis equal to

r = fnm sin θm
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Figure 1.7
Schematic representation of the light signal collected in a detector. The light, after being focused
through a first lens, interacts with the sphere and then is collimated again by a second lens. If the
ray forms, with respect to focus and the optical axis, an angle θm, the Abbe’s conditions allow to
identify the radius through the angle φ and the radius r = fnm sin θm with respect to the center of
the detector.

where f is the focal length, nm the refractive index of medium. The Snell’s law,
nm sin θm = nair sin θair = nglass sin θglass, ensures the validity of the formula even when
the light beam passes trough different media (as in the experimental case where the light
passes through the glass of the coverslip, the water and the lens). If the rays, coming
out of the trap in a small element of solid angle dΩ, are projected without any loss
into an area element dΣ = r dr dφ of the lens principal plane, then from the energy
conservation it could be introduced the irradiance, or light intensity, E (r, φ) ( W

m2 ) given
by:

E (r, φ) dΣ = I (θ, φ) dΩ

These terms in the equation (1.18) gives:

Fp =
1

c

∫
S

E (r, φ)

x̂
r

f
cosφ+ ŷ

r

f
sinφ+ ẑnm

√
1−

(
r

fnm

)2
 r drdφ (1.19)

The transverse components of the force, that are Fx and Fy, can be inferred based
on the relative position of the image generated on a PSD detector (positional sensitive
detector). As a matter of fact, the output signals of a PSD detector, Dx and Dy, are
proportional to the amount of sum of irradiance, weighed by the relative distance, x/RD
and y/RD, (where RD is the half of the detector dimension) from the center of the
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detector, and the responsivity Ψ of the device as reported below:

Dx = Ψ

∫
D

E (x, y)
x

RD
dD = Ψ

∫
D

E (r, φ)
r cosφ

RD
dD (1.20)

Dy = Ψ

∫
D

E (x, y)
y

RD
dD = Ψ

∫
D

E (r, φ)
r sinφ

RD
dD (1.21)

Therefore, the values of the force could be obtain from:

Fx =
RD
cΨf

Dx (1.22)

Fy =
RD
cΨf

Dy (1.23)

Concerning the component of the force along the ẑ axis (that is the propagation
direction of the beam), it can be measured by combining the detector with a variable
attenuator, with a radial transmission device equals to

√
1− [r/(fnm)2] so that the

response of the device is given by:

Dz = Ψ

∫
D

E (r, φ)

√
1−

(
r

fnm

)2

dD (1.24)

The force component is:
Fz =

nm
cΨ

Dz (1.25)

In conclusion, it has been demonstrated that it is possible to overcome the theoretical
difficulties in deriving the exact value of the force applied to the trapped object via
the Maxwell stress tensor, by deriving the trapping force through a direct measure of
the beam emitted by the system. In the estimation of radial components there is no
dependence nor on the optical properties of the medium (refractive index), or the particle
size, neither on the light power used for the creating the trap, thus making this type of
measurement versatile and useful in various experimental contexts. On the other the force
dependence on the refraction index of the medium nm cannot be avoided, so attention
has to be paid during the calibration process of the instrument. This method is used in
the mini optical tweezer apparatus used in this thesis work, which allows to determine
and applied forces in the pico newton range.
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Chapter 2

Mini-Optical Tweezers Setup

The measuring apparatus used in this thesis takes the name of mini optical tweezers,
whose conception is due to Bustamante, Smith et al.[29, 30]. Early prototypes of optical
traps were most often built by modifying an inverted microscope so that a laser beam can
be introduced into the optical path before the objective: the microscope then provides
the imaging, trapping chamber manipulation, and objective focus functions[31]. Usually
this solution suffers from some limitations principally due to the high numerical aperture
lenses that strongly focalize the single laser beam to create the optical trap conditions.
The project by Burstamante and Smith makes it possible to overcome these difficulties
and shortcomings. The main features are here summarized. Two counter-propagating
laser beams are used to cancel the scattering force and reinforce the gradient component.
This allows to optimize the collection of the scattered light, also when the system is not
perfectly aligned. Differently from some setup, that uses a substrate to compensate the
scattering force of light and then can only measure forces parallels to this surface, all the
three components of the force can be measured with this mini-optical tweezer setup. A
custom-made handlers, called wiggler, can move the position of the trap by bending the
head of an optical fiber. Finally all the apparatus is enclosed in a compact and light box
that can therefore be easily isolated mechanically by means of a spring.

2.1 The mini optical tweezer

The mini optical tweezers uses two counter-propagating beams that produce, into a
microfluidic chamber, an optical trap in which the scattering force is canceled out leaving
only the gradient force. In this configuration, lower beam focusing is required reducing the
dispersion of the marginal ray and allowing to use lenses with lower numerical aperture
(NA), compared to the case of the single beam. This reduces the problems due to
spherical aberrations otherwise present, allow to have longer focal lengths thus focusing
the beam deep into the fluidic chamber and finally reducing the heat, harmful to biological
systems, released to the medium in which the experiment takes place. Two propagating
beams can be used in a decoupled way in single beam experiments, thus forming two
independent traps (dual-trap configuration). The main problem, plaguing the system, is
the is the necessary alignment achieved through an electronic feedback system.

17
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Figura 2.2: Schema del mini-tweezer I due laser contropropaganti sono indicati
in due colori diversi, rosso e blu.

di gradiente vinca su quella di scattering. In questa condizione è però difficile
riuscire a raccogliere tutta la luce deflessa dal corpo intrappolato, rendendo
quindi più difficoltosa la misura della forza basandosi sulla variazione del
momento dei raggi luminosi. Al contrario, l’utilizzo di due fasci contropro-
paganti permette di ovviare a questo problema e di ottenere una trappola
più stabile: infatti, nel caso di due fasci contropropaganti le forze di scatte-
ring lungo la direzione di propagazione si compensano, ed essendo la forza di
gradiente l’unica agente sulla biglia, non è più necessario utilizzare obbiettivi
con grande NA. Questo fatto permette di raccogliere in maniera efficiente
la luce deflessa dalla biglia (più del 95%) ed inoltre permette di ridurre in
maniera notevole possibili effetti di aberrazione sferica derivati dalle lenti.
Inoltre, dalla teoria dei fasci gaussiani si sa che maggiore è il diametro del
fascio, maggiore sarà la profondità di fuoco, permettendo di avere il fascio
focalizzato in tutta la profondità della camera microfluidica, riducendo gli
effetti idrodinamici delle pareti della camera sulla biglia intrappolata nella
trappola ottica. Infine, il fatto che in questa configurazione non sia richiesta
una forte focalizzazione del fascio riduce il riscaldamento del mezzo (acqua)
per assorbimento nell’infrarosso [6].

Figure 2.1
Schematic representation of the apparatus with the optical path of the beams and the imaging system.

In the following, for the sake of clarity, it will be analyzed the optical path of one
of the two counter-propagating beams, assuming the exact symmetry of the other. The
Figure 2.1 illustrates and summarizes che the apparatus and the optical path.

Since most experiments are carried out in water-based solutions which have a min-
imum of absorption in infrared light, a near infrared light laser was used. The laser
diode used (Lumix SN0834770) emits a beam of wavelength λ = 808 nm up to 200 mW
with TEM00 mode with Gaussian linearly polarized intensity profile. The intensity of
the beam is measured by a photodiode inside the resonance cavity, while the operative
temperature of the laser is controlled by a thermistor and regulated by a thermoelectric
cooler using the Peltier effect. The laser diode is coupled with a single-mode optical fiber
on which is present a fiber Bragg grating that cleans the signal and transmits a better
monochromatic beam. The end part of the fiber is linked to the wiggler, the device used
for spatial handling the optical trap. This consists of two coaxial brass tubes: on the
inner tube, the optical fiber is fixed in order to keep it straight, while its free terminal
part exceeds the length of the outermost tube exposing the fibre head and allowing to
bound the fiber to the external tube(see Figure 2.2). The system is fixed to support
equipped with two piezoelectric actuators which allow moving the optical fiber head in
the plane orthogonal to the propagation direction of the beam with a maximum excursion
of 11µm, which results in a numerical aperture of 0,12.

The light exiting from the fiber encounters a beam-splitter pellicle that divides it
into two parts: 5% of the beam is directed towards an aspherical lens (which allows to
focus divergent beams without introducing aberrations) and then intercepts a positional
sensitive detector (PSD) used to determine the position of the trap generating a signal
called light-lever ; the remaining 95% of the light is collimated and directed along the
main optical path where the trap will be formed.
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Figure 2.2
Schematic representation of the wiggler, the device used for spatial handling, along two dimension,
of the optical trap.

The beam continues towards a first polarizing beam-splitter (PBS) that allows light
to be transmitted or reflected depending on polarization. The horizontal component of
the polarization is selected and reflected to a quarter-wave plate that produces a circular
polarization.

The beam is focused by an immersion lens (Olympus UPLSAPO 60×, with numerical
aperture NA= 1,2) to form, inside a microfluidic chamber, the optical trap. The emerg-
ing light is collected by a second immersion lens identical to the first one and directed
towards a second quarter-wave plate that produces a vertical polarization. The presence
of the quarter-wave plates is useful in order to have circular polarization for both beams
in the region where the optical trap is formed. In this way the force of the trap is inde-
pendent of polarization because equally composed by vertical and horizontal polarized
light. However, in the optical path external to the hight numerical aperture objectives,
the beams presents reciprocal orthogonal polarization that prevent interaction between
them.

After the second objective, the collected light is sent to a series of optical components
(mirrors and beam splitters) which allow directing it to a PSD and a photodiode(OSI
optoelectronics, PIN-10DI) combined with a bullseye filter: these two detectors are used
to obtain the transverse components of the force (Fx and Fy) and the axial one (Fz),
respectively.

The experiment can be observed through a microscope made from a CCD camera
(Watec WAT-902H3 SUPREMA EIA) and a LED light (λ = 470 nm) expanded with a
lens in order to produce a Köhler illumination system in the region of the focal plane, so
the target is evenly illuminated without making the light source visible.

The CCD camera is monochromatic and sensitive in the visible and near infrared.
Both the sample and the optical trap are therefore visible. Because the intensity of the
latter saturates the signal making invisible everything around this region, an infrared
filter is placed before of the camera with the possibility of be inserted or removed. In
this way, the beam does not intercept the CCD and all the elements of the microfluidic
chamber and the samples are perfectly visible during the experiments. In laser alignment
operations, however, the filter is removed in order to see the two lasers.

The experiment takes place in a microfluidic chamber fixed on a motorized stage
moved by triaxial stepper motors that allow the handling of the chamber along the three
axes.
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2.2. Optics 89

Ray tracing

Although in our case geometrical optics does not describe optical trapping
correctly, it provides a qualitative understanding of the phenomenon. Ray
tracing is useful to depict the manner in which the instrument measures dis-
tances (light-lever), radial forces (force PSD) and axial forces (Iris). Indeed,
each combination of these 3 independent magnitudes produce a di↵erent ray
tracing, which can be measured with the photodetectors. Figure 2.11 shows
the ray tracing of six elementary situations and the corresponding reading of
the detectors.

a bAsph Light-lever PSD

Obj1 Obj2

RelayColl Force PSD Iris

Pel
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Figure 2.11: Ray tracing (see text). Only the marginal rays of one of the lasers are
depicted. Some prisms and mirrors are not shown and all the lenses are assumed to be
thin. The optical fiber is only shown in the top panel a. Pictures are not to scale. Leg-
end: Asph=Aspherical lens; Obj1=objective 1 (focuser); Obj2=objective 2 (condenser);
Coll=collimating lens; Pel=pellicle beamsplitter; Fib=optical fiber. The light travels from
the optical fiber (left) to the detectors (right). The crosses in the optical path indicate
the focal points of the lenses. The Coll and the Obj1 lenses form and infinite system
(i.e., their focuses coincide and the light beam is parallel), as well as the Obj2 and the
Relay lenses. The arrow next to the bead indicates the application of an external force.
(a) Centered optical trap. (Top) Zero force. (Middle) Application of a radial external
force (Fy). (Bottom) Application of an axial external force (Fz). (b) Optical trap at a
di↵erent position. Note that the measurement of Fz is a↵ected by that of Fy. Indeed, a
y force induces a deflection on the outcoming light that hits the Iris detector o↵-axis. So
the bullseye does not attenuate the laser beam radially and the reading of Fz is lightly
biased.

When the optical trap is centered and no force is applied, the laser beam
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Figure 2.3
Diagram of the working principle of the detection of the signals of position and force of the optical
trap. In (a) the position of the centroid coincides with the center of the PSD of the light-lever,
therefore the relative position of the trap turns out to be zero, even if a force, along Fy or Fz, are
applied. This two component can be reveal by the force PSD and the photodiode through a signal
called Iris. When the trap is moved, using the wiggler, it only affect the signal of the light-lever PSD
as can be see in (b).

The center of the both position and force detectors are taken as reference, so that
any displacement of the beam centroid with respect to it means that the trapped has
been moved or/and a force has been applied to the object. In particular, if no forces are
applied to the trapped object (see Figure 2.3 first row), any movement of the trap results
in a displacement of the beam only in the position detectors, whereas the beam remains
at the center of the force detectors. On the contrary, if by moving the optical trap a
transverse force is applied to the object (Figure 2.3 second row), a displacement of the
beam centroid with respect to the detector center is observed both in the position and
in the force detectors. Finally, when a longitudinal force (Fz) is applied (Figure 2.3 third
row), the radius of the beam behind the trapped object increase(decrease), so that the
beam is more (or less) attenuated by the bullseye filter and the light intensity recorded
by the Fz-detector varies.

2.2 The acquisition systems

The electronics of the apparatus allows to acquire the displacement of the position of
the light spot on a detector on the focal plane, and this signal will be called light-lever.
Similarly, from the displacement of the scattered light can be inferred the value of the
force that causes the variation of the momentum of the light. The signal will be called
force PSD, for the transverse forces signals Fx and Fy, and iris for the axial component
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(a) (b)

Figure 2.4
The optical tweezer setup (a) and the apparatus (b).

Fz. Below it will be described the working principle of the devices and the main electronic
components used to extract the signals.

Positional sensitive detector. The positional sensitive detector (PSD) is a optoelec-
tronics device that produce an electric signal proportional to the displacement of the
centroid of the incident beam on the sensible area of the detector. It consists of a diode
PiN between two conductive plates each one with two electrodes opposite each other.
The diode is fed in reverse polarization mode: the layer P is held at negative voltage,
while the layer N in positive. When the stream of photons interact with the intrinsic zone
of the diode it produces pairs of electron-hole traveling in opposite directions through
the conductive layer. This induces a current in the diode proportional to the distance
between the spot, point of origin of the pairs, and the electrode; from the current inten-
sity the distance from the centre of the detector can be inferred. Starting from the signal
Dx that is the difference of the upper plate currents (Il and Ie) it is possible to get the
position along the direction x̂, while the component ŷ is given by the signal Dy obtain
as difference of the currents of the lower plate It and Ib, by the following equations:

Dx = Il − Ir = Ψ

∫
D

E (x, y)
x

RD
dD (2.1)

Dy = It − Ib = Ψ

∫
D

E (x, y)
y

RD
dD = (2.2)

where E (x, y) is the irradiance on the surface D of the detector of dimension 2RD. The
sum of the currents, on the other hand, provides the information on the total intensity
reaching the sensors.
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Since the apparatus uses two lasers the total force could be calculated using the
equations (1.22) and (1.23) where the position is the sum of the displacement of the spot
of the laser:

Fx =
RD
cΨf

(∆Dx1 + ∆Dx2) (2.3)

Fy =
RD
cΨf

(∆Dy1 + ∆Dy2) (2.4)

where RD is the half of the dimension of the detector, Ψ is the efficiency of the detector,
f is the focal length and ∆D is the variation of the signal with respect to the starting
value taken as reference, which usually correspond to.

Photodiode To obtain the longitudinal force, along the optic axis, Fz a photodiode
is used for monitoring the light of incident beam. As shown earlier, to obtain the value
of the force, is necessary match the scattered light intensity with an attenuator with a
circular transmission profile (the bullseye filter) described by the transmission coefficient
T :

T (r) =

√
1−

(
r

nf

)2

where r is the distance form the center of the detector. The response of the detector for
a ray with irradiance E (z) will be

Dz = Ψ′
∫
D

E (r, φ)

√
1−

(
r

fnm

)2

dD

where Ψ′ is the responsivity of the photodiode. The measure of the force will be:

Fz =
nm
cΨ′

(∆Dz1 −∆Dz2)

In order to compensate the differences in laser powers and sensitivities, the difference
signal (∆Dz1 −∆Dz2) is nulled by an offset, before any particle enters the trap.

Foci position feedback. Room temperature and humidity can compromise the align-
ment of all optical parts, while the dual counter-propagating beams requires constant
alignment in order to keep the foci coincident. The misalignment compromise the stiff-
ness of the trap, but also produces artifacts in the force signal. Any misalignment in the
focal plane can be correction can be performed using an auto-align command performed
by the wiggler, while the axial correction is obtain manually moving the focal length of
one of the two focalizing objective lens.

While an external transverse force on the trapped particle deflects both exiting beams
in the same direction, a transverse misalignment of the foci cause the exit beams to be
deflected in opposite direction. Because the transverse alignment is proportional to the
difference of the position signal:

x− error = ∆Dx1 −∆Dx2

y − error = ∆Dy1 −∆Dy2
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(a) (b)

Figure 2.5
The optical tweezers are controlled by an electronic board (a) that interface the apparatus with an
host computer and allows to control the motion of the chamber and extracts the signals related to the
position of the trap (x̂,ŷ) and the force components (Fx, Fy and Fz). For high frequency acquisition
a second board (b) was used, which derives from the first the transverse positions and forces (x̂, ŷ,
Fx, Fy).

the information useful to correct the alignment error may be derived form this formula.
This signal is processed by a proportional-integrative-differential (PID) feedback algo-
rithm that moves the piezo electric actuators of the wiggler in order to vanish the dis-
placement.

The axial misalignment, namely the non null distance between the foci along the
optical axis, can be reveal by an increasing or decreasing of the signal through the
photodiode. The error, in this case, can be derived from the comparison of the sensor
outputs with a particle in the trap, (Dz1 +Dz2)full and the same measure while the trap
is empty, (Dz1 + Dz2)empty. However the "empty" measurement would need to change
if the laser power changes with time. Therefore it is necessary to normalize the ∆Dz

signals by their respective laser powers (Sum):

z − error =

(
Dz1

Sum1
+

Dz2

Sum2

)
full
−
(
Dz1

Sum1
+

Dz2

Sum2

)
empty

Electronic control and acquisition. The electronic control manages the communi-
cation and acquisition of the different signals sent and received by the apparatus of mini
optical tweezers. In particular it deals with the photodetectors and the management of
the piezoelectric actuators and the motors of the chamber and it sends and receives data
from an host computer. It is composed by an ADC card (analog to digital converter) that
digitizes the current signals of the PSD (position and force) obtained from a pre-amplifier
stage that deals with the readings of the current Ir, Il, It and Ib from which it then de-
rives the position, x̂ and ŷ, and the total intensity (in the software this magnitude is
indicated as "PSD sum"). A digital to analog converter (DAC) card converts the digital
trap displacement signal into a voltage applied to the piezoelectric crystals that move
the wiggler. Finally, a last card controls the movement of the step-by-step motors of the
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Parametri Valori

Analog data bandwidth 1 MHz
PIC internal clock 10 MHz
Sampling rate 4 kHz
Feedback running frequency 4 kHz
Digital data bandwidth 1 kHz
ADC force resolution 0.01 pN
Maximum detectable force 400 pN
ADC distance resolution 0.1 nm
Maximum detectable distance 12 µm
Piezo update frequency 4 kHz
Wiggler relaxation time < 1 ms

(a)

Gain Input range Precision

0,5 −10 to 10 V 4,88 mV
1,0 −5 to 5 V 2,44 mV
10,0 −500 to 500 mV 244,14 µV
100,0 −50 to 50 mV 24,31 µV

(b)

Table 2.1
Specifications of the electronic controller of the mini optical tweezers (a) and the gain and precision
of the high frequency board (b).

chamber as well as it records the actual displacement allowing to determine the position
of the motors. In this way it is possible to save and recall prefixed positions using the
optical tweezer software. In Table 2.1a the main technical features of this first control
board are collected. As it can be observed, the sampling rate of this card is 4 kHz, but
in force spectroscopy measurements, such as the one presented in this work, an higher
sampling rate is necessary.

High frequency data acquisition board. In order to be able to perform high fre-
quency measurements (for example 50 kHz) it was necessary to implement a second elec-
tronic board into the optical tweezers setup. A data acquisition board is directly con-
nected to the optical tweezers board, thus allowing to record with an higher frequency
the signals relative to both the position and the force detectors. In particular, only the
transverse components of the forces can be recorded (i.e Fx, and Fy) and by means of a
custom made program it is possible to control the gain of the data acquisition (see Table
2.1b). The sampling rate is variable and its maximum value is 200 kHz, the data used
for this thesis were acquired with a sampling rate of 50 kHz.

2.3 Microfluidic chamber

All of the biological experiments have to take place into liquid medium, called buffer.
This makes it necessary to use a microfluidic chamber (see Figure 2.6a). It is build
from two coverslips (whose dimensions are: 24 mm× 60 mm× 150 µm) separated by two
identical parafilm masks (see Figure 2.6f)

On one of the coverslips three pair of holes are drilled, using a sandblasting machine
(Dentalfarm, dry oxide WAFIS, alluminiabis) that blasts aluminum oxide (Al2O2) with
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(a) (b)

(c)
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2.8.

Figura 2.8: Maschera per sabbiatrice: disegno della maschera che è stata
progettata per l’utilizzo della sabbiatrice, così da forare solamente le zone del
coprivetrino esposte alla sabbia.

Il confronto dei risultati ottenuti con le due sabbiatrici è mostrato in
figura 2.9, sotto la foto della corrispondente sabbia utilizzata.

Come atteso, l’utilizzo di sabbia più sottile consente di realizzare dei fori
molto più precisi: in particolare, i fori ottenuti con le microsfere di vetro, oltre
ad avere un contorno meno lineare, spesso presentavano delle crepe (come si
nota in Fig. 2.9(f) e 2.9(h)) che causavano la rottura del coprivetrino in fase di
assemblemanto della camera microfluidica. L’alone presente in figura 2.9(e)
è dato da allumina entrata nella maschera nei pressi dei fori: tale difetto non
comporta un eccessivo danneggiamento del vetrino e non ostacola il corretto
funzionamento della camera.
La variazione della pressione di uscita del getto incide principalmente sulla
velocità di formazione del foro: se da un lato è preferibile ridurre i tempi di
realizzazione dei fori, dall’altro pressioni eccessivamente elevate producono
un danneggiamento del vetrino nei pressi dei fori.
Confrontando i risultati ottenuti con le due tecniche, si è deciso di utilizzare la
sabbiatrice ad allumina (dry oxide WAFIS, alluminia-bis, DENTALFARM),
che permette di creare dei fori in maniera precisa e in tempi ragionevoli
(circa 50 sec a foro), senza compromettere il successivo funzionamento del
coprivetrino.

(d)
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(a) (b)

Figura 2.7: Camera microfluidica: Rappresentazione dell’assemblamento della
camera fluidica (a) e foto della zona centrale, dove avviene l’esperimento (b).

sultati ottenuti sono stati confrontati al fine di trovare i parametri (tipologia
di sabbia, potenza e sezione del getto) che permettessero di ottenere dei fori
precisi, della dimensione desiderata e con il minor danneggiamento del copri-
vetrino. La dimensione dei fori deve essere minore del diametro esterno dei
tubi con cui verranno messi in corrispondenza durante il montaggio della ca-
mera sul supporto (si veda il prossimo paragrafo): nel caso dei tubi utilizzati
in questo lavoro di tesi, i fori devono avere un diametro < 3 mm.
È stata utilizzata una sabbiatrice Dentalfarm (dry oxide WAFIS, alluminia-
bis, DENTALFARM) (Fig. 2.9(a)), che spara ossido di alluminio (Al2O3,
Fig. 2.9(c), 50-60 µm) in una range di pressione fino a 6 bar, e una palli-
natrice (pallinatrici NORBLAST)(Fig. 2.9(b)) che lavora con pressioni fino
a 12 bar, che utilizza microsfere di vetro (Fig. 2.9(d), 200-300 µm). Le due
sabbiatrici differiscono anche per la sezione del getto di sabbia emesso: la
prima presenta un diametro di circa 1 mm, mentre la seconda di circa 8 mm.

La sabbiatura è avvenuta utilizzando un’opportuna maschera di allumi-
nio, in maniera tale che l’allumina incidesse solo sulla parte di vetrino inte-
ressata, evitando di danneggiare la parte centrale dove avviene l’esperimento,
che deve essere ben visibile tramite il sistema di imaging e pertanto perfet-
tamente trasparente. La maschera presenta quindi dei fori in corrispondenza
delle zone dove si vuole bucare il coprivetrino, di diametro di massimo 1 mm.
Il progetto di tale maschera, realizzato in AutoCAD, è riportato in figura

(e)
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2.1.5 Camera microfluidica

L’esperimento viene condotto all’interno di una camera microfluidica inserita
tra i due obbiettivi a immersione (acqua).
La camera è costituita da due coprivetrini (24 mm x 60 mm x 150 µm ognu-
no) tra i quali sono posti due strati di parafilm, opportunemente tagliato così
da formare tre canali paralleli, come mostrato in figura 2.7: tra i due strati
di parafilm sono inseriti i tubi dispensatori e la micropipetta. L’assembla-
mento della camera è realizzato tramite fusione del parafilm su una piastra a
circa 90 °C. Il taglio del parafilm è stato realizzato con un Cutter (Graphtec
Craft Robo CC200-20), su un disegno realizzato in AutoCAD (Fig. 2.6), che
prevede un canale centrale situato tra due canali laterali.

Figura 2.6: Taglio del parafilm: disegno realizzato in AutoCad per il taglio del
parafilm posto tra i due coprivetrini composti a formare la camera microfluidica.

Come mostrato in figura 2.7(b), i canali laterali sono messi in comunica-
zione tramite dei tubi dispensatori (King Precision Glass, Inc., ID (0.04 ±
0.006) mm, OD (0.10 ± 0.01) mm), mentre la micropipetta è posta al centro
della camera, in maniera tale che la sua punta sia al centro del canale centra-
le. La micropipetta è stata realizzata tramite uno strumento chiamato Pipet
Puller a partire da tubi simili a quelli dispensatori, ma di spessore minore
(King Precision Glass, Inc., (0.04 ± 0.006) mm, OD (0.08 ± 0.01) mm).
Su uno dei due coprivetrini sono realizzati dei fori in corrispondenza delle
estremità dei canali per permettere l’inserimento e la fuoriuscita del buffer,
del materiale biologico e delle biglie.

Foratura dei vetrini Per la realizzazione dei fori sono state utilizzate due
sabbiatrici presenti al Dipartimento di Fisica e Astronomia di Padova: i ri-

(f)

Figure 2.6
The microfluidic chamber (a). The sandblasting (c) and the mask used to drill che coverslips (d).
The microfluidic chamber is composed by two coverslips and two Parafilm strips with glass capillary
used to connect che channel on the mask (e). The profile of the Parafilm mask (f). The pipette
puller used to forge the micro pipette (b).
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a pressure of 4 bar on an home-made aluminum mask where the coverglasses are inserted.
The diameter of the holes are approximately of 1 mm (see Figure 2.6c).

Two Parafilm strips are designed to create three channels that connect the entering
holes with the exit ones fluidic channel were the experiments are carried out. They
are realized with a cutter that reproduce the mask showed in Figure 2.6f. The up-
per and the lower channels are connected to the central one by two dispenser tube,
a capillary (King precision glass Inc.) positioned transversally between the external
channels and the one in the middle. Their smaller dimension (the external diameter is
φe = (0,100± 0,010) mm and the internal one is φi = (0,0400± 0,0064) mm) compared
with the wide of the channel (some millimeter) allow to introduce in the central channel
a small amount of buffer and beads injected in the lateral channel. At the center of the
chamber is placed a micro pipette created starting from a capillary (King precision glass
Inc., φe = (0,080± 0,010) mm and φi = (0,0400± 0,0064) mm) which is melted and ex-
truded through the use of a pipette puller (see Figure 2.6b). The pipet puller is a custom
made instrument made up of two blocks the lowest of which can move along vertical
guides while the other is fixed and resents a tungsten coil in the middle. The capillary is
fixed on that blocks passing through the center of the coil which is heated by the Joule
effect produced by electric current provided by a 1,5 V power supply. While the power
supply is switched off the weight of the moving block is mechanical compensate thanks
to the tensile strength of the capillary, but when the coil become incandescent the glass
melts and the lower block fall down extruding the micro-pipette. Some empirical aspects
affect the profile and the dimension of the pipette, as the diameter and the distance of
the windings of the coil and the alignment of the axis of the capillary with the center of
the system. Another degree of freedom is the possibility to modify the rampe rate of the
voltage, provided by the power supply using a potentiometer; the result is a changing in
time of how fast the tungsten, an so the glass, is warm up. It turns out that the higher
the ramp value, the smaller the diameter of the pipette. Moreover, the ideal diameter of
the tip of the pipette is around 2 µm in order to avoid its obstruction due to undesired
substances present in the chamber.

Once the chamber has been assembled, the main problem is the adhesion of the
parafilm with the glass of the coverslip, which often causes buffer leakages. In order to
avoid this, various strategies had been considered. First of all was changed the temper-
ature of sealing, form 90 ◦C to 110− 120◦C but the parafilm melted too fast closing the
hole and the channel. An UVO cleaner (Jelight Company, Inc.) was used to activate
the surface of the glass, but nor this was sufficient. Finally the coverglasses was coated
with a thin film of NOA (Norland Products, Norland Optical Adhesive N. 68) following
the shape of the parafilm. After the cure with UV treatment, the chamber was usu-
ally composed and sealed at 90 ◦C. This particular method seems to produce durable
supports.

The chamber is anchored between the objectives of the optical tweezers using a "U"
shaped aluminum frame (see Figure 2.7) that can be moved along the three dimensions.
Three syringe are connected to the chamber while the exit holes collect all the material
in a waste reservoir. The upper and the lower channels are exploited to introduce the
two beads that are used to manipulate the DNA, whereas the central one is used to clean
the experimental area and for this reason the syringe that flux the cleaner buffer presents
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(a) (b) (c)

Figura 2.10: Montaggio della camera microfluidica: Il disegno riporta tre
visuali del portacameretta con montata la camera microfluidica. In (a) sono rap-
presentati i blocchi di plexiglass con cui viene fissata la camera. La parte finale
della micropipetta è inserita in un tubo, collegato alla siringa piena d’aria (Fig.
2.11). In (b) si possono osservare i connettori filettati, in cui vengono inseriti i
tubi d’entrata. I tubi rappresentati nelle tre figure proseguono e sono collegati alle
siringhe da un lato e al contenitore degli scarti dall’altro, come rappresentato in
figura 2.11.

Figura 2.11: Schema della camera microfluidica: in figura è rappresentata la
camera microfluidica montata sul supporto, con le siringhe per inserire il materiale
a sinistra e il contenitore per i fluidi in uscita a destra. Sulla siringa del canale
centrale è rappresentato il filtro.

Figure 2.7
A "U" shaped frame used to anchor the microfluidic chamber between the objectives of the optical
tweezers.

a 0,2 µm filter to avoid contamination. The micro pipette is connected with an empty
syringe in order to realize the suction thus holding the bead in place.

2.4 Buffer

Biological experiments have to take place in salted aqueous solutions, called buffer, in or-
der to prevent the degradation of the polymeric chain. For the experiment with DNA the
buffer is composed by: 1 m of sodium chloride (NaCl), 10 mm Trizma R© base (C4H11NO3),
1 mm of Ethylenediaminetetraacetic acid (EDTA) and 0,01% Sodium azied (NaNa). The
pH of the solution must be kept around 7,5. The role[32] of the EDTA is to inhibit
nuclease, an enzyme capable of cleaving the bonds between nucleotides of the nucleic
acids. The Sodium azide prevents the microbial growth in the buffer.

2.5 Beads and incubation

The mechanical manipulation of the DNA requires some preliminary steps in order to link
the molecule to mesoscopic particles that will be trapped by the laser or the micropipette.

Each end of the DNA presents at one end the Biotine and on the other side the
Digoxigenin. This have the property of instaurate strong and selective bonds with specific
molecules: the Digoxigenin[33] is a hapten, a small molecule with high antigenicity, that
is used in many molecular biology applications and creates strong bonds with its antigene,
the Antidigoxigenin. Biotin[34] is a water-soluble enzyme co-factor presents in minute
amounts in every living cell, that strictly bonds to Streptavidin.

Polystyrene particles (Kisker Biotech GmbH & Co., PC-PG-3.0) with a diameter of
3,1 µm are centrifugated and suspended in DMP cosslinker, a chemical compound that
promotes the bond between polymeric chains. The protein G coating on the surface of
the bead reacts when Antidigoxigenin is introduced in the system. After an hour of incu-
bation, the compound is centrifuged and suspended on phosphate-buffered saline (PBS),
a buffer solution used for dilutions. The surface of the particle, now, is functionalized
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Length of DNA DNA AD Buffer

24 kbp 2,5 µL 4,5 µL 13 µL
9 kbp 2,5 µL 4,5 µL 13 µL
3,6 kbp 2,5 µL 4,5 µL 13 µL

Table 2.2
The table report the concentration of the DNA molecules (already diluted with ratio 1:10), the AD
and the buffer.

with the Antidigoxigenin, an in the following those beads will be called with the acronym
"AD".

The other type of beads are streptavidin-coated polystyrene particles (Kisker Biotech
GmbH & Co., PC-S-2.0) with a diameter of 2,0 µm. Hereafter those particle are men-
tioned with the acronym of "SA".

The DNA enters in the system carried by the AD particle. In the preparatory part
of the experiment, a dilution of DNA molecules (ratio 1:10), the AD particles and buffer
are mixed and left to react during an incubation period of 15 minutes. The Digoxigenin,
present at the end part of the DNA, reacts with its antibody, and the concentration ratio
of the reagents is tuned in order to bound only some molecules to the surface, to be
able to catch only few molecule during the experiment. The dilution ratio used in this
work are reported in Table 2.2. After this incubation time, 1 mL of buffer is added to the
solution in order to avoid further reactions between the molecules and the beads.

2.6 Calibration of apparatus

The electric signals of the detector have to be converted into physical value, using pa-
rameter obtain by the calibration process so called Stokes calibration. A subsequent
calibration was performed in order to convert the digital signal of forces acquired from
the hight frequency board, with the real value of force (in pN), read from the optical
tweezer. Finally a third method was use to independently derive the previous calibration
factors and also the stiffness of the optical trap, by studying the Brownian motion of a
bead inside the optical trap.

Stokes calibration It is well known from the fluid mechanics, that a homogenous and
smooth sphere with radius a moving with a velocity v a fluid of density ρ and dynamic
viscosity η, is subjected to a drag force F . If the fluid is in a creeping flow regime, so it’s
characterized by low Reynolds’ number R

R =
ρdv

η
� 1

the force can be calculated as
F = −6πηav (2.5)

known as Stoke’s law, which correlates the velocity with the drag force. Therefore, by
knowing the viscosity of the fluid and the size of the bead and by moving this latter at a
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well defined velocity inside the chamber, it is possible to calculate the Stokes force acting
on the bead (in pN) and use this value to calibrate the electronic signal measured by the
optical tweezers. To this aim, a calibration bead, a sample sphere whose diameter is well
known, 2a = (3,00± 0,02) µm, is trapped into the well potential of the optical trap and
the chamber is moved along the x̂ or ŷ direction, back and forward, changing average
speed.

The signal of the PSDs of the force, the relative position of the chamber and the
time are recorded. Using a MATLAB script, the whole signal of Figure 2.8a can be
subdivided into sigle displacements characterized by a velocity v, whose exact value can
be determined by fitting the corresponding position of the chamber as a function of time.
In this way for each investigated velocity it is possible to obtain a mean value of the
voltage values recorded by the optical tweezers software, as reported in Figure 2.8. With
reference to the equations (2.3) and (2.4) the link between the force and the PDSs signal,
[PSD]F (the subscript "F" remind that the PSDs are the one used to read the force), is
linear and can be described by:

F = A · [PSD]F +B

Substituting the Stokes’ force (2.5) into the previous equation, it could be obtained:

v =
A

6πηa
[PSD]F +

B

6πηa

v = M [PSD]F +Q

By fitting the data as shown in Figure 2.8, the value of A and B can be obtained:

A = 6πηaM σA = A

√(σa
a

)2
+
(σM
M

)2
(2.6)

B = 6πηaQ σB = B

√(σa
a

)2
+

(
σQ
Q

)2

(2.7)

where σa = 0,02 µm is the statistical deviation the the calibration beads1, σM and σQ are
the statistical errors of the slope and the intercept, derived from the fitting algorithm.
Repeating the same procedure for other beads, it is possible to collect various value of
Ai and Bi with the respective errors, and the final value is obtain through weighted
averages.

A [pN
V ] B [pN]

x-direction 0,0423± 0,0004 5,0391± 0,0008

y-direction 0,0417± 0,0002 0,600± 0,004

Force calibration of high frequency board As already said, the high frequency
board extracts, from the main board, the transversal raw signal of position and force for

1Factory information
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Figure 2.8
Stokes calibration procedure.
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Figure 2.9
The signal of a constant force applied to a single DNA molecule along the ŷ direction, recorded by
(a) the optical tweezers board and (b) the high frequency board.

both PSDs, named as Sf (x̂i), Sf (ŷi), Sf (Fx,i) and Sf (Fy,i), for both the lasers i = 1, 2.
The data conversion, from the raw signal to the physical force, is necessary and can be
performed even with the absence of the axial force component. For sake of clarity, in
the following only the calibration of the ŷ-component of the force will be presented in
details.

The experimental protocol, indeed, required the acquisition of only one of the two
component of the force; in particular, when a DNA molecule is linked between the two
beads, it was subject to a force along only the ŷ direction, achievable by moving the
trap, or the micro-pipette (i.e. the chamber), and removing the other force component
by controlling the value on the optical tweezer software. In this way the system could be
considered as unidimensional, along the ŷ direction, and only one calibration is necessary.

The calibration was performed by applying a constant force to a DNA molecule
tethered between two beads and by simultaneously recording the force values on both
the optical tweezers board and the high-frequency one (see Figure 2.9). Their mean values
were reported into a graph and interpolated with a linear fit estimating the slope M and
the intercept R. In this way the calibration could be performed using the formula:

Fy = My〈Sf (Fy,1) + Sf (Fy,2)〉+R = My〈Sf (Fy)〉+R

where 〈 〉 is the time averaging. The high frequency board allows to record signals with
different gain, so the data acquisition was performed with a gain value ranging from
1 to 10. The results are reported in Figure 2.10 where it is possible to observe as a
deviation from the linearity appears at high force when a low gain is used, due to the
signal saturation (Figure 2.10b). The conversion parameters are reported in the following
table.
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Figure 2.10
The graphs report the linear correlation between the signal recorded via the high frequency board,
Sf Fy and the force measured by the tweezer software, Fy, with different gain: 10,0 for (a) and 1,0
for (b). For the latter is possibile to see the saturation of signal express as deviation form linearity
near 1 along the abscissa.

Gain=1 Gain=10

My [pN
V ] 55,2± 0,2 55,6± 0,2

R [pN] 18,19± 0,09 19,26± 0,07

In the following, in order to avoid systematic error in the calibration and knowing
that the power spectrum, as show later, will not depend on R, except for the continuous
component (i.e. frequency f = 0), it is useful performing a differential measure recording
the zero force signal at the beginning of each measure without any molecule attached
between the two beads. With this method the conversion could be performed in this
way:

Fy = My〈Sf (Fy)− Sf (0)〉 (2.8)

Calibration via power spectrum Another way to get the conversion parameter My

is by means of the power spectrum analysis of the force signal recorded by the high
frequency board. As a matter of fact, the motion of a sphere (of radius a) trapped in a
optical tweezer of stiffness k and immersed in a fluid of viscosity η, with a drag coefficient
γ = 6πηa, at temperature T , is described by the Langevin’s equation in overdamped
regime (γ � 0):

kx(t) + γẋ(t) +
√

2γkBTξ(t) = 0

where ξ(t) describe a gaussian process that represent the brownian forces acting on the
sphere. Through the Fourier’s transformation, the differential equation can be rewritten
in the following way:

kx̃(ν)− i2πνγx̃(ν) +
√

2γkBT ξ̃(ν) = 0
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The position, in the frequency domain, is:

x̃(ν) =

√
2γkBT

k − i2πγν (2.9)

The force acting on the sphere, an so indirectly on the DNA molecule, could be obtained
multiplying the displacement by the stiffness:

F̃y(ν) = kx̃(ν) (2.10)

The power spectrum of the time average of the force is defined by:

PFy(ν) = 〈F̃y
∗
(ν)F̃y(ν)〉

where F̃y
∗
is the complex conjugate of the Fourier’s transformation of the force. By

replacing the definition of the force (2.10) and the position (2.9) it can be found:

PFy =
2νcγkBT

ν2
c + ν2

(2.11)

where the corner frequency νc is define as:

νc =
k

2πγ

The signal acquired, Sf (Fy), will follow the same lorentian shape given by (2.11) and the
conversion, as already said, is given by2:

Fy = My Sf (Fy)

so the power spectrum of the raw signal can be describe by:

PSf (Fy)(ν) =
A

B2 + ν
(2.12)

The calibration formula allow to combine the two power spectra:

PFy(ν) = M2
y PSf (Fy)(ν)

and from that it’s possible to obtain My and the stiffness of the trap k:

My =

√
B2

A
12πηakBT (2.13)

k = 12π2ηaB (2.14)

2In this discussion the null force term, namely Sf (0), and the time average will be neglected in order
to maintain a clear formalism. The final result would be the same even if one uses the conversion formula:
F = My Sf (Fy) + R since the constant R is absorbed in the DC component (f = 0) of the spectrum,
due the Fourier’s transformation: F̃ =MyS̃f (Fy) +Rδ(ω)
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Figure 2.11
In order to extract the stiffness of the trap and the conversion parameter to calculate the force, a
well-known radius bead was trapped in the optical tweezer and recorded its brownian motion. The
raw signal ((a)) was plot in a log-log graph ((b)) and mean inside frequency windows. The data was
fit with a lorentan curve ((c)).
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The calibration was performed using a calibration bead, with radius a = (3,00± 0,02) µm,
trapped in the optical tweezer. Without applying any force, a 30 s recording using the
high frequency board was performed (see Figure 2.11a) and the data collected were plot-
ted in a log-log graph (see Figure 2.11b) in order to window the signal and take the mean
value inside each subset of data; then the lorentzian fit was performed with the formula
(2.12). From the parameters A and B of the fit, the conversion termMy and the stiffness
of the trap k were obtained. The results are shown in the following table:

My pN/V 51,2 ± 0,1

k pN/nm 0,060 ± 0,001

The last characterization of the apparatus was the measureMy and k as a function of
the the power of the two lasers. The signal were recorded for different values of the lasers
powe, and the data collected were analyzed in the same way as presented before. The
results are summarized in following table and the conversion factor My remains constant
within 6%, expect for the value relative to the lower laser power, where the light intensity
of the laser is so low that its voltage value is significantly affected by the electronic noise
of the instrument. Finally, it is possible to observe as the stiffness of the trap decreases.

Laser A [mA] Laser B [mA] My[
pN
µm ] k[ pN

nm ]

187 180 52,2± 0,2 0,060 ± 0,001
100 103 55,4± 0,6 0,018 ± 0,001
187 0 55,1± 0,3 0,030 ± 0,002
140 0 55,5± 0,6 0,018 ± 0,002
100 0 62,1± 0,5 0,0085± 0,0009
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Chapter 3

The biological system

Nearly all living cells store their genetic information in the DeoxyriboNucleic Acid (DNA).
Although each organism’s DNA is unique, all DNA is composed of the same nitrogen-
based molecules. What makes individuals different is how these smaller molecules are
arranged. Nucleotides are the basic elements of the DNA and they are composed of
three primary components: a phosphate group, a carbon-base pentose sugar, called de-
oxyribose, and nitrogenous base. There are four different DNA nucleotides, each defined
by a specific nitrogenous base: adenine (often abbreviated "A"), thymine ("T"), gua-
nine ("G"), and cytosine ("C"). Although nucleotides derive their names from their
nitrogenous bases, deoxyribose molecule is the one defining their structure and bonding
capabilities. The central portion of this molecule contains five carbon atoms arranged in
a ring shape and each carbon is referred by a number followed by the prime symbol (’).
On the 5’ carbon atom is attached the phosphate group and the 3’ joins to the phosphate
group of another nucleotide through a phosphodiester bond. This compound structure
is known as polynucleotide. This alternating sugar-phosphate arrangement forms the
primary structure of a DNA molecule. DNA presents then a secondary structure when
it forms double-stranded DNA. It consists of two polynucleotides that are arranged such
that nitrogenous bases of one polynucleotide are attached to the nitrogenous bases of
another polynucleotide by hydrogen bonds. This base-to-base bonding follows a specific
rule forming the Watson–Crick base pairs (bp): adenine interacts with thymine through
two hydrogen bonds (A––T) and the guanine forms three hydrogen bounds with cyto-
sine (G–––C). This ladder-like structure assumes a three-dimensional conformation, also
known as tertiary structure. In 1952 Rosalind Franklin used the X-ray diffraction to
capture images of DNA molecules and deduced its spiral shape. In 1953 Watson and
Crick[35] argued that the DNA takes the form of a double helix. Different types of
the double helices have been found in nature. Spatial arrangement of DNA can vary
in handedness (right or left), length of the helix turn, number of base pairs per turn
and difference in size between the major and minor grooves. B-DNA is a right-handed
double helix with a constant diameter of 2 nm that has 10 bps per turns and where the
distance between sequential base pairs is 0,34 nm. A-DNA is observable in dehydrating
conditions, and is a right-handed double helix with 11 bps/turn and 0,21 nm

bp . Z-DNA is
a more rare configuration where the helix is left-handed with 11 bps/turn and 0,38 nm

bp .
In human body, if the DNA was a straight piece its length would be nearly two meters
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Figure 3.1
The structure of the nitrogenous bases.

long. In order to be contained in a cell (average dimension of 50 µm) of a prokaryotes
organisms, or in the cell nucleus (average dimension of 6 µm) of a eukaryotes, the DNA
has to be packed. The DNA packaging requires the double-strand to be tightly looped,
coiled and folded. The negative charge of the DNA has to be compensated, for example
by the positive charged amino acid residues in proteins like histone, and this reduces the
intrinsic rigidity of DNA in order to compact it. On the other hand, during the process
of replication, transcription and proofreading DNA has to be unwound. Therefore, it
appears clear that the knowledge of the energy costs of these processes is important for
a better comprehension of DNA formation and dissociation, and might be obtained by
the determination of the elastic response of DNA under mechanical force action.

3.1 The DNA sequences

The DNA sequences used in this work are obtained from the so called lambda DNA
(λ-DNA), a linear double strand 48502 base pairs DNA. Lambda is a Escherichia coli
bacteriophage (bacterial virus) in which the genome is contained in the capsid. The
molecule is multiplied (amplified) through the polymerase chain reaction (PCR) and
with this process is possible to build different DNA with different lengths. However,
after the PCR process the final sample could contain wrong-truncated DNA molecules
and oligonucleotides with disincorporated bases, so a purification step is required to get
the DNA with only the desired base-pair composition. To this aim, the agarose-gel
electrophoretic technique was use, thus obtaining a separation of the different length
populations. This method uses an electric field to move the molecules in a gel matrix:
the net displacement is correlated to DNA length so that all the molecules having the
same dimensions are gathered together. Once the portion of gel containing the DNA
with the desired length has ben isolated, the DNA molecules are extracted by treating
the gel with the QIAquick Gel Extraction kit.
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Molecule Contour length L0

24 kbp 8160 nm
9 kbp 3060 nm

3,6 kbp 1224 nm

Table 3.1
Contour length of the molecules used in this work.

In particular, in this thesis work DNA molecules with three different length have been
investigated and they are indicated by the number of their base pairs with the prefix kilo
(k), 24 kbp, 9 kbp and 3,6 kbp. The so-called contour length L0 of each molecule type
can be calculated from the number of their base pairs multiply by the inter-nucleotides
average distance that for the λ-DNA is 0,34 nm bp−1 as reported in Table 3.1. The
physical and biological meaning of the parameter L0 will be better described in the next
section.

3.2 The DNA elastic model

Using the optical tweezer it is possible to stretch the DNA and record its mechanical
response under an applied force. As a matter of fact, the DNA is bounded between two
beads, one of which is kept fix while the other is moved by the optical trap: in this way
it is possible to vary the distance between the beads, thus stretching the molecule and
applying to it a known force. During this process the molecule experiences transitions
across different conformational regimes (see Figure 3.2).

When it is not attached between the beads, DNA is in the so called random coil
configuration. In this configuration the monomers are randomly oriented and realize a
compact shape. With real polymer the subunits (the nucleotides) are not freely jointed
because the interactions bind the flexibility of the chain; in this case an effective unit
length can be used to describe the biological system. At lower force, less than 5 pN, DNA
exhibits entropic response characteristic of the random coil. With force higher than 5 pN
there is the enthalpic regime, where DNA extension stretches beyond its contour length
L0, which is the dimension of the molecule if the inter-nucleotides distance is constant. At
sufficiently high forces (greater than 65 pN), the DNA transforms reversibly form the B-
form to a new molecular state (called S-form, see Figure 3.3), presenting a transition called
over-stretching where, at almost constant forces, the elongation reaches values up to 1,7
times the contour length. The molecular details of this state are still under debate[37–
39]. The first interpretation was DNA adopts an unwound but base-paired structure, but
recently the thermodynamics studies of the DNA suggests that the interaction between
the bases gradually dissolves, even if a strand separation was not observed[40]. Above
this region, molecule extension starts to increase again with the force. Investigations
in this region is difficult due to the limits of the force range of the optical tweezer
(Fmax ∼ 100 pN), but also because at high force the streptavidin-biotin bond breaks and
the whole stretching process has to start again from the beginning. For these reasons,
other methods can be used in order to explore this regime, such as the an atomic force
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Figure 3.2
The response of double strand 3,6 kbp DNA under the action of a force. The molecule is well described
by the worm-like-chain model for forces less than 50 pN. Over this range the DNA increases its own
length up to 70% of its contour length L0. This region is called over-overstretching. Above the
over-overstretching the extension of the molecule returns to be force dependent.

microscopy[41], although in this case a worse spatial and temporal resolution is achieved.
In a molecular physics framework, DNA can be theoretically described as the union

of interacting monomers with specific degrees of freedom forming a precise configuration
called polymeric chain. Given n+1 monomers (A0, . . . , An), each of them separated
by the next one by a fix distance ri, the maximum physically possible extension of
the polymeric chain is called contour length L0 and it is equal to L0 = nri. Another
important parameter in describing the DNA polymeric chain is the persistence length
Lp, which is the distance ove which DNA spontaneously bends due to thermal forces. In
other words, Lp represents a characteristic length scale over which the vectors tangent
to two base pair remain correlated and it is usually exploited to describe the "stiffness"
or "rigidity" of a polymeric chain. Indeed, many biological systems have an intrinsic

Figure 3.3
A schematic representation of the reversibly transformation of a DNA from its B-form, the usual
configuration, to a new molecular state, called S-form, when a sufficiently high forces (greater than
65 pN) stretches the molecule[36].
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The DNA models like a stiff rod.

elasticity which forces them to remain rigid at small length scale even if they present a
significant flexibility at longer scales; the persistence length is strictly connected to this
phenomenon. In a double-stranded DNA Lp ' 50 nm and involves about 150 bp, so it is
possible to use continuum hypothesis and describe the molecule as an isotropic rod[42].

The behavior of the DNA in aqueous solutions is well described by the worm-like-
chain (WLC), which assumes the DNA chain to be inextensible, with a linear bending
energy and affected by thermal fluctuations. In this model[4, 43, 44] the double helix
DNA is considered stiff, so the conformational fluctuations can be described with by a
linearly elastic rod with a fixed contour length. Self-interactions or excluded volume
effects are negligible under most experimental conditions and perturbations form the
equilibrium can be described in terms of energy costs.

The DNA conformations can be described by a curve in space r(s) where s is the
arc length and t̂(s) is the unit tangent vector at location s along the polymer (see Figure
3.4). The bending energy per length is equal to:

dEb
ds

=
1

2
A

∣∣∣∣ dt̂(s)

ds

∣∣∣∣2 =
1

2
Aκ2

where κ is the reciprocal of bending radius, also called curvature. The proportional term
A = (230± 20) pN nm2[4] is linked with the persistence length Lp, the characteristic
distance over which the correlation of the tangent vector t̂(s) = ∂r(s)/∂s die off, i.e. the
distance over which a bend can be made with a cost of kBT . This relation is A = kBTLp.
Therefore, when a force F is applied to the DNA molecule for stretching it, the total
energy of the system is given by

E =

L0∫
0

(
A

2

∣∣∣∣ dt̂(s)

ds

∣∣∣∣2 − F cos[φ(s)]

)
ds
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Figure 3.5
The interpolation of the a force-extension curve with the Bustamante’s approximation formula.

where the first term represents the resistance of the chain to the bending, while the
second term is the work done by the force for aligning the molecule, being φ(s) is the
angle formed between the force and the t̂(s).

The previous formula can be numerically solved, even if an analytical solution doesn’t
exist. However, the formula proposed by Bustamante and Mark et Siggia[44] is usually
employed, which connects the applied force with the measured DNA extension z

F =
kBT

Lp

[
1

4(1− z/L0)2
− 1

4
+

z

L0

]
(3.1)

Even possible correction of this formula exists (for example by adding a seventh-order
polynomial in z/L0) this result well fits the experimental data below 30 pN (see Figure
3.5).

The chiral nature of DNA and the experimental observations of the changing of the
contour length even before the over-stretching region requires an extension of the previous
model[4]. Twisting and stretching have to be taken in account, above all at high applied
forces.

When intrinsic stretching is considered, the arc length s must be replaced with an
internal coordinate ζ, define as dζ = ds/v = ds/(1 + u), where u is the axial strain.
This new coordinate can be considered as arc length in the absence of thermal fluctuations
or chemical distance along the chain. The tangent vector, along the curve, is given by:

dr(ζ)

dζ
= vt̂

Small extension costs an energy equal to

dEs
dζ

=
1

2
Su2

where S is the stretch rigidity (or stretch modulus) and it usually assumes values around
1000 pN[4].

Twisting is described by the angle per arc length that the base pairs rotate around
t̂. An unperturbed DNA has a pitch of helix of 3,5 nm (10,5 bp) and thus a twist rate of
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Figure 3.6
Schematic representation of double-stranded DNA under stretching deformation (above). At low
forces (< 35 pN) is expected that the molecule overwinds (center) thus reducing its pith (distance to
complete one turn) while at high forces it unwinds (below).

1,8 rad
nm . Deviation Ω, from the twist rate, costs an elastic energy proportional to:

dEt
dζ

=
1

2
CΩ2

where C = (460± 20) pN nm2[4] is the twist rigidity (or twist modulus) and it is linked
to the persistence length for twist fluctuations (Lθ = C/kBT ).

Although there are no evidences for coupled twisting and bending, some experiments
shed light on twist-stretching coupling[4, 39, 45]. This energy per length term is pro-
portional to a factor g. The studies of the transition between the B-form to the over-
stretching configuration of the DNA suggests a positive value of g ((200± 100) pN nm)
meaning that DNA unwinds itself when stretched. On the contrary, further experimental
results and simulations suggest that the molecule overwinds when stretched in a force
range below 35 pN (g = −(90± 20) pN nm) and unwinds when stretched with an higher
force (see Figure 3.6). Therefore, not only the value of g is controversial, but also its sign.
The energetic contribution of the twist-stretching coupling is given by:

dEts
dζ

= guΩ

In summary the total energy, for a DNA molecule under the action of a force F is
given by:

E =

L0∫
0

[
A

2

(
v

dt̂

dζ

)2

+
C

2
Ω2 +

S

2
u2 + guΩ− Fv cos[θ(s)]

]
dζ (3.2)



44 CHAPTER 3. THE BIOLOGICAL SYSTEM



Chapter 4

Force-spectroscopy experiments on
single molecules

Understanding the DNA elasticity properties is the cornerstone for a better comprehen-
sion of its biological properties and functionalities. Nowadays three main questions are
still under debate, that are the behavior of the DNA in the over-stretching regime, its
elastic response at forces higher than 65 pN to 67 pN and the role played by the coupling
of the stretch and twist of the molecule. Concerning this last aspect, the corresponding
energetic contribution is proportional to the factor g, which has been recently investi-
gated by means of molecular dynamics simulations[2] and magnetic tweezers[3, 4]. The
result widely shared is that g seems to change its sign with the force, in particular it
is negative for forces below 30 pN, an so the DNA overwinds, whereas above this value,
g becomes positive and the molecule unwinds when stretched. However, these results
partially contradict previous investigations and a clear and widely-accepted theoretical
model explaining this effect is still lacking.

In this chapter it will be presented a new approach which tries to shed light on the
mentioned problems. The optical tweezers technique was used to investigate the motion
of a bead in the optical trap when it is linked to a single DNA molecule. The idea is that
of looking at the force power spectrum of the bead in order to infer some information
about the elastic properties of the biological system. The results here presented, provide
a qualitative description of the phenomena, highlighting the role played by the different
elastic contributions in the frame of a first tentative theoretical model.

4.1 High frequency force-spectroscopy

4.1.1 Theoretical model

As described earlier, the DNA is stretched by modifying the distance between two beads
to which the molecule is tethered. One bead is kept at fix position through a micro
pipette, and the other is moved by changing the position of the optical trap. Therefore a
known force is applied to DNA and in principle its reaction to this external force can be
studied by monitoring the movement of the bead in the optical trap. As a matter of fact,
the movement of the trapped bead is affected not only by the force exerted by the optical

45
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trap itself, but also by the presence of the linked DNA chain. Any variation in the force
F experienced by the bead is recorded by the Position-Sensitive-Detectors (as explained
in chapter 2) and its power spectrum PF (ω) can be derived as the autocorrelation of the
measured force:

PFy(ω) = 〈|F̃ (ω)|2〉

Since the optical trap can be compared with a simple spring which follows Hooke’s
law, the force is related to the bead position as

F = κ(x− x0)

from which it follows:
PF (ω) = κ2Px(ω)

where Px(ω) is the power spectrum of the bead position, defined as

Px(ω) = 〈|x̃(ω)|2〉

At this point, it is possible to remember that the DNA molecule can be modeled as
an extensible isotropic rod, as reported in the previous chapter, so that the total energy
of the DNA/bead system is:

E(x, θ, x0) =
S

2

x2

L
+
C

2

θ2

L
+ g

xθ

L
+
κ

2
(x− x0)2 (4.1)

where S,C and g are the stretch modulus, the twist modulus and the twist-stretch cou-
pling parameter, respectively; κ is the stiffness of the trap, x is the variation of DNA
length (that is also the variation of the bead position) with respect to the starting refer-
ence position x0; θ is the additional twist to the normal helical twist and L is the contour
length. As first approximation the bending contribution has been neglected, the range
of forces investigated in this work well above 20 pN, where usually the stretch and twist
contributions dominate.

In the model proposed by M. Baiesi and F. Seno[46], the bead is assumed to have
a radius a (a = 1,5 µm) and to be immersed in a thermal bath at temperature T with
viscosity η. The overdamped stochastic equations are as:

∂x

∂t
= µx

(
−∂E
∂x

)
+
√

2kBTµxξx (4.2)

= −µx
(
S

L
+ κ

)
x− µx

g

L
θ + κx0 +

√
2kBTµxξx

∂x

∂θ
= µθ

(
−∂E
∂θ

)
+
√

2kBTµθξθ (4.3)

= −µθ
C

L
θ − µθ

g

L
x+

√
2kBTµθξθ
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where the mobilities µx and µθ are defined:

µx =
1

6πηa

µθ =
1

6η4/3πa3

and they are relative to a spherical body, being the DNA contribution negligible because
it is much smaller that the bead.

By using the previous formulae, the power spectrum of the force can be rewritten as:

PF (ω) =

κ2α

[
1 +

(
ω
β

)2
]

γ4 + δ2ω2 + ω4
(4.4)

with:

α = (2kBT )µxµθ

[(
µθ
C2

L2

)
+

(
µx
g2

L2

)]
(4.5)

β =

√
µθ

[(
µθ
C2

L2

)
+

(
µx
g2

L2

)]
(4.6)

γ =

√∣∣∣∣µxµθ [( gL)2
− C

L

(
S

L
+ κ

)]∣∣∣∣ (4.7)

δ =

√√√√[µ2
x

(
S

L
+ κ

)2

+ 2µxµθ

( g
L

)2
+

(
µθ
C

L

)2
]

(4.8)

where δ/(2π) is the corner frequency.
The formula of the power spectrum can be simplify for high frequencies, such as

f ≥ 1 kHz:

PF (ω) ' κ2α/β

δ2 + ω2
=

2kBTµx
δ2 + ω2

so it is possible to fit the data, near the corner frequency, with the function:

P (ν) =
A

ν2
c + ν2

(4.9)

where ν is the frequency (ω = 2πν). In this approximation the amplitude A is inde-
pendent of any elastic parameters and its value is determined only by the temperature
T of the system and the mobility µx of the bead. However, it must be kept in mind
that the last formula is valid only under the assumption that ω � β which depends on
the value of g. As a matter of fact, in Figure 4.1, it is possible to notice as A remains
constant only in a well defined range of frequencies, whose limits vary with g (see Figure
4.1b). Moreover, it is worth mentioning as g also affects the parameter α (see Figure
4.1a), which becomes relevant al lower frequencies, so that the amplitude of the force
power spectrum is not more constant and it strongly changes with ω.
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Figure 4.1
In (a) are represented the parameters of the force power spectrum in function of the twist-stretch
coupling g. The power spectrum function in (b) is pictured changing the value of g for a 24 kbp
DNA. The values used for the other terms are reported in table Table 4.1.

4.1.2 Experimental data acquisition

The first step of the experimental procedure is tethering the molecule. As already ex-
plained in the previous chapter, the DNA molecules have been already attached to a
Antidigoxigenin covered bead (AD bead) by performing an incubation protocol. Strep-
tavidin bead (SA bead) is introduced in the microfluidic chamber and it is caught by
suction of micro-pipette, while the second bead, the one functionalized with Antidigox-
igenin, is trapped by optical tweezer. Moving these beads closer to each other, Strep-
tavidine could bind to the Biotine on the free side of random coil configuration DNA.
The single molecule can not be seen by the optical tweezer imaging system (see Figure
4.2), however molecular density was properly tuned during the incubation step in order
to have some molecules per bead. DNA catching is verified if the optical tweezer PSD
measure a force when the two beads are moved away beyond the contour length of the
investigated molecule. Usually it is necessary repeat this procedure several times, until
one and only one molecule is tethered between the two polistirene beads. As a matter
of fact, it often happens that two or more molecules are linked to the beads, so that the
system should be brought to higher forces till only one bond endures.

DNA is stretched when the beads are moved away along the ŷ axis (i.e. vertical
direction), and the total force acting on the AD bead can be measured in real time by
optical tweezer software. By adjusting the positions of the beads, force components,
other than Fy, are set to zero so that a well-known force is applied to the system along
an unidimensional direction. The force signal of the system (Sf (Fy)) is recorded with
sample rate of f = 50 kHz for t = 5 s, while the force applied to the bead is kept constant.
The procedure is repeated changing the force from 0 to 80 pN to get information along
all the different different regimes of the DNA elongation (worm like chain regime, over-
stretching, above over stretch region). Unfortunately, often the Streptavidin-Biotin bond
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^ Antidigoxigenin
Digoxigenin

_ Biotine
Streptavidin

Figure 4.2
On the right, it is pictured what can be seen
on the optical tweezer screen. Between the two
beads there is a single molecule DNA, but the
imaging system can not resolve it. On the left
there is a schematic representation of a typical
force spectroscopy experiment.

Parameter Value

S 1100 pN
C 303 pN nm2

κ 0,1 pN nm−1

γ 1,002× 10−9 pN nm−2

a 1,5× 103 nm
µx 3,53× 104 nm pN−1 s−1

µθ 1,18× 10−4 nm−1 pN−1 s−1

Table 4.1
The value used for estimate the parameters used
in the power spectrum formula[4, 46].

breaks during the measurement, in particular at forces above 40 pN, so that the whole
procedure has to start again from the beginning and a new molecule has to be caught.

The force spectra are then elaborated with MATLAB script. First, the raw voltage
signal (Figure 4.3a), acquired by the high-frequency-board, is converted into a force signal
(Figure 4.3b) by means of the calibration presented in section 2.6. Then the force power
spectrum (Figure 4.3c) was calculated with ad-hoc MATLAB scripts and, for sake of
simplicity during the subsequent analysis, the spectrum was subdivided into frequency-
windows with fixed-width. Finally, the averaged data corresponding to each frequency
window were reported in a log-log scale (Figure 4.3d). This data are then interpolated
with the lorentzian function given by equation (4.9) to obtain the amplitude A and the
corner frequency νc (see Figure 4.3).
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Figure 4.3
The raw voltage signal (a), is converted as force data (b). Those are elaborated in order to get the
force power spectrum (c) that is fitted with the lorentzian function(d).
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Figure 4.4
A closer look, in the high frequency region, of three power spectra of a molecule that was pulled by
a force of 10 pN, 40 pN and 66 pN.

10 pN 40 pN 66 pN

A [pN Hz] 30± 2 A [pN Hz] 52± 3 A [pN Hz] 58± 3
νc [Hz] 537± 22 νc [Hz] 1109± 40 νc [Hz] 530± 26

Table 4.2
The fit parameters of the the lorentzian function (4.9) used to fit the power spectra of Figure 4.4.

4.2 Results and discussion

As first test, the 24 kbp DNA molecule was considered, since it is a well-known molecule
in the field of optical-tweezers and it is quite stable and resistant also at high pulling
forces. In Figure 4.4 the force power spectra obtained for the same molecule at 10 pN,
40 pN and 66 pN (over-stretching region) are reported and the corresponding fits are
shown. In Table 4.2 are reported the fit parameters and, as it is possible to notice,
both the amplitude and the corner frequency of the force power spectrum change with
force, suggesting that a variation of the elastic constants of the system is occurring as
the force applied to the polymeric chain is increased. Thanks to the high resistance
of this biological system, it was possible to measure the power spectra of more than 40
molecules of lambda DNA, from 0 pN to almost 90 pN, with mean force-step of 5 pN. The
amplitude and the corner frequency of each spectrum were calculated and the obtained
values are reported in Figure 4.5 and Figure 4.6, where only the more relevant molecules
are shown for sake of clarity.
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4.2.1 Molecule 24 kbp

0 20 40 60 80 100

Force [pN]

0

20

40

60

80

100

A
m

p
lit

u
d

e
 [

p
N

2
 H

z
]

1mol 2mol 3mol 4mol 5mol

6mol 7mol 8mol 9mol 10mol

11mol 12mol 13mol 14mol 15mol

16mol 17mol 18mol 19mol 20mol

Figure 4.5

Amplitude The graph Figure 4.5 report the amplitudes of the lorentzian fit in function
of the force. At lower forces, such as F < 15 pN, the amplitude doesn’t vary significantly
with the force, confirming the results already found in another work[47]. The same trend
seems is also observed in the over-stretch region, between 65 pN to 75 pN. Contrary
of expectations, in the other force ranges the amplitude growths with the force. The
approximation ω � β, that was introduced to simplify the power spectrum formula,
seems not be satisfied and other terms have to take in account to understand the variation
of the power spectrum amplitude. As a matter of fact if β was comparable with ω, the
role of g and C could not be neglected.

Even if the twisting contribution could be probably neglected since in equation (4.6)
µθ � µx, however a relevant increase of g (above 500 pN nm) with respect to the values
reported in literature for lower forces could explain the observed trend of A. In this case,
A would be dependent on g2 (see equation (4.5)) and therefore any informations on the
sign of the g parameter couldn’t be derived. Anyway, it would be clear the dependence
of g on the force, as suggested by other works[2–4, 39]. In connection with this, it is
worth noting as the most relevant variation of A occurs between 20 pN and 50 pN, that is
the force range where a change from the overwound to the unwound DNA configuration
is expected. Clearer information could be derived by investigating low-frequency regions
where the contribution of g is predicted to be more pronounced (stronger).

Finally, it is possible to notice as some molecules present values of the amplitude that
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Figure 4.6

slightly differ from the other ones (as the molecules no 6 and no 10): this is probably due
to a little difference in the molecules length, as it will be clarified in the next sections.
Indeed, the preparation procedure of the DNA molecules (see section 3.1) requires a
post-PCR purification step, which could results in a biological sample with molecules
having slightly different lengths.

Corner frequency From the graph Figure 4.6 it can be seen a significant and more
clear variation of the values of the corner frequency with the force. The curve of the corner
frequency start to increase after a first minimum and it reaches its local maximum near
35 pN; then it starts to decrease until another local minimum in the over-stretching region
is reached. After that it start rising again above this force range. In the frame of the
model presented in section 4.1.1 (see (4.7)) δ is dependent from S/L which represents
the stiffness of the DNA divided by its contour length and the twist-stretch coupling
parameter g. However, also at very high g values (above 1000 pN nm) the contribution of
g would be very weak being modulated by the factor µθ, which is 8 orders of magnitude
lower than µx. Therefore, as first approximation, δ can be considered to be affected only
by S/L:

δ '
∣∣∣∣µx(SL + κ

)∣∣∣∣
Being the molecule length L a constant for the same DNA population, the variation of
the corner frequency is directly connected to a change in the values of the stretch rigidity
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parameter S. Increasing and decreasing of the corner frequency could be interpreted as a
DNA molecule that became more stiff until F ' 40 pN was reached. After that it became
more prone to stretching. In literature the value F = 35 pN is reported as the limit in
which g changes it sign and DNA changes its behavior from overwinding to unwinding
when it is stretched, therefore, form reported data it seems than a change in the DNA
configuration is stringily connected also to a change in its stretch-rigidity.
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4.2.2 Molecule 3.6 kbp

To verify if the obtained results have a general validity and clarify the possible role played
by the DNA length, the same experimental investigation was performed also on DNA
chain with different length, that is 3,6 kbp and 9 kbp.
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Figure 4.7

The same behaviors described previously, for the 24 kbp-long molecules, can be found
also in a shorter molecules composed of 3,6 kbp. The amplitude is once again constant
at low forces (< 15 pN) and in the over-stretching region, as it is possible to observe
in Figure 4.7. Moreover, as for the 24 kbp DNA the amplitude significantly increases
between 20 pN and 50 pN and above the over-stretching regime.

In the corner frequency graph (Figure 4.8) the general behaviors of the data are the
same of the 24 kbp DNA, except for the presence of a second curve above the most
populated one. This was verified to be linked with a mixture of molecular populations
of difference length. In particular, the nature of the second population was investigated
by observing the presence of second population was verify by observing the length of the
plateaux Lplateaux of some molecules from which it was possible to deduce the contour
length L0. As a matter of fact, ita has been already widely demonstrated that the over-
stretching region corresponds to a regime of the double strand DNA molecule were the
polymeric chain increase its length of about 70% beyond its contour length L0 without
requiring a significant increase of the pulling force. Therefore in the over-stretching
region the plateaux length is expected to be equal to 0,7 · L0, that is Lplateaux = 900 nm
for the 3,6 kbp DNA. The same reasoning applies for the molecules presenting a corner
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frequency value slightly below the most populated curve. In this case it was measure
a length of the plateaux of almost 1100 nm, corresponding to molecules with a contour
length around 5 kbp. As explained before, this is due to some incorrect steps in the
purification procedure or PCR process. Anyway this problem has mainly affected the
3,6 kbp DNA samples, whereas in the 24 kbp and 9 kbp populations the incident rate of
this issue was below 3%.
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4.2.3 Molecule 9 kbp
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Figure 4.9

The last molecule, investigated in this thesis work, was a 9 kbp-long DNA chain.
Results are shown in the following graphs (Figure 4.9 and Figure 4.10) in which it can be
seen the same previously discussed behaviors.

During the experiments it was clear that both 9 kbp-long molecules and 3,6 kbp ones
were less resistant than the 24 kbp DNA. It was quite hard to measure the power spectrum
at forces above the over-stretching regime. Anyway, also in this case it appears clear that
the force range around 30 pN to 40 pN is critical for the elastic behavior of the molecule,
a result which is confirmed by the significant change in the stretch rigidity modulus and
twist-stretch coupling parameter.
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4.2.4 Comparison between molecules

A final comparison between the different investigated molecules is mandatory to obtain
information about the dependence on the length of the elastic parameters of DNA.

The amplitude of the power spectrum increases clearly with the length L of the poly-
meric chain (see Figure 4.11). If a close link between variation of A with g would be
confirmed by analyzing the low-frequency region of the spectra, it would results that
the twist-stretch coupling depends on the length of the molecule considered, an unprece-
dented result.

Also the corner frequency changes with the length (see Figure 4.12). Higher corner
frequencies can be interpreted as more stiff molecules and it seems to increase as the
molecule length is shorten, getting a local maximum near 35 pN. Moreover, the corner
frequency apparently increases with the force also above the over-stretching, but it is
difficult to carry out measurements in this region because the bonds between SA beads
and DNA are more fragile. At first approximation, corner frequency is proportional to
S/L but from the Figure 4.12 the single contribution of these two factors can not be
discriminated. In order to highlight the contribution of S, it can be directly calculated
as

S =

(
δ

µx
− κ
)
L0

and it can be reported in function of the force and for different molecular lengths (see
Figure 4.13). As it is possible to notice in the graph, the stretch rigidity depends on the
molecule length; in particular, the maximum value of S for the 3,6 kbp is almost half of
the corresponding value for the 24 kbp DNA. As a matter of fact, for the 24 kbp DNA, the
stretch modulus is S = (1186± 79) pN which is compatible with S = (1100± 200) pN
derived by J. Gore et al. in[4].

Finally, it should be mentioned the fact that the corner frequency and, as a conse-
quence, the stretch modulus S, recovers the starting value measure at 0 pN when the
over-stretching regime is reached. This means that at those forces the polymeric chain
returns to be more easily stretched as at very low forces, and this is confirmed by the
fact that in the over-stretching region it is possible to significantly elongate the DNA
without increasing the applied force.
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Conclusions and future works

In this thesis work the elastic response of double-stranded DNA molecules has been inves-
tigated by means of high-frequency force spectroscopy with optical tweezers. The main
goal was that of demonstrating the feasibility of a new experimental approach for shed-
ding light on some unsolved problems on DNA elastic behavior, and this thesis represents
a first step towards this direction. Understanding the DNA elasticity properties is the
cornerstone for a better comprehension of its biological properties and functionalities,
like DNA formation and dissociation. Nowadays three main questions are still under de-
bate, that are the behavior of the DNA in the over-stretching regime, its elastic response
at forces higher than 65 pN to 67 pN and the role played by the coupling of the stretch
and twist of the molecule when it is elongated. Concerning this last aspect, the corre-
sponding energetic contribution is proportional to the factor g, which has been recently
investigated by means of molecular dynamics simulations[2] and magnetic tweezers[3, 4].
The result widely shared is that g seems to change its sign with the force, but results
presented by outstanding authors contradict each others and clear and widely-accepted
theoretical model explaining this effect is still lacking.

Therefore, this work presents a new experimental method based on optical-tweezers
measurements, which is exploited to investigate the above mentioned issues. In partic-
ular, the motion of a bead trapped in the optical potential and linked to a single DNA
molecule was investigated. A known force was applied to the system and kept constant
during the measurements made with a new high-frequency data acquisition board. As
a matter of fact, by looking at the force power spectrum of the bead one expects to be
able to infer some informations on. The results reported represent a preliminary study
which aims to a qualitative understanding of the biological system considered and sheds
light on future stages of the investigation.

The first part of this work was devoted to the optimization of the experimental
protocol used for getting the final results and to the preparation of optimum fluidic
chambers. Concerning this last item, it is worth mentioning that the role played by
the microfluidic chamber in the whole experiment is crucial. As a matter of fact, any
misalignment or leaks of the channel walls as well as defects on the micro-pipette tip
(often difficult to be observed to the naked eye) could negatively affect the realization
of the experiments, compromising the success of a week-long measurement run. For
these reasons a lot of time was spent in optimizing the preparation procedure of both
the fluidic chambers and the glass micro-pipette. The home-made pipette-puller was
carefully calibrated in order to obtain highly symmetric tip with a width of 2 µm, which
allows avoiding undesired suction effects and uncontrolled lost of the bead during the
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measurements. Moreover, a new geometry of the channel walls was designed and the final
assembly of the chamber by sealing the different parts with NOA-glue was demonstrated
to be the best solution, allowing to realize more resistant chambers (the mean life-time
of each chamber was increased from 1 day to almost 1 week). Moreover, a new high-
frequency electronic board was implemented in the optical-tweezers setup ad-hoc for
this work and a detailed calibration of the acquired voltage signal was performed in the
whole range of forces investigated. Concerning the force spectroscopy measurements,
more than 100 molecules have been investigated and each of them were used to monitor
the motion of the bead in the optical trap by applying to the system a fixed force in the
range from 0 pN to 85 pN. However, it is quite difficult to carry out measurements at
very high forces (above 65 pN) because the bonds between the SA beads and the DNA
usually breaks. For each force power spectrum the amplitude and the corner frequency
were derived by means of a lorentzian fit and the results were studied as a function
of the applied force. The amplitude of the power spectrum increases clearly with the
length L of the polymeric chain and at lower forces, such as F < 15 pN, the amplitude
doesn’t vary significantly, confirming the results already found in another work[47]. The
same constant trend seems to be present in the over-stretch region, between 65 pN to
75 pN. Contrary of expectations, in the other force ranges the amplitude growths with
the force. If a stronger dependence of A on g is supposed, it would confirm the expected
twist-stretching coupling effect and its force-dependence, but it would also means that
the twist-stretch coupling depends on the length of the molecule considered, which is an
unprecedented result.

Concerning the corner frequency, it changes with the force and with the length of
the DNA chain. Being the corner frequency directly connected with the stretch-rigidity
modulus S, higher corner frequencies can be interpreted as more stiff molecules and it
seems to increase as the molecule length is shorten. For all the molecules the same
behavior of the corner frequency curve was observed, showing a local maximum near
35 pN, exactly where a change of the g sign is expected and interpreted as a transition
from the overwind to unwind behavior of the DNA when it is stretched. Moreover,
after a new local minimum in the over-stretching regions, where the DNA can be easily
elongated, the corner frequency apparently increases with the force also above the over-
stretching, suggesting a new remarkable variation of the coupling factor g.

The obtained results show that this new experimental approach is suitable for investi-
gating the elastic parameters of double-stranded DNA molecules with the optical tweezers
technique. However, they also highlighted, for what concerns the power spectrum am-
plitude, that the assumptions made for simplify the data analysis are not completely
satisfied in the whole force range investigated in this work, specifically between 25 pN to
50 pN and above 65 pN.

Further investigations should be performed in the low-frequency region, for example
acquiring data for a longer time, where the expected dependences of the corner frequency
and the amplitude from the stretch and twist modulus, and the twist-stretch coupling are
more relevant. Of course, this new possible study will require also further computational
efforts, in order to simultaneously take into account all the elastic parameters during
the fitting of both low- and high-frequency regimes of the power spectrum. This could
highlight the role of these parameters that are used in the theoretical models of DNA
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elasticity. Finally, additional data shall be taken in the region above the over-stretching
regime, which have never been investigated till now, in order to have a clear and detailed
view of the DNA elasticity response also at higher forces.
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