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Abstract

The advent of federated learning has opened new frontiers in the privacy-preserving analy-

sis of medical data, enabling collaborative model training without direct data sharing. This

is particularly critical in the realm of healthcare, where patient confidentiality and data pro-

tection are paramount. Traditional data anonymization techniques are often insufficient to

protect privacy against sophisticated attacks that can re-identify individuals from anonymized

datasets. Therefore, federated learning is needed as it allows model training on decentralized

data, mitigating the risk of data leakage.

This thesis explores the integration of Differential Privacy (DP) techniques into federated

learning frameworks, focusing on the application to Diabetic Retinopathy (DR) image process-

ing, a critical area in medical diagnostics where the early detection and classification of disease

stages can significantly impact patient outcomes.

I present a study comparing four models: centralized non-private machine learning and

non-private federated learning as baseline models, alongside two differentially private feder-

ated learning models utilizing the Gaussian and Laplace mechanisms. My goal is to establish

a trade-off between model utility and privacy preservation, which is crucial for deploying ma-

chine learning models in sensitive domains. For the differentially private models, I identify

the optimal noise values for both the Gaussian and Laplace mechanisms that offer the best

balance between accuracy and privacy.

Additionally, I undertake a critical evaluation of the system’s security through the simula-

tion of an inversion attack, which tests the robustness of the DP-enhanced federated learning

models against potential attempts to reconstruct individual data points from aggregated data.

This simulation considers a worst-case scenario where the attacker has high-level access, pro-

viding insights into how added noise affects the reconstructed images.

Experimental results demonstrate that the DP-enhanced federated learningmodels I devel-

oped achieve competitive accuracy in classifying diabetic retinopathy images while ensuring

better privacy guarantees and resilience against inversion attacks. The results show that by
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adding noise, the reconstructed images become less informative, yet the accuracy trade-offs

remain relatively close to those of the baseline models. This research contributes to the field by

providing empirical evidence of the feasibility of deploying differential privacy in federated

learning for medical image analysis, suggesting that privacy-preserving federated learning

can be both practical and effective, balancing the need for data security with the imperative

of maintaining high-quality medical diagnostics.

Keywords: Federated Learning, Differential Privacy, Diabetic Retinopathy, Medical Image

Processing, Gaussian Mechanism, Laplace Mechanism, Inversion Attack, Data Anonymiza-

tion.

IV



Acknowledgements

I would like to express my deepest gratitude to my supervisors, Professor Federica Battisti at

the University of Padova and Professor Luis Alberto da Silva Cruz at the University of

Coimbra, for their invaluable guidance, support, and expertise throughout the course of this

research. Their wisdom, encouragement, and insightful critiques have been instrumental in

shaping this thesis.

My time as an Erasmus student at the University of Coimbra has been a pivotal period in my

academic journey. I am especially thankful to Professor Cruz for welcoming me into his

department and providing me with the opportunity to work in an environment that was both

challenging and nurturing.

I am equally grateful to Professor Battisti for her constant support and constructive feedback,

which were crucial in refining my research objectives and methodologies. Her commitment

to academic excellence has been a constant source of inspiration.

I would also like to extend my appreciation to the staff and faculty members of both the

University of Padova and the University of Coimbra. Their assistance and support have been

invaluable.

A special thank you goes to my peers and colleagues, who have contributed to my personal

and professional growth during this journey. Their camaraderie and insights have been a

source of strength and encouragement.

Lastly, I want to thank my family and friends for their unwavering support and belief in me.

Their love and encouragement have been my anchor throughout this challenging yet

fulfilling endeavor.

This thesis would not have been possible without the collective support and encouragement

of all these individuals. I am deeply grateful to each one of them.

V





Contents

Abstract III

Acknowledgements V

1 Introduction 1

1.1 Introduction to Federated Learning in Healthcare . . . . . . . . . . . . . . . . 1

1.2 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Federated Learning: Key Benefits and Challenges . . . . . . . . . . . . . . . . 3

1.3.1 Advantages of Federated Learning . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Challenges in Federated Learning . . . . . . . . . . . . . . . . . . . . . 5

1.4 Introduction to Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Differential Privacy Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Laplace and Gaussian Mechanisms for Differential Privacy . . . . . . . 7

1.5.1.1 Laplace Mechanism: . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1.2 Gaussian Mechanism: . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1.3 Rationale for Comparing Both Mechanisms: . . . . . . . . . 8

1.6 Inversion Attacks in Machine Learning . . . . . . . . . . . . . . . . . . . . . . 10

1.6.1 Metrics for Evaluating Similarity . . . . . . . . . . . . . . . . . . . . . 10

1.6.2 Factors Influencing the Effectiveness of Inversion Attacks . . . . . . . 12

1.7 Types of Inversion Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.1 Model Inversion Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.2 Training Data Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.3 Gradient Inversion Attacks . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.4 Gradient Matching with Known Model Architecture . . . . . . . . . . 14

1.7.4.1 Gradient Matching Process . . . . . . . . . . . . . . . . . . . 14

1.8 Diabetic Retinopathy: An Overview . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8.1 Challenges in Diagnosing Diabetic Retinopathy . . . . . . . . . . . . . 16

VII



1.8.2 The Role of Machine Learning in Diagnosis . . . . . . . . . . . . . . . 16

1.8.3 Sensitivity of Medical Data and the Importance of Privacy . . . . . . . 16

1.9 Research Synthesis, Gaps, and Contributions . . . . . . . . . . . . . . . . . . . 17

2 Related Work 19

2.1 Advances in Privacy-Preserving Machine Learning . . . . . . . . . . . . . . . 19

2.1.1 Early Privacy-Preserving Techniques and Limitations . . . . . . . . . . 19

2.1.2 Emergence and Evolution of DP in Machine Learning . . . . . . . . . 19

2.2 Federated Learning in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Adoption and Applications . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Challenges in Federated Learning for Healthcare . . . . . . . . . . . . 20

2.3 Differential Privacy Mechanisms in Federated Learning . . . . . . . . . . . . . 21

2.3.1 Applications of Gaussian and Laplace Mechanisms in Research . . . . 21

2.3.1.1 Gaussian Mechanism . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1.2 Laplace Mechanism . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Comparative Studies and Trends . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Historical Development and Innovations . . . . . . . . . . . . . . . . . 22

2.4 Inversion Attacks and Mitigation Strategies . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Threats of Inversion Attacks . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Mitigation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 DR as a Case Study in Privacy-Preserving ML . . . . . . . . . . . . . . . . . . 23

2.5.1 Early Machine Learning Approaches . . . . . . . . . . . . . . . . . . . 23

2.5.2 Federated Learning and Differential Privacy in DR . . . . . . . . . . . 23

2.5.3 Challenges and Future Directions . . . . . . . . . . . . . . . . . . . . . 24

2.6 Synthesis and Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Proposed Method 25

3.1 Overview of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Privacy-Preserving Mechanisms and Training Process . . . . . . . . . . . . . . 28

3.4.1 Differential Privacy Mechanisms: Laplace and Gaussian Approaches . 28

3.4.1.1 Laplace Mechanism . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1.2 Gaussian Mechanism . . . . . . . . . . . . . . . . . . . . . . 29

VIII



3.4.2 Training Process Overview . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Global Model Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Software and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 General Workflow of Code Files . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3 Detailed Explanation of Each Code File . . . . . . . . . . . . . . . . . . 32

3.5.3.1 Data Processing and Preparationwithdr dataset to numpy.py 33

3.5.3.2 DatasetManagement and Transformationwithdatasets.py 34

3.5.3.3 Experiment Configuration with options.py . . . . . . . 35

3.5.3.4 Utility Functions with utils.py . . . . . . . . . . . . . . 36

3.5.3.5 Data Sampling for Federated Learning with sampling.py 37

3.5.3.6 Logging Experiment Results with logging results.py 38

3.5.3.7 Training and Model Update Approaches for Different Pri-

vacy Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.3.8 Analysis of Model Implementation Notebooks . . . . . . . . 40

3.5.3.9 Inversion Attack Simulation for Privacy Validation . . . . . 42

4 Experimental Results 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Experimental Setup and Result for Privacy-Accuracy Trade-off Analysis . . . . 47

4.2.1 Results of Gaussian Mechanism . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Results of Laplace Mechanism . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 Comparison of Selected Models . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Experimental Setup and Result for Inversion Attack Simulation . . . . . . . . 53

4.3.1 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1.1 Why FL Has Higher Reconstructed Quality Than ML . . . . 57

4.3.1.2 Solutions for Reducing Information Leakage in Non-Private

FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Visual Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusions 61

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Key Findings and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IX



5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Acronyms 65

Bibliography 66

X



List of Figures

1.1 Federated Learning System Architecture in Healthcare . . . . . . . . . . . . . 2

1.2 Comparison of Laplace and Gaussian Distributions . . . . . . . . . . . . . . . 9

1.3 Stages of Diabetic Retinopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Experimental Setup for Model Configurations . . . . . . . . . . . . . . . . . . 47

4.2 Test Accuracy Over 100 Epochs for Different Noise Multiplier Values in the

Gaussian Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Test Accuracy Over 100 Epochs for Different Epsilon Values in the Laplace

Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Comparison of Test Accuracy Over 100 Epochs for Non-private and Private

Models (Gaussian with Noise Multiplier = 2.90, Laplace with Epsilon = 1.50) . 52

4.5 Comparison of Original and Reconstructed Images Across Different Model

Configurations: Original Image, Non-Private Machine Learning (ML), Non-

Private Federated Learning (FL), Private FL with Gaussian Mechanism, and

Private FL with Laplace Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Original Image from the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Reconstructed Image from Non-Private ML Model . . . . . . . . . . . . . . . . 59

4.8 Reconstructed Image from Non-Private FL Model . . . . . . . . . . . . . . . . 59

4.9 Reconstructed Image from Private FL with Gaussian Mechanism . . . . . . . . 59

4.10 Reconstructed Image from Private FL with Laplace Mechanism . . . . . . . . . 59

XI





List of Tables

4.1 Quantitative Metrics for Reconstructed Images Across Model Configurations . 57

XIII



Chapter 1

Introduction

1.1 Introduction to Federated Learning in Healthcare

Federated Learning is a paradigm change in machine learning where localized data samples

in decentralized devices or on servers can communicate to train algorithms without necessar-

ily exchanging the data itself. This kind of decentralized model training is valuable in situa-

tions requiring data privacy, security, and governance. Unlike traditional centralized machine

learning, which aggregates data in a central server, FL enables model training directly on user

devices while aggregating updates of the model without aggregating the raw data itself. This

preserves users’ privacy, reduces latency, and enhances scalability.

This capability is critical in the area of medical image analysis, where patient privacy is

paramount. For instance, diabetic retinopathy (DR) diagnosis relies on sensitive retinal images,

so the ability to train models without sharing raw medical data mitigates privacy concerns.

Thus, FL is an ideal solution in healthcare applications.

However, despite its clear benefits, federated learning faces significant challenges, partic-

ularly in privacy-sensitive fields like healthcare. Issues like data variability, privacy risks, and

difficulties in model convergence can emerge in this context.
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Figure 1.1: Federated Learning System Architecture in Healthcare

Figure 1.1 illustrates the federated learning system architecture in a healthcare setting.

In this setup, multiple hospitals (represented as edge servers) perform local computing on

medical data to train a model without sharing the raw data with a central server. Instead, only

model weights are shared between the edge servers and a global server, which aggregates

these updates to refine the model centrally. This architecture enhances patient data privacy

by keeping sensitive information localized while still enabling collaborative learning across

institutions.

1.2 Motivation and Related Work

This thesis is inspired by foundational research, particularly a prior dissertation titledOphthal-

mology Applications of Federated Learning, conducted by a student at the University of Coim-

bra. That work developed a FL system aimed at diabetic retinopathy detection, demonstrating

the potential of FL in decentralized medical diagnostics. Specifically, it explored and compared

three aggregation algorithms—Federated Averaging, Federated Proximal, and stochastic con-

trolled averaging for federated learning (SCAFFOLD)—to provide insights into model conver-

gence and diagnostic accuracy. However, the research did not address implementing privacy-

preserving mechanisms or analyzing privacy-utility trade-offs, nor did it account for security

threats such as inversion attacks that attempt to reconstruct sensitive data from aggregated

model updates.

2



Building on this conceptual foundation, my thesis shifts focus to privacy enhancement

within FL systems, specifically through DP mechanisms. Unlike the previous study, this re-

search does not reuse any specific settings, models, or code from that work; instead, it aims

to introduce and evaluate DP techniques within a similar application context. By embedding

DP mechanisms into the federated learning framework, this study aims to strengthen data

protection in diabetic retinopathy detection without compromising diagnostic accuracy. A

particular focus is given to understanding the balance between privacy and utility by test-

ing these methods against simulated inversion attacks—an approach intended to assess the

resilience of DP-enhanced FL systems against data reconstruction threats.

The direction for this study is further informed by the work Dopamine: Differentially Pri-

vate Federated Learning onMedical Data [1], which proposes a privacy-preserving FL approach

using Differentially Private Stochastic Gradient Descent (DP-SGD) with the Gaussian mecha-

nism, supported by secure multi-party aggregation. Dopamine has shown notable success in

achieving privacy guarantees and model accuracy. Building on Dopamine’s demonstrated ef-

fectiveness, this thesis applies a similar framework, integrating the Gaussian mechanism but

also introducing the Laplace mechanism to allow a comparative analysis. Rather than employ-

ing secure multi-party aggregation or homomorphic encryption, this study takes a simplified

approach, focusing on contrasting the Laplace and Gaussian mechanisms in terms of privacy-

accuracy trade-offs.

To further validate the robustness of these privacy mechanisms, this research conducts

simulations of inversion attacks, analyzing how well differentially private FL systems with-

stand data reconstruction threats. By examining the strength of these DP mechanisms in safe-

guarding sensitive medical information, this study seeks to extend the previous research in a

direction that emphasizes security and privacy resilience in federated learning for healthcare

applications.

1.3 Federated Learning: Key Benefits and Challenges

Federated Learning offers a promising approach to machine learning in privacy-sensitive and

distributed environments, especially in fields like healthcare, finance, and education. How-

ever, FL also presents distinct challenges, particularly around data heterogeneity, model con-

vergence, and balancing privacy with model performance. In the next two sections, I explore

both the benefits and limitations of FL.
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1.3.1 Advantages of Federated Learning

· Privacy Preservation: FL minimizes the need to share raw data by keeping it localized

on each device, reducing risks associated with data breaches and meeting regulatory

standards. This decentralized approach is especially important in sensitive fields like

healthcare, where privacy protection is paramount.

· Reduced Latency and Communication Costs: With local training on edge devices,

FL reduces the frequency and volume of data transmission to a central server, resulting in

lower latency and communication costs. Only model updates, not raw data, are shared,

which makes FL a cost-effective option for devices with limited bandwidth or power.

· Scalability and Flexibility: FL enables large-scale deployment across a variety of de-

vices, frommobile phones to Internet ofThings (IoT) systems, accommodating distributed

environments and allowing diverse organizations to collaboratively train models. This

scalability is essential for processing vast amounts of decentralized data across hetero-

geneous sources.

· Enhanced Personalization: By allowing model updates based on local data, FL sup-

ports personalized models that better capture individual user patterns and preferences

without compromising privacy. This advantage is valuable for applications like person-

alized healthcare, where individualization enhances clinical relevance.

· Data Diversity and Robustness: FL can leverage data from diverse sources, including

different geographies, institutions, and demographic groups. This diversity can improve

model robustness and generalizability, as the model can learn from a wide range of real-

world data without requiring centralized storage.

· Compliance with Data Sovereignty and Localization Laws: FL complies with data

sovereignty regulations by keeping data local while enabling collaborative model de-

velopment, making it feasible to work across institutions and countries with strict data

governance requirements (e.g., General Data Protection Regulation (GDPR), Health Insur-

ance Portability and Accountability Act (HIPAA)).

· Improved Fault Tolerance: FL’s decentralized structure allows for greater fault tol-

erance. If certain devices drop out or experience connectivity issues, the model can

continue training with the updates from remaining devices, supporting applications on

devices with intermittent connectivity.

4



· Enhanced SecurityThrough Decentralized Training: By avoiding centralized stor-

age, FL reduces the risk of large-scale data breaches. Even if a device is compromised,

the data remains segmented, making it more challenging for a malicious actor to access

a complete dataset.

· Continuous Learning and Adaptability: FL supports on-device learning, allowing

models to be updated in real-time as new data becomes available. This adaptability is

beneficial in healthcare, where models can adjust to new patient data, improving accu-

racy over time.

· Preservation of Data Context and Local Knowledge: Since FL allows data to remain

within its originating environment, it preserves the local context, which can be valuable

for applications requiring location-specific insights, such as regional variations in med-

ical conditions.

1.3.2 Challenges in Federated Learning

· Data Heterogeneity and Non-Independent and Identically Distributed (non-IID)

Data: In FL, data is often decentralized and varies significantly between devices, mean-

ing it is not independently and identically distributed (non-IID). This data heterogeneity

can lead to difficulties in training, as local updates may diverge due to the differences in

data distributions across clients. Consequently, models trained through FL may struggle

to generalize effectively, especially in scenarios like healthcare, where patient data may

vary widely based on demographic and geographic factors.

· Model Convergence Issues: Ensuring efficient convergence in FL is challenging due

to the asynchronous nature of updates from multiple devices. With heterogeneous data

and varying computational resources, client devices may introduce noise or bias in the

aggregated updates, potentially slowing down convergence and affecting overall model

performance. This issue becomes more pronounced in large, distributed networks where

devices may have irregular participation.

· Communication Overheads and Limited Resources on Edge Devices: While FL

reduces the need for raw data transmission, it still requires frequent communication of

model parameters, which can be costly in terms of bandwidth, especially for devices

with limited connectivity. Moreover, edge devices used in FL often have constrained

computational resources and battery life, limiting the complexity of models that can be
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trained locally. These constraints can hinder the application of FL in environments with

limited or intermittent connectivity, reducing the potential benefits of scalability.

· Privacy-Utility Trade-Offs with Differential Privacy Mechanisms: Although FL

aims to protect privacy, adding DP mechanisms introduces a trade-off between privacy

and model utility. DP mechanisms, like the Gaussian and Laplace noise injections, can

degrade model accuracy, especially when stringent privacy budgets are applied. Finding

an optimal balance between preserving privacy and maintaining sufficient model per-

formance remains a key challenge, particularly in sensitive fields like healthcare where

high accuracy is critical.

· Vulnerability to Adversarial Attacks and Malicious Clients: FL can be suscepti-

ble to adversarial attacks, including model poisoning and inference attacks. Malicious

clients can manipulate model updates, degrading the model’s performance, or attempt

inversion attacks to infer sensitive information from model parameters. Although dif-

ferential privacy can mitigate some risks, FL requires additional security mechanisms,

such as robust aggregation techniques, to protect against adversarial behavior. These

extra safeguards can increase computational demands and complexity.

· Lack of Standardization and Interoperability: The deployment of FL across diverse

devices and systems faces challenges due to a lack of standardized protocols and inter-

operability. Variations in device specifications, data storage formats, and privacy reg-

ulations across jurisdictions can complicate model training and integration. In health-

care, for instance, the diverse range of Electronic Health Record (EHR) systems across

institutions can hinder collaborative model training, making cross-institutional FL im-

plementations challenging.

1.4 Introduction to Differential Privacy

Differential Privacy is a framework that ensures privacy during the analysis of sensitive data by

adding controlled noise to query outputs. This approach is particularly relevant in healthcare,

where patient data must remain confidential while allowing valuable insights to be derived.

DP aims to minimize the impact of any individual’s data on analysis results, achieved by

adding noise proportional to the sensitivity of the query function [2]. This ensures that any

single data point has minimal influence on the output, thereby protecting privacy [3]. DP is

valuable in federated learning, where aggregated model updates, rather than raw data, are
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shared, adding a privacy layer against data reconstruction attacks. In FL, two mechanisms

commonly used to implement DP are the Laplace and Gaussian mechanisms, each providing

specific trade-offs between privacy and accuracy.

Mathematically, a randomized algorithm A satisfies ϵ-differential privacy if, for any two

datasets D1 and D2 differing by one record, and any subset of outcomes S:

Pr[A(D1) ∈ S] ≤ eϵ · Pr[A(D2) ∈ S],

where ϵ is the privacy budget [4]. Smaller ϵ values indicate stronger privacy.

The Laplace mechanism, typically used for low-dimensional data, and the Gaussian mech-

anism, suited for high-dimensional tasks, align with the research’s objectives in handlingmed-

ical data. As privacy concerns grow, DP provides a robust solution for safeguarding individual

privacy while retaining the utility of the dataset.

1.5 Differential Privacy Mechanisms

Differential Privacy is achieved through mechanisms that add noise to data, with the Laplace

and Gaussian mechanisms being the most commonly used. These mechanisms vary in how

they introduce noise and in the trade-offs they offer between privacy protection and data

utility.

1.5.1 Laplace and Gaussian Mechanisms for Differential Privacy

The Laplace and Gaussian mechanisms are fundamental methods for achieving Differential

Privacy (DP) by adding noise to query outputs. The choice between these mechanisms de-

pends on data dimensionality, sensitivity, and the required trade-off between privacy and ac-

curacy. In this thesis, both mechanisms are explored and compared to assess their respective

impacts on privacy and utility in the specific context of diabetic retinopathy image processing

in federated learning. In the next two sections, we will see how they work.

1.5.1.1 Laplace Mechanism:

The Laplace mechanism adds noise drawn from a Laplace distribution, making it particularly

suitable for low-dimensional queries, such as sums or averages. The probability density func-

tion (PDF) for the Laplace distribution is:
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f(x|µ, β) = 1

2β
exp

(︃

−|x− µ|
β

)︃

,

where β = ∆f
ϵ
, with ∆f representing query sensitivity and ϵ being the privacy bud-

get. This mechanism effectively maintains privacy without significantly distorting results for

low-dimensional data [2]. Although the Laplace mechanism is generally more effective for

low-dimensional data, it is included in this thesis to evaluate its performance and utility on

high-dimensional diabetic retinopathy images, providing insights into its applicability in more

complex data contexts.

1.5.1.2 Gaussian Mechanism:

The Gaussian mechanism introduces noise from a Gaussian distribution, which is more suited

to high-dimensional tasks, such as machine learning, where the Gaussian distribution’s prop-

erties provide a balance between privacy and utility [5]. Its PDF is:

f(x|µ, σ) = 1

σ
√
2π

exp

(︃

−(x− µ)2

2σ2

)︃

,

where σ =
∆f

√
2 ln(1.25/δ)

ϵ
, and δ represents the failure probability. This mechanism is ideal

for complex, high-dimensional data, as it introduces less distortion in such contexts [6]. Given

that diabetic retinopathy images are high-dimensional, the Gaussian mechanism is expected

to be better suited to this thesis, as it can potentially preserve the data utility necessary for

accurate classification and diagnosis while maintaining privacy.

1.5.1.3 Rationale for Comparing Both Mechanisms:

Comparing the Laplace and Gaussian mechanisms in this thesis provides valuable insights

into the privacy-utility trade-offs specific to federated learning in healthcare, where high data

utility and strict privacy requirements coexist. While the Gaussian mechanism is often pre-

ferred for high-dimensional data, assessing the Laplacemechanism’s performance on complex,

image-based data may reveal its viability in scenarios where privacy requirements are partic-

ularly stringent.

1. Privacy-Utility Trade-Offs: This comparison allows us to understand how each mech-

anism impacts model performance in terms of classification accuracy and privacy preserva-

tion in diabetic retinopathy detection. The Laplace mechanism could provide adequate privacy

with manageable accuracy loss, which would be advantageous in tightly controlled healthcare

8



settings.

2. Evaluating Suitability forMedical Image Processing: Since medical image analysis,

especially for sensitive diagnoses like diabetic retinopathy, demands high accuracy, the Gaus-

sian mechanism is anticipated to introduce less noise distortion in high-dimensional data,

preserving model utility. However, the Laplace mechanism’s impact on these image-based

models is evaluated to explore its feasibility in complex tasks, allowing us to make informed

recommendations for privacy mechanisms in federated medical applications.

3. Implications for Federated Learning in Healthcare: By comparing these mecha-

nisms, this thesis aims to contribute practical insights on tuning differential privacy for fed-

erated learning in healthcare. If the Gaussian mechanism provides higher utility with suf-

ficient privacy, it could support more accurate diagnosis models. Conversely, if the Laplace

mechanism proves viable, it may offer a simpler privacy implementation in high-dimensional

settings, helping healthcare providers balance privacy and model performance effectively.

Figure 1.2 illustrates the probability density functions of the Laplace and Gaussian dis-

tributions, both centered at 0 with unit scale. The Laplace distribution (solid green line) has

a sharper peak and heavier tails compared to the Gaussian distribution (dashed blue line),

which exhibits a smoother, more gradual slope. This visual comparison highlights that the

Laplace mechanism tends to concentrate noise more tightly around the mean, whereas the

Gaussian mechanism distributes noise more evenly. In the context of differential privacy,

these characteristics affect how each mechanism balances privacy and accuracy, especially

in high-dimensional data scenarios.

Figure 1.2: Comparison of Laplace and Gaussian Distributions
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1.6 Inversion Attacks in Machine Learning

In healthcare, where patient confidentiality is critical, inversion attacks pose a significant pri-

vacy risk by potentially exposing sensitive medical data, such as retinal scans used in diag-

nosing diabetic retinopathy. Unauthorized access to such information can lead to privacy

violations, identity theft, and ethical concerns, making data protection paramount. Feder-

ated learning mitigates some privacy risks by decentralizing data processing; however, it is

not immune to vulnerabilities. Model updates or gradients exchanged during FL training can

inadvertently reveal traces of the original data, enabling attackers to reconstruct sensitive in-

formation.

This thesis investigates how differential privacymechanisms, specifically the Gaussian and

Laplace mechanisms, can enhance privacy protections in FL by mitigating the risk of inver-

sion attacks while preserving model utility. These DP mechanisms are evaluated for their

effectiveness in maintaining both privacy and accuracy within federated learning models for

healthcare applications.

Inversion attacks in FL target gradients shared between decentralized devices and a cen-

tral server. By analyzing these gradients, attackers can reverse-engineer original input data,

exploiting the information contained within gradients to reconstruct details of patient med-

ical images or records. Gradient inversion attacks are particularly concerning in healthcare,

as they can reveal identifiable patient information from shared model updates, compromising

patient privacy despite the decentralized structure of FL.

An example of this vulnerability was demonstrated by Zhu et al. (2019), where researchers

successfully reconstructed images from the CIFAR-10 dataset solely using shared gradients,

highlighting the susceptibility of FL systems to such attacks [7]. This thesis builds upon these

findings, assessing the robustness of DP-augmented FL models against gradient inversion at-

tacks in healthcare.

1.6.1 Metrics for Evaluating Similarity

To evaluate the similarity between the original and reconstructed images after a simulated in-

version attack, I utilize a set of quantitative metrics that measure image fidelity and perceptual

quality. These metrics provide insight into how much of the original image’s detail is retained

in the reconstructed image, which directly correlates with the potential privacy leakage. The

following metrics are used:
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· Peak Signal-to-Noise Ratio (PSNR): PSNR measures the ratio between the maximum

possible power of a signal and the power of corrupting noise that affects the fidelity of its

representation. In the context of image reconstruction, a higher PSNR value generally

indicates better similarity to the original image. Lower PSNR values suggest that added

noise has effectively degraded the reconstructed image, enhancing privacy.

· Structural Similarity Index Measure (SSIM): SSIM assesses the structural similar-

ity between two images, considering luminance, contrast, and structure. SSIM values

range from -1 to 1, where values closer to 1 indicate higher structural similarity. For

privacy protection, lower SSIM values imply that the reconstructed image has lost more

structural details of the original.

· Multiscale SSIM: Multi-Scale Structural Similarity Index Measure (MS-SSIM) extends

SSIM by calculating similarity at multiple scales, which allows for amore comprehensive

evaluation of structural information across different levels of image detail. MS-SSIM is

particularly useful for detecting differences in high-frequency details, such as edges,

which are essential in retinal images. Lower MS-SSIM values indicate better privacy as

they suggest reduced structural fidelity.

· Feature Similarity Index Measure (FSIM): FSIM is designed to evaluate perceptual

image quality by focusing on low-level features, such as phase congruency and gradi-

ent magnitude. Higher FSIM values indicate closer resemblance to the original image

in terms of essential features. A lower FSIM value indicates that the added noise has

effectively reduced feature retention, thereby enhancing privacy.

· Perceptual Loss (Visual Geometry Group (VGG)): Perceptual loss is computed by

passing images through a pre-trained deep neural network (e.g., VGG) and calculating

the difference between the feature maps of the original and reconstructed images. Lower

perceptual loss values imply greater similarity in high-level features, whereas higher

values indicate effective privacy preservation by obscuring detailed patterns.

· Gradient Peak Signal-to-Noise Ratio (G-PSNR): Gradient PSNR focuses on preserv-

ing edges and fine details by calculating PSNR on the gradient of the images. It is partic-

ularly useful for medical images, where edges and structures are essential for diagnosis.

Lower G-PSNR values indicate that the noise has degraded edge information in the re-

constructed images, improving privacy.
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These metrics collectively provide a robust framework for evaluating the quality of recon-

structed images and assessing the effectiveness of different privacy-preserving mechanisms.

Lower values in PSNR, SSIM, MS-SSIM, FSIM, and G-PSNR, coupled with higher perceptual

loss, generally indicate better privacy protection due to reduced similarity between the origi-

nal and reconstructed images.

1.6.2 Factors Influencing the Effectiveness of Inversion Attacks

The success of inversion attacks depends on several factors that determine how much infor-

mation can be extracted from a model’s outputs or gradients. These factors include:

· Model Complexity: Simpler models, or those trained on smaller datasets, may be more

vulnerable to inversion attacks as they retain more specific patterns from the training

data, making it easier to reverse-engineer the inputs [8].

· Dimensionality of the Data: Models trained on high-dimensional data, such as medi-

cal images or videos, tend to retain more detailed features of the input data. This makes

inversion attacks more successful, as attackers can reconstruct recognizable versions of

the original data [7]. For example, in diabetic retinopathy diagnosis, attackers could

potentially reconstruct retinal images, revealing sensitive health information.

· Auxiliary Information:Theavailability of auxiliary information, such as public datasets

or prior knowledge about the data distribution, can significantly enhance an attacker’s

ability to reconstruct inputs. For instance, if attackers know the general structure of the

data (e.g., the shape of retinal blood vessels), they can guide the inversion process more

effectively [9].

Understanding these factors is crucial for developing defenses against inversion attacks.

The next section explores different types of inversion attacks and their impact on privacy.

1.7 Types of Inversion Attacks

Inversion attacks in machine learning can be categorized based on their methods and the spe-

cific components of the model they target. This section outlines the primary types of inversion

attacks, their mechanisms, and their privacy implications.
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1.7.1 Model Inversion Attacks

Model inversion attacks infer sensitive features of input data by analyzing the model’s output

predictions. These attacks exploit the relationship between input features and output pre-

dictions to reconstruct partial or approximate representations of data. For example, in facial

recognition systems, attackers can use confidence scores to reconstruct images of individuals’

faces by iteratively adjusting inputs to achieve a close approximation of the original. Fredrik-

son et al. (2015) demonstrated the feasibility of this technique in reconstructing facial images

from a model trained on a facial recognition dataset, showing how even access to output prob-

abilities can expose private information [8].

This type of attack is particularly concerning in settings where models provide detailed

confidence scores or probability distributions, as attackers can iteratively refine inputs to re-

construct sensitive information. Model inversion attacks are especially relevant in centralized

learning contexts, where overconfident or poorly generalized models can expose sensitive fea-

tures.

1.7.2 Training Data Reconstruction

Training data reconstruction attacks aim to recover exact instances from the training dataset,

rather than merely approximating features. Unlike model inversion, which infers approximate

characteristics, training data reconstruction seeks to retrieve actual samples from the training

data. In centralized learning, attackers can probe the model with various inputs to infer de-

tails or even reconstruct specific examples from the training dataset, especially if the model is

overfitted.

In federated learning, attackers can exploit the gradients shared during training to infer

details about the individual samples. Since gradients are computed based on local data, they

may reveal sensitive characteristics of the training samples. This approach poses a privacy

risk, particularly in federated learning, where gradients are regularly shared between clients

and a central server [10].

1.7.3 Gradient Inversion Attacks

Gradient inversion attacks are particularly significant in federated learning environments,

where gradients are frequently exchanged between local devices and a central server. By

accessing shared gradients, attackers can potentially reconstruct or approximate the original

input data, especially when they have additional knowledge of the model structure. Zhao et
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al. (2020) demonstrated that detailed images from the CIFAR-10 dataset could be recovered

from gradients, highlighting the vulnerability of gradient-based systems [11].

These attacks are more effective when the attacker has knowledge of the model architec-

ture, allowing precise alignment of gradients to reconstruct sensitive features in input data,

such as images or text, particularly in high-dimensional tasks like image recognition.

1.7.4 Gradient Matching with Known Model Architecture

In this thesis, I simulate inversion attacks using an advanced technique known as Gradient

Matching with Known Model Architecture. In this approach, the attacker has access not only

to shared gradients but also to a public dataset that resembles the original training dataset.

Additionally, the attacker is fully aware of the model architecture used by the clients. This

combination enables a more accurate approximation of the original input data by leveraging

both the model’s structure and the public dataset.

1.7.4.1 Gradient Matching Process

The gradient matching process involves iteratively refining inputs from a similar dataset until

their gradients closely align with those observed in the actual inputs. The main steps are as

follows:

1. Initialization with Similar Dataset: The attacker selects an initial input from a public

dataset that closely resembles the original training dataset. This starting point facilitates

gradient matching and improves reconstruction accuracy.

2. Forward and Backward Passes: Using the known model architecture, the attacker

performs a forward pass to calculate the model’s output, followed by a backward pass

to compute the gradients. These gradients serve as an estimate of the actual gradients.

3. Gradient Comparison: The computed gradients of the selected input are compared to

the observed gradients using a distance metric, suchMean Squared Error (MSE) or cosine

similarity. A smaller distance indicates better alignment.

4. Optimization: To improve alignment, the attacker adjusts the selected input using gra-

dient descent or another optimization method to minimize the difference between the

selected and actual gradients. The optimization is represented as:

x
(t+1)
chosen = x

(t)
chosen − η∇

xchosen
L(∇

xchosen
,∇

xreal
)
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where η is the learning rate, x
(t)
chosen is the current input from the similar dataset,∇

xchosen

and ∇
xreal

represent the gradients of the chosen and real inputs, respectively, and L is

the loss function measuring gradient similarity.

5. Iterative Alignment: Steps 2-4 are repeated, refining the input from the public dataset

with each iteration until it closely resembles the actual input.

The use of a similar dataset and model architecture enhances gradient matching effective-

ness, accelerating the optimization process and enabling highly accurate reconstructions. This

approach reflects a realistic threat where an attacker could utilize publicly available data sim-

ilar to the target data, improving attack feasibility.

In federated learning, where gradients are shared instead of raw data, gradient matching

with known model architecture and a similar dataset poses a significant privacy risk. This

scenario simulates a worst-case attack, where an attacker intercepts gradients and has access

to both model knowledge and a similar public dataset, enabling them to approximate sensitive

client data, potentially revealing private information, such as medical images in healthcare

1.8 Diabetic Retinopathy: An Overview

Diabetic Retinopathy is a major complication of diabetes and one of the leading causes of

blindness among working-age adults worldwide. It results from prolonged damage to the

retinal blood vessels, leading to two primary stages: Non-Proliferative Diabetic Retinopathy

(NPDR) and Proliferative Diabetic Retinopathy (PDR) [12]. While NPDR can progress without

symptoms, PDR represents an advanced stage, marked by abnormal blood vessel growth and

the risk of retinal detachment, potentially leading to blindness if untreated.

Figure 1.3: Stages of Diabetic Retinopathy
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1.8.1 Challenges in Diagnosing Diabetic Retinopathy

Early detection of DR is critical to preventing vision loss. Traditionally, retinal images are cap-

tured through fundus photography and manually assessed by ophthalmologists for signs of

DR. However, diagnosing DR presents several challenges, particularly in resource-limited re-

gions where access to specialized care is scarce. Moreover, diagnostic variability between prac-

titioners and the subtle nature of early-stage DR, such as the appearance of microaneurysms,

make consistent diagnosis difficult [13]. These challenges emphasize the need for scalable,

accurate diagnostic tools. Given these challenges, machine learning, especially deep learning,

has emerged as a promising tool to automate DR diagnosis while maintaining accuracy and

scalability.

1.8.2 The Role of Machine Learning in Diagnosis

Machine learning, especially deep learning, has shown potential in automating the detection of

DR through the analysis of retinal images. Convolutional Neural Network (CNN)s have demon-

strated their ability to detect subtle features, such as microaneurysms and neovascularization,

which are essential for accurate DR diagnosis [14]. These models provide consistent, scalable

diagnostics, reducing the reliance on human expertise and increasing access to high-quality di-

agnostic tools, particularly in underserved areas. For example, a study by Gulshan et al. (2016)

highlighted the capability of CNNs to match or surpass the performance of ophthalmologists

in grading DR severity [15].

1.8.3 Sensitivity of Medical Data and the Importance of Privacy

Retinal images, like other medical data, contain sensitive information and are subject to strict

privacy regulations, such as HIPAA in the U.S. and GDPR in Europe. Centralizing such data

for machine learning model training introduces significant privacy risks, including potential

data breaches. To mitigate these risks, federated learning allows collaborative model training

without sharing raw data, reducing privacy concerns.

However, even FL is not entirely immune to privacy threats, as the gradients or model

updates shared between institutions can still reveal sensitive information. This is where Dif-

ferential Privacy comes into play. By introducing noise into model updates, DP ensures

that sensitive data cannot be reverse-engineered, further enhancing privacy protection. For

instance, Abadi et al. (2016) developed DP-SGD, which provides privacy guarantees while

maintaining model utility [6].
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1.9 Research Synthesis, Gaps, and Contributions

In federated learning systems, balancing privacy and model utility is paramount. FL aims to

mitigate privacy risks by decentralizing data processing, but it does not completely eliminate

vulnerabilities, as gradients exchanged during training may still reveal sensitive information,

such as patient medical images. Inversion attacks, which exploit shared gradients to recon-

struct input data, pose a significant threat to privacy in FL systems.

This thesis examines the integration of differential privacy mechanisms, specifically the

Gaussian and Laplace mechanisms, within an FL framework designed for diagnosing diabetic

retinopathy. The research focuses on evaluating these mechanisms’ effectiveness in maintain-

ing privacy without sacrificing diagnostic accuracy, especially when faced with gradient in-

version attacks. Gradient matching is used to simulate inversion attacks, providing a practical

assessment of the DP-enhanced FL model’s robustness against data reconstruction threats.

Key research gaps and contributions identified in this study include:

· Application to Medical Imaging Data: Limited empirical research has specifically

addressed the vulnerability of FL systems to inversion attacks in medical imaging con-

texts, such as DR diagnosis. This study contributes by examining the effectiveness of

privacy-preserving methods in protecting sensitive medical images.

· Comparative Analysis of DP Mechanisms in FL: This thesis compares Gaussian

and Laplace DP mechanisms, analyzing the privacy-utility trade-offs to determine opti-

mal noise levels that safeguard privacy while preserving model performance. The study

clarifies these trade-offs by quantifying the impact of DP mechanisms on diagnostic ac-

curacy, which is particularly critical in healthcare where accuracy losses can directly

affect outcomes.

· Robustness Against Gradient-Based Inversion Attacks: There is limited evaluation

of DPmechanisms’ resilience to gradient inversion attackswithin FL settings. This thesis

contributes by simulating inversion attacks to test the robustness of DP-enhanced FL

models, analyzing how DP-induced noise affects the reconstruction of sensitive data

and providing insights for protecting medical images in federated settings.

· Healthcare-Focused Validation and Privacy-Utility Analysis: Conducted with a

specific focus on DR, this research offers empirical evidence for deploying privacy-

preserving FL systems in healthcare, validating the applicability of DP mechanisms in

scenarios where both data privacy and diagnostic accuracy are essential.
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This thesis advances the field of privacy-preserving machine learning by providing a com-

prehensive evaluation of DP techniques within FL systems for medical applications. The find-

ings contribute to the development of secure, accurate, and scalable FL solutions suited to

privacy-sensitive domains, supporting enhanced protection of healthcare data.
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Chapter 2

Related Work

2.1 Advances in Privacy-Preserving Machine Learning

2.1.1 Early Privacy-Preserving Techniques and Limitations

Earlymethods for privacy protection, such as anonymization, focused on removing ormasking

identifiable information to prevent linkage to individual identities. However, Narayanan and

Shmatikov (2008) demonstrated that anonymized data could often be re-identified through

cross-referencing with publicly available sources, exposing significant privacy vulnerabilities

in sensitive domains like healthcare [16].

In response to these limitations, cryptographic techniques such as Secure Multi-Party

Computation (MPC) and Homomorphic Encryption (HE) emerged. MPC enables collabora-

tive computations without revealing individual inputs [17], while HE supports computations

on encrypted data without exposing plaintext. However, both approaches face computational

overhead challenges, making them impractical for large-scale machine learning tasks [2].

These challenges spurred the development of DP, which offers formal privacy guarantees

with lower computational complexity. DP became a scalable solution by adding controlled

noise to outputs, limiting the influence of individual data points on analytical results.

2.1.2 Emergence and Evolution of DP in Machine Learning

Introduced by Dwork et al. in 2006, DP provided a mathematical framework to ensure privacy

by adding noise proportional to the sensitivity of data queries [4]. DP has been widely adopted

in privacy-preserving machine learning due to its balance of privacy guarantees and analytical

utility.
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A major milestone was the development of DP-SGD by Abadi et al. (2016), which incor-

porates DP into model training by adding noise to gradient updates [6]. This advancement

enabled privacy-preserving large-scale machine learning. Subsequent work introduced mech-

anisms like Gaussian Noise for high-dimensional tasks and Smooth Sensitivity for non-smooth

functions, further enhancing the applicability of DP [5, 3].

These advances have cemented DP as a cornerstone of privacy-preserving research, par-

ticularly in sensitive areas such as healthcare and finance.

2.2 Federated Learning in Healthcare

2.2.1 Adoption and Applications

FL enables collaborative model training across decentralized datasets, preserving data privacy

by transmitting only model updates rather than raw data. This makes FL particularly valuable

in privacy-sensitive applications like healthcare, where patient data must remain confidential.

Prominent applications include:

· Medical Imaging Analysis: Sheller et al. (2020) demonstrated FL’s potential in multi-

institutional brain tumor segmentation studies, achieving high diagnostic accuracywhile

maintaining data privacy [18].

· COVID-19 Diagnosis: Nguyen et al. (2021) used FL for diagnosing COVID-19 from

chest X-rays, highlighting its scalability and effectiveness in privacy-compliant collab-

orative learning [19].

· General Healthcare Applications: FL aligns with regulations like HIPAA in the U.S.

and GDPR in the EU, making it a practical solution for cross-institutional model training

without compromising patient privacy [20].

2.2.2 Challenges in Federated Learning for Healthcare

Despite its benefits, FL faces several challenges in healthcare:

· Data Heterogeneity: Variations in patient demographics, equipment, and diagnostic

protocols lead to non-IID data, affectingmodel convergence and performance. Personalized

Federated Learning (PFL), proposed by Fallah et al. (2020), and adaptive optimization

strategies like those by Reddi et al. (2021), address these challenges by tailoring models

to local data distributions [21, 22].
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· Privacy-Utility Trade-offs:While inherently privacy-preserving, FL still requiresmech-

anisms like DP for robust protection. Adding noise for DP can degrade model accuracy,

especially in high-stakes applications. Balle and Wang’s (2018) adaptive noise mecha-

nisms dynamically adjust noise levels to balance privacy and utility [5].

2.3 Differential Privacy Mechanisms in Federated Learn-

ing

2.3.1 Applications of Gaussian and Laplace Mechanisms in Research

The Gaussian and Laplace mechanisms have been integral to privacy-preserving frameworks

in FL. These methods introduce noise to gradients or model outputs to achieve DP, offering

robust defenses against adversarial attacks while preserving data utility.

2.3.1.1 Gaussian Mechanism

· Enhancing Security in Distributed Systems: The Gaussian mechanism has become

a standard choice for high-dimensional data tasks. For example, Malekzadeh et al. (2021)

integratedGaussian noise into federatedmodels for diabetic retinopathy diagnosis, achiev-

ing robust privacy without degrading diagnostic performance [1].

· Advanced Use in Multi-Site Medical Data: Tang et al. (2023) proposed privacy-

preserving FL frameworks using Gaussian noise and domain adaptation to bridge site-

specific variations in ocular disease diagnosis datasets [23].

· Addressing Network Scalability Issues: Dijk et al. (2020) demonstrated an asyn-

chronous FL approach combining Gaussian noise with reduced communication rounds,

enhancing scalability for real-time applications [24].

2.3.1.2 Laplace Mechanism

· Resource-ConstrainedApplications:TheLaplacemechanism, with its computational

simplicity, is frequently applied in resource-constrained scenarios. Papernot et al. (2018)

highlighted its application in lightweight federated systems, prioritizing privacy while

minimizing computational overhead [25].
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· Exploration in Trajectory Data Protection: The work of Gu et al. (2018) showcased

a novel application of the Laplace mechanism in trajectory data protection, preserving

privacy while maintaining data usability in mobility analytics [26].

2.3.2 Comparative Studies and Trends

Comparisons of Gaussian and Laplacemechanisms have revealed significant trends in privacy-

preserving FL:

· Task-Specific Preferences: Zhou et al. (2022) demonstrated thatwhile Gaussianmech-

anisms are better suited for high-dimensional tasks like medical imaging, Laplace mech-

anisms excel in simpler data environments requiring lower computational resources [27].

· Utility-Preserving Innovations: He et al. (2023) analyzed privacy-utility trade-offs,

highlighting that Gaussian noise addition offers scalable solutions for maintaining ac-

curacy in multi-client FL systems [28].

· Sector-SpecificApplications: Zia et al. (2020) explored DP implementations in health-

care data sharing, emphasizing tailored noise levels for balancing utility and regulatory

compliance [29].

2.3.3 Historical Development and Innovations

The evolution of DPmechanisms in FL has progressed through incremental innovations aimed

at optimizing privacy and utility:

· Initial Theoretical Foundations: The work by Dwork et al. (2006) formalized DP,

introducing the mathematical underpinnings that have since guided privacy-preserving

model design [30].

· Scaling DP for FL: Advanced mechanisms such as the adaptive Gaussian approach

by Jiao et al. (2023) have refined noise addition strategies for large-scale distributed

systems, reducing model variance without compromising privacy [31].

· HybridMechanisms: Recent studies, including those by Liu (2016), have combined DP

techniqueswith bounding constraints to enhance utility in bounded statistical datasets [32].
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2.4 Inversion Attacks and Mitigation Strategies

2.4.1 Threats of Inversion Attacks

Inversion attacks exploit shared model updates or gradients to reconstruct sensitive data, such

as patient images. Fredrikson et al. (2015) first demonstrated this vulnerability in facial recog-

nition systems [8]. More recent studies by Zhu et al. (2019) and Zhao et al. (2020) showed that

FL is also susceptible to gradient-based inversion attacks, underscoring the need for robust

privacy mechanisms in healthcare [7, 11].

2.4.2 Mitigation Strategies

Key strategies include:

· DP: DP-SGD masks individual data contributions by adding noise to gradients, enhanc-

ing protection against inversion attacks [6].

· Cryptographic Methods: MPC and HE add layers of encryption to model updates,

mitigating risks during data sharing [33].

· Adaptive Techniques: Dynamic noise adjustment further improves resilience against

sophisticated attacks by balancing privacy and model utility [5].

2.5 DR as a Case Study in Privacy-Preserving ML

2.5.1 Early Machine Learning Approaches

DR detection has been a significant focus within medical image analysis, with ML techniques,

particularly CNNs, demonstrating potential in automating DR diagnosis. Gulshan et al. (2016)

showed that CNN-based models could achieve diagnostic performance on par with ophthal-

mologists, establishing the foundation for DR detection frameworks [34].

2.5.2 Federated Learning and Differential Privacy in DR

Recent frameworks, such as Dopamine (Malekzadeh et al., 2021), integrate Gaussian noise into

FL for privacy-preserving DR diagnosis [1]. PFL further addresses data heterogeneity across

institutions by customizing models for local variations [21].
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2.5.3 Challenges and Future Directions

Challenges in DR diagnosis include:

· Balancing Privacy and Accuracy: Noise added for privacy can degrade model perfor-

mance. Adaptive techniques, such as those by Balle and Wang (2018), offer promising

solutions but require further validation in clinical settings [5].

· Class Imbalance: DR datasets often have an imbalance between healthy and diseased

images, affecting model generalization. Reweighting and augmentation strategies are

potential solutions.

2.6 Synthesis and Research Gaps

· Empirical Validation: DP-enhanced FL models need testing in real-world healthcare

workflows.

· Advanced Adversarial Resilience: Current approaches address basic attacks but lack

robustness against adaptive adversaries.

· Data Heterogeneity: Strategies for handling variability in healthcare datasets, partic-

ularly through PFL, require further exploration.
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Chapter 3

Proposed Method

3.1 Overview of the Proposed Method

The proposed framework introduces a privacy-preserving Federated Learning (FL) system tai-

lored for the diagnostic analysis of diabetic retinopathy (DR) through medical image process-

ing. This method integrates differential privacy (DP) mechanisms to address privacy-utility

trade-offs, ensuring robust patient data protection without compromising diagnostic accu-

racy. By applying both the Gaussian and Laplace mechanisms, this framework provides a

comparative analysis of privacy-preserving techniques within federated learning.

In this setup, four models are employed to assess varying levels of privacy and perfor-

mance:

1. Non-Private Machine Learning (ML): A centralized baseline model where all client

data is aggregated on a central server, allowingmodel trainingwithout privacy-preserving

mechanisms. This setup provides a benchmark for evaluating diagnostic accuracy in

non-private centralized conditions and establishes a baseline for comparing the perfor-

mance of federated approaches.

2. Non-Private Federated Learning (FL): In this decentralized setup, client devices in-

dependently train on their local data and only share model updates with a central server.

By keeping raw data on client devices, this approach serves as a federated learning base-

line, providing insight into the effects of decentralization onmodel accuracywithout any

additional privacy mechanisms.

3. Private FL with Gaussian Mechanism: This model applies Gaussian noise to client

updates before they are sent to the central server, controlled by a noise multiplier (σ).
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Adjusting σ allows for testing different privacy-utility balances, enabling an analysis of

how Gaussian noise impacts both model performance and privacy.

4. Private FL with Laplace Mechanism: In this model, Laplace noise is added to model

updates, regulated by a privacy budget (ϵ). Different ϵ values are tested to identify opti-

mal configurations where privacy and diagnostic accuracy are balanced.

After training, each model is rigorously evaluated and compared in terms of both perfor-

mance and privacy guarantees. For the two private FL models, this includes:

· Parameter Tuning andTrade-OffAnalysis: Various values for ϵ in the Laplacemech-

anism and noise multipliers in the Gaussian mechanism are tested. By plotting and ana-

lyzing these results, the framework identifies configurations that offer the best privacy-

utility trade-off relative to baseline models.

· Selection of Optimal Trade-Off: The analysis seeks to identify configurations that

achieve maximum privacy with minimal impact on accuracy. The goal is to pinpoint the

smallest ϵ or highest σ values that effectively balance privacy and utility.

· Inversion Attack Simulation: To evaluate the robustness of the privacy mechanisms,

simulated inversion attacks are performed to attempt reconstruction of dataset images

from model gradients. By observing how effectively the Gaussian or Laplace noise con-

ceals this information, the study gains insights into the effectiveness of each privacy

approach. This simulation measures the impact of noise on the quality of reconstructed

images, providing a practical assessment of privacy protection under potential adver-

sarial conditions.

The final results are presented in comparative visualizations, showcasing the optimal pri-

vacy configurations for each mechanism and demonstrating the practical viability of privacy-

preserving FL for medical image analysis. This framework ultimately aims to establish a bal-

ance between robust data privacy and high diagnostic utility within sensitive healthcare ap-

plications.

3.2 Dataset

Diabetic retinopathy (DR) is a severe eye condition that can lead to vision loss in diabetic pa-

tients due to damage to the retinal blood vessels. Diagnosing this condition requires analyzing
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retinal images to identify signs of damage, framing it as an image classification task. For this

study, we use a diabetic retinopathy dataset introduced by Choi et al. (2017), which is publicly

available through the APTOS 2019 Blindness Detection competition on Kaggle.1 The task is

to classify retinal images into one of five categories representing different levels of diabetic

retinopathy severity:

· No DR: No signs of diabetic retinopathy.

· Mild DR: Early signs of retinopathy.

· Moderate DR: More prominent signs, with potential progression.

· Severe DR: Significant progression, with risk of severe vision impairment.

· Proliferative DR: Advanced stage with substantial risk of vision loss.

The dataset includes 2,931 training images and 731 testing images, each with variable dimen-

sions. To prepare the images for model training and ensure uniformity, all images were resized

to 224 x 224 pixels during pre-processing. This resizing step standardizes the input, optimizing

it for the SqueezeNet model used in this study.

3.3 Model Architecture

This section provides an overview of the selected model architecture, SqueezeNet, detailing

its suitability for the study, specific customizations for diabetic retinopathy classification, and

consistent initialization across federated learning clients. The chosen model, SqueezeNet, is

a compact and efficient neural network that balances accuracy with computational efficiency,

making it well-suited for medical image analysis where high-resolution images are common.

SqueezeNet’s lightweight structure and small memory footprint enable deployment across

multiple clients with limited computational resources, a critical factor in distributed healthcare

environments where federated learning is implemented. SqueezeNet’s architecture includes a

series of Fire modules, which reduce computational costs while maintaining accuracy. Each

Fire module contains a squeeze layer that minimizes the number of input channels via a 1x1

convolution, followed by an expand layer that applies both 1x1 and 3x3 convolutions. This

structure maximizes parameter efficiency, achieving a compact model size without sacrificing

performance. The small parameter count helps mitigate overfitting, an important considera-

tion when working with a relatively small dataset, such as one for diabetic retinopathy.

1https://www.kaggle.com/c/aptos2019-blindness-detection/data
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To tailor SqueezeNet for diabetic retinopathy diagnosis, the model’s output layer was cus-

tomized to accommodate five classes: No DR, Mild DR, Moderate DR, Severe DR, and Prolifer-

ative DR. This was achieved by modifying the classifier layer, replacing the final convolutional

layer with a 1x1 convolution layer that outputs five channels. This change enables the model

to classify retinal images into these specific diagnostic categories, thus enhancing its utility in

medical image analysis. Additionally, Rectified Linear Unit (ReLU) activation functions were

employed, which are particularly effective in deep convolutional neural networks used inmed-

ical image analysis, contributing to faster convergence and improved model performance.

Consistency in model initialization across federated learning clients was ensured by start-

ing each client with an identical SqueezeNet model. The model was initialized with pretrained

ImageNet weights (SqueezeNet1 1 Weights.IMAGENET1K V1), providing a robust starting

point that leverages prior knowledge from a large-scale general image dataset. This shared

initialization supports straightforward aggregation of client updates during each round of fed-

erated learning, ensuring uniform starting conditions for all participating clients.

3.4 Privacy-PreservingMechanisms andTraining Process

This study secures sensitive data in federated learning through Differential Privacy (DP) mech-

anisms, specifically using Laplace and Gaussian methods to add controlled noise to model gra-

dients. These mechanisms aim to obscure individual data contributions, safeguarding privacy

while retaining model utility during training.

3.4.1 Differential PrivacyMechanisms: Laplace andGaussianApproaches

The privacy parameter, ϵ, is central to DP mechanisms as it determines the balance between

privacy and model utility. Smaller ϵ values indicate higher privacy but introduce greater noise,

potentially impacting accuracy. Based on differential privacy theory, three primary ranges for

ϵ were evaluated:

· High Privacy (ϵ < 1): Strong privacy protection with significant noise addition, suit-

able for highly sensitive data but can impact accuracy.

· Moderate Privacy (1 ≤ ϵ ≤ 3): A balance between privacy and accuracy, offering

reasonable protection while preserving utility.
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· Low Privacy (ϵ > 3): Minimal privacy protection with less noise, enhancing accuracy

but less suitable for confidential settings.

In this study, testing began with ϵ = 0.5 for high privacy and was incrementally increased

to ϵ = 3 to monitor how privacy adjustments affected model performance. This iterative

testing helped determine values that achieved the desired privacy-utility balance.

3.4.1.1 Laplace Mechanism

The Laplace mechanism, implemented via a custom LaplaceOptimizer, applies noise

directly to gradients based on the specified ϵ value. This approach provides flexible tuning

of privacy levels, and gradients are clipped before noise is added to prevent any single data

point from disproportionately influencing the model. Observations showed that, at moderate

ϵ values (e.g., 1–3), the model retained reasonable accuracy while maintaining a secure privacy

threshold, balancing the privacy-utility trade-off.

3.4.1.2 Gaussian Mechanism

For the Gaussian mechanism, the Opacus library’s PrivacyEngine was used to automate

gradient clipping, noise addition, and batch sampling. Controlled by anoise multiplier

parameter, Gaussian noise effectively obfuscates sensitive data in gradients. The noise multi-

plier, σ, for the Gaussian mechanism was calculated according to:

σ =

√︁

2 ln(1.25/δ)

ϵ

where δ was set to 10−4, representing an acceptable probability of privacy failure, and ∆f

(sensitivity) was set to 1.

To ensure a fair comparison between the Laplace and Gaussian models, we calculated the

noise multiplier values for the Gaussian mechanism based on the corresponding epsilon val-

ues, thereby achieving consistent noise levels across both mechanisms.

By systematically varying the ϵ values in the Laplacemodel and adjusting σ in the Gaussian

model, this study identified optimal configurations for each mechanism that balanced privacy

protection with diagnostic accuracy. These empirical observations, combined with theoretical

guidelines, validated the selected parameter ranges and supported the effectiveness of privacy-

preserving federated learning in healthcare applications.

29



3.4.2 Training Process Overview

The training process varies among centralized non-privateMachine Learning (ML), non-private

Federated Learning (FL), and private FL models that utilize Differential Privacy mechanisms.

Each approach is tailored to balance privacy, computational efficiency, and diagnostic accu-

racy.

1. Centralized Non-Private ML Training

The centralized ML model serves as a baseline, with all data aggregated on a single server

for unified training, maximizing accuracy but offering no privacy protection:

· Data is aggregated centrally, processed in batches, and updated through gradient opti-

mization.

2. Non-Private FL Training

The non-private FL model enables decentralized training across clients without noise ad-

dition, preserving data localization but without additional privacy mechanisms:

· Each client trains locally, and only model updates are shared with a central server.

· The central server aggregates these updates using weighted averaging.

3. Private FL Training with Differential Privacy Mechanisms

Private FL training incorporates DP by applying Gaussian or Laplace noise to gradients

before sharing them with the central server. This ensures that model updates do not expose

sensitive information from individual datasets:

· Each client trains locally, applying DP to gradients.

· Private FL with Gaussian Mechanism: Gradients are clipped, and Gaussian noise is

added through Opacus, balancing privacy with the noise multiplier parameter.

· Private FL with Laplace Mechanism: Using a custom LaplaceOptimizer, gra-

dients are clipped, and Laplace noise, controlled by ϵ, is applied.

3.4.3 Global Model Aggregation

In both private and non-private FL models, global updates are achieved by aggregating client

model updates:

· Weighted Averaging of Model Weights: The server aggregates updates via weighted

averaging to integrate insights from all clients.
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· EnhancedPrivacy inPrivate FL: In the private FL setup, noise addition further strength-

ens privacy protection, particularly for sensitive healthcare applications.

3.5 Implementation Details

This section provides an overview of the key software tools, libraries, and workflow utilized in

implementing the privacy-preserving federated learning framework for diabetic retinopathy

diagnosis.

3.5.1 Software and Libraries

The implementation of the proposed federated learning system with differential privacy relies

on several key software tools chosen for their robustness, flexibility, and specific support for

privacy-preserving machine learning:

· Jupyter Notebook: Provides an interactive environment for iterative data analysis and

model testing, integrating live code, visualizations, and documentation to enhance read-

ability and reproducibility.

· PyTorch: A dynamic machine learning library that enables flexible model development

and training with Compute Unified Device Architecture (CUDA) support, essential for

handling large-scale datasets and optimizing federated learning setups.

· Opacus: Extends PyTorch with Differential Privacy capabilities, offering granular pri-

vacy controls and efficient Graphics Processing Unit (GPU)-optimized implementations

that facilitate privacy-preserving model training with minimal adjustments.

These tools collectively support the development and evaluation of privacy-preserving fed-

erated learning models, underscoring our use of advanced technologies in medical machine

learning applications.

3.5.2 General Workflow of Code Files

This section outlines the primary workflow for implementing and evaluating federated learn-

ing (FL) models with differential privacy for diabetic retinopathy diagnosis. The process pro-

gresses fromdataset preparation tomodel training, privacy configuration, and validation through

inversion attack simulations. In the next section, we will explain each part in more details.
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· Dataset Preparation andDistribution: Thefilesdr dataset to numpy.py and

datasets.py handle dataset loading, preprocessing, and conversion into a PyTorch-

compatible format, with data distributed among clients to simulate real-world federated

learning setups.

· Configuration and Hyperparameters: Experimental parameters, including epochs,

batch sizes, learning rates, and privacy settings, are defined in options.py, ensuring

consistent configuration across models.

· Model Definition and Initialization: models.py specifies the model architecture,

SqueezeNet, for diabetic retinopathy classification, adaptable for both private and non-

private FL, as well as non-private ML configurations.

· Training Implementation for FLModels:Theprimary training scripts—update s2.py

for centralizedML,update s3.py for non-private FL, andLaplace update s3.py

for private FL—implement the training loop tailored for each privacy requirement.

· Model Aggregation and Performance Logging: average weights() in utils.py

performs global aggregation of model updates, with accuracy and loss metrics tracked

by logging results.py to assess privacy-utility trade-offs.

· Optimal Privacy Parameter Selection: Post-training analysis identifies the optimal

noise multiplier for Gaussian and epsilon for Laplace mechanisms, which are then used

in inversion attack simulations for privacy validation.

· Inversion Attack Simulation: Using Gradient Matching.ipynb, inversion

attacks are simulated to test the privacy robustness of each model under worst-case

conditions.

· Privacy Robustness Evaluation: Privacy robustness is quantitatively assessed using

metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure

(SSIM) on reconstructed images from the inversion attacks.

3.5.3 Detailed Explanation of Each Code File

This section provides a detailed breakdown of each code file used in the implementation. Each

file is discussed in terms of its specific functionality, input-output structure, and its role within

the overall workFLow described in the previous section. Additionally, the files’ roles in prepar-

ing, training, evaluating, and validating models through inversion attacks are highlighted.
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3.5.3.1 Data Processing and Preparation with dr dataset to numpy.py

The dr dataset to numpy.py script is crucial for automating the preparation and for-

matting of the diabetic retinopathy (DR) dataset, enabling efficient data loading and consistent

formatting for federated learning experiments. By converting raw data into a preprocessed

NumPy format, this script not only accelerates the loading process but also ensures repro-

ducibility across iterative experiments with differential privacy.

Key elements of the script include:

· Setting a Reproducible Environment: The script begins by calling set seed() to

initialize a random seed, ensuring that operations involving randomness, such as dataset

shuffling, produce consistent results in every run, a crucial factor for experimental reli-

ability.

· Configuring Device and Parsing Arguments: Using args parser(), the script

configures parameters, such as GPU or Central Processing Unit (CPU) selection. If a GPU

is available, the device is set to cuda, leveraging faster processing speeds advantageous

for handling large image datasets in federated learning.

· Loading theDataset: The diabetic retinopathy dataset is retrieved viaget dataset()

from datasets.py, which provides:

– train dataset and test dataset, each containing image-label pairs for-

matted for training and testing, respectively.

– user groups, a data index mapping for clients, which supports federated learn-

ing’s distributed data requirements.

In the next section, we will explain how datasets.py works.

· Extracting and SavingData: The script iterates over each image-label pair in the train-

ing and testing datasets, converting the images into NumPy arrays for optimized storage.

Processed data is saved as dr train images.npy, dr train labels.npy,

dr test images.npy, and dr test labels.npy, ensuring that experiments

can efficiently access preprocessed data without redundant processing steps.

· Real-Time Progress Updates: To facilitate monitoring, the script displays real-time

progress during data processing, making it straightforward to track and troubleshoot

the conversion process, especially when working with large datasets.
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· Advantages of Storing Data in NumPy Format: Saving the dataset in a NumPy for-

mat is especially beneficial for federated learning. Distributed access to preprocessed

data in a standardized format is more efficient and simplifies handling complex FL se-

tups. By using the –dr from np flag, data can be loaded directly from NumPy files,

bypassing re-downloads and preprocessing steps, which enhances computational effi-

ciency for repeated experiments.

The dr dataset to numpy.py script ensures that the diabetic retinopathy dataset is

preprocessed, standardized, and readily accessible, streamlining FL experiments and support-

ing high-quality, reproducible research.

3.5.3.2 Dataset Management and Transformation with datasets.py

The datasets.py file is responsible for loading, processing, and distributing the dataset

required for this study. Its flexible configuration options for data transformations and client

distribution enable efficient use in both centralized and federated learning contexts.

Key elements of the script include:

· Class Definition for Diabetic Retinopathy Dataset (DRDataset): This class in-

herits from PyTorch’sDataset class to manage the specific needs of diabetic retinopa-

thy images.

– Attributes include:

∗ data label: Stores image IDs and labels in a pandas DataFrame.

∗ data dir: Specifies the directory containing image files.

∗ transform: Applies a series of transformations like resizing, cropping, nor-

malization, and augmentation to standardize input for model training.

– Methods include:

∗ len : Returns the number of images.

∗ getitem : Retrieves and transforms images by index, returning eachwith

its label.

· Dataset Loadingwithget dataset: This functionmanages dataset retrieval, trans-

formations, and client distribution:

– Diabetic Retinopathy Dataset Modes:
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∗ Loading from .npy Files: If preprocessed images exist, they load directly

from NumPy files, bypassing redundant preprocessing.

∗ Loading fromRaw Images: If.npyfiles are unavailable, the function down-

loads, extracts, and saves images and labels, applying consistent transforma-

tions to prepare the data for input to the model.

– Federated Learning Data Distribution:

∗ Independent and Identically Distributed (IID) Configuration: Ensures a

balanced distribution across clients for simpler FL setup.

∗ non-IID Configuration: Distributes data unevenly, simulating real-world

scenarios with heterogeneous client data, adding complexity to model train-

ing.

· Preprocessing and Augmentation: To ensure data compatibility with model input

requirements, several transformations are applied:

– Normalization: RGB channels are normalizedwith amean and standard deviation

of 0.5 for training stability.

– Resizing and Cropping: Images are resized to 265x265 pixels and then center-

cropped to 224x224 pixels to align with SqueezeNet’s input size.

– Data Augmentation: Random horizontal flipping increases data variability, sup-

porting model generalization on unseen images.

The datasets.py file is essential for organizing and preparing the diabetic retinopa-

thy dataset, ensuring data is readily available in the correct format for both centralized and

federated learning experiments, particularly those with differential privacy mechanisms.

3.5.3.3 Experiment Configuration with options.py

The options.py file defines command-line arguments and configuration parameters that

enable flexible and reproducible experimentation. This script allows users to adjust key aspects

such as model architecture, federated learning settings, differential privacy parameters, and

dataset selection.

· Federated Parameters: Defines core federated learning parameters including the num-

ber of global training rounds, number of users, fraction of clients selected per round,
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local epochs, and batch size. These settings shape the federated learning process by

controlling user participation frequency and local training depth.

· Model and Optimizer Parameters: Specifies model type, optimizer, learning rate, and

momentum, providing flexibility to experiment with different model architectures and

optimization strategies suited to the data and privacy requirements.

· Differential Privacy (DP) Parameters: Includes settings for gradient clipping thresh-

old, noise multiplier, epsilon, and delta values, which together control the level of pri-

vacy during training. By adjusting these parameters, the user can fine-tune the noise

added to gradients, balancing privacy with model utility.

· Dataset andMiscellaneous Parameters: Offers options for dataset selection, number

of classes, device (CPU or GPU), data distribution (IID or non-IID), and the use of pre-

processed data specifically for diabetic retinopathy. These parameters make it easy to

experiment with diverse datasets and configurations across various federated learning

scenarios.

By using command-line arguments, options.py promotes efficient exploration of pa-

rameter impacts on model performance and privacy, facilitating reproducible and adaptive

experimentation.

3.5.3.4 Utility Functions with utils.py

The utils.py file contains essential utility functions that support federated learning tasks,

model evaluation, and training management. These functions handle critical tasks, including

model testing, weight aggregation, and training optimization, contributing to the efficiency

and organization of the training process.

· test inference(): Evaluates a trained model’s performance on a test dataset, cal-

culating accuracy and loss.

– Process: Sets themodel to evaluationmode to prevent gradient calculations, moves

data to the appropriate device, and computes loss and accuracy over test batches.

– Output: Returns accuracy and loss, serving as key metrics for model evaluation.

· average weights(): Aggregates weights from multiple client models to update

the global model in a federated learning setup.
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– Process: Deep-copies the first client’s weights as a baseline and iteratively aver-

ages these across all clients to form a unified global model.

– Usage: Ensures the global model reflects the collective updates, maintaining con-

sistency across participating clients.

· exp details(): Displays experimental details, such as model type, optimizer, and

training parameters.

– Usage: Provides a quick reference for experiment configurations, aiding in track-

ing and debugging.

· EarlyStopping (Class): A class to implement early stopping, helping to prevent

overfitting by halting training if validation loss does not improve over a specified pa-

tience period.

– Attributes: Includes patience, delta, and path, setting criteria and loca-

tion for model checkpoints.

– Methods:

∗ call : Monitors validation loss improvement, incrementing a counter if

no improvement occurs. Stops training after reaching the patience limit.

∗ save checkpoint: Saves the model whenever validation loss improves.

– Usage: Optimizes training by reducing unnecessary epochs and preserving the

best-performing model.

3.5.3.5 Data Sampling for Federated Learning with sampling.py

The sampling.py file is integral to dividing datasets among clients, enabling both IID

(Independent and Identically Distributed) and non-IID distributions. This simulation of real-

world federated learning setups allows each client to receive data in line with the assigned

configuration, supporting a fair evaluation across different models.

· dist datasets iid(): Ensures even data distribution across users, creating an

IID setup.

– Process: Calculates the number of samples per client and randomly assigns these

to each client. This process ensures that data classes are uniformly represented

across users.
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– Output: A dictionary mapping each client to a unique set of data indices, enabling

a balanced, IID-based federated learning environment.

· dist datasets noniid(): Distributes data unevenly to clients, creating a non-IID

configuration where each client’s dataset may reflect distinct data distributions.

– Process: Organizes data by labels, divides it into shards, and assigns these subsets

to different clients. This setup mimics realistic federated learning environments,

where client data varies in content, creating a challenging scenario for model train-

ing.

– Output: A dictionary mapping each client to a specific subset of data indices, rep-

resenting a unique data distribution for each user in the non-IID setup.

This variation in data patterns is crucial for testing model robustness under heterogeneous

conditions, mirroring real-world federated learning challenges.

3.5.3.6 Logging Experiment Results with logging results.py

The logging results.py file is responsible for capturing and organizing key training

metrics across experiments, including accuracy, loss, and privacy-related parameters, such

as epsilon values in differentially private (DP) models. These logs enable effective tracking

of model performance and analysis of privacy-utility trade-offs over time, providing critical

insights for selecting optimal noise levels for inversion attack simulations.

· Logging Functionality: The main function, logging(), records training loss, test

accuracy, and DP metrics (e.g., epsilon values) for each epoch. It saves these metrics

in dedicated directories, such as train log, test log, and privacy log, with

uniquely named experiment files for structured tracking.

· Output: By storing metrics in organized text files, this file provides a comprehensive

record of model performance over time, including accuracy and convergence rates, as

well as privacy-accuracy trade-offs. This historical data is essential for analyzing differ-

ent model configurations and their impacts on both utility and privacy.

This organized logging framework supports comparison across experiments, enabling an

in-depth analysis of model convergence and privacy-utility trade-offs in federated learning

settings.
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3.5.3.7 Training and Model Update Approaches for Different Privacy Mechanisms

The files update s2.py, update s3.py, and Laplace update s3.py implement

varied training loops tailored to centralized non-private machine learning (ML), decentralized

non-private federated learning (FL), and private FL models utilizing Gaussian and Laplace

differential privacy mechanisms. This design accommodates different levels of data decen-

tralization and privacy, with unique methods for managing gradients and privacy-preserving

noise.

Each file shares structural elements like the DatasetSplit class, which partitions

datasets by client, a train val test() method that creates train and test data loaders,

and anupdate weights()method to performmodel updates. Theupdate weights()

method serves as the core training loop, managing gradients and updates specific to each pri-

vacy mechanism.

· Centralized Non-Private ML (update s2.py ): This file executes a training loop

for centralized, non-private ML, serving as a baseline for performance comparison. Pri-

vacy mechanisms are unnecessary in this configuration.

– Model Training: The update weights() method initiates training over a

specified number of epochs. For each batch, gradients are computed with a loss

function and directly applied via the optimizer, bypassing any privacy protections.

– Output Gradients: The file captures gradients from the output layer’s weights

and biases, later used to assess noise effects in private models.

– Logging and Epsilon Tracking: While differential privacy is not applied, the

script logs metrics like training loss and accuracy per epoch, with a placeholder

for epsilon log should differential privacy be enabled.

· Federated LearningwithOptionalGaussianPrivacyMechanism (update s3.py ):

This file supports both non-private FL and FL with Gaussian differential privacy, acti-

vated by setting withDP.

– Privacy-EnhancedTraining: WhenwithDP is enabled, thePrivacyEngine

fromOpacus adds Gaussian noise to gradients, protecting data against inference at-

tacks. Key privacy parameters, such asnoise multiplier andmax grad norm,

manage the trade-off between privacy and utility.
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– Virtual Batch Rate: To optimize efficiency, a virtual batch rate splits the batch

size into smaller units, allowing privacy-enhanced updates at set intervals. This

method stabilizes updates while controlling computational costs of noise addition.

– Epsilon Tracking: After each training round, the PrivacyEngine calculates

and logs the privacy budget ϵ, which quantifies privacy loss for comparison with

other mechanisms.

· Federated LearningwithCustomLaplaceMechanism (Laplace update s3.py ):

This file implements FL with a custom Laplace noise addition. Unlike the Gaussian

method, it uses a Laplace distribution tailored to the defined epsilon and sensitivity.

– CustomLaplaceNoiseAddition: A dedicated function,add laplace noise(),

generates Laplace noise based on sensitivity and epsilon values. This noise is

directly applied to gradients, ensuring privacy through obfuscation.

– Laplace Optimizer: The LaplaceOptimizer class inherits from PyTorch’s

Optimizer and overrides the step() method to perform gradient clipping

and noise injection. This customoptimizer clips gradients at a definedmax grad norm

before applying Laplace noise.

– OutputGradients: The script logs output layer gradients, facilitating comparisons

between Laplace, Gaussian, and non-private models.

– EpsilonLogging: UnlikeOpacus, which automatically tracksepsilon for Gaus-

sian noise, epsilon for Laplace is statically defined in the arguments and logged

manually to monitor privacy levels.

The update s2.py file represents a centralized ML baseline without privacy, while

update s3.py and Laplace update s3.py introduce Gaussian and Laplace noise,

respectively, for a range of privacy-utility evaluations.

3.5.3.8 Analysis of Model Implementation Notebooks

The study evaluates performance and privacy-utility trade-offs in federated learning (FL) us-

ing four configurations. Each notebook implements a distinct model setup: centralized non-

private ML, decentralized non-private FL, private FL with Gaussian noise, and private FL with

Laplace noise. Consistent structure across the notebooks allows for specific modifications in

privacy requirements and data distribution. Below is an overview of each configuration:
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1. Centralized Non-Private ML: non private ML.ipynb

This notebook serves as a baseline with a single centralized model trained on the entire dataset

without privacy mechanisms.

· Data Loading and Preparation: The get dataset() function loads and prepro-

cesses the diabetic retinopathy dataset.

· Model Setup: SqueezeNet, pretrained on ImageNet, is modified for diabetic retinopathy

classification with five output classes.

· Training and Evaluation: The model trains on the full dataset with a standard opti-

mizer, with metrics logged for performance comparison.

2. Decentralized Non-Private FL: non private FL.ipynb

This setup enables decentralized model training across multiple clients, simulating a federated

environment without differential privacy.

· Data Distribution: Clients receive IID data splits, specified by sampling.py.

· Federated Averaging and Logging: Client weights are averaged to update the global

model, with performance metrics recorded after each epoch.

3. Private FL with Gaussian Noise: Gaussian FL.ipynb

This notebook extends non-private FL by incorporating Gaussian differential privacy.

· Privacy Engine: Opacus’s PrivacyEngine adds Gaussian noise to gradients based

on set parameters, allowing privacy control.

· Privacy Monitoring and Experimentation: Privacy budget ϵ is logged for trade-off

analysis, with multiple noise multiplier values tested to optimize privacy-utility balance.

4. Private FL with Laplace Noise: Laplace FL.ipynb

The Laplace FL model uses custom Laplace noise instead of Gaussian, with distinct privacy-

utility trade-off characteristics.

· CustomLaplaceMechanism: TheLaplaceOptimizer applies noise post-gradient

clipping, with flexibility in tuning ϵ values.

· Experimentation with Epsilon Values: Varying ϵ values are tested, providing in-

sights into the Laplace noise impact on model utility.
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6. Comparison of Model Configurations

Each configuration adheres to a similar training pipeline, facilitating performance compar-

isons.

· Baseline Models: Centralized ML and decentralized FL serve as benchmarks without

privacy mechanisms.

· Privacy Mechanisms: Gaussian and Laplace setups introduce privacy while enabling

analysis of differential noise effects.

· Experimentation with Privacy Parameters: Both private configurations vary set-

tings to explore privacy-utility balances.

3.5.3.9 Inversion Attack Simulation for Privacy Validation

This section outlines the process and evaluation of inversion attack simulations to validate the

privacy robustness of differentially private federated learning models. By reconstructing data

from shared model gradients, the inversion attack helps assess the effectiveness of privacy-

preserving mechanisms like Gaussian and Laplace noise in federated learning.

The inversion attack simulation tests models trained both with and without differential

privacy (DP), evaluating the extent to which Gaussian and Laplace noise obfuscate sensitive

data.

To simulate a worst-case scenario, the attacker has access to both model architecture and

gradients. Using gradient matching, the attack iteratively adjusts noise-based inputs until

their gradients align with the shared model gradients. In our simulation, SqueezeNet is used

for both original and attack models, simplifying the reconstruction process by maintaining

consistent architectures.

The inversion attack implementation is custom-built to accommodate specific experimen-

tal needs. Below are key functions in this process:

· Gradient Loading and Preparation: The function load gradients retrieves gra-

dients from saved files, each representing model updates under different DP configura-

tions. To maintain consistency, gradients correspond to a limited training epoch count

(defined by num epochs to load). Variations in gradient tensor shapes across lay-

ers present a technical challenge, requiring careful reshaping to ensure compatibility

with the attack model.
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· Gradient Reshaping for Model Compatibility: The reshape gradients func-

tion adjusts gradient tensors to align with the model’s output shapes. By reshaping,

truncating, or repeating elements, this function enables seamless application of gradi-

ents during the matching process. This step is crucial for accurately matching gradients

across layers without dimensional mismatches.

· Gradient Matching and Inversion Process: The core of the inversion attack is the

perform inversion attack function. Here, random noise inputs are iteratively

optimized tomatchmodel-generated gradients closely. UsingMean Squared Error (MSE)

as a loss function, the process minimizes gradient discrepancies, iteratively reconstruct-

ing an image that reveals privacy vulnerabilities.

The Python code developed for evaluationmetrics automates the process of loading images,

computing similarity metrics, and performing an in-depth analysis of reconstructed images.

Below is an explanation of the main components of this code:

· Image Loading and Preprocessing: The code begins by loading pairs of images (origi-

nal and reconstructed) in grayscale format for standardmetrics (such as PSNR and SSIM)

and in RGB format for perceptual loss calculations, which require color information. This

structure ensures that each metric is computed using the optimal input format, enhanc-

ing the accuracy of the results.

· Pre-trained VGG Model for Perceptual Loss: To compute perceptual loss, a pre-

trained VGG19model from PyTorch is used. Thismodel extracts high-level features from

both original and reconstructed images. The perceptual loss is calculated by comparing

these feature representations, providing a measure of perceptual similarity at a higher

level than pixel values alone.

· Multiscale SSIM Calculation: A custom function compute multiscale ssim

computes MS-SSIM by repeatedly downsampling the images and calculating SSIM at

each scale. This approach captures structural fidelity acrossmultiple resolutions, making

it useful for assessing fine-grained image details that may be lost due to noise.

· Gradient PSNR Calculation: Gradient PSNR (G-PSNR) is computed by first applying

the Laplacian operator to both images to extract edge information and then calculating

PSNR on these gradient representations. Since edge details are crucial for medical im-

ages, this metric provides insights into how well structural boundaries are preserved or

obscured by noise.
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· Comprehensive Metric Calculation: The code calculates six metrics: PSNR, SSIM,

MS-SSIM, FSIM, perceptual loss, and G-PSNR. Each metric is returned for each image

pair, allowing for a holistic evaluation of privacy preservation.

By quantifying these metrics (PSNR, SSIM, MS-SSIM, FSIM, Perceptual Loss, and G-PSNR),

each privacy mechanism is systematically evaluated, offering a detailed understanding of the

balance between privacy and data utility. This comprehensive assessment helps identify op-

timal privacy configurations for federated learning in sensitive healthcare contexts, ensuring

both model utility and privacy protection.
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Chapter 4

Experimental Results

4.1 Introduction

This chapter presents the findings of our study on integrating differential privacy (DP) mecha-

nisms within a federated learning (FL) framework for diabetic retinopathy (DR) diagnosis. We

aim to examine the impact of DP on privacy and diagnostic accuracy, focusing on two primary

goals:

1. Privacy-Utility Trade-Off Analysis

The first goal is to evaluate the performance of four models: two baseline models (central-

ized non-private ML and decentralized non-private FL) and two privacy-preserving FL models

(utilizing Gaussian and Laplace mechanisms). For the private FL models, we assess multiple

privacy levels by varying ϵ values in the Laplace model and noise multipliers in the Gaussian

model.

This analysis includes:

· Laplace Model Plot: A plot comparing the diagnostic accuracy of the baseline models

with the Laplace model across different ϵ values to determine the optimal balance of

privacy and accuracy.

· Gaussian Model Plot: A plot comparing baseline models with the Gaussian model at

varying noise multipliers, providing insights into the most effective configuration for

privacy and utility.

Finally, a composite plot will showcase the baseline models alongside the chosen Laplace

and Gaussian configurations, highlighting the best trade-off points between privacy and ac-

curacy.
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2. Inversion Attack Simulation and Privacy Robustness Evaluation

The second goal is to test the robustness of the four models against inversion attacks to

assess how effectively each configuration protects data privacy. This will include:

· Visual Comparisons: Images showing the original image alongside reconstructed ver-

sions from each model to visually assess noise-induced obfuscation.

· Quantitative Comparison: For a selected image, I compute multiple metrics to evalu-

ate the fidelity of reconstructed images compared to the original, providing quantitative

insights into privacy protection efficacy. These metrics include:

– Peak Signal-to-Noise Ratio (PSNR): Measures the ratio between the original

and noise-induced variations, where lower values indicate higher privacy.

– Structural Similarity Index Measure (SSIM): Assesses the structural similar-

ity between the original and reconstructed images, with lower values reflecting

reduced resemblance and stronger privacy.

– Multiscale SSIM (MS-SSIM): Extends SSIM to multiple scales, capturing fine-

grained differences in structural fidelity; lower values indicate better privacy pro-

tection.

– Feature Similarity Index (FSIM): Evaluates perceptual similarity based on im-

age features like phase congruency and gradient magnitude, with lower values

indicating greater privacy.

– Perceptual Loss: Calculated using feature representations from a pre-trained neu-

ral network, this metric quantifies high-level perceptual similarity. Higher percep-

tual loss values indicate stronger privacy protection.

– Gradient PSNR (G-PSNR): Focuses on edge and detail preservation by calculat-

ing PSNR on the gradient of images. Lower values signify that edge details are

more obscured, enhancing privacy.

These metrics collectively provide a comprehensive evaluation of privacy-preserving ef-

fectiveness, where lower values for PSNR, SSIM, MS-SSIM, FSIM, and G-PSNR, and higher

perceptual loss values generally indicate better privacy due to reduced resemblance to the

original data.

In the following sections, I detail the implementation setup, present the results for each

goal, and interpret the findings with respect to both privacy and diagnostic accuracy.
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4.2 Experimental Setup and Result for Privacy-Accuracy

Trade-off Analysis

In this section, I describe the experimental setup used to evaluate the performance and privacy-

utility trade-offs of four models: centralized non-private machine learning (ML), decentralized

non-private federated learning (FL), and two differentially private federated learning models

utilizing Gaussian and Laplace mechanisms. Each model is configured with specific param-

eters to optimize performance and privacy, with particular focus on the Differential Privacy

(DP) parameters in the private FL models.

The configurations for each model, including shared and unique arguments, are presented

in Figure 4.1. Key parameters, such as the number of training epochs, batch size, optimizer

type, and differential privacy settings (e.g., epsilon values and noise multipliers), are specified

for each model type. The values provided in Figure 4.1 ensure consistency in training while

allowing for meaningful comparisons across the baseline and private models.

Figure 4.1: Experimental Setup for Model Configurations

For the differentially private models, privacy levels were systematically explored by ad-

justing the noise multiplier in the Gaussian mechanism and the epsilon value in the Laplace

mechanism. To ensure a fair comparison between the Laplace and Gaussian models, we cal-
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culated the noise multiplier values for the Gaussian mechanism based on the corresponding

epsilon values, thereby achieving consistent noise levels across both mechanisms.

The noise multiplier σ was calculated using the formula:

σ =

√︁

2 ln(1.25/δ)

ϵ

where δ was set to 10−4, representing an acceptable probability of privacy failure, and the

sensitivity ∆f was set to 1. This calculation provided noise levels equivalent to the specified

epsilon values, allowing for direct comparison between the privacy-accuracy trade-offs in the

Laplace and Gaussian mechanisms.

The selected epsilon values ranged from 0.5 to 3.0, with their corresponding noise multi-

pliers calculated as follows:

· Epsilon: 0.5→ Noise Multiplier: 8.69

· Epsilon: 1.0→ Noise Multiplier: 4.34

· Epsilon: 1.5→ Noise Multiplier: 2.90

· Epsilon: 2.0→ Noise Multiplier: 2.17

· Epsilon: 2.5→ Noise Multiplier: 1.74

· Epsilon: 3.0→ Noise Multiplier: 1.45

These values represent various levels of privacy protection, with lower epsilon values and

higher noise multipliers providing stronger privacy guarantees. To evaluate each model’s

privacy-utility trade-off, we tracked test accuracy across 100 epochs and plotted the results

to visualize the relationship between privacy level and accuracy.

4.2.1 Results of Gaussian Mechanism

To evaluate the impact of differential privacy on model accuracy, we trained the private fed-

erated learning models with different noise multiplier values in the Gaussian mechanism. The

noise multipliers ranged from 0.43 (indicating low privacy) to 8.69 (indicating strong privacy).

The models were compared against non-private centralized ML and non-private decentralized

FL as baselines. The test accuracy over 100 epochs for each model is plotted in Figure 4.2.

48



Figure 4.2: Test Accuracy Over 100 Epochs for Different Noise Multiplier Values in the Gaus-

sian Mechanism

The plot shows the accuracy progression for each noise multiplier value, allowing for a

clear comparison between different levels of privacy. The non-private ML and FL models serve

as the benchmarks, achieving the highest accuracy without any privacy constraints.

From the plot, we observe that as the noise multiplier increases, the test accuracy generally

decreases, which aligns with the expected trade-off between privacy and accuracy. Specifi-

cally:

· Low Privacy (NoiseMultiplier = 0.43): Themodel achieves a relatively high accuracy,

comparable to the non-private models. However, the privacy level is low, making it less

desirable in scenarios where strong privacy is required.

· Moderate Privacy (NoiseMultiplier = 1.45 and 1.74): These models offer a moderate

level of privacy with only a slight decrease in accuracy compared to the low privacy

setting.

· Strong Privacy (Noise Multiplier = 2.17 and 2.90): These models demonstrate a

stronger privacy guarantee with a minor trade-off in accuracy. Notably, the model with

a noise multiplier of 2.90 achieves a very similar accuracy to the models with 1.74 and

2.17 while offering a higher privacy level.

· Very Strong Privacy (Noise Multiplier = 4.34 and 8.69): As expected, these models

offer the highest level of privacy but with a more significant reduction in accuracy. This

reduction in performance indicates that very strong privacy comes at the cost of model

effectiveness.
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Given the theoretical guidance that suggests strong privacy when the noise multiplier is

greater than 1.00, the model with a noise multiplier of 2.90 appears to provide the best trade-

off. It maintains a level of accuracy close to that of models with lower privacy levels, while still

offering strong privacy protection. Thus, for applications requiring a balance between privacy

and model performance, a noise multiplier of 2.90 is recommended as the optimal choice.

These findings demonstrate that while very high privacy can significantly degrade model

performance, a well-chosen noise multiplier, such as 2.90, can provide a strong balance be-

tween privacy and accuracy. This balance is crucial for real-world applications where both

data privacy and model efficacy are paramount, fulfilling our first research goal of evaluating

trade-offs in differential privacy.

4.2.2 Results of Laplace Mechanism

To further evaluate the impact of differential privacy on model accuracy, we trained the fed-

erated learning models with different epsilon values in the Laplace mechanism. The epsilon

values ranged from 0.50 (indicating strong privacy) to 3.00 (indicating low privacy). The mod-

els were compared against non-private centralized ML and non-private decentralized FL as

baselines. The test accuracy over 100 epochs for each model is plotted in Figure 4.3.

Figure 4.3: Test Accuracy Over 100 Epochs for Different Epsilon Values in the Laplace Mech-

anism

The plot illustrates the accuracy progression for each epsilon value, providing a clear com-

parison between different levels of privacy. The non-private ML and FLmodels serve as bench-

marks, with the highest accuracy observed in the absence of privacy constraints.

From the plot, we observe the following trends:
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· Strong Privacy (Epsilon = 0.50): The model with epsilon = 0.50 (represented by the green

line) achieves a very high level of privacy but at the cost of significantly lower accuracy.

While this setting maximizes privacy, it compromises the model’s effectiveness, making

it less suitable for applications where accuracy is paramount.

· Moderate Privacy (Epsilon = 1.00): The model with epsilon = 1.00 shows better accuracy

compared to epsilon = 0.50 but still does not reach the accuracy levels of models with

higher epsilon values.

· Low Privacy (Epsilon = 1.50 and above): Themodel with epsilon = 1.50, although it offers

lower privacy, provides the best trade-off between privacy and accuracy. It outperforms

the models with stronger privacy while still maintaining a level of privacy protection.

Given the importance of accuracy in medical data applications, epsilon = 1.50 is identi-

fied as the most suitable choice for achieving a balance between privacy and accuracy.

The Laplace distribution has heavier tails compared to the Gaussian distribution, which

means that while most of the noise values are close to zero, there is a higher probability of

encountering larger noise values. Due to these heavier tails, the Laplace mechanism can oc-

casionally introduce larger noise spikes, which might impact the stability of the federated

learning process. Conversely, the Gaussian mechanism tends to introduce more consistent

and less extreme noise, leading to smoother and potentially more stable learning processes in

federated learning. This difference underscores the importance of selecting the appropriate

mechanism based on the specific stability and privacy needs of the application.

According to the theoretical framework, lower epsilon values in the Laplace mechanism

indicate higher privacy but result in reduced accuracy. However, the results indicate that

when accuracy is a critical concern, especially in sensitive domains like medical data, a higher

epsilon value such as 1.50 offers a better balance, ensuring the model remains effective while

providing an acceptable level of privacy.

In conclusion, for scenarios where accuracy is crucial and some reduction in privacy can

be tolerated, epsilon = 1.50 appears to offer the optimal balance, despite it being categorized

as low privacy.

4.2.3 Comparison of Selected Models

After evaluating the trade-offs between privacy and accuracy for both theGaussian and Laplace

mechanisms, we identified the optimal settings for each: a noisemultiplier of 2.90 for the Gaus-
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sian mechanism and an epsilon of 1.50 for the Laplace mechanism. These settings provided

the best balance between maintaining model accuracy and ensuring privacy.

To compare these final models against the non-private baselines, we plotted the test accu-

racy of the following models over 100 epochs:

· Non-private Centralized ML

· Non-private Decentralized FL

· Private FL using the Gaussian mechanism with a noise multiplier of 2.90

· Private FL using the Laplace mechanism with an epsilon value of 1.50

The results are shown in Figure 4.5.

Figure 4.4: Comparison of Test Accuracy Over 100 Epochs for Non-private and Private Models

(Gaussian with Noise Multiplier = 2.90, Laplace with Epsilon = 1.50)

The plot reveals the following insights:

· Non-private Models: As expected, the non-private centralized ML and decentralized

FL models achieve the highest accuracy, with the centralized ML model performing

slightly better.

· Gaussian Mechanism (Noise Multiplier = 2.90): The private FL model using the

Gaussian mechanism with a noise multiplier of 2.90 shows a slight decrease in accuracy

compared to the non-private models. However, the trade-off is minimal, making it a

viable option when privacy is a concern.
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· Laplace Mechanism (Epsilon = 1.50): The private FL model using the Laplace mecha-

nismwith an epsilon of 1.50 also exhibits a minor reduction in accuracy. Its performance

is very close to that of the Gaussian mechanism with a noise multiplier of 2.90, reaffirm-

ing its suitability for scenarios where both privacy and accuracy are important.

The Laplace distribution has heavier tails compared to the Gaussian distribution, which

means that while most of the noise values are close to zero, there is a higher probability of en-

countering larger noise values. Due to the heavier tails of the Laplace distribution, the Laplace

mechanism can introduce larger noise spikes occasionally, which might impact the stability

of the federated learning process. In contrast, the Gaussian mechanism tends to introduce

more consistent and less extreme noise compared to the Laplace mechanism, which can lead

to smoother and potentially more stable learning processes in federated learning.

In this study, we observed that the Gaussian model exhibited greater stability in accuracy,

while the Laplace model had noticeable fluctuations, reflecting these distributional differences.

In summary, while the non-private models naturally outperform the private ones in terms

of accuracy, the Gaussian mechanism with a noise multiplier of 2.90 and the Laplace mech-

anism with an epsilon of 1.50 offer the best trade-offs between privacy and accuracy. These

models are recommended for use in sensitive applications, such as medical data processing,

where privacy cannot be compromised but accuracy remains a priority. These findings not only

demonstrate the effectiveness of differential privacymechanisms in federated learning but also

provide a foundation for future research into more robust and efficient privacy-preserving

techniques.

Having identified the optimal trade-offs between accuracy and privacy for both Gaussian

and Laplace mechanisms, we next evaluate how these settings withstand adversarial condi-

tions. In the following section, we simulate inversion attacks to assess the robustness of the

final models, particularly focusing on the impact of the selected noise multiplier and epsilon

values on the reconstructed images.

4.3 Experimental Setup and Result for Inversion Attack

Simulation

This section details the parameter values used in the inversion attack simulation to evaluate

privacy robustness across various model configurations.

1. Batch Size: A batch size of 1 is used for each attack instance, ensuring that each
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gradient corresponds to a single image. This configuration avoids gradient averaging, which

could otherwise dilute the impact of the added noise. By using a batch size of 1, I achieve a

clear representation of how each noise mechanism affects the reconstruction process on an

individual image basis.

2. Subset of Test Dataset: A subset of 50 images from the diabetic retinopathy test

dataset is used in the inversion attack, providing a representative sample for evaluating re-

construction accuracy.

3. ModelArchitecture: The inversion attack is conducted using a pretrainedSqueezeNet

model (squeezenet1 1) with the classifier layer modified to output 5 classes, consistent

with the diabetic retinopathy dataset.

4. Optimizer and Loss Function: The Adam optimizer is used with a learning rate of

0.01, and the MSELoss function is applied to measure the difference betweenmodel output

gradients and target gradients.

5. Gradient Files: The following .pth files are used for inversion attacks, each repre-

senting a different model configuration:

· non private ML.pth

· non private FL.pth

· Gaussian noise multiplier 2 90.pth — (noise multiplier = 2.90)

· Laplace epsilon 1 50.pth — (epsilon = 1.50).

6. Model State Loading: For each model configuration, load state dict is used to

set the model to the corresponding gradient and weight state.

7. Number of Images Saved: Up to 6 pairs of original and reconstructed images are

saved for each model configuration for visual analysis.

The next part of this section will present visual and quantitative evaluations, specifically

focusing on Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity IndexMeasure (SSIM)

metrics, to quantify the effectiveness of each differential privacy mechanism.

4.3.1 Quantitative Comparison

To evaluate the privacy-preserving effectiveness of the different models, I computed Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Multiscale SSIM

(MS-SSIM), Feature Similarity Index (FSIM), Perceptual Loss, and Gradient PSNR (G-PSNR)
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for each reconstructed image against the original image. These metrics provide insights into

the fidelity of the reconstructed images, where lower values for PSNR, SSIM, and MS-SSIM,

and higher perceptual loss values generally indicate higher privacy due to reduced resem-

blance to the original data. The results for each model are summarized below, along with an

in-depth analysis of how the privacy mechanisms affect image fidelity.

Figure 4.5: Comparison of Original and Reconstructed Images Across Different Model Config-

urations: Original Image, Non-Private ML, Non-Private FL, Private FL with Gaussian Mecha-

nism, and Private FL with Laplace Mechanism.

· Non-Private FL:

– PSNR: 27.90 dB

– SSIM: 0.469

– MS-SSIM: 0.773

– FSIM (as SSIM placeholder): 0.469

– Perceptual Loss (VGG): 0.064

– Gradient PSNR (G-PSNR): 17.14

– Interpretation: The non-private FL model achieves the highest PSNR and SSIM

among the FLmodels, with relatively highMS-SSIM and Gradient PSNR, indicating

strong intensity and structural fidelity. These high values suggest that without

noise, FL captures detailed information across diverse client updates, which is then

retained in gradients. The relatively low perceptual loss value reflects good high-

level feature retention, while a G-PSNR of 17.14 indicates reasonable preservation

of edge details. In non-private FL, gradients remain largely unmodified, allowing

the model to retain high-quality reconstructions with minimal information loss.

· Non-Private ML:

– PSNR: 27.07 dB

– SSIM: 0.457
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– MS-SSIM: 0.766

– FSIM (as SSIM placeholder): 0.457

– Perceptual Loss (VGG): 0.068

– Gradient PSNR (G-PSNR): 16.94

– Interpretation: The non-privateMLmodel has slightly lower PSNR, SSIM,MS-SSIM,

and G-PSNR values than non-private FL, indicating minor quality degradation.

This is likely because centralized ML gradients lack the richness of multi-round,

multi-client updates found in FL, resulting in less detail and lower reconstructive

quality. The perceptual loss value is slightly higher, reflecting minor perceptual

differences, while the G-PSNR of 16.94 indicates somewhat less edge preservation

than non-private FL.

· Private FL with Gaussian Mechanism:

– PSNR: 26.24 dB

– SSIM: 0.421

– MS-SSIM: 0.749

– FSIM (as SSIM placeholder): 0.421

– Perceptual Loss (VGG): 0.078

– Gradient PSNR (G-PSNR): 15.94

– Interpretation: The Gaussian noise model shows reduced quality in all metrics

compared to non-private models. The lower PSNR and SSIM suggest a loss of inten-

sity and structural details, while the lower MS-SSIM and G-PSNR indicate reduced

structural and edge preservation. The perceptual loss is higher (0.078), meaning

that perceptual quality is impacted, introducing more noticeable visual distortions.

The reduction in all these metrics demonstrates the privacy-preserving effect of

Gaussian noise, which helps obscure fine details, effectively reducing the risk of

data reconstruction.

· Private FL with Laplace Mechanism:

– PSNR: 25.86 dB

– SSIM: 0.477

– MS-SSIM: 0.764
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– FSIM (as SSIM placeholder): 0.477

– Perceptual Loss (VGG): 0.058

– Gradient PSNR (G-PSNR): 18.49

– Interpretation: The Laplace noise model has a PSNR lower than non-private mod-

els, indicating intensity degradation. However, SSIM andMS-SSIM values are com-

paratively high for a privacy-preserving model, suggesting that structural features,

particularly edges, are preserved better than with Gaussian noise. The low per-

ceptual loss (0.058) suggests close high-level feature alignment with the original,

and the higher G-PSNR (18.49) implies better edge retention. This aligns with the

characteristic of Laplace noise, which can obscure pixel intensity while preserving

edges, making it suitable where structural retention is prioritized.

To provide a clearer comparison of the fidelity and privacy-preserving effectiveness of

each model configuration, we present the quantitative metrics for Peak Signal-to-Noise Ra-

tio (PSNR), Structural Similarity Index Measure (SSIM), Multiscale SSIM (MS-SSIM), Feature

Similarity Index (FSIM), Perceptual Loss, and Gradient PSNR (G-PSNR) in Table 4.1. This ta-

ble allows for a side-by-side assessment of how each model impacts the reconstructed image

quality relative to the original, offering insights into the trade-offs between image fidelity and

privacy preservation. Lower PSNR and SSIM values, combined with higher Perceptual Loss,

generally indicate a greater reduction in visual similarity, suggesting enhanced privacy.

Table 4.1: Quantitative Metrics for Reconstructed Images Across Model Configurations

Model Configuration PSNR (dB) SSIM MS-SSIM FSIM Perceptual Loss Gradient PSNR

Non-Private FL 27.90 0.469 0.773 0.469 0.064 17.14

Non-Private ML 27.07 0.457 0.766 0.457 0.068 16.94

Private FL (Gaussian) 26.24 0.421 0.749 0.421 0.078 15.94

Private FL (Laplace) 25.86 0.477 0.764 0.477 0.058 18.49

4.3.1.1 Why FL Has Higher Reconstructed Quality Than ML

The non-private FL model exhibits the highest quality among all FL setups, achieving the

highest PSNR, SSIM, MS-SSIM, and perceptual similarity scores among the privacy-preserving

models. This outcome is explained by factors inherent to the FL training dynamics:

· Richer Gradients throughMultiple Rounds and Client Diversity: In FL, the model

updates from diverse client data introduce a broader perspective on the global dataset.

This diversity enriches gradients with detailed information, which aids in reconstructing

images during an inversion attack.
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· Effect of Gradient Matching on Reconstruction: Gradient matching in inversion

attacks exploits gradient granularity, and FL gradients contain multi-client information,

resulting in a richer signal than single-dataset ML. This richness explains the better

reconstructive quality observed in non-private FL.

· Privacy Implications of Non-Private FL: Non-private FL lacks noise or secure ag-

gregation, which means gradients may leak detailed information. Without privacy-

preserving noise, FL gradients allow for higher-quality reconstructions, posing a po-

tential privacy risk.

4.3.1.2 Solutions for Reducing Information Leakage in Non-Private FL

To mitigate leakage risks from gradients in non-private FL, the following techniques are ben-

eficial:

1. Gradient Compression and Sparsification: Reduces shared information by retaining

only significant gradient components.

2. GradientClipping: Prevents outliers from revealing identifiable data points by capping

gradients.

3. Adding Noise (Differential Privacy): Applying Gaussian or Laplace noise obscures

details while preserving utility.

4. Secure Aggregation: Ensures that only aggregated gradients are accessible, reducing

individual data exposure.

5. Knowledge Distillation: Shares only high-level outputs rather than raw gradients,

complicating data reconstruction attempts.

By employing these methods, FL systems can achieve a balance between model perfor-

mance and privacy requirements, shielding sensitive data from inversion attacks while retain-

ing the advantages of federated training.

In summary, the non-private FL model demonstrates the highest reconstructed quality due

to rich gradient information from multi-client aggregation, but poses potential privacy risks.

Both privatemechanisms (Gaussian and Laplace) effectively degrade reconstructed image

quality, withGaussian noise consistently reducing quality and Laplace noise occasion-

ally preserving structural details due to edge retention properties. These findings illustrate

the privacy-fidelity trade-offs for differentially private FL models.
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4.3.2 Visual Comparison

To visually assess the impact of differential privacy mechanisms on image reconstruction,

we compare six reconstructed images from each model configuration with the original dataset

image. This comparison helps illustrate howwell eachmodel retains or degrades visual details,

especially sensitive structures in the retinal images.

Figure 4.6: Original Image from the dataset

Figure 4.7: Reconstructed Image from Non-Private ML Model

Figure 4.8: Reconstructed Image from Non-Private FL Model

Figure 4.9: Reconstructed Image from Private FL with Gaussian Mechanism

Figure 4.10: Reconstructed Image from Private FL with Laplace Mechanism

As demonstrated in theQuantitativeComparison section, we observed that eachmodel’s

reconstructed image exhibits varying levels of fidelity to the original, influenced by the type
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and level of privacy-preserving noise added. Higher levels of noise, as seen in the Private FL

models with Gaussian and Laplace mechanisms, contribute to a greater reduction in image

quality, which aligns with the lower PSNR and SSIM values. These quantitative metrics indi-

cate a loss of similarity to the original image, supporting the privacy-preserving goals of the

differentially private FL configurations.

Upon closer inspection of the visual images presented here, it becomes evident how these

privacy mechanisms affect the retinal structures. The original image maintains all anatomical

details, including fine blood vessels and retinal textures, which are critical for medical analysis.

However, in the non-private ML and FL images, these structures are still relatively preserved

due to the absence of noise, resulting in higher similarity to the original. In contrast, the

images processedwith Gaussian and Laplace noise show varying degrees of blurring and slight

distortions, especially noticeable in smaller vessels and more delicate textures.

If we zoom in on the reconstructed images from the private FL models (Gaussian and

Laplace), we can more clearly observe the visual impact of noise. Gaussian noise introduces a

more uniform blurring effect, which effectively obscures intricate details while still preserving

general shapes and structural features. Laplace noise, on the other hand, tends to retain edges

better, meaning that while overall intensity and finer textures are affected, some structural

details, such as the outlines of larger vessels, remain visible. This aligns with our quantitative

analysis, where Laplace noise had slightly higher SSIM values than Gaussian noise, indicating

a modest preservation of structural similarity.

These visual observations provide a complementary perspective to the quantitative met-

rics, illustrating that while the Gaussian and Laplace mechanisms effectively reduce the re-

constructive quality of the image to enhance privacy, they each impact the image in distinct

ways. This combined quantitative and qualitative approach reinforces the understanding of

privacy-fidelity trade-offs in federated learning for medical imaging.
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Chapter 5

Conclusions

5.1 Summary of Contributions

This thesis has presented a comprehensive investigation into privacy-preserving federated

learning (FL) for diabetic retinopathy (DR) diagnosis, focusing on the integration of differ-

ential privacy (DP) mechanisms within a federated framework to achieve a balance between

diagnostic accuracy and patient data protection. The research was motivated by the critical

need for privacy-aware solutions in healthcare, where patient data is sensitive and highly regu-

lated. By introducing and evaluating DP techniques—specifically, Gaussian and Laplace noise

mechanisms—in FL, this study aimed to adDRess the dual objectives of privacy and model

utility.

The major contributions of this thesis can be summarized as follows:

· Development of a Privacy-Preserving FL Framework for Medical Imaging: A

federated learning framework was established, tailored for DR diagnosis using medical

images. This setup allowed decentralized training across simulated client devices, pre-

serving data locality and reducing privacy risks associated with centralizing sensitive

patient information.

· Application of Differential Privacy Mechanisms: The study explored the efficacy

of two DP mechanisms (Gaussian and Laplace) in mitigating privacy risks during model

updates. By systematically adjusting privacy parameters (e.g., epsilon in Laplace and

noise multiplier in Gaussian), this research demonstrated how different configurations

impact both model accuracy and privacy levels.

· In-Depth Analysis of Privacy-Utility Trade-Offs: Extensive experiments were con-
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ducted to quantify the impact of DP on model performance and privacy preservation,

identifying optimal parameter settings for each mechanism. Visual and quantitative as-

sessments of inversion attacks further validated the privacy protection offered by these

mechanisms, showing how noise impacts image reconstruction quality and enhances

data security.

· Implementation of Robust Evaluation Techniques for Privacy and Accuracy: By

employing inversion attacks and assessing reconstructed images with metrics such as

PSNR, SSIM, and perceptual loss, this study provided a robust methodology for evalu-

ating the privacy efficacy of DP mechanisms in FL, offering a replicable framework for

similar studies.

5.2 Key Findings and Implications

The findings from this research have important implications for both academic and practical

applications of privacy-preserving machine learning, particularly in healthcare:

· Privacy-Accuracy Trade-Off: The results reveal that a careful balance can be achieved

between privacy and model utility by selecting appropriate noise levels in DP mecha-

nisms. The Gaussian mechanism, with a noise multiplier of 2.90, and the Laplace mech-

anism, with epsilon set to 1.50, were shown to maintain diagnostic accuracy within an

acceptable range while effectively protecting privacy.

· Mechanism-Specific Characteristics: The distinct characteristics of Gaussian and

Laplace noise mechanisms highlight that the choice of privacy technique can depend

on the specific privacy-utility requirements of the application. The Gaussian mechanism

provided more stable noise distribution and accuracy, while the Laplace mechanism pre-

served structural details better in certain high-frequency image areas, an advantage for

specific medical imaging tasks.

· Applicability to High-Stakes Domains: The successful implementation and evalua-

tion of privacy-preserving FL for DR diagnosis demonstrate that these techniques can

be applied to other sensitive domains within healthcare. This framework could serve as

a foundation for further research and development, particularly for applications where

high model accuracy and strict privacy regulations intersect.
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5.3 Limitations and Future Work

While this study provides a solid foundation for privacy-preserving FL in healthcare, there are

limitations that suggest directions for future research:

· Scalability to Real-World FL Environments: This research simulated an FL envi-

ronment with limited client diversity and simplified data distributions. Future stud-

ies should expand to more realistic settings with heterogeneous data distributions and

larger client pools, to better evaluate scalability and robustness.

· Exploration of Alternative DP Mechanisms: While Gaussian and Laplace mecha-

nisms were effective, alternative DP techniques, such as Rényi differential privacy or

hybrid DP models, may offer enhanced privacy-utility trade-offs. Future research could

investigate these approaches within FL frameworks.

· Adaptive and Context-Sensitive Noise Application: Implementing adaptive noise

mechanisms that vary according to data sensitivity or model update frequency could

further optimize privacy and accuracy. Integrating such adaptive mechanisms could

help balance privacy requirements with minimal accuracy degradation over time.

5.4 Concluding Remarks

This thesis has addressed a pressing challenge in the era of data-Driven healthcare: how to

leverage advanced machine learning models while preserving patient privacy. By implement-

ing and evaluating differential privacy within a federated learning framework for DR diag-

nosis, this research has demonstrated that robust privacy protections can coexist with high

model utility, even in the sensitive context of medical imaging. The findings contribute to the

field of privacy-preserving machine learning and lay the groundwork for deploying secure,

efficient, and privacy-aware FL systems in real-world healthcare applications.

As healthcare continues to adopt machine learning at scale, privacy-preserving techniques

will play an essential role in ensuring that these advances are sustainable, ethical, and com-

pliant with regulatory standards. The results of this research underscore the feasibility and

importance of privacy-preserving FL, marking a significant step toward trustworthy Artificial

Intelligence (AI) applications that can safeguard individual rights while advancing healthcare

innovation.
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Acronyms

AI Artificial Intelligence

CNN Convolutional Neural Network

DP Differential Privacy

DR Diabetic Retinopathy

FL Federated Learning

ML Machine Learning

GDPR General Data Protection Regulation

HIPAA Health Insurance Portability and Accountability Act

GPU Graphics Processing Unit

CPU Central Processing Unit

IID Independent and Identically Distributed

non-IID Non-Independent and Identically Distributed

ReLU Rectified Linear Unit

NPDR Non-Proliferative Diabetic Retinopathy

PDR Proliferative Diabetic Retinopathy

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

FSIM Feature Similarity Index Measure

MS-SSIM Multi-Scale Structural Similarity Index Measure

G-PSNR Gradient Peak Signal-to-Noise Ratio

DP-SGD Differentially Private Stochastic Gradient Descent

VGG Visual Geometry Group
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GPU Graphics Processing Unit

CUDA Compute Unified Device Architecture

MSE Mean Squared Error

IoT Internet of Things

EHR Electronic Health Record

HE Homomorphic Encryption

MPC Secure Multi-Party Computation

PFL Personalized Federated Learning

PDF probability density function

IoT Internet of Things

SCAFFOLD stochastic controlled averaging for federated learning
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Ozfatura, and Deniz Gündüz. Dopamine: Differentially private federated learning on

medical data. The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence

(PPAI-21), 2021.

[2] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science, 2014.

[3] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and sam-

pling in private data analysis. In Proceedings of the Thirty-Ninth Annual ACM Symposium

on Theory of Computing, 2007.

[4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise

to sensitivity in private data analysis. In Proceedings of the 3rd Theory of Cryptography

Conference (TCC), pages 265–284, 2006.

[5] Borja Balle, Gilles Barthe, MarcoGaboardi, and JustinHsu. Improving the gaussianmech-

anism for differential privacy: Analytical calibration and optimal denoising. In Interna-

tional Conference on Machine Learning (ICML), 2018.

[6] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, 2016.

[7] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in

Neural Information Processing Systems (NeurIPS), 2019.

[8] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that ex-

ploit confidence information and basic countermeasures. Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, 2015.

67



[9] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership infer-

ence attacks against machine learning models. In Proceedings of the 2017 IEEE Symposium

on Security and Privacy (SP), 2017.

[10] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the

gan: Information leakage from collaborative deep learning. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.

[11] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from

gradients. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2020.

[12] World Health Organization. Diabetic retinopathy: A leading cause of blindness, 2020.

[13] Waleed Nazih, Ahmad O. Aseeri, Osama Youssef Atallah, and Shaker El-Sappagh. Vi-

sion transformer model for predicting the severity of diabetic retinopathy in fundus

photography-based retina images. IEEE Access, 2023.

[14] Michael A. Gulshan and colleagues. Development and validation of a deep learning

algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA,

316(22):2402–2410, 2018.

[15] Feng Shi and colleagues. Performance of machine learning models in detecting diabetic

retinopathy: A meta-analysis of the literature. Ophthalmology, 126(8):1100–1110, 2019.

[16] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse

datasets. IEEE Symposium on Security and Privacy (SP), 2008.

[17] Craig Gentry. Fully homomorphic encryption using ideal lattices. Proceedings of the 41st

Annual ACM Symposium on Theory of Computing, 2009.

[18] Micah J Sheller, Guido A Reina, Brandon Edwards, Jeffrey Martin, and Spyridon Bakas.

Multi-institutional deep learning modeling without sharing patient data: A feasibility

study on brain tumor segmentation. In International MICCAI Brainlesion Workshop, 2020.

[19] Duy Nguyen, Ming Ding, Pubudu N Pathirana, and Aruna Seneviratne. Federated learn-

ing for covid-19 detection with generative adversarial networks in chest x-ray images.

IEEE Internet of Things Journal, 8(7):4938–4951, 2021.

68



[20] Georgios Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren. Secure,

privacy-preserving and federated machine learning in medical imaging. Nature Machine

Intelligence, 2020.

[21] Asuman Ozdaglar Alireza Fallah, Aryan Mokhtari. Personalized federated learning:

A meta-learning approach. 34th Conference on Neural Information Processing Systems

(NeurIPS 2020), 2020.

[22] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
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