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Abstract

Motion planning algorithms have been developed in different fields by the con-
trol engineering community to do different tasks: move one ormore agents from
a starting state to an ending state, to track a reference trajectory, etc. To do so,
both robotic, vision and learning techniques have been used. At the same time,
a lot of effort in the computer engineering community has been done in the ma-
chine learning field to classify labeled data sets. The aim of this work is to use
concepts and tools of both these fields to build up different motion planning al-
gorithms for classification tasks, that make an agent with a specific dynamics to
move in a space where two labeled regions are present, observing the labels just
in the points where it discretely pass through, in order to estimate and navigate
the curve separating the different regions. The ideal case where no errors on
the measurements of the labels are present is firstly studied, where convergence
to the separative curve is analyzed and reached under certain conditions. Af-
ter that, two types of noises in the measurements are studied, namely uniform
distributed and gaussian distributed errors. In this case, navigation is reached
for both the error models, while convergence is just reached (in a probabilistic
sense) in the uniform distributed error model. The case where the separative
curve in not linear is also addressed, both in the ideal no error case and in the
error model in the label’s measurements, and the navigation and a good estima-
tion of the curve is achieved, whereas no convergence is possible.





Sommario

Algoritmi di pianificazione del movimento sono stati sviluppati in differenti
campi dalla comunità di ingegneria del controllo per svolgere diversi compiti:
muovere uno o più agenti da una posizione iniziale a una posizione finale, per
tracciare una traiettoria di riferimento, etc. Per fare ciò sono state utilizzate sia
tecniche di robotica, che di visione e di apprendimento. Allo stesso tempo,
molto sforzo è stato fatto dalla comunità di ingeneria informatica nel campo
dell’apprendimento automatico per classificare degli insiemi di punti con delle
etichette. Lo scopo di questo lavoro è unire assieme questi due approcci per
realizzare degli algoritmi innovativi che facciano muovere un agente con una
specifica dinamica e osservando le etichette dei punti in cui transita, nello spazio
dove due regioni con specifiche etichette sono presenti, per stimare e navigare
la curva che le separa.
Il caso ideale senza alcun errore nellemisurazioni delle etichette è esaminato per
primo, dove la convergenza alla curva di separazione è analizzata e raggiunta
con certe condizioni. Dopo di che, due tipi di rumori nelle misurazioni sono stu-
diati, errori uniformemente distribuiti ed errori distribuiti in modo gaussiano.
In questo caso, la navigazione è soddisfatta in entrambi i modelli, mentre la con-
vergenza (in un senso probabilistico) è raggiunta solo nel modello con errori
uniformemente distribuiti. Inoltre, il caso in cui la curva di separazione non è
lineare è stato investigato, sia nel caso ideale senza errori che in quello con un
modello di errrore nelle misurazioni delle etichette, realizzando la navigazione
e una buona stima della curva, mentre la convergenza non è possibile.
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1
Introduction to the problem and

contributions

The aim of this thesis is to study the possibility of estimating a curve (that
in our setup is a classifier) that separates a region S into two labeled regions
S1 and S2 in a 2𝐷 space, as in Figure 1.1. To get started, firstly we consider
a pure sampling problem, and we solve it, assuming that any possible point
can be sampled revealing its label. Then, an agent with its own dynamics is
introduced. To keep the problem with the minimum number of assumptions,
the only information that is provided is:

• the knowledge of two initial points in the considered space with opposite
label;

• the capacity of the agent to observe, measure, only the label of the data
points where it passes through in a discrete time sequence.

Moreover, the addition of some noise on the label’smeasurements addsmore
complexity to face and to solve the problem, but at the same time, makes it more
close to the real world’s scenario.

The solutions that will be provided in this work vary depending on the type
of separative curve: if it is a linear curve, namely a line, both convergence of
the trajectory of the agent to the line and the relative estimation will be sought,
whereas if it is a more generic curve, only the navigation will be sought by the
agent, leaving the estimation of the curve as an additional problem treated dif-
ferently.
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1.1. CONTRIBUTIONS AND OUTLINE OF THE THESIS

Figure 1.1: Division of the space in two labeled regions S1 (red) and S2 (blue), in
the linear and non linear case.

1.1 CONTRIBUTIONS AND OUTLINE OF THE THESIS

This work is divided in different Chapters in which the problem is analyzed
by different perspectives. In the Sampling problem chapter (3), Algorithm 1
has been developed to estimate a point belonging to the separative line and
from that to estimate the whole line or curve by iterating it as many times as
needed. The proof of its convergence and considerations about its complexity
are also provided. In the next chapter, Identification of linear classifiers with
noiseless data (4), some dynamic constraints are introduced, by considering a
single 2-dimensional discrete-time integrator with a third pseudo-state compo-
nent given by the direction of the agent, that is useful tomove it. The same agent
will be used also in the other chapters. In this scenario, namely without errors
on the measurements of the labels, a solution is provided by Algorithm 2 that
makes the agent converge to the separative line and navigating around it. This
achievement allows to obtain in a real-time fashion the estimate of the line, and
does not require for further estimations tools.
Then, in chapter Identification of linear classifiers with noisy data (5), we in-
troduce two error noise models in the measurements of the labels, the uniform
error distributed and the gaussian error distributed ones. As for the uniform
distributed error model, a procedure able to give a relation between the total
number of data points needed to converge and the probability of the Algorithm
3 to end up with success is provided, by using Markov processes reasonings
and analysis. As for the gaussian distributed error model, convergence cannot

2
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be achieved but the agent can still navigate around the line and eventually esti-
mate it in a proper well-enough way.
The next chapter, Identification of special nonlinear classifierswithnoisy/noise-
less data (6), extends the setup to the case with non linear separative curve,
where we do not achieve any convergence, but the agent can still navigate dif-
ferent curves both in the ideal no measurement’s error case and in the uniform
and gaussian noise error model. Simulations with a sinusoidal elliptic curves
are presented. An estimation part is needed to retrieve an estimate of the sepa-
rative curve from the data points collected by the agent. Different estimation’s
approaches are presented, and eventually the one using a smoothing filter is
preferred on the more computational demanding Machine Learning (ML) algo-
rithms.
In the last chapter, Conclusions and Future Work’s chapter (7), a final list and
recap of all the results is presented with a final discussion. Besides, we also pro-
pose further possible research that can be done from this work.
All the chapters are based on more generic themes belonging to different areas,
such as control theory, machine learning ML, probability, that are briefly ex-
plained in the Appendix 8, but that rely on the fact that the reader is already
familiar with some of these topics. Moreover, all the chapters have the imple-
mentations and simulations of the algorithms with their relative comments.

3





2
Motivation and literature review

Theproblemof estimating a line and or navigating it using amobile agent has
been attached in the robotic and control community quite intensively and many
different algorithms and procedures have been developed in the last decades.
Some examples can be found in the Reinforcement Learning (RL) field: an agent
that is in a certain state, that does not know the environmentwhere it lays, takes a
certain action based on the reward it got in order tomaximize the cumulative re-
ward (long-term reward), or, in a probabilistic setting, the expected cumulative
reward. The agent often takes the actions following the so-called exploration-
exploitation trade-off, in order to explore the unknown states with their relative
rewards, and to exploit greedily the knowledge itmade, up to that timemoment,
about the explored states.
However, RL requires plenty of data and involves a lot of computation before
figuring a good strategy out. In this work instead, we try to use as less data
(data points) as possible, thus significantly differentiating the two approaches.
In the sampling motion planning algorithms community, other important con-
siderable works can be found in the Rapid Random Tree Star (RRT*) algorithm,
where a randomic tree is built in a fast way (𝒪(𝑛 log 𝑛)) from an initial starting
point to a final one, avoiding obstacles and with the shortest length. However,
also this algorithm is not suited for the setup of this work as the latter does not
provide an initial and a final point.
Another well known and studied solution might be the Model Predictive Con-
trol (MPC), a control technique that iteratively solves an optimization problem
to find an input sequence at each iteration that minimizes a cost function and
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takes into account for time varying constraints. However, MPC is used in appli-
cations where sensors provide information also about the future states, whereas
in this work we consider the agent provided only of a simple measuring system
that can observe the label of the point where it is, with the same sampling fre-
quency of the discrete time iteration of the system. Hence, also MPC is not so
useful in our scenario.
Wemay then think of optimal control Optimal Control (OC), that can be thought
of as a simplification of the MPC in the case where the constraints are not vary-
ing in time, and in fact we tried to use this technique at some point during the
development part to make the agent move from one side to the other one of the
separative line. However, it turns out that the optimization problems we are
going to solve, namely 4.25 and 4.26 do not need for an OC approach as they can
be solved just minimizing the cost function iteration by iteration.
Instead, the way this problem is attached is by using the online information of
the label of the current state data point, together with the previous ones, and
adapting a control law as a consequence of such labels in a real-time fashion.

From the point of view of the utility of this work, although it can seem a purely
theoretic problem, practical extensions can be studied as feature research (see
Chapter 7). Examples of concrete applications where an agent can ”learn” how
to move on a curve just using its previous labeled sampled states are: robotic
agents, like car models that must identify a line separating an area where they
can transit from another one that is not accessible for different reasons (security,
privacy) and so they track it by just navigating it around the margin.
In the scientific literature, similar problems can be found in the works of [3] and
of [4], where the applications where about the estimation of the Algal Bloom in
the Baltic sea, and the agent an unmanned surface vehicle. However, in both the
works, the initial assumptions and the setups are different from the ones used
in ours.

6



3
Sampling Problem

3.1 INTRO

In this chapter, the sampling problem to identify linear and non linear clas-
sifiers is addressed, namely we study how to pick data points sampling them in
a strategical sequential way in order to estimate a line, an hyperplane or a non
linear curve, that separates two labelled regions on the space. In particular Al-
gorithm 1 is developed to estimate a point belonging to the separative classifier
in exponential convergence rate, provided the knowledge of two initial given
points with different labels. In the case of non linear classifiers, if the shape is
given it is possible to use less estimates, otherwise the more complex the shape
of the classifier is, the largest the number of points to be estimated by usingmul-
tiple times Algorithm 1, estimating the final curve by using an interpolation.

3.2 PROBLEM FORMULATION

Starting from the simplest example of a linear separative curve in the 2𝐷
space, provided that there exists a separative line between S1 and S2 with labels
1 and −1 with equation:

𝑧 = 𝑚∗𝑥 + 𝑞∗, (3.1)

the goal is to try to strategically sample 𝑗 points to estimate �̂� and �̂� such that:

lim
𝑗→∞ ∥�̂� 𝑗 − 𝑚∗∥ = 0 and lim

𝑗→∞ ∥ �̂� 𝑗 − 𝑞
∗∥ = 0. (3.2)

7



3.3. PROPOSED SOLUTION

Two assumptions are made:

• an oracle provides the true labels of the data points that are sampled;

• to have full knowledge of two initial points, namely 𝑃01 (or x01) and 𝑃02 (or
x02), with different labels.

The problem can be also written, in the case we just care about achieving a spe-
cific threshold value of accuracy, as seeking for �̂� and �̂� such that:

lim
𝑗→𝐽
∥�̂� 𝑗 − 𝑚∗∥ < 𝜖𝑚 and lim

𝑗→𝐽
∥ �̂� 𝑗 − 𝑞∗∥ < 𝜖𝑞 , (3.3)

for any initial pair 𝑃01 and 𝑃02 with different labels, where 𝑃𝐽 is the final sampled
(or estimated) point at iteration 𝑗 = 𝐽.
We also generalize the problem for high dimensional spaces in the following
way. We consider the space R𝑑. The space is divided into two regions by a
hyperplane. Every other point in the space carries a label. The hyperplane is
unknown and the objective is to find the same. The parameters of the true hy-
perplane is denoted by (𝑤∗, 𝑏∗). Initially, we are given two labeled data points,
{𝑥01 , 1} and {𝑥02 ,−1}. With these two data points we estimate a point belonging
to the separative hyperplane, close enough to it. With some more initial points
we estimate in total 𝑑 points with the same procedure. Eventually, the goal is to
estimate these points such that the estimated hyperplane parametrized by (�̂�, �̂�)
is such that:

∥�̂� − 𝑤∗∥ < 𝜖𝑤 and ∥�̂� − 𝑏∗∥ < 𝜖𝑏 . (3.4)

3.3 PROPOSED SOLUTION

In this section the solution we developed is presented.
The first chosen data point x1 is the average between the two initial given data
points. Once checked its label, we take as new data point the average between x1

and the initial point with opposite label, and we save x1 as the new initial point
on its side (as now the initial point with the same label is farther than x1 from
the hyperplane and hence less informative); namely either x01 or x02 is updated
as x̃0𝑖 = x1. By repeat the procedure taking at iteration 𝑗 the point xj that is the
average between xj−1 and the point among x̃01 and x̃02 with different label from
xj−1. The final estimate, can be retrieved as x̂, the average between the last point
xJ and the last point xj with opposite label from xJ, where 𝐽 can be chosen at

8



CHAPTER 3. SAMPLING PROBLEM

the beginning or can be found running the algorithm and stopping it when, for
instance, two consecutive data points are closer by than a certain threshold.
The convergence of the sequence of the data points to an estimated point x̂ is
guaranteed to be equal to an actual point x̄ on the true hyperplane when the
number of data points grows to infinity.

The following definition is needed to prove the convergence of the proposed so-
lution to a point belonging to the separative curve.
Definition(Cauchy sequence): Let (𝑋, 𝑑) be ametric space. A sequence {x𝑛 ∈ 𝑋}
is said to be Cauchy if given 𝜖 > 0 there exists a natural number 𝑁𝜖 such that
𝑑 (x𝑚 , x𝑛) < 𝜖 for all 𝑚, 𝑛 > 𝑁𝜖.

Proposition. (proof of the convergence) The sequence built up in the procedure 3.3
converges to a point of the classifier. Therefore, we can estimate a linear classifier as in
the sense of Eq. 3.2 and Eq. 3.3 (the proposition also holds for 𝑑−dimensional spaces, as
we only use euclidean distance reasonings).

Proof. We consider the metric space (R𝑑 , 𝑑), where the metric 𝑑 is the usual eu-
clidean distance. Such metric space is complete. If we prove that the sequence
{x} 𝑗=1,2,... is a Cauchy sequence then we prove in turn that the sequence is con-
vergent to a fixed point, and such a point can only be a point on the true hyper-
plane because the sequence lies around the true hyperplane and gets closer and
closer to it by construction.
Let’s construct a generic sequence {x𝑗} 𝑗 : x1 =

x01+x02
2 , x2 already depends on the

labels of the previous points and on their positions (this is a non linear relation),
and can be either x2 = 1

2

[
x01+x02

2 + x01

]
=

3x01+x02
4 or x2 = 1

2

[
x01+x02

2 + x02

]
=

x01+3x02
4 , however is possible towrite it as x2 =

𝜆2x01+(22−𝜆2)x02
22 , where 1 ≤ 𝜆2 < 22.

In general,

x𝑗 =
𝜆 𝑗x01 + (2𝑗 − 𝜆 𝑗)x02

2𝑗
, where 1 ≤ 𝜆 𝑗 < 2𝑗 . (3.5)
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3.3. PROPOSED SOLUTION

So:

𝑑(x𝑚 , x𝑛) = | |x𝑛 − x𝑚 | | =
=

√(
𝜆𝑛𝑥011+(2𝑛−𝜆𝑛)𝑥021

2𝑛 − 𝜆𝑚𝑥011+(2𝑚−𝜆𝑚)𝑥021
2𝑚

)2 +
(
𝜆𝑛𝑥012+(2𝑛−𝜆𝑛)𝑥022

2𝑛 − 𝜆𝑚𝑥012+(2𝑚−𝜆𝑚)𝑥022
2𝑚

)2 ≤

≤
√(

𝜆𝑛𝑥011+(2𝑛−𝜆𝑛)𝑥021
2𝑚𝑖𝑛(𝑛,𝑚) − 𝜆𝑚𝑥011+(2𝑚−𝜆𝑚)𝑥021

2𝑚𝑖𝑛(𝑛,𝑚)

)2 +
(
𝜆𝑛𝑥012+(2𝑛−𝜆𝑛)𝑥022

2𝑚𝑖𝑛(𝑚,𝑛) − 𝜆𝑚𝑥012+(2𝑚−𝜆𝑚)𝑥022
2𝑚𝑖𝑛(𝑛,𝑚)

)2
=

=

√( 𝑎
2𝑚𝑖𝑛(𝑛,𝑚)

)2 +
(

𝑏
2𝑚𝑖𝑛(𝑛,𝑚)

)2
=

√
𝑎2 + 𝑏2

22𝑚𝑖𝑛(𝑛,𝑚) =
√
𝑎2 + 𝑏2

2𝑚𝑖𝑛(𝑛,𝑚)
< 𝜖,

(3.6)

where

𝑎 = 𝑎(𝜆𝑛 ,𝜆𝑚 , 𝑥011 , 𝑥021) = 𝜆𝑛𝑥011 + (2𝑛 − 𝜆𝑛)𝑥021 − (𝜆𝑚𝑥011 + (2𝑚 − 𝜆𝑚)𝑥021),

𝑏 = 𝑏(𝜆𝑛 ,𝜆𝑚 , 𝑥012 , 𝑥022) = 𝜆𝑛𝑥012 + (2𝑛 − 𝜆𝑛)𝑥022 − (𝜆𝑚𝑥012 + (2𝑚 − 𝜆𝑚)𝑥022).

The latter inequality can be written as

2𝑚𝑖𝑛(𝑛,𝑚)√
𝑎2 + 𝑏2

>
1
𝜖

=⇒ 2𝑚𝑖𝑛(𝑛, 𝑚)
log2(𝑎2 + 𝑏2) >

1
log2(𝜖) = − log2(𝜖). (3.7)

Therefore we can choose,

𝑚𝑖𝑛(𝑛, 𝑚)
log2(𝑎2 + 𝑏2) ≥ 𝑁 > −1

2
log2(𝜖). (3.8)

□

Proof of the limit. As for the limit, now that we know that the limit exists, we
have to prove that lim

𝑗→∞ 𝑑(x𝑗 , x̄) = 0.

Indeed, by contrapositive, let’s suppose that lim
𝑗→∞ 𝑑(x𝑗 , x̄) = 𝑐 ≠ 0. This would

mean that there exists a new iteration in which x∞, that is the position at time
𝑡 = +∞, would be such that 𝑑(x∞+x𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

2 , x̄) < 𝑑(x∞, x̄) and this is an absurd since
the sequence is moving towards the objective hyperplane. In fact the sequence,
keeps averaging between the closest points from the classifier with different la-
bels, hence reducing the distance from it. □

By repeating the same procedure we find 𝑑 estimates of points belonging to a
𝑑 − 1 dimensional hyperplane separating two 𝑑 dimensional half-spaces.
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CHAPTER 3. SAMPLING PROBLEM

For example, for a line, that is a 1-dimensional hyperplane, we need 2 estimates
to find out the estimated hyperplane.

From the proposed solution, Algorithm 1 can be easily composed, with just
some reminds:

• 𝐽 is fixed a priori and it has not necessarily the same meaning of the same
symbol proposed in Section 3.3 as if such a value does not allow the al-
gorithm to converge inside the 𝜖 interval, then it is different, however, as
explained in the subsection 3.4.1, it is not difficult at all to make it conver-
gent as it does that very fast;

• 𝛿 is chosen depending on the accuracy that one wants to achieve.

Algorithm 1 Sampling algorithm for identification of a point belonging to a
generic classifier
Require: 𝑝01 , 𝑝02 , 𝐽 , 𝛿

𝑝1← 𝑎𝑣𝑔(𝑝01 , 𝑝02)
�̂� ← 𝑝1

𝑗 ← 2
while 𝑗 < 𝐽 𝑎𝑛𝑑 𝑑(𝑥 𝑗 , 𝑥 𝑗−1) > 𝛿 do

if 𝑦 𝑗−1 = 𝑦𝑝01
then

𝑝01 ← 𝑝 𝑗−1

𝑝𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑝02

else
𝑝02 ← 𝑝 𝑗−1

𝑝𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑝01

𝑝 𝑗 ← 𝑎𝑣𝑔(𝑝 𝑗−1, 𝑝𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒)
�̂� ← 𝑝 𝑗
𝑗 ← 𝑗 + 1

return �̂�

3.4 SIMULATIONS AND RESULTS

The next figure shows a sequence of data points sampled by Algorithm 1, in
which it is possible to appreciate its convergent behaviour towards an estimate
of a point belonging to the true line.
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Figure 3.1: Example of the first 7 points sampled by Algorithm 1.

Indeed, the next figure shows furthermore how the error distance decreases to
zero in a quite small number of data points.

Figure 3.2: Error distance of the points sampled by Algorithm 1.

By iterating the same procedure (it is just necessary another known initial given
point, but since is possible to sample any point this is not an issue), more points
belonging to the true separative line can be estimated and from there we can
obtain the equation of such a curve.
Note: in Figure 3.2 the error curve is not monotonically decreasing, as in the
interval of points {4, 6} the error increases a bit. This is because it can happen
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CHAPTER 3. SAMPLING PROBLEM

that, sampling in an opposite side, the new data point has a distance larger than
the previous one (that was on the other side), however, the important thing, is
that between two consecutive points on the same region side (e.g. point 3 and
6) the function is monotonically decreasing, as in fact this is the case.

3.4.1 COMPLEXITY, LOWER BOUND RATE OF CONVERGENCE OF ALGO-
RITHM 1

The complexity of Algorithm 1 is simply 𝒪(𝑛), as one while loop is necessary
to obtain the final estimate and in such a loopwe only use the the closest 2 points
with opposite labels to obtain the new data point computing the average.
As far as the rate of convergence, we can simply consider the worst case, that is
the onewhere the two initial points are such that one of them is very close, in par-
ticular 𝜖 distant, from the separative line 𝑧 = 𝑚∗𝑥+ 𝑞∗, whereas the other is more
far away. Therefore, let 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥 {𝑑(x01 , 𝑧 = 𝑚∗𝑥 + 𝑞∗), 𝑑(x02 , 𝑧 = 𝑚∗𝑥 + 𝑞∗)},
then it must hold:

𝑑𝑚𝑎𝑥
2𝑗

< 𝜖, (3.9)

meaning that the minimum total number of points, in the worst case, to make
Algorithm 1 converge, is:

𝐽 > log2
𝑑𝑚𝑎𝑥
𝜖

. (3.10)

Notice that this minimum number is quite easy to accomplish, as it scales with
a logarithm function, and that the actual Algorithm 1 in a generic configuration
is very close to this logarithm behaviour, hence reaching convergence (although
this has not been proved) exponentially fast.

3.5 NON LINEAR SEPARATIVE CURVES

We extend problem 3.2 to the non linear case, where Eq. 3.1 becomes:

𝑧(𝑥) = ℎ∗(𝑥), (3.11)

where ℎ∗(·) is a non linear function, or becomes:

𝐶∗ = {(𝑥(𝑡), 𝑦(𝑡)) : 𝑡 ∈ ℐ}, (3.12)
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where ℐ is an interval and 𝑡 is the parameter, in the case the separative curve is
a parametrized curve.
Instead, Eq. 3.2 becomes:

lim
𝑛→∞ ∥ ℎ̂𝑛 − ℎ

∗∥ = 0 or lim
𝑛→∞ ∥�̂�𝑛 − 𝐶

∗∥ = 0, (3.13)

where the norm operator, ∥ · ∥, indicates a loss function that can be properly
chosen.

3.5.1 SOLUTION ATTEMPT WITH KERNEL METHODS

An idea to solve the problem presented in Section 3.2 is the one of using the
properties of the kernel functions (see Section 8.2).
In fact, the property of mapping a low-dimensional space into a larger one in
order to make the separative non linear curve in the low-dimensional space lin-
ear into the larger one may be the solution to the problem. In fact, after having
mapped it into a linear hyperplane (of dimension 𝑑, let’s say), we may just use
Algorithm 1 𝑑 times to estimate it.

However, the proposed procedure is not achievable in practice for the follow-
ing important reason:
Let’s consider the quadratic polynomial kernel 𝐾(x, y) = (1+x𝑇y)2 where x ∈ R2

and whose feature map is defined as

𝜙(x) =
[
1 𝑥1 𝑥2 𝑥2

1 𝑥2
2 𝑥1𝑥2

]′ ∈ R6, (3.14)

and suppose that the curve to be estimated is a linearly separable in this 6𝐷
augmented space. However, even though we had the at least 6 points needed
for retrieve the hyperplane that linearly separates the two label regions in the 6𝐷
state space, that could be computed byAlgorithm 1 iterating it 6 times, wewould
not be able to retrieve in turn the non linear curve that separates the two sets in
the original state space because the feature map is non invertible (just noticing
that the domain is two dimensional and the codomain is six dimensional) and
hence its kernel (in algebraic sense here) is not the null space and infinitelymany
solutions would exist for the possible separative estimated curve.
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3.5.2 THE SHAPE IS GIVEN

Let’s consider the case in which the shape of the separative curve is given.
This is a strong assumption but also a good starting point.
As in the classification literature has been made often times, we consider as first
non linear case where the separative curve is a circle, or its generalization shape,
an ellipse, as in Eq. 3.15:

(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑒𝑟)2
𝑎2 + (𝑧 − 𝑧𝑐𝑒𝑛𝑡𝑒𝑟)

2

𝑏2 = 1. (3.15)

Such equation has 4 parameters. However, the ellipse has reflectional and ro-
tational symmetries and also for any set of 4 points there are infinitely many
possible ellipses so the minimal number of points to uniquely define an ellipse
is 5.
The idea is to find 5 points on the separative curve and then using them to re-
trieve the correct equation. To find such points we can use the proposed solution
of Section 3.3 and its relative algorithm, Algorithm 1. By iterating it 5 times, all
the needed points are found.
We simulate in this way a scenario with a separative curve given by the ellipse
with parameters:

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 10 m, 𝑧𝑐𝑒𝑛𝑡𝑒𝑟 = 15 m, 𝑎 = 9 m, 𝑏 = 4 m. (3.16)

Figure 3.3: Estimated curve by using Algorithm 1 for 5 points, with the knowl-
edge the shape was an ellipse.

The obtained ellipse has been obtained by using the 5 estimated points and then
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solving the following algebraic system problem (see [10]):

E𝜌 = 1, (3.17)

where:

E =



𝑥2
1 𝑥1𝑧1 𝑧2

1 𝑥1 𝑧1

𝑥2
2 𝑥2𝑧2 𝑧2

2 𝑥2 𝑧2

𝑥2
3 𝑥3𝑧3 𝑧2

3 𝑥3 𝑧3

𝑥2
4 𝑥4𝑧4 𝑧2

4 𝑥4 𝑧4

𝑥2
5 𝑥5𝑧5 𝑧2

5 𝑥5 𝑧5


, 𝜌 =



𝑎

𝑏

𝑐

𝑑

𝑒


, 1 =



1
1
1
1
1


, (3.18)

exploiting the fact that a generic ellipse can be written as:

𝑎𝑥2 + 𝑏𝑥𝑧 + 𝑐𝑧2 + 𝑑𝑥 + 𝑒𝑧 + 𝑓 = 0, (3.19)

and the last term 𝑓 can be normalized to 1.

3.5.3 THE SHAPE IS NOT GIVEN

We extend now our setup to the case in which the separative curve’s shape
is not known. Here, the best reasonable way is to use Algorithm 1 in order to
estimate 𝑚 data points belonging to the separative curve, and then interpolate
them to get an estimate of such a curve.
We try with an ellipse, as in 3.16, and we observe the results of two estimates,
one with 𝑚 = 15 data points and the second with 𝑚 = 40 data points.

Figure 3.4: Estimated curve by using Algorithm 1 and interpolation of 𝑚 = 15
data points.
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Figure 3.5: Estimated curve by using Algorithm 1 and interpolation of 𝑚 = 40
data points.

As expected, the estimate with 𝑚 = 40 data points is more accurate than the one
with less data points, as in particular the left side of the ellipse has not been well
sampled in the case with 𝑚 = 15 data points, whereas with more estimated data
points, the probability of cover the majority of the informative space is higher.
For the interpolation, we have used a Spline kernel interpolation that uses low-
degree polynomials in each of the intervals and chooses the polynomial pieces
such that they fit smoothly together.
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4
Identification of linear classifiers with

noiseless data

4.1 INTRO

In this chapter, we consider linear classifiers with noiseless data. First of all,
we define an agent with a state space dynamics and we develop Algorithm 2 to
make it moving around the separative line changing its direction depending on
the previously sampled data points. We study the rate of convergence of such
algorithm and we present some simulated results.

4.2 PROBLEM FORMULATION IN THE LINEAR CASE

The considered problem is the following one (see Figure 4.1).
Consider the 2𝐷 euclidean space, and in particular a region S ⊆ R2, and we use
as axes 𝑥 and 𝑧. Such region S is divided in two sub regions, S1 and S2, by the
line described by the equation:

𝑧 = 𝑚∗𝑥 + 𝑞∗, (4.1)

so that any point 𝑃 sampled on the region above the line, meaning that, 𝑧𝑃 −
𝑚∗𝑥𝑃 − 𝑞∗ ≥ 0, has label 𝑦𝑃 = +1 and every point 𝑃 sampled below the line,
meaning that, 𝑧𝑃 − 𝑚∗𝑥𝑃 − 𝑞∗ ≤ 0, has label 𝑦𝑃 = −1.
A point is defined by the 𝑥-𝑧 coordinates and its own label, i.e. by the triple
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𝑃 = (𝑥𝑃 , 𝑧𝑃 , 𝑦𝑃), where sometimes we also use the notation x to denote the pair
x = (𝑥𝑃 , 𝑧𝑃).
We are also given two initial points, 𝑃01 and 𝑃02 , with opposite labels.
The agent is described in subsection 4.3 and starts moving from the point 𝑥01 .
Our goal is to make it moving around the line, possibly reducing as much as
possible his distance from the line and making it move with a direction that
points towards the slope of the line, as depicted by Figure 4.1. Thus, strategically
collecting data, we want to estimate �̂� and �̂� such that:

lim
𝑗→∞ ∥�̂� 𝑗 − 𝑚∗∥ = 0 and lim

𝑗→∞ ∥ �̂� 𝑗 − 𝑞
∗∥ = 0, (4.2)

or, at least, after 𝐽 data points:

lim
𝑗→𝐽
∥�̂� 𝑗 − 𝑚∗∥ < 𝜖 and lim

𝑗→𝐽
∥ �̂� 𝑗 − 𝑞∗∥ < 𝜖. (4.3)

Figure 4.1: Example of navigation and of a convergent trajectory towards the
separative line. S1 is marked in red while S2 in blue.

4.3 AGENT’S DYNAMICS

The agent is described by a discrete-time first order integrator state space
model, given by the following motion’s equations:

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑇 × 𝑣1(𝑘)
𝑧(𝑘 + 1) = 𝑧(𝑘) + 𝑇 × 𝑣2(𝑘).

(4.4)
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We also make use of another pseudo-state component, 𝜃, defined as:

𝜃(𝑘 + 1) = arctan
(
𝑧(𝑘 + 1) − 𝑧(𝑘)
𝑥(𝑘 + 1) − 𝑥(𝑘)

)
. (4.5)

We can re-write the equations in a more compact way, that is in the state space
model, call it Σ:

𝜁(𝑘 + 1) = 𝐴𝜁(𝑘) + 𝐵v(𝑘) + 𝑓 (x(𝑘 + 1), x(𝑘)), (4.6)

where

𝜁(𝑘 + 1) =

𝑥(𝑘 + 1)
𝑧(𝑘 + 1)
𝜃(𝑘 + 1)

 , v(𝑘) =
[
𝑣1(𝑘)
𝑣2(𝑘)

]
(4.7)

𝐴 =


1 0 0
0 1 0
0 0 0

 , 𝐵 =


𝑇 0
0 𝑇

0 0

 , (4.8)

and, finally,

𝑓 (x(𝑘 + 1), x(𝑘)) =


0
0

arctan( 𝑧(𝑘+1)−𝑧(𝑘)
𝑥(𝑘+1)−𝑥(𝑘))

 =


0
0

arctan(𝑣2(𝑘)
𝑣1(𝑘))

 . (4.9)

The third component of the state, 𝜃(𝑘), indicates the direction of the agent at
instant 𝑘, and can vary between [− 𝑝𝑖2 ,+ 𝑝𝑖2 ]. Its dynamics is clearly non linear, as
is the composition of two non linear functions.
We spend some words about such function:

𝑧 = arctan
( 𝑦
𝑥

)
, (4.10)

that is the function representing the direction of the agent.
Such a function has as domain

𝒟 =
{(𝑥, 𝑦) ∈ ℛ2 |𝑥 ≠ 0

}
, (4.11)

and as range,
𝒞 = {(𝑥, 𝑦)| − 𝜋

2
≤ 𝑥 ≤ 𝜋

2
∧ −𝜋

2
≤ 𝑦 ≤ 𝜋

2
}. (4.12)
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Therefore we cannot impose null movement along the 𝑥 coordinate.
It can be also useful to visualize the 3𝐷 plot of this function, as we will want
to manipulate the inputs, namely the velocities, to achieve a desired direction
target:

Figure 4.2: Arctangent function.

The function is non-convex, so non optimal local minimum could arise when a
desired theta target will be searched.
However, also for limited velocities, the fact that is the ratio between them that
is fed to the arctan(·) function allows to easily span all the angles between − 𝑝𝑖2
and + 𝑝𝑖2 .

In addition to that, the agent canmeasure at each iteration the label of the sample
point where it is laying on in that instant, that is:

𝑦(𝑘) = sign (ℎ(x(k)) , (4.13)

where ℎ(·) is a linear or non linear function (in this chapter is linear). Depending
on the measured label, the agent is going to take a decision on where to move at
the next iteration. The inputs are the velocities fed to the system and they have
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a common constraint, caused by the finite power of the actuators, that is:

∥v(𝑘)∥ ≤ 𝑣𝑚𝑎𝑥 . (4.14)

we also suppose that they are not changing too abruptly, meaning that the ac-
celerations are not too large, as this is in practice infeasible. To solve this issue,
we could recur to a second order integrator or we can set some constraints be-
tween two consecutive velocities, imposing that their difference is not too large
in norm. So, in order to keep the state space limited in size, we do not use a
second integrator but we impose a constraint on the variation of the velocities,
i.e.: [

|𝑣1(𝑘 + 1) − 𝑣1(𝑘)|
|𝑣2(𝑘 + 1) − 𝑣2(𝑘)|

]
≤

[
Δ𝑣𝑚𝑎𝑥
Δ𝑣𝑚𝑎𝑥

]
. (4.15)

This allows to approximate the acceleration as very small numbers,given the fact
that:

𝑎1(𝑘 + 1) = 𝑣1(𝑘 + 1) − 𝑣1(𝑘)
𝑇

. (4.16)

The single integrator with 2 independent inputs is a very common reachable
system, though, the addition of the third state component as in 4.4, makes aris-
ing a question:

Is the system reachable?
Despite the system being non linear, we notice that the dynamics of the third
state component does not depend on the previous state (as the last row of 𝐴 is a
null vector). So, as for the reachability of the last state component, it is enough
to check if any state is not reachable by the control input just by inverting Eq.
4.9. Moreover, since the first two state components are independent from the
last one, the intersection of the reachable states of the subsystem made by these
two components and the reachable state of the last one is the overall reachable
set.
Thus, by recalling the reachability theory in Appendix 8.5.1, it is possible to find
out a counterexample where, given a specific target final state, we are not able
to reach it from any initial state.
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4.3. AGENT’S DYNAMICS

Let:

𝜁(�̄�) =

𝑥(�̄�)
𝑧(�̄�)
𝜃(�̄�)

 , (4.17)

this implies that:
𝑣2 = 𝑣1 tan(𝜃(�̄�)), (4.18)

where, for simplicity, we call tan(𝜃(�̄�)) = 𝑐.
Then, we can ignore the third state component, as does not depend on its previ-
ous state andwe assume it to be reachable just by properly varying the velocities,
and we can rewrite the state space model for the first two components in a dif-
ferent way, incorporating the constraint of Eq. 4.18, call it Σ𝑐 , as follows:

x(�̄�) = 𝐴𝑐x(�̄� − 1) + 𝐵𝑐𝑣1(�̄� − 1), (4.19)

where, assuming for simplicity 𝑇 = 1 sec,

𝐴𝑐 =

[
1 0
0 1

]
, 𝐵𝑐 =

[
1
𝑐

]
. (4.20)

We compute now the reachability matrix in 𝑘 = 1 steps:

ℛ𝑐(1) ≜ [Bc] =
[

1
𝑐

]
(4.21)

So, it is evident that:
rank (ℛ𝑐) ≠ 2,

for any value of 𝑐.
Hence the system is not reachable in one step!
For more than one steps we have that the input matrix is 𝐵𝑐 just for the last step
while for the others, it holds:

𝐵𝑐1 =

[
1 0
0 1

]
, (4.22)

and so, ignoring the constraints on 𝑣𝑚𝑎𝑥 of Eq. 4.14 and on Δ𝑣𝑚𝑎𝑥 of Eq. 4.15,
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the system is reachable in 2 steps, as:

ℛ𝑐(2) ≜ [𝐵𝑐 , 𝐴𝑐𝐵𝑐1] =
[ [

1
𝑐

]
,

[
1 0
0 1

] ]
. (4.23)

However, we also remember that given a target 𝜃(�̄�), we can reach that direction
if the other two state coordinates are such that 𝑧(�̄�) = 𝑐𝑥(�̄�).
This will be important later on when the proposed solution will be introduced,
where, in fact, only the third state component 𝜃 will be the target, without wor-
rying of the other two.
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4.4 PROPOSED SOLUTION

Here we introduce the proposed solution for the estimation of a separative
line sampling the space with a agent whose dynamics has been described in Sec-
tion 4.3. Herewe state some assumptions, thatmake the problemmore tractable:

• the agent starts from the point 𝑃01 , that is below the other initial point 𝑃02 ,
so it will starts moving in that direction;

• the measurement of the labels is provided by a sensor, that can be viewed
as an oracle;

• no errors on the measurement of the labels occur.

The strategy we adopt is the following. The agent starts moving on the region
S1 towards the point 𝑃02 , on the region S2.
It measures the label 𝑦(𝑘) of the position of the state where it is, with the follow-
ing labelling function:

𝑦(𝑘) = sign (ℎ(x(𝑘))) =

+1, if 𝑧(𝑘) − 𝑚∗𝑥(𝑘) − 𝑞∗ ≥ 0

−1, if 𝑧(𝑘) − 𝑚∗𝑥(𝑘) − 𝑞∗ < 0
(4.24)

To move towards 𝑃02 , also called in Algorithm 2 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 , it solves the following
optimization problem, called 𝑜𝑝𝑡_𝑝𝑟𝑜𝑏𝑙𝑒𝑚_1:

min
u(𝑘)

∥x𝑘+1 − x𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ∥
s.t. x𝑘+1 = 𝐴𝑟x𝑘 + 𝐵𝑟uk

∥u(𝑘)∥ ≤ 𝑣𝑚𝑎𝑥
(4.25)

where 𝐴𝑟 = 𝐴𝑐 and 𝐵𝑟 = 𝐵𝑐1 .
Note 1: In this initial trajectory we do not consider the additional constraint on
the variation on the velocities, as we expect that the agent will move to the target
point with maximum allowed velocity (therefore going straight and with con-
stant velocities) and we can also suppose that the initial velocities are aligned
with the target ones.
Note 2: to solve numerically the optimization problem we use the optimization
routines provided by Scipy, in Python, and in particular its 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(·) func-
tion.
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As soon as the agent measures a position in which the label is on the region
S2, it turns to the right, namely it imposes a 𝜃∗(0) = −𝑝𝑖/2, since the two initial
points are on the left part of the considered space environment, and decreases
the direction at each time steps of some degrees, as max as the constraints on
the velocities allow so, with the objective of crossing again the line by sampling
a new point on the region S1.
To find the next states, it solves the following optimization problem, where 𝜃∗ is
the true theta, called 𝑜𝑝𝑡_𝑝𝑟𝑜𝑏𝑙𝑒𝑚_2:

min
u(𝑘)

∥𝜃𝑘+1 − 𝜃∗(𝑔)∥
s.t. x𝑘+1 = 𝐴𝑟x𝑘 + 𝐵𝑟uk

∥u(𝑘)∥ ≤ 𝑣𝑚𝑎𝑥
|𝑢1(𝑘) − 𝑢1(𝑘 − 1)| ≤ Δ𝑣𝑚𝑎𝑥

|𝑢2(𝑘) − 𝑢2(𝑘 − 1)| ≤ Δ𝑣𝑚𝑎𝑥

(4.26)

Once the agent realizes that it has crossed the line, it makes a first rough estimate
of the range of directionswhere the line can be. We take the four points that have
been sampled immediately after and later the crossing of the line, and we call
them respectively, 𝑛1, 𝑛2, 𝑛3 and 𝑛4, as depicted in Figure 4.3. Therefore we
know that the true angular coefficient 𝑚∗ is such that 𝑚∗ ∈ [𝑚𝑚𝑖𝑛 , 𝑚𝑚𝑎𝑥], where:

𝑚𝑚𝑖𝑛 =
𝑧𝑛2 − 𝑧𝑛4

𝑥𝑛2 − 𝑥𝑛4

and 𝑚𝑚𝑎𝑥 =
𝑧𝑛1 − 𝑧𝑛3

𝑥𝑛1 − 𝑥𝑛3

, (4.27)

or in terms of 𝜃∗, such that 𝜃∗ ∈ [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥], where:

𝜃𝑚𝑖𝑛 = arctan(𝑚𝑚𝑖𝑛) and 𝜃𝑚𝑎𝑥 = arctan(𝑚𝑚𝑎𝑥). (4.28)
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Figure 4.3: The 4 𝑛𝑖 trajectory points used to estimated the 𝜃 bounds.

The next step is tomove the agent through somemore states until it crosses again
the line and comes back on the region S2. To do so, we just impose that it turns
its 𝜃 direction towards the maximum amount of slope where the line can lay,
but since we want to reduce this range of uncertainty of possible directions, we
sum or subtract the bound by a new variable Δ𝜃. The target 𝜃, call it 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 , is
defined by the following updating rule:

𝜃𝑡𝑎𝑟𝑔𝑒𝑡(𝑔) =

𝜃𝑚𝑎𝑥(𝑔) − Δ𝜃, if 𝑔 > 0 𝑖𝑠 𝑜𝑑𝑑

𝜃𝑚𝑖𝑛(𝑔) + Δ𝜃, if 𝑔 > 0 𝑖𝑠 𝑒𝑣𝑒𝑛
(4.29)

where 𝑔 = 0, 1, . . . , 𝐺 is the numbered period that goes over the consecutive
points of the trajectory of the agent on the same region, and 𝑔 = 0 for the very
first initial arc, meaning the one going from 𝑛2 to 𝑛3 on S2. 𝐺 is instead the last
period, meaning that we considered the agent to have reached convergence in
such a time slot.
Notice that, as pointed out in Section 4.3, requiring that the agent reaches the in-
clination given by 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 is possible if we do not care about the other two states
components, as in fact we do.
To guarantee that the agent crosses the line, since it might reach the target 𝜃 di-
rection before of crossing the line, we then keep feeding the agent with the same
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velocities, so that it keeps moving, along the same direction, until it measures a
different label. After this step, two things can happen:

• either the agent observes a different label, meaning that it has crossed
the margin. In this case, we iterate the previous procedure, by updating
𝜃𝑚𝑖𝑛(𝑔) and 𝜃𝑚𝑎𝑥(𝑔) and afterwards 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ;

• or the agent does not sample a different label anymore, meaning that the
true direction, 𝜃∗, was between the current 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ±Δ𝜃, where
we pick either + if we are in a period where 𝑔 is odd (i.e. we are below the
line andwe had decreased toomuch the upper bound 𝜃𝑚𝑎𝑥), or− if instead
𝑔 is even (i.e. we are above the line and we had decreased too much the
lower bound 𝜃𝑚𝑖𝑛). This is also the terminal criterion, meaning that we
have found 𝐺.

Therefore, after the agent has turned right in the very first turn and we have
reached again the region S1, we adopt, for 𝑔 ≥ 2 (since for 𝑔 = 1 we just initialize
the bounds 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 as in Equation (4.28) and we compute 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 as in
Equation (4.29), the following update rules for the bounds of 𝜃 and for 𝜃𝑡𝑎𝑟𝑔𝑒𝑡
any time the agent changes label:

1. we update 𝑛1, 𝑛2, 𝑛3 and 𝑛4 so that 𝑛1 is the point on the lower left part, 𝑛2
is the point on the upper left part, 𝑛3 is the point on the upper right part
and 𝑛4 the one on the lower right part, as showed in Figure 4.3;

2. we compute new tentative for the bounds of the slope of the line as in
Equation (4.27), and we accept them, meaning that we update the old one
with these, if they are more restrictive.

3. we add or subtract Δ𝜃, depending on 𝑔;

4. we finally update 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 , as in Equation (4.29).

In order to better describe an algorithmwe need the following functions, whose
implementation in Python can be found in Section 8.11 of Appendix 8:

• the function 𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠( ) (see 8.11, Algorithm 2), that computes the
bounds 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 ;

• the function 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() (see 8.11, Algorithm 2), that given the
bounds on the direction and the current label, returns the target theta to
be reached by the agent, with the additional improvement given by Δ𝜃.
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In other words, we have described the following algorithm, namely Algorithm
2:

Algorithm 2 Line navigation with no errors
Require: 𝑋𝑚𝑎𝑥 = 100,Δ𝜃 = 1,Δ𝑣𝑚𝑎𝑥 = 0.1, 𝑇 = 1, 𝑣𝑚𝑎𝑥 = 2 {Can be set differently}
𝑔 ← 0, 𝑘 ← 0, 𝑃(𝑘) ← 𝑃01 , 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑃02 , 𝜃(𝑘) ← 𝑁𝑜𝑛𝑒 {𝜃 is not defined for k=0}
𝜁(𝑘) = (x(𝑃(𝑘)), 𝜃(𝑘))
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)) {see Eq. 4.24}
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
while 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_1() {see Eq. 4.25}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
if 𝑦(𝑘) × sign

(
ℎ(x𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 )

)
> 0 then

𝑏𝑟𝑒𝑎𝑘 {We have crossed the margin}
𝑛1 ← x(𝑘 − 1), 𝑛2 ← x(𝑘)
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 do

if 𝑔 ≥ 1 then
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠() {See Eq. 8.11}

𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() {See Eq. 8.11}
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝐹𝑎𝑙𝑠𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1

if 𝑔 ≥ 1 then
𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3

𝑛3 ← x(𝑘 − 1), 𝑛4 ← x(𝑘)
𝑔 ← 𝑔 + 1
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠(), 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡()
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1

𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3 ,
𝑛3 ← x(𝑘), 𝑛4 ← x(𝑘 − 1)
𝑔 ← + = 1

Note 1: set 𝑋𝑚𝑎𝑥 large enough for the algorithm to converge, meaning to reach
𝐺.
Note 2: in the following we call, improperly but for sake of compactness,
𝜃 𝑓 𝑖𝑛 = 𝜃(𝑘), where 𝑘 is the total number of data points, as 𝜃(𝐺).
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The final estimates of �̂� and �̂� can be retrieved as follows:

�̂� =


2𝜃𝐺+Δ𝜃

2 , if 𝐺 > 0 𝑖𝑠 𝑜𝑑𝑑
2𝜃𝐺−Δ𝜃

2 , if 𝐺 > 0 𝑖𝑠 𝑒𝑣𝑒𝑛
,

�̂� = 𝑧3,4𝐺 − tan(�̂�)𝑥3,4𝐺 ,

(4.30)

where 𝑃3,4𝐺 = (𝑥3,4𝐺 , 𝑧3,4𝐺) = 𝑛3𝐺+𝑛4𝐺
2 , 𝜃𝐺 is the last estimated direction, and 𝑛3𝐺

and 𝑛4𝐺 are the last computations of 𝑛3 and 𝑛4.

4.4.1 GUARANTEES ON THE RESULTS/CONVERGENCE PROOF

We prove that Algorithm 2make the agent to converge in 𝜃 (and this implies
its estimation) to a specific interval depending on Δ𝜃, and to estimate in a real-
time fashion the parameter 𝑞, meaning that, although the agent cannot converge
in 𝑞 as it has a residual error in 𝜃, the estimate of 𝑞 is still good and depends on
the distance between 𝑛3𝐺 and 𝑛4𝐺 .

Proposition. (Proof of the convergence) Algorithm 2 makes 𝜃(𝑔) converge to a value
such that:

|𝜃(𝐺) − 𝜃∗ | ≤ 2Δ𝜃. (4.31)

Proof. TheAlgorithm 2decreases the range of variation of the variable 𝜃, namely
{𝜃𝑚𝑖𝑛(𝑔)}𝑔=1,2,...,𝐺 is an increasing sequence whereas {𝜃𝑚𝑎𝑥(𝑔)}𝑔=1,2,...,𝐺 is de-
creasing. Thus, by the ”Sandwich theorem” (or, in italian, ”Carabinieri theo-
rem”), the range of 𝜃(𝐺) is such that 𝜃(𝐺) ∈ [𝜃𝑚𝑖𝑛(𝐺), 𝜃𝑚𝑖𝑛(𝐺)]. In fact, the limit
of the two sequences are respectively 𝜃𝑚𝑎𝑥(𝐺) and 𝜃𝑚𝑖𝑛(𝐺) and hence 𝜃(𝐺) is
shrunk between them.
Moreover, by construction, also 𝜃∗ belongs to such an interval, whose width is
2Δ𝜃, and so |𝜃(𝐺) − 𝜃∗ | ≤ 2Δ𝜃.

We can also say something more, namely that:

|𝜃(𝐺) − 𝜃∗ | ≤ Δ𝜃 (4.32)

if we are not in the unlucky casewhere 𝜃∗ is between 𝜃𝑚𝑖𝑛(𝑔) and 𝜃𝑚𝑎𝑥(𝑔) for any
𝑔 = 0, 1, . . . , 𝐺, as in this case we need for all the 𝐺 periods given by Proposition
4.4.2. In fact, in all the other cases, the final period 𝐺 is achieved whenever

31



4.4. PROPOSED SOLUTION

the improvement described by Eq. 4.29 is such that 𝜃∗ is between 𝜃𝑚𝑖𝑛(𝐺) and
𝜃𝑚𝑖𝑛(𝐺− 1) if we are above the line, or is between 𝜃𝑚𝑎𝑥(𝐺) and 𝜃𝑚𝑎𝑥(𝐺− 1) if we
are below the line. Hence, |𝜃(𝐺) − 𝜃∗ | ≤ Δ𝜃. □

Thus, choosing Δ𝜃 small implies to obtain a final error on the slope of the line
small in turn. However, it also holds that the smaller Δ𝜃, the larger the total
number of periods 𝐺, as discussed in Section 4.4.2.

4.4.2 RATE OF CONVERGENCE

We can derive an upper bound on the maximum number of periods 𝐺 nec-
essary to reach a convergence.

Proposition. 𝐺 is upper bounded by

𝐺 ≤ 2
(
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

Δ𝜃

)
. (4.33)

Proof. We consider the worst case, namely the one where two assumptions hold:

1. the updating of the 𝑛1, 𝑛2, 𝑛3 and 𝑛4 does not give any improving on the
estimates;

2. the initial bounds of the true theta, 𝜃, i.e. [𝜃𝑚𝑖𝑛(1), 𝜃𝑚𝑎𝑥(1)] are such that
𝜃 = 𝜃𝑚𝑖𝑛(1)+𝜃𝑚𝑎𝑥(1)

2 .

At each period iteration 𝑔, we improve the estimate of either 𝜃𝑚𝑖𝑛 or 𝜃𝑚𝑎𝑥 of
Δ𝜃, and every two iterations we improve both of them. So, if the true 𝜃 is the
average of the two initial bounds, we need 𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

Δ𝜃 for one side and 𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛
Δ𝜃

for the other (since the agent moves zigzagging). Since we also know that for
𝜃∗(𝑔 = 1) = 𝜃𝑚𝑎𝑥 − Δ𝜃, the very worst case is when the first assumption holds
but in the second one 𝜃𝑚𝑖𝑛(1)+𝜃𝑚𝑎𝑥(1)

2 − Δ𝜃 ≤ 𝜃 ≤ 𝜃𝑚𝑖𝑛(1)+𝜃𝑚𝑎𝑥(1)
2 . □

Note: Proposition 4.4.2means thatAlgorithm2 converges in atmost 2
(
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

Δ𝜃

)
periods.
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4.4.3 ACCURACY OF THE ESTIMATE OF THE INTERCEPT PARAMETER

As far as the parameter 𝑞, we cannot say that it converges as in the sense
of Eq. 4.2, as in fact it does not. Indeed, Algorithm 2 just cares of 𝜃 and if we
have a final error in 𝜃, even if it is small (as small as the interval 4.32 allows),
this small error may lead to move the agent quite far from the line if we look in
long-distance terms, and so the intercept with the 𝑥 axis at 𝑗 = +∞, namely 𝑞∞,
may be very different from the actual one.
However we can obtain a good estimate �̂� not by looking at the final point of the
agent but considering �̂� as in Eq. 4.30 (estimating it in correspondence of the last
change of side 𝐺), namely we can obtain convergence as in the sense of Eq. 4.3.
We try to find the residual error of �̂�; from Eq. 4.30, the point

(
𝑥3,4𝐺 , 𝑧3,4𝐺

)
=

𝑛3𝐺+𝑛4𝐺
2 deviates from the point belonging to the true line and intercepting the

line between 𝑛3𝐺 and 𝑛4𝐺 , call it
(
𝑥∗3,4𝐺 , 𝑧

∗
3,4𝐺

)
, of a quantity

(
�̃�3,4𝐺 , �̃�3,4𝐺

)
such

that: (
𝑥3,4𝐺 , 𝑧3,4𝐺

)
=

(
𝑥∗3,4𝐺 + �̃�3,4𝐺 , 𝑧

∗
3,4𝐺 + �̃�3,4𝐺

)
. (4.34)

At the same time, also �̂� is affected by some error, as �̂� does. Hence, we write:

�̂� = 𝑚∗ + �̃�. (4.35)

Thus, knowing that �̂� = 𝑞∗ + �̃�:

�̃� = �̂� − 𝑞∗ = 𝑧3,4𝐺 − �̂�𝑥3,4𝐺 −
(
𝑧∗3,4𝐺 − 𝑚∗𝑥∗3,4𝐺

)
= 𝑧∗3,4𝐺 + �̃�3,4𝐺 − (𝑚∗ + �̃�)

(
𝑥∗3,4𝐺 + �̃�3,4𝐺

)
−

(
𝑧∗3,4𝐺 − 𝑚∗𝑥∗3,4𝐺

)
= 𝑧∗3,4𝐺 + �̃�3,4𝐺 − (𝑚∗ + �̃�)

(
𝑥∗3,4𝐺 + �̃�3,4𝐺

)
− 𝑧∗3,4𝐺 + 𝑚∗𝑥∗3,4𝐺

= �̃�3,4𝐺 − 𝑚∗𝑥∗3,4𝐺 − 𝑚∗�̃�3,4𝐺 − �̃�𝑥∗3,4𝐺 − �̃��̃�3,4𝐺 + 𝑚∗𝑥∗3,4𝐺
= �̃�3,4𝐺 − 𝑚∗�̃�3,4𝐺 − �̃�𝑥∗3,4𝐺 − �̃��̃�3,4𝐺 .

(4.36)

Now, given the fact that the error in 𝑚 is the result of the propagation of the
error in 𝜃 through the tangent function, we can find that, if �̂� ∈ 𝜃∗ ± �̃�, then the
error in �̂� = tan �̂� is given by:[

𝑑
𝑑𝜃

tan(𝜃)
]
�̂�

�̃� =
�̃�

cos(�̂�)2 =
Δ𝜃

cos(�̂�)2 . (4.37)
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This expression remains small as long as 𝜃 does not approach ±𝜋
2 . Indeed, Δ𝜃 is

in general chosen small. Hence, if �̃� is small as much as we can, Eq. 4.36 yields:

�̃� = �̃�3,4𝐺 − 𝑚∗�̃�3,4𝐺 , (4.38)

and so the error in �̂� only depends on the error of the point
(
𝑥3,4𝐺 , 𝑧3,4𝐺

)
, that

can be at most equal to 𝑑(𝑛3𝐺 ,𝑛4𝐺 )
2 . Hence to have a good estimate of 𝑞, we can just

impose a small sampling time 𝑇, or if it is fixed, small velocities, to make sure
that the distance between two consecutive points is close enough.

Note: the analysis on the propagation of the error from 𝜃 to its 𝑚 has been com-
puted in according to Linear Uncertainty Propagation, (see Appendix 8.9). It
suggests us to be careful whenever the line to be estimated approaches slopes
with 𝜃 ≈ ±𝜋

2 , limiting the size of Δ𝜃 in such cases.

4.5 SIMULATIONS AND RESULTS

In Figure 4.4, an example of the simulation of Algorithm 2, with a max ve-
locity and a sampling time quite large, in order to also show the transient part,
because otherwise the convergence rate is quite fast and does not allow to see in
a proper way the oscillations of the trajectory around the line. The simulation’s
parameters for the agent’s dynamics have been chosen as:

𝑣𝑚𝑎𝑥 = 2 m s−1 , 𝑇 = 1 s , Δ𝜃 = 1◦ , Δ𝑣 = 0.5 m s−1. (4.39)

The resulted trajectory approaches the line and it does so very fast, since the
distance between consecutive points is short and hence the estimation of the
bounds for𝑚 are close by. Moreover, the fact that no errors in themeasurements
of the labels are present ease the task.

We also consider a Monte Carlo approach to understand the behaviour of the
error of the estimates of the simulation of Algorithm 2.
We run 𝑛 = 100 simulations varying the angle of the line, 𝜃, from [−70◦, 70◦],
adding at each simulation an increment of the angle of 70◦−(−70◦)

𝑛 = 1.4◦.
The initial two given points have been kept fixed in a location such that all the
𝑛 = 100 different lines are between them. Such locations are: 𝑃01 = (2, 10), 𝑃02 =

(5, 85).
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Figure 4.4: Estimate of a line by using Algorithm 2.

The histograms of the errors of the estimates of the parameters 𝜃 and 𝑞, namely
𝑒𝑟𝑟𝜃 and 𝑒𝑟𝑟𝑞 are presented below:

Figure 4.5: Histograms of the parameters’ errors 𝑚 and 𝑞.

In the table 4.1 we also report the average of the absolute values of the errors,
namely:

𝑎𝑣𝑔𝑒𝑟𝑟𝜃 =
1
𝑛

𝑛∑
𝑖=1
|𝑒𝑟𝑟𝜃𝑖 | and 𝑎𝑣𝑔𝑒𝑟𝑟𝑞 = 1

𝑛

𝑛∑
𝑖=1

��𝑒𝑟𝑟𝑞𝑖 �� , (4.40)
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and the averages of the relative total errors, namely:

𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝜃 =
1
𝑛

𝑛∑
𝑖=1

���� 𝑒𝑟𝑟𝜃𝑖𝜃𝑡𝑟𝑢𝑒𝑖

���� and 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝑞 =
1
𝑛

𝑛∑
𝑖=1

���� 𝑒𝑟𝑟𝑞𝑖𝑞𝑡𝑟𝑢𝑒𝑖

���� . (4.41)

The results showhow theAlgorithm 2workswell achieving good performances

𝑎𝑣𝑔𝑒𝑟𝑟𝜃 [°] 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝜃 [°] 𝑎𝑣𝑔𝑒𝑟𝑟𝑞 [m] 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝑞 [m]
0.350 0.021 0.208 0.004

Table 4.1: Empirical errors.

in terms of final estimated parameters. The maximum errors for �̂� are in fact
inside the maximum interval prefixed by the setup of the Algorithm, namely
[−Δ𝜃+𝜃∗,Δ𝜃+𝜃∗], or, in other terms, their errors are always smaller, in absolute
value, than Δ𝜃 = 1◦.
Moreover, arguments of Section 4.4.3 hold as the estimate �̂� is in general very
accurate.

Note: The choice on the sampling time, maximum velocities can influence the
accuracy of the results, of course, as the agent may not have reached converge
when the termination criterion has been reached. So, the termination criterion
must be chosen according to the choice of the other parameters.
Final note: The proposed solution, from a control point of view, can be seen as
an event-triggered control (see [6]). The direction theta is the only variable to be
controlled, where the event that triggers a new control on theta is the observation
of a different label, or of a series of consecutive labels. Otherwise, there is still
a control that feeds our agents but it follows a constant control law. Moving
the direction of the agent implies moving also its physical position. But is this
enough to ensure that the agent track the separative line? The answer, as proved
in this chapter is yes, as the possible controls on the direction of the agent make
it to move oscillating around the separative line between two bounds on 𝜃 that
are shrinking as long as the agents moves. This makes the agent approaching
the line, namely reducing its physical distance from it, even though we have not
knowledge on the actual position of this line to be tracked.
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5
Identification of linear classifiers with

noisy data

5.1 INTRO

In this chapter, the identification of linear classifiers with noisy data is inves-
tigated. In particular we want our agent to collect data navigating around the
separative line, in order to get an estimate of the line. However, the collected
data are no longer ideal, namelywithout errors, but the label have some random
errors, thus the problem of following the separative line and get a good estimate
becomes more involved. Three algorithms are developed in this chapter to solve
the problem, with the relative theoretical and simulated results.

5.2 NOISE ON THE LABELS MEASUREMENTS

In practice, the measurements that the sensors of an agent is provided, are
influenced by some errors, and this is often unavoidable. Therefore, the exten-
sion of our setup to a more practical one is needed.
In our environment errors can happen for two main reasons:

• random uniformly distributed errors happen as all the electronic, optic,
vision devices or sensors are not perfect;

• the distance from the separative margin is very short and so the accuracy
of themeasurements is not perfect; in fact sensors can be analog filterswith
a cutting frequency that is never a perfect classifier.

37



5.3. UNIFORM DISTRIBUTED ERRORS

Therefore we can analyze these two cases separately, by using two different type
of noise error models.

5.3 UNIFORM DISTRIBUTED ERRORS

We consider the following noise error measurement model:

𝑦(𝑘) =

+ sign(ℎ(x(𝑘)), if 𝜖 ≥ 𝑒 , where 𝜖 ∼ 𝒰(0 , 1)
− sign(ℎ(x(𝑘)), otherwise

, (5.1)

where 𝑒 is the probability of measuring a wrong label, called error probability,
that in the Appendix Section 8.6.3 and in general in the literature is referred as
𝑞, but since such symbol has been already used for the intercept of the line, we
rename it as 𝑒.
We can also rewrite such error model as follows:

𝑦(𝑘) =

True label, if 𝜖 ≥ 𝑒 , where 𝜖 ∼ 𝒰(0 , 1)
Fake label, otherwise

, (5.2)

that better shows the 0-1 (or on/off) relation between the value of 𝜖 and the final
measurement 𝑦(𝑘).
In our analysis, we consider error probabilities that span from 0.1 to 0.3.

Figure 5.1: 100 sampled data points with a uniform noise error on the labelling,
𝑒 = 0.1.
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5.3.1 PROBLEM FORMULATION

The problem formulation is the same as in Section 4.2, so we aim make the
agent to converge to the line with a finite error, thus estimating it in real-time.
The only difference is that, in this new considered scenario, the measurements
of the labels are done adopting Eq. 5.1, namely with the presence of uniform
distributed noise.

5.3.2 PROPOSED SOLUTION

Since now themeasurement outcome is a Bernoulli randomvariable (see Sec-
tion 8.6.3, where the event 𝑇𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙 can be meant as 1 and 𝐹𝑎𝑘𝑒 𝑙𝑎𝑏𝑒𝑙 can be
meant as 0, we know that the expected value and the variance of a measurement
are:

E[𝑦(𝑘)] = Pr(𝑦(𝑘) = 1) · 1 + Pr(𝑦(𝑘) = 0) · 0 = 𝑝 · 1 + 𝑒 · 0 = 𝑝,

Var[𝑦(𝑘)] = E
[
𝑦(𝑘)2] − E[𝑦(𝑘)]2 = E[𝑦(𝑘)] − E[𝑦(𝑘)]2

= 𝑝 − 𝑝2 = 𝑝(1 − 𝑝) = 𝑝𝑒, .

(5.3)

To understand what is the expected value and the variance of measuring two
consecutive data points, three consecutive data points, and so on and so forth,
we have to think of these events as Binomial random variables (see 8.6.4). So,
let’s consider for instance 𝑒 = 0.1 and 𝑒 = 0.3, 𝑛 = 2 and 𝑛 = 3. The expected
values are:

E𝑒=0.1[𝑦(𝑘), 𝑦(𝑘 + 1)] = 𝑛 · 𝑝 = 2 · 0.9 = 1.8,

E𝑒=0.3[𝑦(𝑘), 𝑦(𝑘 + 1)] = 𝑛 · 𝑝 = 2 · 0.7 = 1.4,

E𝑒=0.1[𝑦(𝑘), 𝑦(𝑘 + 1), 𝑦(𝑘 + 2)] = 𝑛 · 𝑝 = 3 · 0.9 = 2.7,

E𝑒=0.3[𝑦(𝑘), 𝑦(𝑘 + 1), 𝑦(𝑘 + 2)] = 𝑛 · 𝑝 = 3 · 0.7 = 2.1,

(5.4)
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whereas, the probabilities of getting 𝑛 = 2 and 𝑛 = 3 consecutive errors are:

Pr𝑒=0.1 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0) =
(
𝑛

𝑡

)
𝑝𝑡(1 − 𝑝)𝑛−𝑡 =

(
2
0

)
0.90(0.1)2 = 0.01,

Pr𝑒=0.1 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0, 𝑦(𝑘 + 2) = 0) =
(

3
0

)
0.90(0.1)3 = 0.001,

Pr𝑒=0.3 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0) =
(

2
0

)
0.70(0.3)2 = 0.09,

Pr𝑒=0.3 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0, 𝑦(𝑘 + 2) = 0) =
(

3
0

)
0.70(0.3)3 = 0.027.

(5.5)

Interesting are also the probabilities of getting 𝑛 = 2 and 𝑛 = 3 consecutive
success outcomes:

Pr𝑒=0.1 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0) =
(
𝑛

𝑡

)
𝑝𝑡(1 − 𝑝)𝑛−𝑡 =

(
2
2

)
0.92(0.1)0 = 0.81,

Pr𝑒=0.1 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0, 𝑦(𝑘 + 2) = 0) =
(

3
3

)
0.93(0.1)0 = 0.729,

Pr𝑒=0.3 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0) =
(

2
2

)
0.72(0.3)0 = 0.49,

Pr𝑒=0.3 (𝑦(𝑘) = 0, 𝑦(𝑘 + 1) = 0, 𝑦(𝑘 + 2) = 0) =
(

3
3

)
0.73(0.3)0 = 0.343.

(5.6)

Therefore, we notice that, given any tuple or triple of consecutive data points
the probabilities of measuring all errors or all success outcomes are given by the
previous two equations.
Now, a strategy that can arise from these simple results to move the agent on the
space is the following: we can move it from the first initial given point, to the
second one, and during the path we can observe some different labelled data
points, but we say that we trust a different label only if there have been at least
𝑛 consecutive data points with same label, and just in that case we update the
optimization problem to move the agent to the next state, otherwise we keep
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following the same optimization problem ignoring the different label data point
that we assume is not reliable.
The reason for this strategy is as follows: by observing Eq. 5.5 and Eq. 5.6 the
probability of measuring 𝑛 consecutive mislabelled data, that could lead to a
failure in the case this would happen far from the separative line, is very low,
whereas the probability of measuring 𝑛 consecutive true labels is quite large, so
that we can have a reasonable trigger on when we need to update the optimiza-
tion problem, namely we need to change 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 .
However, we also notice that the probability of measuring 𝑛 consecutive true
labels decreases as well as 𝑛 increases, so that we cannot use to many consecu-
tive samples to decree whether the margin has been crossed or not, because this
would imply to move too far away from the line.
Summing up, we formalize here the rules that the new algorithm to navigate
and estimate a line with uniform distributed errors, named Algorithm 3, must
obey:

1. we use 𝑛 = 4 consecutive points to establish whether the margin has been
crossed. In this way, we ensure to have a high likely probability that the
estimate of the two bounds 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 is good enough;

2. in the first crossing, we save as 𝑛1 the last but one data point sampled with
label +1, namely on the side below the curve, of the sequence of at least
𝑛 consecutive points with label +1 (this because, if we saved the last one,
there might be the possibility that some errors around the points 𝑛1, 𝑛2, 𝑛3
and 𝑛4 would make the bounds wrong);

3. in the other crossings, 𝑔 ≥ 1 and if we are on the sidewith label−1, namely
above the line in our setting, we save as 𝑛3 the last but one data point sam-
ple with label −1, namely on the side below the curve, of the sequence of
at least 𝑛 consecutive points with label −1;

4. in the other crossings, 𝑔 ≥ 1 and if we are on the sidewith label+1, namely
below the line in our setting, we save as 𝑛4 the last but one data point
sample with label +1, namely on the side above the curve, of the sequence
of at least 𝑛 consecutive points with label +1.

The other steps we follow are the same of Algorithm 2 but with this new rules
of trust a change in the navigation just when 𝑛 consecutive data points are ob-
served with opposite label from the one we started the previous period.
To describe write down an algorithm, we update or define the following func-
tions:

• 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔( ) (see 8.11, Algorithm 3);
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• 𝑓 𝑖𝑛𝑑_𝑝𝑟𝑒𝑐( ) (see 8.11, Algorithm 3), that finds, in a change of side, the
previous reliable point of the opposite label when we detect 𝑛 consecutive
points, as we cannot take the (𝑘 − 𝑛) − 𝑡ℎ point because some errors might
have occurred;

• 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠() (see 8.11, Algorithm 3);

• 𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠( ) (see 8.11, Algorithm 3), taking into account the conver-
gence achievement;

• 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡( ) (see 8.11, Algorithm 3).
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Thus, we can state the Algorithm 3 as:

Algorithm 3 Line navigation and identification with uniform distributed errors
Require: 𝑋𝑚𝑎𝑥 = 100, Δ𝜃 = 1, Δ𝑣𝑚𝑎𝑥 = 0.1, 𝑇 = 1, 𝑣𝑚𝑎𝑥 = 2, 𝑛 = 4 {Can be set differently}
𝑔 ← 0, 𝑘 ← 0, 𝑃(𝑘) ← 𝑃01 , 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑃02 , 𝜃(𝑘) ← 𝑁𝑜𝑛𝑒 {𝜃 is not defined for k=0}
𝜁(𝑘) = (𝑃(𝑘), 𝜃(𝑘))
𝑦(𝑘) ← 𝑦𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
while 𝑓 𝑙𝑎𝑔+ do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_1() {see Eq. 4.25}
𝑘 ← 𝑘 + 1
𝜁(𝑘) ← 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)){see Eq. 5.1 or code snippet 8.11}
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 ← 𝑇𝑟𝑢𝑒
for 𝑖 = 0; 𝑖+ = 1; 𝑖 < 𝑛 do

if 𝑦(𝑘 − 𝑖) × 𝑦𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 < 0 then
𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 ← 𝐹𝑎𝑙𝑠𝑒 {If this flag remains True we have crossed the margin}
𝑏𝑟𝑒𝑎𝑘

𝑓 𝑙𝑎𝑔+ ← 𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘
𝑓 𝑙𝑎𝑔_𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ← 𝐹𝑎𝑙𝑠𝑒 , 𝑓 𝑙𝑎𝑔_𝑖𝑚𝑝𝑟𝑜𝑣 ← 𝐹𝑎𝑙𝑠𝑒
𝑛1 ← 𝑓 𝑖𝑛𝑑_𝑝𝑟𝑒𝑐() {see 8.11}, 𝑛2 ← x(𝑘)
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 do

if 𝑔 ≥ 1 then
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠() {See 8.11}

𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() {See 8.11}
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝐹𝑎𝑙𝑠𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) ← 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠(){see 8.11}

if 𝑚 ≥ 1 then
𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3

𝑛3 ← 𝑓 𝑖𝑛𝑑_𝑝𝑟𝑒𝑐(), 𝑛4 ← x(𝑘)
𝑔 ← 𝑔 + 1
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠(), 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡()
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) ← 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()

𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3 ,
𝑛3 ← x(𝑘), 𝑛4 ← 𝑓 𝑖𝑛𝑑_𝑝𝑟𝑒𝑐()
𝑔 ← 𝑔 + 1

5.3.3 CONVERGENCE/GUARANTEE OF RESULTS

We notice that in this new setup, the fact that the agent converges as in Sec-
tion 4.2 is not anymore a deterministic event but depends on the number of con-
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secutive errors the agent samples during its trajectory. We state here a propo-
sition on the relation between convergence of Algorithm 3, the number of data
points 𝑁 needed to reach the convergence interval [𝜃∗ − Δ𝜃, 𝜃∗ + Δ𝜃] and the
error probability 𝑒, as follows:

Proposition. Let P ∈ R(𝑛+1)×(𝑛+1) be the transition matrix of the absorbing Markov
chain describing the probability of getting 𝑛 = 4 consecutive errors. If Algorithm 3
terminates in 𝑁 data points, then the probability of convergence, meant as in Section 4.2
is:

P(𝑁, 𝑒, 𝑛) = 1 − [1, 0, 0, 0, 0]P𝑁 [0, 0, 0, 0, 1]′ . (5.7)

Proof. For the proof we use Markov chain theory (see Section 8.6.6).
First of all, we claim that once the agent has reached the bounds such that𝜃𝑚𝑎𝑥(𝐺)−
𝜃𝑚𝑖𝑛(𝐺) ≤ 2Δ𝜃, then all the following direction theta targets do not exit the in-
terval. In fact, by construction of the algorithm, the bounds are not updated
anymore once 𝐺 has been reached for the first time.
Hence, if the agent reaches the convergence interval, then it cannot exit it.
After that, we need to prove the Markov reasoning.
To do so, let us define the 5 states 𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4 as:

• 𝑠0 represents the event: 0 error labelling;

• 𝑠1 represents the event: 1 error labelling;

• 𝑠2 represents the event: 2 consecutive error labellings;

• 𝑠3 represents the event: 3 consecutive error labellings;

• 𝑠4 represents the event: 4 consecutive error labellings.
Once the state 𝑠4 has been reached we cannot escape from it: this means it is an
absorbing state. From the perspective of the agent’s trajectory, if it reaches the
absorbing state, its control law on the direction 𝜃 is wrongly triggered (as if it
were in an opposite label’s side) and it starts moving in a wrong direction as in
the example of Figure ??5.5.
The one-step transition probability is 𝑃𝑛,𝑛+1

𝑖 𝑗 = 𝑃𝑖 𝑗 , as the process is stationary
(namely, the probability of going from one state to another is fixed with respect
to time). In our case,

𝑃𝑖 𝑗 = Pr {𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖} =

𝑝, if 𝑋𝑛 = 0, 1, 2, 3 and 𝑋𝑛+1 = 0

𝑒 , if 𝑋𝑛 = 0, 1, 2, 3 and 𝑋𝑛+1 = 𝑋𝑛 + 1

1, if 𝑋𝑛 = 4 and 𝑋𝑛+1 = 𝑋𝑛

, (5.8)
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and, of course, all the other case, have probabilities equal to zero as we already
have in 5.8 that the sum of all the one-step transition probabilities from one state
are equal to 1 (namely the sumof any rowof the relative transitionmatrix is equal
to 1). We draw the graph describing such Markov process:

State 0 State 1 State 2 State 3 State 4e e e e

1p

p

p

p

Figure 5.2: Markov chain of the considered process.

This is an absorbing Markov chain and its transition matrix is:

P =

©«

𝑝 𝑒 0 0 0
𝑝 0 𝑒 0 0
𝑝 0 0 𝑒 0
𝑝 0 0 0 𝑒

0 0 0 0 1

ª®®®®®®®¬
. (5.9)

The probability of measuring 4 consecutive wrong labels in 𝑁 possible data
points with error probability 𝑒 is equal to the probability that, starting from the
state 0, the Markov chain 5.2 ends up in the absorbing state 4 after 𝑁 transitions.
Such probability is given by:

[1, 0, 0, 0, 0]P𝑁 [0, 0, 0, 0, 1]′ . (5.10)

This is explainable with the fact that such probability can be found on the cell of
the matrix P elevated to the 𝑁 (as 𝑁 steps are computed) in the first row and in
the last column (as is the probability of going from the first state of the chain to
the last one). Hence the probability of not measuring these consecutive wrong
labels, that would imply the failure of the Algorithm 3, as we would not have
any guarantee about the estimated bounds and the consecutive 𝜃∗, is:

P(𝑁, 𝑒, 𝑛) = 1 − [1, 0, 0, 0, 0]P𝑁 [0, 0, 0, 0, 1]′ . (5.11)

□
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Remark: this proof tells us the probability of convergence of Algorithm 3 know-
ing, or estimating the number of data points 𝑁 needed to reach the convergence
interval. Such number depends on different factors, as pointed out in Section
5.3.5.

Let’s suppose for instance 𝑁 = 100, 𝑒 = 0.1. Then, the probability of success of
Algorithm 3 (where 𝑛 = 4) is:

P(100, 0.1, 4) = 1 − [1, 0, 0, 0, 0]P100 [0, 0, 0, 0, 1]′

= 1 − [1, 0, 0, 0, 0]

©«

0.9 0.1 0 0 0
0.9 0 0.1 0 0
0.9 0 0 0.1 0
0.9 0 0 0 0.1
0 0 0 0 1

ª®®®®®®®¬

100 

0
0
0
0
1


= 1 − [1, 0, 0, 0, 0]

©«

0.8922 0.08923 0.00892 0.000893 0.0087
0.8914 0.08915 0.00892 0.000892 0.0096
0.8834 0.08835 0.00884 0.000884 0.0185
0.8031 0.08032 0.00803 0.000803 0.1078

0 0 0 0 1

ª®®®®®®®¬



0
0
0
0
1


= 1 − 0.00871 = 0.99129.

(5.12)

If instead, still 𝑁 = 100, 𝑒 = 0.1, but we consider 𝑛 = 3 consecutive errors:

P(100, 0.1, 3) = 1 − [1, 0, 0, 0]P100 [0, 0, 0, 1]′

= 1 − [1, 0, 0, 0]
©«
0.9 0.1 0 0
0.9 0 0.1 0
0.9 0 0 0.1
0 0 0 1

ª®®®®®¬

100

[0, 0, 0, 1]′

= 1 − [1, 0, 0, 0]
©«
0.8245 0.0825 0.0083 0.0848
0.8170 0.0818 0.0082 0.0930
0.7427 0.07434 0.0074 0.1755

0 0 0 1

ª®®®®®¬
[0, 0, 0, 1]′

= 1 − 0.0848 = 0.9152.
(5.13)
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5.3.4 COMMENTS ON THE SUCCESS OF THE ALGORITHM 3 AND ON THE
CHOICE THE SIMULATION’S PARAMETERS

It is useful to analyze the meaning of Proposition 5.3.3 in terms of how to
exploit this result to choose some simulation’s parameters.
We plot the behaviour of the Algorithm 3 in function of the number of data
points 𝑁 with different error probabilities 𝑒 and with different ”trust’s rule”,
namely different amounts of consecutive data points with same label that can
provoke (as in most of the cases happens) the failure of the algorithm. We dis-
play the 4 plots with the following pairs:

𝑛 = 3 and 𝑒 = 0.1, 𝑛 = 4 and 𝑒 = 0.1

𝑛 = 3 and 𝑒 = 0.3, 𝑛 = 4 and 𝑒 = 0.3
(5.14)

and we obtain:

Figure 5.3: Rate of failure of Algorithm 3 with different implementation’s
choices.

It is evident that the more we increase 𝑒 the more is likely our algorithm fails, as
a large error probability leads to toomanymislabelledmeasurements that make
too difficult to understand the side where we are and to make a good enough
policy to navigate along the line.
Moreover, the choice of 𝑛 influence the rate of probability of a failure: the larger
it is, the smaller the probability of getting 𝑛 consecutive mislabellings, and the
larger the number of data points 𝑁 that the agent can collect while still being in
a safe condition in terms of success.
However, on the other hand, we notice that the larger 𝑛, the larger is the range
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created by the two bounds 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 , as the points 𝑛1, 𝑛2, 𝑛3 and 𝑛4

are farther by, leading to an increasing of 𝑁 for reaching the safe interval of
[𝜃∗ − Δ𝜃, 𝜃∗ + Δ𝜃]. This problem is not evident with small 𝑛, like in our choices
of Section 5.3.5, and so, as a general theoretic law, we can say that, for small val-
ues like 3,4,5, the larger 𝑛, the better it is for our purposes.
We also notice that the choice of the sampling time 𝑇, and of the bounds on the
velocities is important and in particular, larger values of them lead to data points
with large distance, and so less data points in a portion of the space, but at the
same time, the total number of points to reach convergence increases in this case
as the updates of the bounds are worse.
A good strategy might be, to use larger velocities and sampling time in the ini-
tial part, where the agent is moving among the two initial given points, and then
speed down and increase the sampling frequency (if allowed, as some agents can
have fixed values), to increase the accuracy of the bounds, paying the price of
enlarging 𝑁 and the probability of incurring into a failure’s condition.
Finally, we report below the number of points allowed to reach convergencewith
the different implementation of 5.14, with a risk of failure of, at most 0.1 to have
a numeric idea of the behaviour of the plots:

𝑛 = 3, 𝑒 = 0.1 𝑛 = 4, 𝑒 = 0.1 𝑛 = 3, 𝑒 = 0.3 𝑛 = 4, 𝑒 = 0.3
117 1171 5 19

Table 5.1: Maximum number of points 𝑁 to reach the safe interval with proba-
bility ≤ 0.1.

5.3.5 SIMULATIONS AND RESULTS

We consider a Monte Carlo approach to understand the behaviour of the
error of the estimates of the simulation of Algorithm 2.
The simulation’s parameters for the agent’s dynamics have been chosen as:

𝑣𝑚𝑎𝑥 = 1 m s−1 , 𝑇 = 0.3 s , Δ𝜃 = 0.5◦ , Δ𝑣 = 0.1 m s−1. (5.15)

We run 100 simulations and we vary the angle of the line, 𝜃, from [−70◦, 70◦],
adding at each simulation an increment of the angle of 70◦−(−70◦)

𝑛 = 1.4◦.
The initial two given points have been kept fixed in a location such that all the
𝑛 = 100 different lines are between them. Such locations are: 𝑃01 = (2, 10), 𝑃02 =
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(5, 85).
An example of a trajectory, that achieved convergence, is the following one:

Figure 5.4: Example of trajectory achieving convergence using Algorithm 3with
3 consecutive points rule. In black the data points that have beenmeasuredwith
wrong labels.

An example, of a trajectory that could not converge, is the following one:

Figure 5.5: Example of trajectory not achieving convergence using Algorithm 3
with 3 consecutive points rule.

The histograms of the errors of the estimates of the parameters 𝑡ℎ𝑒𝑡𝑎 and 𝑞,
namely 𝑒𝑟𝑟𝜃 and 𝑒𝑟𝑟𝑞 are presented below:
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Figure 5.6: Histograms of 100 runs ofAlgorithm 3with 3 consecutive points rule.

We notice how the peaks are around the errors both for 𝜃 and 𝑞 parameters,
meaning that the Algorithm 3 works most of the times.
However some errors are present. In fact, by knowing that the agent with the
chosen simulation’s parameters of Eq. 5.15 and the initial points locations the
agent needs a total number of data points 𝑁 such that 100 ≤ 𝑁 ≤ 300, and we
use just 𝑛 = 3 consecutive points to trust a measurement, the probability of con-
vergence P(𝑁, 𝑒, 𝑛) is, by observing Figure 5.3, such that 0.762 ≤ P(𝑁, 𝑒, 𝑛) ≤
0.9152.
If instead we use the rule of considering 𝑛 = 4 consecutive data points, keeping
all the other simulation’s parameters as before, namely as 5.15, and we repeat
the same 100 experiments, we obtain the following histograms:

Figure 5.7: Histograms of 100 runs ofAlgorithm 3with 4 consecutive points rule.

We notice how the results are better with respect to Fig. 5.6 and the 𝜃 error
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is inside the interval [𝜃𝑡𝑟𝑢𝑒 − Δ𝜃, 𝜃𝑡𝑟𝑢𝑒 + Δ𝜃].
In particular in 100 simulations, there has been just one error, and this is accord-
ing to the probability of failure with such an error probability, namely 𝑒 = 0.1,
and with such consecutive number law’s choice, namely 𝑛 = 4, (see 5.3).
However the estimates of the 𝑞 parameter have some outliers with bigger er-
rors. But this, is nothing unexpected, and, recalling the arguments of Section
4.4.3, can be explained as �̂� now has been estimated taking 𝑛3𝐺 and 𝑛4𝐺 after, at
least 𝑛 consecutive data points with same label, hence augmenting the distance
between them and as a consequence also worsening the estimate of �̂�.
However this could also be resolved by using a smaller sampling time 𝑇 or a
smaller velocities, at the price of having a larger number 𝑁 of data points to
reach convergence.
Otherwise, other estimating techniques may be used, for instance an estimation
of 𝑞 that considers more points, such as a regression approach, at the price of
increase the final computational cost (whose smallness was our goal).
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5.4 GAUSSIAN DISTRIBUTED ERRORS

We extend now our algorithm to estimate and navigating a line in the case
where noise is present on the measurement of the labels. We model the error as
follows:

𝑦(𝑘) = sign(ℎ(x(𝑘)) + 𝜖), where 𝜖 ∼ 𝒩(0 , 𝜎2) . (5.16)

We recall Section 8.6 to a better understanding of the Gaussian distribution.
Since the function ℎ(x(𝑘)) is deterministic, then we have that:

(ℎ(x(𝑘)) + 𝜖) ∼ 𝒩(ℎ(x(𝑘)) , 𝜎2). (5.17)

Figure 5.8: Shape of the error probabilities with a gaussian distributed noise in
the labelling.

Thus, we can see that the probability of an error is proportional to the distance
of the current position from the line. In particular, the larger the distance of the
agent from the line, the lower the probability of get an error from the measure-
ment.
If, for instancewehave a point on the line, the probability of getting amislabelled
observation is maximum and is equal to 0.5, as the 𝑠𝑖𝑔𝑛( ) function has an input
that is a guassian random variable with mean the value of ℎ(x(𝑘)), where x(𝑘) is

52



CHAPTER 5. IDENTIFICATION OF LINEAR CLASSIFIERS WITH NOISY DATA

a point on the line, and since any sample realization from this distribution can
be with probability 0.5 on one side of the bell, and with probability 0.5 on the
other one, in turns this is reflected on the probability of getting either a correct
or wrong label.
This is a concrete modelling of the error as, in practice, a binary decision sensor
commits more errors when the agent is close to the margin, while it does not
commit any error when the agent is far away from it.
The parameter 𝜎2 is the variance of the normal distribution, and of course the
larger it is, the larger is the field where an error can occur.
Below, an image representing the sampling of 150 points whose labelling is sub-
jected to gaussian noise, with 𝜎 = 3.5 m, with some errors:

Figure 5.9: Sampling with gaussian noise labelling, 𝜎 = 3.5 m. In black the
wrong labelled data points.

5.4.1 PROBLEM FORMULATION

For the nature of the noise in this scenario, the convergence of the trajectory
computed by the agent to the separative line seems unfeasible unless we con-
sider a tracking error very large, as large as proportional to the noise’s standard
deviation 𝜎. Hence, the problem formulation is:
To move the agent collecting data points so that eventually is possible to get a
good estimate of the separative curve, whereas navigating around the line and
with a distance from it of less than a certain 𝜖𝜎, namely:

lim
𝑗→∞

��𝑧 𝑗 − 𝑚∗𝑥 𝑗 − 𝑞∗�� ≤ 𝜖𝜎 . (5.18)
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5.4.2 PROPOSED SOLUTION

The solution of Section 4.4, namely the one for the linear case with no error
(ideal), is not feasible in this new setting.
This happens of course because we cannot trust the measurements as before,
because some errors are present. For instance, if we followed the same strategy
of change 𝜃∗ as soon as we detect an opposite label from the previous one, if
this label has been measured wrongly, then we are going far away from the line,
losing track of it.
At the same time, we cannot even use the procedure proposed in Section 5.3.2
in the uniform noise case, as in this new setup the probability of measuring an
error is too large (atmost 0.5) when the sampled points are close to the separative
curve. Therefore, we have to make some modifications.
The most important things to consider are:

1. Firstly, we need to define a new probabilistic-based strategy to consider
the position of the agent enough reliable;

2. Then, we need to redefine an algorithm tomove the agent through the two
sides, in order to make it achieving the tracking of the line;

3. Lastly, we need to understand if we can converge to the true line in the
same or in a different sensewith respect to the type of convergence defined
in Section 4.4.1.

As for the first point we analyze the impact of the errors on the previous proce-
dure. So, let’s consider the probability of performing an error, at iteration 𝑘 and
position x(𝑘) = (𝑥(𝑘), 𝑧(𝑘)):

𝑃(𝑒𝑟𝑟(𝑘)) = 𝑃 (|𝑧(𝑘) − 𝑚𝑥(𝑘) − 𝑞 | < 𝜖) =
= 𝑃 (𝑧(𝑘) − 𝑚𝑥(𝑘) − 𝑞 < 𝜖 | 𝑧(𝑘) − 𝑚𝑥(𝑘) − 𝑞 > 0) +
+ 𝑃 (−𝜖 < 𝑧(𝑘) − 𝑚𝑥(𝑘) − 𝑞 | 𝑧(𝑘) − 𝑚𝑥(𝑘) − 𝑞 < 0) .

(5.19)

From the latter equation is evident that the probability of incur into an error is
as small as the distance from the point x(𝑘) is large.
The probability of performing an error when the point is located at a distance
of 3 standard deviations is about 0.03%, and we approximate this to zero, as
usually done in statistics.
So the strategy is to consider as reliable just themeasurementsmade outside this
range of 3 standard deviations or, as we will see later on, outside a range large
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enough. In fact, often times there are no error way before than being distant 3
standard deviations from the line.

As for the second point, by moving the agent up and down vertically, namely
using as possible 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 just a value between {−𝜋/2,+𝜋/2}, we can claim with
confidence that it is on a specific side only when some consecutive samples are
labeled with same label, meaning that we are far away from the margin.
This claiming is possible because the probability of measure some consecutive
samples with same labels (for instance 5 consecutive wrong samples), given the
fact that we are on a specific side (pointed out by the index ±1), is very low even
in the case we are very close to the margin, as described by the following bound
(that is also very relaxing):

𝑃+1 (𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5) =
= 𝑃+1 (𝑒5 |𝑒4, 𝑒3, 𝑒2, 𝑒1)𝑃+1 (𝑒4 |𝑒3, 𝑒2, 𝑒1)𝑃+1 (𝑒3 |𝑒2, 𝑒1)𝑃+1 (𝑒2 |𝑒1)𝑃+1 (𝑒1)

≤
5∑
𝑖=1

𝑃+1 (𝑒𝑖) ≤ 𝑃+1 (𝑒𝑡𝑟𝑢𝑒)5 ≤ 0.55 = 0.03125

(5.20)

where 𝑒𝑖 is a random variable indicating the probability of point 𝑃𝑖 to measure
a wrong error, +1 indicates that we are on the specific labeled side where the
true label is +1, and 𝑒𝑡𝑟𝑢𝑒 indicates the probability of a point on the true line to
be labelled as an error, and it has maximum probability.
The conditional probability of event 𝑒𝑖 depends of course on 𝑒𝑖−1,𝑖−2,..., as the 𝑒𝑖
depends on the position of the relative point and this point has been reached
also depending on the 𝑒𝑖−1,𝑖−2,..., and this probability is of course less or equal
than the probability that just a single point sampled on the true line is labelled
wrongly, that is equal to 0.5.
However, Eq. 5.20 represents just the error probability of a single set of 5 consec-
utive points. But to understand what is the probability of getting 5 consecutive
errors along the trajectory we need to use the absorbing Markov process de-
scribed in Section 5.3.3, where the variables 𝑝 and 𝑒 are not constant anymore,
but depend on the position of the state they belong to. Hence, we have 𝑝0, 𝑝1,
𝑝2, 𝑝3, 𝑝4 and 𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4. It holds that 𝑝𝑖 = 1 − 𝑒𝑖 .
We can consider the very worst case, namely the case where 𝑝𝑖 = 𝑒𝑖 = 0.5, that
coincides to a situation in which the agent is moving in a portion of space suf-
ficiently small around the separative curve, where the probability of measuring
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an error can be approximated to 0.5. In this case, the error probability of mea-
suring 5 consecutive wrong labels is described by the following curve:

Figure 5.10: Probability of sampling 5 consecutive wrong labels with gaussian
noise in worst case scenario.

It is visible that already with a small number of data points the error probability
is not small. However, this is the worst case scenario and, in any case, we could
also increase the number of consecutive data points to be sampled to change
target direction, as in the gaussian case we do not aim to converge to the true
line but only to navigate it.

As for the third point, considering the type of trajectory we want to impose to
the agent, with a certain oscillating behaviour around the line depending on
the largeness of the variance, on the maximum allowed velocities and on the
sampling time, we guess that we are not able to converge in any sense to the
line more than the a margin that is large 2-3 standard deviations. Therefore, we
can establish an 𝜖𝜎, that accomplishes Eq. 5.18 in the problem 5.4.1, as:

𝜖𝜎 = 3𝜎 + 𝑁𝑐𝑜𝑛𝑠 ∗ 𝑣𝑚𝑎𝑥 . (5.21)

The latter value for 𝜖𝜎 is always good because it considers the worst case in
which the agent measures a wrong label after 3𝜎 (after that we consider the
error probability equal to 0), and so it has to move for other 𝑁𝑐𝑜𝑛𝑠 (the number
of consecutive points as trusting law to change target direction), and it does so,
in the worst case, with maximum allowed velocity (in norm sense, so for any
direction is valid).
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However, it also holds that this oscillating behaviour around the true line can
be exploited to have a faster estimate of a non linear curve, as will be discussed
in section 5.4.3.

In order to write down an algorithm, we re-define or define the functions:

• 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() (see 8.11, Algorithm 4);

• 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠() (see 8.11, Algorithm 4);

• 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔( ) (see 8.11, Algorithm 4).
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Consequently, Algorithm 4 is as follows:

Algorithm 4 Line navigation with gaussian errors
Require: 𝑋𝑚𝑎𝑥 = 100,Δ𝜃 = 1,Δ𝑣𝑚𝑎𝑥 = 0.1, 𝑇 = 1, 𝑣𝑚𝑎𝑥 = 2 {Can be set differently}
𝑔 ← 0, 𝑘 ← 0, 𝑃(𝑘) ← 𝑃01 , 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑃02 , 𝜃(𝑘) ← 𝑁𝑜𝑛𝑒 {𝜃 is not defined for k=0}
𝜁(𝑘) = (x𝑃(𝑘), 𝜃(𝑘))
𝑦(𝑘) ← ℎ(x𝑃(𝑘)) {see Eq. 5.16 or Snippet 8.11}
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
while 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_1() {see Eq. 4.25}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)) {see Eq. 5.16}
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 = 𝑇𝑟𝑢𝑒
for 𝑖 = 0; 𝑖+ = 1; 𝑖 < 5 do

if 𝑦(𝑘 − 𝑖) × ℎ(x𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ) < 0 then
𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 = 𝐹𝑎𝑙𝑠𝑒 {If this flag remains True we have crossed the margin}
𝑏𝑟𝑒𝑎𝑘

if 𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 then
𝑏𝑟𝑒𝑎𝑘 {we have crossed the margin so the loop ends}

𝑛1 ← x(𝑘 − 1), 𝑛2 ← x(𝑘)
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 do

if 𝑚 ≥ 1 then
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠() {See Eq. 8.11}

𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() {See Eq. 8.11}
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝐹𝑎𝑙𝑠𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()

if 𝑔 ≥ 1 then
𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3

𝑛3 ← x(𝑘 − 1), 𝑛4 ← x(𝑘)
𝑔 ← 𝑔 + 1
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠(), 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡()
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘))
𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()

𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3 ,
𝑛3 ← x(𝑘), 𝑛4 ← x(𝑘 − 1)
𝑔 ← 𝑔 + 1
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5.4.3 SIMULATIONS AND RESULTS

In this section the implementation of the solution proposed in 5.4.2 is pre-
sented, where the final estimate of the line has been done by a linear regres-
sion approach. In fact, this seems the best solution among other estimation ap-
proaches, such as linear classification. Linear classification is not well suited
because of the error data points. Indeed, the only data points available to dis-
tinguish the two regions are around the separative curve and hence, even few
errors in the labels, can lead to a very bad estimation of the line by classification.
Instead, the linear regression does not account for the labels but just for the po-
sition of the points, and since they are close to the line, the estimation can be
good. Below, the trajectory of the agent made with the following parameters:

𝑣𝑚𝑎𝑥 = 1 m s−1 , 𝑇 = 0.1 s , Δ𝑣 = 0.2 m s−1, 𝜎 = 3.5 m. (5.22)

Figure 5.11: Trajectorymade by the agent to navigate the linewith gaussian noise
in the measurements of the labels.
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The estimated line has been computed by a linear regression algorithm.

Figure 5.12: Estimation of the line by using a linear regression algorithm on the
trajectory’s data points.

The final estimate has the following parameters:

�̂� = −45.874◦, �̂� = 46.126 m, (5.23)

leading to an error of:

𝑒𝑟𝑟𝜃 = 0.874◦, 𝑒𝑟𝑟𝑞 = 1.126 m. (5.24)

We also run 𝑛 = 100 simulations as in Section 4.5, in order to estimate the ex-
pected value of the error of the parameters.

Figure 5.13: Histograms of the error on the estimates of the parameters 𝜃 and 𝑞,
in 𝑛 = 100 different linear regression estimations.

The results show how the estimates are quite good, with errors around the 0
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values, but with some outliers.
However, the quality of the estimates can be improved by enlarging the trajec-
tory of the agent through a longer horizon, since the uncertainty on the slope and
on the intercept decrease as long as the agent collect more data points around
the true line.

Overall, the estimations of the separative line in the gaussian noise case are
good. However, they required the implementation of a linear regression
algorithm, whose complexity is normally 𝒪(𝑛𝑑2 + 𝑑3), hence increasing the
total computational time with respect the uniform noise case or the ideal
noiseless one.

5.4.4 A DIFFERENT SOLUTION

The solution presented so far for the gaussian noisy model is good but re-
quires an additional part for the estimation that involves all the 𝑁 data points
collected by the trajectory, some of them not so useful as quite far away from the
separative line.
We can slightly modify the approach we have followed in Section 5.4.2, by mak-
ing the following observations:

• the closer the agent navigates to the separative line, the higher the number
of errors;

• if the agent computes a symmetric linear piece-wise trajectorywith respect
to the separative line, recalling that the gaussian noise is also symmetric,
then the expected value of the measurements (that can be only ±1) in that
segment of trajectory is equal to zero;

• if instead the agent computes an asymmetric linear piece-wise trajectory,
then the expected value of the measurements is different from zero, and
depends in particular on the extra data points belonging to the segment
that make it asymmetric.

Considering the discrete random variables given by the measurements of the la-
bels in a piece-wise segment of the trajectory that passes through the separative
line, say {𝑦𝑖}, where 𝑖 ∈ [1, 𝐼], and recalling the fact that every single measure-
ment is a function of a random variable so that:

𝑦𝑖 = 𝑔(𝑋𝑖), 𝑋𝑖 ∼ 𝒩 (
𝑧𝑖 − 𝑚𝑥𝑖 − 𝑞, 𝜎2) , 𝑔(·) = 𝑠𝑔𝑛(·), (5.25)
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the expected value of the sum of the 𝐼 outcomes is (see [1]):

E

[
𝐼∑
𝑖=1

𝑦𝑖

]
=

𝐼∑
𝑖=1
E [𝑦𝑖] , (5.26)

assuming the data points independent. But then we know that, in general, the
piece-wise segment is not symmetric with respect to the separative line, so:

E

[
𝐼∑
𝑖=1

𝑦𝑖

]
= 𝑐. (5.27)

Since the segment passes through the separative line, there is a symmetric part,
made of 2𝐼 data points such that:

E

[
2𝐼∑
𝑖=1

�̄� 𝑖

]
=

[
𝐼∑
𝑖=1
(+1)𝑃(�̄� 𝑖 > 0) +

𝐼∑
𝑖=1
(−1)𝑃(�̄� 𝑖 < 0)

]
+[

2𝐼∑
𝑖=𝐼

(−1)𝑃(�̄� 𝑖 < 0) +
2𝐼∑
𝑖=𝐼

(+1)𝑃(�̄� 𝑖 > 0)
]
= 0,

(5.28)

where 𝑃(𝑋𝑖 > 0) is the probability that the continuous gaussian random vari-
able 𝑋𝑖 (see 8.53) is bigger than zero and it can be obtained by the cumulative
distributive function, that can be obtained by integrating the probability density
function. The last equality holds because (see [9]), in general for independent
random variables, 𝑍 =

∑𝐼
𝑖=1 𝑋𝑖 , is a guassian random variable such that:

𝑍 ∼
(

𝐼∑
𝑖=1

𝜇𝑖 ,
𝐼∑
𝑖=1

𝜎2
𝑖

)
, (5.29)

thus the two parts cancel out each other as the two parts are symmetric with
respect the separative line. Hence, overall:

E

[
𝐼∑
𝑖=1

𝑦𝑖

]
=

𝐼∑
𝑖=1
E [𝑦𝑖] =

2𝐼∑
𝑖=1
E

[
�̄� 𝑖

] + 𝐼∑
𝑖=1
E

[
�̃� 𝑖

]
= 𝑐. (5.30)

If we further notice that the points belonging to the asymmetric part, namely
{�̃� 𝑖}{𝑖=1,...,𝐼}, are far away from the separative line (as close by the line there is
the symmetric part) and lay on the same side (on the side where there segment
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has more points), then it holds that:

𝑐 = ± 𝐼 , (5.31)

where + is for the cases where the asymmetric part is on the side with labels
+1 and − for the other case. The latter equation holds because the errors in
the measurements are not present when the observations are taken far away
from the line, where the variance of the gaussian noise has not effect anymore
and so, recalling that expected value of a function 𝑔(𝑋) of a discrete random
variable 𝑋 with probability mass function 𝑓𝑋(𝑋) is E [𝑔(𝑋)] = ∑

𝑥∈𝑋 𝑔(𝑥) 𝑓𝑋(𝑥)
and 𝑠𝑖𝑔𝑛( ) ∈ {±1}, then it holds that:

𝐼∑
𝑖=1
E

[
�̃� 𝑖

]
=

𝐼∑
𝑖=1
+1𝑃

(
�̃� 𝑖 ≥ 0

) + (−1)𝑃 (
�̃� 𝑖 < 0

)
= ±𝐼 , (5.32)

as either 𝑃
(
�̃� 𝑖 ≥ 0

)
= 1 and 𝑃

(
�̃� 𝑖 < 0

)
= 0 for any 𝑖 = 1, . . . , 𝐼, or 𝑃

(
�̃� 𝑖 ≥ 0

)
= 0

and 𝑃
(
�̃� 𝑖 < 0

)
= 1 for any 𝑖 = 1, . . . , 𝐼, since the asymmetric part lays on just

one side (so they have same sign) and far away from the line (so all their value is
unitary as the uncertainty of the gaussian noise is not present in such locations).
All of this, allows us to claim that a variation of ±𝐼 (with the correct sign) in our
measurements, implies that:

E

[
𝐼∑
𝑖=1

𝑦𝑖

]
= 𝑐

⇒ E
[
𝐼∑
𝑖=1

𝑦𝑖

]
− 𝑐 = 0

⇒ E
[
𝐼∑
𝑖=1

𝑦𝑖

]
− E [𝑐] = 0

⇒ E
[
𝐼∑
𝑖=1

𝑦𝑖 − 𝑐
]
= 0

⇒ E

𝐼−𝐼∑
𝑖=1

𝑦𝑖

 = 0,

(5.33)

where, in the last implication, the set 𝐼−𝐼 is the initial set minus the observations
that are not symmetric.
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This suggests to choose a point 𝑃, as an estimate of a point on the separative line,
selected as:

𝑃 = (𝑥𝑃 , 𝑧𝑃) =

(
𝑥𝐼±𝐼+𝑥𝐼+𝐼+1

2 , 𝑧𝐼±𝐼+𝑧𝐼+𝐼+1
2

)
, if 𝐼 is even(

𝑥𝐼±𝐼+1, 𝑧𝐼±𝐼+1
)
, if 𝐼 is odd

, (5.34)

where±𝐼must be chosen according to the sidewhere the agent is and to the sign
of 𝑐.
Hence the point 𝑃 is a gaussian random variable with mean 0 (as is a good es-
timate of a point belonging to the separative line) and variance 𝜎2. By picking
up other points with the same distribution is then possible to perform a linear
regression estimation of the true separative line, by just using these points and
not all the points sampled by the agent during its trajectory, thus reducing the
computational cost.
This permits us to write down a new algorithm to estimate a separative line in
the case of gaussian noise in the measurements of the labels.
To find a piece-wise linear segment of the trajectory such that the asymmetric
part has constant probability equal to 1 (i.e. its points are far enough from the
line) we can take 9 consecutive data points sampled with same label to discrim-
inate between one the two sides, hence changing target direction (alternating
between {−𝜋

2 ,
𝜋
2 }) only when the agent is far away from the line. Therefore, if

the agent computes 𝐺 up and down periods, the number of piece-wise segment
collected is 𝐺 + 1.
Thus the Algorithm 5 uses only 𝐺 + 1 points to make the final estimate.
We define a function 𝑓 𝑖𝑛𝑑_𝑝𝑜𝑖𝑛𝑡( ) (see 8.11, Algorithm 5) that finds out the in-
dex in which to take the point 𝑃.
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Here the Algorithm 5 as follows:

Algorithm 5 Line navigation for estimation with G+1 data points
Require: 𝑋𝑚𝑎𝑥 = 100,Δ𝜃 = 1,Δ𝑣𝑚𝑎𝑥 = 0.1, 𝑇 = 1, 𝑣𝑚𝑎𝑥 = 2 {Can be set differently}
𝑔 ← 0, 𝑘 ← 0, 𝑃(𝑘) ← 𝑃01 , 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑃02 , 𝜃(𝑘) ← 𝑁𝑜𝑛𝑒 {𝜃 is not defined for k=0}
𝜁(𝑘) ← (x𝑃(𝑘), 𝜃(𝑘)), 𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)){see Eq. 5.16 or Snippet 8.11}
𝑑𝑜𝑢𝑏𝑡_𝑝𝑜𝑖𝑛𝑡𝑠 ← [ ], 𝑐 ← 0, 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒, 𝑓 𝑖𝑛𝑎𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 ← [ ], 𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1, 𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 ← 𝐹𝑎𝑙𝑠𝑒
while 𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 == 𝐹𝑎𝑙𝑠𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_1() {see Eq. 4.25}
𝑘 ← 𝑘 + 1
𝜁(𝑘) ← 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1), 𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)), 𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
if 𝑘 ≥ 8 then

𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠() {see 8.11}
if 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝑦[−1] == −1 then

𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
if 𝑎𝑙𝑙 𝑡ℎ𝑒 9 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙 − 1 then

𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 ← 𝑇𝑟𝑢𝑒, 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒
if 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝑏𝑟𝑒𝑎𝑘_ 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 then

𝑑𝑜𝑢𝑏𝑡_𝑝𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝜁(𝑘)), 𝑐 ← 𝑐 + 𝑦(−1)
𝑛1 ← x(𝑘 − 1), 𝑛2 ← x(𝑘), 𝑓 𝑖𝑛𝑎𝑙_𝑝𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑( 𝑓 𝑖𝑛𝑑_𝑝𝑜𝑖𝑛𝑡( )) {See 8.11}
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 do

if 𝑚 ≥ 1 then
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠() {See Eq. 8.11}

𝑑𝑜𝑢𝑏𝑡_𝑝𝑜𝑖𝑛𝑡𝑠 ← [ ], 𝑐 ← 0, 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() {See Eq. 8.11}
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝐹𝑎𝑙𝑠𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1), 𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)), 𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()
if 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝑦[−1] == +1 then

𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
if 𝑎𝑙𝑙 𝑡ℎ𝑒 9 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙 + 1 then

𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒
if 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 then

𝑑𝑜𝑢𝑏𝑡_𝑝𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝜁(𝑘)), 𝑐 ← 𝑐 + 𝑦(−1)
if 𝑔 ≥ 1 then

𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3

𝑛3 ← x(𝑘 − 1), 𝑛4 ← x(𝑘)
𝑔 ← 𝑔 + 1
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠(), 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡(), 𝑓 𝑖𝑛𝑎𝑙_𝑝𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑( 𝑓 𝑖𝑛𝑑_𝑝𝑜𝑖𝑛𝑡( )), 𝑑𝑜𝑢𝑏𝑡_𝑝𝑜𝑖𝑛𝑡𝑠 ← [ ], 𝑐 ← 0
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1), 𝑢𝑝𝑑𝑎𝑡𝑒 𝑦(x(𝑘)), 𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()
if 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝑦[−1] == −1 then

𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
if 𝑎𝑙𝑙 𝑡ℎ𝑒 9 𝑙𝑎𝑠𝑡 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙 − 1 then

𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒
if 𝑠𝑢𝑟𝑒_ 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 then

𝑑𝑜𝑢𝑏𝑡_𝑝𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝜁(𝑘)), 𝑐 ← 𝑐 + 𝑦(−1)
𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3 ,
𝑛3 ← x(𝑘), 𝑛4 ← x(𝑘 − 1)
𝑔 ← 𝑔 + 1
𝑓 𝑖𝑛𝑎𝑙_𝑝𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑( 𝑓 𝑖𝑛𝑑_𝑝𝑜𝑖𝑛𝑡( )) {See 8.11}
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5.4.5 SIMULATIONS AND RESULTS

We run 100 simulations and we compare the errors on the estimates of the
parameters 𝑚 and 𝑞 between the Algorithm 4 and Algorithm 5. However, to
make a fairer comparison, also in Algorithm 4 we use 9 consecutive points as
trusting law before changing target direction.

Figure 5.14: Histograms of the parameters’ errors between Algorithm 4 and Al-
gorithm 5.

Notice how the estimates with the second algorithm are distinctly better than
the first one, both for the 𝜃 error and for the 𝑞 error.

The errors of the averages, computed as in Eq. 4.40 and in Eq. 4.41, are presented
in the following table:

ALGORITHM 4
𝑎𝑣𝑔𝑒𝑟𝑟𝜃 [°] 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝜃 [°] 𝑎𝑣𝑔𝑒𝑟𝑟𝑞 [m] 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝑞 [m]

0.747 0.074 0.365 0.008

ALGORITHM 5
𝑎𝑣𝑔𝑒𝑟𝑟𝜃 [°] 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝜃 [°] 𝑎𝑣𝑔𝑒𝑟𝑟𝑞 [m] 𝑎𝑣𝑔𝑒𝑟𝑟𝑟𝑒𝑙𝑞 [m]

0.497 0.044 0.225 0.005

Table 5.2: Averages of the final errors of the Algorithm 4 and Algorithm 5.

The reason for the better performance of Algorithm 5 can be found on the fact
that, while some oscillations of the trajectory can be slightly discorded from the

66



CHAPTER 5. IDENTIFICATION OF LINEAR CLASSIFIERS WITH NOISY DATA

separative margin, leading to some points that worsen the trajectory, Algorithm
5 tries to overcome this issue estimating a single data point that is, in expected
value sense, belonging to the separative line, hence yielding to a better estima-
tion.

We summarize the results obtained in the last two chapters, Chapter 4 andChap-
ter 5, with the following table: The ideal noiseless case is the one that gives the

Noiseless data
Convergence Navigation Estimation Estimation’s complexity

3 3 3 𝒪(1)

Uniform noisy label data
Convergence Navigation Estimation Estimation’s complexity

3 𝑖𝑛 P(𝑁, 𝑒, 𝑛) 3 𝑖𝑛 P(𝑁, 𝑒, 𝑛) 3 𝑖𝑛 P(𝑁, 𝑒, 𝑛) 𝐼 𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝒪(1)

Gaussian noisy label data
Convergence Navigation Estimation Estimation’s complexity

7 3 3 𝒪(𝑁) 𝑜𝑟 𝒪(𝐺 + 1)
Table 5.3: Chapters 4 and 5’s results

better results, but does not consider any errormodel. As far as the uniform noise
model, the success of the relative developed procedure is probabilistic, however
we have seen in Figure 5.3 how the success/failure probability changes varying
the parameters 𝑁 , 𝑒 and 𝑛. If there is success, namely there have not been 𝑛
consecutive errors in the transient part, than the estimation is ”for free”, as it is
given as in the noiseless case by the convergence. As far as the gaussian noise
case, we cannot make the agent converge to the line as there are too many errors
around the margin, but we can make it move around it following the line, hence
reaching the navigation task and eventually also the estimation one, paying the
price of using again the 𝑁 points (that is the total number of points sampled by
the agent, as in Algorithm 4), or using just the 𝐺 + 1 points (as in Algorithm 5)
saving some computational effort.
Notice that for estimation’s complexity we mean the complexity needed to esti-
mate the separative line once the agent has ended its trajectory and has already
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collected the data points. So the estimation part only regards the manipulation
of these data to obtain the final estimate.
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6
Identification of special nonlinear

classifiers with noiseless and noisy
data

6.1 INTRO

Extending the problem to the identification and navigation of non linear sep-
arative curve is a natural extension of the previous linear problem, as in practice
most of the curve are in fact non linear. In this chapter, we analyze such an
environment, while keeping fixed all the other assumptions.

6.2 NON LINEAR IDEAL CASE

The main issue of the non linear case is the fact that we do not have an equa-
tion 𝑧 = 𝑚𝑥 + 𝑞, but we have a more complex equation whose derivative on
space is not constant anymore, but is a time-varying function as well.
Either we can have a non linear function:

𝑧 = ℎ(𝑥), (6.1)

or we can have a parametric curve:

(𝑥(𝑡), 𝑧(𝑡)) = (ℎ1(𝑡), ℎ2(𝑡)) . (6.2)
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So, we need a tool to capture the variation of the function (or of the param.
curve), that coincides with the derivative (or with the gradient), to make the
agent understand where it is moving and follow it.
In the work [4], a tracking of a non linear curve, whose shape separates two
different areas is made, but there an important assumption on the gradient of
the concentration of the salinity (that determines the discriminant law in the la-
belling) is made, hence havingmore knowledge about the variation of the curve.
Instead, in this work, we do not change the assumptions on the information the
agent is provided.
Based on the work of [5], we can think the separative curve as a set of finite
piece-wise constant linear segments, where each segment has its own constant
derivative value, and so we can use a similar algorithm to Algorithm 2 to make
the agent navigating the line, by updating the estimate of the variation of the
curve in an online fashion. Whereas in [5] three points of a curve are used to
estimate the curvature of the curve in one point, we want to use two estimated
points of the separative curve, retrieved by the trajectory of the agent, to estimate
the slope of the segment between those two points, in order to obtain a measure
of the variation of the curve.
To do so, we require and we assume the curve has a variation that is not too
abrupt with respect to the capability in terms of speed of convergence of the
agent to track the segment, and of course this depends on the velocities that the
agent can achieve, on the maximum variation between two consecutive veloci-
ties and on the sampling time.
In this new scenario, we cannotmake the state coordinate 𝜃 to converge to some-
thing, as this would primarily imply that we would enlarge too much the length
of the periods 𝑚, loosing the capability of following the variations of the curve,
and also 𝜃 must follow somehow, the current variation of the curve ans so it
cannot be shrunk to a fixed constant value.
Therefore, the strategy we adopt is to make the agent to trust just the previous
estimate of the range of [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥], given by 𝑛1, 𝑛2, 𝑛3 and 𝑛4, without consid-
ering the previous estimates as the curve keeps changing.
We know then that the true angular coefficient 𝑚 is such that 𝑚 ∈ [𝑚𝑚𝑖𝑛 , 𝑚𝑚𝑎𝑥],
where:

𝑚𝑚𝑖𝑛 =
𝑧𝑛2 − 𝑧𝑛4

𝑥𝑛2 − 𝑥𝑛4

and 𝑚𝑚𝑎𝑥 =
𝑧𝑛1 − 𝑧𝑛3

𝑥𝑛1 − 𝑥𝑛3

, (6.3)
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or in terms of the true theta, 𝜃, such that 𝜃 ∈ [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥], where:

𝜃𝑚𝑖𝑛 = arctan(𝑚𝑚𝑖𝑛) and 𝜃𝑚𝑎𝑥 = arctan(𝑚𝑚𝑎𝑥). (6.4)

Then, we update 𝜃∗ by enlarging this interval of 2Δ𝜃, so that:

𝜃∗(𝑔) =

𝜃𝑚𝑎𝑥(𝑔) + Δ𝜃, if 𝑔 > 0 𝑖𝑠 𝑜𝑑𝑑

𝜃𝑚𝑖𝑛(𝑔) − Δ𝜃, if 𝑔 > 0 𝑖𝑠 𝑒𝑣𝑒𝑛
(6.5)

Note: we stress the fact that here we are enlarging the interval where the actual
𝜃 can be, allowing a variation of the curve that can be, in the worst case, equal
to Δ𝜃.
Instead, in the linear case we were able to shrink the interval close to the true
actual direction of the line.

Therefore, with these modifications on the definition of 𝜃∗ we can still use Al-
gorithm 2.

6.2.1 CASE OF NON LINEAR CURVES THAT ARE NOT FUNCTIONS

We also consider the case where the curve that we want our agent to follow
is not a function, e.g. an ellipse.
This case is more involved because the agent must move also backward, so the
range of its possible 𝜃 directions must include all the degrees in [0, 2𝜋].
Thus, we redefine the third row of Eq. 4.4, as:

𝜃(𝑘 + 1) =


arctan
(
𝑣2(𝑘)
𝑣1(𝑘)

)
, if 𝑣1 ≥ 0, 𝑘 = 1, 2, . . . ,

arctan
(
𝑣2(𝑘)
𝑣1(𝑘)

)
+ 𝜋, if 𝑣1 < 0, 𝑘 = 1, 2, . . . ,

(6.6)

and we redefine the function 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() in 8.11 as in 8.11.
Let’s suppose we know our curve is an ellipse and this has a certain equation,
parameterized by 𝑡, as follows:

(2 cos (𝜋𝑡𝑖) , sin (𝜋𝑡𝑖)) , 𝑡𝑖 ∈ [0, 1]. (6.7)

Suppose the agent will track such a curve going around its points and getting
𝐺 total crossings of the curve, where this number depends on the type of curve,
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on the dynamics of the agent and on its inputs.
To be sure to be able to navigate the curve we want that two consecutive seg-
ments of the curve, taken among the three consecutive points belonging both
to the separative curve and to the trajectory, do not change to much in slope.
Hence, let’s consider the points 𝒙𝑔−1, 𝒙𝑔 and 𝒙𝑔+1 estimated as
�̂�𝑔−1 = 𝑎𝑣𝑔 (𝑛1(𝑔 − 1), 𝑛2(𝑔 − 1)), �̂�𝑔 = 𝑎𝑣𝑔 (𝑛3(𝑔 − 1), 𝑛4(𝑔 − 1)), and �̂�𝑔+1 =

𝑎𝑣𝑔 (𝑛3(𝑔), 𝑛4(𝑔)).
We want to understand whether, given the fact that we are in position 𝒙 𝑖 , we are
able to reach the point 𝒙 𝑖+1, provided that we can turn at most ofΔ𝜃 in the worst
case, as in such a case we have approximated the two bounds 𝑚𝑚𝑎𝑥 and 𝑚𝑚𝑖𝑛 as
a unique one given by

𝑧�̂�𝑔−1−𝑧�̂�𝑔
𝑥�̂�𝑔−1−𝑥�̂�𝑔 .

Moreover, since:

�̂�𝑔+1 = (𝑥𝑔+1, 𝑧𝑔+1) = ©«𝑥𝑔 +
𝑗𝑔+1∑
𝑗=𝑗𝑔

𝑣1𝑗 , 𝑧𝑔 +
𝑗𝑔+1∑
𝑗=𝑗𝑔

𝑣2𝑗
ª®¬ , (6.8)

we have to ensure that: ��𝜃𝑔 − 𝜃𝑔+1
�� ≤ Δ𝜃, (6.9)

namely: ����arctan
𝑧𝑔+1 − 𝑧𝑔
𝑥𝑔+1 − 𝑥𝑔 − arctan

𝑧𝑔 − 𝑧𝑔−1

𝑥𝑔 − 𝑥𝑔−1

���� ≤ Δ𝜃. (6.10)

Assuming that we already are at the point 𝑔,

𝑐 − Δ𝜃 ≤ arctan

∑𝑗𝑔+1
𝑗=𝑗𝑔

𝑣2𝑗∑𝑗𝑔+1
𝑗=𝑗𝑔

𝑣1𝑗

≤ 𝑐 + Δ𝜃, (6.11)

where 𝑐 = arctan 𝑧𝑔−𝑧𝑔−1
𝑥𝑔−𝑥𝑔−1

and is already given.
Thus, we can see that the velocities fed to the agent in the period from 𝑔 to 𝑔 + 1
must respect a specific bound.
We stop here this analysis because further investigation is quite difficult, but
we can say that, as general rule, the slower the agent moves, the better is able
to track a curve, as the curvature between two consecutive points is smaller as
they are closer by.
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6.2.2 SIMULATIONS AND RESULTS

We simulate Algorithm 2 with the modifications of 8.11 and 6.6 for the track-
ing and identification of a sinusoidal separative function, described by the fol-
lowing equation:

𝑧(𝑥) = −5𝑐𝑜𝑠(0.2𝑥) + 10. (6.12)

We use as initial points 𝑃01 = (2, 3) and 𝑃02 = (5, 15), a sampling time of 𝑇 =

0.05 sec, Δ𝜃 = 20◦, 𝑣𝑚𝑎𝑥 = 1 m/sec and Δ𝑣𝑚𝑎𝑥 = 0.1 m/sec.

Figure 6.1: Trajectory performed for the tracking of a sinusoidal function with-
out errors in the label measurements.

A zoomed section of the trajectory, showing its oscillating behaviour around the
separative curve is provided next:

Figure 6.2: Zoomed on the trajectory performed for the tracking of a sinusoidal
function without errors in the label measurements.

Finally, we also simulate the tracking and identification of an ellipse, that is not
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a function, and hence the re-formulation of Algorithm... are needed. The ellipse
is given by the following equation:

(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑒𝑟)2
𝑎2 + (𝑧 − 𝑧𝑐𝑒𝑛𝑡𝑒𝑟)

2

𝑏2 = 1, (6.13)

where we choose 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 10 m, 𝑧𝑐𝑒𝑛𝑡𝑒𝑟 = 25 m, 𝑎 = 25 m and 𝑏 = 20 m. The
other parameters are: initial points 𝑃01 = (2, 2) and 𝑃02 = (5, 15), sampling time
of 𝑇 = 0.2 sec, Δ𝜃 = 20◦, 𝑣𝑚𝑎𝑥 = 1 m/sec and Δ𝑣𝑚𝑎𝑥 = 0.1 m/sec.

Figure 6.3: Trajectory performed for the tracking of an ellipse curve without
errors in the label measurements.

We see how the tracking has success and the trajectory is very close to the true
curve.

6.2.3 NON LINEAR CASE WITH GAUSSIAN ERROR NOISE

We consider a non linear function 𝑧 = ℎ(𝑥) such that, if we move the agent
with vertical target directions, namely using as 𝜃∗ the set {−𝜋/2,+𝜋/2}, we are
sure of finding the line.
To be confident that we cross the line, we use as criterion the sampling of a num-
ber 𝑛 of consecutive data points with the same label.
When we track a large enough part of the curve, we stop the agent and we start
the estimation part.
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The following algorithm, Algorithm 6, shows how to move the agent in this set-
ting:

Algorithm 6 Curve navigation with gaussian errors
Require: 𝑋𝑚𝑎𝑥 = 100,Δ𝜃 = 1,Δ𝑣𝑚𝑎𝑥 = 0.1, 𝑇 = 1, 𝑣𝑚𝑎𝑥 = 2 {Can be set differently}
𝑔 ← 0, 𝑘 ← 0, 𝑃(𝑘) ← 𝑃01 , 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ← 𝑃02 , 𝜃(𝑘) ← 𝑁𝑜𝑛𝑒 {𝜃 is not defined for k=0}
𝜁(𝑘) = (𝑃(𝑘), 𝜃(𝑘))
𝑦(𝑘) ← sign (ℎ(x(𝑘))) {see Eq. 5.16 or Snippet 8.11}
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
while 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_1() {see Eq. 4.25}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑦(𝑘) ← sign (ℎ(x(𝑘)))
𝑓 𝑙𝑎𝑔+ ← 𝑦(𝑘) == +1
𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 ← 𝑇𝑟𝑢𝑒
for 𝑖 = 0; 𝑖+ = 1; 𝑖 < 5 do

if 𝑦(𝑘 − 𝑖) × 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ) < 0 then
𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 = 𝐹𝑎𝑙𝑠𝑒 {If this flag remains True we have crossed the margin}
𝑏𝑟𝑒𝑎𝑘

if 𝑓 𝑙𝑎𝑔_𝑏𝑟𝑒𝑎𝑘 then
𝑏𝑟𝑒𝑎𝑘 {we have crossed the margin so the loop ends}

𝑛1 ← x(𝑘 − 1), 𝑛2 ← x(𝑘)
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 do

if 𝑚 ≥ 1 then
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠() {See Eq. 8.11}

𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() {See Eq. 8.11}
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝐹𝑎𝑙𝑠𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) = 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑦(𝑘) ← sign (ℎ(x(𝑘)))
𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()

if 𝑔 ≥ 1 then
𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3

𝑛3 ← x(𝑘 − 1), 𝑛4 ← x(𝑘)
𝑔 ← 𝑔 + 1
𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠(), 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡()
while 𝑥(𝑘) < 𝑋𝑚𝑎𝑥 and 𝑓 𝑙𝑎𝑔+ == 𝑇𝑟𝑢𝑒 do

u(𝑘) ← 𝑠𝑜𝑙𝑣𝑒_𝑜𝑝𝑡_𝑝𝑟𝑜𝑏_2() {See Eq. 4.26}
𝑘 ← 𝑘 + 1
𝜁(𝑘) ← 𝐴𝜁(𝑘 − 1) + 𝐵u(𝑘 − 1)
𝑦(𝑘) ← sign (ℎ(x(𝑘)))
𝑓 𝑙𝑎𝑔+ ← 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠()

𝑛1 ← 𝑛4 , 𝑛2 ← 𝑛3 ,
𝑛3 ← x(𝑘), 𝑛4 ← x(𝑘 − 1)
𝑔 ← 𝑔 + 1

75



6.2. NON LINEAR IDEAL CASE

6.2.4 ESTIMATION

At this stage, we have navigated the line and we have collected quite a lot of
points, part of them with mislabelled measurements.
We present and compare in this subsection different approaches that can be used
to estimate the margin separative line.
The considered methods are:

• Non linear SVM regression (see 8.4.3);

• Non linear SVM classification (see 8.3.5);

• Moving average (see 8.7);

• Butterworth filter (see 8.8).

The first method is a classical estimation algorithm frommachine learning field.
It has a lot of good properties, but also some drawbacks, such as the high com-
putational time that is 𝒪(𝑛2𝑑) for the training time, the necessity of accurately
tuning the hyperparameters of the kernel and of the regularization, that is nor-
mally made by cross-validation. Other MLmethods could be used but they also
suffer of the the problematic computational cost.
Therefore, we adopt two new strategies, very common in the signal processing
field, that are both filters, and in particular low-pass filters.
The first one is a Moving average filtering and the second is a Butterworth ana-
logic low-pass filter.
The reason to use a filter is given by the trajectory of the agent around the true
curve. Indeed, the continuous ”periodic” oscillations around the true curve
made us think of dealing with a sort of disturbed signal, in which the noise
has higher frequency. From this observation, is easy to look for something like
a filter.
Moreover other two advantages made us to adopt, as we anticipate here, these
two tools as the best one.
The first advantage is the facility in tuning the filter. In fact, given the trajectory
we easily see how the periods are made and so we can just count the number of
points belonging to one period and then multiply for some more periods using
a trial and error approach. This gives us an easy tool to tune the window size of
the Moving average filter, and the cut-off frequency of the Butterworth filter.
The second advantage is about the computational cost of the filtering procedure:
both the filter are linear and have complexity, respectively, 𝒪(𝑛 +𝑤) and 𝒪(𝑛𝑘),
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where 𝑤 is the window size of the Moving average filter and 𝑘 is the order of
the Butterworth filter.

6.2.5 SIMULATIONS AND RESULTS

We now simulate Algorithm 6 to track a sinusoidal function in presence of
gaussian error noise, as in Eq. 5.16, in the label’s measurements.
The function has equation:

𝑧(𝑥) = −10𝑐𝑜𝑠(0.6𝑥) + 20, (6.14)

the initial points are 𝑃01 = (0, 5) and 𝑝02 = (5, 45).
Other parameters are:

𝑇 = 0.05 sec, 𝑣𝑚𝑎𝑥 = 1 m/sec, Δ𝑣 = 0.2 m/sec, 𝜎 = 3.5 m. (6.15)

Note: the choice of the sampling time is very important and determines both the
total number of points, that are useful for the estimation part, the computational
time, the distance from the line inwhich the agent detects a changing on the side
where it is (namely 5 consecutive label points in Algorithm 4). We also plot the
true curvewith an offset of±2 standard deviations to visualize how far the agent
moves from the line.

After the agent ends to move and has collected the data points, we perform a
smoothing of the trajectory using the moving average approach, described in
Section 8.7, with a window size of

[
8 𝑐𝑜𝑢𝑛𝑡1𝐺−2

]
, where the square brackets repre-

sent here the 𝑟𝑜𝑢𝑛𝑑 operator, and 𝑐𝑜𝑢𝑛𝑡1 is the number of data points from the
point where the agent crosses the line for the first time until the end. With this
choice, we use in average, all the points between 8𝑔, namely all the points among
8 side variations.
This choice has been made by trial and error and seems one of the best as it is a
good trade-off between smoothing the noisy trajectory and avoiding to incorpo-
rate too many periods, that would imply obtaining a curve with a smaller scale
factor. Here it is the results of the application of this filter to the noisy signal,
both with respect the 𝑥 coordinate and with respect the 𝑧 coordinate:
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Figure 6.4: Trajectory performed for the tracking of a sinusoidal function with
gaussian error in the label measurements.

Figure 6.5: Moving average behaviour.

Then, we also use the Butterworth low-pass filter. To design it, we need to choose
the order of the filter and the normal cut-off frequency.
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We select an order of 𝑛 = 2, as it is enough to filter the sinusoidal curves and
most of the not too complex curves.
The normalized cut-off frequency is defined as follows:

f𝑐𝑛𝑜𝑟𝑚 =
f𝑐
f𝑛
, (6.16)

where f𝑐 is the cut-off frequency and f𝑛 is the Nyquist frequency, that is equal to:

f𝑛 =
f𝑠
2
, (6.17)

where f𝑠 is the sample rate.
Thus we can keep fixed the cut-off frequency, let’s say equal to 1, and varying
the sampling rate. After some trials, it comes out that one of the best choices is,
as for theMoving average filter, to set the sampling rate as f𝑠 =

[
8 𝑐𝑜𝑢𝑛𝑡1𝐺−2

]
, in such

a way that the Nyquist frequency contains about 4𝑔, that is considered enough
to get the necessary information to smooth the signal.

Figure 6.6: Butterworth low-pass filtering.

We notice how the Butterworth filter really nicely smooths the signal.

In the following image we compare different choiches of hyperparameters for
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the non linear SVM regression algorithm, where we used just the ”rbf” ker-
nel, namely the gaussian one, as in general the polynomial kernel does not offer
meaningful improvements.
We tested the algorithm using the Python library scikit-learn.SVM.
We tested the algorithmwith different types of hyperparameters, both for 𝛾 and
for 𝐶, namely the kernel width and the regularization term. The kernel function
has equation:

𝐾(x, x’) = exp
(−𝛾∥x − x’∥2) , (6.18)

therefore, the smaller 𝛾, the smoother the estimated curve is.
We use:

𝛾 = 0.1, 𝛾 = 1, 𝛾 = 10, 𝛾 = 100, (6.19)

as kernel width possible parameters, whereas:

𝐶 = 0.1, 𝐶 = 1, 𝐶 = 100, 𝐶 = 1000, (6.20)

as regularization term, where the smaller the term 𝐶 is, the higher the regular-
ization strength.

Figure 6.7: SVM regression gamma = 0.1 different C.
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Figure 6.8: SVM regression gamma = 1 different C.

Figure 6.9: SVM regression gamma = 10 different C.
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Figure 6.10: SVM regression gamma = 100 different C.

The results show how the best ”width” parameter’s setting for 𝛾 = 0.1, as with
larger values, the estimated curve captures too many oscillations of the agent’s
trajectory. As, for the regularization parameter 𝐶, if we pick 𝛾 = 0.1, any value
is fine, but if we chose larger values of 𝛾, then 𝐶 = 0.1, would be the best one
among the 4 that have been tested, namely a large regularization strength.
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Moreover, we also try the SVM classification algorithm, with a gaussian kernel
and with same choice of parameters as in Eq. 6.19 and in Eq 6.20.

Figure 6.11: SVM classification gamma = 01 different C.

Figure 6.12: SVM classification gamma = 1 different C.
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Figure 6.13: SVM classification gamma = 10 different C.

Figure 6.14: SVM classification gamma = 100 different C.

The results are quite bad. This because the classification accuracy is very sensi-
tive to errors in the labels. The only significant results are with 𝛾 = 0.1. So, with
such value’s choice for this hyperparameter, we filter the data by selecting only
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the ones that have 5 consecutive neighboring point with the same label, in order
to remove corrupted data. We obtain the following estimates:

Figure 6.15: Improved estimates of SVM classification via processing the data.

We notice how for small values of 𝐶, the results are very bad, as the regulariza-
tion term tends to make a smoother trajectory but some mislabelled points can
still be present, and hence the smooth. On the other hand, with large values of
𝐶, we obtain better results, as the penalty to be on the wrong side is not too high.
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Next, in the following image, we compare the best models of every approach,
but ignoring the classification model, as it is not very well performing:

Figure 6.16: Comparison between different estimation approaches.

We notice how the two low-pass filter estimate achieves very nice results, fairly
comparablewith the SVM regressionmodel. Moreover, as previously discussed,
the tuning of these twomethods are way easier than the one of a machine learn-
ing approach, and in particular does not depend on the type of curve but, rather,
on the dynamics of the agent, meaning on the number of periods and the dis-
tance between them. Instead, for a machine learning algorithm, the tuning of
the hyperparameters strongly depends on the type of curve, and a classic cross-
validation approach is not valid as there are a lot of data pointswithwrong labels
with respect the actual separative curve. Besides that, the important difference
in the computational cost leads us to prefer the two low-pass filters instead of a
classic regression or classification method.

We also notice that the sampling time 𝑇 influences not only the total number of
data points, but also how far the agent moves away from the separative curve.
Indeed, the larger it is, the larger are the oscillations made by the agent around
the separative curve. This can be seen as having a noise with larger variance.
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6.2.6 NON LINEAR CASE WITH UNIFORM DISTRIBUTED ERROR NOISE

We consider now the case where the separative curve is non linear and the
measurements of the labels are affected by uniform distributed noises, as in Sec-
tion 5.3.
To achieve navigation and estimation of the curve by the robot, we can use again
Algorithm 6 with the relative 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔( ) function for the uniform distributed
error, as in 5.3.2.
For the simulation, we use the same parameters as in Section 6.2.5 for the gaus-
sian case, and for the estimation we use the two filters and the SVM regression
with gaussian kernel (with parameters’ choice of 𝛾 = 0.1, 𝐶 = 1).
The trajectory obtained is the following:

Figure 6.17: Trajectory of the agent with unif. noise in the measurements.

The agent navigates correctly around the separative curve.
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Moreover, the estimated curves are drawn in the following plot:

Figure 6.18: Estimated curves with 3 different approaches.

To compare the results, we run 𝑛 = 100 simulations, slightly changing the curve
as follows:

𝑧(𝑥) = −10 𝑐𝑜𝑠
(
0.6 𝑖 + 1

𝑖 + 20
𝑥
)
+ 20, (6.21)

where 𝑖 goes from 0 to 99.
At each iteration we compute the Root Mean Square Error (RMSE), described
in Section 8.10, both for the Moving Average (MA) estimate, for the Butterwoth
(BU) estimate and for the SVM estimate and we store the results in a list in order
to realize 3 final histograms.
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Figure 6.19: Histograms with the RMSE of the estimated curves with the 3 dif-
ferent approaches.

All the three estimates are quite accurate, but we prefer the two filtering tech-
niques rather than the SVM algorithm as it is less computational intensive.
We notice that the choice of the curve of Eq. 6.21 gives a set of sinusoidal curves
that are more flat in the first iterations (𝑖 small) and becomes less smooth in the
latest iterations when the frequency of the wave function is higher. So we expect
that the estimation will be better in the first iterations, and this is in fact showed
by the next figure:

Figure 6.20: RMSE behaviour in function of the iterations and in turn of the
regularity of the curve.

The figure 6.20 shows how the RMSE increases as long as the cosinusoidal func-
tion presents more variability in terms of its derivative. The three curves are not
monotonically increasing, but this can be explained by the fact that the observa-
tions of the labels are subjected to some randomic error, uniformed distributed
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in this case. Moreover the three curves are converging to some value as the ratio
𝑖+1
𝑖+20 tends to 1 as 𝑖 goes to large values, hence yielding to the same curve to be
estimated.

As final comment, we notice how the SVM estimates are better than the other
two approaches. On the other hand, all the 3 estimates are quite accurate and the
MA and the BU have complexity linear on the number of data points, whereas
the complexity of SVM is at least 𝒪(𝑛2).
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7
Conclusions and Future Work

7.1 CONCLUSIONS

Resuming what has been done in this work, we can say that we have gone
through the problem of estimating a separative linear or non linear curve be-
tween two labeled regions in the space.
We firstly attached the problem from a pure sampling point of view without
thinking of a possible dynamics of an agent, but just thinking of the possibil-
ity of freely sampling any point in the space. We have developed an algorithm,
namely Algorithm 1, capable of estimating with accuracy a point belonging to
such a separative curve, in any dimensional space. Moreover, we extended the
problem to the non linear shape of the curve, before analysing the possibility
of using the kernel trick to make linearly separable non linear curves mapping
the original space in a higher dimensional space, but we saw that this way was
not productive as then we cannot go back in the lower dimensional space and
retrieve the separative curve since the map is not invertible. Thus, we reasoned
before assuming to have access to the shape of the separative curve, as in practice
this can also hold (for example if we know that an object is circular and we want
to detect it), and in this case we achieved good estimates using an elliptic shape
and estimating it by solving a linear algebraic system as in Eq. 3.17, once we
have had estimated the 5 necessary points with Algorithm 1. We then relaxed
the assumption of knowing the separative shape, and we think of the problem
as a non linear regression problem, or better as an interpolation problem, and
we estimated the same ellipse, noticing that the larger the number of estimated
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points, the better the final curve estimate.
After that, we moved to the dynamics part, where the goal was not only the
estimation of the curve, but also the navigation along it. We adapted a single
discrete-time integrator adopting an additional state coordinate, namely the di-
rection of our agent, useful for the navigation’s procedures. We first solved the
problem for the linear case with no measurement errors, developing a control
strategy able to track the line and to converge to the same slope with a certain
error, as large as the variable Δ𝜃 is chosen.
Then, we adopted a uniformdistributed error noisemodel on themeasurements
of the labels, and we developed Algorithm 3 able to solve the problem in a ran-
domic setting, and we retrieved a relation between the total number of points
necessary to reach convergence and the probability of the success of such algo-
rithm, exploiting the Markov properties.
We also adopted a gaussian distributed error model in the measurement of the
labels and here we could not achieve convergence, but we have been able to
develop a procedure to navigate around a separative curve. We then used dif-
ferent estimation’s approaches to finally estimate the separative curve, relaxing
the computational effort that was quite hard with ML methods, such as SVM,
but way less demanding with some simpler filters, like the MA and the BU one,
and achieving pretty much the same levels of accuracy.
We finally discussed also the non linear separative curve case, that is the hard-
est one. This latter setup is not easily solvable with an agent like ours that is
capable to sample just the data points where it is laying on, and therefore the
convergence of the agent’s trajectory to the separative curve looks infeasible.
However, is still possible to navigate around the separative curve, both in the
ideal no errors case and in the more complex error modelled case (both uniform
and gaussian distributed), and we developed, for instance, Algorithm 4 to nav-
igate around a non linear sinusoidal curve.
We also discussed about the max curvature’s problem to capture the informa-
tion on the variation of the curvature between two consecutive estimated points
on the separative curve and using it to strategically speed up or speed down the
agent, depending on how much the curve is rapidly varying.

In general, we have developed different algorithms and strategies tomove a sim-
ple agent, from the theoretic perspective, in an innovative way that differs quite
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a lot from the methods present in this field, such as dual control or reinforce-
ment learning, or motion planning algorithms rooted on random sampling (e.g.
RRT∗). In fact whereas all these methods rely on a huge amount of sampling
of data points on the space, before of estimate a good strategy to move, our ap-
proaches are more direct and aimed to online update the control input of our
agent to make it moving around the separative curve. Moreover, a lot of meth-
ods present in literature for robotic ormotion plannings rely on observation data
from the feature position, namely from sensors that sample data points in front
of it, whereas our agent, at every iteration, uses just the only point where it is lay-
ing on, andwith it andwith the previous ones, tries to find the best way tomove.

7.2 FUTURE WORK

Further research follows-up from this work.
Wewould like to better formalize all our algorithms from a theoretic andmathe-
matical point of view, and compare themwith other already existing algorithms
in the same scenario.
We would also like to extend our algorithms to an agent with more practical dy-
namics, such as a unicycle, bicycle or an aerial multi-rotor agent.
An interesting extension could be use a 3𝐷 space and try to simulate all the
algorithms. Of course, new challenges will arise, such as the increment of the
computational time.
Another interesting extensionmight also be to use Algorithm 1 to higher dimen-
sions, in research topic that may be even slightly different, touching different
areas of ML and in general data science.
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8
Appendix

8.1 INTRO

In this chapter, some concepts that have been useful during the development
of the other chapters of the thesis are presented. They are about control, machine
learning, probability, estimation methods. Besides, the code snippets used to
implement the algorithms are reported in the last part of this chapter.

8.2 KERNEL’S METHODS

8.2.1 INNER PRODUCT SPACE

An inner product is amap ⟨·, ·⟩X : X×X→ K satisfying the following axioms:

• Symmetry: ⟨x, y⟩X = ⟨y, x⟩X
• Bilinearity: ⟨𝑎x + 𝑏y, 𝑐z + 𝑑w⟩X = 𝑎𝑐⟨x, z⟩X+𝑎𝑑⟨x,w⟩X+𝑏𝑐⟨y, z⟩X+𝑏𝑑⟨y,w⟩X
• Non-negativity: ⟨x, x⟩X ≥ 0

• Positive definiteness: ⟨x, x⟩X = 0⇔ x = 0

The standard inner product in the Euclidean space, x ∈ R𝑑 and 𝑑 ∈ N, is
called the dot product: ⟨x, y⟩R𝑚 =

∑𝑚
𝑖=1 𝑥𝑖𝑦𝑖 .
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8.2.2 KERNELS

Definition (Positive semi-definite kernel)
𝑘 : R𝑑 × R𝑑 → R is positive semi-definite if:

• ∀(x, x’) ∈ R𝑑 × R𝑑, 𝑘(x𝑖 , x𝑗) = 𝑘(x𝑗 , x𝑖).
• ∀𝑚 ∈ N, ∀𝜉1, ..., 𝜉𝑚 ∈ R, ∀x1, ..., x𝑚 ∈ R𝑑, ∑𝑚

𝑖,𝑗 𝜉𝑖𝜉𝑗𝑘(x𝑖 , x𝑗) ≥ 0.

Theorem (Moore-Aronsjan (1950))
To every positive semi-definite kernek k, there exists a Hilbert space H and a
feature map 𝜙 : R𝑑 → H such that for all 𝑥𝑖 , 𝑥 𝑗 we have
𝑘(x𝑖 , x𝑗) = ⟨𝜙(x𝑖 , 𝜙(x𝑗)⟩H.

Operation on kernels Let 𝑘1 and 𝑘2 be positive semi-definite, and 𝜆1,2 > 0 then:

1. 𝜆1𝑘1 is a valid kernel.

2. 𝜆1𝑘1 + 𝜆2𝑘2 is positive semi-definite.

3. 𝑘1𝑘2 is positive semi-definite.

4. 𝑒𝑥𝑝(𝑘1) is positive semi-definite.

5. 𝑔(x𝑖)𝑔(x𝑗) is positive semi-definite, with 𝑔 : R𝑑 → R.

Some examples of kernels
The most common kernels are:

• Polynomial kernel 𝑘(x𝑖 , x𝑗) = (⟨x𝑖 , x𝑗⟩ + 𝑞)𝑝 , where 𝑝 is the order and 𝑞 is
the bias.

• Gaussian kernel 𝑘(x𝑖 , x𝑗) = 𝑒𝑥𝑝(− | |x𝑖−x𝑗 | |22𝜎2 ). It can be also further
generalized picking a different distance from the euclidean one.

Why kernels are important in ML?
Traditionally, theory and algorithms of machine learning and statistics has
been very well developed for the linear case. Real world data analysis
problems, on the other hand, often require nonlinear methods to detect the
kind of dependencies that allow successful prediction of properties of interest.
By using a positive definite kernel, one can sometimes have the best of both
worlds. The kernel corresponds to a dot product in a (usually
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high-dimensional, some times even infinite large) feature space. In this space,
our estimation methods are linear, but as long as we can formulate everything
in terms of kernel evaluations, we never explicitly have to compute in the
high-dimensional feature space. This ”trick”, is called kernel trick.
A kernel is usually seen as a measure of similarity between two samples. It
reflects in some sens, how two samples are similar and this allows us to
construct algorithms in dot product spaces.
In practice, it is possible to define kernels using some a priori information of
our data. For instance: in image classification. It is possible to build kernels
that includes information from the spatial domain.

8.3 CLASSIFICATION BACKGROUND

In machine learning, classification is a predictive modeling problem where the
class label is anticipated for an example of input data.
It can be part of both supervised and unsupervised machine learning. An
algorithm that implements classification, especially in a concrete
implementation, is known as a classifier.
Several classifiers have been developed in the last decades to solve the
classification task. For the supervised learning there exist, for instance, neural
networks, decision trees, linear regression, and support vector machines
classifiers.
For the unsupervised learning there exist Hidden Markov models, k-means,
hierarchical clustering, and Gaussian mixture models classifiers.
In addition to the two above methods, there exist another type of learning, that
is reinforcement learning, that is neither supervised nor unsupervised learning
as it doesn’t require labeled data and not even a training set as it is based on the
interaction with the environment through positive or negative rewards (also
called feedbacks) to learn a specific goal.
Common algorithms in this field include temporal difference, deep adversarial
networks, and Q-learning.

8.3.1 BINARY LINEAR CLASSIFICATION

Problem’s statement
Given a data set, also called training set, {𝑥𝑖 , 𝑦𝑖}𝑖=1...𝑚 , where 𝑥𝑖 ∈ R𝑑
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𝑦𝑖 ∈ {−1, 1} the goal is to find 𝑤 ∈ R𝑑×𝑚 and 𝑏 ∈ R𝑚 , where 𝑑 is the dimension
of the feature space and 𝑚 is the number of data points, in such a way that
𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) > 0 ∀𝑖, i.e. all points are correctly classified. In binary
classification of course 𝑑 = 2.

Figure 8.1: Geometrical representation in 2𝐷 case of the classification’s problem.

Indeed, as depicted in Figure 8.1, the points with label 𝑦 = +1 are laying above
the hyperplane and hence 𝑤𝑇𝑥 + 𝑏 > 0 whereas the points with label 𝑦 = −1
are laying below the hyperplane and hence 𝑤𝑇𝑥 + 𝑏 < 0. If such a 𝑤 and 𝑏 exist,
than the dataset is called linearly separable. Often times the dataset is not
linearly separable.
Note: all the Figures represent hyperplane with just 2 dimensions, namely the
feature’s space has just 2 dimensions as the drawing of bigger feature space is
almost impossible.
As the geometrical view of the problem is meaningful to understand the
problem, the next section is dedicated to a further description of the
classification task from a geometrical and algebraic point of view.

8.3.2 GEOMETRY OF LINEAR CLASSIFICATION

Given a point 𝑥 |𝑤𝑇𝑥 + 𝑏 = 0, namely a point belonging to the separable
hyperplane, we wonder how the orthogonal decomposition of such a point,
that can be meant as a vector in the feature space, is made. In other words, we
want to understand how the vectors 𝑥⊥ and 𝑥∥ can be seen. If 𝑤𝑇𝑥 + 𝑏 = 0 and
𝑥 = 𝑥⊥ + 𝑥∥ , then 𝑤𝑇𝑥 = −𝑏, namely 𝑤𝑇(𝑥⊥ + 𝑥∥) = −𝑏. But since 𝑤𝑇𝑥∥ = 0, then
𝑤𝑇𝑥⊥ = −𝑏, that is −𝑏 = ⟨𝑤 , 𝑥⊥ ⟩ = ±∥𝑤∥∥𝑥⊥∥.
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Figure 8.2: Orthogonal projections of 𝑥 belonging to the separable hyperplane.

Now a question arise spontaneously: what happens when 𝑥 |𝑤𝑇𝑥 + 𝑏 ≠ 0 ?

Let 𝑥 = 𝑥⊥ + 𝑥∥ + �̃�, by using the same reasoning of before,
𝑤𝑇𝑥 + 𝑏 = 𝑤𝑇(𝑥⊥ + 𝑥∥ + �̃�) = 𝑤𝑇 �̃�, as 𝑤𝑇(𝑥⊥ + 𝑥∥) + 𝑏 = 0. Thus
𝑤𝑇𝑥 + 𝑏 = 𝑤𝑇 �̃� = ±∥𝑤∥∥ �̃�∥, where the sign depends on the orientation of 𝑤, �̃�
(+ if they have the same orientation).

Note: ∥ �̃�∥ = 𝑑(𝑥, 𝑤𝑇𝑥 + 𝑏), where 𝑑(·, ·) is the euclidean distance.

Eventually, 𝑤𝑇𝑥+𝑏∥𝑤∥ = ±∥ �̃�∥, and by observing that the parameters 𝑤 and 𝑏 can
always be normalized such that ∥𝑤∥ = 1 (since the hyperplane’s equation
actually is 𝑐(𝑤𝑇𝑥 + 𝑏) = 0, 𝑐 ≠ 0), 𝑤𝑇𝑥 + 𝑏 = ±∥ �̃�∥.

Figure 8.3: Orthogonal projection of 𝑥 not belonging to the separable hyper-
plane.
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8.3.3 PERCEPTRON ALGORITHM

Perceptron algorithm is the first example of neural network (with just one
neuron) and is a two-class (binary) classification machine learning algorithm.
It was invented in 1943 by McCulloch and Pitts. The aim of the algorithm is to
find an hyperplane that separates two data sets given their labels. More in
details, the classification rule is given by the function:

ℎ𝑤,𝑏(𝑥) =
{
+1, if 𝑤𝑇𝑥 + 𝑏 ≥ 0
−1, if 𝑤𝑇𝑥 + 𝑏 ≤ 0

= 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (8.1)

From now on, let’s consider the notation ℎ𝑤(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥), where we make

use of the so-called extended space, namely 𝑤 =
[
𝑤 𝑏

]
and 𝑥 =

[
𝑥 1

]𝑇
.

The goal of the algorithm is, given a training data set {𝑥𝑖 , 𝑦𝑖}𝑖=1...𝑚 , to find 𝑤
such that 𝑤𝑇𝑥 = 0, namely the training examples are correctly separated.
Note: the algorithm works only with linearly separable data.

Algorithm 7 Perceptron algorithm (Rosenblat 1958)

𝑤0← 0 (∈ R𝑑)
while 𝑇𝑟𝑢𝑒 do

select an index 𝑖 ∈ [𝑚] s.t. 𝑦𝑖(𝑤𝑘)𝑇𝑥𝑖 ≤ 0
if such an index cannot be found then
𝑏𝑟𝑒𝑎𝑘

𝑤(𝑘+1) = 𝑤𝑘 + 𝑦𝑖𝑥𝑖

8.3.4 LOGISTIC REGRESSION

Logistic regression, although the confusing name, is a type of classification that
is built on the fact that 𝑤𝑇𝑥 is proportional to the distance of point 𝑥 from the
separable hyperplane. The following probabilistic model for classification is
introduced:

𝑃[𝑦 = 1|𝑥] ∝ 𝑒(𝑤𝑇𝑥),
𝑃[𝑦 = −1|𝑥] ∝ 𝑒−(𝑤𝑇𝑥),
𝑃[𝑦 = 1|𝑥] + 𝑃[𝑦 = −1|𝑥] = 1.

(8.2)
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This implies that:

𝑃[𝑦 = 1|𝑥] = 𝑒(𝑤𝑇𝑥)

𝑒(𝑤𝑇𝑥) + 𝑒−(𝑤𝑇𝑥) =
1

1 + 𝑒−2(𝑤𝑇𝑥) ,

𝑃[𝑦 = −1|𝑥] = 𝑒−(𝑤𝑇𝑥)

𝑒(𝑤𝑇𝑥) + 𝑒−(𝑤𝑇𝑥) =
1

1 + 𝑒2(𝑤𝑇𝑥) .
(8.3)

By renaming 2𝑤 → 𝑤:

𝑃[𝑦 = 1|𝑥] = 1
1 + 𝑒−(𝑤𝑇𝑥) , (8.4)

𝑃[𝑦 = −1|𝑥] = 1
1 + 𝑒(𝑤𝑇𝑥) . (8.5)

Since 𝑦 ∈ {−1,+1}, then:

𝑃𝑤[𝑦 |𝑥] = 1
1 + 𝑒−(𝑦𝑤𝑇𝑥) , (8.6)

where the latter equation can be seen as a composition between the well
known sigmoid function, 𝜎(𝑧) = 1

1+𝑒−𝑧 , and a function 𝑓 (𝑦, 𝑥, 𝑤) = 𝑦𝑤𝑇𝑥,
whose sign tells us whether the data point 𝑥 is correctly classified or not.

Figure 8.4: Decision’s function for logistic regression.

So, in training logistic regression we aim to find the best 𝑤, call it �̃�𝑠 , so that:

𝑃�̃�𝑠 [𝑦 |𝑥] = 1
1 + 𝑒−(𝑦�̃�𝑇𝑠 𝑥) . (8.7)

101



8.3. CLASSIFICATION BACKGROUND

Provided (𝑥𝑖 , 𝑦𝑖) independent,

𝑃𝑤[𝑦1, 𝑦2, ..., 𝑦𝑚 |𝑥1, 𝑥2, ..., 𝑥𝑚] =
𝑚∏
𝑖=1

𝑃𝑤[𝑦𝑖 |𝑥𝑖] =
𝑚∏
𝑖=1

1
1 + 𝑒−(𝑦𝑖𝑤𝑇𝑥𝑖) (8.8)

is the likelihood function, and considering a maximum likelihood estimator,
we obtain:

�̃�𝑀𝐿 = argmax
𝑤

𝑚∏
𝑖=1

1
1 + 𝑒−(𝑦𝑖𝑤𝑇𝑥𝑖) . (8.9)

By using the classical reasoning about maximization of the likelihood function,

�̃�𝑀𝐿 = argmax
𝑤

log
𝑚∏
𝑖=1

𝑃𝑤[𝑦𝑖 |𝑥𝑖]

= argmax
𝑤

𝑚∑
𝑖=1

log 𝑃𝑤[𝑦𝑖 |𝑥𝑖]

= argmax
𝑤

𝑚∑
𝑖=1
(𝑙𝑜𝑔1 − 𝑙𝑜𝑔(1 + 𝑒−(𝑦𝑖𝑤𝑇𝑥𝑖)))

= argmin
𝑤

1
𝑚

𝑚∑
𝑖=1

𝑙𝑜𝑔(1 + 𝑒−(𝑦𝑖𝑤𝑇𝑥𝑖))

(8.10)

This allows to get a new loss function,

𝐿(𝑤, 𝑥, 𝑦) = 1
𝑚

𝑚∑
𝑖=1

𝑙𝑜𝑔(1 + 𝑒−(𝑦𝑖𝑤𝑇𝑥𝑖)) (8.11)

whose minimization gives us the best 𝑤 for the given data set.
How to minimize it?
It can be proven that this loss function is convex and then the optimal �̃�𝑀𝐿

comes out setting the gradient of the loss function equal to zero.

The last point to complete the logistic regression task is how do we classify a
new data point 𝑥?

we just follow the classification rule defined as:

�̃� = argmax
𝑦∈{1,−1}

𝑃�̃�𝑀𝐿[𝑦 |𝑥] (8.12)
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LOGISTIC REGRESSION FOR MULTICLASS CLASSIFICATION

Consider the case where 𝑦 = {0, 1, ..., 𝑘 − 1}, there are 𝑘 different classes.
The natural extension of the logistic regression presented before, is:∑𝑘−1
𝑗=0 𝑃[𝑦 = 𝑗 |𝑥] = 1 and 𝑃[𝑦 = 𝑗 |𝑥] ∝ 𝑒𝑤𝑇𝑗 𝑥 , 𝑤 𝑗 ∈ R𝑑.

This leads to:

𝑃[𝑦 = 𝑗 |𝑥] = 𝑒𝑤
𝑇
𝑗 𝑥∑𝑘−1

𝑖=0 𝑒
𝑤𝑇𝑖 𝑥

(8.13)

NON LINEAR EXTENSION

If we are in the non linear case, we can just use:

𝑃[𝑦 = 𝑗 |𝑥] = 𝑒 ℎ 𝑗(𝑥)∑𝑘−1
𝑖=0 𝑒

ℎ𝑖(𝑥)
(8.14)

8.3.5 SUPPORT VECTOR MACHINE (SVM) CLASSIFICATION

Figure 8.5: Geometrical representation in 2𝐷 of SVM in the linear separable case.

SVM algorithm (see [11]) is a powerful tool to make classification. Indeed,
while the Perceptron algorithm finds an hyperplane that separates the training
data without knowing exactly which one among the infinitely many that do
the same job, and the logistic regression makes a ”probabilistic” classification,
SVM finds �̃� and �̃� such that we maximize the quantity min𝑖 𝑑(𝑧𝑖 , 𝑙𝑖𝑛𝑒(𝑤, 𝑏)).
The statement of the problem, more formally, is as follows:

�̃�, �̃� = argmax
𝑤,𝑏

min
𝑖
𝑑𝑖 , (8.15)
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where 𝑑𝑖 =
𝑦𝑖(𝑤𝑇𝑥𝑖+𝑏)
| |𝑤 | | is the signed distance of point 𝑥𝑖 from the line.

�̃�, �̃� = argmax
𝑤 | | |𝑤 | |=1,𝑏

min
𝑖
𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏),

= argmax
𝑤 | | |𝑤 | |=1,𝑏,𝑦𝑖(𝑤𝑇𝑥𝑖+𝑏)≥𝛾

𝛾.
(8.16)

We define now, �̄� = 𝑤
𝛾 , �̄� =

𝑏
𝛾 , so that | |�̄� | | = 1

𝛾 (as | |𝑤 | | = 1).

Thus, the optimization problem becomes:

�̃�, �̃� = argmax
�̄�,�̄� ,𝑦𝑖(�̄�𝑇𝑥𝑖+�̄�)≥1

1
| |�̄� | |2 ,

= argmin
�̄�,�̄� ,𝑦𝑖(�̄�𝑇𝑥𝑖+�̄�)≥1

1
2
| |�̄� | |2.

(8.17)

In the latter equation there are 𝑚 linear constraints and the function to be
minimized is quadratic; this, allows to solve the problem with Lagrange
duality.

Let’s define the lagrangian function as (renaming �̄� with 𝑤 and same for 𝑏):

Λ(𝑤, 𝑏, 𝜇) = 1
2
| |𝑤 | |2 +

𝑚∑
𝑖=1

𝜇𝑖 𝑓 (𝑤, 𝑏), (8.18)

where 𝑓 (𝑤, 𝑏) = 1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≤ 0.

The next step consists in minimizing Λ over 𝑤, 𝑏.

𝜕Λ(𝑤, 𝑏, 𝜇)
𝜕𝑏

= −
𝑚∑
𝑖=1

𝜇𝑖𝑦𝑖 = 0,

𝜕Λ(𝑤, 𝑏, 𝜇)
𝜕𝑤

= 𝑤 −
𝑚∑
𝑖=1

�̂�𝑖𝑦𝑖𝑥𝑖 .

(8.19)

Remark: if
∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖 ≠ 0, then inf𝑏 Λ(𝑤, 𝑏, 𝜇) = − inf.
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𝑔(𝜇) = inf
𝑤,𝑏

Λ(𝑤, 𝑏, 𝜇)

=

{
− inf , if

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖 ≠ 0

1
2(

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖𝑥𝑖)𝑇(

∑𝑚
𝑗=1 𝜇𝑗𝑦 𝑗𝑥 𝑗) +

∑𝑚
𝑖=1 𝜇𝑖 − 𝑤𝑇

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖𝑥𝑖 − (

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖)𝑏, if

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖 = 0

=

{
− inf , if

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖 ≠ 0∑𝑚

𝑖=1 𝜇𝑖 − 1
2
∑𝑚
𝑖,𝑗 𝜇𝑖𝜇𝑗𝑦𝑖𝑦 𝑗𝑥𝑖

𝑇𝑥 𝑗 , if
∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖 = 0

(8.20)

The last step consists on maximize 𝑔(𝜇):

�̂� = argmax
𝜇∈R𝑚 ,𝜇𝑖≥0

𝑔(𝜇)

= argmax
𝜇∈R𝑚 ,𝜇𝑖≥0,

∑𝑚
𝑖=1 𝜇𝑖𝑦𝑖=0

𝑚∑
𝑖=1

𝜇𝑖 − 1
2

𝑚∑
𝑖 , 𝑗

𝜇𝑖𝜇𝑗𝑦𝑖𝑦 𝑗𝑥𝑖𝑇𝑥 𝑗
(8.21)

Note: we notice at this point that 𝜇𝑖¯ = 0 for those points that are not touching
the boundary (in fact the optimization problem doesn’t involve those points).

Thus, we have found out that:

�̂� =
𝑚∑
𝑖=1

𝜇𝑖¯ 𝑦𝑖𝑥𝑖

=
∑
𝑖∈I

�̂�𝑖𝑦𝑖𝑥𝑖 , I = {𝑖 𝑠.𝑡. �̂�𝑖 ≥ 0}
(8.22)

The solution �̂� depends only on data points 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖) that lie on the
boundary.

How to find �̂�?

For 𝑥𝑖 at the boundary holds that 1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) = 0, thus it’s possible to
retrieve �̂� from that expression.

Note: this type of SVM is also called Hard SVM as is valid just for the
separable case. In the next subsection the non separable case is treated.
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SOFT SVM & KERNELS

Figure 8.6: Geometrical representation in 2𝐷 of soft SVM.

To deal with the non separable case we need to introduce the so called slack
variables 𝜉𝑖 , that are useful to add a penalization for those points that are over
the boundary given by the hyperplane. The optimization problem becomes:

argmin
𝑤,𝑏,𝜉𝑖

1
2
| |𝑤 | |2 + 𝜆

𝑚∑
𝑖=1

𝜉𝑖

s.t. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑖 = 1, ..., 𝑚

𝜉𝑖 ≥ 0

(8.23)

At the optimum:

• 𝜉𝑖 = 0 ∀ points 𝑖 s.t. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1

• 0 < 𝜉𝑖 < 1 ∀ points 𝑖 s.t. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 0 (that means they are correctly
classified) and 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) < 1 (means they are inside the margin)

• 𝜉𝑖 > 1 for incorrectly classified points

• 𝜉𝑖 = 𝑚𝑎𝑥{0, 1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏)}

we can now rewrite (8.23) as follows:

argmin
𝑤,𝑏

1
2𝜆𝑚
| |𝑤 | |2 + 1

𝑚

𝑚∑
𝑖=1

𝑙(1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏)) (8.24)
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KERNEL SVM

The most straightforward way to deal with kernel SVM is given by the
following procedure:

1. Introduce a feature map, namely a non linear transformation of my
domain ”𝑥”:

𝑧 = 𝜙(𝑥) =

𝜑1(𝑥)
...

𝜑𝑁 (𝑥)

 ∈ R𝑁
2. Find the solution �̂� of (8.21), where now 𝑥 is substituted by the feature

map 𝑧

3. Compute �̂� =
∑𝑚
𝑖=1 �̂�𝑖𝑦𝑖𝑧𝑖

4. Build up the decision function:
ℎ�̂�,�̂�(𝑧) = �̂�𝑇𝑧 + �̂� =

∑𝑚
𝑖=1(�̂�𝑖𝑦𝑖𝑧𝑇𝑖 𝑧) + �̂� =

∑𝑚
𝑖=1(𝛼𝑖 ⟨𝑧𝑖 , 𝑧⟩) + �̂�

Note: with the use of a feature map non linear maps can be achieved.

Note: we never need to compute explicitely 𝑧 = 𝜙(𝑥) provided we can compute
⟨𝑧𝑖 , 𝑧 𝑗⟩ ∀𝑖, 𝑗 and ⟨𝑧𝑖 , 𝑧⟩ ∀𝑖 , 𝑧. we can directly define the inner product using a
so-called ”kernel function”, that is a function of 𝑥 and not of 𝜙(𝑥):
⟨𝑧, 𝑧′⟩ = ⟨𝜙(𝑥), 𝜙(𝑥′)⟩ = 𝑘(𝑥, 𝑥′).
Note: the kernel SVM is a non-linear classifier in the input space R𝑑, but is still
linear in the feature space (the space induced by the kernel function).

Note: the hyperparameters of the kernel must be tuned by some validation test
(e.g. cross-validation).

MULTICLASS SVM

Multiclass SVM can be performed using two approaches that collect in
different ways binary classifiers:

• One versus All: each class is compared with all the other ones, leading to
𝑚 binary classifiers.

• One versus One: each class is classified with respect to any other single
class, leading to 𝑚(𝑚 − 1)/2 classifiers.
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8.4 REGRESSION BACKGROUND

Regression’s task in ML formalizes and solves the problem of finding out a
mathematical relation between measured variables based on a sample of data,
called data set.
Let’s consider a linear model

ℎ𝑤,𝑏(𝑥) = 𝑤𝑇x + 𝑏, (8.25)

where 𝑥 ∈ ℛ𝑑, 𝑤 ∈ ℛ𝑑 and 𝑏 ∈ ℛ.
ℎ() is an instance of the more general model class defined as:

ℋ B
{
ℎ𝑤(x) : ∃𝑤 ∈ ℛ𝑑 , ℎ𝑤(𝑥) =

𝑚∑
𝑖=1

𝑤𝑖xi

}
. (8.26)

The goal of the regression’s task is to find ℎ̂ among the possible ℎ ∈ ℋ such
that a certain loss function ℒ(ℎ) is minimized.

Figure 8.7: Regression’s task.
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We simplify the notation as follows:

x̄ =

[
x
1

]
∈ ℛ𝑑+1, �̄� =

[
𝑤

𝑏

]
, (8.27)

so that:

ℎ𝑤,𝑏(𝑥) = 𝑤𝑇𝑥 + 𝑏 =
[
𝑤𝑇 𝑏

] [
x
1

]
= �̄�𝑇 x̄. (8.28)

To simplify the notation, sometimes we use x to mean x̄, and 𝑤 to mean �̄�.
We adopt a quadratic loss, defined as follows:

ℒ(ℎ, x) = (𝑦 − ℎ(x))2 = (𝑦 − �̄�𝑇x)2. (8.29)

In the case of linear regression and quadratic loss the solution of the problem,
namely finding �̂� and �̂� that optimally describe the model ℎ𝑤,𝑏(x)with a
relative ℎ̂�̂�,�̂�((𝑥)), is the solution given by the Empirical Risk Minimization
Empirical Risk Minimization (ERM), namely:

�̂�︸︷︷︸
∈ℛ𝑑+1

= argmin
𝑤

1
𝑚

𝑚∑
𝑖=1

(
𝑦𝑖 − (�̄�𝑇𝑥𝑖)

)2
. (8.30)

In the simplest case, where �̄� ∈ ℛ2 and xć ∈ ℛ2, we find �̂� imposing:

𝑑ℒ(𝑏)
𝑑𝑏

= 0. (8.31)

So,

𝑑ℒ(𝑏)
𝑑𝑏

=
𝑑
𝑑𝑏

(
𝑚∑
𝑖=1

(
𝑦𝑖 − (𝑤𝑇𝑥𝑖 − 𝑏)

)2
)
= 0,

− 2

(
𝑚∑
𝑖=1

(
𝑦𝑖 − (𝑤𝑇𝑥𝑖 − 𝑏)

))
=,

𝑚∑
𝑖=1

𝑦𝑖 − 𝑤
𝑚∑
𝑖=1

𝑥𝑖 − 𝑚𝑏 =,

⇒ �̂� =

∑𝑚
𝑖=1 𝑦𝑖 − 𝑤

∑𝑚
𝑖=1 𝑥𝑖

𝑚
= �̄� − 𝑤�̄�,

(8.32)
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where �̄� and �̄� are the arithmetic mean.

As far as 𝑤 ∈ ℛ it is sufficient to impose:

𝑑ℒ(𝑤)
𝑑𝑤

=
1
𝑚

𝑚∑
𝑖=1

2(𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏)(−𝑥𝑖) = 0,

⇒
𝑚∑
𝑖=1
(−𝑦𝑖𝑥𝑖) + (𝑤𝑥2

𝑖 ) + (𝑏𝑥𝑖) = 0,

⇒
𝑚∑
𝑖=1
(−𝑦𝑖𝑥𝑖) + (𝑤𝑥2

𝑖 ) + (�̄� − 𝑤�̄�)𝑥𝑖 = 0,

⇒
𝑚∑
𝑖=1

𝑥𝑖𝑦𝑖 − (�̄� − 𝑤�̄�)𝑥𝑖 − 𝑤𝑥2
𝑖 = 0,

⇒
𝑚∑
𝑖=1

𝑥𝑖𝑦𝑖 − �̄�𝑥𝑖 + 𝑤�̄�𝑥𝑖 − 𝑤𝑥2
𝑖 = 0,

⇒
𝑚∑
𝑖=1
(𝑥𝑖𝑦𝑖 − �̄�𝑥𝑖) − 𝑤

𝑚∑
𝑖=1

(
𝑥2
𝑖 − �̄�𝑥𝑖

)
= 0,

�̂� =

∑𝑚
𝑖=1 (𝑥𝑖𝑦𝑖 − �̄�𝑥𝑖)∑𝑚
𝑖=1

(
𝑥2
𝑖 − �̄�𝑥𝑖

) =
𝑚

∑𝑚
𝑖=1 (𝑥𝑖𝑦𝑖) −

∑𝑚
𝑖=1 𝑥𝑖

∑𝑚
𝑖=1 𝑦𝑖

𝑚
∑𝑚
𝑖=1(𝑥2

𝑖 ) −
(∑𝑚

𝑖=1 𝑥𝑖
)2 .

(8.33)

And also �̂� can be rewritten as:

�̂� =
𝑚

∑𝑚
𝑖=1 𝑦𝑖

∑𝑚
𝑖=1 𝑥

2
𝑖 −

∑𝑚
𝑖=1 𝑥𝑖

∑𝑚
𝑖=1 𝑥𝑖𝑦𝑖

𝑚
∑𝑚
𝑖=1 𝑥

2
𝑖 −

(∑𝑚
𝑖=1 𝑥𝑖

)2 . (8.34)

In the more general case, �̄� ∈ ℛ𝑑+1, xć ∈ ℛ𝑑+1, it is needed to use partial
derivatives:

∇𝑤ℒ(𝑤) =


𝜕
𝜕𝑤1
...
𝜕𝐿

𝜕𝑤𝑑+1

 =


𝜕

𝜕𝑤1

(∑𝑚
𝑖=1

(
𝑦𝑖 − 𝑤𝑇𝑥𝑖 )2

)
...

𝜕𝐿
𝜕𝑤𝑑+1

(∑𝑚
𝑖=1

(
𝑦𝑖 − 𝑤𝑇𝑥𝑖 )2

)

=


0
...

0

 , (8.35)
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and knowing that:

𝜕

𝜕𝑤 𝑗

(
𝑚∑
𝑖=1

(
𝑦𝑖 − 𝑤𝑇𝑥𝑖

)2
)
=

1
𝑚

𝑚∑
𝑖=1

2(𝑦𝑖 − 𝑤𝑇𝑥𝑖) (−(𝑥𝑖)𝑗 )
=

2
𝑚

©«
𝑚∑
𝑖=1

𝑦𝑖
(−(𝑥𝑖)𝑗 ) + 𝑤𝑇𝑥𝑖

((𝑥𝑖)𝑗 )︸        ︷︷        ︸
recall (𝐴𝐵)𝑇=𝐵𝑇𝐴𝑇

ª®®®¬
=

2
𝑚

(
−

𝑚∑
𝑖=1

𝑦𝑖
((𝑥𝑖)𝑗 ) + ((𝑥𝑖)𝑗 ) 𝑥𝑇𝑖 𝑤)

,

(8.36)

it holds that:

𝑚∑
𝑖=1

𝑦𝑖𝑥𝑖 =

(
𝑚∑
𝑖=1

𝑥𝑖𝑥𝑇𝑖

)
𝑤

⇒ �̂� =

(
𝑚∑
𝑖=1

𝑥𝑖𝑥𝑇𝑖

)−1 𝑚∑
𝑖=1

𝑦𝑖𝑥𝑖 =
(
𝑋𝑇𝑋

)−1
𝑋𝑇𝑌,

(8.37)

in the case 𝑋𝑇𝑋 is invertible, and:

𝑋 B


�̄�𝑇1
...

�̄�𝑇𝑚

 ∈ ℛ
𝑚×𝑑 , and 𝑌 B


𝑦1
...

𝑦𝑚

 ∈ ℛ
𝑚 . (8.38)

Note: in the case when 𝑋𝑇𝑋 is not invertible, the Singular Value
Decomposition Singular Value Decomposition (SVD) must be used to find a
solution.

8.4.1 RIDGE REGRESSION

In order to avoid overfitting, that happens whenever the learned model is too
accurate and hence it performs well only with data sets similar to the training
one, a regularization technique is needed. One very important regularization
technique, suitable for the regression task, is Ridge Regression (RR).
The main difference from the normal regression is the introduction of a
penalization term in the cost function to be minimized (that before was made
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just by the Empirical Risk), as follows:

𝐽𝜆(ℎ) = ℒ(ℎ) + 𝜆𝑃(ℎ), (8.39)

where 𝑃(ℎ) is called penalty function, and is greater or equal than 0 in norm,
whereas 𝜆 ≥ 0 is the regularization parameter controlling the trade-off
between the fitting error (i.e. the Empirical Risk) and the penalty function.
Let’s find out the solution �̂�𝑅(𝜆) in the RR problem, stated as:

�̂�𝑅(𝜆) = argmin
𝑤∈R𝑑

𝐽𝜆(𝑤)

= argmin
𝑤∈R𝑑

1
𝑚

𝑚∑
𝑖=1

(
𝑦𝑖 − (�̄�𝑇𝑥𝑖)

)2 + 𝜆| |𝑤 | |2.
(8.40)

The solution is found setting the gradient of 𝐽𝜆(𝑤)with respect to 𝑤 equal to
zero, in fact, after rewriting the cost function in matrix form, we obtain:

𝐽𝜆(𝑤) = 1
𝑚
(𝑌 − 𝑋𝑤)𝑇 (𝑌 − 𝑋𝑤) + 𝜆𝑤𝑇𝑤

=
1
𝑚

(
𝑌𝑇𝑌 − 𝑤𝑇𝑋𝑇𝑌 − 𝑌𝑇𝑋𝑤 + 𝑤𝑇𝑋𝑇𝑋𝑤

)
+ 𝜆𝑤𝑇𝑤,

(8.41)

hence:

∇𝑤 𝐽𝜆(𝑤) = − 1
𝑚
𝑋𝑇𝑌 − 1

𝑚
𝑋𝑇𝑌 + 1

𝑚

(
𝑋𝑇𝑋𝑤 + 𝑋𝑇𝑋𝑤

)
+ 𝜆𝑤 + 𝜆𝑤

= 2
[(
𝑋𝑇𝑋
𝑚
+ 𝜆𝐼

)
𝑤 − 𝑋

𝑇𝑌
𝑚

]
.

(8.42)

Thus, the solution of problem 8.40 is:

�̂�𝑅(𝜆) =
(
𝑋𝑇𝑋
𝑚
+ 𝜆𝐼

)−1
𝑋𝑇𝑌
𝑚

. (8.43)

From the latter equation, it is possible to notice that the matrix
(
𝑋𝑇𝑋
𝑚 + 𝜆𝐼

)
is

always invertible whenever 𝜆 > 0, and that if 𝜆 = 0, we obtain the same
solution of the simple linear regression.
The optimal value of 𝜆, that becomes another parameter to be estimated, can be
found by a validation test. In general, it holds that for small values of 𝜆 there is
no regularization, and hence the outliers data points will have a lot of
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importance, instead with very large values of 𝜆 makes the solution �̂�𝑅(𝜆)
going to 𝑧𝑒𝑟𝑜 leading to a bad final model as well. Hence the optimal solution
has to be sought somewhere in the middle of these two values.

8.4.2 NON LINEAR REGRESSION

We want to extend the above description to a non linear model, as:

ℋ B
{
ℎ𝑤(x) : ∃𝑤 ∈ ℛ𝑑 , ℎ𝑤(𝑥) =

𝑚∑
𝑖=1

𝑤𝑖Φ(xi)
}
, (8.44)

where it has been inserted a feature map, Φ(x), capable of describe a non linear
behaviour of the data.
Then, the non linear regression goal is to find a model ℎ̂(𝑥) such that:

ℎ̂ = argmin
ℎ∈ℋ

1
𝑚

𝑚∑
𝑖=1
(𝑦𝑖 − ℎ(𝑥𝑖))2 . (8.45)

Let’s define:

𝑌 B


𝑦𝑖
...

𝑦𝑚

 , Φ B

Φ𝑇(𝑥1)

...

Φ𝑇(𝑥𝑚)

 , (8.46)

so that we can eventually write the following optimization problem, very close
to 8.30:

�̂� = argmin
𝑤∈ℛ𝑑

1
𝑚
| |𝑌 −Φ𝑤 | |2, (8.47)

whose solution is given by:

�̂� =
(
Φ𝑇Φ

)−1
Φ𝑇𝑌. (8.48)

Also in this case, it is possible to use Ridge Regression RR to regularize the
model, similarly to 8.4.1.
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Figure 8.8: Non linear regression’s example.

8.4.3 SVM REGRESSION

SVM algorithm can be extended to solve the regression task, just slightly
changing the cost function to be minimized. In this case, in fact, we can
minimize the following function:

�̂�, �̂� = argmin
𝑤,𝑏

1
𝑚

𝑚∑
𝑖=1

𝑙
(
𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏)

)
+ 𝜆| |𝑤 | |2, (8.49)

that can be rewritten, as done in the SVM classification, as:

�̂�, �̂� = argmin
𝑤,𝑏, s.t. |𝑦𝑖−⟨𝑤,𝑥𝑖⟩−𝑏 |≤𝜖

1
2
| |𝑤 | |2, (8.50)

where 𝑥𝑖 is the training sample with target value 𝑦𝑖 . The inner product plus
intercept ⟨𝑤, 𝑥𝑖⟩ + 𝑏 is the prediction for that sample, and 𝜖 is a free parameter
that serves as a threshold: all predictions have to be within an 𝜖 range of the
true predictions. Slack variables are usually added into the above to allow for
errors and to allow approximation in the case the above problem is infeasible.
Moreover, the term | |𝑤 | |2 can be weighted in different ways using kernel
reasonings to exploit some a priori knowledge of the curve to be learned.
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Figure 8.9: SVM regression’s interpretation.

8.5 CONTROL BACKGROUND

8.5.1 REACHABILITY

Reachability. The reachability problem is to ”find the set of all the final states
x (𝑡1) reachable starting from a given initial state x (𝑡0) ”: - A state x (𝑡1) of a
dynamic system is reachable from the state x (𝑡0) in the time interval [𝑡0, 𝑡1] if it
exists an input function u(·) ∈ 𝒰 such that x (𝑡1) = 𝜓 (𝑡0, 𝑡1, x (𝑡0) , u(·)). - Let
𝒳+ (𝑡0, 𝑡1, x (𝑡0)) denote the ”set of all the final states x (𝑡1) reachable at time 𝑡1
starting from the initial state x (𝑡0)′′.
Let us consider the following discrete time-invariant linear system:

x(𝑘 + 1) = Ax(𝑘) + Bu(𝑘)

Reachability - The set 𝒳+(𝑘) of all the states reachable from the origin in 𝑘 steps
is equal to the set of all the states x(𝑘) obtained starting from the initial
condition x(0) = 0 and considering only the forced evolution of the system:

x(𝑘) =
𝑘−1∑
𝑗=0

A(𝑘=− �̄�−1)Bu(𝑗) = [
BAB . . .A𝑘−1B

] 
u(𝑘 − 1)
u(𝑘 − 2)

...

u(0)


and varying the input u(0), u(1), . . . , u(𝑘 − 1) in all the possible ways. -
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Definition. Reachability matrix in 𝑘 steps:

ℛ+(𝑘) ≜ [
BAB . . .A𝑘−1B

]
- The set 𝒳+(𝑘) of all the states reachable from the origin in 𝑘 steps is a vectorial
space which is equal to the image of matrix ℛ+(𝑘) :

𝒳+(𝑘) = Im
[ℛ+(𝑘)]

- The subspaces 𝒳+(𝑘) reachable in 1, 2, . . . , 𝑘 steps satisfy the following chain
of inclusions ( 𝑛 is the dimension of the state space):

𝒳+(1) ⊆ 𝒳+(2) ⊆ . . . . . . ⊆ 𝒳+(𝑛) = 𝒳+(𝑛 + 1) = . . .

- The maximum reachable subspace 𝒳+(𝑛) is obtained, at the most, in 𝑛 steps.

- Definition. Reachability matrix of the system:

ℛ+ ≜ ℛ+(𝑘)��𝑘=𝑛 = ℛ+(𝑛) = [
BAB . . .A𝑛−1B

]
- The subspace 𝒳+of all the state reachable from the origin in a time interval
however long is equal to the image of matrix ℛ+:

𝒳+ = Im
[
BAB . . .A𝑛−1B

]
= Imℛ+

- Definition. A system is reachable if the subspace 𝒳+of all the reachable states
from the origin is equal to the whole state space X :

𝒳+ = X

- Necessary and sufficient condition for a system to be reachable is:

rank
(ℛ+) = 𝑛

- For discrete, time-invariant linear systems the set 𝒳+ (𝑘, x0) has the structure
of a ”linear variety”:

𝒳+ (𝑘, x0) = A𝑘x0 + Imℛ+(𝑘)
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8.6 PROBABILITY BACKGROUND

8.6.1 CONDITIONAL PROBABILITY

The conditional probability mass function 𝑝𝑋 |𝑌(𝑥 | 𝑦) of 𝑋 given 𝑌 = 𝑦 is
defined by

𝑝𝑋 |𝑌(𝑥 | 𝑦) = Pr{𝑋 = 𝑥 and 𝑌 = 𝑦}
Pr{𝑌 = 𝑦} if Pr{𝑌 = 𝑦} > 0,

and is not defined, or is assigned an arbitrary value, whenever Pr{𝑌 = 𝑦} = 0.
In terms of the joint and marginal probability mass functions 𝑝𝑋𝑌(𝑥, 𝑦) and
𝑝𝑌(𝑦) = Σ𝑥𝑝𝑋𝑌(𝑥, 𝑦), respectively, the definition is:

𝑝𝑋 |𝑌(𝑥 | 𝑦) = 𝑝𝑋𝑌(𝑥, 𝑦)
𝑝𝑌(𝑦) if 𝑝𝑌(𝑦) > 0; 𝑥, 𝑦 = 0, 1, . . . (8.51)

Observe that 𝑝𝑋 |𝑌(𝑥 | 𝑦) is a probability mass function in 𝑥 for each fixed 𝑦, i.e.,
𝑝𝑋 |𝑌(𝑥 | 𝑦) ≥ 0 and Σ𝜉𝑝𝑋 |𝑌(𝜉 | 𝑦) = 1, for all 𝑥, 𝑦. The law of total probability
takes the form:

Pr{𝑋 = 𝑥} =
∞∑
𝑦=0

𝑝𝑋 |𝑌(𝑥 | 𝑦)𝑝𝑌(𝑦) (8.52)

Notice in 8.52 that the points 𝑦 where 𝑝𝑋 |𝑌(𝑥 | 𝑦) is not defined are exactly
those values for which 𝑝𝑌(𝑦) = 0, and hence, do not affect the computation.

8.6.2 GAUSSIAN DISTRIBUTION

In statistics, a normal distribution or Gaussian distribution is a type of
continuous probability distribution for a real-valued random variable. The
general form of its probability density function is:

𝑓 (𝑥) = 1
𝜎
√

2𝜋
exp

(
−1

2

( 𝑥 − 𝜇
𝜎

)2 )
(8.53)

The parameter 𝜇 is the mean or expectation of the distribution (and also its
median and mode), while the parameter 𝜎 is its standard deviation. The
variance of the distribution is 𝜎2. A random variable with a Gaussian
distribution is said to be normally distributed, and is called a normal deviate.
The Standard Normal distribution is a particular type of Normal distribution
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with parameters 𝜇 = 0 and 𝜎2 = 1.

Figure 8.10: Plot of 8.53 with parameters of the Standard Normal distribution.

Normal distributions are important in statistics and are often used in the
natural and social sciences to represent real-valued random variables whose
distributions are not known.
Their importance is partly due to the central limit theorem. It states that,
under some conditions, the average of many samples (observations) of a
random variable with finite mean and variance is itself a random
variable—whose distribution converges to a normal distribution as the number
of samples increases. Therefore, physical quantities that are expected to be the
sum of many independent processes, such as measurement errors, often have
distributions that are nearly normal.
Moreover, Gaussian distributions have some unique properties that are
valuable in analytic studies. For instance, any linear combination of a fixed
collection of normal deviates is a normal deviate. Many results and methods,
such as propagation of uncertainty and least squares parameter fitting, can be
derived analytically in explicit form when the relevant variables are normally
distributed.

8.6.3 BERNOULLI DISTRIBUTION

The Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli,
is the discrete probability distribution of a random variable which takes the
value 1 with probability 𝑝 and the value 0 with probability 𝑞 = 1 − 𝑝. Less
formally, it can be thought of as a model for the set of possible outcomes of any
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single experiment that asks a 0-1 question. Such questions lead to outcomes
that are boolean-valued: a single bit whose value is success/yes/true/one
with probability p and failure/no/false/zero with probability q.
Its basic parameters are:

0 ≤ 𝑝 ≤ 1, and 𝑞 = 1 − 𝑝.

The expected value of a Bernoulli random variable 𝑋 is

E[𝑋] = 𝑝

This is due to the fact that for a Bernoulli distributed random variable 𝑋 with
Pr(𝑋 = 1) = 𝑝 and Pr(𝑋 = 0) = 𝑞 we find

E[𝑋] = Pr(𝑋 = 1) · 1 + Pr(𝑋 = 0) · 0 = 𝑝 · 1 + 𝑞 · 0 = 𝑝.

The variance of a Bernoulli distributed 𝑋 is

Var[𝑋] = 𝑝𝑞 = 𝑝(1 − 𝑝).

In fact,

E
[
𝑋2] = Pr(𝑋 = 1) · 12 + Pr(𝑋 = 0) · 02 = 𝑝 · 12 + 𝑞 · 02 = 𝑝 = E[𝑋],

and from this follows that:

Var[𝑋] = E
[
𝑋2] − E[𝑋]2 = E[𝑋] − E[𝑋]2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝) = 𝑝𝑞.

with this result it is easy to prove that, for any Bernoulli distribution, its
variance will have a value inside [0, 1/4].
If 𝑋1, . . . , 𝑋𝑛 are independent, identically distributed (i.i.d.) random variables,
all Bernoulli trials with success probability 𝑝, then their sum is distributed
according to a binomial distribution with parameters 𝑛 and 𝑝 :

𝑛∑
𝑘=1

𝑋𝑘 ∼ B(𝑛, 𝑝) (binomial distribution).

The Bernoulli distribution is simply B(1, 𝑝), also written as Bernoulli(𝑝).

119



8.6. PROBABILITY BACKGROUND

8.6.4 BINOMIAL DISTRIBUTION

The binomial distribution with parameters 𝑛 and 𝑝 is the discrete probability
distribution of the number of successes in a sequence of 𝑛 independent
Benrnoulli experiments, also called Bernoulli trials or Bernoulli experiments.
For 𝑛 = 1, it coincides with the Bernoulli distribution.
In general, if the random variable 𝑋 follows the binomial distribution with
parameters 𝑛 ∈ N and 𝑝 ∈ [0, 1], we write 𝑋 ∼ B(𝑛, 𝑝). The probability of
getting exactly 𝑘 successes in 𝑛 independent Bernoulli trials is given by the
probability mass function:

𝑓 (𝑘, 𝑛, 𝑝) = Pr(𝑘; 𝑛, 𝑝) = Pr(𝑋 = 𝑘) =
(
𝑛

𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−𝑘

for 𝑘 = 0, 1, 2, . . . , 𝑛, where (
𝑛

𝑘

)
=

𝑛!
𝑘!(𝑛 − 𝑘)!

is the binomial coefficient, hence the name of the distribution. The formula can
be understood as follows: 𝑘 successes occur with probability 𝑝𝑘 and 𝑛 − 𝑘
failures occur with probability (1 − 𝑝)𝑛−𝑘 . However, the 𝑘 successes can occur

anywhere among the 𝑛 trials, and there are

(
𝑛

𝑘

)
different ways of distributing

𝑘 successes in a sequence of 𝑛 trials.
For 𝑘 > 𝑛/2, the probability can be calculated by its complement as

𝑓 (𝑘, 𝑛, 𝑝) = 𝑓 (𝑛 − 𝑘, 𝑛, 1 − 𝑝).

Looking at the expression 𝑓 (𝑘, 𝑛, 𝑝) as a function of 𝑘, there is a 𝑘 value that
maximizes it. This 𝑘 value can be found by calculating

𝑓 (𝑘 + 1, 𝑛, 𝑝)
𝑓 (𝑘, 𝑛, 𝑝) =

(𝑛 − 𝑘)𝑝
(𝑘 + 1)(1 − 𝑝)

and comparing it to 1 . There is always an integer 𝑀 that satisfies [2]

(𝑛 + 1)𝑝 − 1 ≤ 𝑀 < (𝑛 + 1)𝑝.
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𝑓 (𝑘, 𝑛, 𝑝) is monotone increasing for 𝑘 < 𝑀 and monotone decreasing for
𝑘 > 𝑀, with the exception of the case where (𝑛 + 1)𝑝 is an integer. In this case,
there are two values for which 𝑓 is maximal: (𝑛 + 1)𝑝 and (𝑛 + 1)𝑝 − 1. 𝑀 is the
most probable outcome (that is, the most likely, although this can still be
unlikely overall) of the Bernoulli trials and is called the mode.
Example
Suppose a biased coin comes up heads with probability 0.3 when tossed. The
probability of seeing exactly 4 heads in 6 tosses is

𝑓 (4, 6, 0.3) =
(

6
4

)
0.34(1 − 0.3)6−4 = 0.059535.

If 𝑋 ∼ 𝐵(𝑛, 𝑝), that is, 𝑋 is a binomially distributed random variable, 𝑛 being
the total number of experiments and 𝑝 the probability of each experiment
yielding a successful result, then the expected value of 𝑋 is: [5]

E[𝑋] = 𝑛𝑝.

This follows from the linearity of the expected value along with the fact that 𝑋
is the sum of 𝑛 identical Bernoulli random variables, each with expected value
𝑝. In other words, if 𝑋1, . . . , 𝑋𝑛 are identical (and independent) Bernoulli
random variables with parameter 𝑝, then 𝑋 = 𝑋1 + · · · + 𝑋𝑛 and

E[𝑋] = E [𝑋1 + · · · + 𝑋𝑛] = E [𝑋1] + · · · + E [𝑋𝑛] = 𝑝 + · · · + 𝑝 = 𝑛𝑝.

The variance is:
Var(𝑋) = 𝑛𝑝𝑞 = 𝑛𝑝(1 − 𝑝).

This, similarly, follows from the fact that the variance of a sum of independent
random variables is the sum of the variances.

8.6.5 MONTE CARLO ESTIMATION

Monte Carlo methods can be used to solve any problem having a probabilistic
interpretation. By the law of large numbers, integrals described by the
expected value of some random variable can be approximated by taking the
empirical mean (a.k.a. the ’sample mean’) of independent samples of the
variable.
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By definition, Monte Carlo is the art of approximating an expectation by the
sample mean of a function of simulated random variables. This definition is
broad enough to cover everything that has been called Monte Carlo, and yet
makes clear its essence in very familiar terms: Monte Carlo is about invoking
laws of large numbers to approximate expectations.

In more mathematical terms: Consider a (possibly multidimensional) random
variable 𝑋 having probability mass function or probability density function
𝑓𝑋(𝑥)which is greater than zero on a set of values 𝒳. Then the expected value
of a function 𝑔 of 𝑋 is

E(𝑔(𝑋)) =
∑
𝑥∈𝒳

𝑔(𝑥) 𝑓𝑋(𝑥)

if 𝑋 is discrete, and
E(𝑔(𝑋)) =

∫
𝑥∈𝒳

𝑔(𝑥) 𝑓𝑋(𝑥)𝑑𝑥

if 𝑋 is continuous. Now, if we were to take an 𝑛-sample of 𝑋 ’s, (𝑥1, . . . , 𝑥𝑛),
and we computed the mean of 𝑔(𝑥) over the sample, then we would have the
Monte Carlo estimate

�̃�𝑛(𝑥) =
1
𝑛

𝑛∑
𝑖=1

𝑔 (𝑥𝑖)

of E(𝑔(𝑋)). we could, alternatively, speak of the random variable

�̃�𝑛(𝑋) =
1
𝑛

𝑛∑
𝑖=1

𝑔(𝑋)

which is called the Monte Carlo estimator of E(𝑔(𝑋)). If E(𝑔(𝑋)), exists, then
the weak law of large numbers tells us that for any arbitrarily small 𝜖

lim
𝑛→∞𝑃

(���̃�𝑛(𝑋) − E(𝑔(𝑋))�� ≥ 𝜖
)
= 0.

This tells us that as 𝑛 gets large, then there is small probability that �̃�𝑛(𝑋)
deviates much from E(𝑔(𝑋)). For our purposes, the strong law of large
numbers says much the same thing - the important part being that so long as 𝑛
is large enough, �̃�𝑛(𝑥) arising from a Monte Carlo experiment shall be close to
E(𝑔(𝑋)), as desired. One other thing to note at this point is that �̃�𝑛(𝑋) is
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unbiased for E(𝑔(𝑋)) :

E
(
�̃�𝑛(𝑋)

)
= E

(
1
𝑛

𝑛∑
𝑖=1

𝑔 (𝑋𝑖)
)
=

1
𝑛

𝑛∑
𝑖=1
E (𝑔 (𝑋𝑖)) = E(𝑔(𝑋)).

In practice, many quantities of interest may be cast as expectations. Most
importantly for applications in statistical genetics, it is possible to express all
probabilities, integrals, and summations as expectations.

8.6.6 MARKOV PROCESSES

A Markov process (see [8]) {𝑋𝑡} is a stochastic process with the property that,
given the value of 𝑋𝑡 , the values of 𝑋𝑠 for 𝑠 > 𝑡 are not influenced by the values
of 𝑋𝑢 for 𝑢 < 𝑡. In words, the probability of any particular future behavior of
the process, when its current state is known exactly, is not altered by additional
knowledge concerning its past behavior. A discrete-time Markov chain is a
Markov process whose state space is a finite or countable set, and whose (time)
index set is 𝑇 = (0, 1, 2, . . .). In formal terms, the Markov property is that

Pr {𝑋𝑛+1 = 𝑗 | 𝑋0 = 𝑖0, . . . , 𝑋𝑛−1 = 𝑖𝑛−1, 𝑋𝑛 = 𝑖}
= Pr {𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖} (8.54)

for all time points 𝑛 and all states 𝑖0, . . . , 𝑖𝑛−1, 𝑖 , 𝑗. It is frequently convenient to
label the state space of the Markov chain by the non negative integers
{0, 1, 2, . . .}, which we will do unless the contrary is explicitly stated, and it is
customary to speak of 𝑋𝑛 as being in state 𝑖 if 𝑋𝑛 = 𝑖.
The probability of 𝑋𝑛+1 being in state 𝑗 given that 𝑋𝑛 is in state 𝑖 is called the
one-step transition probability and is denoted by 𝑃𝑛,𝑛+1

𝑖 𝑗 . That is,

𝑃𝑛,𝑛+1
𝑖 𝑗 = Pr {𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖} (8.55)

The notation emphasizes that in general the transition probabilities are
functions not only of the initial and final states but also of the time of transition
as well. when the one-step transition probabilities are independent of the time
variable 𝑛, we say that the Markov chain has stationary transition probabilities.
Since the vast majority of Markov chains that we shall encounter have
stationary transition probabilities, we limit our discussion to this case. Then,
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𝑃𝑛,𝑛+1
𝑖 𝑗 = 𝑃𝑖 𝑗 is independent of 𝑛, and 𝑃𝑖 𝑗 is the conditional probability that the

state value undergoes a transition from 𝑖 to 𝑗 in one trial. It is customary to
arrange these numbers 𝑃𝑖 𝑗 in a matrix, in the infinite square array:

P =



𝑃00 𝑃01 𝑃02 𝑃03 · · ·
𝑃10 𝑃11 𝑃12 𝑃13 · · ·
𝑃20 𝑃21 𝑃22 𝑃23 · · ·
...

...
...

...

𝑃𝑖0 𝑃𝑖1 𝑃𝑖2 𝑃𝑖3 · · ·
...

...
...

...


,

and refer to P =
𝑃𝑖 𝑗 as the Markov matrix or transition probability matrix of

the process.

The 𝑖-th row of P, for 𝑖 = 0, 1, . . ., is the probability distribution of the values of
𝑋𝑛+1 under the condition that 𝑋𝑛 = 𝑖. If the number of states is finite, then P is
a finite square matrix whose order (the number of rows) is equal to the number
of states. Clearly, the quantities 𝑃𝑖 𝑗 satisfy the conditions:

𝑃𝑖 𝑗 ≥ 0 for 𝑖, 𝑗 = 0, 1, 2, . . . (8.56)

∞∑
𝑗=0

𝑃𝑖 𝑗 = 1 for 𝑖 = 0, 1, 2, . . . (8.57)

The condition 8.57 merely expresses the fact that some transition occurs at each
trial. (For convenience, one says that a transition has occurred even if the state
remains unchanged.)

A Markov process is completely defined once its transition probability matrix
and initial state 𝑋0 (or, more generally, the probability distribution of 𝑋0 ) are
specified. we shall now prove this fact. Let Pr {𝑋0 = 𝑖} = 𝑝𝑖 . It is enough to
show how to compute the quantities

Pr {𝑋0 = 𝑖0, 𝑋1 = 𝑖1, 𝑋2 = 𝑖2, . . . , 𝑋𝑛 = 𝑖𝑛} (8.58)

since any probability involving 𝑋𝑗1 , . . . , 𝑋𝑗𝑘 , for 𝑗1 < · · · < 𝑗𝑘 , can be obtained,
according to the axiom of total probability, by summing terms of the form 8.58.
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By the definition of conditional probabilities, we obtain:

Pr {𝑋0 = 𝑖0, 𝑋1 = 𝑖1, 𝑋2 = 𝑖2, . . . , 𝑋𝑛 = 𝑖𝑛}
=Pr {𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑛−1 = 𝑖𝑛−1}
× Pr {𝑋𝑛 = 𝑖𝑛 | 𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑛−1 = 𝑖𝑛−1} .

(8.59)

Now, by the definition of a Markov process,

Pr {𝑋𝑛 = 𝑖𝑛 | 𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑛−1 = 𝑖𝑛−1}
= Pr {𝑋𝑛 = 𝑖𝑛 | 𝑋𝑛−1 = 𝑖𝑛−1} = 𝑃𝑖𝑛−1 ,𝑖𝑛

(8.60)

Substituting 8.60 into 8.59 gives:

Pr {𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑛 = 𝑖𝑛}
= Pr {𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑛−1 = 𝑖𝑛−1} 𝑃𝑖𝑛−1 ,𝑖𝑛 .

Then, upon repeating the argument 𝑛 − 1 additional times, 8.58 becomes

Pr {𝑋0 = 𝑖0, 𝑋1 = 𝑖1, . . . , 𝑋𝑛 = 𝑖𝑛}
= 𝑝𝑖0𝑃𝑖0 ,𝑖1 · · · 𝑃𝑖𝑛−2 ,𝑖𝑛−1𝑃𝑖𝑛−1 ,𝑖𝑛 .

(8.61)

This shows that all finite-dimensional probabilities are specified once the
transition probabilities and initial distribution are given, and in this sense, the
process is defined by these quantities.

Related computations show that 8.54 is equivalent to the Markov property in
the form

Pr {𝑋𝑛+1 = 𝑗1, . . . , 𝑋𝑛+𝑚 = 𝑗𝑚 | 𝑋0 = 𝑖0, . . . , 𝑋𝑛 = 𝑖𝑛}
= Pr {𝑋𝑛+1 = 𝑗1, . . . , 𝑋𝑛+𝑚 = 𝑗𝑚 | 𝑋𝑛 = 𝑖𝑛}

(8.62)

for all time points 𝑛, 𝑚 and all states 𝑖0, . . . , 𝑖𝑛 , 𝑗1, . . . , 𝑗𝑚 . In other words, once
8.62 is established for the value 𝑚 = 1, it holds for all 𝑚 ≥ 1 as well.

Example: a Markov chain 𝑋0, 𝑋1, 𝑋2, . . . has the following transition
probability matrix:

P =


0.1 0.1 0.8
0.2 0.2 0.6
0.3 0.3 0.4

 . (8.63)
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The states are 0, 1, 2. Determine the conditional probability:

Pr {𝑋1 = 1, 𝑋2 = 1 | 𝑋0 = 0}

The fact that we are conditioning the two states 𝑋1 and 𝑋2 on the state 𝑋0 and
we know that 𝑋0 = 0 allows us to solve the problem as follows:

Pr {𝑋1 = 1, 𝑋2 = 1 | 𝑋0 = 0} = 𝑃01𝑃11 = 0.1 × 0.2 = 0.02.

8.6.6.0.1 Markov chains

A Markov chain or Markov process is a stochastic model describing a sequence
of possible events in which the probability of each event depends only on the
state attained in the previous event.
In mathematical terms, let {𝑋0, 𝑋1, . . .} be a sequence of random variables.
Then, {𝑋0, 𝑋1, . . . } is a Markov chain if it satisfies the Markov property 8.54 for
all 𝑡 = 1, 2, 3, . . . and for all states 𝑠0, 𝑠1, 𝑠2, . . . .
A countably infinite sequence, in which the chain moves state at discrete time
steps, gives a discrete-time Markov chain Discrete-time Markov chain (DTMC).
A continuous-time process is called a continuous-time Markov chain
Continuous-time Markov chain (CTMC).
A Markov chain is completely defined by its one-step transition probability
matrix and the specification of a probability distribution on the state of the
process at time 0 . The analysis of a Markov chain concerns mainly the
calculation of the probabilities of the possible realizations of the process.
Central in these calculations are the 𝑛-step transition probability matrices
P(𝑛) =

𝑃(𝑛)𝑖 𝑗 . Here, 𝑃(𝑛)𝑖 𝑗 denotes the probability that the process goes from
state 𝑖 to state 𝑗 in 𝑛 transitions. Formally,

𝑃(𝑛)𝑖 𝑗 = Pr {𝑋𝑚+𝑛 = 𝑗 | 𝑋𝑚 = 𝑖} . (8.64)

Observe that we are dealing only with temporally homogeneous processes
having stationary transition probabilities, since otherwise the left side of 8.64
would also depend on 𝑚.
The Markov property allows us to express 8.64 in terms of

𝑃𝑖 𝑗 as stated in the
following theorem.
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Theorem.
The n-step transition probabilities of a Markov chain satisfy:

𝑃(𝑛)𝑖 𝑗 =
∞∑
𝑘=0

𝑃𝑖𝑘𝑃
(𝑛−1)
𝑘 𝑗 , (8.65)

where we define

𝑃(0)𝑖 𝑗 =


1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
. (8.66)

From the theory of matrices, we recognize the relation 8.65 as the formula for
matrix multiplication so that P(𝑛) = P × P(𝑛−1). By iterating this formula, we
obtain

P(𝑛) = P × P × · · · × P︸             ︷︷             ︸
𝑛 factors

= P𝑛 . (8.67)

In other words, the 𝑛-step transition probabilities 𝑃(𝑛)𝑖 𝑗 are the entries in the
matrix P𝑛 , the 𝑛-th power of P.

Proof. The proof proceeds via a first step analysis, a breaking down, or analysis,
of the possible transitions on the first step, followed by an application of the
Markov property. The event of going from state 𝑖 to state 𝑗 in 𝑛 transitions can
be realized in the mutually exclusive ways of going to some intermediate state
𝑘(𝑘 = 0, 1, . . .) in the first transition, and then going from state 𝑘 to state 𝑗 in the
remaining (𝑛 − 1) transitions. Because of the Markov property, the probability
of the second transition is 𝑃(𝑛−1)

𝑘 𝑗 and that of the first is clearly 𝑃𝑖𝑘 . If we use the
law of total probability, then 8.65 follows. The steps are

𝑃(𝑛)𝑖 𝑗 = Pr {𝑋𝑛 = 𝑗 | 𝑋0 = 𝑖} =
∞∑
𝑘=0

Pr {𝑋𝑛 = 𝑗 , 𝑋1 = 𝑘 | 𝑋0 = 𝑖}

=
∞∑
𝑘=0

Pr {𝑋1 = 𝑘 | 𝑋0 = 𝑖}Pr {𝑋𝑛 = 𝑗 | 𝑋0 = 𝑖, 𝑋1 = 𝑘}

=
∞∑
𝑘=0

𝑃𝑖𝑘𝑃
(𝑛−1)
𝑘 𝑗 .

(8.68)

If the probability of the process initially being in state 𝑗 is 𝑝 𝑗 , i.e., the
distribution law of 𝑋0 is Pr {𝑋0 = 𝑗} = 𝑝 𝑗 , then the probability of the process
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being in state 𝑘 at time 𝑛 is

𝑝(𝑛)𝑘 =
∞∑
𝑗=0

𝑝 𝑗𝑃
(𝑛)
𝑗𝑘 = Pr {𝑋𝑛 = 𝑘} . (8.69)

□

Example: a Markov chain {𝑋𝑛} om the states 0, 1, 2 has the following transition
probability matrix:

P =


0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

 . (8.70)

The two-step transition matrix 𝑃2 is:

P2 =


0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

 ×


0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

 =


0.47 0.13 0.4
0.42 0.14 0.44
0.26 0.17 0.57


The probability of

Pr {𝑋3 = 1 | 𝑋1 = 0}
is simply equal to:

Pr {𝑋3 = 1 | 𝑋1 = 0} = P2
01 = 0.13.

8.6.6.0.2 Absorbing Markov chains

An absorbing Markov chain is a Markov chain in which every state can reach an
absorbing state. An absorbing state is a state that, once entered, cannot be left.
Definition:A Markov chain is an absorbing chain if:

1. there is at least one absorbing state and;

2. it is possible to go from any state to at least one absorbing state in a finite
number of steps.

In an absorbing Markov chain, a state that is not absorbing is called transient.
Let’s analyze the canonical form of an absorbing Markov chain.
Let an absorbing Markov chain with transition matrix 𝑃 have 𝑡 transient states
and 𝑟 absorbing states. Unlike a typical transition matrix, the rows of 𝑃
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represent sources, while columns represent destinations. Then

𝑃 =

[
𝑄 𝑅

0 𝐼𝑟

]
where 𝑄 is a 𝑡-by-t matrix, 𝑅 is a nonzero 𝑡-by- 𝑟 matrix, 0 is an 𝑟-by-t zero
matrix, and 𝐼𝑟 is the 𝑟-by- 𝑟 identity matrix. Thus, 𝑄 describes the probability
of transitioning from some transient state to another while 𝑅 describes the
probability of transitioning from some transient state to some absorbing state.
The probability of transitioning from 𝑖 to 𝑗 in exactly 𝑘 steps is the (𝑖 , 𝑗)-entry of
𝑃𝑘 , further computed below. when considering only transient states, the
probability found in the upper left of 𝑃𝑘 , the (𝑖 , 𝑗)-entry of 𝑄𝑘 .
Expected number of visits to a transient state
A basic property about an absorbing Markov chain is the expected number of
visits to a transient state 𝑗 starting from a transient state 𝑖 (before being
absorbed). This can be established to be given by the (𝑖, 𝑗) entry of so called
fundamental matrix N, obtained by summing 𝑄𝑘 for all 𝑘 (from 0 to∞ ). It can
be proven that:

𝑁 :=
∞∑
𝑘=0

𝑄𝑘 = (𝐼𝑡 −𝑄)−1

where 𝐼𝑡 is the 𝑡-by-t identity matrix. The computation of this formula is the
matrix equivalent of the geometric series of scalars,

∑∞
𝑘=0 𝑞

𝑘 = 1
1−𝑞 .

with the matrix 𝑁 in hand, also other properties of the Markov chain are easy
to obtain.
Expected number of steps before being absorbed
The expected number of steps before being absorbed in any absorbing state,
when starting in transient state 𝑖 can be computed via a sum over transient
states.
The value is given by the 𝑖 − 𝑡ℎ entry of the vector:

t := 𝑁1,

where 1 is a length-t column vector whose entries are all 1.
Absorbing probabilities
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By induction,

𝑃𝑘 =

[
𝑄𝑘 (

1 −𝑄𝑘 ) 𝑁𝑅
0 𝐼𝑟

]
The probability of eventually being absorbed in the absorbing state 𝑗 when
starting from transient state 𝑖 is given by the (𝑖 , 𝑗)-entry of the matrix:

𝐵 := 𝑁𝑅.

The number of columns of this matrix equals the number of absorbing states 𝑟.
An approximation of those probabilities can also be obtained directly from the
(𝑖, 𝑗)-entry of 𝑃𝑘 for a large enough value of 𝑘, when 𝑖 is the index of a
transient, and 𝑗 the index of an absorbing state. This is because:(

lim
𝑘→∞

𝑃𝑘
)
𝑖,𝑡+𝑗

= 𝐵𝑖 , 𝑗 .

Transient visiting probabilities
The probability of visiting transient state 𝑗 when starting at a transient state 𝑖 is
the (𝑖, 𝑗)-entry of the matrix:

𝐻 := (𝑁 − 𝐼𝑡) (𝑁dg
)−1 ,

where 𝑁dg is the diagonal matrix with the same diagonal as 𝑁 .
Variance on number of transient visits
The variance on the number of visits to a transient state 𝑗 with starting at a
transient state 𝑖 (before being absorbed) is the (𝑖, 𝑗)-entry of the matrix:

𝑁2 := 𝑁
(
2𝑁dg − 𝐼𝑡 ) − 𝑁sq

where 𝑁sq is the Hadamard product of 𝑁 with itself (i.e. each entry of 𝑁 is
squared).
Variance on number of steps
The variance on the number of steps before being absorbed when starting in
transient state 𝑖 is the ith entry of the vector

(2𝑁 − 𝐼𝑡) t − tsq ,
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where tsq is the Hadamard product of t with itself (i.e., as with 𝑁sq, each entry
of t is squared).

8.7 MOVING AVERAGE FILTER

In statistics, a moving average (see [2]) (rolling average or running average) is
an average calculation to analyze data points by creating a series of averages of
different selections of the full data set. It is also called a moving mean or
rolling mean and is a type of finite impulse response filter.
Given a series of numbers and a fixed subset size, the first element of the
moving average is obtained by taking the average of the initial fixed subset of
the number series. Then the subset is modified by ”shifting forward”; that is,
excluding the first number of the series and including the next value in the
subset.

A moving average is commonly used with time series data to smooth out
short-term fluctuations and highlight longer-term trends or cycles. The
threshold between short-term and long-term depends on the application, and
the parameters of the moving average will be set accordingly. It is also used in
economics to examine gross domestic product, employment or other
macroeconomic time series. Mathematically, a moving average is a type of
convolution and so it can be viewed as an example of a low-pass filter used in
signal processing.
Viewed simplistically it can be regarded as smoothing the data.
In financial applications a simple moving average (SMA) is the unweighted
mean of the previous 𝑘 data-points. However, in science and engineering, the
mean is normally taken from an equal number of data on either side of a
central value. This ensures that variations in the mean are aligned with the
variations in the data rather than being shifted in time. An example of a simple
equally weighted running mean is the weighted mean over the last 𝑤 entries of
a data-set containing 𝑛 entries. Let those data-points be 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑛 .
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Let’s denote the mean over the last 𝑤 data points as 𝑆𝑀𝐴𝑤 , defined as follows:

𝑆𝑀𝐴𝑤 =
𝑃𝑛−𝑤+1 + 𝑃𝑛−𝑤+2 + · · · + 𝑃𝑛

𝑤

=
1
𝑤

𝑛∑
𝑘=𝑛−𝑤+1

𝑃𝑘

To calculate the next mean 𝑆𝑀𝐴𝑤,𝑛𝑒𝑥𝑡 with same sampling width w (also
called window), the new range from 𝑛 − 𝑤 + 2 to 𝑛 + 1 is considered. A new
value 𝑃𝑛+1 comes into the sum and the oldest value 𝑃𝑛−𝑤+1 is dropped out.
This allows to simplify the calculations, in a recursive way:

𝑆𝑀𝐴𝑤, next =
1
𝑤

𝑛+1∑
𝑘=𝑛−𝑤+2

𝑝𝑘

=
1
𝑤
(𝑝𝑛−𝑤+2 + 𝑝𝑛−𝑤+3 + · · · + 𝑝𝑛 + 𝑝𝑛+1︸                                       ︷︷                                       ︸∑𝑛+1

𝑘=𝑛−𝑤+2 𝑝𝑘

+ 𝑝𝑛−𝑤+1 − 𝑝𝑛−𝑤+1︸               ︷︷               ︸
=0

)

=
1
𝑤
(𝑝𝑛−𝑤+1 + 𝑝𝑛−𝑤+2 + · · · + 𝑝𝑛)︸                                   ︷︷                                   ︸

=𝑆𝑀𝐴𝑤, prev

−𝑝𝑛−𝑤+1

𝑤
+ 𝑝𝑛+1

𝑤

= 𝑆𝑀𝐴𝑤, prev + 1
𝑤
(𝑝𝑛+1 − 𝑝𝑛−𝑤+1)

This simplification is very important in terms of computational complexity as it
speeds up the algorithm from an initial 𝒪(𝑛𝑤), that is almost quadratic, to a
way better 𝒪(𝑛 + 𝑤), that is basically linear.

8.8 LOW PASS FILTERS

A low-pass filter is a filter that passes signals with a frequency lower than a
selected cutoff frequency and attenuates signals with frequencies higher than
the cutoff frequency. The exact frequency response of the filter depends on the
filter design.
An ideal low-pass filter completely eliminates all frequencies above the cutoff
frequency while passing those below unchanged; its frequency response is a
rectangular function and is a brick-wall filter. The transition region present in
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practical filters does not exist in an ideal filter. An ideal low-pass filter can be
realized mathematically (theoretically) by multiplying a signal by the
rectangular function in the frequency domain or, equivalently, convolution
with its impulse response, a sinc function, in the time domain.
However, the ideal filter is impossible to realize without also having signals of
infinite extent in time, and so generally needs to be approximated for real
ongoing signals, because the sinc function’s support region extends to all past
and future times. The filter would therefore need to have infinite delay, or
knowledge of the infinite future and past, to perform the convolution. It is
effectively realizable for pre-recorded digital signals by assuming extensions of
zero into the past and future, or, more typically, by making the signal repetitive
and using Fourier analysis.
Real filters for real-time applications approximate the ideal filter by truncating
and windowing the infinite impulse response to make a finite impulse
response; applying that filter requires delaying the signal for a moderate
period of time, allowing the computation to ”see” a little bit into the future.
This delay is manifested as phase shift. Greater accuracy in approximation
requires a longer delay.
Truncating an ideal low-pass filter result in ringing artifacts via the Gibbs
phenomenon, which can be reduced or worsened by the choice of windowing
function. Design and choice of real filters involves understanding and
minimizing these artifacts. For example, simple truncation of the sync function
will create severe ringing artifacts, which can be reduced using window
functions that drop off more smoothly at the edges.

Figure 8.11: Example of a filtered processed signal.
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8.8.1 BAND-PASS FILTERS

The four common filters (see [12]):

• low-pass filter, passes signals with a frequency lower than a certain cutoff
frequency and attenuates signals with frequencies higher than the cutoff
frequency;

• high-pass filter, passes signals with a frequency higher than a certain
cutoff frequency and attenuates signals with frequencies lower than the
cutoff frequency;

• a band-pass filter can be formed by cascading a high-pass filter and a
low-pass filter;

• a band-reject filter is a parallel combination of low-pass and high-pass
filters.

8.8.2 BUTTERWORTH FILTER

The Butterworth filter is a type of signal processing filter designed to have a
frequency response that is as flat as possible in the passband.
Hence its one of the most popular low pass filter.
The Nyquist rate or frequency is the minimum rate at which a finite bandwidth
signal needs to be sampled to retain all of the information. If a time series is
sampled at regular time intervals Δ𝑡, then the Nyquist rate is just 1

2Δ𝑡 .

8.9 ERROR’S PROPAGATION

In statistics, propagation of uncertainty (or propagation of error) is the effect of
variables’ uncertainties, that can be errors or random errors, on the uncertainty
of a function based on them.
When the variables are the values of experimental measurements they have
uncertainties due to measurement limitations (e.g., instrument precision)
which propagate due to the combination of variables in the function.

The general expressions for a scalar-valued function 𝑓 are:
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𝑓 =
𝑛∑
𝑖

𝑎𝑖𝑥𝑖 = ax,

𝜎2
𝑓 =

𝑛∑
𝑖

𝑛∑
𝑗

𝑎𝑖Σ𝑥𝑖𝑗𝑎 𝑗 = a𝚺𝑥aT,

(8.71)

where a is a row vector, the unitary element 𝑥𝑖 of x can be seen as the mean of a
gaussian random variable, with standard deviation 𝜎𝑖 . Each covariance term
𝜎𝑖 𝑗 can be expressed in terms of the correlation coefficient 𝜌𝑖 𝑗 by 𝜎𝑖 𝑗 = 𝜌𝑖 𝑗𝜎𝑖𝜎𝑗 ,
so that an alternative expression for the variance of 𝑓 is

𝜎2
𝑓 =

𝑛∑
𝑖

𝑎2
𝑖 𝜎

2
𝑖 +

𝑛∑
𝑖

𝑛∑
𝑗(𝑗≠𝑖)

𝑎𝑖𝑎 𝑗𝜌𝑖 𝑗𝜎𝑖𝜎𝑗 . (8.72)

In the case that the variables in 𝑥 are uncorrelated, this simplifies further to

𝜎2
𝑓 =

𝑛∑
𝑖

𝑎2
𝑖 𝜎

2
𝑖 . (8.73)

In the simple case of identical coefficients and variances, we find

𝜎 𝑓 =
√
𝑛 |𝑎 |𝜎. (8.74)

For the arithmetic mean, 𝑎 = 1/𝑛, the result is the standard error of the mean:

𝜎 𝑓 =
𝜎√
𝑛
. (8.75)

In the non linear case instead, neglecting correlations or assuming
independent variables yields a common formula among engineers and
experimental scientists to calculate error propagation, the variance formula:

𝑠 𝑓 =

√(
𝜕 𝑓
𝜕𝑥

)2
𝑠2
𝑥 +

(
𝜕 𝑓
𝜕𝑦

)2
𝑠2
𝑦 +

(
𝜕 𝑓
𝜕𝑧

)2
𝑠2
𝑧 + · · ·, (8.76)

where 𝑠 𝑓 represents the standard deviation of the function 𝑓 , 𝑠𝑥 represents the
standard deviation of 𝑥, 𝑠𝑦 represents the standard deviation of 𝑦, and so forth.
It is important to note that this formula is based on the linear characteristics of
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the gradient of 𝑓 and therefore it is a good estimation for the standard
deviation of 𝑓 as long as 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧 , . . . are small enough. Specifically, the linear
approximation of 𝑓 has to be close to 𝑓 inside a neighbourhood of radius
𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧 , . . . .
For example, any non-linear differentiable function, 𝑓 (𝑎, 𝑏), of two variables, 𝑎
and 𝑏, can be expanded as

𝑓 ≈ 𝑓 0 + 𝜕 𝑓
𝜕𝑎
𝑎 + 𝜕 𝑓

𝜕𝑏
𝑏

now, taking variance on both sides, and using the formula for variance of a
linear combination of variables:

Var(𝑎𝑋 + 𝑏𝑌) = 𝑎2 Var(𝑋) + 𝑏2 Var(𝑌) + 2𝑎𝑏 ∗ Cov(𝑋,𝑌)

hence:

𝜎2
𝑓 ≈

����𝜕 𝑓𝜕𝑎 ����2 𝜎2
𝑎 +

����𝜕 𝑓𝜕𝑏 ����2 𝜎2
𝑏 + 2

𝜕 𝑓
𝜕𝑎

𝜕 𝑓
𝜕𝑏

𝜎𝑎𝑏

where 𝜎 𝑓 is the standard deviation of the function 𝑓 , 𝜎𝑎 is the standard
deviation of 𝑎, 𝜎𝑏 is the standard deviation of 𝑏 and 𝜎𝑎𝑏 = 𝜎𝑎𝜎𝑏𝜌𝑎𝑏 is the
covariance between 𝑎 and 𝑏. See [7] for more details.

8.10 ROOT MEAN SQUARE ERROR

The Root mean square error (RMSE), is a measure of the difference between the
true values of a model and the estimated ones of an estimator of such a model.
RMSE represents the square root of the second sample moment of the
differences between the predicted values and the observed/measured ones. In
other words, is the quadratic mean of these differences, that are also called the
residuals.
Another interpretation of the RMSE is that it can be seen as the standard
deviation of the error.
The lower the value of the RMSE, the better the model is. A perfect model (a
hypothetic model that would always predict the exact expected value) would
have a RMSE value of 0.
The Root Mean Squared Error has the advantage of representing the amount of
error in the same unit as the predicted column making it easy to interpret. If
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you are trying to predict an amount in meters, then the RMSE can be
interpreted as the amount of error in meters.

8.11 CODE SNIPPETS

Algorithm 2:

1

2 def find_bounds():
3 if g < 2: # called just when M = 1, initialization
4 m_low = (n2[1] - n4[1]) / (n2[0] - n4[0])
5 m_high = (n1[1] - n3[1]) / (n1[0] - n3[0])
6

7 else:
8 if (n2[1] - n4[1]) / (n2[0] - n4[0]) > m_low:
9 m_low = (n2[1] - n4[1]) / (n2[0] - n4[0])

10 if (n1[1] - n3[1]) / (n1[0] - n3[0]) < m_high:
11 m_high = (n1[1] - n3[1]) / (n1[0] - n3[0])

Code 8.1: find_bounds function.

1 def find_theta_target():
2 if g == 0:
3 return -pi/2
4 if flag_plus:
5 if math.atan(m_high)- delta_theta > math.atan(m_low):
6 return math.atan(m_high)- delta_theta
7 else:
8 return math.atan(m_high)
9 else:

10 if math.atan(m_low) + delta_theta < math.atan(m_high):
11 return math.atan(m_low) + delta_theta
12 else:
13 return math.atan(m_low)

Code 8.2: find_theta_target function.

Algorithm 3:

1 def labelling(a):
2 # a is a 2D vector
3 if np.random.uniform() >= e:
4 if -a[1] + m_coeff * a[0] + q_coeff >= 0:
5 return +1
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6 else:
7 return -1
8 else:
9 if -a[1] + m_coeff * a[0] + q_coeff >= 0:

10 return -1
11 else:
12 return +1

Code 8.3: 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑡ℎ_𝑢𝑛𝑖 𝑓 _𝑛𝑜𝑖𝑠𝑒( ) function.

1 def find_prec():
2 # y[-4] till y[-1] is on the new side
3 t=0
4 while True:
5 if y[-5-t]*y[-1]<0 and y[-6-t]*y[-1]<0 and y[-7-t]*y[-1]<0

and y[-8-t]*y[-1]<0:
6 return [x[-6-t], z[-6-t]]
7 t += 1

Code 8.4: 𝑓 𝑖𝑛𝑑_𝑝𝑟𝑒𝑐( ) function.

1 def update_flag_plus():
2 if y[-1]>0 and y[-2]>0 and y[-3]>0 and y[-4]>0:
3 return True
4 if y[-1]<0 and y[-2]<0 and y[-3]<0 and y[-4]<0:
5 return False

Code 8.5: 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠( ) function.

1 def find_bounds():
2 if not flag_convergence:
3 if g >= 2:
4 if (P2[1] - P4[1]) / (P2[0] - P4[0]) > m_low:
5 m_low = (P2[1] - P4[1]) / (P2[0] - P4[0])
6 flag_improv = True
7 if (P1[1] - P3[1]) / (P1[0] - P3[0]) < m_high:
8 m_high = (P1[1] - P3[1]) / (P1[0] - P3[0])
9 flag_improv = True

10 else:
11 m_low = (P2[1] - P4[1]) / (P2[0] - P4[0])
12 m_high = (P1[1] - P3[1]) / (P1[0] - P3[0])
13 if flag_convergence==False and m_high-m_low <= 2*

delta_theta:
14 j_convergence = j
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15 flag_convergence = True

Code 8.6: 𝑓 𝑖𝑛𝑑_𝑏𝑜𝑢𝑛𝑑𝑠( ) function.

1 def find_theta_target():
2 if g == 0:
3 return -pi/2
4 if flag_plus:
5 if math.atan(m_high)- delta_theta > math.atan(m_low) and

not flag_improv:
6 return math.atan(m_high)- delta_theta
7 else:
8 flag_improv = False
9 return math.atan(m_high)

10

11 else:
12 if math.atan(m_low) + delta_theta < math.atan(m_high) and

not flag_improv:
13 return math.atan(m_low) + delta_theta
14 else:
15 flag_improv = False
16 return math.atan(m_low)

Code 8.7: 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() function.

Algorithm 4:
1 def find_theta_target():
2 if g == 0:
3 return -pi/2
4 if flag_plus:
5 return pi/2
6 else:
7 return -pi/2

Code 8.8: New 𝑓 𝑖𝑛𝑑_𝑡ℎ𝑒𝑡𝑎_𝑡𝑎𝑟𝑔𝑒𝑡() function.

1 def update_flag_plus():
2 if y[-1]>0 and y[-2]>0 and y[-3]> 0 and y[-4]> 0 and y[-5]> 0 and

y[-6]> 0 and y[-7]> 0 and y[-8]> 0 and y[-9]> 0:
3 return True
4 if y[-1]<0 and y[-2]<0 and y[-3]< 0 and y[-4]< 0 and y[-5]< 0 and

y[-6]< 0 and y[-7]< 0 and y[-8]< 0 and y[-9]< 0:
5 return False

Code 8.9: 𝑢𝑝𝑑𝑎𝑡𝑒_ 𝑓 𝑙𝑎𝑔_𝑝𝑙𝑢𝑠() function.
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1 def labelling(a): #a is a 2D vector
2 if -a[1] -m*a[0] - q + np.random.normal(scale=sigma) > 0:
3 return +1
4 else:
5 return -1

Code 8.10: New 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔( ) function.
Algorithm 5:

1 def find_point()
2 llen=len(doubt_points_x)
3 if flag_plus == False:
4 if llen %2==0:
5 index = llen/2 + (doubt_points_y)-1 #--1 for index 0
6 return avg(p[index], p[index+1])
7 else:
8 index = (llen-1)/2 + (doubt_points_y) -1
9 return p[index]

10 else:
11 if llen %2==0:
12 index = llen/2 - (doubt_points_y) -1 #--1 for index

0
13 return avg(p[index], p[index+1])
14 else:
15 index = (llen-1)/2 - (doubt_points_y) -1
16 return p[index]

Code 8.11: 𝑓 𝑖𝑛𝑑_𝑝𝑜𝑖𝑛𝑡( ) function.

Non linear curves:
1 def find_theta_target():
2 if g == 0:
3 return -pi/2
4 if flag_plus:
5 if (P3[0]-P1[0]<0):
6 return atan(m_high) + delta_theta + pi
7 elif P3[0]-P1[0]>0:
8 return atan(m_high) + delta_theta
9 else:

10 if P4[0] - P2[0] > 0:
11 return atan(m_low) - delta_theta
12 else:
13 return atan(m_low) - delta_theta + pi

Code 8.12: find_theta_target function.
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