
Università degli Studi di Padova

Scuola di Ingegneria

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Tesi di Laurea Magistrale

Assembly, integration and testing of a robotic
facility for the simulation of spacecraft attitude

and orbital maneuvers

Candidato
Alex Caon

1111055

Relatore
Prof. Alessandro Francesconi

Correlatore
Dr. Andrea Antonello

Anno Accademico 2017/2018

ii

Alla mia famiglia

iv

Abstract

Recent developments in Active Debris Removal and On-Orbit Servicing are setting
the need for new autonomous systems, capable of a different cohort of operations,
such as maintenance, upgrades and re-fueling. The success of this type of missions is
dependent on the way satellites interact with each other in a micro-gravity environ-
ment. Nowadays, there are limited ways for simulating micro-gravity in a laboratory
setting, and they mainly consist in water pools, low friction tables, drop towers, para-
bolic flights and robotic arms. Among these techniques, robotic arms constitute the
only option that allows to easily and repeatedly simulate the full pose (position and
attitude) of a rigid body; through dedicated algorithms, robotics facilities permit to
reproduce the physics of micro-gravity. Furthermore, the software can implement re-
lative motion, attitude reaction-control systems and docking impacts between target
and chaser.

In this thesis, we illustrate the development and testing of a low-cost robotic arm
for the simulation of rendezvous and docking maneuvers. While the target is fixed,
the chaser is represented by the robotic arm’s end effector. In this work, we first
give an overview on the robotic arm structure and on the control hardware, after we
illustrate in deep the control algorithm to test the interactions between vehicles in
micro-gravity environment in a laboratory settings with the ground gravity, and the
strategies used for the hardware and software architecture and how to implement
them into the electronic hardware used for the control.

v

vi

Sommario

I recenti sviluppi in Active Debris Removal e On-Orbit Servicing stanno stabilendo
la necessità di nuovi sistemi autonomi, in grado di compiere diverse operazioni, come
la manutenzione, gli aggiornamenti e il rifornimento. Il successo di questo tipo di
missioni dipende dal modo in cui i satelliti interagiscono tra loro in un ambiente a
microgravità. Al giorno d’oggi, ci sono modi limitati di simulare la microgravità in
un laboratorio, e consistono principalmente in piscine, tavoli a basso attrito, torri
di lancio, voli parabolici e bracci robotici. Tra queste tecniche, i bracci robotici
costituiscono l’unica opzione che consente di descrivere facilmente e ripetutamente
i sei gradi di libertà (posizione e assetto) di un corpo rigido; attraverso algoritmi
dedicati, le facility robotiche consentono di simulare la fisica della microgravità.
Inoltre, il software può implementare il moto relativo, i sistemi di controllo alla
reazione di assetto e gli impatti di docking tra target e chaser.

In questa tesi, illustriamo lo sviluppo e il test di un braccio robotico a basso costo
per la simulazione di rendezvous e manovre di docking. Mentre il target è fisso, il
chaser è rappresentato dall’end effector del braccio robotico. In questo lavoro, for-
niamo prima una panoramica sulla struttura del braccio robotico e sull’hardware di
controllo, dopo aver illustrato in profondità l’algoritmo di controllo per riprogdurre
virtualmente le interazioni tra veicoli che avvengono microgravità in un laborato-
rio a terra e le strategie utilizzate per l’architettura hardware e software e come
implementarli nel computer industriale utilizzato per il controllo .

vii

viii

Ringraziamenti

Ecco il capitolo tanto temuto, i ringraziamenti. Temuto sia perché mi provocano
imbarazzo sia perché ci sono tante persone da ringraziare e sicuramente me ne di-
menticherò qualcuna. Dunque iniziamo.

Inizio con il ringraziare il mio migliore amica Spartaco, per tutto il supporto che
mi ha dato in questi anni. È sempre stato leale e sincero, senza il suo aiuto non ce
l’avrei fatta a superare alcuni momenti. Ringrazio anche zio Marco per tutte le serate
passate insieme a grigliare e a bere birra; insieme a lui ringrazio anche sua moglie
Marica, Cristian, Livio e Rita per i bei momenti passati insieme, per il supporto
datomi in questi ultimi anni e perché mi hanno fatto sentire parte della famiglia del
Kustom Store.

Tra gli amici da ringraziare ci sono anche i compagni di classe dell’ ITIS E. Bar-
santi: Riccardo Berti, Mattia Cimolin, Francesco Parisotto con i quali ho studiato
per i primi esami, grazie a loro l’impatto con l’università è stato meno duro. Gli
amici di “Operazione Marmellata” (Matteo Meneghel, Alberto Compagnin, Alberto
Cenzato, Enrico Lungavia, Matteo Duzzi, Giulia Sarego, Lorenzo Olivieri, Gilberto
Grassi, Arthur), che mi hanno dato supporto fisico e morale durante la tesi e gli
ultimi esami, un divano per dormire (grazie Lorenzo e Giulia) e tanti bei momenti.
Poi ci sono altri amici di esami da ringraziare, tra i quali Lorenzo Berto e Gabriele
Fonti per le interminabili chiamate-studio in Skype. Vorrei aggiungere alla fine, poco
prima di statmpare la tesi, un ulteriore ringraziamento a Matteo Meneghel, che mi
ha aiutato a fare i video finali del braccio robotico in movimento.

Colgo l’occasione per ringraziare il Prof. Alessandro Francesconi che mi fatto da
relatore anche per questa tesi. Ringrazio anche il Dr. Andrea Antonello per aver-
mi seguito durante il mio lavoro e avermi corretto gli infiniti errori di inglese per
le risate fatte in laboratorio e per avermi fatto provare uno degli amplificatori per
chitarra da lui costruiti. E lasciatemelo dire, quell’amplificatore ha uno dei migliori
suoni che io abbia mai sentito, anche se il chitarrista lasciava a desiderare. Vorrei
anche ringraziare Antonio Valsecchi, che durante il corso da lui tenuto ha insegnato
in modo chiaro ed esauriente le basi del funzionamento dei PLC e ha sempre risposto
alle mie domande (a volte anche assurde) sempre in modo preciso.

Passiamo ora a ringraziare la mia famiglia a partire dai nonni paterni che mi
hanno fatto capire che la mia strada era lo studio e i nonni materni con i quali si è

ix

creato un forte legame. Vorrei fare un ringraziamento speciale a mio nonno materno
per avermi portato in cerca di funghi e sua moglie per avermi sempre procurato dei
dolcetti da portarmi via durante le scampagnate. Ringrazio anche gli zii tutti e le
rispettive famiglie. Un ringraziamento speciale va al mio gatto Balù che con il suo
affetto mi ha rallegrato in molti momenti. Alla fine i ringraziamenti più speciali, cioè
quelli alle cui persone è dedicata questa tesi. Parto con il ringraziare mio fratello
Michael, che nonostante in questi anni ci siamo visti poco, io continuerò a volergli
bene e a ricordare che alcuni tra bei momenti della mia vita li ho vissuti con lui.
Ringrazio mio papà che non ha potuto vedere tutto ciò, ma che mi ha insegnato i
veri valori della vita, oltre ad avermi insegnato a pescare. Infine ringrazio la persona
più importante di tutti, quella senza la quale io non sarei arrivato fin qui, quella
che più di ogni altro ha creduto in me, quella che si è sacrificata più di tutti per
farmi arrivare sin qui, quella che mi ha supportato e sopportato, quella che mi ha
insegnato che la vita può essere dura, ma domani è comunque un altro giorno e va
sempre affrontato al meglio. Grazie mamma.

x

Contents

1 Introduction 1
1.1 The need for a robotic arm facility 1
1.2 Thesis motivation . 2

2 Robotic arm structure and electronics configuration 3
2.1 Mechanical structure . 3
2.2 Electronic configuration . 3

3 Robotic theory 9
3.1 Frames rotation and translation . 9
3.2 Direct and inverse kinematics . 11
3.3 Differential kinematics . 12
3.4 Dynamics . 14

3.4.1 Newton-Euler approach . 14
3.4.2 Euler-Lagrange approach . 15
3.4.3 CRBA: Composite-Rigid-Body Algorithm 16

3.5 Joint control architecture . 17
3.6 Computed-Torque Controller . 19

3.6.1 Tuning of PD controller . 21
3.7 Trajectory generator . 23

4 CANopen Communication 25
4.1 Introduction . 25
4.2 Physical structure of the CANopen network 25
4.3 Data transfer . 26
4.4 Object Dictionary . 29
4.5 Device errors . 40
4.6 Device monitoring via Heartbeat messages 43

5 Electronic hardware Configuration and settings 45
5.1 MAXON R©EPOS2 Controller . 45

5.1.1 EPOS2 control architecture 45
5.1.2 EPOS Studio . 52
5.1.3 EDS File and DCF file . 61
5.1.4 LED in EPOS2 Controllers 62
5.1.5 Digital Input on EPOS2 . 62

xi

5.2 B&R Automation R©PLC . 64
5.2.1 Digital Input module . 65
5.2.2 Hardware configuration with Automation Studio 68

6 Software configuration 73
6.1 Automation Studio environment for software configuration 73

6.1.1 Software configuration . 73
6.1.2 Assignment of the variables 77

6.2 CANopen CiA 402 protocol . 81
6.2.1 Controlword and Statusword: Finite State Machine 81

6.3 Position-based modes of operation 83
6.3.1 Homing Mode . 83
6.3.2 Profile Position Mode . 88

6.4 Interpolated Position Mode . 94
6.4.1 Axis Synchronization . 102
6.4.2 PVT Algorithm . 103

6.5 The transition control method . 104
6.5.1 React to the dangers . 106

6.6 B&R Automation R©package for Simulink R© 107

7 Final Results 115
7.1 Discrete Motion . 115
7.2 Test results . 116

8 Conclusions 121
8.1 Comments . 121
8.2 Future works . 121

xii

List of symbols and abbreviations

List of Symbols

Robotic theory

Of generic reference frame origin
Ow world reference frame origin
AP distance vector between two reference frames expressed in frame A
vA vector expressed in reference frame A
A
BR rotation matrix from frame A to frame B
A
BT roto-translation matrix from frame A to frame B
ṽ normalized vector
ω angular rate
ω̇ angular acceleration
v linear velocity
v̇ linear acceleration
vc center of mass linear velocity
v̇c center of mass linear acceleration
q joint angular position
q̇ joint angular rate
q̈ joint angular acceleration
I inertia matrix
F inertia force
N inertia couple
f force
n couple
ti torque generated by the i− th joint
τ external torque (CRBA)
M mass matrix (CRBA)
C acceleration vector (CRBA)

List of abbreviations

Robotic theory

CRBA Composite-Rigid-Body Algorithm
CTC: Computed Torque Control

xiii

Communication
CAN Controller Area Network

node-ID node identification
OD Object Data
RW Read and Write
RO Read Only
DC Direct Current (referred to a motor)
PM Permanent Magnets (referred to a motor)
BL Brush Less (referred to a motor)

SDO Service Data Object
PDO Process Data Object
COB Communication Object (CAN message)

TxPDO Transmit PDO
RxPDO Receive PDO

Software configuration

AS Automation Studio
CiA CAN in Automation
FSM Finite State Machine

xiv

Chapter 1

Introduction

1.1 The need for a robotic arm facility

The fact that the number of human objects in space is increasing leads to new
missions for the Active Debris Removal and for the On Orbit Servicing. These
missions set a new challenge for autonomous systems capable of different operations,
such as maintenance, upgrades and re-fueling. The success of such missions, is strictly
connect on how the vehicles interact with each other in micro-gravity environment.
The facilities which are able to simulate relative motions between orbiting objects
includes water pools, parabolic flights, drop tower, low friction tables and robotic
arms.

Swimming pools have the benefits of the zero buoyancy, once it have been met.
But the drag force the water acting on the system plays an important role both
on the description of the problem and on the system maintenance, in fact, the zero
buoyancy could be disturbed by the drag force.

Parabolic flights allows to reproduce orbital conditions, but for a short time lapse
and with many constraints. Moreover it is an expensive solution and it is not suitable
for long testing campaigns. Drop towers have the same application limits than the
parabolic flights.

Low friction tables, instead, have the advantages to replicate the same conditions
of a micro-gravity environment if the setup is adequate (platform balanced and sur-
face flat and smooth), the only lack is that them guarantees to test only 2 of the 3
translation degree of freedom.

Ultimately, the robotics arm constitute the only option that allows to simulate the
full pose (position and attitude) of a rigid body. But the micro-gravity scenario can
be only simulated through special algorithms by imposing the motion characterized
by the desired dynamics. Software is also able to perform orbital operations in which
contact is present.

Nowadays there are very few robotic facilities. One of the most important is the
European Proximity Operations Simulator (EPOS) experiment conducted by the
Deutches Zentrum für Luft und Raumfahrt (DLR). Where an industrial PC feeds in
synchronous trajectory via a Simulink R©interface. This, with the control measuring
system allow an high position and angular accuracy. All the trajectories are carried
out via an implementation of Clohessy-Wiltshire expressions.

1

2 Chapter 1. Introduction

1.2 Thesis motivation

This thesis is the natural continuation of the Andrea Antonello’s PhD thesis. In
which he developed a low cost robotic arm facility which, through dedicated algo-
rithms, is able to simulate the motion of vehicles in micro-gravity environment in
a laboratory setting. My thesis work starts where Dr. Andrea Antonello ended his
work [2]. So my activities were about the assembly of the robotic arm and about
the programming of the joint positioning controllers through the programming of
the B&R Automation R©PLC. Then I made some other works, such as the support-
ing structure design and some wiring. Finally a simple interface between the B&R
Automation R©PLC and Simulink R©was done.

Take this project into the operating state would be very important for the activ-
ities under study at CISAS research center for Active Debris Removal as well as for
on-orbit servicing: the robotic arm could serve as the main testing facility for the
verification and simulation of theoretical and numerical analysis. Moreover it could
be used as well as for testing realistic orbital operation by instrumenting the end
effector with innovative sensors.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 2

Robotic arm structure and
electronics configuration

A robotic arm is the result of the love story between mechanic and electronic : the
mechanic part provides the links structure while the electronic provides the motion
for the links. For this reason, in a robotic arm, one cannot exist without the other.

2.1 Mechanical structure

The mechanical structure is that part which connects the motors to the links. Hence
it is important that it is enough stiff for avoiding misalignments during the manip-
ulator operations. Misalignments could be deleterious for the precision of the tasks
the robotic are is called to make. For more information about the choice of motor
configuration see [2]. From figure 2.1 to figure 2.4 all the joint blocks (with the re-
spective renders) are shown. Finally the figure 2.5 pictures the render of the entire
robotic arm.

In figure 2.6 is shown the complete mechanic plant of the manipulator, including
both the robotic arm and the support structure. This is used to support the links 2
and 3 weight when the motors aren’t fed with the power supply.

2.2 Electronic configuration

The electronic configuration is that part which makes the links move, and controls
their movement in order to satisfy the request precision. The chosen motors are
manufactured by MAXON R©motors and their main characteristics are listed in tables
5.1. The joint positions are controlled by Electronic POSition controllers (EPOS2
by MAXON R©). Due to the robotic arm specific tasks, a position control was chosen.
In fact, in order to simulate relative orbit position it is easier to make a position
control instead of a torque control (which also requires a great knowledge of the
robotic arm geometry). However, a torque control is used in the virtual environment
of Simulink R©for getting the joint positions vectors.

The choice of the motors is based on the search of a trade off between them
performance and the costs. To improve the torque and to reduce the velocity a

3

4 Chapter 2. Robotic arm structure and electronics configuration

(a) Joint block 1.

(b) Render Joint 1.

Figure 2.1: Block and render of the joint 1 [2].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

2.2. Electronic configuration 5

(a) Joint block 2.

(b) Render Joint 2.

Figure 2.2: Block and render of the joint 2 [2].

(a) Joint block 3.

(b) Render Joint 3.

Figure 2.3: Block and render of the joint 3 [2].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6 Chapter 2. Robotic arm structure and electronics configuration

(a) Joint blocks 4 and 5.

(b) Render end effector.

Figure 2.4: Block of joints 4 and 5 and render of the end effector [2].

Figure 2.5: Render of the complete robotic arm [2].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

2.2. Electronic configuration 7

Figure 2.6: Complete plant of the robotic arm with the support structure.

reduction gear for each motors was chosen. Finally to improve the precision of the
motion, one incremental encoder for each motor was chosen as well. Except for the
motor number 6, which has not the encoder, but has only the hall sensors. Figure
2.7 shows the set of the six motors with gear and encoders.
The electronic configuration and setting is explained in chapter 5.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

8 Chapter 2. Robotic arm structure and electronics configuration

Figure 2.7: The six joints. One joint is composed by the motor, the gear and the encoder. The
sixth joint hasn’t got the encoder.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 3

Robotic theory

In the last sixty years many robotic theories have been developed. In this chapter
we will anlize some robotics theories and how to implement them to find solution of
some problems like the inverse kinematic and the inverse dynamic [4].

3.1 Frames rotation and translation

In figure 3.1 there are two frames, which are rotating ad translating one with respect
to the other. Let the frame 1 be the reference frame (or world frame), and the frame
2 be an arbitrary frame.

Translation represents a 3D vector that describes the distance between two ref-
erence frame origins Of and Ow along the three physical dimensions x, y, z, so
that:

Of = Ow +w P (3.1)

We must pay attention that translation vector P must be written respect the world
frame, i.e. wP , otherwise we must take the opposite of it1

wP = −fP

The rotation is given by the rotational matrix. In this context we use only the
Euler angles to describe rotation between two frame, but many other are possible
(quaternions, directors cosines, ecc). We indicate rotation matrix with symbol fwR,
which means the rotation that aligns the frame f axis into the frame w axis. In
general wf R is a full 3× 3 matrix:

w
f R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.2)

Where rij are the rotation matrix elements and they are composed by composition of
trigonometric functions of the three angles that create rotation. These three angles

1In general the left apex tells us in which frame a vector is referred. While for vector elements
a right subscript is used.

9

10 Chapter 3. Robotic theory

world

Ow

x

y

z frame

Ow

y

z

x

P

Figure 3.1: Example of two frames which are rotated and translated one with respect to the other.

are three rotations about the three axis. So a vector vf in the generic frame, will be
rotated in the world frame:

vw =w
f R · vf (3.3)

So, we can transform a vector in the frame f into a vector in the world frame w
in the following way: vwx

vwy

vwz

 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ·
 vfx
vfy
vfz

+

 pf1
pf2
pf3

 (3.4)

A simpler way to transform vf into vw is to use a roto-translation matrix. This
is the composition of rotation and translation f

wT , so in only one 4 × 4 matrix we
have both the translation and the rotation:

w
f T =

[
w
f R

wP

0 1

]

=

r11 r12 r13 pwx

r21 r22 r23 pwy

r31 r32 r33 pwz

0 0 0 1

 (3.5)

The latter is only a brief way to write the ensemble of translation and rotation
into a single matrix, in which the last row has the meaning to normalize the matrix
and makes it a square 4×4 matrix; this implies that also the vectors vw and vf must
be normalize into a 4× 1 vectors:

ṽw =

vwx

vwy

vwz

1

 ṽw =

vfx
vfy
vfz
1

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.2. Direct and inverse kinematics 11

So the translation and rotation of a vector vf in the f frame into a vector vw into a
vector in the world frame w can be written like:

ṽw =w
f T · ṽf

vwx

vwy

vwz

1

 =

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 ·

vfx
vfy
vfz
1

 (3.6)

Finally, if we have n frames (such as those attached to the n joints), the roto-
translation matrix between reference frame n− th and the world frame is given by:

w
nT =w

1 T ·12 T · . . . ·i−1
i T ·ii+1 T · . . . ·n−1

n T

=

n∏
i=0

(ii+1T) (3.7)

where, i = 0 refers the world frame.

3.2 Direct and inverse kinematics

The kinematics is that branch of the robotic theory which studies the position of
a generic joint into the Cartesian space, giving the upstream joints rotation. The
space of the joint rotation is called joint space. For sake of simplicity, suppose the
first three joint (without the three end-effector joint) are rotated of q1 = π, q2 = π/6
rad and q3 = −π/3 rad, so the position of the end-effector (ee)in the 3D Cartesian
frame fixed at the robotic arm base is given by:

Xee = cos(q1)[L2 cos(q2) + L3 cos(q2 + q3)]
Yee = sin(q1)[L2 cos(q2) + L3 cos(q2 + q3)]
Zee = L1 + L2 cos(q2) + L3 cos(q2 + q3)

where L1, L2 and L3 are the three links length respectively. Figure 3.2 shows the
robotic arm in this configuration.

Inverse kinematics allows the retrieval of the joint angles once a predefined carte-
sian displacement is given. Often we can obtain more than one solution for the joint
rotation, this is due to the fact that the inverse kinematics is based on the inverse
trigonometric functions.

Let us suppose the end-effector has to reach a desired position in the Cartesian
space described by Xdee , Ydee and Zdee and the end-effector must have a specified
rotation with respect to the world frame given by w

eeRd, these give the roto-translation
matrix w

eeTd (subscript d stands for desired). From equation 3.7 we obtain the end-
effector roto-translation matrix (in which we place n = ee). To find out the equations
that describe the inverse kinematics, we will write the equality

w
eeT =w

ee Td

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

12 Chapter 3. Robotic theory

x

y

z

J1

J2

J3

L1

L2
L3

Figure 3.2: Robotic arm in the configuration described above

or, in extended way:
T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
0 0 0 1

 =

Rd11 Rd12 Rd13 Xdee

Rd21 Rd22 Rd23 Ydee
Rd31 Rd32 Rd33 Zdee

0 0 0 1

 (3.8)

The equality above gives us all the trigonometric equations to solve the inverse
kinematic.

There are several way to find out the solution, the easier is the geometrical
approach, which consist to compare the solution with the robotic arm configuration
and find the most appropriate for the goal. Other solutions are those that solve the
system of equation with some numerical routine (see [4] for more details).

3.3 Differential kinematics

From a mathematical perspective, the Jacobian matrix is a multidimensional form
of derivative. We consider six functions yi (like the absolute liner or angular velocity
v or ω) of six independent variables xi (like the joints velocity q̇)

y1 = f1(x1, x2, x3, x4, x5, x6)

y2 = f2(x1, x2, x3, x4, x5, x6)

...

y6 = f6(x1, x2, x3, x4, x5, x6)

in vector notation:
Y = F (X)

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.3. Differential kinematics 13

Let us calculate the differential of yi, then:

δy1 =
∂f1
∂x1
· δx1 +

∂f1
∂x2
· δx2 + . . .+

∂f1
∂x6
· δx6

δy2 =
∂f2
∂x1
· δx1 +

∂f2
∂x2
· δx2 + . . .+

∂f2
∂x6
· δx6

...

δy6 =
∂f6
∂x1
· δx1 +

∂f6
∂x2
· δx2 + . . .+

∂f6
∂x6
· δx6

in vector notation:

δY =
∂F

∂X
· δX

(3.9)
δY = J(X)δX

where J(X) is the Jacobian matrix, which has in the place of Jij the partial deriva-
tives of fi taken with respect to xj .

It is important to remark that this anthropomorphic robotic arm is used to
simulate orbital maneuvers, so the orbital velocity v is known from the trajectory
planing. This will be helpful for us because we can use the Jacobian to obtain the
joints velocity and, after an integration, the joints variable position. We can define
the Jacobian as follow: Jacobian J is that operator which maps the absolute velocity
(both linear and angular) through the joints velocity, then:[

v
ω

]
=

[
Jp
Jo

]
·
[
q̇
]

Hence, we can compute joints velocity from the absolute orbital velocity v, or ω,
but in this case the Jacobian must consider also the transformation between q̇ and
ω. Since the velocity v is known from the trajectory planning, we can obtain the
joint velocities2:

q̇ = J−1(q) · v (3.10)

and the joint position by integrating q̇∫ T

0

˙q(t)dt+ q(0) (3.11)

the initial position q(t = 0) needs to be known in order to start integration and
this could be obtain from the inverse kinematics (see section 3.2). In the code, the
equation 3.11 is implemented using a numerical integration, which yields:

q(ti+1) = q(ti) + q̇(ti)∆t

we can resume the integration of the inverse differential kinematics with the block
diagram in figure 3.3.

2There are several way to invert the Jacobian, we refer it to a specific text.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

14 Chapter 3. Robotic theory

J−1 ∆t +

q = [0 0 0 q(ti) q(ti+1)]

V (ti+1) q̇(ti) q(ti+1)

Figure 3.3: Inverse kinematics with integration method

3.4 Dynamics

The dynamics studies the forces acting on the robotic arm, and establishes the rela-
tion between forces and motion. There are two main ways to study the dynamics:
the Newton-Euler approach and the Euler-Lagrange method.

3.4.1 Newton-Euler approach

The Newton-Euler approach is based on the balance of all forces3 acting along the
generic robotic arm link. This method is well suited for a recursive approach. With
this method we have to do two recursive blocks of computation. The first is from
the base i = 0 to the end-effector i = n to find out all the velocities (algorithm 1).

1 for i = 0 to n do
2 i+1ωi+1 = i+1

iR · iωi + q̇i+1 · i+1ẑi+1;
3 i+1ω̇i+1 = i+1

iR · iω̇i + i+1
iR · iωi × q̇i+1 · i+1ẑi+1;

4 i+1v̇i+1 = i+1
iR · [iωi ×

iP i + iωi × (iωi × iP i+1) + iv̇i];
5 i+1v̇c,i+1 = iω̇i × iP c,i + iωi × (iωi × iP c,i) + iv̇i;
6 end

Algorithm 1: Newton-Euler forward routine

and the second is from the end-effector i = n to the base i = 0, to find out the
all the forces (algorithm 2).

1 for i = n to 0 do
2 iF i = mi · iv̇c,i;
3 iN i = c,iIi · iω̇i + iωi × c,iIi · iω̇i;
4 if i = iF i + i+1

iR ·
i+1f i+1;

5 ini = iN i + i+1
iR · i+1ni+1 + iP c,i × iF i + iP i+1 × i+1

iR · i+1ni+1;
6 ti = ini · i+1ẑi;
7 end

Algorithm 2: Newton-Euler backward routine

in algorithm 2, ti is the acting torque that the joint has to generate, in order to
perform the motion. It is given in the joint reference frame.

3Name "forces" means generalized forces, so it includes both forces both torques

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.4. Dynamics 15

3.4.2 Euler-Lagrange approach

The Euler-Lagrange approach, instead, is an energy based method, so the equations
of motion are independent from the reference frame. The Lagrange equation is:

d

dt

(
L
∂q̇

)
−
(

L
∂q

)
= τ

L = EK − U

where L is the Lagrange function, EK and U are the kinetic and potential energy
respectively and τ is the generalized forces vector acting on the links, it include also
the joints torque and the external forces. Although the formulation is intuitive, its
implementation doesn’t. The Lagrange equation could be re-written as:

M(q)q̈ + v(q, q̇)q̇ + Fv q̇ + Fd(q̇) +G(q) + τd = τ (3.12)

This is the dynamic equation of a robotic arm; where M(q) ∈ Rn×n is the function
that maps the accelerations into inertial forces, hence it is the inertial matrix (or
mass matrix) of the arm and it depends on the configuration of the arm and on the
inertial properties of the hardware, and it is explicitly given by the following formula:

M(q) =
n∑
i=1

(miJ
T
p,iJp,i + JTo,iRiIiR

T
i Jo,i)

The term V (q, q̇) ∈ Rn×n, accounts for Coriolis Fv and centrifugal Fd terms:

V (q) = v(q, q̇)q̇ + Fv q̇ + Fd(q̇)

and it is obtained by:

V (q) = Ṁ(q)q̇ − 1

2

∂

∂qi
(q̇TM(q)q̇)

And the last therm G(q) ∈ Rn×1 is the gravity therm compensation, it is obtained
from the derivation of the potential gravitational energy:

G(q) =

n∑
i=1

∂Ug
∂qi

where
∂Ug
∂qi

= −
n∑
j=1

mig0Joij (q)

Using these expressions to compute equations 3.12 is not computationally friendly.
In the next. section (3.4.3) we will see how to simplify this computation.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

16 Chapter 3. Robotic theory

3.4.3 CRBA: Composite-Rigid-Body Algorithm

In this section we will see the Composite-Rigid-Body Algorithm [13] to compute the
mass matrixM(q) and the acceleration matrix C(q, q̇). CRBA computes the inertial
parameters of composites set of rigid bodies from the last link to the first link of
the robotic arm. The columns of the mass matrix are computed very efficiently
through successive application of inverse dynamic, setting the joint velocity to zero
and setting the joint acceleration to zero or one. This means that only one joint
is in motion at time, hence the inverse dynamic analysis becomes the much more
simple study of a base set of links in static equilibrium and a composite rigid body
in motion at the rest of the robotic arm.
In other words, let us suppose that only the i−th joint acceleration is set to one, and
all the the other accelerations are set to zero. This yields that the inverse dynamic
has only to study static equilibrium of the first i − 1 − th joints and the motion of
the last i− th to n− th joints.

The computational burden of the CRBA is reduced from a value proportional to
N4, with the classical Lagrange method, to a value ∼ N , where N is the robotic
arm Degrees of Freedom (DoF). The Newton-Euler method has the same number of
computation, but it is computationally heavy for the number of sums and multipli-
cations.
Let us write the dynamic equation 3.13 without the disturbance term τd

Mq̈ + C(q, q̇) = τ

where (like above) q̈ is the N × 1 vector of the generalized accelerations, τ is the
vector of the generalized forces, M is the mass matrix and C is the vector of the
accelerations and gravity react. Then.

Mq̈ = D(q, q̇, q̈)−D(q, q̇, 0)

= D(q, 0, q̈)−D(q, 0, 0)

D(q, q̇, q̈) is a function which compute the inverse dynamic. The velocity is set
to zero, so that the velocity terms cancel. The gravity term get canceled as well.
Previous equation gives us a simply way to compute the mass matrix M(q):

Mδi = D(q, 0, δi)

where δi is a n × 1 vector with a 1 in the i − th row and zeros elsewhere. So the
expression Mδi represents the i− th column of the mass matrix M .

Since, in our case, joints have only one DoF, then there is 1:1 correspondence
between the joint number and the mass matrix column4; therefore we may interpret
δi as a unit acceleration vector for the i− th joint, so that every mass matrix element
Mj,i is the force required at i − th joint to produce the acceleration δi. Or even,
equivalently, giving a unit acceleration at i− th joint a force will be created and the
latter is the action required at j − th joint to react the force create by the i − th
acceleration, indeed is just the mass matrix element Mj,i (algorithm 3).

4Here the algorithm is described for one DoF joints, but it works also with multi DoF joints
considering the mass matrix composed by a block of matrices. For more explanation see [13].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.5. Joint control architecture 17

1 for i = 1 to n do
2 for j = 0 to n do
3 j+1ωj+1 = j+1

jR · jωi + q̇j+1 · j+1ẑj+1;
4 j+1ω̇j+1 = j+1

jR · jω̇i + j+1
jR · jωi × q̇j+1 · j+1ẑj+1;

5 j+1v̇j+1 = j+1
jR · [jωi ×

jP i + jωi × (jωi × jP j+1) + j v̇i];
6 j+1v̇c,j+1 = jω̇i × jP c,j + jωi × (jωi × jP c,j) + j v̇i;
7 end
8 for k = n to 0 do
9 kF i = mi · kv̇c,k;

10 kN i = c,kki · kω̇i + kωi × c,kki · kω̇i;
11 kf i = kF i + k+1

kR ·
k+1fk+1;

12 kni = kN i + k+1
kR ·

k+1nk+1 + kP c,k × kF i + kP k+1 × k+1
kR ·

k+1nk+1;
13 τi = kni · k+1ẑi;
14 end
15 Mi = τi;
16 end
Algorithm 3: CRBA routine to find out the mass matrix i− th column. All the
velocities are equal to zero.

The previous interpretation is correct because we give a unit acceleration δi to
the robotic arm so the remaining downstream links of the i− th joint will behave like
a single rigid body which reacts to the unit acceleration, while the upstream links of
the i− th joint will remain in static equilibrium.

The computation of the n × 1 vector C(q, q̇) is very similar to the mass matrix
algorithm (algorithm 4). This one is computed by setting all the joint accelerations
to zeros, so during the robot arm operations, we obtain only the terms that depend
by the velocities, both the absolute velocities (v̇ and ω̇) and the relative joint velocity
(q̇). In fact, during the robotic arm operations, every joint has its own velocity q̇i
and this will be interacting with the other upstream links velocities. Ultimately, this
yields the Coriolis and centrifugal accelerations, so they are just the actions the joint
must make to react to Coriolis and centrifugal accelerations. We can compute the
gravity force for each link, or, more simply, we can insert the gravity acceleration
vector g = [0 0 g]T at the acceleration initial condition5.

3.5 Joint control architecture

The problem of controlling a robot is to determine the tome history of the torque to be
developed by the joints, in order to guarantee the following of the trajectory. Several
techniques are available, but the main distinction is due to the way they operate:
joint space or operational space. We will focus only on the first technique, but the
second could be used as a future implementation, thus we give a brief description of

5Note that the joint have to react to gravity, so it must insert in the opposite direction respect
to the real one

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

18 Chapter 3. Robotic theory

1 v̇0 = [0 0 g]T ;
2 for j = 0 to n do
3 j+1ωj+1 = j+1

jR · jωi + q̇j+1 · j+1ẑj+1;
4 j+1ω̇j+1 = j+1

jR · jω̇i + j+1
jR · jωi × q̇j+1 · j+1ẑj+1;

5 j+1v̇j+1 = j+1
jR · [jωi ×

jP i + jωi × (jωi × jP j+1) + j v̇i];
6 j+1v̇c,j+1 = jω̇i × jP c,j + jωi × (jωi × jP c,j) + j v̇i;
7 end
8 for k = n to 0 do
9 kF i = mi · kv̇c,k;

10 kN i = c,kki · kω̇i + kωi × c,kki · kω̇i;
11 kf i = kF i + k+1

kR ·
k+1fk+1;

12 kni = kN i + k+1
kR ·

k+1nk+1 + kP c,k × kF i + kP k+1 × k+1
kR ·

k+1nk+1;
13 τi = kni · k+1ẑi;
14 end
15 Ck = τk;
Algorithm 4: CRBA routine to find out the force vector C(q, q̇). All the velocities
and accelerations are equal to zero except for the initial linear acceleration.

it.
Operational space control enable the robotic arm to reach a greater precision in

the cartesian space, since the end effector position is actively controlled and it is no
longer dependent on the accuracy with which the geometry of the robotic arm is
known [2]. This approach requires great complexity, in fact, now the inverse kine-
matics algorithm is embedded into the feedback control loop. This slow down the
algorithm and requires high computational performances. Furthermore the end ef-
fector cartesian position is not performed directly, but via the applications of the
direct kinematics to the encoders’ readings. For the active control of the end effector
position we can use a computer vision system, or a stroboscopic system.

In joint space techniques, the control is focused on the q(t) values to track the
reference points, calculated with the inverse kinematics procedure from the desired
trajectory. The drawback of this solution is that the end effector cartesian position
is affected by any difference between the known geometric data and real ones. Thus
it is mandatory to well know the mechanical design of the structure. Furthermore
the way the motion is transferred through the joints has its effects. If the motors are
coupled with high-ration reduction gears, the problem becomes linear, but all the
non-linear effects (such as friction) might produce others uncertainties.

We use high-ration reduction gears, then a linear approximation can take place.
This leads to analyze each link as a SISO independent system (this type of control are
often referred to as decentralized control [14]). The differential equation describing
the motion of a n degree of freedom robot 3.12 can be rewritten as :

M(q)q̈ + C̃(q, q̇)q̇ +G(q) = τ

where C̃(q, q̇) is the Coriolis and centrifugal acceleration term and G(q) considers

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.6. Computed-Torque Controller 19

the gravity effects. This last equation describes the dynamics of a multi-body system
when some generalized forces τ are acting [15]. In the next section we will see how
to control such dynamic equation.

3.6 Computed-Torque Controller

In this years, many robot control scheme were presented. Among them, we will focus
in this chapter on the Computed-Torque Controllers. These are special application
of feedback linearization of non-linear systems [2].

The equation 3.12 could be written in the following way:

M(q)q̈ + C(q, q̇) + τd = τ (3.13)

where τd is the disturbance external torque and C(q, q̇) ∈ Rn×1 is the compensation
of centrifugal, Coriolis and gravity terms:

C(q, q̇) = V (q, q̇) +G(q)

All the quantities are time-based, since them depend on the joints variables qi(t).
Let’s suppose that a trajectory qd(t) has been selected. We define a tracking error
e(t), and its first and second order differential:

e(t) = qd(t)− q(t) (3.14)
ė = q̇d − q̇
ë = q̈d − q̈

(3.15)

Solving the dynamic equation 3.13 for q̈ and replacing in it the value of ë, we get

ë = q̈d +M−1(C + τd − τ)

Defining the input control equation and the disturbance function as

u = q̈d +M−1(C − τ) (3.16)

w = M−1τd (3.17)

we can rewrite the tracking error dynamic as

d

dt

[
e
ė

]
=

[
0 I
0 0

] [
e
ė

]
+

[
0
I

]
u+

[
0
I

]
w (3.18)

This system represents a linear error consisting of n pairs of double integrators 1/s2,
one per joint. This error system is driven by the control input u(t) and the distur-
bance w(t).

The input control equation 3.16 may be inverted to yield the computed-torque
control law

τ = M(q̈d − u) + C (3.19)

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

20 Chapter 3. Robotic theory

+ M(q)

C(q, q̇)

+ Arm

Outer
Loop

q̈d τ q, q̇

u

−

non linear loop

linear system

Figure 3.4: Block diagram of the Computed Torque Control algorithm.

If we choose a control input function u(t) which stabilizes the tracking error 3.18,
so that e(t) goes to zero, then the nonlinear control input τ(t) will induce trajectory
following in the robot arm: this is the usefulness of the Computed-Torque Controller
equation 3.19. In fact, substituting equation 3.19 into equation 3.13 yields:

M(q)q̈ + C(q, q̇) + τd = M(q̈d − u) + C

ë = u+M−1τd

which is just the 3.18.
The nonlinear transformation 3.16 has converted a complicated nonlinear con-

trols design problem into a simple design problem for a linear system, formed by n
decoupled subsystem, each obeying Newton’s law. The resulting system is shown in
Figure 3.4.

We can observe that the diagram in the figure is composed by three parts: one
nonlinear loop, one linear loop and an external feedback loop which creates the
auxiliary outer signal u(t). Since u(t) will depend only on q(t) q̇(t), the external
loop will be a feedback loop. For these reasons, a dynamic controller C(s) is selected
to control the tracking error signal:

U(s) = H(s)E(s)

in this case, the transfer function between tracking error and auxiliary signal is

T (s) = s2I −H(s)

We could note that the function Computed-Torque Controller 3.19 computes τ(t)
replacing (q̈d − u) for q̈(t) in 3.13, in this way the inverse arm dynamics must be

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.6. Computed-Torque Controller 21

computed: for this reason it is important to have a Newton-Euler routine for the
inverse dynamic formulation (see section 3.4.1).
Furthermore an error control by the compensator C(s) , could create troubles with
non-minimum-phase system, but in this case, the rigid arm dynamics are minimum
phase system.

3.6.1 Tuning of PD controller

One way to compute the external signal u(t) is to use a proportional plus derivative
(PD) feedback

u = −Kdė−Kpe

Then the robot arm input, or else the computed-torque controller equation 3.19,
becomes

τ = M(q̈d +Kdė+Kpe) + C (3.20)

and the closed-loop error dynamic is

ë+Kdė+Kpe = w (3.21)

or, in state form

d

dt

[
e
ė

]
=

[
0 I
−Kd −Kp

] [
e
ė

]
+

[
0
I

]
u+

[
0
I

]
w

The closed-loop characteristic polynomial is

p(s) =‖ s2I +Kds+Kp ‖

which is stable if all the coefficients are positive. According to Routh-Hurwitz crite-
rion the polynomial has only roots with negative real part only if all the coefficients
have the same sign (this is true just for the second order polynomials). Since the
inertia I is positive, also the other coefficients must be positive in order to obtain
the stability.

Usually, the n× n gains matrices is chosen diagonal, so that

Kd = diag(kdi) Kp = diag(kpi)

then, the characteristic polynomial becomes

p(s) =

n∏
i=1

(s2 + kdis+ kpi)

so, for the Routh-Hurwitz criterion, the error system is asymptotically stable only
if the kdi and kpi are all positive. Furthermore, we can say that as long as the
disturbance w(t) is bounded, so also the error e(t) is bounded6. Note that, being the
mass matrix M(q) bounded (and so also its inverse is bounded), stating that w(t) is
bounded is equivalent to stating that τd is bounded too.

6The subsystem with input w(t) and output e(t) results Bounded-Input Bounded-Output (BIBO)
stable.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

22 Chapter 3. Robotic theory

However, choosing the PD gains matrices diagonal, we obtain a decoupling only
in the outer loop, while the joint-controller remains strictly coupled. In fact, the
multiplication by the mass matrix M(q), which is not diagonal in general, and the
adding of the nonlinear term C(q, q̇) in feed-forward inner loop generates the coupling
of the signal u(t) among all the joint. Thus, the position q(t) and the velocity q̇(t)
information of all the n joints are necessary to compute the torque τ(t) for every
single joint. In other words, every joint position and velocity information is necessary
to compute the torque for a single joint.

The classic form of a second order characteristic polynomial is:

p(s) = s2 + 2ζωn + ω2
n

where ζ is the rate of critical damping and ωn is the natural frequency of the system.
By comparing this last one with the equation of single joint tracking error, yields:

kpi = ω2
n kdi = 2ζωn

where, in this case, ζ and ωn are the desired critical damping ratio and the natural
frequency for the i − th joint controller. It is useful to select the response at the
end of the arm (where the moving masses are lighter), faster than the response near
the base, where the moving masses are heavier. Furthermore, it is crucial for a
robotic arm not have any overshoot. All this gives the idea that a robotic arm must
be critically damping or over damping : ζ ≥ 1. In the critically damping case, we
obtain:

kpi = ωn kdi = 2
√
kpi

Natural frequency ωn governs the speed of response, in fact the raise time of the
step response is proportional to the bandwidth, which in turn is proportional to the
natural frequency. In light of this, one could choose the greatest possible value of
ωn, but is not like this. In fact, there are at least two reasons that make ωn upper
bounded:

1. real links, although are very stiff, have several vibration modes, whose first
resonance frequency ωr could be written as:

ωr =
√
kr/J

with J and kr the link inertia and stiffness (respectively). To avoid exciting
the resonant mode that could be deleterious or destructive for some weak com-
ponents, we should choose ωn < αωr, with α < 1 factor of safety. The link
inertia J can change during the robotic arm operation (it depends on the joints
rotation q(t)), then its maximum value is used to calculate ωr

2. another reason for having n upper bounded ωn, is given by consideration on
the joints saturation. If the PD gains are too high, the torques τ(t) could reach
their maximum limits.

Other considerations on the choice of kpi and kdi are based on the error limits.
In fact, in case of critically damping systems, the position error ei(t) decreases
as kpi grows, and the velocity error ėi(t) decreases as kdi grows.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

3.7. Trajectory generator 23

3.7 Trajectory generator

In close approach maneuvers, one object is passive (the target) ant the other object
is active (the chaser) and trying to approach the target. According to [5], the equa-
tions which describe the relative orbital motion between chaser and target are called
Clohessy-Wiltshire (CW) expressions. These equations describe the motion of the
chaser with respect to the frame centered in the target center of mass. In particular
in this frame the x axis is along the Earth-target radius, the y axis points in the local
horizon of the target’s orbit and the z axis is chosen to complete the right handed
frame. The CW equations in hipotesis of circular orbit are now given7:

δẍ = 3 µ
r30
δx+ 2

√
µ
r30
δẏ

δÿ = −2
√

µ
r30
δẋ

δz̈ = − µ
r30
δz

(3.22)

From equations 3.22 we can obtain position and velocity by some integration steps.
We firs define:

δr(t) =

δx(t)

δy(t)

δz(t)

 δv(t) =

δẋ(t)

δẏ(t)

δż(t)

 (3.23)

whose corresponding initial values are:

δr0 =

δx0

δy0

δz0

 δv0 =

δẋ0

δẏ0

δż0

 (3.24)

finally we obtain:
δr(t)

δv(t)

 =

 Ψrr(t) Ψrv(t)

Ψvr(t) Ψvv(t)

 ·

δro

δv0

 (3.25)

where

Ψrr(t) =

 4− 3 cos(nt) 0 0
6 [sin(nt)− 1] 1 0

0 0 cos(nt)

 (3.26)

Ψrv(t) =
1

n

 sin(nt) 2 [1− cos(nt)] 0
[cos(nt)− 1] [4 sin(nt)− 3nt] 0

0 0 sin(nt)

 (3.27)

7We do not make all the algebraic steps to get the equations, but they are well explained in [2]
or in [5].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

24 Chapter 3. Robotic theory

Inv.
Diff. Kin

Elure-
Lagrange +

Robotic
arm

+

Kp Kd

+

+

X,V

CW
equations

qd

q̇d
τ

qr

q̇r

+

+

−

−

e
ė

+ +

−

Figure 3.5: Control system based on Euler-Lagrange method. The block "Inv. Diff. Kin" is the
block that resolve the inverse differential kinematics, whose block diagram is pictured in figure 3.3.

Ψvr(t) =

 3n sin(nt) 0 0
6n [cos(nt)− 1] 0 0

0 0 −n sin(nt)

 (3.28)

Ψvv(t) =

 cos(nt) 2 sin(nt) 0
−2 sin(nt) 4 cos(nt)− 3 0

0 0 cos(nt)

 (3.29)

When a robotic arm facility is used for the simulation of orbital maneuvers, the
relative motion is simulated correctly with the aid of CW expressions [1]. From the
equations above we obtain the position vector X and the velocity vector V , and
with the inverse differential kinematics we get the joint positions values at every
time step. The complete block diagram of how we obtain the joints positions and
velocities are pictured in figure 3.5, where we use the Euler-Lagrange based method
to obtain the joints torques τ .

To simulate an impact we can calculate the ∆v which the impact cause:

∆v =

∫
timpact

| F |
m

dt

now the compute of the modify trajectory is trivial [2].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 4

CANopen Communication

4.1 Introduction

Communication between PLC and EPOS2 R©controller is a crucial point of this thesis.
In fact, two types of communications were available: the classical PLC and each
EPOS2, and a more clean CANopen communication. The first needs of a large
amount of cables and wires, since every controller has to be connected to a PLC
output. Thus a CANopen communication was chosen. CANopen is a standardized
application for distributed autonomous systems based on CANopen (Controller Area
Network), which offers the following performance features:

• transmission of time-critical process data;

• standardized device (node) description (data, parameters, functions, programs)
in the form of the so-called "Object Dictionary" (OD)

• access to all devices with standardized transmission protocol based on the
producer-consumer principle;

• standardized services for node monitoring (node guarding, heartbeat), error
signalization and network coordination;

• standardized system services for synchronous operations

• standardized help function for configuring and device identification number
(node-ID), via the bus.

4.2 Physical structure of the CANopen network

In figure 4.1 it is shown the architecture of CANopen network. The physical medium
is a differently driven 2−wire (CAN high and CAN low) bus line with common
return. To avoid reflection of signal, both network ends must be terminated (using
two resistors of 120Ω). The devices are identified by the node-ID, that is a code
number from 1 to 127. For CANopen it is important to underline that no node-ID
may exist twice, and all the devices must be configured with the same bit rate.

25

26 Chapter 4. CANopen Communication

node-ID 1 node-ID 2 node-ID n

terminationterination

CAN High

CAN Low

Figure 4.1: The physical structure of a CANopen network. The devices are connected to the bus
line, where two terminations are plugged

PDO Producer

PDO consumer PDO consumer

CAN

Figure 4.2: The Producer-Consumers principle on which the PDO transmission is based

4.3 Data transfer

CANopen represents a standardized application layer and communication profile
[11]. A Data Frame is produced by a CAN node when it hears to transmit data or
when another node requests a data. Within one frame up to 8 byte data can be
transported.

CANopen provides some Communication Objects (COB). They are described by
protocols and services. The predefined Communication Objects are: PDO Object,
SDO Object, SYNC Object, EMERGENCY Object and NMT Services. First three
communication objects are identify also by a proper address, the COB-ID, on EPOS2
all the COB-ID are immutable.

PDO Object

Process Data Object (PDO) communication follows the producer-consumer princi-
ple, as shown in figure 4.2. This means that a message sent by the producer node (the
PLC) is received by all other nodes (the consumers, the EPOS2s), but only the node
that has the specific node-ID is able to read the message, so in the message it is only
necessary to identify the node-ID and write the operational instructions. In fact, the
producer sends a Transmit PDO (TxPDO) with a specific identifier (node-ID) that
corresponds to the identifier of the Receive PDO (RxPDO) of one or more consumers.

PDOs can be either Write or Read, depending on the nature of the device entry
they describes. On EPOS2 the number of supported PDO is 4 TxPDO and 4 RxPDO,
each of them can mapped up to 8 process variables, hence we are able to read and
write up to 64 device entries. For our purpose we map at most 5 variables into
RxPDO and 5 variables into RxPDO, beacause only these variables we need to

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.3. Data transfer 27

Table 4.1: COB-IDs for the Transmit PDOs and the Receive PDOs.

PDO COB-ID
TxPDO 1 node-ID+180h
TxPDO 2 node-ID+200h
TxPDO 3 node-ID+280h
TxPDO 4 node-ID+300h
RxPDO 1 node-ID+380h
RxPDO 2 node-ID+400h
RxPDO 3 node-ID+480h
RxPDO 4 node-ID+500h

manipulate with the robotic arm programs.
Note that a PDO cannot be mapped (the voice PDOMapping is false), but we

can mapped variables via PDO. We can mapped only variables which have the voice
PDOMapping = true (or yes, or 1). Furthermore, only SDO communication is able
to read and write in Object Dictionary, in fact with the PDO mapping we don’t read
or write the variable in the Object Dictionary directly, but we map them and read
or write a copy of them.

CANopen communication distinguished three message triggered modes:

1. Message transmission is triggered by an internal event of the device

2. Transmission of Asynchronous PDOs are triggered by external request. Often
we shall use this type of transmission because the external source is the PLC.

3. Synchronous PDOs are triggered only when a SYNC object appears, then the
PDO is triggered within a specified time period. We will use this type of
transmission to move all the robotic arm axis at once with the Interpolated
Profile Mode (see section 6.4).

RxPDOs are identified with index from index 1400h to index 1403h, after from
index 1600h to index 1603h (and its sub-indexes) the TxPDO mapping object are
identified. While TxPDOs are identified with index from index 1800h to index 1803h,
after from index 1A00h to index 1A03h (and its sub-indexes) the TxPDO mapping
object are identified.

The PDO COB-ID, COB-ID is the node-ID number plus an hexadecimal number
different for every PDO, as shown in table 4.1.

SDO Object

Service Data Object (SDO) provides the access to the Object Dictionary entries. En-
tries are different from the variables, because the entries are the device configuration
parameters. The SDO communication messages are used for the device configuration
during the Pre-Operational state, and for accessing the Object Dictionary during the
"Operational" state (see below).

SDOs are identified with index 1200h and its 3 sub-indexes. The SDO COB-ID
is node-ID+580h for the Transmit SDO and node-ID+600h for the Receive SDO.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

28 Chapter 4. CANopen Communication

SYNC Object

The SYNC producer provides the synchronization of the SYNC consumer. But if
the producer is not able to make a time stamp accurate enough, an EPOS2 can be
used as the time stamp master maker.

As the SYNC consumer receives the signal, they start carrying out their syn-
chronous tasks. In general, fixing of the transmission time of synchronous PDO
message, with the periodicity of the SYNC Object’s transmission guarantees the
synchronization of the moving axis within microseconds. SYNC Object is identified
with index 1005h and the COB-ID is 80h.

Synchronous transmission of a PDO means that the transmission is fixed in time
with respect to the transmission of the SYNC Object. The synchronous PDO is
transmitted within a given time window with respect to the SYNC transmission and
one for every period of the SYNC.

EMERGENCY Object

Emergency message is triggered when a device internal fatal error occurs. It is
transmitted from the device which has the fatal error to the other devices with
the highest priority, thus making them suitable for "interrupt" type error. The
Emergency message COB-ID is node-ID+80h and it is described in the object number
1014h COB-ID EMCY.

NMT Services

The CANopen Network Management is node oriented and follows the master-slave
principle. It requires one master device (the PLC), while the others devices are the
slaves. The slaves are uniquely identified by the node-ID. NMT services provide the
following functionality:

• Module Control Service for the slaves initialization.

• Error Control Service for supervision the communication state of the network
nodes.

• Configuration Control Services for upload or download of configuration data
from or to a network node.

The CANopen NMT Slave devices implement a finite state machine (figure 4.3)
that brings every device into "Pre-Operational" state, as soon as the power is apply
to them and once they are initialized.

Power on: the system is connected to a power source.
Initialization: in order to make a partial reset of nodes, this state is subdivide into
three sub-state:

• Reset Application: here the parameters of the manufacturer-specific and of
the standard device profile are reset to their power-on values, which are the
latest saved values. Then the node changes to the next sub-state;

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.4. Object Dictionary 29

Initializazion

Pre-operational
(Configuration state)

Opearational

Stopped

Power on

0

1

2 3

4 5

6 7

8

9

Figure 4.3: FSM of the CANopen NMT network slaves states

• Reset Communication: the parameters of the communication profile are
reset to the power-on values. Then the node state changes to Initializing;

• Initializing: in this sub-state the node makes the basic initialization, e.g.
host controller, CANopen controller, software and firmware verify. After basic
initialization, the node sends the boot-up message, and changes itself into the
Pre-Operational state.

Pre-Operational: the main use of this state is the configuration of CANopen de-
vices via SDO (using a configuration tool). Therefore, PDO communication is not
permitted. The NMT master may switch from "Pre-Operational" to "Operational"
and vice versa.
Operational: this is the state in which the devices work, meaning that the PDO
communication is possible. "Operational" can bu used to achieve certain application
behavior defined by the device profile’s scope. Here all the communication objects
are active. Object Dictionary access via SDO is possible.
Stopped: force to stop every SDO and PDO communication.

In table 4.2 the transitions shown in figure 4.3 are explained.
The COB-Id for the NMT services is 00h.

4.4 Object Dictionary

One of the most important properties of CANopen is a standardized protocol called
Object Dictionary (OD), it fully describes the device. Every device in the network is

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

30 Chapter 4. CANopen Communication

Table 4.2: Explanation of the transitions between the states in FSM in figure 4.3. ∗Transition 0
is automatically executes. ∗∗Indicates the remote bit, the bit 9 of the Statusword.

Transition Service Remote∗∗ Functionality
0∗, 3, 6 Enter Pre-Operational 0 Communication: SDO pro-

tocol; Emergency Objects;
NMT protocol

1, 8, 9 Reset Communication 0 Calculates SDO COB-ID.
Setup dynamic PDO mapping
and calculates PDO COB-ID.
Communication: during ini-
tialization, no communication
is active; upon completion a
boot-up message is sent to
the CAN bus.

1, 8, 9 Reset Node 0 General reset of EPOS2 soft-
ware (as the same effect as
turning off and on the supply
voltage). No saved parame-
ters will be overwritten with
the values saved in EEPROM.

2, 5 Start Remote Node 1 Communication: SDO pro-
tocol; PDO protocol; Emer-
gency Objects; NMT proto-
col.

4, 7 Stop Remote Node 0 Communication: NMT proto-
col; Heartbeat protocol.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.4. Object Dictionary 31

described with OD. The OD is a table with the entries of all devices, thus it is easy
access to all data functions and parameters of a single device using is a 16−bit index,
and a 8−bit sub-index. A 16−bit index is used to address all entries within the OD.
In the case of a simple variable, it references the value of this variable directly (this
happens, for example, when we write or read the values of process variables during
a program) and the sub-index is always zero. In case of a complex variable (such as
arrays, or structures), the index refers to the entire data structure. The elements of
the data structure are addressed by the sub-index.

The number of index helps us to understand what area the variable refers to:

• 0000h: reserved.

• 0001h ÷ 0099h: data types (not supported on EPOS2).

• AAA0h ÷ 0FFFh: reserved.

• 1000h ÷ 1FFFh: Communication Profile area (CiA 301).

• 2000h ÷ 5FFFh: Manufacturer specific Profile area (Maxon Motor).

• 6000h ÷ 9FFFh: Standardized device Motion Control area (CiA 402).

• A000h ÷ FFFFh: reserved.
The Electronic Data Sheet (EDS) is a file containing all the object dictionary

entries, so all data types and functions of each device are listed [7]. Depending on
the the object, it can be read and write (RW), or only write (RO).

Object dictionary has 149 entries (without considering sub indexes of the in-
dexes), only three of them are mandatory ans automatically compiled with the
EPOS2 Studio configuration tool. These are the entries number:

• 1000h Device type : specify the device type. The value 402 (0192h) means that
the device follows the CiA 402 Device Profile Drive and Motion Control.

• 1001h Error Register: an error register for the device. The device maps internal
errors in this byte (see section 4.5).

• 1018h Identity Object: the CANopen vendor identification of "maxon motor
ag" defined by CiA is 000000FBh

Others objects require to be completed manually. They are discussed in the
following, in table 4.3 there are some brief information of them.

These entries are shown and described below, and is a good thing change all the
following value during EPOS2 aren’t in operational state, and upload the eds file
with Automation Studio in order to reboot the device.

Many entries are physical quantities for whom a measure unit is required:

• Position. Position unit is the "Step", defined as:

1Step = 4× Encoder Counts per Revolution

• Velocity. Velocity unit is the "rpm" (Revolution per Minute).

• Acceleration. Acceleration unit is the "rpm/s" (Revolution per Minute per
second).

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

32 Chapter 4. CANopen Communication

Table 4.3: Brief overview of the objects discussed in the following. The symbol ∗ means that the
value depends on the motor. The abbreviations "int" and "uint" means "integer" and "unsigned
integer" respectively, the number next to them indicate them length in therm of number of bits.
All the object are of type RW. Symbols − indicates that the value is not available

Value
Name Index [Hex] Type Default Range
Consumer 1 Heartbeat Time 1016sub1 uint 32 0 −
Producer Heartbeat Time 1017sub0 uint 16 0 −
CAN Bitrate 2001sub0 uint 16 9 0÷ 9

Pulse Number Incremental
Encoder 1

2210sub1 uint 32 500 16÷ 2500000

Position Sensor Type 2210sub1 uint 32 01 0÷ 8

Gear Ratio Numerator 2230sub1 uint 32 0 1÷ 4294967295

Gear Ratio Denominator 2230sub2 uint 32 0 1÷ 65535

Abort Connection Option
Code

6007sub0 int 16 3 1÷ 3

Shutdown Option Code 605Bsub0 int 16 0 0÷ 1

Disable Operation Option
Code

605Csub0 int 16 1 0÷ 1

Fault Reaction Option Code 605Esub0 int 16 2 −1÷ 2

Max. Following Error 6065h uint 32 2000 0÷ 4294967295

Home Offset 607Csub0 int 32 0 −
Min. Software Position Limit 607Dsub1 int 32 −2147483648 ±2147483648

Max. Software Position Limit 607Dsub1 int 32 2147483648 ±2147483648

Maximal Profile Velocity 607Fsub0 uint 32 25000 see table 4.10
Profile Velocity 6081sub0 uint 32 1000 see table 4.10
Profile Acceleration 6083sub0 uint 32 10000 ∗
Profile Deceleration 6084sub0 uint 32 10000 ∗
Homing Method 6098sub0 uint 8 7 −4÷ 35

Speed for Switch Search 6099sub1 uint 32 100 ∗
Speed for Zero Search 6099sub2 uint 32 10 ∗
Homing Acceleration 609Asub0 uint 32 1000 ∗
Max Acceleration 60C5sub0 uint 32 4294967295 ∗
Motor Type 6402sub0 uint 16 10 see table 4.11
Continuous Current Limit 6410sub1 uint 16 ∗ ∗
Output Current Limit 6410sub2 uint 16 ∗ ∗
Pole Pair Number 6410sub3 uint 8 1 2÷ 255

Maximal Motor Speed 6410sub4 uint 32 2500 see table 4.12
Thermal Time Constant
Winding

6410sub5 uint 16 40 1÷ 5400

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.4. Object Dictionary 33

Table 4.4: Available Bit rates and meaning of the index in the 0x00 entries of the OB

Table index Bit rate [Kbit/sec]

0 1000

1 800

2 500

3 250

4 125

5 reserved
6 50

7 20

8 10 (not supported)
9 automatic bit rate detection

Consumer Heartbeat Time 1016h

Object number 1016h sets the heartbeat time in milliseconds for the Consumers, the
devices (see section 4.6). All the devices must have the same heartbeat time. For
every device there are two consumer heart beat time, we use only the first with the
sub index 1:

• Consumer 1 Heartbeat Time 1016sub1: sets the value of the consumer heart-
beat time.

Producer Heartbeat Time 1017h

Object number 1017h sets the heartbeat time in milliseconds for the Producer or the
PLC (see section 4.6).

CAN Bitrate 2001h

Object number 2001h sets the bit rate of the CANopen network. Note that all the
devices must have the same Bit rate (see section 4.3). There are several values of
the bit rates depending on the device and the amount of the data to be transferred.
It varies from 0 to 9 depending on the value of the bit rate; the number 5 is reserved
and the number 8 is not supported by the EPOS2. The choice depends on the tasks
the EPOS2 will fulfill. In table 4.4 are listed the available bit rates supported by
EPOS2

Sensor Configuration 2210h

Many sensor features are described with the objects 2210h and its sub indexes. In
EPOS2 we are using, it is possible to use only one sensor (called Incremental Encoder
1), in figure 4.4 is shown the architecture of regulation, sensors and gear.

The pulse number must be set to the connected incremental encoder’s number of
pulse per revolution. The pulse number of incremental encoder 1 (2210sub1) must

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

34 Chapter 4. CANopen Communication

+
Main Reg-
ulations

+

Current
Regulation
/ Com-
mutation

Motor

Auxi.

Gear

Main

Hall sensors

−
−

Figure 4.4: Overview of the regulation, gear and sensor architecture. Blocks "Auxi" and "Main"
stand for for Auxiliary and Main sensor respectively.

be greater or equal to 16·(pole pair number), if this condition is not respected, a
Position Sensor Error 7320h will be set at "Enable Operation" command.

We use two types of encoder. Motor 2 is connected to an incremental encoder with
index (3-channel), while motors 1, 3, 4, 5 and 6 are connected to to an incremental
encoder without index (2-channel). The type of encoder is set in the object 2210sub2.

Object 2210h has four entries, but in our case, only entries number 1 and 2 are
useful:

• Pulse Number Incremental Encoder 1 2210sub1: the value depends on the
encoder, so the value is equal to the value showed in chapter Robotic Arm
Structure.

• Position Sensor Type 2210sub2: as shown above, we use two type of encoder,
so the value is 1 for motor 2, and it is 2 for motors 1, 3, 4, 5 and 6. All the
other values is non-supported by EPOS2 24/5 or they aren’t in our case.

Gear Configuration 2230h

Object 2230h and its entries define the gear ratio given in terms of numerator and
denominator:

gear ratio =
numerator

denominator
these are set with the entries:

• Gear Ratio Numerator 2230sub1: defines the value of the numerator.

• Gear Ratio Denominator 2230sub2: defines the value of the denominator.

Object 2260 defines also the maximal gear velocity with sub index number 3, but
this is strictly connected with the Motor Maximal Speed described in object 6410h,
so we don’t set this entry.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.4. Object Dictionary 35

Table 4.5: Abort connection option code

Value Description
1 Fault signal only
2 Disable voltage command
3 (default) Quick stop command

Table 4.6: Shutdown option code

Value Description
0 (default) Disable drive function (switch off power stage)
1 Decelerate with slowdown ramp; disabling of the drive function

Abort Connection Option Code 6007h

This object specifies what action is performed when one of the errors labeled with
an "a" in table 4.14 will be detected (see table 4.5). It contains all communication
errors (CANopen errors included).

If the value is set to 1 the Emergency Message Frame is sent out and the Bit 7
of the "Statusword" is set to 1 if an error occurs.

"Disable voltage" (transitions number 7, 9, 10, 12, 13 and 17) and "Quick stop"
(transitions number 9, 10, 13, and 17)commands are command that change the state
of the EPOS2, they are strictly connected with the transitions number 12

Shutdown Option Code 605Bh

CiA 402 protocol, defines a finite state machine for the controller. The controller
is driven by commands called transitions which change its state. The object 605Bh
indicates the action that will be performed by transitions number 8 and 9, or when
the EPOS2 is driven from state "Operation enabled" to state "Ready to switch on"
or "Switch on disable". Two choices are available as shown in table 4.6

Disable Operation Option Code 605Ch

Like the previous one, object 605Ch describes the actions that will be performed
during transition number 5, or from the state from "Operation enabled" to state
"Switched on". The values are shown in table 4.7 Disable drive function makes the
power stage disable, the motor will continue to move due to its inertia and gravity.
Slow down on quick stop ramp causes the fast stop of the motor, this could be
harmful for links and joints because of their inertia. Finally for our purpose, only

Table 4.7: Disable operation option code

Value Description
0 Disable drive function (switch off power stage)
1 (default) Decelerate with slowdown ramp; disabling of the drive function

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

36 Chapter 4. CANopen Communication

Table 4.8: Fault reaction option code. The four behavior for EPOS2

Value Description
−1 Fault signal only
0 Disable drive function

1 (default) Slow down on slow down ramp
2 Slow down on Quick stop ramp

Slow down on slow down ramp is the right choice.
Value of the "slow down ramp" is the same as the profile Deceleration object.

Fault Reaction Option Code 605Eh

When an error labeled with a "f" in tables 4.14 occurs, we can choose between four
behavior for EPOS2 (table 4.8). A fault signal only is not recommended, because the
fault becomes only an "Emergency Message" which is visible only with the EPOS
Studio if the device is connected with computer via USB cable; when the error occurs
the Bit 7 of the "Statusword" is set to 1. Disable drive function makes the power
to the motor disable, which continues to move due to its inertia and gravity. Slow
down on quick stop ramp causes the fast stop of the motor, this could be harmful
for links and joints because of them inertia. Finally for our purpose, only Slow down
on slow down ramp is the right choice (note that is also the default value).

Maximal Following Error 6065h

Maximal Following error sets the maximum difference between Potion Actual Value
(6064h) and Position Demand Value (6062h). This object is used in all the Pro-
file mode: Profile Position Mode (subsection 6.3.2) and Interpolated Profile Mode
(section 6.4).

When the difference between Potion Actual Value and Position Demand Value
reaches the value set in Maximal Following Error, the error number 8611h "Following
error" raises and an Emergency message is sent over the CANopen network. The
EPOS2 that sent the message turns itself into Fault state.

Home Offset 607Ch

This object describes the distance (in term of joint rotation) between the home and
the zero of the robotic arm. The homing is defined by the limit switches for all the
links, and it is the position in which the robotic arm stays when the power stage is
disconnected, so in this position there is a mechanical structure that supports the
robotic arm1. The zero, instead, is the position in which the robotic arm starts its
operation, so this position must be far away from the mechanical structure to avoid
collisions.

During the homing operation, the robotic arm first searches the limit switches,
and then it reaches the zero position. The value of the offset is given in terms of

1We use a mechanical structure because in our simulator motor brakes have not been installed.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.4. Object Dictionary 37

Table 4.9: Value of the Homing Offset for the six joints

Joint number Home Offset value
1 val1
2 val2
3 val3
4 val4
5 val5
6 val6

Table 4.10: Upper limit of maximum profile velocity

Maximal profile
velocity

Motor max speed >
Gear max speed

Motor max speed <
Gear max speed

Gear no Gear maximal speed Motor maximal speed
yes (Gear max speed) * (Gear

ratio Denominator) /
(Gear ratio Numerator)

(Motor max speed) *
(Gear ratio Denominator)
/ (Gear ratio Numerator)

encoder pulses. We can also set the zero position to be the absolute position for the
next (see section 6.3.1) motions. In table 4.9 all the six homing offset are given.

Software Position limit 607Dh

This object allows to set via software the minimal and maximal position limit. Po-
sition limit is given in position units. When a move will runs out these limits, the
error number FF09h "Software position limit error" raises.

Minimal and maximal position limit are set with the objects:

• Minimal Position Limit 607Dh sub01h: sets the absolute negative position for
the Position Demand value.

• Maximal Position Limit 607Dh sub02h: sets the absolute positive position for
the Position Demand value.

Maximal Profile Velocity 607Fh

With this object we set the velocity limit in the position move used in all the position
modes (Profile Position, Position and Interpolated Position). It is also used in all
the velocity modes, but we don’t use these modes of operation.
The value depends if we use or not the gear. The value is given in rpm (see table
4.10). In our case the gear speed is lower than the motor speed, so we use second
column formula, the values are listed in the DCF file for each motor (see section
5.1.2).

Profile Velocity 6081h

The profile velocity is the velocity reached at the end of the acceleration ramp during
a profiled move.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

38 Chapter 4. CANopen Communication

After we have made the simulation with Simulink Simscape we found the vectors
of Positions and Velocities for the six joints. But we didn’t care about the gears (for
the sake of simplicity), so the trajectory we get from simulation assumes that all
the joints have the same velocity. Hence we have to modify the value of the Profile
Velocity in the DCF file so as to obtain the same velocities for all the joints shaft.
Where the shaft is that at the downstream of the gear. Another reason to modify
this value, is due to the fact that we made the tuning without the links, so it could
be non-optimal. The optimal value will be found only with tests when the entire
robotic arm mounted (see section 7.2). In the DCF file (see section 5.1.2) there are
the value for each motor.

Profile Acceleration 6083h

This values is used as acceleration in position (or velocity modes) modes. The value
for each motor is in the DCF file (see section 5.1.2). For the Profile Acceleration (and
Deceleration), we can make the same observation we made for the Profile Velocity.
Also the Profile Acceleration (and Deceleration) the value was found without the
link, so its value could be non-optimal. In section 7.2 the optimal values are shown.

Profile Deceleration 6084h

This values is used as deceleration in position (or velocity modes) modes. The value
for each motor is in the DCF file (see section 5.1.2).

Homing Method 6098h

Object 6098h is used to select the desired homing method. 16 methods are available,
we choose the method number 1 and number 2. This choice is due to the structure
and hardware used for the robotic arm (see section 2.1). The explanation of Homing
methods number 1 and 2 is in subsection 6.3.1.

Homing Speeds 6099h

This is used to set the velocity for searching the limit switch and the velocity to
reach the zero position. There are two sub indexes:

• Speed for Switch Search 6099sub1: set the velocity to search the limit switch
during the homing operation.

• Speed for Zero Search 6099sub2: set the velocity to reach the zero position.
After the homing operations are completed, robotic arm reach the zero position
with this velocity.

The upper limits for both velocities are equal to the Maximal Profile Velocity.

Homing Acceleration 609Ah

Used to define the acceleration and deceleration ramps in the homing profile. We may
choose (without any problem) this value as the same value of Profile Acceleration.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.4. Object Dictionary 39

Table 4.11: Motor types according to CiA 402

Value CiA 402 Motor Type Description
1 Phase-modulated DC motor brushed DC motor
10 Sinusoidal PM Bl motor EC motor sinus commuted

with Hall sensors and Incre-
mental Encoder 1

11 Trapezoidal PM Bl motor EC motor block commuted
only with Hall sensors

65535 Manufacturer-specific EC motor sinus commuted
with Hall sensors and Incre-
mental Encoder 2 (only sup-
ported with EPOS2 70/10 and
EPOS2 50/5)

Max Acceleration 60C5h

This object permits to limit the acceleration and deceleration to prevent mechanical
damages. This value is the limit of the other acceleration and deceleration objects.
The value is given in [rpm/sec].

Motor Type 6402h

With object 6402h we select the type of the motor driven by the controller. The
types are shown in table 4.11.

All the robotic arm motors are of type 10.

Motor Data 6410h

After the control objects (such as Controlword, Statusword, Mode of operation etc),
object 6410h is one of the most important objects because it sets many upper limits,
first of all current and velocity limits. The object’s entries are:

• Continuous Current Limit 6410sub1: represents the maximal permissible con-
tinuous current limit of the motor [mA]. Operating the motor at this current
and at 25 ◦C will cause the winding reach the maximal winding temperature2.

• Output Current Limit 6410sub2: maxon motor recommends to set the output
current limit at a value double of continuous current limit [mA]

• Pole Pair Number 6410sub3: number of magnetic pole pairs (number of poles
divided by 2) of the rotor of a brushless DC motor.

• Maximal Motor Speed 6410sub4: to avoid mechanical destroys and make the
robotic arm more safe it is possible to limit the velocity. See table 4.12.

2If a heat sink is used, this value can increased.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

40 Chapter 4. CANopen Communication

Table 4.12: Compute of the maximum motor speed in base of the CiA 402 motor type. All the
robotic arm motors are of type 10

Motor Type Description Maximum Velocity [rpm]
1 brushed DC motor 25000

10 EC motor sinus commuted 25000 / pole pairs number
11 EC motor block commuted 100000 / pole pairs number
65535 EC motor sinus Inc2 25000 / pole pairs number

• Thermal Time Constant Winding: is used to calculate the time how long the
maximum output current is allowed for the connected motor. It is also a
constant that identify physically the motor.

If the pole pairs number is set to a value that is in conflict with the actual res-
olution of the encoder used for commutation, a Position Sensor Error 7320h will be
set on "Enable Operation" command.
Encoder Resolution [mm/rev] > 64[mm/rev]· pole pairs number

Note that the values of continuous current limit, pole pairs number, maximal
motor speed and thermal time constant winding are proper of the single motor so
they are all listed in chapter Robotic Arm structure. It may be that the maximal
motor velocity is less than that listed, this is due to security.

4.5 Device errors

CANopen devices are able to send to the producer the Error message, which is de-
scribed with the error code3 in 8 byte. The error code is an hexadecimal number
that specifies the error categories, as described in table 4.13(a).

The OD index of error is 1003h, where the error history is stored. The error reg-
ister is content of the OD entry 1001h, with bit-wise coding of the error cause. The
meaning of the triggered bit that specifies the error cause is shown in table 4.13(b).

The EPOS2 device can detect internal errors caused by EPOS2 malfunctions.
When one of these errors occurs, EPOS2 will transmit an Emergency message over
the CANopen network using the COB-ID EMCY (1014h).

The most frequent EPOS2 internal errors are listed in table 4.2, for all the other
errors we remand to the EPOS2 manuals[12]. The errors are self-explanatory through
the name of the specific error, and with the Error Code and the Error Register we
can identify the source of the error. In most cases the effect is to turn the EPOS2 into
the Fault state (Statusword bit 3 high), so the only reaction is to give the command
Fault Reset by raising the Controlword bit 7. For more information we remand the
reader to the EPOS2 manuals[12], or in a much more practical way we suggest to
connect the EPOS2s to the pc via USB cable and watch what the error is about with
the EPOS Studio.

3The error codes are specified in CiA (CANopen in Automation) 301 protocol DS [6]

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.5. Device errors 41

Table 4.13: Error message explanation

(a) Description of the category of the error by error code

Error code (hex) Error category description
00xx Error Reset / No Error
10xx Generic Error
2xxx Current
3xxx Voltage
4xxx Temperature
50xx Device Hardware
6xxx Device Software
70xx Additional Modules
8xxx Monitoring
90xx External Error
F0xx Additional Function
FFxx Device Specific

(b) Description of the case of the error by the trig-
gered bit

Bit on (bin) Error cause
0 Generic error
1 Current
2 Voltage
3 Temperature
4 Communication Error
5 Device Profile Specific
6 Reserved (always 0)
7 Manufacturer Specific

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

42 Chapter 4. CANopen Communication

Table 4.14: EPOS2 internal errors. In fourth column there is how the EPOS2 reacts to the error.

Error Error Bit Error
name code triggered reaction
No error 0000h − −
Generic error 1000h 0 d
Over current error 2310h 1 d
Short circuit/Earth leakage error 2320h 1 d
Over voltage error 3210h 2 d
Under voltage error 3220h 2 d
Over temperature error 4210h 3 d
Internal software error 6100h 5 d
Software parameters error 6320h 5 f
Position sensor error 7320h 5 d
CAN overrun error (object lost) 8110h 4 a
CAN overrun error 8111h 4 a
CAN passive mode error 8120h 4 a
CAN heartbeat error 8130h 4 a
CAN Rx queue overflow error 81FEh 4 a
CAN Tx queue overflow error 81FFh 4 a
Following error 8611h 5 f
Hall sensor error FF01h 7 d
Index processing error FF02h 7 d
Encoder resolution error FF03h 7 d
Hall sensor not found error FF04h 7 d
Negative limit switch error FF06h 7 f
Positive limit switch error FF07h 7 f
Hall angle detection error FF08h 7 f
Software position limit error 0000h 7 f
Interpolated Position Mode error FF0Ch 5 f
Auto tuning identification error FF0Dh 5 d
Gear scaling factor error FF0Fh 5 d
Main sensor direction error FF11h 5 d

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

4.6. Device monitoring via Heartbeat messages 43

About table 4.14 we have to say that in column "Error reaction", errors with a
"d" will turn EPOS2 into disable (red LED on), errors with an "f" have the effect
specified with the object "Fault Reaction Option Code (605Eh)", and errors with
an "a" have the affect specified with the object "Abort Connection Reaction Option
Code (60507h)".

By default, EPOS2 starts into fault state, with the errors "CAN passive mode
error" and "CAN Tx queue overflow error". However by triggering the Controlword
Fault Reaction bit, these errors disappear.
All the errors with Error Register bits 5 and 7 triggered are due to wrong parameters
value with respect to the same parameters value on the DCF file.
The "Software position limit error" occurs when the actual position runs out of the
position imposed by the "Software Position Limit (607Dh)" object.
The "Following error" is the consequence of the "Maximal Following Error (6565h)"
object . Error "Interpolate Profile Mode error" happens only in Interpolated Profile
mode, and its description is given by reading the Interpolation Buffer Status ex-
plained in 6.4.
The "Negative limit switch error" and "Positive limit switch error" indicates that
the limit switches for the Homing are ON, while they have to be Low, it is a wiring
error, because both the switches must be Normally Open.

4.6 Device monitoring via Heartbeat messages

With node monitoring based on the Heartbeat principle, a node transmits its com-
munication ability (heartbeat message) automatically, at regular time intervals. The
time intervals between two heartbeat messages is called "Heartbeat producer time",
and it is configured via the object dictionary entry 0x10174. The "Heartbeat con-
sumer time" (object number 0x1016 in the OD) describes the maximum time in
which an heartbeat message is expected from a particular node.

In order to avoid false NMT errors due to delay of consumer messages caused by
generation and identification time, it is better that the Producer Heartbeat Time is
longer than the Consumer one:

Consumer heart beat time ≥ Producer heart beat time +5 milliseconds

We have chosen that Consumer Heartbeat Time is longer than 500ms the Con-
sumer Heartbeat Time.

4A value of zero disables the node guarding via heartbeat. A node monitoring is always necessary,
so if we don’t use the heartbeat guarding, we must use a node monitoring via Node-Guarding. We
use only the heartbeat method.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

44 Chapter 4. CANopen Communication

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 5

Electronic hardware Configuration
and settings

The Electronic hardware is composed of the PLC which is the manager of the net-
work; the six EPOS2 boards which are the motors controllers; and the six brushless
motors. Configuration consists in some operations which set the motors parameters
and the EPOS2s features. These operations are made with the aid of two software:
EPOS Studio (by MAXON R©) which makes the tuning of the EPOS2 controllers,
and Automation Studio (by B&R Automation R©) which generates all the necessary
settings for the communication between the PLC and EPOS2s controller. (figure
5.1)

5.1 MAXON R©EPOS2 Controller

The EPOS2 is an electronic board which is connected both with the motor and with
the PLC. The EPOS2s are connected with the motor via the three phase winding
cables, the encoder and Hall sensor wiring. The EPOS2s are also connected among
each other via the CANopen cable and only the first EPOS2 is connected to the PLC
via CANopen cable (figure 5.2).

After all the motors and CANopen connections are made, the only thing we
have to do on the EPOS2s board is setting the EPOS2s node-ID by acting in their
first seven DIP switches shown in figure 5.3 (it is a binary code with 7 bit). A
CANopen network must be terminated, so we set to ON the 8th DIP switch of the
last EPOS2 in the network (the last EPOS2 is the one whom node-ID is the highest).

5.1.1 EPOS2 control architecture

The EPOS2s provides an accurate position control. This is done with a set of control
structures which are now illustrated.
In figure 5.4 there is the overview of the EPOS2 control architecture. EPOS2 con-
troller is made of three main control structures: the Current Control (figure 5.5),
the Velocity Control (figure 5.7) and the position Control (figure 5.8). In the figure
we refer to a Velocity and position plant which are showed in figure 5.6. In this

45

46 Chapter 5. Electronic hardware Configuration and settings

Figure 5.1: The electronic rack. On the left there is the PLC. Above there are the six EPOS2s
with the motors and the CANopen wirings. Below there is the power supply.

Figure 5.2: The EPOS2 board. We see the two CANopen connectors (one for the previous and
one for the following board), the motors connections modules, the power supply connectors, the
input modules and the USB connector. Is also indicates the place where the DIP switches are for
the node-ID configuration.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 47

Figure 5.3: EPOS2 DIP switches. The first seven are used to set the EPOS2 node-ID, while the
8th is used to enable the second termination of the CANopen network

Position
demand
value

Position
PID con-
troller

with feed-
forward

Velocity
demand
value

Velocity PI
controller
with feed-
forward

Current
demand
value

Current
controller

Power
device

Motor
+

Load

+

+

Figure 5.4: Control Overview

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

48 Chapter 5. Electronic hardware Configuration and settings

+
PI

Controller
Motor

electrical
ides i

−

Current
regulation

ides iThis becomes

Figure 5.5: Current control block diagram

last figure the difference between "Velocity plant" and "Position plant" is just an
integration, in fact: j = 1

Sω.

After all those controllers are connected together in one single controller called
Position Regulation (figure 5.9). Where the block "Motion Trajectory Planning" is a
function provided by MAXON R©, which makes the position and acceleration control,
from the "Position Demand value". The Function creates a polynomial function for
the position, starting from a trapezoidal shaped velocity function (see also 6.3).

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 49

Current
regulation

Torque
constant
KT

Mechanics
ides i T ω or j

Velocity
plant

ides ω

Position
plant

ides j

This becomes

or becomes

or, based on what we need

Figure 5.6: Velocity and position plant

+
PI

Controller

Velocity
feedfor-
ward

Acceleration
feedfor-
ward

+

+

Velocity
plant

ωset

ωset

ω
′
set = aset

+

+

+

+
ides ω

−

Figure 5.7: Velocity control

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

50 Chapter 5. Electronic hardware Configuration and settings

+
PID

Controller

Velocity
feedfor-
ward

Acceleration
feedfor-
ward

+

+

Velocity
plant

jset

j
′
set = ωset

j
′′
set = aset

+

+

+

+
ides j

−

Figure 5.8: Position control

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 51

M
ot
io
n

T
ra
je
ct
or
y

pl
an

ni
ng

fe
ed

fo
rw

ar
d

+
M
ai
n

po
si
ti
on

co
nt
ro
lle

r
+

A
ux

ili
ar
y

sp
ee
d

co
nt
ro
lle

r
+

C
ur
re
nt

re
gu

la
ti
on

M
ot
or

G
+
L

A
ux

.
M
ai
n

P
os
it
io
n

V
el
oc
it
y

A
cc
el
er
at
io
n

i d
es

i

−
−

ω
M

φ
L

F
ig

u
re

5.
9:

P
os
it
io
n
re
gu

la
ti
on

.
T
he

bl
oc
k
"G

+
L
"
in
di
ca
te
s
th
e
se
t
co
m
po

se
d
by

G
ea
r
an

d
L
oa
d.

"A
ux

"
an

d
"M

ai
n"

ar
e
th
e
au

xi
lia

ry
en

co
de

r
an

d
th
e

m
ai
n
en

co
de

r.
ω
m

an
d
φ
L
ar
e
th
e
m
ot
or

an
gu

la
r
ve
lo
ci
ty

an
d
th
e
lo
ad

an
gu

la
r
po

si
ti
on

re
sp
ec
ti
ve
ly
.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

52 Chapter 5. Electronic hardware Configuration and settings

The auxiliary control is designed just to stabilize the loop, while it is the main
controller that provides the correct position feedback. The dual loop (main controller
and auxiliary controller together) is realized as a PID controller. The position PID
controller is showed in figure 5.10. When we make the EPOS2 tuning we find all the
gains for the position PID controller and for the velocity PI controller (figure 5.11).
In our case the velocity PI controller is not used because we don’t use any velocity
mode of operation (neither the Profile Velocity Mode nor the Velocity Mode), it is
used by the control architecture to make the auxiliary control loop. And Current
Regulation has a proper PI control (figure 5.12).

The controls gains are: Kp,c and Ki,c for the Current; Kp,v and Ki,v for the
Velocity; Kp,p, Ki,p and Kd,p for the Position; and Ka and Kω for the angular
acceleration and angular velocity feed forward. All these control gains are found by
the EPOS2 tuning with EPOS Studio.

5.1.2 EPOS Studio

EPOS Studio is the software environment made by MAXON R©in which we config-
ure the motor and the CANopen communication and where we tune the EPOS2
controllers. It is necessary that all the wiring is connected and the motor must be
connected with the EPOS2 before opening EPOS Studio. Granted that, one EPOS2
at a time will be connected to the PC vie USB cable. It is important that the
CANopen cables are disconnected from the EPOS2 we are regulating, otherwise an
error raises into the EPOS Studio environment. Another important thing is that af-
ter we have done the motor configuration and the EPOS2 tuning, we don’t connect
the EPOS2s with the PLC (via CANopen cable) until we haven’t exported the DCS
file (see below).

Before proceeding, we have to open EPOS Studio, and click on "Connect All"
icon on the status bar at the top of the EPOS Studio window (figure 5.14) to connect
the EPOS2 and the motor to the PC and let EPOS Studio reads the entries of the
Object Dictionary that describes both the EPOS2 and the Motor.

EPOS2 tuning

The EPOS2 tuning is quite easy to explain. We click on the icon "Regulation Tun-
ing" in the Wizard (figure 5.15) and choose "Auto Tuning" after we follow the steps
(note that the motor will move). The auto tuning will tune the Current Controller,
the Position Controller and the Velocity Controller in automatic (figure 5.16). When
the tuning has been done, we have to save the results into the EPOS2.

Finally, we set the CANopen communication. We click on the icon "CANopen
Wizard" and we set only the Heartbeat times for the producer and for the consumer
(only the consumer number 1). The RxPDO and TxPDO settings are used to map
some variables and to the PDOs be asynchronous or synchronous, but we will make
this with the BR Automation Studio.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 53

amax 1
S sat. 1

S

velocitydes

position

+

postiondes

Kω +

Ka

Kp,p

Ki,p

Kd,pS

1+
Kd,pS

16Kp,p

+

+

sat.
Current
regulation

Current

velocity

position

−

∗

∗

Figure 5.10: Block diagram for the position PID controller with feed forward. The block "Sat."
stands for Saturation, this block controls that the velocity first and the current after don’t exceed
the upper or lower bounds.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

54 Chapter 5. Electronic hardware Configuration and settings

amax 1
S sat +

velocitydes

Kp,v

1
S

Ki,v

Kω

Ka

+

+

velocity

sat.
Current
regulation

current

velocity

position

−

∗∗

∗∗

Figure 5.11: Block diagram for the Velocity PI controller with feed forward. The block "Sat."
stands for Saturation, this block controls that the velocity first and the current after don’t exceed
the upper or lower bounds.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 55

currentdes + Kp,c

1
S

Ki,c

+ Plant

velocity

position

current

−

Figure 5.12: Current PI regulation

Another thing we could do with EPOS Studio is to monitor all the Object Dic-
tionary while the EPOS2 is running. In fact, if we connect the EPOS2s together
with the CANopen cable, and connect one of them to the PC via USB cable, we can
watch the values of the object dictionary entries when the EPOS2 is running (is the
same as using the "Watch" command in Automation Studio). Also in this case, the
change of variables is not real time, but it is delayed. To do this we click on the icon
"Object Dictionary" in the Tool menu (figure 5.17).

In the Tool menu we can make the EPOS2 perform some motions (in one of
the operating modes defined by the CiA 401 protocol [8]), by clicking the respective
icon. It is the same as we make with the programs in Automation Studio, but with
EPOS Studio we just give the command and the EPOS2 will move without write
any program. This is useful only if we want to verify the controller.

Motor configuration

The Motor configuration is very simple. We open the "Startup Wizard" in the
"Wizard" menu (figure 5.15) and we start with the motor configuration. Motor
Configuration is quite simple because we have just to insert the values of the motor
characteristics that we find in the motor data sheet. The main joint features are
listed in table 5.1. After we save the results into the EPOS2.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

56 Chapter 5. Electronic hardware Configuration and settings

Voltage +

+

f
l

1
S

R

KT

current

KT velocity

+

+

1
J

rl

0 sign

1
S

1
S

velocity

position

∗ ∗ ∗

∗ ∗ ∗

−

Figure 5.13: Model of the Plant showed in figure 5.12.

Figure 5.14: EPOS Studio status bar.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 57

Figure 5.15: EPOS Studio Wizard menu.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

58 Chapter 5. Electronic hardware Configuration and settings

Figure 5.16: EPOS Studio Auto Tuning view.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 59

Figure 5.17: EPOS Studio Tools menu.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

60 Chapter 5. Electronic hardware Configuration and settings

T
ab

le
5.

1:
Jo

in
t
el
ec
tr
ic

ch
ar
ac
te
ri
st
ic
s.

A
ll
of

th
em

ar
e
di
sc
us
se
d
as

en
tr
ie
s
of

th
e
O
bj
ec
t
D
ic
ti
on

ar
y
in

se
ct
io
n
4.
4.

Jo
in
t
nu

m
be

r
6
ha

sn
’t
go
t
th
e
en

co
de

r.

Jo
in
t
nu

m
b
er

1
2

3
4

5
6

M
O
T
O
R

C
on

ti
nu

ou
s

cu
rr
en
t

lim
it
[A

]
3.

21
5
.9

4
2
.2

7
2
.0

2
2.

02
1

P
ol
e
pa

ir
s
nu

m
be

r
8

1
12

8
8

4
M
ax

m
ot
or

sp
ee
d
[r
pm

]
48

60
26

70
16

10
29

40
29

40
27

90
T
he

rm
al

ti
m
e
co
ns
ta
nt

w
in
di
ng

[s
]

29
.6

33
.9

46
11
.4

11
.4

8.
78

G
E
A
R

R
ed

uc
ti
on

fa
ct
or

12
6

:
1

30
8

:
1

11
3

:
1

47
:

1
47

:
1

30
:

1

E
N
C
O
D
E
R

C
ou

nt
pe

r
se
co
nd

20
48

50
0

64
00

20
48

20
48

−
C
ha

nn
el
s

2
3

2
2

2
−

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 61

Figure 5.18: The window which opens when we right click on the window "Object Dictionary".
Here we can save the EDS file.

5.1.3 EDS File and DCF file

When the EPOS2 is still connected via USB (only via USB, all the CANopen con-
nections can’t exist), we can export two type of files. The EDS file contains only
the parameters which describe the device, but it doesn’t contain the value of the
parameters (it contains only the default value of them) [7]. This choice is due to the
fact that EDS file is only a description of the device firmware. If the firmware will be
updated, the EDS file has to be modified (by the manufacturer) and a new version of
it will be released. To export the EDS file we open the Object Dictionary by clicking
its icon in the Tools menu (figure 5.17), on the right side the window with all the
entries will open, after we right click and select "Export EDS file" (figure 5.18) and
we decide where the file will be saved.

The DCF file, instead, has the value of the parameters that we set with the
EPOS2 Tuning and with the Motor Configuration. DCF file structure is very similar
to that of the EDS file, the differences are only in the value of the parameters (there
are values of the motor-depended objects described in section 4.4 as well). To export
the DCF file we click on the icon "Parameters Export/Import" in the Wizard menu
(figure 5.15), after a window opens (figure 5.19) and we have to choose the file
extension (.dcf) and where the file will be saved. With the same procedure we can
also import a DCF file and save it into an EPOS2, which takes the parameters values
described in the DCF file we have just transferred.

When we import the "Fieldbus device" into Automation Studio, we import the
EDS files of the EPOS2s. Hence, when we upload the program into the PLC, all the
device parameters will turn into the default values. Not only in the PLC but also
in the EPOS2s the parameters are going to be overwritten by the default values. So
we have to modify the Object Dictionary entries with the correct values listed in
DCF file. To make this we right click on the EPOS2 icon in the Physical View and
click on "Configuration" and a window appears. We have to modify the value of all

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

62 Chapter 5. Electronic hardware Configuration and settings

Figure 5.19: The window which opens when we click on "Parameters Export/Import" in the
Wizard menu. Here we can save the DCF file.

the entries described in section Object Dictionary (section 4.4), and we have also to
set the value of the gains we have found while performing the EPOS2 Tuning. The
current PI gains are saved in the object Current Control Parameters Set (60F6h) and
its sub-indexes; the velocity PI gains and its feed forward gains are saved in the object
Velocity Control Parameters Set (60F9h) and its sub-indexes; and the position PID
gains and its feed forward gains are saved in the object Position Control Parameters
Set (60FBh) and its sub-indexes. We set only these entries because they are the
most significant, the others entries are for the experts.

Note that the EPOS2 channels (which are the PLC Input and Output), haven’t
a value (the default value is always 0000h) because they assume different value,
depending on what the EPOS2 is performing. For example the Controlword and
Statusword have the value that depends on which state the EPOS2s is. The same
goes for the "Target Position", the "Position Actual Value" etc.

5.1.4 LED in EPOS2 Controllers

EPOS2 has two LEDs, one green and one red in the board upper left corner, if seen
from the front. The two LEDs tell us something about the EPOS2 status and errors,
in table 5.2 the LED combinations and their explanation are shown [9] [10]. The
states are the same as those explained in CiA 402 protocol (see section 6.2), in fact
in the first row the possible states are those within Power Disabled area, the states
in the second row are those in Power Enabled area, and the state in the third row
ore those in Fault area.
Flash stands for Flashing, which means that during 1 second, the LED is off for 0.9
seconds and on for 0.1 seconds.
Slow stands for Slow Blinking, which means that the LED blink with a frequency of
∼ 1Hz.

5.1.5 Digital Input on EPOS2

On the upper side of each EPOS2 there are the input and output module (called J5
signal, figure). We are only interested on the input module, because here we connect
the limit switches for the Home position (see also subsection 6.3.1). The EPOS2
input and output connector is illustrated in figure 5.20(a), while in table 5.3 the

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.1. MAXON R©EPOS2 Controller 63

Table 5.2: Explanation of red LED and green LED combination.

Red LED Green LED States and errors
Off Slow Power stage is disabled. The possi-

ble EPOS2 states are: "Switch On
Disabled"; "Ready to Switch On";
"Switched On".

Off On Power stage enabled. The possible
EPOS2 states are: "Operation En-
able": "Quick Stop Active".

On Off EPOS2 is in "Fault" State.
On On Power stage enabled. The EPOS2

is in the temporary "Fault Reaction
Active" state.

On Flash No valid firmware, or firmware in
download.

connectors pinout is explained.

(a) Input and output module. Input
are both digital and analog.

(b) Jumper JP4 closed (left) and open (right). Opening the housing we can
find the Jumper JP4 in the bottom right conrner. It is connect to the pin 9 in
the input and output module.

The Analog Inputs could be used as reference voltage for the analog position set
point when we are using Position Mode (see [12]).

We use only the pins 3, 4 and 9 because they are necessary for the Homing Mode.
In fact, here we connect the limit switches for the Homing position. The second and
third EPOS2s, whom motors require the Homing method number 1, have the limit
switches signal on the pin 3. While the first EPOS2, whom motor requires the
Homing method number 2, has the limit switches signal on the pin 4. Note that the
existing switches have both the normally Open and the normally Closed connection,

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

64 Chapter 5. Electronic hardware Configuration and settings

Pin Description Signal
1 and 2 Digital signal ground D_Gnd
3 Digital input 6 "Negative Limit Switch" DigIN6
4 Digital input 5 "Positive Limit Switch" DigIN5
5 Digital input 4 "Home Limit Switch" DigIN4
6÷ 8 Digital input 3, 2, 1 "General purpose" DigIN3, 2, 1

9
Auxiliary supply voltage output +Vout
Logical supply voltage input +Vc

10 Digital output 4 "Brake" DigOUT4
11÷ 13 Digital output 3, 2, 1 "General purpose" DigOUT3, 2, 1
14 Analog signal ground A_Gnd
15÷ 16 Analog input 2, 1 AnIn2, 1

Table 5.3: The explanation of the J5 Signal connector pins. Pin 9 is a voltage output if jumper
JP4 is closed, or a supply voltage can be connect if jumper JP4 is open.

NO
NC

COM

PIN 9

PIN 3 or PIN 4
4kohm

Figure 5.20: Wiring example for the connection of the Homing Limit Switch to the EPOS2. Every
EPOS2 has a limit switch. The limit switch Normally Open connector is connected to the EPOS2
J5 Signal pin number 3 or 4 based on the Homing method.

so we have to connect to the EPOS2 input pin only the normally Open connection.
The pin 9 is a Voltage output (hence the jumper JP9 is closed) and it is connect to
the limit switch "COM" connection. In order to reduce the input current, a resistor is
present between the limit switch "Normally Open (NO)" connector and the EPOS2
input pin. The maximal current is 6 mA at 24 VDC, so the resistor has to be a value
of 4 kΩ (figure 5.20).

5.2 B&R Automation R©PLC

The Programmable Logic Controller (PLC) is a digital computer which which is
adopted for the control of industrial process, such as assembly lines or robotic device.
Our PLC is made by B&R Automation R©.

Explaining how PLC works is quite simple. It is made in the same way as a
computer, but without monitor, mouse and keyboard. PLCs have got a processor, a
timer and a power supply. Our PLC has also an input module and the module for
the CANopen interface, which it is necessary for making the PLC play the role of
the Producer in CANopen network and the role of the Master in CANopen network
management (see section 4.3).

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.2. B&R Automation R©PLC 65

Every module can be placed on the right side of the power supply module. Vir-
tually we can place an infinite number of modules, but really, the number of them is
limited by the maximum power that PLC delivers, in fact every module needs some
amount of power, so the sum of all the modules power gives the maximum number
of modules that we can add. In our case, only one input module was added. The
hardware architecture is shown in figure 5.21, from left to right there are:

• PLC (X20 CP 1584): this is the real place where programs run, here are located
the CPU, the timer, cooler and all the other necessary hardware that makes a
computer works. Here there are also the Flash memory in which the program
is saved and the Ethernet port for the communication between computer and
PLC. Ethernet communication has two main goals: the first is to write program
and configuration on the flash memory, the second goal is to read (or write)
the variables while the PLC is working (see below).

• CAN interface (X20 IF 1072): this is used for the communication based on
CANopen network. With this module the PLC becomes the producer in
CANopen network and the master in the CANopen network management.

• Power supply module: this is simply the module which feeds the PLC with the
24V from the power line.

• Input module (X20 DIF 371): this is the module that provides digital input
to PLC. Currently, only the emergency red button is connected in the Input
module.

• EPOS2: the other devices are the motor controller EPOS2 R©. They are con-
nected to each other with a single cable.

5.2.1 Digital Input module

The B&R Automation R©PLC is able to manage some external digital inputs by
adding the proper module. We use the X20 DIF 371 as a digital input module
(figure 5.22).

We use the input module just to connect the Emergency push button (figure
5.23(a)) and three limit switches for the link 1, 2 and 3 in order to limit their moves.
In fact, due to the robotic arm structure links 2 and 3 are not able to make a 360 deg
movement, and due to the laboratory environment also link 1 is not able to make a
360 deg movement without catastrophic consequences. We place the limit switches
directly on the base for link 1, on link 1 for link 2 and on link 2 for link 3, in this way,
if a link hit its limit switch all the EPOS2s receive the command to stop the motion
(see section 6.5.1 React to the dangers). Also in this case we use the limit switches
Normally Open connector as the signal (figure 5.23(b)). A resistor is required, but
only for prevention because the digital input and the internal electronics are opto-
isolated.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

66 Chapter 5. Electronic hardware Configuration and settings

Figure 5.21: PLC hardware architecture. From left to right: PLC with the CPU and the timer;
CAN interface; power supply module; input module. Below, there are the six EPOS2s

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.2. B&R Automation R©PLC 67

Figure 5.22: X20 DIF 371 digital input module overview.

+24 VDC Input
(a) Emergency push button
connection.

NO
NC

COM

+24 VDC

Input

(b) Limit switch connection. For every limit
switch such a conession is required. The +24Vdc
may be the same for all the limit switches.)

Figure 5.23: Example of the Emergency push button and limit switch connections on the X20
DIF 371 digital input module.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

68 Chapter 5. Electronic hardware Configuration and settings

5.2.2 Hardware configuration with Automation Studio

Automation Studio is a software environment where we can build and configure the
control hardware (and software) architecture [3].

The hardware part is stored in the Physical View. Every BR device is listed
in the physical tool box (figure 5.24), so here we can find the PLC, the I/O mod-
ule and the CAN interface, but not the EPOS2 drives, because these are made by
MAXON R©. The EPOS2 drive (like all the others devices which are not provided
by B&R Automation R©) must be called by the command "Import Fieldbus Device"
(figure 5.25), which allows to import in AS the electronic data sheet of the device (file
.eds). Now the EPOS2 EDS file are listed under the third party device in the tool
box (figure 5.26). After we import the EPOS2s in the Physical View (by dragging
them with the mouse from the third party device menu to the Physical View) and
we connect them to the CAN interface and with each other in the same order than
the real case (figure 5.27). We must also set the node number, this must be equal to
the node number set up by the DIP switch on the EPOS2 controller. To set the node
number we right click on the EPOS2 icon and we select "Change node number", on
the right column two arrows appear for setting the node number.

Finally we have to set the value of some device parameters. When we import the
EDS file, we import just the description of all the device parameters, but not their
correct values (the values we import are the default ones), so now with the aid of
the DCF file we set some fundamentals parameters. We right click on the EPOS2
icons and chose "Configuration", here we find all the editable objects of the OD
under the nodes "Channels" and "Devices parameters". Descriptions and values of
parameters that we have to modify are in section 4.4. The motor, gear and encoder
main features are shown in table 5.1.

From the Online menu Configuration (figure 5.28) we can connect the PLC with
Ethernet port and download the programs to the PLC directly with Ethernet port.
If the Ethernet port hasn’t been yet configured, we have to download the program on
the flash memory by selecting "Offline Install" in the Tools menu (figure 5.25). To
configure the Ethernet communication we have to set the IP Address of the PLC. To
do this we click with the mouse right button on the icon "ETH IF2" in the Physical
View (5.27); we then choose "Enter IP Address manually" in the voice "IP Address",
and here we enter the IP Address of the PLC. Then in the window that opens when
we click on "Online settings" we set the INA node number of the PC, while the
INA node number for the PLC is set by rotating the two rotational switches at the
bottom of the PLC (see figure 5.29). It isn’t important what the numbers are, but it
is mandatory that they are different, otherwise the communication via Ethernet does
not take place because in the plant there are two devices with the same INA node
number. Finally we click on the icon for searching the Online PLC and we start the
communication by right clicking on the PLC icon and choosing "Communication".

In figure 5.29 we can see also the Ethernet port and the PLC battery which is
used only for the EEPROM memory.

Now we have to set some feature of the CANopen network. First we set the

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.2. B&R Automation R©PLC 69

Figure 5.24: The tool box for the devices. Here are listed all the B&R AutomationR©devices. To
open this window we have to click on the Physical View and on the right the toolbox appears. Note
that when we choose a device, in the tool box will be listed only devices that can be connected with
chosen device.

Figure 5.25: Tools menu. Here we import the Fieldbus device and we can install the configuration
on the flash memory in case of the Ethernet port hasn’t been yet configured.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

70 Chapter 5. Electronic hardware Configuration and settings

Figure 5.26: Third party device under the physical toolbox. Note that hear are listed only the
two type of EPOS2R©(the 24/5 and the 70/10), there aren’t all the six EPOS2s, this because of the
.eds file is the same for the same EPOS2. To create the six motor hardware we will choose three
EPOS2 24/5, two EPOS2 70/10 and one EPOS2 24/2.

Figure 5.27: The Physical View. Hera we can see how the hardware is organized and the connec-
tions between all the devices.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

5.2. B&R Automation R©PLC 71

Figure 5.28: The Online menu. Here we can activate the communication between the PC and the
PLC via Ethernet

Figure 5.29: With these two rotational switches we set the INA node number of the PLC. They
are two because they make an hexadecimal number.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

72 Chapter 5. Electronic hardware Configuration and settings

PLC node-ID by rotating the rotational switches on the CAN interface X20 IF 1072
(figure 5.30(a)). CANopen network must be terminated both at the initial and at
the end. In order to terminate the network initial part, we set to ON the switch
which is in bottom of the CAN interface module X20 IF 1072, (figure 5.30(b)).

(a) Front view of CAN interface module
X20 IF 1072. The PLC node-ID is set
by rotating the two rotational switches
to make and hexadecimal number.

(b) Bottom view of the CAN interface
module X20IF 1072. Here there is the
switch to enable the first termination of
the CANopen network.

Figure 5.30: Front view and bottom view of the CAN interface X20 IF 1072.

Now the control hardware architecture ssettings are finalized. In the next chapter,
we will address the software architecture analysis.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 6

Software configuration

6.1 Automation Studio environment for software config-
uration

B&R Automation R©is able to accept programs in several programming languages.
Some of which are IEC (International Electrotechnical Commission) languages (such
as Structured Text and Ladder Diagram), but B&R Automation R©accepts also other
languages such as C and C++. I chose C++. B&R Automation R©offers a program-
ming environment called Automation Studio (AS). In AS we built all the project
part, from the hardware connection, to the software writing [3].

6.1.1 Software configuration

To create a program we open the "Logical View" (figure 6.2) and the toolbox for the
programs appears on the right (figure 6.3). In this toolbox we can choose between
some icons. Icon "Library" allows us to import library or create a new library, for
now we just import existing libraries that we can found under the node "Import BR
Library". Libraries we import are those that allow us to write the program in C++
using some parts of program in Structured Text. Icon "Program" is used to create
the folder with the program and all the other files that are connected with it. Under
the window the list with all the possible programs appears and we choose "C++
program". Now AS provides to create three sub-programs:

1. Init program. It will be execute only one time at the beginning of the cyclic
where the program is located. This is useful when we need to give the initial
values at some variables, for example the index for the arrays scanning should
starts from 0 (zero), but if we are modifying the program we could forget to
set it to zero, so we write the line that sets it to zero in the Init program and
we are sure that every time the program starts for the first time1, the index
starts to zero.

2. Exit program. It will be execute only one time when we decide to shut down

1The program starts for the first time in when we switch on the PLC and the program has been
already downloaded to the PLC, or every time after we download the entire project to the PLC.

73

74 Chapter 6. Software configuration

the PLC. It is useful, in our specific case, to drive the robotic arm to the home
position before shutting down the PLC.

3. Cyclic program. It is the real program with all the instruction and tasks. It
will be executing at every lapse of time corresponding to the Task Class time
in which the program is saved.

We have two choices, have all the three sub-programs in a single C++ file, or
have three different C++ files, one for the single sub-program. I chose the second.

Due to the fact that the first programming languages of the PLC are the lan-
guages defined by the International Electrotechnical Commission (IEC), which are
Structured Text and Ladder Diagram, all variables (both the global variables and
the local variables) are easier to declare with Structured Text. In fact, Automation
Studio provides a simple table2 in which we can declare the variables. The using of
this table is very intuitive. We could also not declare the variables with Structure
Text, but we have to declare the variables in a C header file, after this file will be
include in C++ programs. So it is easier to declare the variables and types with the
table provided by the Automation Studio (figure 6.1(a) and figure 6.1(b)). Referring
to the figures, "Reference" means that the variable is referred to its memory address
(this is not possible with the Process Variables); "Constant" means that this is a
constant whom value is specified in column "Value"; "Retain" means that the vari-
able will be save into a memory with a battery (EEPROM memory) and not only
in the RAM, so after a build procedure the variable and its value don’t disappear;
"Value" allows us to give the value for a constant or the initial value for a variable.

Also the declaration of the types (such as Enumerations and Structure) is easier
with the Automation Studio method, but the used language is still the Structure
Text. The only thing we have to do for telling to the PLC that the program is
written in C++, but the variables and the types are declaring in Structured Text
is to include in all the programs the header files "bur/plc.h" and "bur/plctypes.h"
and the library "cstdlib"3. For the rest the programming can be in other languages
different from those defined by IEC.

The difference between Global variables and Local variables is that the first ones
can be read and written by all the programs, while the second ones can be read
and written only by the program in which they are declared. Variables connected to
the PLC channels are also called Process Variables (PV), while the other variables
declared in .var file are called Variables. We are also able to declare some support
variables inside the Cyclic program, but we cannot know them values during the
PLC is running because they cannot be added in the Watch window (see below).

Icon "File" allows us to create file, for example, when we need to create an header
file (.h), we choose File and under the window a list with all the possible files ap-
pears, we choose "Header file" that will be added in the selected program folder.

2This table is just a way to simplify the declaration of the variables, because the variables file
(.var) is written in Structured Text. The same happens with the declaration of the Types in the
.typ file.

3These header file and library allow also to use some data type which are not present in C++,
for example the data type int16 in C++, becomes UINT in the PLC and so on.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.1. Automation Studio environment for software configuration 75

(a) Table for Variables declaration.

(b) Table for Types declaration.

Figure 6.1: Tables for Variables and Type declaration. Some Variables examples are shown, among
which the Enumeration and the Data Structures are shown. Note that if a variable is defined as a
type, in the column "Type" there is the name of the declared type.

Software architecture was a crucial point, because many tasks have been imple-
mented, first of all security and smoothness of motion. In order to satisfy the tasks,
B&R Automation R©AS offers a simply way to architect software, in fact AS is based
on Task Classes. Task Classes are virtual places where we can save one or more
(at most four per cyclic) program, these programs are executed at every time lapse.
The lapse of time varies based on the number of Task Class. There are eight Task
Classes in hierarchical order, the number of the cyclic indicate the importance and
the length4 of the Task Class. For example, the number one is the most important
and it executes the program in it every 10ms, no other Task Class can be executed
while the CPU is running the Task Class number one, and every other Task Class
is stopped to run the number one (when the execution of the Task Class overlap).
Instead Task Class number four is repeated every 100ms, it could be stopped by the
Task Classes number three, two and one, but the number four can stop Task Classes
from number five to eight.

The Task Classes based method is very useful to structure the software and re-
spect the different tasks that the CPU performs. In fact, for example, the program
that manages the emergency will be assigned to the Task Class number one, while
the program which manages the robotic arm motion is assigned to the fourth Task

4The lengths have some default values, but they can be modify by the programmer. If the
program saved in the cyclic requires more time than the length of the cyclic plus the tolerance, an
error occurs and the PLC turns itself into the Service mode.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

76 Chapter 6. Software configuration

Figure 6.2: The Logical View. Here all the programs are listed. Every program in a cyclic is
composed by some files, all these files are included in a folder named like the program. We can also
note the variables and types declarations, which are in .var and .typ file respectively.

Figure 6.3: The toolbox for Logical part. The mains icon are "Program", "Library" and "File".

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.1. Automation Studio environment for software configuration 77

Figure 6.4: Everything that is assigned to the CPU. Here we can see the software architecture:
the programs are saved in different Task Class (here called Cyclic) because of their importance in
the architecture.

Class. In figure 6.4 is shown the software architecture and the assignment of pro-
grams to the Task Classes, and all that is saved into the memory and it is necessary
to the CPU to run the programs (such as the libraries).

6.1.2 Assignment of the variables

Automation Studio doesn’t provide the using of the PLC inputs and outputs in the
programs. For this reason we have to assign to PLC inputs and outputs the variables
which have been already declared. To do this, we right click on EPOS2 icon and
select "I/O Mapping", after the window opens (figure 6.5). On left column (Channel
Name) are listed all the PLC inputs and outputs. On next column (Process Vari-
able) we select the variable to connect to the channel, when we click on this column
a window opens with only the variable that we can connect to the channel. In fact,
we are able to connect only variables declared with the same data type shown on
the third column. This must to be done for all the EPOS2 devices, every process
variable can be connected with only one Channel.

As we have already said, the subject is the PLC, so every input and output is
referred to it. This means that the EPOS2 inputs (such as the Controlword and

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

78 Chapter 6. Software configuration

Figure 6.5: IO Mapping. In the first column on the left there are the name of the PLC channels.
In the second column there are the Process Variables connected with the channels. In the third
column there are the data type of the channels.

the Target Position) become the PLC outputs, and vice versa, the EPOS2 outputs
(such as the Statusword and the Actual Position) become the PLC inputs. We can
write the EPOS2 inputs (or PLC output), while the EPOS2 outputs are used only
in read mode to verify the status of the EPOS2. Graphically, in Automation Studio
PLC inputs are indicated with a green dot, while PLC outputs er indicated with a
red dot, this convention remains in all the windows where the Process Variables are
listed.

In figure 6.5 there are the standard EPOS2 channels, but we can add input and
outputs. To do this we right click on EPOS2 icon in Physical View and select Con-
figuration. After in Channel list, or in Device Parameters list we find the channel
we want to manage. We open the description of this parameter (for example the
Current) and under the node "PDO mapping" we select in which of the four PDO
we want to map it. Finally this channel appears into the I/O Mapping window and
we connect it to a Process Variable. Obviously it becomes a PLC input if it is of type
Read Only (RO), or becomes a PLC output if it is of type Read and Write (RW)
or Write Only (WO). The action just described in called "PDO Mapping" and it is
allowed only for some channels (most of them), some other channel can’t be mapped
because it doesn’t make sense. To see if a channel can be PDO mapped we have to
see its description in the EDS file (or in the EPOS2 Firmware Specification manual)
at the node "PDO Mapping" there is "Yes" if the channel can be PDO mapped or
"No" if it isn’t. Some Channels can be PDO mapped, but other can’t, because of
they describes the EPOS2 settings or the motor features, and after they are changed
the target (the EPOS2) have to be reboot.

When we have done all the settings, we are able to transfer the project to the
PLC. If the Ethernet port has been configured we click on the icon "Transfer" in the
status bar (figure 6.6).

Other actions from the Status bar are:

• Built: builds the project keeping all the variables saved. The project could be

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.1. Automation Studio environment for software configuration 79

Figure 6.6: The Status bar. Here there is the Transfer icon to upload the project to PLC. There
are also some other important icons: Built, Rebuilt, Watch and Warm restart.

or not be transfer after is ha been built.

• Rebuilt: builds the project after eliminating all the variable, the project will
be built like the first time. The project could be or not be transfer after it has
been rebuilt.

• Watch: while the PLC is running we can observe the value of the variables
with this option.

• Warm Restart: when PLC turns from Service mode into RUN mode, the com-
mand Warm Restart is required before the execution of the programs. The
variables are saved into the EEPROM memory, after the project will be built,
and transfer to the PLC.

By clicking on Watch icon we can observe the value the Process Variables assume
while the PLC is running in the same window of the I/O Mapping (figure 6.7). Here
we can see the value of both the Channels (in "Physical Value") and the Process
Variables in ("Process Variables Value"), we are able to force the Channel to assume
the value of the PV that we manually modify in the column "Force Activated Vale"
by flagging the "Force Activate" of that Channel.
In figure (6.8) is shown a watch window for a specific program. To open this win-
dow we right click on the program folder in Logical View and select "Watch". The
difference respect the below watch is that here we are able to observe all the process
Variables declared in this program and not only the PVs connected to channels. For
adding Variables we right click on the window, select "Add Variables" and choose
the PVs we want to watch. Also here we can modify manually the values of the
Variables. Note that, only the Variables declared in the .var files (Global and Local)
can be watched, the other variables defined within the Cyclic program cannot be

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

80 Chapter 6. Software configuration

Figure 6.7: I/O Mapping Watch window. Here we are able to observe the value of the PLC inputs
and outputs, the values of the Process Variables connected to the PLC channel and also force the
value of the PLC Channels.

Figure 6.8: Watch window for a program. All the program Process Variables can be added and
watch here. We are able also to modify the value of the PVs, for example this program is a state
machine that follow a number of step, by modifying the PV "Step", we make the State Machine
return to that step and repeat the tasks.

watched. It is important to remark that the watch option is not in real time due to
the delay caused by the Ethernet port and by the PC processes, then also the Force
operation is not in real time.

To make the PDO be Synchronous we right click on the EPOS2 icon in the, we
chose "Configuration" and under the node "Communication parameters", we can
modify the type of the PDOs making them synchronous. We have also to declare
the number of SYNC messages between two transmission (figure 6.9).

In Online menu Services, we find the command Cold Restart that delete all the
project and variables from the PLC and re-install the entire project again. The
variables will be delayed both from the RAM and from the EEPROM.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.2. CANopen CiA 402 protocol 81

Figure 6.9: Here is shown haw to make a PDO be Synchronous. We shown only the RxPDO 1,
but is the same for the others RxPDOs, and for the TxPDOs.

Controlword 6040h

Finite State MachineInternal events

Statusword 6041h

Figure 6.10: Inputs and output of the Finite state machine described in CiA 402 protocol.

6.2 CANopen CiA 402 protocol

EPOS2 R©controller are based on the CiA 402 protoco [12]. This protocol[8] provides a
strict sequence of actions for the initialization, the control and the exit for the motion
control. All the sequences are based on the finite-state machine (FSM). Finite state
machine is a machine that can be only in one of a finite number of states at any
given time. The FSM can change from a state to another state in consequence of
some external input, the change from a state to another state is called transition.
FSM can be deterministic or non-deterministic, the state machine described in CiA
402 protocol is deterministic; this means that the transitions are unique and there
isn’t any sort of statistical or stochastic process during transitions. Transitions are
caused only by internal event (such as error messages) or by the Controlword, while
the actual state in which the FSM is, is given by the Statusword. Controlword and
Statusword are the two mains aspect of the FSM, they are 16 − bit data type (see
subsection 6.2.1). In figure 6.10 are shown inputs and outputs of the FSM.

6.2.1 Controlword and Statusword: Finite State Machine

Controlword and Statusword are 16− bit numbers, in which every bit, or a combina-
tion of bits, give an instruction to EPOS2 (Controlword) or give us an information
from the EPOS2 (Statusword). So the Controlword is used to give a command, while
the Statusword tells us if command happens, and the actual state of EPOS2. In ta-
bles 6.1(a) and 6.1(b) there are the name of the bits of Statusword and Controlword.

We must note since now that we are programming the PLC, that is the subject
of the system, so everything is related to it: in fact the Controlword, which is an
input for the EPOS2, becomes an output for the PLC, and the Statusword, which is
an output for the EPOS2, becomes an input for the PLC.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

82 Chapter 6. Software configuration

Table 6.1: Bits of Statusword and Controlword for the state machine in figure 6.11.

(a) Statusword bits.

Bit Description M/O
0 Ready to switch on M
1 Switched on M
2 Operation enabled M
3 Fault M
4 Voltage enabled M
5 Quick stop M
6 Switch on disabled M
7 Warning O
8 Manufacturer specific O
9 Remote M
10 Target Reached M
11 Internal limit active M

12÷ 13 Operation mode specific O
14÷ 15 Manufacturer specific O

(b) Controlword bits.

Bit Description M/O
0 Switch on M
1 Enable voltage M
2 Quick stop M
3 Enable operation M

4÷ 6 Operation mode specific O
7 Fault reset M
8 Halt O

9÷ 10 Reserved O
11÷ 15 Manufacturer specific O

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.3. Position-based modes of operation 83

The State machine defined by CiA 402 protocol is a sequence of states that the
drive takes. Only these states are allowed.

In figure 6.11 is shown the State machine. Every state is described by a value
of the Statusword and every transition is executed when the Controlword assumes
a well defined. The state machine described in figure is the one that describes the
sequences of transitions to make the EPOS2 enable to run and that describe what
happens in case of fault. The EPOS2, when the power is apply, starts always in
Fault state, which is adjusted with the Controlword.

Transition is a sequence of steps that take the FSM from state "A" to state "B".
The command of the change of state is given by the Controlword, and the information
of the change in state is given by the Statusword. In figure 6.12 is shown the flow
diagram to get a transition. As shown in figure, Controlword and Statusword are the
two main information to complete the transition and understanding if the transition
was happened. Every bit of them have a particular meaning. The status in figure
6.11 are described by the bits 0, 1, 2, 3, 5 and 6 of the Statusword5 (see table 6.2(a)),
while the transition are described by the bits 0, 1, 2, 3 and 7 of the Controlword (see
table 6.2(b)). The other bits have specific meaning based on the Mode of operation
(see subsections 6.3.1, 6.3.2 and section 6.4).

6.3 Position-based modes of operation

EPOS2 controllers are needed to control of the joints motion. MAXON R©have cre-
ated a function which starts from position, velocity and acceleration demand values
and give the amount of current to feed the motor. These functions are called Po-
sition Control Function (figure 6.13) and Current Control Function (figure 6.14)
respectively.

Note that in the Position Control Function, the value of "Position demand value",
"Velocity demand value" and "Acceleration demand value" are calculated by the
specific function Trajectory Generator which is in the EPOS2 (see chapter 5.1).

The task of the Current Control Function is to turn the value of position, velocity
and acceleration into current to feed the motor.

6.3.1 Homing Mode

Homing position is the robotic arm configuration when it isn’t working. Homing po-
sition is also the first operation the robotic arm do, this because all the configurations
are based on the homing position. In fact, for example, robotic arm needs to reach
the operational configuration, that is done from the homing position. Home Position
is also important because it becomes the reference position for all the further joints
motion.

When the robotic arm is not feed with high voltage, hence the motors don’t
provide any torque, near to the home position there is a structure to support the
robotic arm weight (see section 2.1). But the importance of this structure is also
to host the limit switches. Limit switches are mounted on the mechanical structure

5all the other bits are irrelevant, that means that they could be 0 or 1, but the status doesn’t
change.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

84 Chapter 6. Software configuration

Start Fault reaction active

Not ready to switch on Fault

Switch on disabled

Ready to switch on

Swtitched on

Operation enabled Quick stop

[T0]

T1

T2

T3

T4 T5

T6

T7

T8

T9

T10

T11

T12

[T13]

T14

T15

(T16)

Power
disabled

Power
enabled

Fault

Figure 6.11: State machine defined by CiA 402 protocol. In the rectangles there are the name of
the states, the transitions are named with the letter "T". The transitions in square brackets are
executed automatically, and the one in brackets is optionally (we don’t use it).

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.3. Position-based modes of operation 85

State "A"

Get the Controlword

Read the Statusword

Is in state
"B"?

Transition
done

NO

YES

Figure 6.12: Flux diagram for a transition.

Position Control
Function

Position demand value

Position actual value

Velocity demand value

Acceleration demand value

Position control parameters

max following error

Current demand value

Statusword

Following error actual value

Figure 6.13: Position Control Function.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

86 Chapter 6. Software configuration

Table 6.2: Bits of Statusword and Controlword for the state machine in figure 6.11.

(a) Device state bits (bit marked with "x" is irrelevant for
that state).

Bit number State
6 5 3 2 1 0

0 0 0 0 0 0 Not ready to switch on
1 0 0 0 0 0 Switch on disabled
0 1 0 0 0 1 Ready to switch on
0 1 0 0 1 1 Switched on
0 1 0 1 1 1 Operation enabled
0 0 0 1 1 1 Quick stop active
0 x 1 1 1 1 Fault reaction active
0 x 1 0 0 0 Fault

(b) Device control bits (bit marked with "x" is irrelevant for that
command).

Command Bit number Transitions
7 3 2 1 0

Shutdown 0 x 1 1 0 2, 6, 8

Switch on 0 0 1 1 1 3

Disable voltage 0 x x 0 x 7, 9, 10, 12

Quick stop 0 x 0 1 x 7, 10, 11

Disable operation 0 0 1 1 1 5

Enable operation 0 1 1 1 1 4, 16

Fault reset ↑ x x x x 15

Current Control
Function

Motor data

Motor type

Current control parameters

Current demand value

Current actual value

MOTOR

Figure 6.14: Current Control Function

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.3. Position-based modes of operation 87

to give to the controller the information on where the home position is. In fact,
according to CiA 402 protocol, there are several way to define the home position
and we choose the method number 1 for the second and the third joint and method
number 2 for the first joint, this have to be set in object Homing Method 6098h (see
section 4.4) for every motor. In general for these two methods, the home position
is the position when the first pulse of the encoder index after the limit switch is set
high, plus the Home offset (607Ch, see section 4.4). Homing method number 1 follow
the next step to define the home position (see also figure 6.15(a)):

1. the initial direction of movement is negative (counterclockwise) if the negative
switch is inactive. The motor axle moves with Speed for Switch Search until
the edge of negative switch;

2. the axle moves with Speed for Zero Search until the first encoder index pulse;

3. finally the axle moves with Speed for zero search to the Home offset.

As the same the Homing method number 2 follow the next steps (see also figure
6.15(b)):

1. the initial direction of movement is positive (clockwise) if the positive switch
is inactive. The motor axle moves with Speed for Switch Search until the edge
of positive switch;

2. the axle moves with Speed for Zero Search until the first encoder index pulse;

3. finally the axle moves with Speed for zero search to the Home offset.

General position

1. Limit switch

2. Encoder pulse

Home offset

1 2

3

(a) Homing method 1.

General position

1. Limit switch

2. Encoder pulse

Home offset

12
3

(b) Homing method 2.

Figure 6.15: Homing methods.

We must underline some aspects. First, the direction of the rotation is the
rotation of the link (because this one is able to active the limit switch) and the fact
that the rotation is positive if the axle moves clockwise is due to the fact that between
the motor and the link there is the reduction gear that reverses the rotation of the
motor axle. Second, we must pay attention when we make the cable for the switches,
in fact, for different Homing methods, existing different input pin on EPOS2 in which

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

88 Chapter 6. Software configuration

Table 6.3: Bits of Statusword and Controlword for Homing Mode.

(a) Controword bits in Homing mode.

Bit Name Value Description

4 Operation Start 0 Homing mode inactive
1 Homing mode active

8 Halt 0 Move
1 Stop the axle with Profile Deceleration

(6084h)
(b) Statusword bits in Homing mode.

Bit Name Value Description

10 Target Reached 0 Home Position not reached
1 Home Position reached

12 Home attending 0 Homing mode has not yet completed
1 Homing mode has completed successfully

13 Following error 0 Not Homing error
1 Homing error. The Homing mode has

been terminated not successfully. For er-
ror cause, read the error code

the switch is connected. Finally, all the switches have to be of type "normally open"
(NO), this attention is due to the fact that the switches on the market have both
the normally closed connection and the normally open connection (NO).

Flow diagram of the Homing Mode is in figure 6.16.
When motor reached the home position, this will be used as reference for all

further moves.
In table 6.3 the meaning of Controlword bits and Statusword bits during the

Homing mode are explained.
Statusword bit 10 has different meanings based on the value of Statusword bit 8,

see table 6.5 for explanation.

6.3.2 Profile Position Mode

Profile Position Mode (PPM) creates acceleration and position trajectories (of the
joint) starting from trapezoidal velocity trajectory. Referring to figure 6.17:

• Amax and Amin are the Profile Acceleration and Profile Deceleration defined
in objects 6083h and 6084h respectively.

• Vmax is the Profile Velocity defined in object 6081h.

• Pend is the final position. If the movement is absolute Pend = Target Position,
else if the movement is relative Pend = Target Position + Position Demand
Value.

In order to implement the Profile Position Mode, we have to set the parameters
described in Section 4.4 and we have to write on the object Target Position 607Ah,

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.3. Position-based modes of operation 89

Set Homing Mode

Read Mode Display

Homing
mode?

Start Homing opea-
ration is done with
Controlword=0x1F

Start Homing operation Fault recovery is done with
rising Bit 7 of Controlword

Read the Statusword

Fault
recovery

Is it
Faulted?

Homing
completed?

Report
error

Homing
successful?

Reset motion bits

YES NO

NO

YES
NO

YES

Figure 6.16: Flow diagram with the sequences of instructions to implement the Homing Mode.

Amax

Amin

Vmax
Pend

00 0

00

Figure 6.17: Position and Acceleration trajectories generated from trapezoidal Velocity profile

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

90 Chapter 6. Software configuration

Table 6.4: Bits of Statusword and Controlword for Profile Position Mode.

(a) Controword bits in PPM.

Bit Name Value Description

4 New set point 0 Not assume Target Position
1 Assume Target Position

5 Change set point 0 Finish actual movement before start the
next

1 Interrupt actual movement and start the
next

6 Absolute / Relative 0 Target Position is absolute
1 Target Position is relative

8 Halt 0 Move
1 Stop the axle with Profile Deceleration

(6084h)
(b) Statusword bits in PPM.

Bit Name Value Description

10 Target Reached 0 Target Position not reached
1 Target Position reached

12 Set point acknowledge 0 Trajectory generator hasn’t yet assumed
position value

1 Trajectory generator has assumed position
value

13 Following error 0 Not Following error
1 Following error

the value of the final position of the joint given in position unit Step:
1Step = 4× (Encoder pulse per revolution)
In addition we have to use some specific bits of the Controlword, in particular the
bits number 4, 5, 6 and 8 (table 6.1(b)). The response for the commands is given
in terms of Statusword with the bits number 10,12 and 13 (table 6.4(b)). Note that
the device must be in State "Operation Enabled" state, so Statusword bits number
0, 1, 2 and 5 must be high.

Referring to tables 6.4(a) we have to make some observations:

• Following error is the difference between Target Position and Position Demand
Value6. This error is set when the Encoder Pulse per turn hasn’t been set
correctly, because the drive tries to move the motor, but it observe a different
value between where the drive thinks the motor is and where the motor really
is. This error turn the EPOS2 into Fault state. Or when the Following Error
raises.

• Target Reached has different meanings based if the Controlword Halt bit is set
6Position Demand Value is the value of the joint request position exiting from the Profile Position

Trajectory generator, that is a sub function of the Position Control Function implemented by
MAXONR©

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.3. Position-based modes of operation 91

Table 6.5: Different meaning for Statusword Target Reached bit based on Controlword Halt bit
value. The meaning is the same bot for Profile Position mode and for Homing mode (this is in
brackets.)

Target Reached Halt Description
Bit value Bit value

0 0 Target (or Homing) Position is not reached
0 1 Axle deceleration with Profile Decelera-

tion
1 0 Target (or Homing) Position reached
1 1 Velocity of axle is 0

or no (see table 6.5).

In order to write the program for Profile Position Mode, we can follow the se-
quence of instructions shown if figure 6.18. We give some clarification on the figure
6.18:

• Ready for new Set point is the state with Bit 10 High and Bit 12 Low.

• Set point Acknowledge is the state with Bit 12 High.

• Target reached is the state with Bit 10 High.

• Bit 4 in Controlword is set High when we enter a new value for Target Position,
after the target has been reached, Bit 4 will be set to Low, and after is set to
High again.

Also in this case the program becomes a sort of state machine that read the input
and write the output, if a different state different from those expected occurs, the
drive turns into Fault state.

Finally we have to observe that this Mode is just able to make a single motion
per time. In fact, as we can see in figure 6.17, the velocity start from zero at the
begin of motion and return back to zero at the end of the motion, this means that
the motion could at least be formed of many segments. The same thing happens
with the Position Mode, with the only difference that in this mode, no trajectory
will be created: the velocity is always at the maximum value given by the Maximal
Profile Velocity object so there isn’t any trapezoidal velocity (excluding the initial
and final moments of acceleration and deceleration); while the acceleration is always
at the value given by Maximum Acceleration object.

To conclude, we could say that if we want to improve the smoothness of the
trajectory we can PDO map both the Profile Velocity (6081h), the Profile Accel-
eration (6083h) and the Profile Deceleration (6084h). In this way we can control
all the three fundamentals motion quantities, so we can increase the number of the
trajectory segments where the trajectory becomes more complex (see algorithm 5).

This is just a way to improve the smoothness, but the trajectory is still made
by many segments. We can do a segmented motion also wit the Position Mode,
but in this case we have to map the Maximal Profile Velocity (607Fh) and the

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

92 Chapter 6. Software configuration

Discreate
motion

Set Profile Po-
sition Mode

Read Mode Display

Is PPM?

Set Absolute or
Relative position

Read Statusword

Is ready for
new Set
point?

Set Bit4 High
in Controlword

Give new
Taret Position

Reade Status word

Is Set point
acknowl-
ede?

Set Bit4 Low in
Controlword

More
motions?

Read Statusword

Is Target
reached?

Done with
motion

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

Figure 6.18: Flow diagram with the sequences of instructions to implement the Profile Position
Mode for more than one consecutive motion.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.3. Position-based modes of operation 93

1 Position: array with n elements ;
2 Velocity: array with n elements ;
3 Acceleration: array with n elements ;
4 switch (Step) do
5 case Step 1
6 Read Statusword ;
7 if Bit 12 = 0 then
8 Step = step 2 ;
9 end

10 case step 2
11 Write New set point command on Controlword ;
12 Target Position = Position[i] ;
13 Profile Velocity = Velocity[i] ;
14 Profile Acceleration = Acceleration[i] ;
15 i=i+1 ;
16 Step = step 3 ;
17 case step 3
18 Read Statusword ;
19 if Set point acknowledge then
20 Step = step 4 ;
21 end
22 case step 4
23 if i = n then
24 Stop ;
25 end
26 Reset Controlword ;
27 if Target reached then
28 Step = step 1 ;
29 end
30 endsw

Algorithm 5: PPM with discrete position, velocity and acceleration.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

94 Chapter 6. Software configuration

Max Acceleration (60C5h). For creating a continuous motion we have to use the
Interpolated Position Mode (section 6.4).

6.4 Interpolated Position Mode

Suppose we have already generated a joint trajectory (for example with a program
whiting the PLC) composed by many reference points, Interpolated Position Mode
(IPM) uses a cubic spline to interpolate those reference points. The interpolation
method is the PVT method described below in section 6.4.2.

Joint trajectory must have been already calculated by the CANopen producer
(PLC) and passed to controller’s interpolated position buffer as a set of points, after
the Interpolation Controller7 creates the values position, velocity and acceleration
which feed the Position Control Function7, this give the position, velocity and accel-
eration to the Current Function and sends the Statusword and Interpolationstatus
to the PLC.

We use only bits 4 and 8 of the Controlword in order control the IPM, in particular
bit 4 enables IPM and bit 8 gives the Halt command (as what happens in Profile
Position Mode). To implement PVT interpolation we use a single object called
Interpolation Data Record (20C1h), whose structure permits to insert both Position
(P) and velocity (V) and Time (T). In fact, it is of type 64 bit complex data structure,
this means that the 64 bits is divided into three sub-set in which we specify the value
of the PVT parameters:

• in the first 32 bits we insert the Position with a data type of SIGNED 32.

• in the following 24 bits we insert the Velocity with a data type of SIGNED 24.

• in the last 8 bits we insert the Time with a data type of UNSIGNED 8.

Once we have created the complex structure of the object 20C1h we have to
insert it into a FIFO (First In First Out) object, which is implemented by a circular
buffer with the length of 64 entries. The circular buffer is a memory which supplies
the difference between the time for the motion and the time to write the new PVT
data into the FIFO. In other words if we don’t use the circular buffer, the PLC will
write the PVT data into the EPOS2 faster than the time in which a move starts and
ends and the motion will result segmented; so to avoid this we use one FIFO object.

FIFO principle is based on the following statement: the first data insert into the
buffer is the first data to be processed. For this reason this method is very useful in
our case, because we have a vector containing all the joint positions in order. It is
easier to implement FIFO by a circular buffer due to its mode of work.

Circular buffer is a data structure which uses a single, fixed size buffer8. The
useful property of a circular buffer is that it doesn’t need to have its elements shuffled
around when one is consumed (if a non-circular buffer were used then it would be
necessary to shift all elements when one is consumed). This property make circular

7by MAXONR©.
8Buffer is a region of a physical memory storage used to temporarily store data

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.4. Interpolated Position Mode 95

Input
Buffer

Limit
Function

Software position limit

Interpolation data record

Interpolation data configuration

velocity

position

Interpolated
Position Trajec-
tory Function

Controlword

position

velocity

max profile velocity

max acceleration

interpolation mode

Statusword

Interpolationstatus

position demand value

velocity demand value

acceleration demand value

Figure 6.19: Block diagram for explaining Interpolated Position Mode.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

96 Chapter 6. Software configuration

buffer well-suited as a FIFO buffer. Referring to figure 6.20, let us explaining how a
circular buffer works:

1. Suppose our buffer is 6−element circular buffer. A buffer starts empty.

2. Assume that the first value of joint position for interpolation PVT1 is written
in a place of the buffer (exact starting location doesn’t matter in a circular
buffer).

3. Then other two PVT are added, PVT2 and PVT3, which are appended after
PVT1 (this is automatically defined).

4. If two PVT elements are the removed (processed), also the two oldest value
inside the buffer are removed.

5. By adding PVT elements, the buffer will be completely full.

6. A consequence of the circular buffer is that when it is full and a subsequent
write is performed, then it starts overwriting the oldest data. New elements
PVT9 and PVT10 are added and overwrite the PVT3 and PVT4.

7. if two elements are now removed then what would be returned is not PVT3

and PVT4 but PVT5 and PVT6.

8. Finally, when all PVT data has been processed (so the move is done), the
buffer return empty.

Circular buffer has been already implemented in EPOS2 R©by MAXON R©, so we
have not to implement it, circular buffer could be implemented using two pointers
and two integers:

• buffer start in memory (pointer),

• buffer end in memory, or buffer capacity (pointer),

• start of valid data (integer),

• end of valid data, or amount of data currently in the buffer (integer).

When an element is overwritten, the start pointer is incremented to the next
element.

We are not able to know the four values listed above that describe the status
of the buffer (they are given with different names: Maximum Buffer Space 60C4h
sub01h, Actual Buffer Size 60C4h sub02h, Buffer Position 60C4h sub04h and Size of
Data Record 60C4h sub04h) because they are calculated inside the EPOS2 and they
can’t be mapped with PDO. But we can know how much the buffer is full or empty.
Figure 6.21(a) and figure 6.21(b) show two extreme filling status of the buffer, one
partially full and the other completely full. Both the situations raise a warning in
the Interpolation Buffer Status 60C4h sub01h.

Objects Interpolation Buffer Status 20C4h sub01h is a only read, UNSIGNED
16 number whom bits gives us information about the status on the IPM input data
buffer, these information are shown in table 6.6.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.4. Interpolated Position Mode 97

P
V
T1

PVT2

PVT3

PVT5
P
V
T6

P
V
T7

PVT8
PVT3

P
V
T4

PVT8

PVT9

P
V
T1
0

P
V
T1

PVT3

PVT5

P
V
T6

P
V
T7

PVT8

PVT9

P
V
T1
0

1 2

3 4

5 6

7 8

P
V
T7

Figure 6.20: Example and explanation on how a circular buffer works. Number inside the figures
are the same number of the explanation above. The arrows indicate the write and read direction.

P
V
T1

PVT2

PVT3

STARTEND

(a) Partially full circular
uffer

PVT5

P
V
T6

P
V
T7

PVT8

PVT9

P
V
T1
0

STARTEND

(b) Full circular uffer

Figure 6.21: Circular buffer

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

98 Chapter 6. Software configuration

Table 6.6: Interpolation Buffer status bits.

Bit Name Value Description

0 Underflow warning 0 No buffer underflow warning
1 Buffer underflow warning level reached

(20C4h sub02h)

1 Overflow warning 0 No buffer overflow warning
1 Buffer overflow warning level reached

(20C4h sub03h)

2 Velocity warning 0 No velocity warning
1 IPM velocity grater than Profile Velocity

(6081h) detected

3 Acceleration Warning 0 No acceleration warning
1 IPM acceleration grater than Profile Ac-

celeration (6083h) detected
4÷ 8 reserved

8 Underflow error 0 No buffer underflow error
1 Buffer underflow error

9 Overflow error 0 No buffer overflow error
1 Buffer overflow error

10 Velocity error 0 No maximal velocity error
1 IPM velocity grater than Max Profile Ve-

locity (607Fh) detected

11 Acceleration error 0 No maximal acceleration error
1 IPM acceleration grater than Max Profile

Acceleration (60C5h) detected
12÷ 13 reserved

14 Buffer enabled 0 Disabled access to the input buffer
1 Access to the input buffer enabled

15 IPM active 0 IPM inactive (same as bit 12 in Status-
word)

1 IPM active

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.4. Interpolated Position Mode 99

IPM incative

IPM ative

I II

III IV

Operation enabled

T4 T5

T8

T9

T11

(T16)

Figure 6.22: Interpolate Position Mode finite state machine. State Operation enabled is the same
state with the same transitions which are showed in figure 6.11.

In particular, when the Underflow warning raises we have to insert PVT reference
points into the buffer, otherwise the Underflow error occurs. While, when the Over-
flow warning raises we have to stop to feed the PVT reference points, otherwise the
Overflow error occurs. All the errors make the device turn into Fault, the reaction
to fault may be change by modifying the Fault Reaction Option Code in the Object
Dictionary.

With Statusword and Interpolation Buffer Status, we know the state of the
EPOS2 during the Interpolated Position mode. We can define a sub-state machine
for the IPM into the Operation enabled state (figure 6.22). States and transitions
are explained in tables 6.7.

Typical IPM command sequence is showed in figure 6.23. Let us give some
clarification on the flux diagram that describes the command sequence :

• In Set Parameters we have to set some parameters that we find under the menu
Configuration as explained in subsection 6.1. The value of these parameters
depends on the motors and the application the robotic arm is called to make.
The parameters to set are:

– Max. Following Error (6065h)
– Software position Limit (607Dh)
– Max. Profile Velocity (607Fh)
– Max. Acceleration (60C5h)
– Profile Velocity (6081h)
– Profile Acceleration (6083h)
– Quick Stop Deceleration (6084h)

• After we have to set the Interpolation Profile Mode by setting Mode of Oper-
ation (6060h) = 07h.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

100 Chapter 6. Software configuration

Table 6.7: States and transition of the Finite State machine in figure 6.22.

(a) Statusword bits.

State Description
IPM inactive Device accepts input data and

buffers it for interpolation,
but doesn’t move the axis

IPM active Device accepts input data
moves the axis

(b) Controlword bits.

Transition Event
I IP mode selected (60C0h) and

clear buffer data writing on
abject (60C4h sub06h)

II IP mode not selected (60C0h)
III Enable IP mode by setting

Controlword bit 4 to 1

IV Disable IP mode by setting
Controlword bit 4 to 0

• Now we take the device into Operation Enable state by following the State
Machine as shown in figure 6.11. We use Controlword (6040h) and Statusword
(6041h) to control transition (figure 6.12).

• Enable buffer access is made with object Buffer Clear (60C4h sub(06h)). This
object have to be PDO mapped and it is write only. We write first 00h to
Disable and Clear buffer, after we write 01h to Enable buffer.

• Feed starting PVT reference points. At least two points are required to start
the trajectory generator. The other points will be inserted while motor is
moving.

• Activate Interpolation with Controlword bit 4 set to 1.

• Now the motor is moving, but we can feed new PVT reference points. See
Algorithm 7 on how feed reference points.

• When there aren’t any new point, we feed the profile end by setting Control-
word bit 4 to 0, or by inserting a PVT reference point with time = 0. If we
don’t make this, an error occurs and the EPOS2 turns itself into Fault state.

If an error occurs, the EPOS2 reacts as described in the object Shutdown Option
Code 605Bh. An error set to 1 the Interpolation Buffer Status 20C4h sub03h bit 15,
and the trajectory will be aborted.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.4. Interpolated Position Mode 101

Start

Set Parameters

Set IPM in Op-
eration Mode

Enable daveice

Enable buffer access

Feed starting PVT
reference points

Activete interpolation

Feed PVT ref-
erence points

More PVT
points?

Feed profile end

End

NO

YES

Figure 6.23: Typical command sequence to implement the Interpolated Profile Mode.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

102 Chapter 6. Software configuration

1 if (Bit0 == 1 AND Bit1 == 0) then
2 Data = new PVT ;
3 else if (Bit0 == 0 OR Bit1 == 1) then
4 Stop feed new PVT ;
5 end
6 end
7 .
Algorithm 6: How to feed new PVT reference points while motor is moving. Bit0
and Bit1 indicates the respectively Interpolation Buffer Status (20C4h sub01h)
bits. And Data is the Interpolation Data Record (20C1h)

6.4.1 Axis Synchronization

Finally we describe how coordinate the motion of multiple axes, as those of a robotic
arm. The movement of a number of slave axes can be synchronized if they all run
in IPM, and if they all possess the same time. To start the synchronized movement,
map the Controlword to a synchronous RxPDO, then use the mapped Controlword to
enable interpolation for axes; in this way all the Controlword bit 4 set to 1 at the same
time in all axes, and interpolation starts at the same time. But there will no reaction
until the next SYNC (because we use a Synchronous RxPDO, see Chapter 4.3).
Then, all drives will enable interpolated motion at once, setting the SYNC arrival
time as the path specification’s "zero" time. If the axes have been synchronized by
the SYNC Time Stamp Mechanism, the moving axes will run synchronous within an
accuracy of microseconds.9.

The explanation on how the time is synchronized is called CANopen Time service
and it is described in CiA 301 protocol [6]; now we give a brief explanation on it.
High Resolution Time Stamp contains the time stamp (date and time) of the last
received SYNC Object [1µs] after a write access to this object, the EPOS2 calculates
the difference between the received time stamp and the internal latched time stamp
of the SYNC Object; this time difference is used as correction for the IPM time
calculation. The SYNC will be transmitted periodically by the SYNC master. The
exact time (Te1) may be stored by the internal 1µs timer. The reception time (Tr1) of
the SYNC message will be stored by latching the device internal motion clock timer.
After the measured transmitting time (Te1) will be sent to the drive using the High
Resolution Time Stamp object (1013h). The device then adjusts its internal motion
clock time in relation to time given in the last SYNC. For example, let us suppose
the latched EPOS2 time Td = 0, after the receive of the SYNC with latched time at
the time Te1 and the time for the SYNC reception Tr1, the new latched EPOS2 time
become:

Td = Td + Te1 − Tr1

and so on with the next SYNC. By sending a CANopen Time service (by default
the COB-ID Time Stamp Object 100h, and it is immutable), the device internal

9The accuracy depends on the CAN bit rate. For example a resolution of [1µs] required a CAN
bit rate of 1 Mbit/s.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.4. Interpolated Position Mode 103

motion clock timer can be reset to zero.

If CAN Producer (PLC) isn’t able to produce the high resolution time stamp,
an EPOS2 might be used as clock master. For this we have to map the object High
Resolution Time Stamp object (1013h) to a synchronous transmitted PDO in the
clock master EPOS2, the other EPOS2s must be configured as clock slaves with the
High Resolution Time Stamp object mapped to an asynchronous TxPDO with the
same COB-ID as the clock master’s TxPDO.

We can use this method also in the Profile Position mode, when we want to
synchronized the robotic arm axis.

6.4.2 PVT Algorithm

PVT algorithm fits a Jerk10 profile after the user specified Position, Velocity and
Time. PVT algorithm make sure to hit each specified position, with each specified
velocity at the specified time. For each point, PVT algorithm calculates acceleration
and jerk values to exactly hit the specified position and velocity at the next point.
Let Xn, Vn, An, Jn and Tn be the position, velocity, acceleration, jerk and time at
n-th point, then the algorithm is:

Xn+1 = Xn + Vn · Tn +
1

2
An · T 2

n +
1

16
Jn · T 3

n

Vn+1 = vn +An · Tn +
1

2
Jn · T 2

n

The profile between point may not be desired, but it will be accurate, but, in
our case position, velocity and time are calculated with the inverse kinematics of the
robotic arm, so in this case they are properly matched and the profile generated with
the PVT algorithm is also the joint trajectory that has been already calculated in
Simulink Simscape.

By solving the equation above, known that the position profile must be at most
of third degree, we find that for two successive points n-1 and n the Position, Velocity
and Acceleration laws are:

P (t) = a · (t− t0)3 + b · (t− t0)2 + c · (t− t0) + d

V (t) = 3a · (t− t0)2 + 2b · (t− t0) + c

A(t) = 6a · (t− t0) + 2b

Where t0 is the end time of interpolation interval and the interpolation parame-
ters a, b, c and d are given in term of position, velocity and time in points n-1 and

10Jerk is the acceleration rate of change: J = dA
dT

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

104 Chapter 6. Software configuration

n:

a =
2 · (Xn −Xn−1)

T 3
n

+ Tn · (Vn − Vn−1)

b =
3 · (Xn −Xn−1)

T 2
n

+ Tn · (Vn − 2 · Vn−1)

c = V (t0) = Vn

c = X(t0) = Xn

6.5 The transition control method

As we saw in previous sections, the EPOS2s are driven by a finite state machines
(FSM) where the changing in state are executed by transitions. The FSMs are
different in base of the task the EPOS2s are making. For this reason I made an overall
program which manages all the others programs (called Transition) both in case of
emergency and in case of normal working, this program provides the transitions
between the states of the Finite State Machine defined by CiA 402 protocol (all
the transition are saved and are performed by a Switch-Case control structure (see
Algorithm 7). This method also helps to have a more clear working space, a more
ordered program structure, a more synchronization between the six EPOS2s and a
more reliable react to the emergency. Remember that a transition is made by a set
of operations (as shown in figure 6.12):

1. Create the Controlword from a given command;

2. Read the Statusword to verify the change in state;

3. if the state has not been changed, read the Statusword again;

4. if the state has been changed, the transition is done.

Hence all the commands and all the states are saved into the folder that con-
tains the program "Transition" and by it the six Controlword and the six Status-
word are managed. The program Transitions manages only one Controlword (called
TControlword) which is not connected to any EPOS2 Controlword channel, but all
the EPOS2s Controlword are equaled to it, so they are managed with only one com-
mand. While the EPOS2s Statusword are verified to be all equal (in terms of decimal
number), and after the Statusword of Transition (called TStatusword) are equaled to
them, in this way only one Statusword is managed, this mean that the function which
read the single bits is called only to read the bits of the TStatusword (see Algorithm
7). In this way, many memory is saved. TControlword and TStatusword are scoped as
Global variables, so in the other programs it results more simple to equal them to the
Local Controlword and Statusword. This is due to the fact that Automation Studio
doesn’t allow to connect one RW process variable to more than one PLC input, and
to connect one RO process variable to more than one PLC output. Furthermore,
the Transition program is also able to turn all the EPOS2s into the state "Switch On
Disabled" if just one of them turns into Fault state. Other feature of this method is
that the Transition program controls if the state has changed after a command for a

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.5. The transition control method 105

1 switch (transition) do
2 case T1
3 automatic ;
4 case T2
5 command = Shut Down ;
6 new state = Switch On Disabled ;
7 case T3
8 command = Switch On ;
9 new state = Switched On ;

10
...

11 case T9
12 command = Disable Voltage ;
13 new state = Switch On Disabled ;
14 case T10
15 command = Disable Voltage ;
16 new state = Switch On Disabled ;

17
...

18 case T12
19 command = Disable Voltage ;
20 new state = Switch On Disabled ;

21
...

22 case T15
23 command = Fault Reset ;
24 new state = Switch On Disabled ;

25
...

26 endsw
Algorithm 7: The Switch-Case control structure for the Transition Program. Only
the most significant transitions are showed. The commands are the same as those
in table 6.2(b). Sates ans transitions are the same as those in figure 6.10.

1 Read all the Statusword ;
2 if All the Statusword are equal then
3 TStatusword = Statusword 1 ;
4 TControlword = Command ;
5 else
6 Read again
7 end
8 i=i+1;
9 end

10 Set all the Controlword equal to TControlword;
Algorithm 8: Transition method.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

106 Chapter 6. Software configuration

given number of times, if the change in state is not happened the "Disable voltage"
command is given.

Also the robotic arm motion is driven by a similar program (called Motion Tran-
sition), but in this case all the transitions for the motion control are scoped as Local
variables, but the principle of operation is the same as the program Transition. This
choice is driven by the fact that only the CiA 402 FSM is able to react to the dan-
gers and turn all the EPOS2s into the states "Operation Enabled" or "Switch On
Disabled", that are the two main states. With this method we are sure that all
the EPOS2 receive the same command at the same time. This is useful not only
to synchronized all the robotic arm axes with only one Controlword, but it is very
useful to react to dangers.

The command "Switch On Disabled" is also given if the Statusword of all the
EPOS2s are not equal after the Transition command have compare them for a given
number of times (this feature is both in the Transition and in Motion Transition).

6.5.1 React to the dangers

EPOS2s are able to react to internal error by sending an Emergency message above
the CANopen network, but if the danger is from the external ambient, the operator
is called to react to it and drive the robotic arm into a safe position both for the
operator and for the robotic arm itself. In order to permit the operator to react to
the external dangers, an emergency push button is used. The button is a typical
emergency-stop mushroom push button that remains activate once pushed. In addi-
tion also the movement of links 1, 2 and 3 is limited by some limit switches.

The emergency push button and the limit switches are connected to the PLC
digital input module X20 DIF 371. The program which manages the emergency push
button and the limit switches gives first the Halt command (after one of them have
bee triggered), and after turns all the EPOS2s into the state "Switch On Disable" by
performing the Transition T9 ("Disable voltage" command, Algorithm 9). The Halt
command is given by setting the Controlword bit8 to 1, it doesn’t matter how the
other bits are set. With the Transition method, we give the command only to one
Controlword (TControlword) and the program read only one Statusword (TStatusword).
Hence the reaction to emergencies results more efficiency and more fast.

1 if Emergency then
2 Command = Halt ;
3 end
4 transition = T9 ;

Algorithm 9: Program which manage the Emergency push button.

One may say that the motor positions have been already limited with the object
"Software Position Limit" (607Dh), but those just set the limitation into the robotic
arm work space, but if the PLC lose the robotic arm control, the software doesn’t
make anything and an "Halt" command is required. For Example let us suppose that
one of the six axes is doing a dangerous movement, in this case one limit switches
will be pushed and all the EPOS2s stop the motion (the Halt command) and all the

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.6. B&R Automation R©package for Simulink R© 107

EPOS2s LED turn to red which indicates the status of disable. The same happens
if the operator push the emergency button.

All this is for improve the security, in fact, both the Emergency push button and
the limit switches have the same effect, i.e. perform first the "Halt" command and
after the "Disable voltage" command.

6.6 B&R Automation R©package for Simulink R©

Now we see how to get a program which will run in the B&R Automation R©PLC start-
ing from a Simulink R©model. B&R Automation R©provides a package for Simulink R©in
which some blocks are included. These blocks are used to create the program in
C++ language from a Simulink model, but they also allow to create the Process
Variables from the Simulink model. To see the most useful blocks provided by B&R
Automation R©, let us create a simple Simulink model as the one shown in figure 6.25.
Referring to the figure we can see six blocks:

• B&R IN and B&R OUT. These blocks are used to declare variables for
Automation Studio, after we have created the program and we have imported
it into AS, we can connect the variables to the PLC channels. IN stands for
PLC input and OUT stands for PLC output. We can also declare them scope
(if Local or Global) and them name by double clicking on them and setting
the parameters (figure 6.24(a) and figure 6.24(b)).

• B&R EXT IN and B&R EXT OUT. These two blocks are used to convert
input or output variables type (for example from INT to REAL and vice versa),
in fact, all the variables in Simulink are REAL, but we can’t use these variables
in a C++ program because they will occupy too much space, so we convert it
into a INT variables (for example for the arrays index we use an INT variable
and not a REAL one). We can also use these blocks to convert the measure
unit of the variables. For example in our case the measure unit of the motor
rotation is the Step, but Simulink uses the radians, hence we may use this
blocks to make the conversion. The setting of these variables is done by double
clicking on the icons and compiling the parameters.

• B&R PARAMETER. This let us to change a Simulink gain via the PLC
(Automation Studio).

• B&R WORKSPACE VAR. This block allow the program to use variables
from Matlab Workspace. The variables from Matlab Workspace becomes a
parameters for the PLC (Automation Studio).

The Global variables are not saved into the Global.var file in Automation Studio,
but they will saved into a .txt file that has the same structure as a .var file, so
we have just to copy and paste it into the Global.var file. This is due to avoid to
overwrite the global variables already exist, we can delete this option when we make
the configuration.

The model above will not runs if we don’t make the configuration. This is done
with the block B&R CONFIG (figure 6.26). This block must be always present at

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

108 Chapter 6. Software configuration

(a) B&R IN Block Parameters.

(b) B&R OUT Block Parameters.

Figure 6.24: B&R Block Parameters.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.6. B&R Automation R©package for Simulink R© 109

Figure 6.25: A simple Simulink model that helps us to understand some blocks of the B&R
AutomationR©package for SimulinkR©.

Figure 6.26: The configuration block. It must be always present (only once) in the Simulink
model.

once in the Simulink model. When we click on it a window with the configuration
parameters appears (from figure 6.27 to figure 6.30).

Referring to the figures we give an explanation about the configuration:

• Model Configuration (figure 6.27). Here we set the language of the program
that we want to create from the Simulink model. We have to use C++ because
of in Simulink model also Simscape R©is used. We flag "Embedded Coder [ERT]"
because this make a more slender and more efficient program. In Solver option
we choose the Solver and we set the "Fixed-step size (fundamental sample
time)" which must be equal to the time lapse of the Task Class in which we
intend to place the program (this is an important passage).

• Basic Setting (figure 6.28). We intend to place the program into a task, so we
flag "Task" in Target. After we put the address of the B&R project folder in
which we want to place the program. We can already add the task to hardware
by flagging the icon and choosing the Configuration, if we won’t to do that
we will make it after in Automation Studio environment, once the program
will have been saved into the Logical View. Finally we choose the target Task
Class, it is better not to change the Cyclic Task Class time. The "Fixed-step
size (fundamental sample time)" must be the same as "Duration".

• Advanced Settings (figure 6.29). Starting from the bottom we flag the icon
"Simscape Support" because our Simulink model uses it. We may flag the icon
"Create Global Var-Files", if we do the Global variables are saved into the .var
file in the Logical View and not in .txt file as explained above. The "Heap

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

110 Chapter 6. Software configuration

Figure 6.27: B&R CONFIG Model Configuration.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.6. B&R Automation R©package for Simulink R© 111

Figure 6.28: B&R CONFIG Basic Settings.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

112 Chapter 6. Software configuration

Figure 6.29: B&R CONFIG Advanced Settings.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

6.6. B&R Automation R©package for Simulink R© 113

Figure 6.30: B&R CONFIG Additional Files.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

114 Chapter 6. Software configuration

Size" is the amount of memory that a C++ program will occupy, this value is
always present as soon as we create a C++ program in Automation Studio, the
default value is FFFFh that correspond to the value in the figure. If we decide
to change this value we must change it both hear and in AS. With "Enable
External Mode" we can see in Simulink (after put the PLC IP-address) the
variables value during the PLC is running. Note that this is not in real time,
but it delayed also more the the Watch Window in AS, because AS have to
convert the variables into a value which can be read by Simulink. The "Expert
Mode" enables some configuration fields which are normally gray and which
are not normally editable.

• Additional Files (figure 6.30). In addition to the ones already mentioned,
there are other types of variables that the package is able to manage, these
include structures. Simulink doesn’t accept the structures. Hence we have to
declare the structures in Automation Studio (in a .typ file), and after we can
add the .typ file from AS, and the structures appear in Simulink like normal
bus variables.

Finally in the Simulink window we click on the icon "Start" and the model
becomes a program saved in the Logical View of Automation Studio (this process
requires some time).

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 7

Final Results

7.1 Discrete Motion

The Interpolated Position mode can’t be implemented in the PLC. This is due to
the fact that Interpolation Data Record (20C1h) is a data with 64 bits, and the
PLC isn’t able to manage data of such length. Thus we are not able to implement
the latched PVT algorithm in the EPOS2s. But we find a possible solution for this
problem. It consists to create a function in the C++ program which implements the
PVT algorithm (or any other interpolating function), this gives the right discrete
values of position, velocity and acceleration which are necessary to hit all the desired
points in the trajectory. The trajectory will result segmented, hence the joint motion
will result discrete as well.

A segmented joint movement will be make with the Profile Position mode. As
explained in 6.3.2, we map the Target Position, the Profile Velocity, the Profile
Acceleration and the Profile Deceleration into the PDOs for each EPOS2 and finally
we write on them the correct values of position, velocity and acceleration that we
obtain from the interpolating function. The smallest joint angular motion which
can be performed is given by the conversion from the position unit (Step) into the
angular unit (radians or degree). If we indicate with qdis the value of the smallest
angular movement downstream the reduction gear, we obtain that:

1qdis =
2π

1Step
· (Reduction Gear ratio)

=
2π

4 · (Encoder Pulse per Turn)
· (Reduction Gear ratio)

Instead, the Cartesian position (Xdis) is given by multiply qdis by the length of the
connected to the joint. Since the value of Xdis relative to the first joint depends on
the configuration of the links 2 and 3, we give only the maximum value, which is
obtained when the links 2 and 3 are completely extended. The values of qdis and
Xdis for all the first three joints1 are illustrated in table 7.1.

This kind of motion has been tried with the fourth joint. The chosen positions
was far from each of them, because this trial was made only to test if we are able

1We indicate only the value for the first three joints because they are the joints which perform
the trajectory. While the last three joints simulate the attitude of the chaser satellite.

115

116 Chapter 7. Final Results

Table 7.1: Values of the smallest angular movement for the first three joints and the values of the
smallest Cartesian movements for the for the first three links.

Join and Encoder pulse Reduction Reference Position qdis Xdis

Link per turn Gear ratio link length Steps [µrad] [µm]

1 2048 126 1300 1032192 6.09 7.91

2 500 308 700 616000 10.2 7.14

3 6400 113 600 2892800 2.17 1.3

Table 7.2: The values of Target Position and Profile Velocity, performed by the fourth joint in
order to try the segmented Profile Position mode.

1 2 2 3 4 6 7 8 9 10

Target Position [deg] 0 34.7 −28.05 −65.45 2805 −37.4 9.35 56.1 93.5 0

Profile velocity [rpm] 100 400 100 400 100 400 100 400 100 400

to write on the objects Profile Velocity and Profile Acceleration during a motion.
The motion is composed by a set of 10 different values of Profile Velocity and Target
Position, and the Profile Acceleration was written to a value of 22959rpm/s2 at every
iteration. The values of velocity and position, are shown in table 7.2. Position was
tried both in absolute and relative reference.

An similar discrete motion was performed also with the Position mode, but it
hasn’t made the same smoothness than that one performed with the Profile Position
mode.

7.2 Test results

Here we present some tests values. These tests are taken by moving the firs three
links both alone and together with the Profile Position mode and see how much is
the Voltage and current consumes. From the current consume, we can find the value
of the torque required for the motion. The torque is calculated by multiplying the
current by the torque constant KT reported in the motors data sheet (this method is
just an approximation, but it is near to the reality). The torque at the downstream
of the reduction gear is also calculated, by multiplying that value by the gear ratio:

Motor torque = KT · Current
Joint torque = (Reduction Gear ratio) · (Motor torque)

When we made the EPOS2 tuning with EPOS Studio, we found the value of
the gains, and the value of the Profile Velocity, Profile Acceleration and Profile
Deceleration in case of joints without the links. With these tests, we had also the
chance to find the optimal values of Profile Velocity, Profile Acceleration and Profile
Deceleration which satisfy both the overshoot and the smoothness of motion.

We first make some small motions (less than 10 degrees) and finally a larger mo-
tion was performed. The voltage and current consumption for a 10 degree movement

2This value was obtained with the tuning of the relative EPOS2, the link wasn’t mounted.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

7.2. Test results 117

are shown in table 7.3(a), while for a larger movement are shown in table 7.3(b).
Many other tests was taken, but we report only these two because they are the first
and last trials. The motion of the second link started from the vertical position (see
figure 7.1)

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

118 Chapter 7. Final Results

T
ab

le
7.

3:
V
ol
ta
ge
,C

ur
re
nt

an
d
po

w
er

co
ns
um

pt
io
n
fo
r
tw

o
di
ffe

re
nt

m
ov
em

en
t
of

th
e
fir
st

th
re
e
lin

ks
.

(a
)
1
0
de

gr
ee

m
ov
em

en
t.

Jo
in
t

M
ov
em

en
t

V
ol
ta
ge

C
u
rr
en
t

P
ow

er
T
or
qu

e
G
ea
r

M
ot
or

Jo
in
t

nu
m
b
er

d
eg
re
e

[V
]

[A
]

[W
]

co
n
st
an

t
ra
ti
o

to
rq
u
e

to
rq
u
e

[m
N
m
/A

]
[m
N
m

]
[m
N
m

]

1
10

24
0
.0

9
2.

16
36
.9

13
6

3
.3

2
41

8
.4

4

2
10

48
0.

1
4
.8

84
.9

30
8

8
.4

9
26

1
4.

9
2

3
10

48
0.

1
4
.8

70
.5

11
3

7
.0

5
79

6
.6

5

(b
)
L
ar
ge
r
m
ov
em

en
t.

Jo
in
t

M
ov
em

en
t

V
ol
ta
ge

C
u
rr
en
t

P
ow

er
T
or
qu

e
G
ea
r

M
ot
or

Jo
in
t

nu
m
b
er

d
eg
re
e

[V
]

[A
]

[W
]

co
n
st
an

t
ra
ti
o

to
rq
u
e

to
rq
u
e

[m
N
m
/A

]
[m
N
m

]
[m
N
m

]

1
45

24
0.

12
2
.8

8
36
.9

12
6

4.
42

55
7
.9

3

2
35

48
0.

17
8
.1

6
84
.9

30
8

14
.4

3
44

4
5.

3
6

3
40

48
0.

11
5
.2

8
70
.5

11
3

7.
75

87
6
.3

1

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

7.2. Test results 119

Table 7.4: Optimal values of Profile Velocity, Profile Acceleration and Profile Deceleration obtained
with some trials at different values of them.

Motor Profile Profile Profile
number Velocity Acceleration Deceleration

1 100 200 200

2 500 300 300

3 275 300 3003

We illustrate the optimal value of the Profile Velocity, Profile Acceleration and
Profile Deceleration in table 7.4. Note that these quantities, becomes the upper
limits when we will make the discrete motion with the Profile Position mode, hence
they have had to be set as the maximum values of velocity and acceleration, already
in the interpolated function

Finally in figure 7.1, there is a sequence of the robotic arm configurations, which
describes the motion shown in table 7.3(b): the joint 1, 2 and 3 motion was of 90,
40 and 45 degrees, respectively.

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

120 Chapter 7. Final Results

Figure 7.1: Sequence of robotic arm motion. Joint 1 performed 90 degrees, joint 2 performed 40
degrees and joint 3 performed 45 degrees,

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Chapter 8

Conclusions

8.1 Comments

All the purposes of this thesis were reached. The supporting structure was made,
and the software architecture is now complete and the robotic arm is able to perform
some motions. Also some trials to verify if the software work were done. In addition
we modify some default values we obtained with the tuning procedures.

Finally we resolves some problems which raise during the tests procedures. Some
problems were referred to the fact that the tuning procedures were made without the
links attached to the respective joints; but with the last tests we found the Profile
Velocity, Profile Acceleration (and Deceleration) which best satisfy the smoothness
of motion. Another problems was about the fact that the PLC is not able to manage
a 64−bit data and a continuous motion cannot be implemented. But with the aid of
the discrete motion and an interpolating function, a segmented motion (with small
segments) can be used.

8.2 Future works

Many work was done on this facility by Dr. Andrea Antonello and by me, but many
other work is necessary to take the robotic arm into the fully operational state. The
first thing to do is to make the EPOS2 tuning with the real inertia. To to this we
can connect to the motors shaft a disc with the same inertia than the real. The real
inertia is that in case of maximum value.

A software improvement is required. We made only a preliminary software ar-
chitecture, but many others improvements are necessaries in order to achieve the
software optimization. For example we could create a more user-friendly software
environment, with all the variables that the operator can manage.

We have also to implement a Simulink R©model for the simulation of the micro-
gravity environment into the PLC, in order to simulate the interactions between
chaser and target. The interactions include both the relative motion and the forces
and/or torques which the two vehicles exchange when a docking maneuver is occur-
ring. In this way, when we make the velocity and the acceleration vectors which
feed the Profile Velocity and the Profile Acceleration/Deceleration, we are sure that

121

122 Chapter 8. Conclusions

trajectory is the same than that two vehicles in micro-gravity environments perform.
After these final works will be concluded, the facility is able to host the testing

sensors and others instrumentation. For example a computer-based vision system
could be mount on the last link, in order to simulate a real orbital docking maneuver
with a fixed target. A computer vision system might be mounted in the laboratory
as well, in this way we are able to implement an operational space control which
monitors the end effector cartesian position despite the geometry. This is necessary
if we want to make docking tests, which requires the knowledge of the relative position
between chaser and target with high precision. But the manipulator is able to host
position sensors which have to be tested, for example the sun sensor discussed in [2].

Aex Caon - Assembly, integration and testing of a robotic facility for the simulation
of spacecraft attitude and orbital maneuvers.

Bibliography

[1] Alessandro Francesconi Ruggero Carli Andrea Caron Andrea Antonello,
Francesco Sansone. A novel approach to the simulation of on-orbit rendevouz
and docking in a laboratory enviroment through the aid of an anthropomorphic
robotic arm.

[2] Andrea Antonello. Design of a Robotic Arm for Laboratory Simulations of Space-
craft Proximity Navigation and Docking. PhD Thesis, 2016.

[3] BuR Automation. TM210 - Working with Automation Studio V 2.3.0.3. 2017.

[4] John J. Craig. Introduction to Robotics - Mechanics and Control. 2005.

[5] Il. D. Curtis. Orbital Mechanics for Engineering Students. Elsivier, 2010.

[6] CAN in Automation. CiA 301 - CANopen - CANopen application layer and
communication profile. February 2011.

[7] CAN in Automation. CiA 306 - CANopen - Electronic Date Sheet specifications.
February 2011.

[8] CAN in Automation. CiA Draft Standard Proposal 402 - CANopen - Device
Profile Drive and Motion Control. July 2002.

[9] Maxon Motor. EPOS2 24/5 Positioning Controllers - Hardware Reference. May
2016.

[10] Maxon Motor. EPOS2 70/10 Positioning Controllers - Hardware Reference.
May 2016.

[11] Maxon Motor. EPOS2 Commnication Guide V1.3. Novenber 2017.

[12] Maxon Motor. EPOS2 Positioning Controllers - Firmware Specification. Noven-
ber 2017.

[13] David Orin Roy Featherstone. Robot dynamics: Equations and algorithms.

[14] M. Spong. Robot dynamics and control. Wiley, 1989.

[15] K. R. Symon. Mechanics. Addison-Wesley, 1971.

123

