UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE CORSO DI LAUREA IN INGEGNERIA ELETTRONICA
tesi Di laurea magistrale

STUDY OF LOW-NOISE DESIGN TECHNIQUES FOR LDO VOLTAGE REGULATORS

Relatore: Prof. ANDREA NEVIANI
I Correlatore: Ing. MARCO PISELLI
II Correlatore: Ing. MARCO FLAIBANI
alla mia famiglia: Tiziana, Giuseppe, Marco
e alla mia Fanny

Abstract

This work provides a wide knowledge of the electronic noise, its physical modeling, its behavior in time-domain and frequency-domain and its simulation. Then the thesis focuses on the feasibility study and an example of design of a low-noise LDO voltage regulator. To reach low-noise performance the main noise sources are analyzed (Error Amplifier, Voltage Reference and the Voltage Feedback Network) and then a deepen study of the regulation loop is made because its performance are crucial for noise. This work illustrates an example of design to reach low-noise performance, many other design choices and specific topologies could be taken into account, however, this work proposes to explore the minimum noise-limits of the classical configuration of a voltage regulator (voltage reference+error amplifier+resistive feedback network) and to give some useful concepts of electronic low-noise design.

Contents

Abstract V
Contents vii
List of Tables ix
List of Figures xi
1 Electronic Noise 1
1.1 Statistical Characterization of noise 1
1.2 Types of Noise 5
1.2.1 Thermal Noise 5
1.2.2 Shot Noise 6
1.2.3 Flicker Noise 7
1.3 Noise Models in IC Devices 8
1.3.1 MOS Transistor 8
1.3.2 Bipolar Transistor 9
1.4 Circuit Noise Calculations 10
2 Realizations 15
2.1 PSD Calculation 16
2.2 Realization in time domain 18
2.3 Test pk-pk and Comparison 20
2.3.1 Measurement 20
3 Noise in LDO 23
3.1 Introduction to LDO 23
3.1.1 Steady-state performance 25
3.1.2 AC analysis 26
3.2 Noise Model LDO 30
3.2.1 Voltage Divider Noise 32
3.2.2 Load Resistance Noise 35
3.3 Methods To Reduce Noise 37
3.3.1 Bypass Capacitor 37
3.3.2 Active Feedback 41
3.3.3 Output Nested Feedback 45
3.3.4 Two-Stage Regulator 48
3.3.5 Paralleling Regulators 52
4 Error Amplifier Noise 55
4.1 MILLER OTA 56
4.1.1 MOS Input Couple 56
4.1.2 Bipolar Input Couple 61
4.2 MIRRORED OTA 64
4.2.1 Asymmetric Compensation 66
4.3 OTA Design 71
4.3.1 Requirements 71
4.3.2 Proposed OTA 75
5 Voltage Reference Noise 83
5.1 Frequency Compensation 85
5.2 Noise 87
5.3 Proposed Bandgap 93
5.3.1 Frequency Compensation 94
5.3.2 Noise 95
6 Conclusions 99
6.1 Noise Performance of the Designed LDO Voltage Regulator 99
6.2 Future Work 101
A Appendix 103
A. 1 Flicker Noise Divergence 103
A. 2 Noise Phase 103
A. 3 Nyquist Theorem 110
A. 4 PSD 110
A. 5 Flicker Noise Realization 113
A. 6 Voltage Divider Noise 114
A. 7 Active Feedback: Stability and Noise 116
A. 8 Miller Theorem 122
A. 9 MOS and BJT Noise 122
A. 10 Gain Stage, Noise 124
A.10.1 Low degenerated CE stage 126
A. 11 Current Mirror Noise 127
A. 12 Transconductance of the Mirrored OTA with asymmetric compensation 129
A. 13 PTAT and CTAT behaviors 130
Ringraziamenti 133
Bibliography 135

List of Tables

3.1 Comparison power pass devices 24
3.2 Phase margin, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=0$ 30
3.3 Phase margin, $I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=0$ 30
3.4 Integrated Noise @100kHz, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=0$ 33
$3.5 C_{B}$ effect, comparison 39
3.6 Feedback gain effect, comparison 43
3.7 $\quad C_{c}$ Noise reduction effect, comparison 47
3.8 Resistor Divider Noise, $C_{B}=0$ 47
3.9 Low-pass filter Noise reduction effect, comparison 49
4.1 $\quad A_{v, E A(M F)}$ effect on the Loop-gain at $I_{L}=1 A$ 73
4.2 Stability and Noise performance of the Regulator at $I_{L}=1 A$ 80
5.1 Components are referred to the circuit in Figure 5.10 91
5.2 Components are referred to the circuit in Figure 5.16 97
A. 1 Phase Margin referred to Figure A.21, $I_{L}=100 m A, C_{L}=1 \mu F, E S R=$ $100 \mathrm{~m} \Omega, C_{B}=1 n F$ 117
A. 2 Phase Margin referred to Figure A.22, $A_{v(F B)}=11, I_{L}=100 \mathrm{~mA}, E S R=$ $100 \mathrm{~m} \Omega, C_{B}=1 n F$ 118
A. 3 Phase Margin referred to Figure A.23, $A_{v(F B)}=11, C_{L}=1 \mu F, E S R=$ $100 \mathrm{~m} \Omega, C_{B}=1 n F$ 119

List of Figures

1.1 Examples of noisy voltages 1
1.2 Ensemble and temporal average 2
1.3 Voltage squared noise 3
1.4 Power Spectral Density 3
1.5 Equivalent circuits of resistor thermal noise, R is a noiseless resistor 5
1.6 Voltage power spectral density 6
1.7 PSD of shot noise 7
1.8 Defects at the interface in the Metal Oxide Semiconductor structure 7
1.9 PSD of Flicker noise 8
1.10 MOS Noise model 8
1.11 corner frequency 9
1.12 BJT Noise model 10
1.13 Noise produced by two resistors in series 10
1.14 Input-referred noise 12
1.15 RC cell 12
1.16 Spot noise, $\mathrm{C}=10 \mathrm{pF}$ 13
1.17 Integrated noise, $\mathrm{C}=10 \mathrm{pF}$ 14
2.1 Stability measure in a Noisy LDO 15
2.2 Spectrum repetition 16
2.3 Single-sided to Double-sided spectrum 19
2.4 Comparison between Measures and Simulations 20
3.1 Linear Voltage Regulator 23
3.2 Sensing block 25
3.3 Line regulation scheme 26
3.4 LDO's AC model 26
3.5 Loop Gain proposed compensation 28
3.6 Quasi-ideal LDO circuit 29
$3.7 C_{L}=1 \mu F, E S R=100 m \Omega, C_{B}=0$ 29
$3.8 \quad I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=0$ 30
3.9 Noise model LDO 31
3.10 Feedback Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=0$ 32
3.11 Feedback Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega$, $C_{B}=0$ 33
3.12 Feedback Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, I_{L}=100 \mathrm{~m} A, C_{L}=1 \mu F, E S R=$ $100 \mathrm{~m} \Omega$ 34
3.13 Feedback Noise, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$ 34
$3.14 R_{L O A D}$ Noise circuit 35
$3.15 I_{L}$ current generator for the calculation of $R_{o, C L}$ 35
$3.16 R_{o, C L}(f)[\Omega], C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F$ 36
$3.17 R_{L}$ Noise , $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$ 37
3.18 Simplified AC model to show C_{B} impact on the circuit 37
3.19 MOS Noise model 38
3.20 Effect of C_{B} on the spot and integrated Noise. $V_{i, N} / \sqrt{\Delta f}=63 n V / \sqrt{H z}$, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, I_{L}=100 \mathrm{~mA}$ 39
3.21 Effect of C_{B} on the loop gain, theory 40
3.22 Effect of C_{B} on the loop gain, simulation 40
3.23 Loop-Gain module and phase, $I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$ 40
3.24 Loop-Gain module and phase, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F$ 41
3.25 Active Feedback proposed 41
3.26 Voltage gain Feedback, $R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F, R_{1}=63 k \Omega$, $R_{2}=20 k \Omega, C_{B}=1 n F$ 42
3.27 Output Noise due to Input Noise $V_{i, N} / \sqrt{\Delta f}=48 n V / \sqrt{H z}, I_{L}=100 \mathrm{~mA}$, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$ 43
3.28 Output Noise due to Active Feedback: $V_{i, N_{E A(F B)}} / \sqrt{\Delta f}=31.5 n V / \sqrt{H z}$, $R_{4}=10 / 20 / 40 k \Omega, R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 \mathrm{nF}, R_{1}=630 \mathrm{k} \Omega$, $R_{2}=200 k \Omega, C_{B}=1 n F$ 44
3.29 Total output Noise with active feedback, $V_{N, F B-\text { integrated }, R M S}=12 \mu \mathrm{~V}$ 44
3.30 Output nested Loop 45
3.31 Main Loop-gain, $I_{L}=100 m A, C_{L}=1 \mu F, C_{B}=0$ 46
3.32 Total output Noise, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, V_{N, i n} / \sqrt{\Delta f}=74.2 n V / \sqrt{H z}$, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, C_{B}=0$ 46
3.33 Overall integrated output Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega$ 48
3.34 Two-stage Regulator block scheme 48
3.35 Output Noise from the First Stage, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, V_{N, i n} / \sqrt{\Delta f}=$ $50 \mathrm{nV} / \sqrt{\mathrm{Hz}}, R_{1}=63 k \Omega, R_{2}=20 k \Omega$ 49
3.36 Output Noise from $R_{x}, I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, R_{x}=5 M \Omega$ 50
3.37 Loop-Gain Power Stage, $I_{L}=100 \mathrm{~m} A, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$ 51
3.38 Total output Noise, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, R_{x}=5 M \Omega, V_{N, i n} / \sqrt{\Delta f}=$ $50 \mathrm{nV} / \sqrt{H z}, R_{1}=63 k \Omega, R_{2}=20 k \Omega, V_{N, E A 2} / \sqrt{\Delta f}=31.5 n V / \sqrt{H z}$ 51
3.39 Overall output integrated Noise, $R_{x}=5 M \Omega, V_{N, i n(1)_{\text {integrated }}}=15.7 \mu \mathrm{~V}$, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, V_{N, E A 2_{\text {integrated }}}=10 \mu \mathrm{~V}$ 52
3.40 Parallel of 2 Regulators: Noise model 52
3.41 Parallel of 2 Regulators: Total Output Noise 53
4.1 Two-Stage OTA, Noise model 55
4.2 MOS OTA, equivalent input Noise 56
4.3 MOS OTA, I Stage with Noise sources 56
$4.4 \quad I_{\text {tail }}$ Noise propagation 57
4.5 II Stage Miller OTA with Noise sources 59
4.6 $\quad A_{v_{I}}$ 60
$4.7 \quad \frac{v_{N, 2}}{\sqrt{\Delta f}} / A_{v_{I}}$ 61
4.8 Effect of $v_{N, 2}$ on $v_{N, i n(t o t)}$ 61
4.9 MOS BJT, equivalent input Noise 62
4.10 MOS BJT, I Stage with Noise sources 62
4.11 Mirrored OTA, circuit 64
4.12 Mirrored OTA, Noise sources 65
4.13 Mirrored OTA, asymmetric compensation 66
4.14 Voltage gain with asymmetric compensation 67
4.15 Asymmetric compensation, Noise sources 68
$4.16 R_{x}$ Noise, circuit and AC model 68
$4.17 R_{x}$ Noise, input-referred and output-referred 69
4.18 $M 3 / 5 / 6 / 7 / 8$ Noise, input-referred and output-referred 70
4.19 Load Regulation 71
4.20 Power stage, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, I_{L}=1 A, 100 \mathrm{~mA}, 10 \mathrm{~mA}$ 73
4.21 Loop-gain Module at $I_{L}=1 A, C_{L}=1 \mu F, C_{B}=1 n F$, varying $f_{z(E A)}$, $A_{v, E A(M F)}$ 74
4.22 Loop-gain Module at $A_{v, E A(M F)}=10 d B, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$, $C_{B}=1 n F$, varying $I_{L}=1 A, 100 \mathrm{~mA}, 10 \mathrm{~mA}$ 74
4.23 Loop-gain Module at $A_{v, E A(M F)}=10 \mathrm{~dB}, I_{L}=1 A, E S R=100 \mathrm{~m} \Omega, C_{B}=$ $1 n F$, varying $C_{L}=1 \mu F, 10 \mu F, 100 \mu F, 1 m F$ 75
4.24 Voltage gain, $W_{1}=200 \mu m,(W / L)_{5}=2(W / L)_{4}$ 76
4.25 Integrated input Noise voltage, $W_{1}=200 \mu m,(W / L)_{5}=2(W / L)_{4}$ 77
4.26 Voltage gain, $W_{4}=15 \mu m,(W / L)_{5}=2(W / L)_{4}, I_{T O T}=30 \mu A$ 77
4.27 Voltage gain, $W_{4}=15 \mu m,(W / L)_{5}=2(W / L)_{4}, I_{T O T}=30 \mu A$ 78
$4.28 V_{N, i n(I N T .)}^{2}$ with $W_{1}=200 \mu m, W_{4}=15 \mu m,(W / L)_{5}=2(W / L)_{4}, I_{T O T}=$ $30 \mu A$ 78
4.29 Loop-gain Module, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F, R_{1}=630 k \Omega$, $R_{2}=200 k \Omega$ 79
$4.30 V_{N, \text { out (TOT,INT.) }}$ with $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}, R_{1}=630 \mathrm{k} \Omega$, $R_{2}=200 k \Omega$, simulated Bandgap $V_{N, B G(I N T .)} \approx 12 \mu V_{R M S}$ 80
4.31 Proposed OTA 81
5.1 Brokaw Bandgap 83
5.2 $V_{\text {out }}$, sweep in temperature 84
5.3 Supply Headroom, NMOS-output 85
5.4 Loopgain calculation with AC circuit 86
5.5 Loopgain, $I_{P T A T}=1-5 \mu A, C_{c}=50 p F, n=8, T=300 K$ 87
5.6 Bandgap Noise sources 88
5.7 R_{1} Noise, circuit zoom 89
$5.8 v_{N, \text { out }\left(R_{1}\right)}$ 90
$5.9 v_{N, \text { out }(T O T)}$ Integrated, $I_{P T A T}=1-5 \mu A, C_{c}=50 p F$ 91
5.10 Brokaw Bandgap N-output 92
5.11 Bandgap "High Voltage " P-output 93
$5.12 V_{\text {out }}(T)$, designed Bandgap 94
5.13 Loopgain of designed Bandgap, $I_{T O T} \approx 16 \mu A, C_{c}=5-50 p F$ 95
$5.14 v_{N, \text { out }}$ Spot Noise, $I_{T O T} \approx 16 \mu A, n=20, C_{c}=5-50 p F, C_{o}=50 p F$, $R_{x}=2 M \Omega$ 96
$5.15 v_{N, \text { out }}$ Integrated Noise, $I_{T O T} \approx 16 \mu A, n=20, C_{c}=5-50 p F, C_{o}=50 p F$, $R_{x}=2 M \Omega$ 96
5.16 Designed Bandgap "High-Voltage" with P-output 98
$6.1 v_{N, \text { out }}$ Spot Noise, $V_{O U T}=5 V, I_{L}=1 A, C_{c}=1 \mu F, C_{B}=1 n F$ 99
$6.2 v_{N, \text { out }}$ Integrated Noise, $V_{O U T}=5 V, I_{L}=1 A, C_{c}=1 \mu F, C_{B}=1 n F$ 100
6.3 Loopgain module, $V_{O U T}=5 V, C_{c}=1 \mu F, C_{B}=1 n F, R_{1}=2.1 M \Omega$, $R_{2}=600 k \Omega$ 100
A. 1 Noise spectrum module 104
A. 2 Constant zero phase 104
A. 3 Realization in time domain 105
A. 4 Gaussian phase $\sigma_{\text {phase }}=\pi / 3$ 106
A. 5 Realization in time domain 106
A. 6 Uniform phase 107
A. 7 Realization in time domain 107
A. 8 Measurement setup 108
A. 9 Module 109
A. 10 Phase 109
A. 11 Phase histogram 110
A. 12 Signal, $N=100 k$ Samples 111
A. $13 \operatorname{PSD}, N=100 k$ Samples 111
A. 14 Signal, $N=1 M$ Samples 112
A. $15 \mathrm{PSD}, N=1 M$ Samples 112
A. 16 Flicker Noise 113
A. 17 Flicker Noise Realization 113
A. 18 Simplified AC model for R_{1} Noise calculation 114
A. 19 Simplified AC model for R_{2} Noise calculation 116
A. 20 Feedback Loop-gain, Voltage-gain ${ }_{E A, F B}(0)=60 d B, f_{\text {pole }_{E A, F B}}=10 \mathrm{kHz}$, $R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F$ 116
A. 21 Main-Loop Loop-gain, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$ 117
A. 22 Main-Loop Loop-gain, $A_{v(F B)}=11, I_{L}=100 \mathrm{~m} A, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$ 118
A. 23 Main-Loop Loop-gain, $A_{v(F B)}=11, C_{L}=1 \mu F, E S R=100 m \Omega, C_{B}=1 n F$ 118
A. 24 Active feedback Noise scheme 119
A. $25 R_{4}$ Noise, $R_{4}=10 k \Omega, R_{3}=100 \mathrm{k} \Omega, C_{3}=16 p F, C_{4}=10 \mathrm{nF}$ 120
A. $26 R_{4}$ Noise, $R_{4}=10 k \Omega, R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F$ 121
A. $27 E A(F B)$ Noise, $V_{i, N} / \sqrt{\Delta f}=20 n V / \sqrt{H z}, R_{1}=630 k \Omega, R_{2}=200 k \Omega$, $C_{B}=1 n F$ 121
A. 28 Miller Effect 122
A. 29 MOS, equivalent Noise models 122
A. 30 BJT, equivalent Noise models 123
A. 31 CE stage, complete circuit and the equivalent input referred Noise model 124
A. $32 i_{N, \text { out }}$ of a CE stage 125
A. $33 v_{N, i n}$ of a CE stage 126
A. 34 Bipolar Current Mirror, circuit and Noise sources 127
A. 35 Bipolar Current Mirror, AC model 128
A. 36 Output stage of the Mirrored OTA with asymmetric compensation 129
A. 37 Example of $i_{o(T O T)}$ and $i_{L S}, i_{H S}$ 130

Electronic Noise

The Electronic Noise is a small voltage or current fluctuation generated by the circuit itself, may be amplified or reduced but not completely eliminated. The main causes of electronic noise are the thermal agitation of carriers and the charge quantization, but there are many other physical phenomena and many others have yet to be discovered. The amplitude and phase of noise are a random process and therefore we can not predict their behavior in time, but using statistical methods it is possible to obtain a spectral model of noise.

The noise is an important subject to study because it sets the lowest signal level that can be elaborated with acceptable quality, nowadays this is one of the most important problems that affects circuits for the signal elaboration, above all those portables, because the scaling of voltages and currents decreases the $S N R=\frac{P_{\text {signal }}}{P_{\text {noise }}}$ (Signal to Noise Ratio) of the signal. For this reason we should supply these devices with a "as clean as possible" source (i.e. "less noisy as possible") and then we need a voltage (or current) regulator with a good noise performance.

Fig. 1.1: Examples of noisy voltages

1.1 Statistical Characterization of noise

Noise is a random process, so its complete behavior is very difficult to know, but to make simple predictions we just need to know few statistical quantities like the mean value and variance to model noise in the time domain and power spectral density (PSD) to model noise in the frequency domain.

An important property of noise is the stationarity and ergodicity (this is not a general characteristic of all types of noise but for this discussion will be taken as a property).

Stationarity means that observing little and separated portions of the noisy signal, we find the same characteristics (i.e. mean and variance) in every portion.

Ergodicity means that, taken a set of identical systems (ensemble) and fixed a temporal reference, the statistical averages of the ensemble converge (\doteq) to the temporal averages (Formulas (1.1) and (1.2)).

$$
\begin{gather*}
\overline{v_{n}(t)}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} v_{n}(t) d t \doteq E\left[v_{n}(t)\right]=<v_{n}(t)> \tag{1.1}\\
\overline{v_{n}^{2}(t)}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} v_{n}^{2}(t) d t \doteq E\left[v_{n}^{2}(t)\right]=\sigma_{v_{n}}^{2} \tag{1.2}
\end{gather*}
$$

We can help ourselves to understand this concept looking the Figure 1.2, henceforth we don't use the concept of ensemble because the noise of one device (element of ensemble) is sufficient to show the entirely noise performance, and so we concentrate only on the temporal averages.

Fig. 1.2: Ensemble and temporal average
The noise mean is zero, we can convince ourselves looking the Figure 1.1, so referring to Eq. (1.1):

$$
<v_{n}(t)>=0
$$

As regard the variance we have to make a brief introduction, in the signal theory it is defined the autocorrelation of a signal $x(t)$ as in Eq. (1.3):

$$
\begin{equation*}
r_{x x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x(t)^{*} x(t+\tau) d t \tag{1.3}
\end{equation*}
$$

The Available Power (it is the statistical power) of the signal is the autocorrelation in the origin $r_{x x}(0)$ (signals are overlapped), and considering that $x(t)^{*} x(t)=|x(t)|^{2}$:

$$
\begin{equation*}
P_{a v}=r_{x x}(0)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}}|x(t)|^{2} d t \geq 0 \tag{1.4}
\end{equation*}
$$

Thus the comparison between Eq. (1.4) and Eq. (1.2) becomes easy because a signal in the real world is a real-valued signal and so (thinking to a voltage signal $v_{n}(t)$):

$$
\left|v_{n}(t)\right|^{2}=v_{n}(t)^{2}
$$

thus:

$$
\begin{equation*}
P_{a v}=\sigma_{v_{n}}^{2} \tag{1.5}
\end{equation*}
$$

or even the root mean square value:

$$
\begin{equation*}
v_{n, R M S}=\sqrt{\sigma_{v_{n}}^{2}}=\sigma_{v_{n}} \tag{1.6}
\end{equation*}
$$

Note that the available power $P_{a v}$ of a noise signal is ever greater than zero, just think that the power is proportional to the area of the $v_{n}{ }^{2}$ as in the Figure 1.3 (an area is a positive value).

Fig. 1.3: Voltage squared noise
Now we start to think what happens in the frequency domain: a deterministic signal like a sine wave or a square wave has its power concentrated only at certain frequencies (i.e. lines) so the spectrum looks like a lines spectrum. The total power is simply the arithmetic sum of the power of the single harmonics. A non-deterministic signal like noise, has an infinite number of harmonics, that is a continuous spectrum. The power is thus distributed at all frequencies and so is called a Power Spectral Density (Figure 1.4).

Fig. 1.4: Power Spectral Density

$$
\begin{equation*}
P_{t o t}=\int_{-\infty}^{+\infty} P S D(f) d f \tag{1.7}
\end{equation*}
$$

where the $P S D(f)$ has the physical dimension of $\left[\frac{V^{2}}{H z}\right]$ thinking to a voltage signal or $\left[\frac{A^{2}}{H z}\right]$ thinking to a current one.

Are we sure that $P_{t o t}=P_{a v}$?

The demonstration is simple because Wiener-Khinchin theorem shows that, in particular conditions that we can consider satisfied with random processes of electronic noise:

$$
\begin{equation*}
r_{x x}(\tau)=\int_{-\infty}^{+\infty} S(f) e^{j 2 \pi \tau f} d f \tag{1.8}
\end{equation*}
$$

we know that:

$$
\begin{equation*}
P_{a v}=r_{x x}(0)=\int_{-\infty}^{+\infty} S(f) d f \tag{1.9}
\end{equation*}
$$

and so comparing Eq. (1.9) with Eq. (1.7) we can conclude that $P_{a v}=P_{t o t}=\sigma_{v_{n}}^{2}$ and $S(f)$ is just the $P S D(f)$.

We can also observe that inverting Eq. (1.8):

$$
\begin{equation*}
S(f)=\int_{-\infty}^{+\infty} r_{x x}(\tau) e^{-j 2 \pi \tau f} d \tau \tag{1.10}
\end{equation*}
$$

we find that

$$
\begin{equation*}
S(f)=P S D(f)=F\left[r_{x x}(\tau)\right] \tag{1.11}
\end{equation*}
$$

where $F[\cdot]$ means the Fourier Transform.
Summarizing, the $P S D(f)$ represents the power (statistical) of the noise signal in the frequency domain so it is the best physical quantity to study the noise performance of an electronic device because knowing the bandwidth of the system (B) we can easily find the total power of noise that affects the circuit using Eq. (1.12) (with a good approximation because the real bandwidth is $0<f<+\infty$).

$$
\begin{equation*}
P_{\text {noise }}=\int_{-B}^{+B} P S D(f) d f \tag{1.12}
\end{equation*}
$$

Note that Eq. (1.7) and Eq. (1.12) use the bilateral spectrum $-\infty<f<+\infty$, fortunately we work with real-valued signals so thanks to the Hermitian symmetry $H(f)=$ $H(-f)^{*}$, the module of $P S D(f)$ over the negative band $-B$ is the same as over the positive band $+B$, therefore Eq. (1.12) simplifies in:

$$
\begin{equation*}
P_{\text {noise }}=\int_{0}^{+B} 2 \times P S D(f) d f=\int_{0}^{+B} P S D(f)^{\prime} d f \tag{1.13}
\end{equation*}
$$

However the factor 2 in Eq. (1.13) is only a scale factor, so for the rest of this work and for practical simplicity we will use Eq. (1.14):

$$
\begin{equation*}
P_{\text {noise }}=\int_{0}^{+B} P S D(f) d f \tag{1.14}
\end{equation*}
$$

1.2 Types of Noise

Electronic devices are affected by external noise (or environmental noise) and internal noise (or semiconductor noise), we will focus on the latter one in this work.

Semiconductor noise is self-generated by the device itself, there are many known physical sources of this noise. Thermal, Shot and Flicker are the main noise sources, but there are also many unknown physical sources.

1.2.1 Thermal Noise

Thermal Noise is always associated with a passive physical resistance, it is due to the random thermal motion of electrons (random "walk") that cause random fluctuations in the voltage measured across the conductor, this does not require a DC current flux so even a disconnected resistor shows thermal noise. The carrier agitation (electrons and holes) is favored by the temperature and thus thermal noise is directly proportional to the absolute temperature T (in Kelvin).

In a resistor R, thermal noise can be represented alternatively by a Thevenin or a Norton representation as shown in in Figure 1.5

Fig. 1.5: Equivalent circuits of resistor thermal noise, R is a noiseless resistor
The expressions of powers are (k is the Boltzmann constant):

$$
\begin{align*}
& \overline{v_{n}^{2}}=4 k T R \Delta f \tag{1.15}\\
& \overline{i_{n}^{2}}=\frac{4 k T}{R} \Delta f \tag{1.16}
\end{align*}
$$

and $P S D$:

$$
\begin{align*}
S_{v}(f) & =\frac{\overline{v_{n}^{2}}}{\Delta f}=4 k T R \tag{1.17}\\
S_{i}(f) & =\frac{\overline{i_{n}^{2}}}{\Delta f}=\frac{4 k T}{R} \tag{1.18}
\end{align*}
$$

As we can see from Eq. (1.17) and Eq. (1.18), the PSD (either voltage or current) is white, so its spectrum is independent of frequency (Figure 1.6), indeed this is true at least until about $10^{13} \mathrm{~Hz}$. The terminology white derives from the analogy with the solar spectrum, if we "see" a radiation with a similar spectrum in the visible band we feel the color white.

Fig. 1.6: Voltage power spectral density

In general if we have an impedance $Z(j \omega)$ measured at a generic port of a linear and passive network, only the resistive passive part (real part, so $\Re[Z(j \omega)]$) generates noise, and the equivalent circuit is represented as in Figure 1.5 with the noiseless resistance and PSD:

$$
\begin{gather*}
\frac{\overline{v_{n}^{2}}}{\Delta f}=4 k T \Re[Z(f)] \tag{1.19}\\
\frac{\overline{i_{n}^{2}}}{\Delta f}=\frac{4 k T}{\Re[Z(f)]} \tag{1.20}
\end{gather*}
$$

the imaginary part $\Im[Z(j \omega)]$ represents the reactance and doesn't generates thermal noise.

1.2.2 Shot Noise

Shot Noise is always associated with a DC current flux through a potential barrier of a junction, so it is present most in diodes and BJT and is minor in MOS transistor. It is due to the uncertainty on the number of carriers passing the potential barrier, since the passage of the barrier is a random event because of only those carriers having enough energy are able to pass the barrier. This is translated in fluctuations (i.e. shot noise) of the current from the mean value, best expressed in terms of mean-square variation:

$$
\overline{i_{n}^{2}}=\overline{\left(i(t)-I_{D C}\right)^{2}}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left(i(t)-I_{D C}\right)^{2} d t
$$

The spectrum of a signal compound by the series of random independent pulses (i.e. shots) can be shown to be constant in frequency (i.e. white), and the PSD of shot noise is:

$$
\begin{equation*}
\frac{\overline{i_{n}^{2}}}{\Delta f}=2 q I_{D C} \tag{1.21}
\end{equation*}
$$

\mathbf{q} is the elementary charge. Equation (1.21) is valid until the frequency not approaching $1 / \tau$, where τ is the transit time of carriers to cross the depletion region of the potential barrier. With recent technologies $1 / \tau$ is at least in the GigaHertz bandwidth, therefore at all effects we will consider shot noise as a white noise.

Fig. 1.7: PSD of shot noise

1.2.3 Flicker Noise

Flicker Noise is a quite strange type of noise, its physical causes are nowadays not fully understood, it affects all active devices and also carbon resistors. The transistor MOS shows an important contribute of flicker noise because the drain current flows near the interface substrate- SiO_{2}. This interface is full of dangling bonds (Figure 1.8), due to the material discontinuity, that act as traps for carriers and this leads to fluctuations in the current (i.e. noise).

Fig. 1.8: Defects at the interface in the Metal Oxide Semiconductor structure
In general, however, Flicker noise can be produced by discontinuities that the current meets for the imperfections of the material.

Flicker noise has a spectral density:

$$
\begin{equation*}
\frac{\overline{i_{n}^{2}}}{\Delta f}=K_{f} \frac{I^{a}}{f^{b}} \tag{1.22}
\end{equation*}
$$

where \mathbf{K}_{f} is a particular process constant, \mathbf{I} is the direct current, a is a constant in the range 0.5 to $2, \mathbf{b}$ is a constant of about a unity and, of course, \mathbf{f} is the frequency.

We note that Flicker noise exists only if there is a DC current flux, and in the case $b=1$ it takes the form of $1 / f$ noise as in Figure 1.9 (flicker noise is also called $1 / f$ noise or pink noise). The unknown constant K_{f} can vary orders of magnitude from different types of transistors and also can vary randomly from transistors of the same wafer, so this parameter is a fitting parameter determined from measurements on a number of devices from a given process.

Electronic devices are affected by lots of noise sources, many of them are still in the study phase, like Burst or Avalanche noise for example, in this work we take into account only thermal, shot and flicker noise because they are the main noise sources in transistors (bipolar and MOS) and resistors.

Fig. 1.9: PSD of Flicker noise

1.3 Noise Models in IC Devices

The three noisy devices taken into account in this work are resistors, bipolar transistors and MOS, the fourth element very used in integrated circuits (IC) is the capacitor, but an ideal reactive component doesn't show noise.

Resistors Noise is already been explained and the equivalent model is shown in Figure 1.5, its PSDs are Eq. (1.17) and Eq. (1.18).

1.3.1 MOS Transistor

Fig. 1.10: MOS Noise model
The MOS transistor has two main noise sources, thermal and flicker, both of them influences the drain current, at the input port (gate-source) there isn't a DC current so (in the approximation of no leakage) is a noiseless port. The MOS noise model is shown in Figure 1.10 and the noise PSD is:

$$
\begin{equation*}
\frac{\overline{i_{d}^{2}}}{\Delta f}=\frac{\overline{i_{t h}^{2}}}{\Delta f}+\frac{\overline{i_{1 / f}^{2}}}{\Delta f} \tag{1.23}
\end{equation*}
$$

Thermal Noise exists because of the drain-source channel is a resistive channel:

$$
\begin{equation*}
\frac{\overline{i_{t h}^{2}}}{\Delta f}=4 k T \gamma g m \tag{1.24}
\end{equation*}
$$

The constant γ is $2 / 3$ for long-channel MOS (for L greater than few $\mu \mathrm{m}$) and is about 2-2.5 for short-channel devices, $g m$ is the transconductance.

Flicker Noise is explained in Page 7 and is modeled as:

$$
\begin{equation*}
\overline{\overline{i_{1 / f}^{2}}} \overline{\Delta f}=\frac{K_{f} I_{d}}{L^{2} C_{o x}} \frac{1}{f} \propto \frac{1}{f} \tag{1.25}
\end{equation*}
$$

The noise power is:

$$
\begin{equation*}
\overline{i_{1 / f}^{2}}=\int_{f_{1}}^{f_{2}} \frac{K_{f} I_{d}}{L^{2} C_{o x}} \frac{1}{f} d f=\frac{K_{f} I_{d}}{L^{2} C_{o x}} \ln \frac{f_{2}}{f_{1}} \tag{1.26}
\end{equation*}
$$

It's interesting to note that every frequency decade has the same Power because the ratio $\ln \frac{f_{2}}{f_{1}}$ is constant.

Looking the Eq. (1.26) a question arises: what happens if f_{1} tends to zero? (Appendix A.1)

Another important parameter for MOS Noise performance (and for a certain technology) is the Corner frequency that it determines the minimum frequency where the Flicker noise is smaller (and then can be confused) than Thermal noise (Figure 1.11).

0

Fig. 1.11: corner frequency
We can calculate corner frequency equating Eq. (1.24) with Eq. (1.25):

$$
\begin{equation*}
f_{c o}=\frac{K_{f}}{4 k T \gamma L^{2} C_{o x}} \frac{1}{g m / I_{d}} \tag{1.27}
\end{equation*}
$$

The parameter $\frac{1}{g m / I_{d}}$ is relatively constant for a fixed technology, so the corner frequency is relatively constant at a certain L, in fact the best design parameter to vary Flicker Noise is $f_{c o} \propto \frac{1}{L^{2}}$, the corner frequency can be at hundreds of kHz for submicron transistors.

To vary the noise in a MOS transistor we can change either the physical dimensions (W and L) and the bias drain current I_{D}.

1.3.2 Bipolar Transistor

Bipolar transistor shows shot noise in the collector and base current:

$$
\begin{align*}
& \frac{\overline{i_{c}^{2}}}{\Delta f}=2 q I_{C} \tag{1.28}\\
& \frac{\overline{i_{b}^{2}}}{\Delta f}=2 q I_{B} \tag{1.29}
\end{align*}
$$

Fig. 1.12: BJT Noise model
and thermal noise due to the base resistance R_{b} (this is a physical resistance):

$$
\begin{equation*}
\frac{\overline{v_{b}^{2}}}{\Delta f}=4 k T R_{b} \tag{1.30}
\end{equation*}
$$

There are also resistances at collector and emitter that generates thermal noise but, in practice, their contribute is negligible, instead the noise of base resistance is then amplified by the device and is not so small at the output (collector or emitter).

Indeed, Flicker Noise is observed also in BJT and is modeled as a current noise source at the base:

$$
\begin{equation*}
\frac{\overline{i_{b, 1 / f}^{2}}}{\Delta f}=K_{f} I_{B}^{\alpha} \frac{1}{f} \tag{1.31}
\end{equation*}
$$

It is possible to define the corner frequency also for the base current noise, anyway, for bipolar transistors using careful processing, $f_{c o}$ can be as low as 100 Hz , so the flicker noise contribute can be negligible.

To vary the noise in a BJT we can only change the bias current I_{B} and consequently $I_{C}=\beta I_{B}$.

1.4 Circuit Noise Calculations

We introduce the argument with a simple example: the series of two resistors as shown in Figure 1.13.

Fig. 1.13: Noise produced by two resistors in series
Resistors R_{1} and R_{2} have respective noise generators (assuming a 1 Hz bandwidth):

$$
\begin{aligned}
& \overline{v_{1}^{2}}=4 k T R_{1} \\
& \overline{v_{2}^{2}}=4 k T R_{2}
\end{aligned}
$$

Considering the time domain, the total noise voltage is:

$$
v_{T}(t)=v_{1}(t)+v_{2}(t)
$$

and thus:

$$
\begin{equation*}
\overline{v_{T}(t)^{2}}=\overline{v_{1}(t)^{2}+v_{2}(t)^{2}}=\overline{v_{1}(t)^{2}}+\overline{v_{2}(t)^{2}}+\overline{2 v_{1}(t)^{2} v_{2}(t)^{2}} \tag{1.32}
\end{equation*}
$$

Since $v_{1}(t)$ and $v_{2}(t)$ arise from different resistors, they can be considered independents and so $\overline{2 v_{1}(t)^{2} v_{2}(t)^{2}}=0$, therefore Eq. (1.32) becomes:

$$
\begin{equation*}
\overline{v_{T}(t)^{2}}=\overline{v_{1}(t)^{2}}+\overline{v_{2}(t)^{2}} \tag{1.33}
\end{equation*}
$$

In the frequency domain:

$$
\begin{equation*}
\overline{v_{T}^{2}}=\overline{v_{1}^{2}}+\overline{v_{2}^{2}}=4 k T\left(R_{1}+R_{2}\right) \tag{1.34}
\end{equation*}
$$

it's as there is an only resistance $R_{1}+R_{2}$ that produces the noise.
This is a simple example but, seeing Eq. (1.34), it seems that the two PSD are simply added, this is true for all noise sources if we use the Noise models described in Sec. 1.3 because the noise sources derives from different physical processes and thus are independents.

To calculate the Noise in an arbitrary circuit we proceed in this way:

1. We have to use the $A C$-circuit because the noise is assumed to be a small signal, so we have to short all independent voltage generators and to open all independent current generators.
2. For every Noise Source ($v_{n, x}$ or $i_{n, x}$), we have to calculate the transfer function (TF) to the output ($v_{n, o}$ or $i_{n, o}$):

$$
H_{x}(s)=\frac{s_{n, o}}{s_{n, x}}
$$

3. Under the hypothesis of independents sources we can calculate the total PSD:

$$
\frac{\overline{s_{n, o}^{2}}}{\Delta f}=\sum_{x}\left|H_{x}(j 2 \pi f)\right|^{2} \frac{\overline{s_{n, x}^{2}}}{\Delta f}
$$

4. Let's calculate the noise power at the output:

$$
\overline{s_{n, o}^{2}}=\int_{f_{1}}^{f_{2}} \overline{\frac{s_{n, o}^{2}}{\Delta f}} d f
$$

Important: since the Noise has a random phase (why? see Appendix A.2), the only quantity of interest is the module of the noise, so even for the transfer function we are interested only at its module $\left|H_{x}(j 2 \pi f)\right|^{2}$, henceforth in this work we will use the more common annotation $H_{x}(j 2 \pi f)^{2}$, but we must remember that we are referring at the module.

Now we know how to calculate the output PSD or power, in some circuits we are interested exactly at the output noise, but in others, like systems closed in feedback, this is not the best way to treat the noise. A better choice is to think noise concentrated at the input as in in Figure 1.14.

Fig. 1.14: Input-referred noise
In general the input-referred noise model expected a voltage noise generator $\overline{v_{n, i}^{2}}$ and a current noise generator $\overline{i_{n, i}^{2}}$ (a 1 Hz bandwidth is assumed), if the noiseless circuit has a transfer function $A(s)^{2}=\frac{\overline{v_{n, o}(s)^{2}}}{\overline{v_{n, i n}(s)^{2}}}$ with $\overline{v_{n, i n}(s)^{2}}$ is the voltage at the $Z_{i n}$ port:

$$
\begin{equation*}
\overline{v_{n, o}(s)^{2}}=\left(\frac{Z_{i n}(s)}{Z_{i n}(s)+Z_{s}(s)}\right)^{2} A(s)^{2} \overline{v_{n, i}(s)^{2}}+\left(Z_{i n}(s) / / Z_{s}(s)\right)^{2} A(s)^{2} \overline{i_{n, i}(s)^{2}} \tag{1.35}
\end{equation*}
$$

To calculate $\overline{v_{n, i}(s)^{2}}$ and $\overline{i_{n, i}(s)^{2}}$ is simple:

- we short the input port $Z_{a}=0$ in the Noisy circuit and $Z_{s}=0$ in the Noiseless one in Figure 1.14 and then we equate the $\overline{v_{n, o}(s)^{2}}$, in agreement with Eq. (1.35) ($Z_{s}=0$) we find

$$
\overline{v_{n, i}(s)^{2}}=\frac{\overline{v_{n, o}(s)^{2}}}{A(s)^{2}}
$$

- we open the input port $Z_{a}=\infty$ in the Noisy circuit and $Z_{s}=\infty$ in the Noiseless one in Figure 1.14 and then we equate the $\overline{v_{n, o}(s)^{2}}$, in agreement with Eq. (1.35) $\left(Z_{s}=\infty\right)$ we find

$$
\overline{i_{n, i}(s)^{2}}=\frac{\overline{v_{n, o}(s)^{2}}}{Z_{i n}^{2} A(s)^{2}}
$$

Now we have all the elements to analyze the noise performance of a circuit. For completeness we study a very important (and surprising) example.

Fig. 1.15: RC cell

In a simple RC cell, Figure 1.15, that it can be either a Low-pass or a High-pass filter, noise is produced by the resistance:

$$
\frac{\overline{i_{n}^{2}}}{\Delta f}=\frac{4 k T}{R}
$$

and the capacitor shapes the PSD (spot noise) because acts on the transfer function:

$$
\frac{v_{n, o}}{i_{n}}=\frac{R}{1+s R C}
$$

and thus:

$$
\begin{equation*}
\frac{\overline{v_{n, o}^{2}}}{\Delta f}=\left|\frac{R}{1+j 2 \pi f R C}\right|^{2} \frac{\overline{i_{n}^{2}}}{\Delta f} \tag{1.36}
\end{equation*}
$$

The capacitor makes a pole at the frequency $f_{0}=\frac{1}{2 \pi R C}$. The PSD is plotted in Figure 1.16 by varying the resistance R.

Fig. 1.16: Spot noise, $\mathrm{C}=10 \mathrm{pF}$
Integrating Eq. (1.36) we calculate the power:

$$
\begin{equation*}
\overline{v_{n, o}^{2}}=\int_{f_{\min }}^{f_{M A X}}\left|\frac{R}{1+j 2 \pi f R C}\right|^{2} \frac{4 k T}{R} d f \tag{1.37}
\end{equation*}
$$

so,

$$
\begin{equation*}
\overline{v_{n, o}^{2}}=\int_{f_{\min }}^{f_{M A X}} \frac{R^{2}}{1+4 \pi^{2} f^{2} R^{2} C^{2}} \frac{4 k T}{R} d f \tag{1.38}
\end{equation*}
$$

which, since

$$
\begin{equation*}
\int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x) \tag{1.39}
\end{equation*}
$$

it reduces to:

$$
\begin{equation*}
P_{n, o}=\left.\frac{2 k T}{\pi C} \tan ^{-1}(2 \pi R C f)\right|_{f_{\min }} ^{f_{M A X}} \tag{1.40}
\end{equation*}
$$

or the more common used RMS value (Figure 1.17):

$$
\begin{equation*}
V_{R M S}=\sqrt{P_{n, o}}=\left.\sqrt{\frac{2 k T}{\pi C} \tan ^{-1}(2 \pi R C f)}\right|_{f_{\min }} ^{f_{M A X}} \tag{1.41}
\end{equation*}
$$

Fig. 1.17: Integrated noise, $\mathrm{C}=10 \mathrm{pF}$
If we consider the full bandwidth Eq. (1.41) reduces to:

$$
\begin{equation*}
\left.V_{R M S}\right|_{f_{\min } \rightarrow 0} ^{f_{M A X} \rightarrow \infty}=\sqrt{\frac{k T}{C}} \tag{1.42}
\end{equation*}
$$

This is an important and curious result that shows us that the $V_{R M S}$ is independent from the resistance as shown in Figure 1.17 where we see that at a $f \gg f_{0}$ the RMS value does not increase more and all the three curves converge at $\sqrt{\frac{k T}{C}}$.

This "curious" result leads us to think that if we want to reduce the Noise we must increase the capacitor, this is completely true if we are interested in the full bandwidth noise, but if we have a Noise specific in a frequency range $f_{\min }<f<f_{M A X}$, some R-C values can be better that others (think to consider the $f_{M A X}=100 \mathrm{kHz}$ in the Figure 1.17) and so we have to design in an efficient way.

Chapter 2

Realizations

Until now we talked about the Noise always referring to the PSD (Power Spectral Density), but in the time domain how is it manifested?

Some white noise sources as thermal and shot have a Gaussian distribution of amplitudes in the time domain, but in general a Noise PSD has any shape and not necessarily constant, so we can not to know how is its time behavior. The only thing we can made is trying to observe directly in the time domain the signal or, if we have a measure of the $P S D$, to make a Realization in time.

During my stage at Infineon Technologies Italia I spent a time period to realize a program in Matlab to make some Realizations in time domain from a PSD measure or a PSD simulation (Noise Analysis) to solve the following problem:

To characterize the stability of an $L D O$ (Linear Voltage Regulator with Low Drop Out) it is convenient to apply a $I_{L O A D}$ step very small (that can be treated as a small signal and at a first approximation it doesn't change the $D C$ operating point of the regulator $I_{L O A D}$, $V_{o, R E G}$) and to measure the output voltage, this is made for "all" operating conditions: $C_{L}, R_{E S R}, I_{L O A D}$, temperature, etc... A voltage regulator may be modeled as a 2 poles system (this is explained in Chapter 3) so its voltage response to a load current step may be oscillatory or monotonic in dependence to the Phase Margin (PM). Measuring the amplitude of the overshoot it's possible to calculate the $P M$, however, the amplitude of the overshoot is small ($m V$ or less) because the load current step is very small and if the regulator presents a lot of Noise ($V_{o, N, R M S}$ may be few $m V$), it's possible that the Noise covers completely the voltage response (see Figure 2.1).

Fig. 2.1: Stability measure in a Noisy LDO
However the output voltage doesn't diverge if the regulator is stable, but measuring the overshoot become impossible because of Noise. The best solution would be to project a Low Noise voltage regulator, but if Noise is not a specific we can design a Noisy LDO and however we would like to measure its stability.

Since it's useless to make the measure of the overshoot, we rely on the Noise simulations and their subsequent realization in time domain. Referring to Figure 2.1, it was established that if the realization in time domain presents a noise band less than $3 m V_{p k-p k}\left(1.5 m V_{p k}\right)$
the stability is assured because the phase margin is surely greater than $20-25^{\circ}$ (the minimum allowed), but if the $V_{p k-p k}$ is greater than $3 m V$ the system may be unstable or may have a too small phase margin.

To make this test we have to be able to make a temporal realization from a $P S D$ simulation.

Let's show first how to obtain the $P S D$ from a signal in time domain, that is an easier and introductory problem, and then we show how to make a temporal realization from a PSD.

2.1 PSD Calculation

We have N samples from a signal in time domain (so Real numbers) $x\left(n T_{s}\right.$) with $n=$ $1,2, \ldots, N$ and $\frac{1}{T_{s}}$ is the sampling frequency, at first we have to calculate the Discrete Fourier Transform (DFT). DFT supposes to receive a periodic repetition of input samples and it returns N values X_{k} (Complex numbers) that are the Fourier Coefficients, in Eq. (2.1):

$$
\begin{equation*}
X(k \Delta f)=\frac{1}{N} \sum_{n=1}^{N} x\left(n T_{s}\right) e^{-j \frac{2 \pi}{N}(n-1)(k-1)} \tag{2.1}
\end{equation*}
$$

$\Delta f=\frac{1}{N T_{s}}$ is the frequency quantum and k is an integer variable. Matlab calculates Eq. (2.1) using an FFT algorithm (Fast Fourier Transform) that is faster that the exact calculation of DFT.

An important thing to know is that, because of the hypothesis that input samples are a periodic repetition, the coefficients calculated refer to a periodic repetition in frequency of the spectrum as in Figure 2.2.

Fig. 2.2: Spectrum repetition
As depicted in Figure 2.2 only the red spectrum brings an information, the others are only a repetition around $k f_{s}$ with $k=\ldots,-2,-1,1,2, \ldots$. To note that if we sample the signal at a rate f_{s}, the maximum frequency at which it's possible to have a correct information is the Nyquist frequency $\frac{f_{s}}{2}$, in agreement with the Nyquist Theorem.

Let's look more closely how are the coefficients give back from Eq. (2.1) (remember that are complex numbers), they are slightly different according that $x\left(n T_{s}\right)$ has an even or odd number N of samples:

- Even

$$
\begin{equation*}
X(1), X(2), \ldots, X\left(\frac{N}{2}\right), X\left(\frac{N}{2}+1\right), X\left(\frac{N}{2}+2\right), \ldots, X(N) \tag{2.2}
\end{equation*}
$$

that they correspond to

$$
\begin{equation*}
X(f=0), X(f=\Delta f), \ldots, X\left(\frac{f_{s}}{2}-\Delta f\right), X\left(\frac{f_{s}}{2}\right), \overline{X\left(\frac{f_{s}}{2}-\Delta f\right)}, \ldots, \overline{X(f=\Delta f)} \tag{2.3}
\end{equation*}
$$

the $\overline{(\cdot)}$ means the complex conjugate.

- Odd

$$
\begin{equation*}
X(1), X(2), \ldots, X\left(\left\lceil\frac{N}{2}\right\rceil\right), X\left(\left\lceil\frac{N}{2}\right\rceil+1\right), \ldots, X(N) \tag{2.4}
\end{equation*}
$$

that they correspond to

$$
\begin{equation*}
X(f=0), X(f=\Delta f), \ldots, X\left(\frac{f_{s}}{2}-\Delta f\right), \overline{X\left(\frac{f_{s}}{2}-\Delta f\right)}, \ldots, \overline{X(f=\Delta f)} \tag{2.5}
\end{equation*}
$$

the $\lceil(\cdot)\rceil$ means the up rounding.
For simplicity we assume N is even, so referring to Relation (2.3), we note that about the first half of coefficients bring the information of the module and phase and the second half don't add information because has the same module and inverted phase. This is because of we are working with real-valued signals in time domain, so they enjoy (in frequency) of the Hermitian property $X(f)=\overline{X(-f)}$. Eq. (2.1) and so Relation (2.3) refers to the Bilateral spectrum $\left(0 \leq f \leq f_{s}\right.$ or equivalently $\left.-f_{s} / 2 \leq f \leq+f_{s} / 2\right)$ but, thanks to Hermitian symmetry, we can use only the Single-side spectrum so $X(1), \ldots, X\left(\frac{N}{2}+1\right)$.

Now we have $\frac{N}{2}+1$ data that dimensionally are not a $P S D$, if for example the temporal signal is a voltage $v(t)$, the $|X(k \Delta f)|$ have the dimension of Volts, so it is necessary a division for a frequency (or a root frequency).

Another fundamental feature is to conserve the power from the passage bilateral to monolateral spectrum, this is simple because the total power of two harmonics is

$$
|X(k \Delta f)|^{2}+|\overline{X(k \Delta f)}|^{2}=A^{2}+A^{2}=2 A^{2}
$$

so we may replace them with a single harmonic of amplitude $\sqrt{2} A$.
PSD values $(N / 2+1$ in total) can be calculated as:

$$
\begin{equation*}
\left.V^{2}(k \Delta f)\right|_{V^{2} / H z}=\frac{2|X(k \Delta f)|^{2}}{\Delta f} \tag{2.6}
\end{equation*}
$$

or the square root value:

$$
\begin{equation*}
\left.V(k \Delta f)\right|_{V / \sqrt{H z}}=\frac{\sqrt{2}|X(k \Delta f)|}{\sqrt{\Delta f}} \tag{2.7}
\end{equation*}
$$

or, in a common logarithmic scale ($R_{r e f}$ is a reference resistance, usually is 50Ω):

$$
\begin{equation*}
\left.V(k \Delta f)\right|_{d B m / H z}=10 \log _{10}\left(\frac{\left.V^{2}(k \Delta f)\right|_{V^{2} / H z}}{R_{r e f} \times 1 m W}\right) \tag{2.8}
\end{equation*}
$$

These Relations (2.6), (2.7) are used for $X(k)$ with $k=2,3, \ldots, N / 2$ because these harmonics are mirrored (bilateral spectrum), otherwise $X(1)$ (DC component) and $X(N / 2+1)$ ($f_{s} / 2$ component) are unique (see Relation (2.3)) so don't need of the 2 and $\sqrt{2}$ factors respectively in Relations (2.6), (2.7).

The frequency axis is discretized in $N / 2+1$ values equispaced by Δf, thus $f=$ $0, \Delta f, \ldots, \frac{f_{s}}{2}-\Delta f, \frac{f_{s}}{2}$.

Total Power may be calculated in this way:

$$
\begin{equation*}
\left.P_{t o t}\right|_{V^{2}}=\left.\Delta f \sum_{k=0}^{N / 2+1} V^{2}(k \Delta f)\right|_{V^{2} / H z} \tag{2.9}
\end{equation*}
$$

ans thus:

$$
\begin{equation*}
\left.V_{R M S}\right|_{V}=\sqrt{\left.P_{t o t}\right|_{V^{2}}} \tag{2.10}
\end{equation*}
$$

An example of PSD calculation is in Appendix A.4.

2.2 Realization in time domain

To realize a signal from the frequency to the time domain, the core of this "transformation" is the Inverse DFT:

$$
\begin{equation*}
x\left(n T_{s}\right)=\sum_{k=1}^{N} X(k \Delta f) e^{+j \frac{2 \pi}{N}(n-1)(k-1)} \tag{2.11}
\end{equation*}
$$

N is the total number of frequency samples.
In general we may have as input a $P S D$ single-sided spectrum (the module) existing in $f_{\text {min }}<f<f_{\text {MAX }}$ with N^{\prime} points equispaced. In most cases, both in simulations or in measures with network analyzer, we have points equispaced in a logarithmic scale, for working the Relation (2.11) needs equispaced points in linear scale with a fixed Δf, so if it is necessary, we must interpolate data to obtain (from N^{\prime} points to M points):

$$
\begin{equation*}
V\left(f_{\min }\right), V\left(f_{\min }+\Delta f\right), \ldots, V\left(f_{M A X}-\Delta f\right), V\left(f_{M A X}\right) \tag{2.12}
\end{equation*}
$$

There are M points equispaced by Δf (M is not chose at random). We will assume $V(k \Delta f)$ have dimension of $V / \sqrt{H z}$, if they derive from a measure with Network Analyzer, probably they could be in $d B m$, so at first we have to make the conversion, considering that:

$$
\begin{equation*}
\left.P(k \Delta f)\right|_{d B m / H z}=\left.P_{\text {measured }}\right|_{d B m}-10 \log _{10} I F B W \tag{2.13}
\end{equation*}
$$

IFBW [Hz] is the Intermediate Frequency Bandwidth to set in the Network Analyzer. And it is also:

$$
\begin{equation*}
\left.P(k \Delta f)\right|_{d B m / H z}=10 \log _{10}\left(\frac{\left.V^{2}(k \Delta f)\right|_{V^{2} / H z}}{R_{i n} \times 1 m W}\right) \tag{2.14}
\end{equation*}
$$

so equating Eq. (2.13) to Eq. (2.14) we may calculate:

$$
\begin{equation*}
\left.V(k \Delta f)\right|_{V / \sqrt{H z}}=10\left(\left.P_{\text {measured }}\right|_{d B m}-10 \log _{10} I F B W+10 \log _{10}\left(R_{i n} \times 1 \mathrm{~mW}\right)\right) / 20 \tag{2.15}
\end{equation*}
$$

Now we have PSD data of a single-sided spectrum, to obtain a correct realization in time domain we have to pass to IFFT Relation (2.11) some coefficients in the form like (2.3) with the Hermitian property and the same unit of measure.

Coefficients in (2.3) are equispaced by Δf in $0 \leq f \leq f_{M A X}$ so it's necessary to add a number $m=\frac{f_{\min }}{\Delta f}$ of points that cover the band $0 \leq f<f_{\min }$, this points must have zero amplitude so they don't add power to the original spectrum. The best choice is to be able to chose the frequency quantum $\Delta f(\Delta f$ must be chosen so that m will be an integer number), in this way m is fixed and also the number M (2.12) is fixed because $M=\frac{f_{M A X}-f_{\min }}{\Delta f}$. This implies that the total number of frequency points for the single-sided spectrum is fixed too because is $m+M=\frac{f_{M A X}}{\Delta f}$.

Now we multiply the values by $\sqrt{\Delta f}$ to ensure the values represent Volts in this case, and to convert them in complex numbers we associate for every value a random phase φ generated from a uniform distribution (see A.2).

$$
\begin{equation*}
X(k \Delta f)=\alpha+j \beta=V(k \Delta f) \times \sqrt{\Delta f} \times \frac{1}{\sqrt{2}} \times e^{j \varphi} \tag{2.16}
\end{equation*}
$$

for $k=2, \ldots, m+M-1$.
The factor $1 / \sqrt{2}$ represents the necessity to split in 2 the power because the coefficients (2.3) represent the double-sided spectrum (the DC harmonic $X(0)$ and the last at $f_{\text {MAX }} X(m+M)$ are unique, so don't need the factor $\left.1 / \sqrt{2}\right)$, see Figure 2.3 for clarity. The last step is thus to mirror values (2.16) with opposite phase to respect Hermitian symmetry.

$$
\begin{equation*}
X(1), X(2), \ldots, X(m+M-1), X(m+M), X(m+M+1), \ldots, X(N=2 m+2 M-2) \tag{2.17}
\end{equation*}
$$

that they correspond to
$X(f=0), X(f=\Delta f), \ldots, X\left(\frac{f_{M A X}}{2}-\Delta f\right), X\left(\frac{f_{M A X}}{2}\right), \overline{X\left(\frac{f_{M A X}}{2}-\Delta f\right)}, \ldots, \overline{X(f=\Delta f)}$
To obtain a real-value signal from Eq. (2.11) we must set $\varphi\left(X\left(f_{M A X} / 2\right)\right)=0$, the phase of $X(0)$ is not relevant because its module is null.

Fig. 2.3: Single-sided to Double-sided spectrum

Let's pass coefficients (2.18) to Eq. (2.11) and we obtain $N N=2 m+2 M-2$ values that represent the amplitude of the signal in time-domain $x\left(n T_{s}\right)$ (in Volts in this case).

To obtain the time axis is simply because there are N points equispaced by the the "sampling time" $t_{s}=\frac{1}{N \Delta f}$.

An example of realization is shown in Appendix A.5.

2.3 Test pk-pk and Comparison

The purpose of the Realization program is to be used for performing the $3 m V_{p k-p k}$ Test as discussed in Chapter 2-Introduction.

The Test is performed by making a Realization $v\left(n T_{s}\right)$ in time domain of an input PSD Single-sided spectrum, then we keep the absolute value $\left|v\left(n T_{s}\right)\right|$ so the signal is only positive (remember that $v\left(n T_{s}\right)$ has zero-mean for construction), we define a threshold $x \%$, if the percentage of values $\left|v\left(n T_{s}\right)\right|$ that exceed $1.5 m V_{z e r o-p k}$ is more than $x \%$, therefore the Test is Failed, otherwise the Test is Successful. Test Failed means that we cannot ensure the testability of the device, Test Successful means that the simulated LDO can be considered stable.

The program Realization + Test is been conceived mainly to be used with the parameterization of Noise Simulations in CADENCE. For default the threshold percentage is set $x \%=95 \%$, in this way the signal, to pass the test, would be remain in the band $\pm 2 \sigma_{v}$, however the failure percentage can be varied. Indeed the $x \%=95 \%$ does not match the $\pm 2 \sigma_{v}$ because the realization $v\left(n T_{s}\right)$ has not a Gaussian distribution of amplitudes because derives from a general $P S D$.

2.3.1 Measurement

As verification of my work and as example I report a measurement on a quite noisy LDO, the setup is explained in A. 2 and also I made some measures with the oscilloscope with the same load conditions of Figure A. 8 and the oscilloscope is simply connected at $V_{\text {out }}$.

Fig. 2.4: Comparison between Measures and Simulations

Let's compare the integrated $V_{R M S}$:

- in the approximately white bandwidth $100 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}$:

Net.Analyzer $-V_{R M S}[\mathrm{mV}]$	Aver.Oscilloscope $-V_{R M S}[\mathrm{mV}]$	Simulation $-V_{R M S}[\mathrm{mV}]$
0.84	0.86	0.91

- and in the full bandwidth $10 H z \leq f \leq 1 M H z$:

Net.Analyzer $-V_{R M S}[\mathrm{mV}]$	Aver.Oscilloscope $-V_{R M S}[\mathrm{mV}]$	Simulation $-V_{R M S}[\mathrm{mV}]$
5.4	5.1	4.5

The resonant peak in relatively high frequency (see Figure 2.4) generates a lot of noise and it derives from the small phase margin in this load condition, this example show us that a good compensation is one of the most important thing to ensure for reaching low noise performance.

Chapter 3

Noise in LDO

3.1 Introduction to LDO

Fig. 3.1: Linear Voltage Regulator
A Voltage Regulator is a common circuit in ICs, it is indispensable in electronics because, as the name says, it regulates and maintains constant the output voltage at a variation of load R_{L}. There are two classes of voltage regulators: Linears and Switching.

Switching regulators are complex to design and the output voltage is constant only in "average" because the waveform is discontinue ("switched") and so is "dirty" of harmonics, but their strength is the high efficiency that in theory could reach the 100%, in practice good values obtained are $90-96 \%$.

Otherwise, Linear regulators are relatively simple to design, have a fast response to a load/line step, and are generally low Noise, the weak point is the low efficiency:

$$
\begin{equation*}
\eta_{\text {Lin-Reg }}=\frac{P_{O U T}}{P_{I N}}=\frac{I_{L O A D} V_{O U T}}{\left(I_{L O A D}+I_{Q}\right) V_{I N}}<\frac{V_{O U T}}{V_{I N}} \tag{3.1}
\end{equation*}
$$

where I_{Q} is the quiescent current that flows to ground but not in the load ($V_{I N}=V_{D D}$ in Figure 3.1).

Thus to maximize the efficiency we would work with $V_{O U T} \approx V_{I N}$, the term $V_{I N}-$ $V_{O U T}=V_{D O}$ is just the drop-out voltage that falls across the pass device $\left(V_{O U T}-V_{I N}=\right.$ $\left|V_{D S}\right|$ of the Power stage in Figure 3.1), the name LDO means Low Drop Out, so a linear regulator with a voltage drop-out of few hundred of $m V$, so their efficiency is quite good.

A Linear Regulator is a negative feedback system, the circuit (Figure 3.1) tends to delete the voltage error

$$
\begin{equation*}
V_{e r r}=\beta_{F} V_{\text {OUT }}-V_{R E F} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

So

$$
\begin{equation*}
V_{O U T}=\frac{1}{\beta_{F}} V_{R E F} \tag{3.3}
\end{equation*}
$$

β_{F} is a scale factor introduced by the Feedback and $V_{R E F}$ is a voltage reference. The power flux (so the $I_{L O A D}$ flux) flows through the power device to the load. Let's give a brief description of the blocks in Figure 3.1:

- BANDGAP: this is the circuit that generates the $V_{R E F}$, it must be precise respect variations of $V_{I N}$ and Temperature, usually is not connected directly to $V_{I N}$ but it is powered by an internal supply. This block produces a lot of Noise and is the most critical block to reach low-Noise performance.
- ERROR AMPLIFIER: this is a single-ended OTA (Operational Transconductance Amplifier) that produces a current proportional to the input voltage error $i_{E A}=$ $g m_{E A} v_{e r r}$, then the current flows in the output resistance and produces a voltage $v_{o u t, E A}=i_{E A} R_{\text {out }, E A}$. The role of this block is to amplify $v_{\text {err }}$ with high gain (this is the core of the circuit), the higher the gain, the smaller will be the static error on $V_{\text {out }}$.
- BUFFER: the buffer has an $A C$ gain close to 1 , its job is to drive the power stage the best possible, so its output should be nearest as possible to the extremes $V_{D D}$ and ground. This to ensure the maximum $V_{G S}$ to the power transistor. Moreover, the buffer output resistance should be the smallest as possible to push in high frequency the pole at the power stage input $f_{\text {pole }}=\frac{1}{2 \pi R_{o, B U F F} C_{i n, P O W}}$ because this is a parasitic pole.
- POWER: the power transistor may be both Bipolar or $M O S$ and also to be N-type or P-type. To design the pass device we have to make some tradeoffs, to reduce the power loss through the pass device $\left(P_{\text {pass }}=\left(I_{o(\max)}+I_{G N D}\right) V_{D O}\right.$ with $V_{D O}=$ $V_{\text {in }}-V_{\text {out }}$) the best choice is a P-type transistor (specially P-MOS), instead to have a fast response at the output it is convenient to use a N-type transistor due to its smaller output resistance. A general comparison is summarized in Table 3.1, the $\sqrt{ }$ symbol represents the best choice.

	N-type Power Pass Devices		P-type Power Pass Devices	
Parameter	BJT	MOS	BJT	MOS
$V_{I N(\min)}$	$V_{O U T}+V_{D O}$	$V_{O U T}+V_{D O}$	$V_{B E}+V_{C E(s a t)} \sqrt{ }$	$V_{G S}+V_{D S(s a t)}$
$V_{D O}$	$V_{B E}+V_{C E(s a t)}$	$V_{G S}+V_{D S(s a t)}$	$V_{C E(s a t)} \sqrt{ }$	$V_{D S(s a t)}$
$I_{G N D}$	$0 A \sqrt{ }$	$0 A \sqrt{ }$	$I_{o(\max)} / \beta$	$0 A \sqrt{ }$
$I_{o(\max)}$	Highest $\sqrt{ }$	Low	High	Moderate
R_{o}	$1 / g m_{B J T} \sqrt{ }$	$1 / g m_{M O S}$	r_{o}	$r_{d s}$

Tab. 3.1: Comparison power pass devices

- FEEDBACK: the most common element to sense the output voltage is a voltage divider as in Figure 3.2:

$$
\begin{equation*}
V_{F B}=\frac{R_{2}}{R_{1}+R_{2}} V_{O U T} \tag{3.4}
\end{equation*}
$$

and β_{F} is the feedback factor

$$
\begin{equation*}
\beta_{F}=\frac{R_{2}}{R_{1}+R_{2}} \tag{3.5}
\end{equation*}
$$

To design this simple divider we may choose the two resistors to set the right $V_{O U T}$ in Eq. 3.4 ($V_{R E F}$ is known), instead the value of the resistors fixes the feedback current

$$
\begin{equation*}
I_{F B}=\frac{V_{O U T}}{R_{1}+R_{2}} \tag{3.6}
\end{equation*}
$$

the smaller $I_{F B}$ is, the better is in terms of global efficiency.

Fig. 3.2: Sensing block
Regarding to C_{L} and its parasitic $R_{E S R}$ (Figure 3.1), the value of C_{L} is chosen to guarantee the stability of the LDO and to have a desired transient response to a load/line step (velocity response, small over/undershoot, etc..). Usually a minimum value of $C_{L(\min)}$ and a maximum value of $R_{E S R(\max)}$ are specified to ensure the stability.

3.1.1 Steady-state performance

Some Static Regulating performance of a linear regulator are:

- LOAD REGULATION: this static parameter describes how much is the $D C$ variation (steady-state) of the output voltage respect to a load current variation, that is:

$$
\begin{equation*}
L D R=R_{L D R}=\frac{\Delta V_{O U T}}{\Delta I_{L O A D}}=R_{o u t(R E G)}+\left.R_{\text {parasitic }} \approx \frac{R_{O L}}{1+\beta A_{O L}}\right|_{D C, I_{L O A D}} \tag{3.7}
\end{equation*}
$$

where $R_{L D R}$ is the load-regulation resistance calculated in steady-state (DC) and dependent from the load current $I_{L O A D}, R_{\text {out (REG) }}$ the closed loop output resistance of the regulator, $R_{P A R A S I T I C}$ the bonding and the $P C B$ wire parasitic resistance, $R_{O L}$ the open loop output resistance and the $A_{O L}$ the open loop gain of the regulator. The load regulation has the dimension of a resistance and smaller is, the better is.

- LINE REGULATION: this is also a static parameter and it refers to output voltage variations arising from $D C$ changes in the input supply, that is:

$$
\begin{equation*}
L N R=\left.A_{i n}\right|_{D C}=\left.\frac{\Delta V_{O U T}}{\Delta V_{I N}}\right|_{D C} \tag{3.8}
\end{equation*}
$$

$L N R$ is the DC supply gain. In general the supply gain $A_{i n}$ is:

$$
\begin{align*}
A_{i n}(f) & =A_{\text {in }(R E G)}+A_{\text {in }(R E F)} A_{C L} \\
& =\left.\frac{\Delta V_{O U T}}{\Delta V_{I N(R E G)}}\right|_{\Delta V_{R E F}=0}(f)+\left.\frac{\Delta V_{R E F}}{\Delta V_{I N(R E F)}} A_{C L}\right|_{\Delta V_{I N(R E G)}=0}(f) \tag{3.9}
\end{align*}
$$

where $A_{C L}$ is the closed-loop gain of the regulator. Eq. 3.9 could be calculated with superposition principle with respect to Figure 3.3. To correctly have a good voltage regulation the supply gain may be the smaller as possible.

Fig. 3.3: Line regulation scheme
Usually in datasheets, instead of $A_{\text {in }}$, it's possible to find the PSRR (Power Supply Ripple Rejection, sometimes wrong called Power Supply Rejection Ratio):

$$
\begin{equation*}
\operatorname{PSRR}(f)=\frac{1}{A_{i n}(f)} \tag{3.10}
\end{equation*}
$$

so the $P S R R(f)$ must be the highest as possible. The line regulation is simply

$$
L N R=\frac{1}{P S R R(0)}
$$

3.1.2 AC analysis

The $A C$ study of the regulator is important for the analysis of the Stability, we may model the regulator as in Figure 3.4.

Fig. 3.4: LDO's AC model

In Figure 3.4 all components are of easy intuition, otherwise the capacitor C_{P} is the sum of more components $C_{P}=C_{\text {pass-transistor }}+C_{i n-L O A D}, C_{i n-L O A D}$ is the input capacitor of the load (every real load has its input capacitor) that is in parallel with R_{L}.

To study the stability we refer at the Loop-Gain, to calculate it the best way is to use the Middlebrook Voltage injection ([5]) breaking the loop as in Figure 3.4.

At low frequency (capacitors open) the Loop-gain T is

$$
\begin{equation*}
\left.T\right|_{D C}=g m_{E A} R_{o, E A} \times g m_{P}\left(R_{P} / / R_{L} / /\left(R_{1}+R_{2}\right)\right) \times \frac{R_{2}}{R_{1}+R_{2}} \tag{3.11}
\end{equation*}
$$

and the general calculation in frequency leads to

$$
\begin{equation*}
T(f)=\left.T\right|_{D C} \frac{\left(1+\frac{s}{2 \pi f_{z_{E A}}}\right)\left(1+\frac{s}{2 \pi f_{z_{E S R}}}\right)}{\left(1+\frac{s}{2 \pi f_{E A}}\right)\left(1+\frac{s}{2 \pi f_{o}}\right)\left[\left(1+\frac{s}{2 \pi f_{1}}\right)\left(1+\frac{s}{2 \pi f_{2}}\right)\right]} \tag{3.12}
\end{equation*}
$$

where:

$$
\begin{gather*}
f_{z_{E A}}=\frac{1}{2 \pi R_{z} C_{E A}} \tag{3.13}\\
f_{z_{E S R}}=\frac{1}{2 \pi R_{E S R} C_{L}} \tag{3.14}\\
f_{E A}=\frac{1}{2 \pi R_{o, E A} C_{E A}} \tag{3.15}\\
f_{o} \cong \frac{1}{2 \pi\left(R_{o, P} / / R_{L}\right) C_{L}} \tag{3.16}
\end{gather*}
$$

and the terms in [...] are two of the most important parasitic poles (there are many others):

$$
\begin{align*}
f_{1} & =\frac{1}{2 \pi R_{o, B U F} C_{i n, P}} \tag{3.17}\\
f_{2} & =\frac{1}{2 \pi\left(R_{o, P} / / R_{L}\right) C_{P}} \tag{3.18}
\end{align*}
$$

These pole at f_{1} is usually the lowest frequency parasitic pole because $C_{i n, P}$ is a quite big capacitor $C_{i n, P}=C_{g s}+A_{p a s s} C_{g d}$, the pass transistor is big because it has to supply a high current with a low drop-out, so even the parasitic capacitors are big. To ensure this pole is pushed in high frequency the buffer must have a quite low $R_{o, B U F}$, this requires a challenging design.

If we are able to push parasitic poles in high frequency (at least over few $M H z$), we can consider the $L D O$ like 2 poles $\operatorname{system}\left(f_{E A}, f_{o}\right)$. We have the full control on the error amplifier pole $f_{E A}$, but the output pole f_{o} can vary of several decades because the value of C_{L} can vary of orders of magnitude, this because is the final user (and not the designer) that choose the value of C_{L} according to various needs (temporal response, over/undershoot, etc.). Usually is indicated the minimum value of C_{L} that ensure the stability, the user may choose any C_{L} greater that $C_{L(\min)}$ (usually $C_{L(\min)}$ is few μF), anyway this is a big capacitor so there is associated a $R_{E S R}$, its value however is highly unpredictable and varies from few tens of $m \Omega$ to Ω.

From the designer point of view, to ensure the stability for all possible C_{L} and I_{L} is a challenge and the dominant pole compensation can be made with an Internal compensation ($f_{E A}$ is the dominant pole) or with an External compensation (f_{o} is the dominant pole) or a mix. A possible compensation choice is shown in Figure 3.5, where the first pole is the error amplifier pole, then has been created a zero in the error amplifier and the second pole that ensure the crossing (at $0 d B$) is the output pole. The zero of the $E S R$ can help to save the phase but its position is highly unpredictable. In Figure 3.5 are shown two cases of output capacitor $C_{L}=1 \mu F$ and $C_{L}=100 \mu F$ to better understand how changes the compensation.

To improve the compensation we can't change appreciably the $D C$ value of the loop gain because this impacts on the static regulation error ε_{0} :

$$
\begin{equation*}
\varepsilon_{0} \approx \frac{1}{T_{0}} \tag{3.19}
\end{equation*}
$$

and we would like it to be the smallest as possible.

Fig. 3.5: Loop Gain proposed compensation

LDO quasi-ideal circuit for AC study

To study the STABILITY we may use a quasi-ideal model in Cadence as in Figure 3.6.
The Error Amplifier is designed to ensure a compensation like that of Figure 3.5 so the $f_{E A} \approx 40 H z$ and $f_{z_{E A}} \approx 4 k H z$, the output pole at f_{o} depends on the I_{L} and C_{L} and I used a $E S R=100 \mathrm{~m} \Omega$. The most problematic parasitic pole at the gate of the pass-device is at about $f_{1} \approx 5 M H z$ and the other parasitic pole at f_{2} is at a higher frequency, we must bring in mind that this is a quasi-ideal circuit so it doesn't describe all parasitic poles, we can assume that in the real circuit there are some parasitic poles close at 10 MHz so the Loop-Gain can not cross the $0 d B$ at a frequency close to $1 M H z$. The voltage reference is $V_{R E F}=1.2 \mathrm{~V}$ and the voltage divider $R_{1}=63 k \Omega, R_{2}=20 k \Omega$ is set to regulate $V_{o}=5 \mathrm{~V}$. It will be explained further what is the effect of the Bypass capacitor C_{B}.

The Loop-Gain module and phase is shown by varying the $R_{L}\left(I_{L}=\frac{5[V]}{R_{L}}\right)$ and C_{L} :

Fig. 3.6: Quasi-ideal LDO circuit

Fig. 3.7: $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=0$

- R_{L}

The solid lines in Figure 3.7 are the Loop-Gain Module at respectively $I_{L}=1 \mathrm{~A}, 100 \mathrm{~mA}, 10 \mathrm{~mA}$ and the dotted lines are the Phase, the resulting Phase margin is in Tab. 3.2.

- C_{L}

The solid lines in Figure 3.8 are the Loop-Gain Module at respectively $C_{L}=1 \mu F, 10 \mu F, 100 \mu F$ and the dotted lines are the Phase, the resulting Phase margin is in Tab. 3.3.

Note that the ESR is fixed in this case, in a real capacitor the ESR increases as the capacitor increases (almost in a common capacitor, not in a high-performance one) so this may help to save the phase and slightly increase the Phase margin.

$R_{L}[\Omega]$	$P M[\mathrm{deg}]$
5	114
50	93
500	77

Tab. 3.2: Phase margin, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=0$

Fig. 3.8: $I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=0$

$C_{L}[\mu F]$	$P M[\mathrm{deg}]$
1	93
10	65
100	30

Tab. 3.3: Phase margin, $I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=0$

3.2 Noise Model LDO

To develop an LDO's Noise model we refer to the block scheme in Figure 3.1, every block produce some noise that we refer at its input as equivalent input noise, the proposed model is depicted in Figure 3.9.

The Loop-gain T is:

$$
\begin{equation*}
T(s)=G_{A} Z_{A} G_{P} Z_{o} \beta_{F} \tag{3.20}
\end{equation*}
$$

with $Z_{A}=Z_{A}(s)$ and $Z_{o}=Z_{o}(s)$ that contains poles and zeros as in Eq. 3.12.
The transfer functions (TF) are:

$$
\begin{equation*}
\frac{V_{N, \text { out }}}{V_{N, B G}}=\frac{V_{N, \text { out }}}{V_{N, E A}}=\frac{G_{A} Z_{A} G_{P} Z_{o}}{1+T(s)} \tag{3.21}
\end{equation*}
$$

Fig. 3.9: Noise model LDO

$$
\begin{gather*}
\frac{V_{N, \text { out }}}{V_{N, B U F}}=\frac{V_{N, \text { out }}}{V_{N, P O W}}=\frac{G_{P} Z_{o}}{1+T(s)} \tag{3.22}\\
\frac{V_{N, \text { out }}}{V_{N, F B}}=-\frac{G_{A} Z_{A} G_{P} Z_{o} \beta_{F}}{1+T(s)} \tag{3.23}
\end{gather*}
$$

these transfer functions have to be intended for $P S D$ quantities (i.e. $\frac{V_{N, o u t} / \sqrt{H z}}{V_{N, X} / \sqrt{H z}}$).
If we consider to be in the band of the regulator $(|T| \gg 1)$, the transfer functions reduce to:

$$
\begin{gather*}
\frac{V_{N, \text { out }}}{V_{N, B G}}=\frac{V_{N, \text { out }}}{V_{N, E A}} \approx \frac{1}{\beta_{F}} \tag{3.24}\\
\frac{V_{N, \text { out }}}{V_{N, B U F}}=\frac{V_{N, o u t}}{V_{N, P O W}} \approx \frac{1}{G_{A} Z_{A} \beta_{F}} \ll 1 \tag{3.25}\\
\frac{V_{N, \text { out }}}{V_{N, F B}} \approx-1 \tag{3.26}
\end{gather*}
$$

as we can see the $V_{N, P O W}$ and $V_{N, B U F}$ have a poor effect because are attenuated from the regulation loop, and the strongest impact is from $V_{N, B G}$ and $V_{N, E A}$ because they are injected at the input of the loop and "see" the $T F \frac{1}{\beta_{F}}>1$.

Now we understand the importance of a good compensation to avoid a resonance peak that arises a lot the $1 / \beta_{F}$ factor and it increases the input noise (an example is in Figure 2.4). To avoid the resonance peak the phase margin would be greater than about 60° and is difficult to guarantee this for all the operative conditions of the LDO.

Regarding the $V_{N, F B}$ the Eq. 3.23 is based on the hypothesis that the feedback block is a VCVS (Voltage Controlled Voltage Source), this is true for a high impedance feedback like an $A D C+D A C$ but this is not true for the classical voltage divider, so it's correct to calculate directly the voltage divider Noise regardless Eq. 3.23.

Aim of the Thesis The aim of this work is to study the feasibility of a Low Noise LDO with a $V_{N, \text { out }} \leq 20 \mu V_{R M S}$ integrated output Noise in the bandwidth $10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}$.

We have just seen that the Noise produced by the power and the buffer is negligible, so the output integrated noise is roughly

$$
\begin{equation*}
V_{N, o u t} \approx \sqrt{V_{N, o u t(B G)}^{2}+V_{N, o u t(E A)}^{2}+V_{N, o u t(F B)}^{2}} \tag{3.27}
\end{equation*}
$$

where, in this case, $V_{N, o u t(B G)}, V_{N, o u t(E A)}, V_{N, o u t(F B)}$ are intended as the Noise, due to these blocks, measured at the output of the regulator. Carefully, we have to partition the Noise budget at the three blocks to reach the target of $V_{N, \text { out }} \leq 20 \mu V_{R M S}$.

3.2.1 Voltage Divider Noise

The Noise of the classical voltage divider feedback is shown in Figure 3.2, in the band of the regulator $(|T| \gg 1)$, it is:

$$
\begin{equation*}
\frac{\overline{V_{N, o u t}^{2}}}{\Delta f}=\frac{\overline{V_{N, R_{1}}^{2}}}{\Delta f}+\left(\frac{R_{1}}{R_{2}}\right)^{2} \frac{\overline{V_{N, R_{2}}^{2}}}{\Delta f} \tag{3.28}
\end{equation*}
$$

that, since $\beta_{F}=\frac{R_{2}}{R_{1}+R_{2}}$, it reduces to

$$
\begin{equation*}
\frac{\overline{V_{N, \text { out }}^{2}}}{\Delta f}=\frac{1}{\beta_{F}} \frac{\overline{V_{N, R_{1}}^{2}}}{\Delta f} \tag{3.29}
\end{equation*}
$$

the complete calculation is in Appendix A.6.

This Noise is Thermal resistor noise so it's white in the band of the regulator and decreases with the loop-gain when this is smaller than one (so the regulator ceases to regulate), to understand this is helpful to compare Figure 3.10 vs Figure 3.7 and Figure 3.11 vs Figure 3.8.

Fig. 3.10: Feedback Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, C_{L}=1 \mu F, E S R=100 m \Omega, C_{B}=0$
We can see the peak due to the low phase margin, that increase the Noise, fortunately this happens when the crossing frequency of the loop-gain is quite low respect $100 k H z$ so the integrated Noise is acceptable. Instead, when the loop-gain bandwidth is comparable with 100 kHz the integrated Noise is too high respect the available budget of $20 \mu V_{R M S}$. Consider a normal load condition $I_{L}=100 \mathrm{~mA}$ and $C_{L}=1 \mu F$ (the yellow curve in

Fig. 3.11: Feedback Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=0$

Figure 3.10), the integrated Noise at the frequency limit $100 k H z$ is about $15 \mu V_{R M S}$, this is too much, the Noise (spot and integrated) scales with resistance:

$$
\begin{equation*}
V_{N, \text { out }}^{2} \propto R \tag{3.30}
\end{equation*}
$$

thus

$$
\begin{equation*}
V_{N, \text { out }} \propto \sqrt{R} \tag{3.31}
\end{equation*}
$$

this implies that if resistors R_{1} and R_{2} increase of 10 so the output noise increases of $\sqrt{10} \approx 3.16$, in this case the Noise will increase as in Tab. 3.4.

$R_{1}[\Omega]$	$R_{2}[\Omega]$	$V_{N, \text { out }}[\mu V]$
63 k	20 k	15
630 k	200 k	47
6.3 M	2 M	150

Tab. 3.4: Integrated Noise @100kHz, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=0$
To bypass this problem we have to create a pole at a frequency $f \ll 100 k H z$ in the transfer function (Spot Noise figure), this is made by the connection of a Bypass capacitor C_{B} in parallel to R_{1} as in Figure 3.6. This capacitor creates a pole at the frequency:

$$
\begin{equation*}
f_{B}=\frac{1}{2 \pi C_{B} R_{1}} \tag{3.32}
\end{equation*}
$$

The worst case for the pole f_{B} (so when it is at the higher frequency) is with $R_{1}=63 k \Omega$ and $R_{2}=20 k \Omega$, in Figure 3.12 is shown the effect at the variation of C_{B}.

From Figure 3.12 we may see that acceptable values for C_{B} are $C_{B} \geq 1 n F$, this requires that C_{B} should be an external capacitor, unfortunately this is a bad notice for an integrated LDO but this is necessary for the Noise requirement.

Fig. 3.12: Feedback Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=$ $100 \mathrm{~m} \Omega$

Increasing the divider resistances the Noise produced by themselves is increased, but the frequency of pole is moved to a lower frequency as in Figure 3.13.

Fig. 3.13: Feedback Noise, $I_{L}=100 \mathrm{~m} A, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$

Seeing Figure 3.13, it seems that the integrated Noise saturates at about $4 \mu V_{R M S}$, this is true because, at least until to $100 k H z$, the Noise transfer function has a one pole shaping like the simply $R-C$ example in Paragraph. 1.4. So when the maximum integration frequency (in this case 100 kHz) is at least a decade greater than f_{B}, the total
integrated voltage $V_{R M S}$ saturates (Eq. 1.42) at:

$$
\begin{equation*}
V_{N, \text { out }_{R M S}}=\sqrt{\frac{1}{\beta_{F}} \frac{k T}{C_{B}}} \tag{3.33}
\end{equation*}
$$

Therefore the integrated Noise is determined by the $C_{B}, C_{B}=1 n F$ leads to a $V_{N, \text { out }}=$ $4.15 \mu V_{R M S}$ and $C_{B}=10 n F$ leads to a $V_{N, \text { out }}=1.31 \mu V_{R M S}$.

3.2.2 Load Resistance Noise

The Noise of the Load depends at first from the load nature, if we supply a real circuit it absorbs a current but injects some Noise. For example if the load is a physical resistance, it injects its noise in the output node. From the load point of view the circuit is presented as in Figure 3.14.

Fig. 3.14: $R_{L O A D}$ Noise circuit
It is a voltage divider between R_{L} and $R_{o, C L}$, so

$$
\begin{equation*}
\frac{V_{N, o}}{\sqrt{\Delta f}}=\frac{R_{o, C L}}{R_{o, C L}+R_{L}} \frac{V_{N, R_{L}}}{\sqrt{\Delta f}} \tag{3.34}
\end{equation*}
$$

$R_{o, C L}$ is the closed-loop output resistance of the regulator, it varies in frequency and it is dependent from the load current I_{L}. To calculate it with an explicit calculation using the circuit in Figure 3.4 it's important to note that we have to remove R_{L} and we have to maintain the information on the I_{L} by the insertion of a DC current generator as in Figure 3.15 .

Fig. 3.15: I_{L} current generator for the calculation of $R_{o, C L}$

An easier way to calculate $R_{o, C L}$ is to observe that a linear voltage regulator with a voltage reference is a feedback system that tends to simulate an ideal $V C V S$ block
(Voltage Controlled Voltage Source), the output resistance of a voltage generator is ideally null, so the output resistance of the regulator is a very small quantity:

$$
\begin{equation*}
\left.R_{o, C L}(s)\right|_{I_{L}}=\left.\frac{R_{o, O L}(s)}{1+T(s)}\right|_{I_{L}} \tag{3.35}
\end{equation*}
$$

It's the open-loop output resistance $R_{o, O L}=R_{P} / /\left(R_{1}+R_{2}\right) \approx R_{P}$ (at low frequency) reduced by the Loop-Gain, at high frequency the resistances in parallel at the output node tends to the $E S R$ of the $C_{L} . R_{o, C L}(f)$ is shown in Figure 3.16.

Fig. 3.16: $R_{o, C L}(f)[\Omega], C_{L}=1 \mu F, E S R=100 m \Omega, C_{B}=1 n F$
Back to Noise, at low frequency Eq. 3.34 predicts that the Noise is strongly reduced because $R_{o, C L} \ll R_{L}$ and at high frequency too is strongly reduced because $R_{o, C L} \approx$ $R_{E S R} \ll R_{L}$, this is depicted in Figure 3.17.

The integrated noise at 100 kHz as we can see in Figure 3.17 is always very small for our purpose (about $5 n V_{R M S}$), so it can be neglected.

Fig. 3.17: R_{L} Noise , $C_{L}=1 \mu F, E S R=100 m \Omega, C_{B}=1 n F$

3.3 Methods To Reduce Noise

3.3.1 Bypass Capacitor

The Bypass capacitor not only reduces the resistor divider Noise, but it acts also on the input Noise (Reference and Error Amplifier) that is the dominant Noise. Let's calculate the transfer function from input to output using the circuit depicted in Figure 3.18.

Fig. 3.18: Simplified AC model to show C_{B} impact on the circuit

From the input "point of view" $\left(V_{N, i n}\right)$ this is a non-inverting amplifier with the following transfer function:

$$
\begin{equation*}
\frac{V_{N, \text { out }}}{V_{N, \text { in }}}(s)=\frac{V_{\text {out }}}{V_{\text {in }}}(s)=\frac{1}{\beta_{F}(s)}=1+\frac{Z_{1}(s)}{Z_{2}(s)} \tag{3.36}
\end{equation*}
$$

where $Z_{2}(s)=R_{2}$ and $Z_{1}(s)=R_{1} / / \frac{1}{s C_{B}}=\frac{R_{1}}{1+s R_{1} C_{B}}$ so Eq. 3.36 reduces to Eq. 3.37:

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}(s)=\left(1+\frac{R_{1}}{R_{2}}\right)\left(\frac{1+s C_{B}\left(R_{1} / / R_{2}\right)}{1+s C_{B} R_{1}}\right) \tag{3.37}
\end{equation*}
$$

At low frequency the input Noise is amplified by $\frac{1}{\beta_{F_{0}}}=1+\frac{R_{1}}{R_{2}}$, to avoid to amplify input Noise over the full bandwidth the C_{B} is necessary to reduce to a unitary gain, Eq. 3.37 is depicted in Figure 3.19 where $f_{p_{F B}}=\frac{1}{2 \pi C_{B}\left(R_{1} / / R_{2}\right)}$ and $f_{z_{F B}}=\frac{1}{2 \pi C_{B} R_{1}}$.

Fig. 3.19: MOS Noise model
Assuming the input Noise is white, to avoid an appreciably increase at the Noise due to $1 / \beta_{F}$, the gain must remain unitary at least in the last decade of interest $10 \mathrm{kHz}-100 \mathrm{kHz}$, because the integrated power Pow $=K \times\left(1 / \beta_{F}\right)^{2} \times\left(f_{\max }-f_{\min }\right) \approx K \times 1 \times 100 \mathrm{kHz}$.

The input transfer function remains $\frac{V_{\text {out }}}{V_{\text {in }}}(s)=\frac{1}{\beta_{F}(s)}$ in the regulation band $(|T| \gg 1$, $|T|=1$ at the crossing frequency f_{c}), then inevitably the gain falls to zero with the loopgain. This reduction may help to reduce input Noise if $f_{c}<100 \mathrm{kHz}$ but this happens only with high C_{L} or at low I_{L}, so usually this doesn't help.

The worst case to design C_{B} is when R_{1}, R_{2} are the smallest (we consider the minimum is tens of $k \Omega$) because C_{B} would be bigger. An example is reported in Figure 3.20.

In the real case of Noise shaping in Figure 3.20, an interesting parameter to consider to choose C_{B} is:

$$
\begin{equation*}
\alpha=\frac{\left.V_{N, \text { out-integrated, } R M S}\right|_{C_{B}}}{V_{N, \text { in-integrated, } R M S}} \tag{3.38}
\end{equation*}
$$

with $V_{N, \text { in-integrated, } R M S}$ is the input integrated Noise in $10 \mathrm{~Hz}-100 \mathrm{kHz}$ considering a white input Noise, and $\left.V_{N, \text { out-integrated, } R M S}\right|_{C_{B}}$ is the integrated Noise at the output, depending on the C_{B} value.

If C_{B} is big enough, we should transfer the input Noise to output without amplification and the $\alpha-$ ratio ≈ 1. From Tab. 3.6 optimal values of C_{B} are few $n F$.

Fig. 3.20: Effect of C_{B} on the spot and integrated Noise. $V_{i, N} / \sqrt{\Delta f}=63 n V / \sqrt{H z}$, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, I_{L}=100 \mathrm{~mA}$

$C_{B}[\mathrm{~F}]$	α
0	3.0
100 p	2.1
1 n	1.2
10 n	1.0

Tab. 3.5: C_{B} effect, comparison

The connection of C_{B} also modifies the Loop-Gain (using the circuit depicted in Figure 3.18 and considering $R_{o}, R_{L} \ll R_{1}, R_{2}$):

$$
\begin{equation*}
T(s) \approx A(s) \frac{R_{L}}{R_{o}+R_{L}} \beta_{F}(s) \tag{3.39}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta_{F}(s)=\left(\frac{R_{2}}{R_{2}+R_{1}}\right)\left(\frac{1+s C_{B} R_{1}}{1+s C_{B}\left(R_{1} / / R_{2}\right.}\right) \tag{3.40}
\end{equation*}
$$

The effects on the loop-gain is shown in Figure 3.21 (compare with Figure 3.5).
The Loop-Gain may cut the frequency-axis at a higher frequency depending from the amplitude of $\beta_{F_{0}}=\frac{R_{2}}{R_{2}+R_{1}}$, this may lead to instability because parasitic poles are nearest the cutting frequency f_{c} (above all parasitic poles are around the $M H z$). This problem is independent from the value of C_{B}, but depends only from $\beta_{F_{0}}$ as depicted in Figure 3.22.

The stability is also checked in Figure 3.23 and Figure 3.24 with a common choice of $C_{B}=1 n F$ and at the variation of load conditions.

Fig. 3.21: Effect of C_{B} on the loop gain, theory

Fig. 3.22: Effect of C_{B} on the loop gain, simulation

Fig. 3.23: Loop-Gain module and phase, $I_{L}=100 \mathrm{~m} A, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$

Fig. 3.24: Loop-Gain module and phase, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F$

3.3.2 Active Feedback

The input to output Noise transfer function is $\frac{1}{\beta_{F}}$, if we use as feedback a simple voltage divider $\frac{1}{\beta_{F}} \geq 1$, so at the best we can transfer unitary the input Noise at output. If we use an active feedback with $\beta_{F}>1$ at certain frequencies, $\frac{1}{\beta_{F}}<1$ so we can reduce the input Noise contribution. For our purpose an appropriate active feedback could be that in Figure 3.25.

Fig. 3.25: Active Feedback proposed
The first voltage divider $R_{1}-R_{2}$ sets the $\beta_{F}(0)$, then in the band $1 \mathrm{kHz}-100 \mathrm{kHz}$ the feedback factor is $\beta_{F} \approx 1+\frac{R_{3}}{R_{4}}$. The complete calculation leads to:

$$
\begin{equation*}
\frac{V_{x}}{V_{\text {out }}}(s)=\left(\frac{R_{2}}{R_{2}+R_{1}}\right)\left(\frac{1+s C_{B} R_{1}}{1+s C_{B}\left(R_{1} / / R_{2}\right.}\right) \tag{3.41}
\end{equation*}
$$

$$
\begin{equation*}
\frac{V_{F B}}{V_{x}}(s)=1+\frac{R_{3} / / \frac{1}{s C_{3}}}{R_{4}+\frac{1}{s C_{4}}} \tag{3.42}
\end{equation*}
$$

where in the Eq. 3.42, at $\mathrm{DC} \frac{V_{F B}}{V_{x}}(0)=1$ and it's the same in high frequency. At intermediate frequency, when C_{3} can be considered open and C_{4} can be considered a short, $\frac{V_{F B}}{V_{x}} \approx 1+\frac{R_{3}}{R_{4}}$. If the "gain" band is quite wide there are 2 poles and 2 zeros in the transfer function $\frac{V_{F B}}{V_{x}}(s)$:

$$
\begin{align*}
f_{z_{1}} & \approx \frac{1}{2 \pi R_{3} C_{4}} \tag{3.43}\\
f_{z_{2}} & \approx \frac{1}{2 \pi R_{4} C_{3}} \tag{3.44}\\
f_{p_{1}} & =\frac{1}{2 \pi R_{4} C_{4}} \tag{3.45}\\
f_{p_{2}} & =\frac{1}{2 \pi R_{3} C_{3}} \tag{3.46}
\end{align*}
$$

Fig. 3.26: Voltage gain Feedback, $R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F, R_{1}=63 k \Omega$, $R_{2}=20 k \Omega, C_{B}=1 n F$

The total feedback transfer function is $\frac{V_{F B}}{V_{\text {out }}}(s)=\frac{V_{F B}}{V_{x}}(s) \times \frac{V_{x}}{V_{\text {out }}}(s)$, it's shown in Figure 3.26 by varying the gain (at high frequency, up to the $M H z$, the feedback transfer function decreases because the feedback loop-gain has crossing the unitary gain). The general stability of the LDO and that of the feedback loop are studied in Appendix. A.7.

When the feedback gain is $1+\frac{R_{3}}{R_{4}}=11$ between $1 \mathrm{kHz}-100 \mathrm{kHz}$, the input Noise is decreased of theoretically $\frac{V_{N, o u t}}{V_{N, i n}}=\frac{1}{11}$ (in the hypothesis that input Noise is white) as depicted in Figure 3.27.

Fig. 3.27: Output Noise due to Input Noise $V_{i, N} / \sqrt{\Delta f}=48 n V / \sqrt{H z}, I_{L}=100 \mathrm{~mA}$, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$

Indeed the reduction is smaller and is summarized by the $\alpha-$ ratio.

$$
\begin{equation*}
\alpha=\frac{\left.V_{N, \text { out-integrated }, R M S}\right|_{A_{v(F B)}}}{V_{N, \text { in-integrated }, R M S}} \tag{3.47}
\end{equation*}
$$

$V_{N, i n}$ is considered a white Noise, $A_{v, F B}$ is the feedback gain in the gain band $1 \mathrm{kHz}-$ 100 kHz and the integration band of Eq. 3.47 is $10 \mathrm{~Hz}-100 \mathrm{kHz}$.

$A_{v, F B}$	α
11	0.19
6	0.25
3.5	0.37

Tab. 3.6: Feedback gain effect, comparison
However the active feedback generates Noise too, the calculation of R_{3}, R_{4} and $E A(F B)$ Noise is made in Appendix. A. 7 , and R_{1} and R_{2} Noise remains the same as Appendix. A. 6 . All this contributions, if added, they produce the total feedback Noise of Figure 3.28.

So the overall output integrated Noise is:

$$
\begin{equation*}
\left.V_{N, \text { out-integrated }, R M S}\right|_{A_{v(F B)}}=\sqrt{V_{N, F B-\text { integrated }, R M S}^{2}+\alpha^{2} V_{N, \text { in-integrated }, R M S}^{2}} \tag{3.48}
\end{equation*}
$$

Fig. 3.28: Output Noise due to Active Feedback: $V_{i, N_{E A(F B)}} / \sqrt{\Delta f}=31.5 n V / \sqrt{H z}, R_{4}=$ $10 / 20 / 40 k \Omega, R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F, R_{1}=630 k \Omega, R_{2}=200 k \Omega, C_{B}=1 n F$

The very interesting curves to observe it's how vary the Eq. 3.48 at the varying of $V_{N, \text { in-integrated, } R M S}$, this is shown in Figure 3.29.

Fig. 3.29: Total output Noise with active feedback, $V_{N, F B-\text { integrated }, R M S}=12 \mu \mathrm{~V}$
The use of an active feedback may be an interesting choice to reduce the input Noise
(the most part is from the reference), the effort is above all to guarantee the stability of the main loop and the requirement of an external $C_{4}(n F$ to tens of $n F)$ that is not good for a fully integrated regulator.

3.3.3 Output Nested Feedback

In order to decrease at a lower frequency the transfer function $\frac{V_{N, \text { out }}}{V_{N, i n}}$ we can act on the Loop-Gain, pushing at a very low frequency the dominant pole of the Loop-gain, thus the overall band of the regulator is very poor (the crossing frequency f_{c} is in low frequency) and output Noise decreases early in frequency.

To set this pole we may use a Miller compensation as in Figure 3.30.

Fig. 3.30: Output nested Loop
The capacitor C_{c} creates a new negative feedback path (nested loop) that acts as Miller compensation of the Error Amplifier, so in this case of compensation, regarding Figure 3.4, $C_{E A}$ and R_{z} are not needed. Thanks to the Miller theorem (Appendix. A.8) at the output node of the Error Amplifier we create a pole at a frequency very low

$$
\begin{equation*}
f_{d p} \approx \frac{1}{2 \pi\left[\left(C_{c} A_{v(B U F)} g m_{p}\left(R_{o, p} / / R_{L}\right)\right) R_{o, E A}\right]} \tag{3.49}
\end{equation*}
$$

this is the dominant-pole of the main Loop-Gain.
Instead at the output node C_{c} "seems" to have the same value, since $C_{L} \gg C_{c}$ the output pole f_{o} remains about at the same frequency (Eq. 3.16).

If the nested feedback is a simply capacitor there is also a feedforward path from the EA-output to the Regulator-output, this creates a zero $(1-s / z)$ in the main Loop-Gain, this is a Positive Real-part zero so it is bad for stability analysis because it leads to a contribution of -90° in the Loop-gain phase (instead of $+90^{\circ}$ like a normal zero). This zero is at the frequency:

$$
\begin{equation*}
f_{z} \approx \frac{1}{2 \pi \frac{C_{c}}{A_{v(B U F)} g m_{p}}} \tag{3.50}
\end{equation*}
$$

$A_{v(B U F)} \leq 1$ and $g m_{p}$ is a very high transconductance because the power-transistor is very big and the output current may be high $\left(g m_{p}\right.$ may be hundreds of $m S$ up to S),
so this zero can be pushed in the $M H z$ range where it does not bother (the crossing frequency of the main Loop-gain is much less than $M H z$).

The main Loop-Gain $\left(T_{M L}\right)$, that determines the dynamic of the regulator, can be seen as a 2-poles system with the poles at $f_{d p}$ and f_{o}, the zero is at a higher frequency, and if C_{c} is big enough the Loop-Gain becomes a 1-dominant pole system (Figure 3.31).

Fig. 3.31: Main Loop-gain, $I_{L}=100 m A, C_{L}=1 \mu F, C_{B}=0$

To design a correct value of C_{c} for our purpose we see the Figure 3.32.

Fig. 3.32: Total output Noise, $I_{L}=100 m A, C_{L}=1 \mu F, V_{N, i n} / \sqrt{\Delta f}=74.2 n V / \sqrt{H z}$, $R_{1}=63 k \Omega, R_{2}=20 k \Omega, C_{B}=0$

As we can see in Figure 3.32, the transfer function $\frac{V_{N, \text { out }}}{V_{N, i n}}$ starts to decrease when the main Loop-Gain crosses $0 d B$, so at a frequency very small. Even the Noise produced by feedback resistor divider R_{1}, R_{2} starts to fall at this frequency because the Loop stops to regulate. If we increase C_{c} the Noise can be reduced a lot, the reduction can be summarized by the α-ratio.

$$
\begin{equation*}
\alpha=\frac{\left.V_{N, \text { out-integrated }, R M S}\right|_{C_{c}}}{V_{N, \text { in-integrated }, R M S}} \tag{3.51}
\end{equation*}
$$

$V_{N, i n}$ is considered a white Noise, the integration band of Eq. 3.51 is $10 \mathrm{~Hz}-100 \mathrm{kHz}$.

$C_{c}[F]$	α
100 p	1.57
1 n	0.56
10 n	0.17

Tab. 3.7: C_{c} Noise reduction effect, comparison
However, R_{1} and R_{2} Noise can be considerably high if the resistances value is high and C_{c} is small, the integrated output Noise in $10 H z \leq f \leq 100 \mathrm{kHz}$ due only to these resistors is reported in Tab. 3.8

	$V_{F B-\text { integrated }}[\mu V]$		
$C_{c}[\mathrm{~F}]$	$R_{1}=63 k \Omega, R_{2}=20 k \Omega$	$R_{1}=630 k \Omega, R_{2}=200 k \Omega$	$R_{1}=6.3 M \Omega, R_{2}=2 M \Omega$
100 p	7.96	25.17	79.58
1 n	2.81	8.88	28.09
10 n	0.89	2.78	8.80

Tab. 3.8: Resistor Divider Noise, $C_{B}=0$
It's clear that, for example, if we use $C_{c}=1 n F$ and the resistor divider is particularly high on the order of $M \Omega$, to ensure $V_{N-i n t e g r . R M S} \leq 20 \mu V$ we have to place a C_{B} (for example $1 n F$) that acts as explained in Par. 3.2.1. The insertion of C_{B}, however, acts in the Loop-Gain (Par. 3.3.1) and may degrading the stability because the crossing frequency f_{c} moves to a higher frequency and so the second pole at f_{o} (output pole Eq. 3.16) has a stronger effect.

The overall integrated output Noise is

$$
\begin{equation*}
\left.V_{N, \text { out-integrated }, R M S}\right|_{C_{c}}=\sqrt{V_{N, F B-i n t e g r a t e d, R M S}^{2}+\alpha^{2} V_{N, \text { in-integrated }, R M S}^{2}} \tag{3.52}
\end{equation*}
$$

How vary the $V_{N, \text { out-integrated, } R M S}$ at the varying of $V_{N, i n-i n t e g r a t e d, R M S}$ is shown in Figure 3.33.

So this compensation method can be good for the Noise reduction and a simply C_{c} is usually not a problem regard the stability, instead for other specifics (over/undershoot etc.) is not a good thing to have a feedforward path, so a buffer in series with C_{c} (both current or voltage) may be needed to cancel it and to ensure only the feedback path. Anyway, a real buffer produces Noise that increments slightly the total Noise.

Fig. 3.33: Overall integrated output Noise, $R_{1}=63 k \Omega, R_{2}=20 k \Omega$

3.3.4 Two-Stage Regulator

Fig. 3.34: Two-stage Regulator block scheme
This type of regulator works in two steps, the first stage is the regulation stage because setting the resistor divider $\left(R_{1}, R_{2}\right)$ we regulate $V_{\text {out }(1)}$ at the correct voltage. The second stage is the power stage because it includes the power transistor, it is a loop closed in unitary feedback so it simply regulates $V_{\text {out }}=V_{\text {out }(1) \text {. }}$. The block $L P F$ between the two stages is a simple R-C Low Pass Filter with a very low cut frequency $f_{L P F}$:

$$
\begin{equation*}
f_{L P F}=\frac{1}{2 \pi R_{x} C_{x}} \tag{3.53}
\end{equation*}
$$

So, since $f_{L P F}$ is very low, the Noise from the first stage (that includes the Noise from the reference) is decreased a lot. Therefore it remains at the output ($V_{N, o u t}$) only the Noise produced by the second stage (EA2) and that of R_{x}.

First Stage The first stage has to guarantee a fixed voltage $V_{\text {out }}{ }^{(1)}$, since the DC current flows into $R_{1}+R_{2}$ is small and is the same that flows through the voltage buffer, the buffer could be a simple common drain stage with a relatively small transistor. Thus there are no parasitic poles at medium/low frequency and it is not a problem to guarantee the stability of the Loop $\left(T_{1}\right)$ creating the dominant pole in $E A 1$.

The Noise produced by this stage (Reference/EA1/R1/R2) is then filtered by the low pass filter and it's lead unitary at the output.

Fig. 3.35: Output Noise from the First Stage, $I_{L}=100 m A, C_{L}=1 \mu F, V_{N, i n} / \sqrt{\Delta f}=$ $50 n V / \sqrt{H z}, R_{1}=63 k \Omega, R_{2}=20 k \Omega$

The most interesting figure (that not depends from a particular $V_{N, i n} / \sqrt{\Delta f}$) is:

$$
\begin{equation*}
\alpha=\frac{\left.V_{N, \text { out-integrated, } R M S}\right|_{f_{L P F}}}{V_{N, \text { in-integrated }, R M S}} \tag{3.54}
\end{equation*}
$$

$V_{N, i n}$ is considered a white Noise, the integration band of Eq. 3.54 is $10 \mathrm{~Hz}-100 \mathrm{kHz}$.

$f_{L P F}[H z]$	α
16	0.06
160	0.21
$1.6 k$	0.64

Tab. 3.9: Low-pass filter Noise reduction effect, comparison

Low-pass Filter The LPF could be a simple R - C circuit with a low $f_{L P F}$ (Eq. 3.53), to design for a low cut frequency, R_{x} and C_{x} values could be high for an integrated circuit.

Since the $V_{\text {out (1) }}$ node is a low-impedance node, the Noise produced by R_{x} is "totally" injected in the second stage at low frequency and then is shunted to ground by the C_{x}.

Therefore the transfer function is:

$$
\begin{equation*}
\frac{V_{N, \text { out }}}{\sqrt{\Delta f}}=\left(\frac{1}{1+j \frac{f}{f_{L P F}}}\right) \frac{V_{N, R_{x}}}{\sqrt{\Delta f}} \tag{3.55}
\end{equation*}
$$

If the integrated Noise is already "saturated" at 100 kHz , the output Noise depends only by the C_{x} (see also Eq. 1.42):

$$
\begin{equation*}
V_{N, \text { out }-R M S}=\sqrt{\frac{k T}{C_{x}}} \tag{3.56}
\end{equation*}
$$

Fig. 3.36: Output Noise from $R_{x}, I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, R_{x}=5 M \Omega$

Second Stage The second stage is substantially a complete regulator closed in unitary feedback, so we may ensure the stability of the Loop T_{2} with the proposed compensation in Par. 3.1.2, the Loop-gain is depicted in Fig. 3.37.

An aspect to be highlighted is that EA2 works with a common input voltage $V_{i c}=$ $V_{\text {out }(1)}=V_{\text {out }}$, so is dependent from the output voltage and thus from $R_{1}-R_{2}$ chosen. If we know $V_{\text {out }}$ we can design a suitable $O T A$ (so we chose if its better a P-type or N-type input couple) instead, if we don't know what will be $V_{o u t}$, probably we may design a Rail-to-Rail OTA with both P-type and N-type input couple, this leads to a roughly double in the $E A 2$ Noise power (so a $\sqrt{2}$ factor in $V_{N(E A 2)_{R M S}}$).

The Noise of this stage is about only the Noise of the $E A 2$ that we find the same at the output of the regulator (except the reduction effect due to the finite band of the second

Fig. 3.37: Loop-Gain Power Stage, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$
stage). Thus the total output Noise is:

$$
\begin{equation*}
\frac{\overline{V_{N, \text { out }}^{2}}}{\Delta f} \approx\left(\frac{1}{1+j \frac{f}{f_{L P F}}}\right)^{2}\left(\frac{\overline{V_{N, \text { out }(1)}^{2}}}{\Delta f}+\frac{\overline{V_{N, R_{x}}^{2}}}{\Delta f}\right)+\frac{\overline{V_{N, E A 2}^{2}}}{\Delta f} \tag{3.57}
\end{equation*}
$$

Fig. 3.38: Total output Noise, $I_{L}=100 m A, C_{L}=1 \mu F, R_{x}=5 M \Omega, V_{N, i n} / \sqrt{\Delta f}=$ $50 n V / \sqrt{H z}, R_{1}=63 k \Omega, R_{2}=20 k \Omega, V_{N, E A 2} / \sqrt{\Delta f}=31.5 n V / \sqrt{H z}$

If we make a good low-Noise design for the $E A 2$ and chosen R_{x}, R_{1} and R_{2}, it's interesting to know the Noise budget for $V_{N, i n(1)} \approx V_{N, R E F}$, this is depicted in Fig. 3.39.

Fig. 3.39: Overall output integrated Noise, $R_{x}=5 M \Omega, V_{N, \text { in(1) })_{\text {integrated }}}=15.7 \mu V, R_{1}=$ $63 k \Omega, R_{2}=20 k \Omega, V_{N, E A 2_{\text {integrated }}}=10 \mu \mathrm{~V}$

This Two-stage regulator could filter very well the Noise produced by the first stage that is dominated by the Reference Noise, however we should be able to design low-Noise EA2. Another bad requirement is that 2 further pins, the input and output nodes of the LPF block, are probably necessary (respect a classical LDO) if we couldn't integrate $R_{x}-C_{x}$ in the chip.

3.3.5 Paralleling Regulators

Paralleling Regulators is not a true design method for a low-Noise LDO but it's a way with which it's possible to further reduce the Noise of a single LDO. Paralleling allows a higher $I_{o u t(\max)}=I_{L D O 1(\max)}+I_{L D O 2(\max)}$ (in the case of 2 regulators in parallel) and the heat generated is equally distributed between the regulators.

To study the Noise performance of paralleling we consider the case of 2 identical LDO in parallel, the AC-circuit that the Noise "sees" is that of Fig. 3.40.

Fig. 3.40: Parallel of 2 Regulators: Noise model
$R_{o(C . L .)}$ is the closed-loop output resistance of the LDO, we consider $R_{o(C . L .)} \ll R_{L}$
(this is surely true almost in the band of the regulators) so $R_{o(C . L .)} / / R_{L} \approx R_{o(C . L .)}$. In the hypothesis of two identical regulators the $R_{o(C . L .)}$ is the same and $V_{N(1)}=V_{N(2)}$, so applying the superposition of effects:

$$
\begin{align*}
\overline{\frac{V_{N, o u t}^{2}}{\Delta f}} & =\left(\frac{R_{o(\text { C.L. })} / / R_{L}}{R_{o(\text { (C.L. })} / / R_{L}+R_{o(C . L .)}}\right)^{2} \frac{\overline{V_{N(1)}^{2}}}{\Delta f}+\left(\frac{R_{o(C . L .)} / / R_{L}}{R_{o(C . L .)} / / R_{L}+R_{o(\text { C.L. })}}\right)^{2} \frac{\overline{V_{N(2)}^{2}}}{\Delta f} \\
& \approx\left(\frac{1}{2}\right)^{2} \frac{\overline{V_{N(1)}^{2}}}{\Delta f}+\left(\frac{1}{2}\right)^{2} \frac{\overline{V_{N(2)}^{2}}}{\Delta f} \tag{3.58}\\
& \approx \frac{1}{2} \frac{\overline{V_{N(1)}^{2}}}{\Delta f}
\end{align*}
$$

So, since there is a reduction of 2 in the Spot Noise Power (so a $\sqrt{2}$ reduction in Spot Noise Voltage), the Total integrated Noise at the output ($V_{N, \text { out } t_{R M S}}$) is reduced by a $\sqrt{2}$ factor as shown in Fig. 3.41. In general if we parallel N LDO:

$$
\begin{equation*}
\left.\left.V_{N, o u t_{R M S}}\right|_{N / /-L D O} \approx \frac{1}{\sqrt{N}} V_{N, o u t_{R M S}}\right|_{1-L D O} \tag{3.59}
\end{equation*}
$$

Fig. 3.41: Parallel of 2 Regulators: Total Output Noise
This is an effective technique to have a greater output current and a lower Noise, obviously this is suitable for the customer that can buy more LDOs, from an integrated point of view this technique requires a bigger area (double or in general N times the area of a single LDO) which must be integrated in a single chip.

Chapter 4

Error Amplifier Noise

The $E A$ is an important part to design because its Noise is injected at the input of the regulator ad so it "sees" the closed-loop transfer function, the effect due to the Loop is explained in Chapter. 3. The Noise produced by the $E A$ is Thermal, Shot and obviously also Flicker, unfortunately in the technology with which I work, Flicker Noise is not modeled, this is not a good notice because we would like to design a Low-Noise OTA. However I could choose both a Bipolar or a MOS Technology, Bipolar is less affected by Flicker Noise or we could use a quite long channel MOS ($L \approx 1-10 \mu m$) with a quite low corner frequency $f_{c o}$. Conscious of Flicker Noise will increase, we hope slightly, the total Noise, we will take care only of Thermal and Shot Noise analysis.

In this chapter are explained two types of OTA, a Double-stage OTA and a Mirrored $O T A$, the first one has generally too much voltage gain for our purpose but is very LowNoise, the second one is a more useful topology for our purpose but its Noise is a little more that the other one. In general, a Single-Stage OTA with a simple stage (" 5 transistors OTA" or with "Load Resistances") has the Lowest Noise, fortunately a Multi-Stage OTA can be approximated to a Single-Stage as Noise Performance. Let's show this with an example of a Two-Stage OTA.

Fig. 4.1: Two-Stage OTA, Noise model

$$
\begin{align*}
\frac{\overline{V_{N, o u t}^{2}}}{\Delta f} & =A_{v(1)}^{2} A_{v(2)}^{2} \frac{\overline{V_{N(1)}^{2}}}{\Delta f}+A_{v(2)}^{2} \frac{\overline{V_{N(2)}^{2}}}{\Delta f} \\
& =A_{v(1)}^{2} A_{v(2)}^{2}\left(\frac{\overline{V_{N(1)}^{2}}}{\Delta f}+\left(\frac{1}{A_{v(1)}^{2}}\right) \frac{\overline{V_{N(2)}^{2}}}{\Delta f}\right) \tag{4.1}
\end{align*}
$$

And if we want to describe the total Noise as an Equivalent Input Noise:

$$
\begin{equation*}
\frac{\overline{V_{N, \text { out }}^{2}}}{\Delta f}=A_{v(1)}^{2} A_{v(2)}^{2} \frac{\overline{V_{N, \text { in }}^{2}}}{\Delta f} \tag{4.2}
\end{equation*}
$$

thus equating Eq. 4.2 with Eq. 4.1, it results

$$
\begin{align*}
\overline{\frac{V_{N, i n}^{2}}{\Delta f}} & =\frac{\overline{V_{N(1)}^{2}}}{\Delta f}+\left(\frac{1}{A_{v(1)}^{2}}\right) \frac{\overline{V_{N(2)}^{2}}}{\Delta f} \tag{4.3}\\
& \approx \frac{\overline{V_{N(1)}^{2}}}{\Delta f}
\end{align*}
$$

where the approximation in Eq. 4.3 is true if $A_{v(1)} \gg 1$.

4.1 MILLER OTA

The Miller OTA is essentially a Double-Stage OTA where the compensation uses the Miller Effect (Par. A.8).

As we have shown in the previous page, the Noise of a Miller OTA is about that of the first gain stage so this Noise analysis coincides with that of a simply " 5 transistor $O T A "$. Before entering in the details of the OTA is well to have some concepts on the Noise explained in Appendix. A. 9 A. 10 A. 11.

4.1.1 MOS Input Couple

Fig. 4.2: MOS OTA, equivalent input Noise
At both of the two inputs of the OTA is associated an equivalent voltage Noise generator $\left(v_{N,(+)}\right.$ and $\left.v_{N,(-)}\right)$ that we can add in the more useful $\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=\frac{\overline{v_{N,(+)}^{2}}}{\Delta f}+\frac{\overline{v_{N,(-)}^{2}}}{\Delta f}$, so the Noise at the output is $\frac{\overline{i_{N, o u t}^{2}}}{\Delta f}=\left(G_{m}\right)^{2} \frac{\overline{v_{N, i n}^{2}}}{\Delta f}$. However we are interested at $v_{N, i n}$ because it's injected at the input of the total loop of the regulator.

First Stage

Fig. 4.3: MOS OTA, I Stage with Noise sources
We consider transistors $M 0-M 1$ are matched and also transistors $M 3-M 4$, so $g_{m 1}=$
$g_{m 0}$ and $g_{m 3}=g_{m 4}$. The voltage gain of the stage is:

$$
\begin{equation*}
A_{v_{I}}=\frac{v_{o 1}}{v_{i n+}-v_{i n-}}=g_{m 1} R_{o u t 1} \tag{4.4}
\end{equation*}
$$

where $R_{o u t 1}=R_{o 1} / / R_{o 4}$, and the transconductance of the first stage is $g_{m_{I}}$:

$$
\begin{equation*}
g_{m_{I}}=\frac{i_{o u t} 1}{v_{i n+}-v_{i n-}}=g_{m 1} \tag{4.5}
\end{equation*}
$$

With the hypothesis made on the matching of transistors, it's simple to calculate the $i_{N, o u t 1}$:
where $\frac{\overline{v_{N, M x}^{2}}}{\Delta f}$ are those of Eq. A. 27.
In Eq. 4.6 there isn't the effect of $i_{N, \text { tail }}$ because a current (or voltage) signal injected in that node of the circuit is a common mode signal so, if the OTA has a high enough CMRR (Common Mode Rejection Ratio), this does not produce a differential signal at the output (Figure 4.4 helps to understand this concept).

Fig. 4.4: $I_{\text {tail }}$ Noise propagation
Now if we divide Eq. 4.6 by the square of the transconductance of the stage $g_{m_{I}}^{2}$, we find the equivalent input voltage Noise $v_{N, i n}$:

And since $v_{N, M 0}=v_{N, M 1}$ and $v_{N, M 3}=v_{N, M 4}$ (with the symmetry and matching hypothesis), Eq. 4.7 reduces to:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=\frac{16}{3} k T\left(\frac{1}{g_{m 1}}+\frac{g_{m 4}}{\left(g_{m 1}\right)^{2}}\right)=\frac{16}{3} k T \frac{1}{g_{m 1}}\left(1+\frac{g_{m 4}}{g_{m 1}}\right) \tag{4.8}
\end{equation*}
$$

We note from Eq. 4.8 that the Noise depends only on the transconductances $g_{m 1}, g_{m 4}$ (at a first analysis but with a good approximation). The best case would be if it was negligible the term $g_{m 4} / g_{m 1}$, so all the Noise, the minimum Noise, would be:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f} \approx \frac{16}{3} k T \frac{1}{g_{m 1}} \tag{4.9}
\end{equation*}
$$

that is only the Noise due to the input couple $M 0-M 1$.
In general the term $g_{m 4} / g_{m 1}$ is not small and the current mirror $M 3-M 4$ produces a non negligible Noise, how we could design transistors to make $g_{m 4} / g_{m 1} \ll 1$?

The transconductance of a MOS is $g_{m}=\sqrt{2 I_{D} \mu C_{o x}(W / L)}$ (important is to observe that electrons mobility is higher that that of holes, $\mu_{n} \approx 3 \mu_{p}$) so:

$$
\begin{aligned}
\frac{g_{m 4}}{g_{m 1}} & \ll 1 \\
\frac{g_{m 1}}{g_{m 4}} & \gg 1 \\
\sqrt{\frac{2 I_{D 1} \mu_{p} C_{o x}(W / L)_{1}}{2 I_{D 4} \mu_{n} C_{o x}(W / L)_{4}}} & \gg 1
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\frac{g_{m 1}}{g_{m 4}} \approx \sqrt{\frac{(W / L)_{1}}{3(W / L)_{4}}} \tag{4.10}
\end{equation*}
$$

It's difficult to make $\frac{g_{m 1}}{g_{m 4}} \gg 1$ because of the square root and the factor " 3 ", to make $\frac{g_{m 1}}{g_{m 4}}=10$ it would be $(W / L)_{1} \approx 300(W / L)_{4}$, this is probably a too high value that makes too big $M 0-M 1$. Note that we are considering a $P M O S$ input couple because generally the reference voltage, that is the common mode input voltage $\left(V_{i n, c m}=V_{R E F}\right)$, is a low voltage (generally $V_{R E F} \approx 1.2 V$), so the factor " 3 " has a negative effect. If we have a NMOS input couple with the PMOS current mirror, the " 3 " coefficient helps us and it would be $(W / L)_{1} \approx 33(W / L)_{4}$ that is a not so high value.

Another method to reduce $g_{m 4}$ is to degenerate the current mirror $M 3-M 4$, this effect is explained in Par. A.11, obviously we couldn't degenerate so much because an increase of the $R_{\text {deg }} . \uparrow$ decreases the output swing of the stage.

Finally, to strongly decrease $v_{N, i n} \downarrow$ we have to increase $g_{m 1} \uparrow$, how predicts Eq. 4.8 and Eq. 4.9. Since $g_{m 1} \propto \sqrt{I_{D 1}} \propto \sqrt{I_{t a i l}}$ and $g_{m 1} \propto \sqrt{(W / L)_{1}}$ we may increase the current $I_{\text {tail }} \uparrow$ or we may increase the body factor $(W / L)_{1} \uparrow$. If we increase very much the body factor $(W / L)_{1} \uparrow \uparrow$ (so $V_{G S}-V_{t h}=V_{o v} \leq 0$) we lead the MOS to operate in the weak-inversion region where

$$
I_{D} \propto e^{\left(\frac{V_{o v}}{n V_{T}}\right)}
$$

$n \approx 1-2$ is the ideality coefficient and $V_{T}=k T / q$ is the thermal voltage, so

$$
\begin{equation*}
g_{m}=\frac{\partial I_{d}}{\partial V_{g s}} \propto \frac{I_{D}}{n V_{T}} \tag{4.11}
\end{equation*}
$$

Thus in weak-inversion the MOS has a higher transconductance $g_{m} \propto I_{D}$ (like a Bipolar transistor) that may considerably decreases $v_{N, i n}$.

Flicker Noise We already said that Flicker Noise is not modeled in the technology with which I work, anyway we can derive some useful design rules from the theory. Flicker Noise sources can be described exactly as those of Figure 4.3 where $v_{N, M x(1 / f)}$ are those
of Eq. A.29, so $v_{N, i n(1 / f)}$ has the same expression of Eq. 4.7. After the substitution of $v_{N, M x(1 / f)}$ we find:

$$
\begin{equation*}
\frac{\overline{v_{N, i n(1 / f)}^{2}}}{\Delta f}=2 \frac{B_{p}}{W_{1} L_{1}} \frac{1}{f}\left(1+\left(\frac{K_{n}^{\prime} B_{n}}{K_{p}^{\prime} B_{p}}\right)\left(\frac{L_{1}}{L_{4}}\right)^{2}\right) \tag{4.12}
\end{equation*}
$$

where $K_{n / p}^{\prime}=\mu_{n / p} C_{o x}$. So we can make $L_{1} \ll L_{4}$ to make negligible the contribution of the current mirror $M 3-M 4$ (note that $K_{n}^{\prime} B_{n}>K_{p}^{\prime} B_{p}$), and then to reduce the contribution of the input couple $M 0-M 1$ we can make a big area $W_{1} L_{1}$.

As the last thing, if we know the Flicker parameters of the technology, we could calculate the corner frequency f_{c} by equating:

$$
\frac{16}{3} k T \frac{1}{g_{m 1}}=2 \frac{B_{p}}{W_{1} L_{1}} \frac{1}{f_{c}}
$$

therefore

$$
\begin{equation*}
f_{c}=\frac{3 g_{m 1} B_{p}}{8 k T W_{1} L_{1}} \tag{4.13}
\end{equation*}
$$

Second Stage

Fig. 4.5: II Stage Miller OTA with Noise sources
The second stage is a simple gain stage with a voltage gain (at low frequency):

$$
\begin{equation*}
A_{v_{I I}}=\frac{v_{o 2}}{v_{o 1}}=g_{m 5} R_{o u t 2} \tag{4.14}
\end{equation*}
$$

with $R_{o u t 2}=R_{o 5} / / R_{o 6} . \quad C_{c}$ is used to create the dominant pole at low frequency $f_{d p}=\frac{1}{2 \pi R_{\text {out } 1} C_{c} g_{m 5} R_{o u t 2}}$ and R_{z} to create the zero at $f_{z}=\frac{1}{2 \pi C_{c}\left(R_{z}-1 / g_{m 5}\right)}$, so the overall voltage gain has the correct shape as in Figure 3.5, at low-medium frequency it is:

$$
\begin{equation*}
A_{v_{t o t}}=g_{m 1} R_{o u t 1} g_{m 5} R_{o u t 2} \frac{\left(1+\frac{s}{2 \pi f_{z}}\right)}{\left(1+\frac{s}{2 \pi f_{d p}}\right)} \tag{4.15}
\end{equation*}
$$

Remember that $A_{v_{I}}$ has the form:

$$
\begin{equation*}
A_{v_{I}}=g_{m 1} R_{\text {out } 1} \frac{\left(1+\frac{s}{2 \pi f_{z}}\right)}{\left(1+\frac{s}{2 \pi f_{d p}}\right)} \tag{4.16}
\end{equation*}
$$

so the shaping is as depicted in the example of Figure 4.6 (it is shown $A_{v_{I}}$ by varying the position of the zero, so the value of R_{z}).

Fig. 4.6: $A_{v_{I}}$
The Noise of the second stage can be replaced by its equivalent input Noise voltage $v_{N, 2}$, it's not very important to calculate the exact relation with the true Noise sources $v_{N, R_{z}}, i_{N, M 6}, i_{N, M 5}$, because at the input of the OTA we have an equivalent Noise:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=\frac{1}{A_{v_{I}}^{2}} \frac{\overline{v_{N, 2}^{2}}}{\Delta f} \tag{4.17}
\end{equation*}
$$

and it is very small and negligible as long as $A_{v_{I}} \gg 1$, but it may increase with the shaping of $1 / A_{v_{I}}$ (see Figure 4.7 and Figure 4.6).

The total equivalent input Noise is:

$$
\begin{equation*}
\frac{\overline{v_{N, i n(t o t)}^{2}}}{\Delta f}=\frac{\overline{v_{N, 1}^{2}}}{\Delta f}+\frac{1}{A_{v_{I}}^{2}} \frac{\overline{v_{N, 2}^{2}}}{\Delta f} \tag{4.18}
\end{equation*}
$$

where $v_{N, 1}$ is that of Eq. 4.8. The total input Noise is $\frac{\overline{v_{N, i n(t o t)}^{2}}}{\Delta f} \approx \frac{\overline{v_{N, 1}^{2}}}{\Delta f}$ as long as $A_{v_{I}} \gg 1$, and it may slightly increases at medium-high frequencies because of $v_{N, 2}$ increases (see the effect comparing Figure 4.7 and Figure 4.8). However this increase is very slightly at a frequency $f \leq 100 \mathrm{kHz}$.

Fig. 4.7: $\frac{v_{N, 2}}{\sqrt{\Delta f}} / A_{v_{I}}$

Fig. 4.8: Effect of $v_{N, 2}$ on $v_{N, i n(t o t)}$

4.1.2 Bipolar Input Couple

An OTA with a Bipolar input couple presents (as an OTA with MOS) an equivalent input voltage Noise generator $v_{N, i n}$ and an input current Noise generator $i_{N, i n+/-}$ for each input (see Figure 4.9). We can add the various sources in an equivalent and total voltage Noise

Fig. 4.9: MOS BJT, equivalent input Noise
source $v_{N, i n(t o t)}$:

$$
\begin{equation*}
\frac{\overline{v_{N, i n(t o t)}^{2}}}{\Delta f}=\frac{\overline{v_{N, i n}^{2}}}{\Delta f}+\left(R_{s(+)} / / R_{i n}\right)^{2} \frac{\overline{i_{N, i n+}^{2}}}{\Delta f}+\left(R_{s(-)} / / R_{i n}\right)^{2} \frac{\overline{i_{N, i n-}^{2}}}{\Delta f} \tag{4.19}
\end{equation*}
$$

Fig. 4.10: MOS BJT, I Stage with Noise sources

Input Voltage Noise

As regard $v_{N, i n}$, it derives from the contribute of $v_{N, T 0}, v_{N, T 1}, v_{N, M 4}, v_{N, M 3}$:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=\frac{\overline{v_{N, T 0}^{2}}}{\Delta f}+\frac{\overline{v_{N, T 1}^{2}}}{\Delta f}+\left(\frac{g_{m 4}}{g_{m 1}}\right)^{2}\left(\frac{\overline{v_{N, M 3}^{2}}}{\Delta f}+\frac{\overline{v_{N, M 4}^{2}}}{\Delta f}\right) \tag{4.20}
\end{equation*}
$$

and since $v_{N, T 0}=v_{N, T 1}$ and $v_{N, M 3}=v_{N, M 4}$ (with the symmetry and matching hypothesis), $v_{N, T x}$ is that of Eq. A. 31 and $v_{N, M x}$ is that of Eq. A.27. After the substitutions Eq. 4.20 reduces to:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=4 k T \frac{1}{g_{m 1}}\left(1+\frac{4}{3} \frac{g_{m 4}}{g_{m 1}}\right) \tag{4.21}
\end{equation*}
$$

Remember that $g_{m 4}=\sqrt{2 I_{D 4} \mu_{n} C_{o x}(W / L)_{4}}$ and $g_{m 1}=I_{C 1} / V_{T}\left(I_{C 1}=I_{D 4}=I_{t a i l} / 2\right)$, so to make negligible the second term in Eq. 4.21:

$$
\frac{g_{m 4}}{g_{m 1}} \propto \frac{1}{\sqrt{I_{t a i l}}}
$$

we can increase the current $I_{\text {tail }} \uparrow$, or we could decrease $g_{m 4} \downarrow$ decreasing $(W / L)_{4} \downarrow$ or degenerating the current mirror $M 3-M 4$ as explained in Par. A.11. However with BJT as input transistors it's easier to guarantee $\frac{g_{m 4}}{g_{m 1}} \ll 1$ because generally $g_{m(B J T)} \gg g_{m(M O S)}$. The best choice to reduce Noise of Eq. 4.21 is, anyway, increasing the $I_{\text {tail }}$ because the limit of $v_{N, i n}$ is the Noise produced by the input couple $T 0-T 1$, so to increase $g_{m 1} \uparrow$ we can only increasing the $I_{\text {tail }} \uparrow$:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f} \approx 4 k T \frac{1}{g_{m 1}}=8 q V_{T}^{2} \frac{1}{I_{\text {tail }}} \tag{4.22}
\end{equation*}
$$

Flicker Noise Flicker Noise may be neglected in some Bipolar technologies, but it is not so for MOS transistors, thus $M 3-M 4$ produce some $1 / f-$ Noise. The equivalent input Noise voltage is (consider $\left.v_{N, M 3(1 / f)}=v_{N, M 4(1 / f)}\right)$:

$$
\begin{equation*}
\frac{\overline{v_{N, i n(1 / f)}^{2}}}{\Delta f}=\frac{1}{g_{m 1}^{2}}\left(2 \frac{K_{f} I_{D 4}}{L_{4}^{2} C_{o x}} \frac{1}{f}\right) \tag{4.23}
\end{equation*}
$$

so the only way to reduce it, it's increasing $g_{m 1} \uparrow$ and using transistors with a long channel $L \uparrow$.

A theoretical corner frequency f_{c} may be calculated equating PSDs of Eq. 4.22 and Eq. 4.23 and it results:

$$
\begin{equation*}
f_{c}=\frac{K_{f}}{2 q C_{o x} L_{4}^{2}} \tag{4.24}
\end{equation*}
$$

so it may be pushed to a lower frequency increasing $L \uparrow$.

Input Current Noise

The input Noise current generator $i_{N, B 1}$ see a low-degenerated CE stage (the same is for $\left.i_{N, B 0}\right)$, low-degenerated because the resistance seen from the emitter of $T 1$ is $R_{o, \text { tail }} / / \frac{1}{g_{m 0}} \approx$ $\frac{1}{g_{m 0}}$, so $g_{m 1}\left(\frac{1}{g_{m 0}}\right) \approx 1$ is not a so high value. Thus, as we say in Par. A.10.1, we may assume $i_{N, i n+/-} \approx i_{N, B 1 / 0}$ and the effect on the input voltage Noise is:

$$
\begin{equation*}
\frac{\overline{v_{N, i n\left(I_{B}\right)}^{2}}}{\Delta f}=\left(R_{s(+)} / / R_{i n}\right)^{2} \frac{\overline{i_{N, i n+}^{2}}}{\Delta f}+\left(R_{s(-)} / / R_{i n}\right)^{2} \frac{\overline{i_{N, i n-}^{2}}}{\Delta f} \tag{4.25}
\end{equation*}
$$

so the influence of Eq. 4.25 on Eq. 4.19 may be very different in dependence from the value of the resistances. $R_{i n} \approx 2 r_{\pi}$ (since there is a low-degeneration) so is some hundreds of $k \Omega$ or few $M \Omega$, let's try to know what are $R_{s(+)}$ and $R_{s(-)}$.

The error amplifier is connected to the rest of the circuit as in Figure 3.1, the feedback network includes the voltage divider $R_{1}-R_{2}$ and the bypass capacitor C_{B} as in Figure 3.18. $R_{s(-)}=R_{o u t(R E F .)}$ and it may vary in dependence with the used topology for the voltage reference. However, if it's necessary, we can reduce the $R_{\text {out(} R E F \text {.) }}$ at mediumhigh frequency with the insertion of a capacitor $C_{o u t(R E F .)}$ in parallel, that reduces this impedance $R_{\text {out }(R E F .)} / /\left(\frac{1}{s C_{\text {out }(R E F .)}}\right)$. So $\left(R_{s(-)} / / R_{i n}\right)^{2} \frac{\overline{i_{N, i n-}^{2}}}{\Delta f}$ is not a very important
contribution (it must be verified), otherwise, $\left(R_{s(+)} / / R_{i n}\right)^{2} \frac{\overline{i_{N, i n+}^{2}}}{\Delta f}$ may be a serious problem that may increase strongly and dominate Eq. 4.19. If there is not the C_{B} in the feedback network, $R_{s(+)}=R_{1} / / R_{2}$, since R_{1} and R_{2} are generally very big resistances (hundreds of $k \Omega$ to few $M \Omega$) the total resistance $R_{i n} / / R_{1} / / R_{2}$ is still very high and even the small noise source $i_{N, i n+}$ can produce high voltage fluctuations. Fortunately, the insertion of C_{B} in parallel to R_{1} (as in Figure 3.18, note that the two inputs are exchanged respect Figure 3.1) modifies the impedance:

$$
\begin{equation*}
Z_{s(+)}(s)=\frac{R_{1} / / R_{2}}{1+s\left[\left(R_{1} / / R_{2}\right) C_{B}\right]} \tag{4.26}
\end{equation*}
$$

therefore the total impedance decreases at medium-high frequencies like $R_{\text {in }} / / Z_{s(+)}(s) \approx$ $\frac{1}{s C_{B}}$ and the Noise voltage produced by $i_{N, i n}$ becomes negligible.

In conclusion, if the input couple is in Bipolar technology, to reach low-noise performance we have to assure at medium-high frequencies a low $Z_{\text {out (REF.) }}$ and the bypass capacitor C_{B} is needed.

4.2 MIRRORED OTA

Fig. 4.11: Mirrored OTA, circuit
In the mirrored OTA the voltage gain is reached at the output, so it has a single voltage gain stage with a lower gain than Miller OTA. The voltage gain at low-medium frequency is:

$$
\begin{equation*}
A_{v(D C)}=\frac{v_{o}}{v_{i n+}-v_{i n-}}=M g_{m 1} R_{o u t 2} \tag{4.27}
\end{equation*}
$$

where $M=\frac{(W / L)_{5}}{(W / L)_{4}}$ and $R_{o u t 2}=R_{05} / / R_{o 7}$. We consider a perfect matching of transistors $M 1=M 0, M 3=M 4, M 5=M 6, M 7=M 8$. The compensation is done in
order to create the dominant pole at the output (because $R_{\text {out } 2}$ is a high-resistive node), so:

$$
\begin{equation*}
A_{v}(s)=\frac{M g_{m 1} R_{\text {out } 2}}{\left(1+\frac{s}{2 \pi f_{d p}}\right)} \tag{4.28}
\end{equation*}
$$

with $f_{d p}=\frac{1}{2 \pi R_{\text {out } 2} C_{o}}$.
To increase the voltage gain we may increase the mirror-ratio M, but in this way the total current consumption of the OTA $I_{\text {tot }}=I_{\text {tail }}(1+M)$ is increased too.

Noise

Also for this type of OTA we can calculate the $v_{N, i n}$ in order to have the equivalent input Noise model of Figure 4.2.

Fig. 4.12: Mirrored OTA, Noise sources
Short the output of the OTA in Figure 4.12 to calculate $i_{N, \text { out }}$ at low-medium frequency:

$$
\left.\begin{array}{rl}
\overline{\frac{i_{N, o u t}^{2}}{\Delta f}=} & \left(g_{m 1}\right)^{2} M^{2}\left(\overline{\overline{v_{N, M 0}^{2}}}\right. \\
\Delta f \tag{4.29}
\end{array} \frac{\overline{v_{N, M 1}^{2}}}{\Delta f}\right)+\left(g_{m 4}\right)^{2} M^{2}\left(\frac{\overline{v_{N, M 3}^{2}}}{\Delta f}+\frac{\overline{v_{N, M 4}^{2}}}{\Delta f}\right)+,
$$

consider $g_{m 0}=g_{m 1}, g_{m 3}=g_{m 4}, g_{m 5}=g_{m 6}, g_{m 7}=g_{m 8}$ and $g_{m 5}=M g_{m 4}$.
Thus dividing Eq. 4.29 by the square of the transconductance of the OTA $\left(g_{m 1} M\right)^{2}$ we can find $v_{N, i n}$:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=\frac{16}{3} k T \frac{1}{g_{m 1}}\left(1+\frac{g_{m 4}}{g_{m 1}}+\frac{g_{m 4} / M}{g_{m 1}}+\frac{g_{m 7} / M^{2}}{g_{m 1}}\right) \tag{4.30}
\end{equation*}
$$

It's evident that to reach low-noise performance we have to minimize $\frac{g_{m 4}}{g_{m 1}}$ and $\frac{g_{m 7}}{g_{m 1}}$, this can be made as is explained in Par. 4.1.1, so making $(W / L)_{1} \gg(W / L)_{4},(W / L)_{7}$, using
degeneration in current mirrors or doing work in subthreshold region transistors $M 0-M 1$. Then we have to increase $g_{m 1}$ to decrease the overall Noise, so $I_{\text {tail }} \uparrow$ or $(W / L)_{1} \uparrow$.

As regard Flicker Noise, Eq. 4.12 is still valid for transistors $M 0-M 1-M 3-M 4$, the contribution of the other transistors acts (as in Eq. 4.30) with a transconductance ratio $\frac{g_{m 4}}{g_{m 1}}$ or $\frac{g_{m 7}}{g_{m 1}}$, so the design rules to minimize Flicker Noise are making $L_{1} \ll L_{4}, L_{5}, L_{7}$ and making as bigger as possible the area of input transistors $W_{1} L_{1} \uparrow$.

Mirrored OTA produces slightly more Noise than Miller OTA because there are more transistors that contribute to $v_{N, i n}$, as example consider $g_{m 4}=g_{m 5}=g_{m 7}($ so $M=1)$, Eq. 4.30 reduces to:

$$
\begin{equation*}
\frac{\overline{v_{N, i n}^{2}}}{\Delta f}=\frac{16}{3} k T \frac{1}{g_{m 1}}\left(1+3 \frac{g_{m 4}}{g_{m 1}}\right) \tag{4.31}
\end{equation*}
$$

therefore Eq. 4.31 predicts a little Noise than Eq. 4.8, however this difference can be negligible if $\frac{g_{m 4}}{g_{m 1}} \ll 1$.

4.2.1 Asymmetric Compensation

In order to achieve the total compensation of the regulator explained in Par. 3.1.2, the voltage gain of the OTA should have a dominant pole and a zero at medium frequency. We can use the Miller effect on a single output branch as in Figure 4.13.

Fig. 4.13: Mirrored OTA, asymmetric compensation
To find the voltage gain, first we have to calculate the transconductance of the OTA (the calculation is made in Appendix. A.12). As regard the output impedance $R_{\text {out } 2}(s)$, at DC $R_{\text {out } 2}(D C)=R_{o 5} / / R_{o 7}$ so is a big value, then at low frequency it begins to decrease because of the C_{c}. The R_{x} is used to increase the resistance $R_{\text {out } 1} \approx R_{x}+\left(R_{o 1} / /\left(1 / g_{m 4}\right)\right) \approx$ R_{x} in order to create a low-frequency pole due to the Miller effect:

$$
\begin{equation*}
f_{\text {low-f.pole }} \approx \frac{1}{2 \pi R_{x} C_{c} g_{m 5} R_{o 5} / / R_{o 7}} \tag{4.32}
\end{equation*}
$$

Then at medium frequencies when the C_{c} can be considered a short, the transistor $M 5$ "becomes" a diode so the output resistance is constant at $1 / g_{m 5}$. Summarizing:

$$
R_{o u t 2}(s) \approx \begin{cases}\frac{R_{o 5} / / R_{o 7}}{1+\frac{s}{2 \pi f_{\text {low-f.pole }}}} & \text { Low-frequency } \tag{4.33}\\ R_{o 7} / / \frac{1}{g_{m 5}} \approx \frac{1}{g_{m 5}} & \text { Medium-frequency }\end{cases}
$$

The voltage gain is $A_{v}(s)=g_{m(T O T)}(s) R_{o u t 2}(s)$, so using Eq. 4.33, Eq. A. 51 and some mathematical properties of the logarithmic scale like the $G B W$ product (Gain Bandwidth), we can calculate the $A_{v}(s)$:

$$
\begin{equation*}
A_{v}(s)=g_{m 1} M R_{o 5} / / R_{o 7} \frac{\left(1+\frac{s}{2 \pi f_{z}}\right)}{\left(1+\frac{s}{2 \pi f_{d p}}\right)} \tag{4.34}
\end{equation*}
$$

with $f_{d p}=f_{\text {low-f.pole }}$ and $f_{z} \approx \frac{1}{2 \pi C_{c} R_{x} / 2}$. Note that there is a negative-real part zero (that it creates a phase displacement of $+90^{\circ}$) and at medium frequency the voltage gain is (this is due to the signal path through transistors $M 0 / M 3 / M 6 / M 8 / M 7, g_{m 0}=g_{m 1}$):

$$
\begin{equation*}
A_{v}(M F) \approx \frac{1}{2} g_{m 0} \frac{1}{g_{m 3}} g_{m 6} \frac{1}{g_{m 5}}=\frac{1}{2} \frac{g_{m 1}}{g_{m 5} / M}=\frac{1}{2} \frac{g_{m 1}}{g_{m 4}} \tag{4.35}
\end{equation*}
$$

At low frequency $A_{v}(L F)$ is the same as Eq. 4.27.

Fig. 4.14: Voltage gain with asymmetric compensation
Note that this is not a general good compensation because the voltage gain is not only a 1-pole transfer function but there is an intrinsic zero, but it's suitable for our purpose.

The distance pole-zero is not a free design-choice but is determined by:

$$
\begin{equation*}
\frac{f_{z}}{f_{p d}} \approx 2 g_{m 5}\left(R_{o 5} / / R_{o 7}\right) \tag{4.36}
\end{equation*}
$$

The distance pole-zero is approximately the voltage gain of a single stage so about $2-3$ decades, this is enough for our purpose.

Noise

Fig. 4.15: Asymmetric compensation, Noise sources
The input couple (transistors $M 0-M 1$) influences directly the $v_{N, i n}$:

$$
\begin{equation*}
\overline{\overline{v_{N, i n(M 0-M 1)}^{2}}} \overline{\Delta f}=\frac{16}{3} k T \frac{1}{g_{m 1}} \tag{4.37}
\end{equation*}
$$

the Noise of the other transistors and of R_{x} is discussed below.

R_{x} Noise

Fig. 4.16: R_{x} Noise, circuit and AC model

The circuit "seen" from $v_{N, R_{x}}$ is in Figure $4.16, R_{x}$ is connected in series with $R_{o 1} / /\left(1 / g_{m 4}\right) \approx$ $1 / g_{m 4}$ so this last term may be neglected. To find the transfer function to the output we have to solve this system of equations (consider voltages and currents expressed in $[V / \sqrt{H z}],[A / \sqrt{H z}])$:

$$
\left\{\begin{array}{l}
v_{N, \text { out }\left(R_{x)}\right.}=i_{o}\left(R_{o 7} / / R_{o 5}\right) \tag{4.38}\\
i_{o}=\frac{v_{N, R_{x}}-v_{N, \text { out }\left(R_{x)}\right.}-g_{m 5} v_{g s(M 5)}}{R_{x}+\frac{1}{s C_{c}}} v_{N, R_{x}}-v_{N, \text { out }\left(R_{x}\right)} \\
R_{x}+\frac{1}{s C_{c}}
\end{array}\right.
$$

This is a classical gain stage with Miller capacitor C_{c} so the voltage transfer function is:

$$
\begin{equation*}
\left|\frac{v_{N, \text { out }\left(R_{x}\right)}}{v_{N, R_{x}}}(s)\right|=g_{m 5}\left(R_{o 7} / / R_{o 5}\right) \frac{\left(1-s \frac{C_{c}}{g_{m 5}}\right)}{\left(1+s R_{x} C_{c} g_{m 5} R_{o 7} / / R_{o 5}\right)} \tag{4.39}
\end{equation*}
$$

We can see the shaping of $v_{N, o u t\left(R_{x)}\right.}$ in Figure 4.17 (pole and zero are calculated in Eq. 4.39).

Fig. 4.17: R_{x} Noise, input-referred and output-referred
Then the input-referred Noise, so $v_{N, i n\left(R_{x)}\right.}$, it's simple to obtain (compare with Figure 4.17):

$$
\begin{equation*}
\left|\frac{v_{N, i n\left(R_{x}\right)}}{v_{N, R_{x}}}\right|=\left|\frac{v_{N, o u t\left(R_{x}\right)}}{v_{N, R_{x}}}\right|\left|\frac{1}{A_{v}(s)}\right|=\frac{g_{m 4}}{g_{m 1}} \frac{\left(1-s \frac{C_{c}}{g_{m 5}}\right)}{\left(1+s C_{c} R_{x} / 2\right)} \tag{4.40}
\end{equation*}
$$

At Low-frequency the Noise is slightly reduced by the factor $g_{m 4} / g_{m 1}<1$ and at medium-high frequency it's considerably reduced by roughly $\frac{2}{g_{m 1} M R_{x}} \ll 1$, so this is a good notice because R_{x} Noise can be made negligible respect the Noise of the other transistors.

As regard transistor $M 4, v_{N, M 4}$ "see" roughly the same transfer function of $v_{N, R_{x}}$ (Eq. 4.40), since usually $1 / g_{m 4} \ll R_{x}, v_{N, i n(M 4)}$ is completely negligible.

M3/5/6/7/8 Noise

Transistors $M i$ with $i=3,5,6,7,8$ transfer (directly or mirrored) their current Noise $i_{N, M i}$ into the output node with impedance $R_{\text {out } 2}(s)$, so the $v_{N, \text { out }(M i)}$:

$$
\begin{align*}
\frac{v_{N, \text { out }(M i)}}{\sqrt{\Delta f}} & =R_{\text {out } 2}(f) \frac{i_{N, M i}}{\sqrt{\Delta f}} \tag{4.41}\\
& =R_{\text {out } 2}(f) g_{m i} \frac{v_{N, M i}}{\sqrt{\Delta f}}
\end{align*}
$$

We have already explained what is the behavior of $R_{\text {out } 2}(f)$ in Eq. 4.33, so it's possible to demonstrate that:

$$
\begin{equation*}
\frac{v_{N, i n(M i)}}{v_{N, M i}}(s)=\frac{1}{A_{v}(s)} \frac{v_{N, o u t(M i)}}{v_{N, M i}}(s)=\frac{g_{m i}}{M g_{m 1}} \frac{\left(1+s C_{c} R_{x}\right)}{\left(1+s C_{c} R_{x} / 2\right)} \tag{4.42}
\end{equation*}
$$

compare Eq. 4.42 with Figure 4.18 .

Fig. 4.18: $M 3 / 5 / 6 / 7 / 8$ Noise, input-referred and output-referred
At medium-high frequency, when we have the simultaneous effect of pole and zero, the transfer function $\frac{v_{N, i n(M i)}}{v_{N, M i}} \approx \frac{2 g_{m i}}{M g_{m 1}}$, so is doubled. Since the transfer function is doubled at least in the last decade $10 k H z \leq f \leq 100 k H z$ (see Figure 4.18, remember that
our integration band is until $\left.f_{M A X}=100 k H z\right)$ we can consider a 2 factor over all the bandwidth (a factor 4 if we consider the power instead the voltage).

We can sum together all the contributions to obtain a compact formula:

$$
\begin{equation*}
\frac{\overline{v_{N, i n(T O T)}^{2}}}{\Delta f} \approx \frac{16}{3} k T \frac{1}{g_{m 1}}\left(1+2 \frac{g_{m 4}}{g_{m 1}}+4 \frac{g_{m 4} / M}{g_{m 1}}+4 \frac{g_{m 7} / M^{2}}{g_{m 1}}\right) \tag{4.43}
\end{equation*}
$$

Remember that we have neglected the Noise of $M 4$ and R_{x}.
As regard Flicker Noise, like the classical Mirrored OTA we have to make $L_{1} \ll$ L_{4}, L_{5}, L_{7} and making as bigger as possible the area of input transistors $W_{1} L_{1} \uparrow$.

Comparing Eq. 4.43 with Eq. 4.30 we can see that the Noise is increased, but we can easily choose a suitable R_{x} to perform the desired compensation and this resistance does not increase appreciably the total Noise. However we would like high $g_{m 4} / g_{m 1}$ to have low-Noise but doing this we increase the $A_{v}(M F)$ of the OTA (Eq. 4.35) and this is a problem for the compensation of the regulation Loop, so it must be found a trade-off Noise-Gain in medium frequency. The performance of $C M R R$ and $P S R R$ have to be analyzed in detail to be sure that this type of compensation is suitable for our purpose.

4.3 OTA Design

4.3.1 Requirements

In order to design the EA (the OTA) for the regulator, there are three main requirements to take into account: the Steady-state performance, the compensation of the regulation Loop and the Noise budget.

Steady-state Performance

Steady-state Performance were discussed in Par. 3.1.1, Line regulation is a function of the Voltage Reference and the regulation-Loop, however is the behavior of voltage reference that dominates Line regulation performance. Instead the Load regulation depends directly from the regulation Loop (see Eq. 3.7) which in turn it depends from the EA, so there are some constraints that the EA must respect.

Fig. 4.19: Load Regulation

Usually Load regulation is measured with the LDO closed in unitary feedback so we consider $V_{R E F}=V_{\text {out }}=1.2 \mathrm{~V}$. In response to a Load change $\Delta I_{L O A D}$, the variation of the output voltage so $\Delta V_{\text {out }}$ must not exceed a given value, usually expressed as percentage of the output voltage $\epsilon \%=\frac{\Delta V_{\text {out }}}{V_{\text {out }}} \%$.

Think the load step is from the minimum to the maximum current $\left|\Delta I_{L O A D}\right|=$ $\left|I_{L O A D, \text { max }}-I_{L O A D, \text { min }}\right| \approx|1 A-10 m A| \approx 1 A$ and consider a usual value of $\epsilon \%=0.5 \%$ so $\left|\Delta V_{\text {out }}\right|=\left|\epsilon \% V_{\text {out }}\right|=\frac{0.5}{100} 1.2=6 \mathrm{mV}$. To support a $\left|\Delta I_{L O A D}\right|=1 \mathrm{~A}$ the power transistor has to change its $V_{g s}$, so there is a variation of about $\left|\Delta V_{g s}\right| \approx 1 V\left(\left|\Delta V_{g s}\right|\right.$ has to be determined by a simulation because depends on the transistor parameters, dimensions...). The $\left|\Delta V_{g s}\right|$ moves through the buffer and the output of the EA varies as $\left|\Delta V_{o(E A)}\right| \approx\left|\Delta V_{g s}\right| \approx 1 V$, on the other side the differential input of the EA varies as $\left|\Delta V_{\text {id(EA) }}\right| \approx\left|\Delta V_{\text {out }}\right| \approx 6 m V$, so the voltage gain of the EA should be at least:

$$
A_{v(D C)}=\left|\frac{\Delta V_{o(E A)}}{\Delta V_{i d(E A)}}\right| \geq \approx 60 d B
$$

Stability of the Regulation Loop

The study of the Stability of the Regulation Loop was discussed in Par. 3.1.2 and Par. 3.3.1, let us now to find some constraints for the EA by the simulation of the regulator with the following blocks:

- ERROR AMPLIFIER

Its transfer function can be considered that depicted in Figure 4.14 with the transfer function of Eq. 4.34.

Simulation parameters: $A_{v(D C)}=60 d B, f_{d p(E A)} \approx 10 \mathrm{~Hz}, f_{z(E A)} \approx 10 \mathrm{kHz}$, a parasitic pole at $f_{\text {par. (EA) }} \approx 10 \mathrm{MHz}$.
By varying slightly $f_{z(E A)}$ we vary slightly the $A_{v(M F)}$ (refer to Figure 4.14), the main problem for the stability we will explain that is precisely the $A_{v(M F)}$, and we'll have to find a tradeoff gain/Noise.

- BUFFER

The Buffer has unitary gain in a large bandwidth, however the input capacitance of the power transistor creates a parasitic pole $p_{B U F}$ (Eq. 3.17).
Simulation parameters: $f_{p(B U F)} \approx 1 M H z$.

- FEEDBACK

The Feedback Network is the voltage divider which guarantees the regulation $V_{\text {out }}=$ 5 V , the Bypass capacitor is used to reduce Noise. The Feedback transfer function is that depicted in Figure 3.19.
Simulation parameters: $R_{1}=630 k \Omega, R_{1}=200 k \Omega, C_{B}=1 n F, f_{z(F B)} \approx 250 H z$, $f_{p(F B)} \approx 1 k H z$.

- POWER STAGE

The Power stage uses a PMOS transistor so, in AC, it's a gain stage that depends on the $I_{L O A D}$, the C_{L} creates the output pole $p_{\text {out }}($ Eq. 3.16) and the ESR creates a zero (Eq. 3.14).

Fig. 4.20: Power stage, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, I_{L}=1 A, 100 \mathrm{~mA}, 10 \mathrm{~mA}$

The desired Loop-gain of the regulation loop is that proposed in Figure 3.5 and, of course, with the bypass capacitor in Figure 3.24. The biggest problem is that at medium frequency, about $1 \mathrm{kHz}<f<100 \mathrm{kHz}$, we would like that the Loop-gain $|T| \leq 20 \mathrm{~dB}$ because then there is the output pole $p_{\text {out }}$. The Power stage has a roughly gain of $A_{v(P O W)} \approx 20 d B$, the feedback network has a unitary gain at medium frequency thanks to C_{B} and the EA has a voltage gain $A_{v, E A(M F)}$, so at medium frequency the Loop-gain has $\left|T_{(M F)}\right| \approx A_{v(P O W)} A_{v, E A(M F)}$ that it could be $\left|T_{(M F)}\right|>20 d B$. This leads the Loop-gain to cut the frequency axis at a too high frequency $f_{c(L G)} \approx 1 M H z$ where there could be many more parasitic poles than those simulated, these could lead to the instability.

The principal constraint is therefore the $A_{v, E A(M F)}$, the worst-case is at the maximum $I_{L O A D}=1 A$ because $p_{\text {out }}$ is at the highest frequency and so $f_{c(L G)}$ is the highest.

$f_{z(E A)}[\mathrm{kHz}]$	$A_{v, E A(M F)}[\mathrm{dB}]$	$f_{c(L G)}[\mathrm{kHz}]$	$P M\left[{ }^{\circ}\right]$
10	0	231	93
5	6	453	85
3	10	655	81

Tab. 4.1: $A_{v, E A(M F)}$ effect on the Loop-gain at $I_{L}=1 A$
The position of the EA zero is not so relevant, thus the suitable range is $1 \mathrm{kHz} \leq$ $f_{z(E A)} \leq 100 \mathrm{kHz} . A_{v, E A(M F)}$ has a big impact on the $f_{c(L G)}$ even if the Phase Margin is very good ($P M>80^{\circ}$ but in the simulation are not taken into account many parasitic poles that there are in a real circuit so the phase margin could be smaller), because the crossing frequency is quite high, we should design the OTA to maintain $f_{c(L G)} \leq 500 \mathrm{kHz}$, so it must be $A_{v, E A(M F)} \leq 6-7 d B$.

Figure 4.22 and Figure 4.23 show how the Loop-gain module varies in the "worst case" with $A_{v, E A(M F)}=10 d B$: the compensation is good because $P M>80^{\circ}$ for all simulations, however the phase margin could be much smaller in particular at $I_{L}=1 A$ and $C_{L}=1 \mu F$ (the red curve).

Fig. 4.21: Loop-gain Module at $I_{L}=1 A, C_{L}=1 \mu F, C_{B}=1 n F$, varying $f_{z(E A)}$, $A_{v, E A(M F)}$

Fig. 4.22: Loop-gain Module at $A_{v, E A(M F)}=10 d B, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=$ $1 n F$, varying $I_{L}=1 A, 100 m A, 10 m A$

Noise Budget

With the use of the bypass capacitor C_{B} we prevent the amplification $1 / \beta_{F}$ of the Voltage Reference (Bandgap) and EA Noise, so the transfer function from the input of the EA to the output of the regulator is unitary (see Par. 3.3.1). Remember that the integration band is $10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}$ and the target is $V_{N, \text { out(INTEGRATED) }} \leq 20 \mu V_{R M S}$ over the band. Since we have not modeled the Flicker Noise, we may consider that few $\mu V_{R M S}$ are produced by Flicker, so we have to keep a safety margin of few $\mu V_{R M S}$.

Fig. 4.23: Loop-gain Module at $A_{v, E A(M F)}=10 d B, I_{L}=1 A, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$, varying $C_{L}=1 \mu F, 10 \mu F, 100 \mu F, 1 m F$

A reasonable Noise budget can be divided in this way:

$$
\begin{align*}
V_{N, \text { out }(I N T .)} & \approx \sqrt{\left(V_{N, B G(I N T .)}\right)^{2}+\left(V_{N, E A(I N T .)}\right)^{2}+\left(\left.V_{N, F B(I N T .)}\right|_{C_{B}}\right)^{2}} \\
& \approx \sqrt{\left(13 \mu V_{R M S}\right)^{2}+\left(10 \mu V_{R M S}\right)^{2}+\left(\left.4.1 \mu V_{R M S}\right|_{C_{B}=1 n F}\right)^{2}} \tag{4.44}\\
& \approx 17 \mu V_{R M S}
\end{align*}
$$

Therefore we should be able to design an EA with $V_{N, E A(I N T .)} \leq 10 \mu V_{R M S}$, obviously more low-Noise it is and better is.

4.3.2 Proposed OTA

The proposed OTA is a mirrored OTA with an asymmetrical compensation to the output, the circuit is depicted in Figure 4.31, the analysis of the OTA is in Par. 4.2.1. For the transistor number $\left(M_{x}\right)$ refer to Figure 4.13 instead to Figure 4.31.

The constraints for the design are explained in Par. 4.3.1, but are quickly repeated below for convenience:

1. $A_{v(D C)} \geq 60 d B$
2. $1 k H z \leq f_{z(E A)} \leq 10 k H z$
3. $A_{v(M F)} \leq 7 d B$
4. $\left.V_{N, i n(\text { INTEGRATED })}\right|_{10 \mathrm{~Hz}-100 \mathrm{kHz}} \leq 10 \mu V_{R M S}$
5. maximum total current consumption $I_{T O T(M A X)}$ few tens of μA

Initial design choices taken (consider $(W / L)_{0}=(W / L)_{1},(W / L)_{3}=(W / L)_{4},(W / L)_{5}=$ $\left.(W / L)_{6}=M(W / L)_{4},(W / L)_{7}=(W / L)_{8}\right):$

- $I_{\text {tail }}=10 \mu A$ (but can be increased up to $15 \mu A$).
- $g_{m 1} \uparrow$ is high thanks to a $\operatorname{big}(W / L)_{1} \uparrow \uparrow$, this helps to increase $A_{v(D C)}$ and to decrease Thermal Noise. Since the area $(W L)_{1} \uparrow \uparrow$ is big the Flicker Noise is decreased.
- $L_{3 / 4 / 5 / 6 / 7 / 8}<L_{1}$ to not increase Flicker Noise.
- $M=\frac{(W / L)_{5}}{(W / L)_{4}}=2$ to not increase Thermal Noise. M may not be very big because the total current consumption is increased $I_{T O T}=I_{\text {tail }}(1+M)$.
- $g_{m 7} \ll g_{m 1}$ to not increase Thermal Noise. To make a small $g_{m 7} \downarrow$ is necessary $(W / L)_{7}<1$.
- $C_{c}=50 p F, R_{x}=2 M \Omega$ in order to have $f_{z(E A)} \approx 3 k H z$.

In order to respect the specifications $1,3,4$ we have to find a suitable $W_{3 / 4}$ to determine a right $g_{m 4}$, this is made by simulations shown in Figure 4.24 and Figure 4.25.

Fig. 4.24: Voltage gain, $W_{1}=200 \mu m,(W / L)_{5}=2(W / L)_{4}$

$W_{4}[\mu \mathrm{~m}]$	$I_{T O T}[\mu A]$	$A_{v,(D C)}[\mathrm{dB}]$	$A_{v,(M F)}[\mathrm{dB}]$	$V_{N, i n(I N T .)}\left[\mu V_{R M S}\right]$
15	30	≈ 66	5.3	8.8
15	45	≈ 66	6.7	7.1

So with $W_{4}=15 \mu \mathrm{~m}$ and $I_{T O T}=30-45 \mu A$ we met the specifications.
We can try to change $g_{m 1}$ by varying W_{1} to increase/decrease the Noise and Voltage gain(Figure 4.26 and Figure 4.27).

We may see by varying W_{1} that the voltage gain A_{v} and $V_{N, i n(I N T .)}$ remain practically unchanged, this because the $g_{m 1}$ is near to saturate and doesn't vary more appreciably. So

Fig. 4.25: Integrated input Noise voltage, $W_{1}=200 \mu m,(W / L)_{5}=2(W / L)_{4}$

Fig. 4.26: Voltage gain, $W_{4}=15 \mu m,(W / L)_{5}=2(W / L)_{4}, I_{T O T}=30 \mu A$
in the view to reduce Flicker Noise and don't occupy too much area, I choose to maintain $W_{1}=200 \mu \mathrm{~m}$.

It's interesting to observe what are the Noise contributions of the single transistors and the resistance (Figure 4.28).

Fig. 4.27: Voltage gain, $W_{4}=15 \mu m,(W / L)_{5}=2(W / L)_{4}, I_{T O T}=30 \mu A$

Fig. 4.28: $V_{N, i n(I N T .)}^{2}$ with $W_{1}=200 \mu m, W_{4}=15 \mu m,(W / L)_{5}=2(W / L)_{4}, I_{T O T}=30 \mu A$

Figure 4.28 confirms that the most of Noise is produced by the input couple $M 0-M 1$ (15% each one) and from transistors $M 3-M 5-M 6$ (15% each one), we have minimized the Noise of $M 7-M 8$ that is negligible and the Noise of $M 4$ is totally negligible as we said in Par. 4.2.1, R_{x} contributes to the total Noise power with about a 15%.

Theoretically we can calculate $V_{N, i n(I N T .)}$ integrating over the band ($B=100 \mathrm{kHz}-$ $10 H z \approx 100 k H z)$ the Eq. 4.43 and then making the square root, since $M=2$ and
neglecting $g_{m 7} / g_{m 1}$, the more compact formula is:

$$
\begin{equation*}
V_{N, i n(I N T .)} \approx \sqrt{\frac{16}{3} k T \frac{1}{g_{m 1}}\left(1+4 \frac{g_{m 4}}{g_{m 1}}\right)} \times \sqrt{B} \tag{4.45}
\end{equation*}
$$

With the manual calculation of Eq. 4.45 it results $V_{N, i n(I N T .)} \approx 6.3 \mu V_{R M S}$, instead with the help of Figure 4.28, considering only the Noise produced by $M 0-M 1-M 3-M 5-M 6$ it results $V_{N, i n(I N T .)} \approx 7.6 \mu V_{R M S}$.

The designed OTA has a current consumption of $I_{T O T}=30 \mu \mathrm{~A}$, the dimensions of transistors are shown in Figure 4.31 and $W_{1}=200 \mu m, W_{4}=15 \mu m$. It respect all the specifications $1 / 2 / 3 / 4 / 5$ and there is a parasitic pole in the voltage gain in high frequency at about $f_{\text {par. }(E A)} \approx 4 M H z$.

Stability and Noise performance of the Regulator with the designed OTA

The Stability and Noise performance of the Regulator with the proposed OTA are depicted in Figure 4.29 and Figure 4.30 (except the EA, which is that designed, the other blocks are those explained in Par. 4.3.1).

Fig. 4.29: Loop-gain Module, $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F, R_{1}=630 k \Omega$, $R_{2}=200 k \Omega$

Fig. 4.30: $V_{N, \text { out(TOT,INT.) }}$ with $C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F, R_{1}=630 k \Omega$, $R_{2}=200 k \Omega$, simulated Bandgap $V_{N, B G(I N T .)} \approx 12 \mu V_{R M S}$

$I_{\text {tail }}[\mu A]$	$I_{T O T(E A)}[\mu A]$	$f_{c(L G)}[\mathrm{kHz}]$	$P M\left[{ }^{\circ}\right]$	$V_{N, \text { out }(T O T, I N T .)}\left[\mu V_{R M S}\right]$
10	30	412	77	15.2
15	45	475	74	14.4

Tab. 4.2: Stability and Noise performance of the Regulator at $I_{L}=1 A$
The Loop-gain cuts the frequency axis at a frequency lower than $500 k H z$, this is really good and also the Phase Margin is quite good $\approx 75^{\circ}$ at $I_{L}=1 A$ and also better at $I_{L}=10-100 m A$ at about $\approx 85^{\circ}$.

As regard the Noise performance, considering $V_{N, B G(I N T .)} \approx 12 \mu V_{R M S}$, we have $V_{N, \text { out }(T O T, I N T .)} \approx 15 \mu V_{R M S}$ that is a very good performance because we have a good margin of $5-4 \mu V_{R M S}$ for the Flicker Noise, however we should be able to design a low-Noise voltage reference with about $V_{N, B G(I N T .)} \approx 12-13 \mu V_{R M S}$.

Fig. 4.31: Proposed OTA

Chapter 5

Voltage Reference Noise

The Voltage Reference, also called simply Bandgap generator, is a circuit that provides an output voltage insensitive to the absolute Temperature. There are many topologies that allow to obtain this insensitive voltage, I choose to analyze and to design the Brokaw Bandgap (see [1]), the theoretical analysis refers to Figure 5.1 and simulations are made with the designed Bandgap with NMOS-output of Figure 5.10.

Fig. 5.1: Brokaw Bandgap
The working of this circuit is simple, applying the KVL (Kirchhoff Voltage Law) it results:

$$
\begin{equation*}
V_{\text {out }}(T)=V_{B E_{0}}(T)+R_{2}\left(2 I_{P T A T}(T)\right) \tag{5.1}
\end{equation*}
$$

now it's necessary to investigate $V_{B E_{0}}$ and $I_{P T A T}$ behaviors, this is made in Appendix. A. 13.

We would like $V_{\text {out }}$ to be insensitive to the absolute Temperature, so:

$$
\begin{equation*}
\frac{\partial V_{\text {out }}(T)}{\partial T}=\frac{\partial V_{B E_{0}}(T)}{\partial T}+2 R_{2} \frac{\partial I_{P T A T}(T)}{\partial T}=0 \tag{5.2}
\end{equation*}
$$

and substituting Eq. A.56, Eq. A. 58 it results:

$$
\begin{equation*}
\frac{\partial V_{\text {out }}\left(T^{*}=300 K\right)}{\partial T} \approx-2 \times 10^{-3}+2 \frac{R_{2}}{R_{1}} \frac{k}{q} \ln (n)=0 \tag{5.3}
\end{equation*}
$$

so we calculate R_{2} as:

$$
\begin{equation*}
R_{2}=\frac{2 \times 10^{-3} R_{1} q}{2 k \cdot \ln (n)} \tag{5.4}
\end{equation*}
$$

Now $V_{\text {out }}$ is insensitive to the Temperature (in a first approximation) and it results:

$$
\begin{equation*}
V_{o u t}(T=300 K) \approx V_{G 0}=1.2 V \tag{5.5}
\end{equation*}
$$

The value of R_{1} fixes the total current consumption of the Bandgap:

$$
\begin{equation*}
I_{T O T}=2 I_{P T A T}+\frac{V_{o u t}}{R_{4}} \approx 2 I_{P T A T} \tag{5.6}
\end{equation*}
$$

so we size R_{1} as:

$$
\begin{equation*}
R_{1}=\frac{\left|\Delta V_{B E}\right|}{I_{P T A T}}=\frac{1}{I_{P T A T}} \frac{k T}{q} \ln (n) \tag{5.7}
\end{equation*}
$$

The starting point to design the Bandgap is using Eq. 5.7 and Eq. 5.4, we have assumed that $\frac{\partial V_{B E}}{\partial T}\left(T^{*}=300 K\right) \approx-2 m V / K$ and also the physical resistances $R_{1}-R_{2}$ have their own temperature coefficient, so the combination of values $R_{1}-R_{2}$ that makes true the Eq. 5.3 must be determined with the help of the simulator.

At high temperatures the transistor with more emitters $\left(T_{1}\right)$ has more leakage current towards the substrate respect the one-emitter transistor $\left(T_{0}\right)$, so we should design a specific block to ensure the leakage compensation. To match leakage a starting point is to put a off-transistor, with $n-1$ emitters, with the drain connected with that of T_{0} (like T_{4} in Figure 5.10). Therefore since it is off it has effect only with its leakage current to the substrate, however a correct matching circuit is found only with simulations and a very nice layout. The leakage compensation ensures a lower drift in temperature of $V_{\text {out }}(T)$, so a curve similar to a "bell", as in Figure 5.2.

Fig. 5.2: $V_{\text {out }}$, sweep in temperature
If we want to have a voltage $V_{\text {out }} \neq 1.2 \mathrm{~V}$ it's simple because we can take as output voltage the V_{x} (Figure 5.1):

$$
\begin{equation*}
V_{x}=\left(1+\frac{R_{3}}{R_{4}}\right) V_{\text {out }} \tag{5.8}
\end{equation*}
$$

or we can scale down $V_{\text {out }}$ with a voltage divider as in Figure 5.10.

Since the Bandgap is "self-polarized" there are 2 suitable DC operating points: the first (the desired) is when $V_{\text {out }} \approx 1.2 V$ (or scaled) and $I_{P T A T} \neq 0$, the second is with $I_{P T A T}, V_{\text {out }}=0$. To avoid the second operating point it should be designed a specific start-up circuit.

As regard the minimum supply headroom $\left(V_{D D(\text { min })}\right)$ to correct regulate $V_{\text {out }}$, consider to have a NMOS-output Bandgap (that of Figure 5.1) and $V_{\text {out }}=1.2 \mathrm{~V}$ so $R_{3}=0$:

$$
\begin{equation*}
\left.V_{D D(\text { min })}\right|_{N-\text { out }}=1.2+\left|V_{G S_{M 4}}\right|+\left|V_{D S_{\text {sat. }(M 3)}}\right| \tag{5.9}
\end{equation*}
$$

The supply headroom of circuit in Figure 5.10 is shown in Figure 5.3, a Bandgap with PMOS-output has a lower supply headroom.

Fig. 5.3: Supply Headroom, NMOS-output

5.1 Frequency Compensation

The circuit works in closed Loop to regulate the output voltage $V_{\text {out }}$. There are 2 Loops: a Negative Loop due to the signal path of transistor T_{0} and a Positive Loop due to the path of transistor T_{1}. The Negative Loop has a higher Loopgain module: T_{0} has a higher transconductance than T_{1} because it has not the degeneration resistance R_{1}, so the overall circuit is regulated from a Negative Loop. In order to guarantee the stability of the circuit we have to calculate the Loopgain.

First we calculate the transconductance $\frac{i_{H I}}{V_{x}}$, we know that the resistance seen into the emitter of a BJT is about $R_{e} \approx 1 / g_{m}$, so making the KVL it results:

$$
\begin{equation*}
i_{0}\left(\frac{1}{g_{m 0}}\right)=i_{1}\left(R_{1}+\frac{1}{g_{m 1}}\right) \tag{5.10}
\end{equation*}
$$

Fig. 5.4: Loopgain calculation with AC circuit
We know that $g_{m}=\frac{q I_{C}}{k T}$, the transistors operates at equal currents $I_{C_{0}}=I_{C_{1}}$ so $g_{m 0}=g_{m 1}, R_{1}$ is calculated in Eq. 5.7, thus making this substitutions in Eq. 5.10 it results:

$$
\begin{equation*}
i_{0}=i_{1}(1+\ln (n)) \tag{5.11}
\end{equation*}
$$

Now we suppose that $R_{2} \gg \frac{1}{g_{m}}, R_{1}$ (a strong degeneration), therefore the total current $i_{0}+i_{1}$ is due to the voltage change across R_{2} resulting from the voltage V_{x} at the common bases. That is:

$$
\begin{equation*}
i_{0}+i_{1}=\frac{V_{x}}{R_{2}} \tag{5.12}
\end{equation*}
$$

The combination of Eq. 5.11 and Eq. 5.12 can be manipulated to find the transconductance

$$
\begin{equation*}
\frac{i_{0}-i_{1}}{V_{x}}=\frac{i_{H I}}{V_{x}}=\frac{1}{R_{2}}\left(\frac{\ln (n)}{2+\ln (n)}\right) \tag{5.13}
\end{equation*}
$$

The current $i_{H I}$ flows into a H igh-resistive I nternal node $R_{H I}=R_{o 0} / / R_{o 3}$ and produces a voltage $V_{H I}=-i_{H I} R_{H I}$ that, thanks to the voltage buffer M_{4}, is the same as $V_{y}=V_{H I}$.

We can ensure a dominant pole-compensation of the Loop with the insertion of a capacitor C_{c} connected to the high-impedance internal node, in order to create a lowfrequency pole. Therefore the total Loopgain has the form:

$$
\begin{equation*}
T(s) \approx-\frac{V_{y}}{V_{x}}(s)=\frac{R_{o 0} / / R_{o 3}}{R_{2}}\left(\frac{\ln (n)}{2+\ln (n)}\right)\left(\frac{1}{1+s C_{c}\left(R_{o 0} / / R_{o 3}\right)}\right) \tag{5.14}
\end{equation*}
$$

Note that the low-frequency Loopgain module does not depend on the current $I_{C_{0 / 1}}=$ $I_{P T A T}$ at a first approximation, because $\left|T_{(D C)}\right|=\left(\left(R_{o 0} / / R_{o 3}\right) \propto \frac{1}{I_{C}}\right)\left(\frac{1}{R_{2}} \propto I_{C}\right)$, how-
ever the pole is proportional to $R_{o 0} / / R_{o 3}$ so it moves with I_{C}. We can roughly estimate the unity-gain frequency f_{c} of the Loopgain:

$$
\begin{align*}
f_{c} & =\left(\frac{\ln (n)}{2+\ln (n)}\right) \frac{1}{2 \pi C_{c} R_{2}} \tag{5.15}\\
& =\left(\frac{\ln (n)}{2+\ln (n)}\right) \frac{I_{P T A T}}{2 \pi \times 10^{-3} T C_{c}}
\end{align*}
$$

where in Eq. 5.15 we have substituted $R_{2}=\frac{1 \times 10^{-3} T}{I_{P T A T}}$ (found substituting Eq. 5.7 into Eq. 5.4). The Loopgain of circuit in Figure 5.10 is shown in Figure 5.5, a manual estimation of $\left.f_{c}\right|_{I_{P T A T}=1 \mu A} \approx 5.3 k H z$ and the simulated value is about $f_{c} \approx 4.6 k H z$, in good agreement.

Fig. 5.5: Loopgain, $I_{P T A T}=1-5 \mu A, C_{c}=50 p F, n=8, T=300 K$

5.2 Noise

It's very important to understand and analyze the Noise produced by the Bandgap, the Noise sources are transistors and resistors and are highlighted in Figure 5.6 (the Shot Noise of the base current of $T_{0 / 1}$ has been neglected in this analysis).

R_{2} Noise

R_{2} produces a Noise signal that is a common mode signal, so it is deleted in the $R_{H I^{-}}$ node and it does not propagate to the output (the Noise path is very similar to that of Figure 4.4). However the two paths through T_{0} and T_{1} are not completely symmetric so the Noise at output is not zero, but it is so small that it can be surely neglected.

Fig. 5.6: Bandgap Noise sources

$T_{1} / T_{0} / M_{2} / M_{3}$ Noise

The Noise produced by these transistors is transferred to the output with a Closed-Loop transfer function, so the voltage gain to the output is of the form:

$$
\begin{equation*}
\frac{v_{N, \text { out }}}{v_{N, M_{x} / T_{x}}}(s)=A_{v, C . L .}(s)=\frac{A_{v, O . L .}(s)}{1+T(s)} \tag{5.16}
\end{equation*}
$$

generally it's a low voltage gain and it starts to decrease when the Loopgain reaches the unitary-gain frequency f_{c}. Therefore the Noise of these transistors is white and it starts to decrease when $f \geq f_{c}$, if we add the 4 contributions this Noise is not negligible, however it is not the main Noise source.

M_{4} Noise

$v_{N, M 4}$ "sees" a closed-Loop transfer function like Eq. 5.16 , now $A_{v, O \cdot L .}(s) \approx 1$ because M_{4} is a voltage buffer, thus the total transfer function is just:

$$
\begin{equation*}
\frac{v_{N, o u t}}{v_{N, M_{4}}}(s) \approx \frac{1}{1+T(s)} \tag{5.17}
\end{equation*}
$$

so the Noise is strongly attenuated for $f<f_{c}$ and it is unitary transferred to the output for $f \geq f_{c}$, this Noise source however is negligible.

R_{4} Noise

First we explain how is the Bandgap output resistance $R_{\text {out }}$, the Bandgap provides a constant and regulated $V_{\text {out }}$ so it is itself a voltage regulator, we know that a voltage regulator has a very low output resistance. The Open-Loop output resistance is

$$
\begin{equation*}
R_{o u t, O . L .}(s)=R_{i b} / / \frac{1}{g_{m 4}} \approx \frac{1}{g_{m 4}} \tag{5.18}
\end{equation*}
$$

and the Closed-Loop output resistance is

$$
\begin{equation*}
R_{o u t, C . L .}(s) \approx \frac{1 / g_{m 4}}{1+T(s)} \tag{5.19}
\end{equation*}
$$

R_{4} is a resistance of the order of $M \Omega$ because we want a small DC current $I_{M 4}=\frac{V_{\text {out }}}{R_{4}}$, so it produces a lot of Noise. Fortunately the voltage transfer function to output is very low:

$$
\begin{equation*}
\frac{v_{N, \text { out }}}{v_{N, R_{4}}}(s)=\frac{R_{\text {out }, C . L .}(s)}{R_{\text {out }, C . L .(}(s)+R_{4}} \ll 1 \tag{5.20}
\end{equation*}
$$

therefore the Noise of this big resistance is negligible.
R_{3}, R_{4} Divider If $V_{\text {out }}$ is scaled up with the use of the feedback divider R_{3}, R_{4} (Figure 5.1), these resistances play the role of R_{1}, R_{2} in the total regulator (Figure 3.4), so as it is explained in Appendix. A.6:

$$
\begin{equation*}
\left|\frac{v_{N, \text { out }}}{v_{N, R_{4}}}\right|(s) \approx \frac{R_{3}}{R_{4}} \tag{5.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{v_{N, \text { out }}}{v_{N, R_{3}}}\right|(s) \approx 1 \tag{5.22}
\end{equation*}
$$

at least until $|T(s)| \gg 1$.
This Noise is very deleterious, so a Bypass capacitor is needed (as explained in Par. 3.3.1).

R_{1} Noise

First we calculate the Open-loop transfer function $\left.\frac{v_{N, o u t}}{v_{N, R_{1}}}(s)\right|_{O . L .}$.

Fig. 5.7: R_{1} Noise, circuit zoom
Neglecting R_{2} and considering $g_{m 1}=g_{m 0}$, the Noise $v_{N, R_{1}}$ produces a noise current that circulates in the "internal" network

$$
\begin{equation*}
i_{N}=\frac{v_{N, R_{1}}}{R_{1}+\frac{2}{g_{m 0}}} \tag{5.23}
\end{equation*}
$$

Applying KVL to the internal network we may calculate

$$
\begin{align*}
\left|\Delta v_{b e}\right|=\left|v_{b e_{1}}-v_{b e_{0}}\right| & =R_{1} i_{N}-v_{N, R_{1}} \\
& =\left(\frac{R_{1}}{R_{1}+\frac{2}{g_{m 0}}}-1\right) v_{N, R_{1}} \tag{5.24}
\end{align*}
$$

and since $g_{m 0}=\frac{q I_{P T A T}}{k T}$ and R_{1} is expressed by Eq. 5.7, we can manipulate Eq. 5.24 and rewriting as

$$
\begin{equation*}
\left|\Delta v_{b e}\right| \approx\left(\frac{2}{2+\ln (n)}\right) v_{N, R_{1}} \tag{5.25}
\end{equation*}
$$

Now referring to Figure 5.4 we easily found:

$$
\begin{equation*}
\left.\left|\frac{v_{N, o u t}}{v_{N, R_{1}}}\right|(s)\right|_{O . L .}=g_{m 0}\left(R_{o 0} / / R_{o 3}\right)\left(\frac{2}{2+\ln (n)}\right)\left(\frac{1}{1+s C_{c}\left(R_{o 0} / / R_{o 3}\right)}\right) \tag{5.26}
\end{equation*}
$$

Fig. 5.8: $v_{N, \text { out }\left(R_{1}\right)}$
Therefore the Closed-Loop transfer function has the form of Eq. 5.16 and when $|T(s)| \gg$ 1, Eq. 5.26 reduces to

$$
\begin{align*}
\left.\left|\frac{v_{N, \text { out }}}{v_{N, R_{1}}}\right|(s)\right|_{C . L .,|T(s)| \gg 1} & \approx g_{m 0} R_{2} \frac{2}{\ln (n)} \\
& \approx 1 \times 10^{-3} \frac{q}{k} \frac{2}{\ln (n)} \tag{5.27}\\
& \approx 11.6 \frac{2}{\ln (n)}
\end{align*}
$$

This is a very important and curious result because the transfer function is independent of temperature and of all other parameters (n appears with the logarithm so has a small impact). If we consider $n=8$ so $\ln (n) \approx 2$, it results $\left|\frac{v_{N, \text { out }}}{v_{N, R_{1}}}\right| \approx 21 d B$, therefore the Noise at the output produced by R_{1} is that of a resistance of value $100 R_{1}$ (!). This is the main contribution to the total output Noise.

Total Noise

All contributions explained above form the total output Noise $v_{N, \text { out (TOT) }}$, the Noise of most of contributions ($R_{1} / T_{1} / T_{0} / M_{2} / M_{3}$) decreases when $f \geq f_{c}$ so when $|T(s)| \leq 1$, therefore is important to have the smaller as possible bandwidth $\left(f_{c}\right)$ of the Loopgain. However this is not simple because (see Eq. 5.15) to decrease the band we have two choices: decrease the $I_{P T A T}$ or increase C_{c}. Decreasing $I_{P T A T}$ is to avoid because we increase the Noise produced by all resistances and all transistors, we can increase C_{c} but for an integrate capacitor there are some limits on the value that can be integrated, we can assume that the biggest integrated $C_{c(\max)} \approx 50 \mathrm{pF}$. However if we give to the customer the possibility to put an external capacitor $C_{c} \geq 1 n F$, we can easily filter all the Noise.

Fig. 5.9: $v_{N, \text { out (TOT) }}$ Integrated, $I_{P T A T}=1-5 \mu A, C_{c}=50 p F$

component	$\%$ of $v_{N, \text { out }(T O T, I N T .)}^{2}$
R_{0}	46.3
T_{0}	13.3
T_{1}	11.4
M_{7}	5.5
M_{6}	5.0
M_{5}	5.0
R_{7}	4.5
R_{8}	4.5
others	4.5

Tab. 5.1: Components are referred to the circuit in Figure 5.10

The Noise budget for the Bandgap is $V_{N, B G(I N T .)} \leq 13 \mu V_{R M S}$ as explained in Par. 4.3.1, with a $C_{c}=50 p F$ we don't reach the target and varying $I_{P T A T}$ the Noise varies slightly. Thus this simple Bandgap with integrate C_{c} is not good for our purpose.

Fig. 5.10: Brokaw Bandgap N-output

5.3 Proposed Bandgap

To decrease the Noise the idea is to scale down all the Noise produced by the previous Bandgap and further filtering the output. To scale down the Noise by a 2 factor and maintaining $V_{\text {out }(D C)}=1.2 \mathrm{~V}$ it's necessary to have a Bandgap that regulates a "Highvoltage" $V_{B G(D C)}=2.4 V$. Then we may insert a capacitor C_{o} at the output for filtering, because now we have a high-impedance output node $R_{\text {out }} \approx R_{x} / / R_{x}=R_{x} / 2$.

Fig. 5.11: Bandgap "High Voltage " P-output
I choose a PMOS-output because the Bandgap requires a lower Supply-Headroom $\left(V_{D D(\min)}\right)$ than the NMOS-output (for Eq. 5.29 think to make "High-Voltage" the circuit in Figure 5.1):

$$
\begin{gather*}
\left.V_{D D(\text { min })}\right|_{P-\text { out }}=2.4-V_{B E_{T 0}}+V_{C E_{\text {sat. }(T 0)}}+\left|V_{G S_{M 3}}\right| \tag{5.28}\\
\left.V_{D D(\text { min })}\right|_{N-\text { out }}=2.4+\left|V_{G S_{M 4}}\right|+\left|V_{D S_{\text {sat. }(M 3)}}\right| \tag{5.29}
\end{gather*}
$$

thus $V_{D D(\min)}(P)<V_{D D(\min)}(N)$. The designed Bandgap has $V_{D D(\text { min })} \approx 4 V$.

The manual design of the Bandgap is essentially the same explained in Par. 5, the output voltage is $V_{o u t}=\frac{V_{B G}}{2}$, considering 2 equal resistances of value R_{x}. Choosing the value of R_{1} as in Eq. 5.7 we choose the current $I_{P T A T}$ and so the total current consumption $I_{T O T}=2 I_{P T A T}+1.2 / R_{x} \approx 2 I_{P T A T}$. The circuit regulates $V_{B G}$:

$$
\begin{align*}
V_{B G}(T) & =V_{B E_{0}}(T)+R_{2}\left(2 I_{P T A T}(T)\right)+V_{B E_{5}}(T) \\
& \approx 2 V_{B E_{0}}(T)+R_{2}\left(2 I_{P T A T}(T)\right) \tag{5.30}
\end{align*}
$$

note that to match $V_{B E_{0}}(T)=V_{B E_{5}}(T)$ is necessary that T_{5} has $A_{e 5}=2 A_{e 0}$ because $I_{C_{5}}=2 I_{C_{0}} . R_{2}$ is calculated to make $\frac{\partial V_{B G}\left(T^{*}=300 K\right)}{\partial T}=0$ but now the voltage change across R_{2} has to compensate $2 V_{B E_{0}}$ so

$$
\begin{equation*}
R_{2}=\frac{2 \times 10^{-3} R_{1} q}{k \cdot \ln (n)} \tag{5.31}
\end{equation*}
$$

Therefore $V_{B G}$ is insensitive to the Temperature (in a first approximation) and it results:

$$
\begin{equation*}
V_{B G}(T=300 K) \approx 2 V_{G 0}=2.4 V \tag{5.32}
\end{equation*}
$$

As a result

$$
\begin{equation*}
V_{\text {out }}(T=300 K)=V_{B G} / 2=1.2 \mathrm{~V} \tag{5.33}
\end{equation*}
$$

Fig. 5.12: $V_{\text {out }}(T)$, designed Bandgap

5.3.1 Frequency Compensation

The frequency analysis and the Loopgain calculation is essentially the same explained in Par. 5.1, the only difference is that the output stage is a voltage gain stage (CS-stage) so the Loopgain is higher. In order to create a low-frequency pole we can exploit the Miller effect to "increase" the capacitor, the voltage gain of the CS-stage M_{4} is the same as Eq. 4.39 (Par. 4.2.1) and to eliminate the zero we choose a $R_{z}=1 / g_{m 4}$. So the Loopgain results:

$$
\begin{equation*}
T(s) \approx \frac{R_{o 1} / / R_{o 2}}{R_{2}}\left(\frac{\ln (n)}{2+\ln (n)}\right) A_{v 4(L F)}\left(\frac{1}{1+s C_{c} A_{v 4(L F)}\left(R_{o 1} / / R_{o 2}\right)}\right) \tag{5.34}
\end{equation*}
$$

where $A_{v 4(L F)}=g_{m 4}\left(R_{o 4} / /\left(R_{i b} / / 2 R_{x}\right)\right)$ (at low-frequency).

Fig. 5.13: Loopgain of designed Bandgap, $I_{T O T} \approx 16 \mu A, C_{c}=5-50 p F$

The output capacitor C_{o} doesn't have effect (at a first approximation) on the Loopgain because, even when C_{o} shorts one R_{x}, the node $V_{B G}(s)$ still "sees" a high-impedance path to ground $R_{i b} / / R_{x}$. Therefore to guarantee a 1-pole Loopgain and filter the Noise at the output are two decoupled problems.

5.3.2 Noise

The Noise measured at $V_{B G}$ is approximately the same as the previous Bandgap (Par. 5.2, except for the noise produced by R_{x}, R_{x}), transistor M_{4} is not a voltage buffer so its Noise is different but it's not a main Noise source, different is for R_{1} Noise. $v_{N, R_{1}}$ "sees" a transfer function to $V_{B G}$ which is proportional to R_{2} (Eq. 5.27), now R_{2} is doubled so $\left|\frac{v_{N, B G}}{v_{N, R_{1}}}\right| \approx 11.6 \frac{4}{\ln (n)}$. However there is a down-scale to $V_{\text {out }}$

$$
\begin{equation*}
\frac{v_{N, \text { out }}}{v_{N, B G}}=\frac{1}{2} \tag{5.35}
\end{equation*}
$$

so the Noise produced by transistors is decreased and the Noise produced by R_{1} is about the same as Eq. 5.27. Now we analyze the Noise of R_{x}, R_{x} and the effect of C_{o} (a comparison with or without C_{o} is in Figure 5.14, make attention to the linear and logarithmic scale).

- without C_{o}

Consider $R_{x}, R_{x} 2$ resistances of the order of few $M \Omega, R_{B G, C . L}$. is a low-impedance node (at least until $|T(s)| \gg 1$) so we consider $R_{B G, C . L .} \ll R_{x}$. Thus it is as the two resistances are in parallel and at the output node we take all the Noise produced by an equivalent resistance of value $R_{x} / 2: v_{N, o u t} \approx v_{N, R_{x} / 2}$. This is a quite high Noise, because $R_{x} / 2$ is a big resistance, comparable with that of R_{1}.

- with C_{o}

Fortunately the output node is a high-impedance node $R_{o u t}=\left(R_{x}+R_{B G, C . L .}\right) / / R_{x} \approx$ $R_{x} / 2$ so this allows us to insert a capacitor C_{o} to create a low/medium-frequency pole to filter Noise:

$$
\begin{equation*}
f_{o}=\frac{1}{2 \pi C_{o} R_{x} / 2} \tag{5.36}
\end{equation*}
$$

This is a very good thing because with C_{o} we filter completely all the Noise produced by the Bandgap, however we cannot exceed values of few $M \Omega$ for R_{x} and about $C_{o,(\max)} \approx 50 p F$ so we cannot pull f_{o} to a frequency arbitrarily low.

Fig. 5.14: $v_{N, \text { out }}$ Spot Noise, $I_{T O T} \approx 16 \mu A, n=20, C_{c}=5-50 p F, C_{o}=50 p F, R_{x}=2 M \Omega$

Fig. 5.15: $v_{N, \text { out }}$ Integrated Noise, $I_{T O T} \approx 16 \mu A, n=20, C_{c}=5-50 p F, C_{o}=50 p F$, $R_{x}=2 M \Omega$

Noise contributions are such distributed:

component	\% of $v_{N, \text { out }(T O T, I N T .)}^{2}$
R_{32}	27.5
R_{33}	27.5
R_{0}	24.0
T_{0}	5.5
T_{1}	5.0
M_{5}	5.0
M_{6}	4.5
others	2.0

Tab. 5.2: Components are referred to the circuit in Figure 5.16

As we can see in Figure 5.14 /Figure 5.15 the unity-gain frequency of the Loopgain has a marginal effect on the Noise so we can use a smaller $C_{c}=5 p F$ and a bigger capacitor $C_{o}=50 p F$ has been chosen. The Noise Budget is reached because $V_{N, \text { out (INT.) }} \approx 12.2 \mu V_{R M S}$.

In this chapter a "high-voltage" Bandgap has been explained and designed, it's also possible to use a classical Bandgap (as the first explained) and scale down the output voltage to $V_{\text {out }}<1.2 \mathrm{~V}$. This solution is suitable if the Error Amplifier can work with low $V_{i, c m}$ like an OTA with P-input couple. However the Noise of a "Low-Voltage" Bandgap should be comparable to the "High-Voltage" version, in addition the resistor divider of the regulator is a little noisier (Eq. 3.33) because, to regulate at the same voltage, $1 / \beta_{F}$ is higher.

Fig. 5.16: Designed Bandgap "High-Voltage" with P-output

Chapter 6

Conclusions

This work starts to explain some useful knowledge on the electronic Noise, its behavior and link between the frequency and time domain, and some theoretical concepts on Noise simulation and analysis. Then the main focus of the thesis is the feasibility study of a low-noise LDO voltage regulator with $V_{N, \text { out }} \leq 20 \mu V_{R M S}$ integrated in the bandwidth $10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}$, an example of low-noise LDO is explained and designed. To reach low-noise performance we have to consider the effect of the Voltage Reference, the Error Amplifier, the Voltage Feedback and the Regulation Loop. In Chapter. 3 is explained the Noise produced by the voltage feedback and the effect of the regulation loop on the Noise performance, several methods to act on the regulation loop for decreasing the Noise are analyzed. Chapter. 4 regards the Error Amplifier and the designed OTA is explained and simulated. At last, Chapter. 5, takes into account the Noise of the voltage reference that is the main noise source of a voltage regulator, a suitable low-noise Bandgap reference has been designed.

6.1 Noise Performance of the Designed LDO Voltage Regulator

The main designed blocks have these Noise performance:

- $V_{N, o u t(B G)_{\text {INTEGRATED }}} \approx 12.2 \mu V_{R M S}$
- $V_{N, i n(E A)_{\text {INTEGRATED }}} \approx 8.8 \mu V_{R M S}$
the overall voltage regulator produces this Noise:

Fig. 6.1: $v_{N, o u t}$ Spot Noise, $V_{\text {OUT }}=5 V, I_{L}=1 A, C_{c}=1 \mu F, C_{B}=1 n F$

Fig. 6.2: $v_{N, \text { out }}$ Integrated Noise, $V_{\text {OUT }}=5 V, I_{L}=1 A, C_{c}=1 \mu F, C_{B}=1 n F$

The effect of the voltage divider changes the Spot Noise figure, which in turn influences the Integrated Noise, with a regulated voltage of $V_{O U T}=5 \mathrm{~V}$ to reach the Noise target values of $R_{1} \geq 2.1 M \Omega, R_{2} \geq 600 k \Omega$ are suitable (in order to inevitable leave few $\mu V_{R M S}$ for Flicker Noise).

Fig. 6.3: Loopgain module, $V_{O U T}=5 V, C_{c}=1 \mu F, C_{B}=1 n F, R_{1}=2.1 M \Omega, R_{2}=600 k \Omega$

The regulator is well stable at all load currents with a good phase-margin $P M>80^{\circ}$.

6.2 Future Work

To increase Noise performance of an LDO we can take into account and analyze with more detail this options:

- Other compensation schemes may be studied: the smaller is the regulation bandwidth, the smaller is the output integrated noise. However there must be a trade-off with stability and with the speed of the temporal response.
- The use of a current reference instead of a voltage reference: we can set the correct regulated voltage at the input of the error amplifier so the regulation loop is closed in unitary feedback and we avoid the noise gain due to the feedback. The noise of the current reference has to be investigated.
- The use of a Two-Stage Regulator as explained in Par. 3.3.4.
- With an Active Feedback (Par. 3.3.2) we can reduce very much the noise produced by the voltage reference and the error amplifier, therefore these two last blocks may be less complex to design respect noise performance. Also dynamic performance like PSRR and step-response are improved, however the active feedback should be low-noise and the compensation of the regulation loop must be analyzed in detail.
- Parallelizing Regulators may decrease the output noise, it's also possible to parallelize regulators that have specific functions (low-noise, high output current etc...).
- To reduce very much $1 / f$-noise we may use Chopper stabilization techniques. Chopper stabilization modulates the low frequency noise and offset components to higher frequencies by a mixing operation, followed by low-pass filtering. Further information and a full explanation can be found in [12].

Appendix

A. 1 Flicker Noise Divergence

The term $\ln \frac{f_{2}}{f_{1}}$ suggests that the Power will be infinite, but obviously it's not possible that the power is infinite. If we measure the voltage or current, we don't see the signal diverge, so we have to investigate the problem under a physical side. Push the frequency to zero means that we are measuring the system for a time much long because $f_{\text {min }}=\frac{1}{T_{\text {observation }}}$, to reach a true DC signal $(f=0)$ we should measure the system for an infinite time, obviously this is not possible. In practice we are interested only at the time of use of the device, for example, a voltage regulator how long it will stay on? Few seconds or a full day? This time sets the minimum frequency that we can reach.

Example: we have a system affected only by Flicker Noise and the $f_{M A X}=100 \mathrm{kHz}$, we know that the output current is noisy and:

$$
i_{o u t, R M S}=\sqrt{\overline{i_{o u t}^{2}}}=\sqrt{\overline{i_{1 / f}^{2}}}=\int_{f_{m i n}=1 H z}^{f_{M A X}} K_{f} \frac{1}{f} d f=1 m A_{R M S}
$$

if we vary the $f_{\text {min }}$, so the $T_{\text {observation }}$, how does the Noise vary?

$f_{\min }[H z]$	$T_{\text {obs }}[s]$	$i_{\text {out }, R M S}[m A]$
1	1	1
10^{-1}	10^{1}	1.52
10^{-3}	10^{3}	2.63
10^{-5}	10^{5}	3.39
10^{-6}	10^{6}	3.72

Note that 10^{5} sec is about a day and 10^{6} sec is about two weeks and the $i_{o u t, R M S}$ is increased of very little. This example can help to convince us that really the Flicker noise can't diverge any physical signal (voltage or current in electronics).

A. 2 Noise Phase

A complete characterization in frequency of the Noise can be represented, like all signals, by two quantities: the module and the phase. The module was explained in Chapter 1 when we have illustrated Thermal, Shot and Flicker noise, but, the phase how it can be? Can we make some statistics on it?

We can expect that the phase is random because the noise module in frequency domain is well defined (think the module of thermal noise that is constant in frequency) so the uncertainty must be in the phase, otherwise we don't have a random waveform in time domain.

The best way to understand how is the phase is trying to realize some noise signals in time domain, starting from its characteristics in frequency domain: a well known module and some different phases.

We use a constant module in frequency as in Figure A. 1 (it could be a Thermal or Shot noise spectrum):

Fig. A.1: Noise spectrum module
the RMS voltage, that contain the information on the Power, is:

$$
\begin{equation*}
V_{R M S}=V_{\text {level }} \sqrt{f_{M A X}-f_{\min }} \cong V_{\text {level }} \sqrt{f_{M A X}} \tag{A.1}
\end{equation*}
$$

where $V_{\text {level }}$ is in this case $10^{-7} \frac{V}{\sqrt{H z}}$.
Now we try to associate three different phases and to discover the time domain realization.

Constant Zero Phase

Fig. A.2: Constant zero phase
The realization in time domain with module and phase shown respectively in Figure A. 1 and Figure A. 2 is depicted in Figure A.3.

Fig. A.3: Realization in time domain

Obviously this signal can't be a true realization of noise (we can easily convince ourselves comparing Figure A. 3 with Figure 1.1) because there is an impulse in the origin at $t=0\left(V_{\delta(t)}=V(1)\right)$ and the rest of the signal is null $V(i)=0$ for $i \neq 1$ (there are N samples).

The power (or equivalently the $V_{R M S}$), anyhow, must be conserved from frequency to time domain:

$$
\left.V_{R M S}\right|_{\text {time }}=\left.V_{R M S}\right|_{\text {frequency }}
$$

so we can calculate the amplitude of the impulse $V_{\delta(t)}$, we know that

$$
\begin{equation*}
\left.V_{R M S}\right|_{t i m e}=\sqrt{\frac{\sum_{N} V(i)^{2}}{N}}=\sqrt{\frac{V_{\delta(t)}^{2}}{N}} \tag{A.2}
\end{equation*}
$$

thus comparing Eq. (A.1) with Eq. (A.2):

$$
\begin{equation*}
V_{\delta(t)}=V_{\text {level }} \sqrt{N} \sqrt{f} \tag{A.3}
\end{equation*}
$$

We could expect this time realization from the beginning because the Fourier transform of the Dirac impulse $\delta(t)$ has just a constant module and constant phase. This example use a null constant phase ($L=0$), if we use another constant phase we obtain again an impulse at $t=0$ but with a different amplitude, for example if we use $\angle=\pi$ the impulse will be $-V_{\delta(t)}$.
N.B. Eq. (A.2) assume that the mean value of the signal is null, $\overline{V(t)}=0$, this is not obvious, indeed if we make a zoom at the null signal in Figure A. 3 we could observe that the signal is slightly negative, this because the mean value results null. $\overline{V(t)}=0$ because to make the realization I force the DC component $f(0)=0$ because is realistic that Noise has a null mean value.

Fig. A.4: Gaussian phase $\sigma_{\text {phase }}=\pi / 3$

Gaussian Phase

The phase for every frequency sample is created from a gaussian distribution (or normal distribution) with $\sigma_{\text {phase }}=\pi / 3$, so about the 99.7% of the generated phase is between $\pm \pi$ because is in the band $-3 \sigma<$ phase $<+3 \sigma$ therefore $-\pi<$ phase $<+\pi$.

The realization in time domain with module and phase shown respectively in Figure A. 1 and Figure A. 4 is depicted in Figure A.5.

Fig. A.5: Realization in time domain

This signal $V(t)$ shows a band with random values, that may seem a noise, and an impulse in $t=0$.

The impulse arises because of there are a lot of frequencies in phase (or quasi in phase) with $\angle \simeq 0$ and so there are the same conditions of the previous example Sec. A.2. The impulse has a contribute not negligible and even dominant in the $V_{R M S}$ of the signal, so we can not believe this is a good realization of the Noise.

Uniform Phase

Fig. A.6: Uniform phase
The phase for every frequency sample is created from a uniform distribution in $\pm \pi$.
The realization in time domain with module and phase shown respectively in Figure A. 1 and Figure A. 6 is depicted in Figure A.7.

Fig. A.7: Realization in time domain

Already at a glance between Figure 1.1 and Figure A. 7 we can see the similarity, in this realization there are not impulses much larger among them.

The calculation of $V_{R M S}$ made with

$$
\begin{equation*}
\left.V_{R M S}\right|_{t i m e}=\sqrt{\frac{\sum_{N} V(i)^{2}}{N}} \tag{A.4}
\end{equation*}
$$

leads to the same results of Eq. (A.1), so this is a correct realization (in the Eq. (A.4) is assumed a null mean value $\overline{V(t)}=0$).

The uniform phase seems to be the correct phase to be associated to the Noise, to be sure, it's possible to make the opposite test, that is to measure the module and the phase of a noisy signal.

Measurement of Noise

I made a measurement of the Noise spectrum of a Linear Voltage Regulator LDO (Low Drop Out) with a Network Analyzer, I measured the module and the phase.

Setup

Fig. A.8: Measurement setup
As depicted in Figure A.8, components and the DC operating point are:

$C_{L O A D}[u F]$	$R_{E S R}[\Omega]$	$R_{L O A D}[\Omega]$	$I_{L O A D}[m A]$	$V_{B A T T}[V]$	$V_{\text {out }}[V]$
1	5.7	50	100	12	5

more informations about an $L D O$ are given in Chapter 3 .
The Network Analyzer has an input resistance $R_{i n}=50 \Omega$ and it accepts at its input port a DC voltage of few Volts, thus we have to use a block capacitor C_{B} that is indispensable for two reasons:

- decouple in DC the input port.
- if the input voltage is allowed (5 V are allowed), the load resistance becomes $R_{L O A D} / / R_{\text {in }}$, so $I_{L O A D}$ becomes different and the Noise too varies.

To design C_{B} it's necessary to know the bandwidth we want to make the measure, in this case $[10 \mathrm{~Hz}<f<1 \mathrm{MHz}]$, because:

- at Low frequency there is a high-pass filter $C_{B}-R_{\text {in }}$ (see Figure A.8)

$$
\begin{equation*}
\frac{V_{\text {measured }}(s)}{V_{\text {out }}(s)}=\frac{s C_{B} R_{\text {in }}}{1+s C_{B} R_{\text {in }}} \tag{A.5}
\end{equation*}
$$

so it must be $f_{0} \ll f_{\text {min }}$, with $f_{0}=\frac{1}{2 \pi C_{B} R_{i n}}$ the cut-frequency of the filter and $f_{\text {min }}=10 \mathrm{~Hz}$ in this case. C_{B} results a big capacitor, I chose a commercial value $C_{B}=1000 \mu F$, so it results $f_{0} \approx 3 H z$.

- at High frequency, because of C_{B} is a big and electrolytic capacitor, it has not negligible parasitic components like $R_{E S R}$ and $L_{E S R}$, so at a frequency $10-100 \mathrm{kHz}$ the capacitor seems like an inductance. To avoid this problem is possible to connect in parallel a smaller ceramic capacitor $\left(C_{\text {small }}=100 n F\right)$ that relieves the effect of $L_{E S R\left(C_{B I G)}\right)}$ and it has no effect at low frequency because $C_{B}=C_{B I G}+C_{\text {small }} \approx$ $C_{B I G}$.

Measure

Figure A. 9 shows the module of the spectrum of the measure

Fig. A.9: Module
and in Figure A. 10 is shown the measured phase

Fig. A.10: Phase
We are interested at the phase and the question is: has it a uniform distribution? To answer, let's see the histogram in Figure A. 11 and make some calculations.

Fig. A.11: Phase histogram

Theory A variable uniformly distributed between $\pm \pi$ has zero mean, $\bar{x}=0$ (because the two extremes are opposite), and variance $\sigma_{x}^{2}=\frac{\pi^{2}}{3} \approx 3.3$.

The measured phase presents a mean value $\overline{\text { phase }}=0.0145 \approx 0$ and variance $\sigma_{\text {phase }}^{2}=$ $3.33 \approx 3.3$, so we may reasonably think that the Noise phase is a random variable with a uniform distribution.

A. 3 Nyquist Theorem

If we want to pass from a continuous signal in time domain (time $\in \Re)$ to a discrete signal (time $\in k T_{s}$), there is no information loss in this passage if:

- the spectrum of the signal is band-limited with $f_{M A X}=B$
- the sampling frequency f_{s} respects the condition: $f_{s} \geq 2 B$
otherwise there is the Aliasing phenomenon (think that repetitions in Figure 2.2 are partially overlapped) and we can not exactly rebuilt the original signal from samples.

A. 4 PSD

Let's make an example of PSD calculation and let's give some practical and useful knowledge.

We consider this signal:

$$
v(t)=10 \operatorname{sen}(2 \pi f t)+\alpha(t)
$$

$\alpha(t)$ is a random variable with a gaussian distribution and $\sigma_{\alpha}=1 V, f=10 H z$ and the sampling rate is $f_{s}=1 M H z$.

The $V_{\text {level }}$ indicated in Figure A. 13 represents the white $P S D$ of the gaussian process $\alpha(t)$ and thus $\sigma_{\alpha}^{2}=V_{\text {level }}^{2} B\left(B\right.$ is the bandwidth, so $\left.B=f_{s} / 2\right)$

$$
\begin{equation*}
V_{l e v e l}=\sqrt{\frac{\sigma_{\alpha}^{2}}{B}} \tag{A.6}
\end{equation*}
$$

Fig. A.12: Signal, $N=100 k$ Samples

Fig. A.13: PSD, $N=100 k$ Samples

If the number of samples is increased (we sample the signal for a longer time) we obtain Figure A.15, as we can see the $V_{\text {level }}$ is the same because of the bandwidth is about the same $\left(f_{M A X} \gg f_{\text {min }}\right)$ and thus Eq. (A.6) leads the same result.

The interesting thing to note is that the amplitude of the sine is different in the two cases $A_{1} \neq A_{2}$, this because in the PSD graph the amplitude is scaled by the factor $1 / \sqrt{\Delta f}$ as in Eq. (2.7). This is correct for random signals that have a wide spectrum but this is not correct for deterministic signals that have a line spectrum, indeed only A_{1} is the true $R M S$ value so $A_{1}=10 / \sqrt{2}$ because of $\Delta f=1 H z$ in Figure A.13.

With this example we have to remember that the $P S D$ spectrum gives the correct information only for random signals that have a wide spectrum, otherwise for deterministic signals is better to use a simply $F F T$ graph.

Fig. A.14: Signal, $N=1 M$ Samples

Fig. A.15: PSD,$N=1 M$ Samples

At last I want to make a short digression on the $D C$ value $X(f=0)$ in (2.3), the Relation (2.1) returns the DC value only because it's based on a fictitious periodic repetition of samples $x\left(n T_{s}\right)$. Indeed, we measure only a portion $T_{\text {measured }}=N T_{s}$ of the signal, so we can correctly calculate only the harmonic at $f_{\min }=\Delta f=1 /\left(N T_{s}\right)$. The DC value would be correctly calculated only if we sample the signal for an infinite time and this is obviously impossible.

A. 5 Flicker Noise Realization

Starting from a Flicker Noise PSD, let's try to make a realization in time domain.
Flicker Noise has its PSD that is $\frac{V^{2}}{H z} \propto \frac{1}{f}$ and thus $\frac{V}{\sqrt{H z}} \propto \frac{1}{\sqrt{f}}$, so the module amplitude as in Figure A. 16 reduces by 10 in two dacades.

Fig. A.16: Flicker Noise

Fig. A.17: Flicker Noise Realization

A. 6 Voltage Divider Noise

R_{1} Noise

To calculate the Noise transfer function we start with the AC model depicted in Figure 3.4, we can simplify this model in that of Figure A.18.

Fig. A.18: Simplified AC model for R_{1} Noise calculation
Where $R_{o}=R_{o, P}$ and $A(s)=A_{E A} \times A_{B U F} \times A_{P A S S}$.
For the moment we calculate the transfer function at low frequency so we neglect the contribute of C_{L} and C_{B}. Let's apply the KVL (Kirchhoff Voltage Law) at the main loop (we consider $I_{L}=0$):

$$
\begin{equation*}
V_{F B}(s)=\left(A(s) V_{i, E A}(s)-V_{N, R_{1}}\right) \frac{R_{2}}{R_{1}+R_{2}+R_{o}} \tag{A.7}
\end{equation*}
$$

we make the substitution $\beta=\frac{R_{2}}{R_{1}+R_{2}+R_{o}} \approx \frac{R_{2}}{R_{1}+R_{2}}, V_{i, E A}=-V_{F B}$ and let's develop the Eq. A.7:

$$
\begin{equation*}
V_{F B}(s)=-\frac{\beta V_{N, R_{1}}}{1+\beta A(s)} \tag{A.8}
\end{equation*}
$$

To calculate the output voltage:

$$
\begin{align*}
V_{N, \text { out }}(s) & =A(s) V_{i, E A}(s)-V_{R_{o}} \\
& =-A(s) V_{F B}(s)-\left(\left(-A(s) V_{F B}(s)-V_{N, R_{1}}\right) \frac{R_{o}}{R_{1}+R_{2}+R_{o}}\right) \tag{A.9}
\end{align*}
$$

and replacing Eq. A. 8 in Eq. A.9, we obtain:

$$
\begin{align*}
V_{N, \text { out }}(s) & =\frac{\beta A(s)}{1+\beta A(s)} V_{N, R_{1}}-\frac{\beta A(s)}{1+\beta A(s)} \frac{R_{o}}{R_{1}+R_{2}+R_{o}} V_{N, R_{1}}+\frac{R_{o}}{R_{1}+R_{2}+R_{o}} V_{N, R_{1}} \\
& =\left(\frac{\beta A(s)}{1+\beta A(s)}-\frac{\beta A(s)}{1+\beta A(s)} \frac{R_{o}}{R_{1}+R_{2}+R_{o}}+\frac{R_{o}}{R_{1}+R_{2}+R_{o}}\right) V_{N, R_{1}} \tag{A.10}
\end{align*}
$$

We recognize that the Loop-gain $T(s)=\beta A(s)$ is at low frequency $T(s) \gg 1$, and since $R_{o} \ll R_{1}+R_{2}$ the term $\frac{R_{o}}{R_{1}+R_{2}+R_{o}}$ is $\frac{R_{o}}{R_{1}+R_{2}+R_{o}} \ll 1$. Thus Eq. A.10, in the band of the regulator $(|T| \gg 1)$, reduces to:

$$
\begin{equation*}
\frac{V_{N, \text { out }}}{V_{N, R_{1}}}(s) \approx \frac{\beta A(s)}{1+\beta A(s)} \approx 1 \tag{A.11}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\frac{{\overline{V_{N, \text { out }}}}^{2}}{\Delta f} \approx \frac{{\overline{V_{N, R_{1}}}}^{2}}{\Delta f} \tag{A.12}
\end{equation*}
$$

The effect of C_{B} is to short, at medium frequency (but smaller that 100 kHz), the Noise produced by R_{1}, so the Noise current flows through C_{B} and has not influence on the output. Try to think that C_{B} is a short and C_{L} is opened, the output voltage will be (respect Eq. A.9):

$$
V_{N, \text { out }}(s)=-A(s) V_{F B}(s) \frac{R_{2}}{R_{2}+R_{o}}
$$

independent from the noise, so C_{B} decreases the Noise because it creates a pole at medium-low frequency f_{B}.

$$
\begin{equation*}
f_{B}=\frac{1}{2 \pi R_{1} C_{B}} \tag{A.13}
\end{equation*}
$$

C_{L} contributes to decrease the Noise because it shorts Noise to ground, but it acts at a higher frequency because it creates a pole at the frequency $f_{o} \gg f_{B}$ ($R_{o, C L}$ is very low).

$$
\begin{equation*}
f_{o}=\frac{1}{2 \pi R_{o, C L} C_{L}} \tag{A.14}
\end{equation*}
$$

So R_{1} Noise, usually, "sees" a 1-pole transfer function (see Figure 3.12):

$$
\begin{equation*}
\frac{{\overline{V_{N, \text { out }}}}^{2}}{\Delta f} \approx\left(\frac{1}{1+j \frac{f}{f_{B}}}\right)^{2} \frac{{\overline{V_{N, R_{1}}}}^{2}}{\Delta f} \tag{A.15}
\end{equation*}
$$

R_{2} Noise

As R_{1} Noise calculation we use a simplified AC model respect that depicted in Figure 3.4, in Figure A. 19 the circuit is drawn in a different way.

We easily identify a classical inverting integrator, so when the circuit works well (when $|T| \gg 1$), the transfer function for R_{2} Noise is:

$$
\begin{equation*}
\frac{{\overline{V_{N, \text { out }}}}^{2}}{\Delta f} \approx\left(-\frac{\frac{R_{1}}{R_{2}}}{1+j \frac{f}{f_{B}}}\right)^{2} \frac{{\overline{V_{N, R_{2}}}}^{2}}{\Delta f} \tag{A.16}
\end{equation*}
$$

with f_{B} the same as in Eq. A.13.
In this case too, C_{L} creates a pole (the same as in Eq. A.14) at high frequency so it has a poor effect.

Fig. A.19: Simplified AC model for R_{2} Noise calculation

A. 7 Active Feedback: Stability and Noise

Stability

It's quite simple to guarantee the stability of the active feedback loop and for this choice of values the Loop-Gain is shown in Figure A. 20 .

Fig. A.20: Feedback Loop-gain, Voltage-gain ${ }_{E A, F B}(0)=60 d B, f_{\text {pole }_{E A, F B}}=10 \mathrm{kHz}, R_{3}=$ $100 k \Omega, C_{3}=16 p F, C_{4}=10 n F$

Instead, the main loop is more difficult to compensate, using the circuit in Figure 3.18 except for the feedback that is that in Figure $3.25, T(s) \approx A(s) \frac{R_{L}}{R_{L}+R_{o}} \beta_{F}(s)$ and β_{F} is that of Figure 3.26.

If there is not the active feedback, the loop-gain crossing frequency is tens of $k H z$, now with the active feedback, at those frequencies the loop-gain magnitude is $A_{v, F B}$ times greater and so the crossing frequency f_{c} shifts to higher frequencies, hundreds of $k H z$. This is a very big problem because at few $M H z$ there are parasitic poles, so shifting f_{c} near the $M H z$ is dangerous, this is the biggest problem using an active feedback. Using a quasi-ideal circuit to simulate the loop-gain we have not the problem of lots of parasitic poles, so the only thing that decreases the phase margin is the proximity of p_{2} (Eq. 3.46) and p_{o} (Eq. 3.16) that leads to a 2-poles system, this is depicted well in Figure A.21.

Fig. A.21: Main-Loop Loop-gain, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$

$A_{v, F B}$	$P M\left[{ }^{\circ}\right]$
11	45
6	54
3.5	66

Tab. A.1: Phase Margin referred to Figure A.21, $I_{L}=100 \mathrm{~mA}, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$, $C_{B}=1 n F$

Fig. A.22: Main-Loop Loop-gain, $A_{v(F B)}=11, I_{L}=100 \mathrm{~mA}, E S R=100 \mathrm{~m} \Omega, C_{B}=1 \mathrm{nF}$

$C_{L}[\mu F]$	$P M\left[{ }^{\circ}\right]$
1	45
10	80
100	125

Tab. A.2: Phase Margin referred to Figure A.22, $A_{v(F B)}=11, I_{L}=100 \mathrm{~mA}, E S R=$ $100 m \Omega, C_{B}=1 n F$

Fig. A.23: Main-Loop Loop-gain, $A_{v(F B)}=11, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega, C_{B}=1 n F$

$I_{L}[A]$	$P M\left[{ }^{\circ}\right]$
1	60
100 m	45
10 m	38

Tab. A.3: Phase Margin referred to Figure A.23, $A_{v(F B)}=11, C_{L}=1 \mu F, E S R=100 \mathrm{~m} \Omega$, $C_{B}=1 n F$

Active Feedback Noise

The active feedback produces itself a Noise that is injected in the circuit, this Noise is produced by R_{3}, R_{4} and the feedback error amplifier. The noise of the feedback EA can be represented as an input noise of the EA so it is added at the V_{x} node (referring to Figure 3.25), the Noise produced by R_{3} and R_{4} is more useful to consider injected in the $V_{F B}$ node.

Fig. A.24: Active feedback Noise scheme

In the block scheme of Figure A. 24

$$
\begin{equation*}
A=A(s)=A_{E A}(s) \times A_{B U F}(s) \times A_{P A S S}(s) \tag{A.17}
\end{equation*}
$$

and $B=B(s)$ is that of Eq. 3.41 and $C=C(s)$ is that of Eq. 3.42 depicted in Figure 3.26.

The output Noise due to active feedback is:

$$
\begin{equation*}
\frac{V_{N, \text { out }}}{\sqrt{\Delta f}}=-\frac{A(f) H_{R_{4}}(f)}{1+A(f) B(f) C(f)} \frac{V_{N, R_{4}}}{\sqrt{\Delta f}}-\frac{A(f) H_{R_{3}}(f)}{1+A(f) B(f) C(f)} \frac{V_{N, R_{3}}}{\sqrt{\Delta f}}-\frac{A(f) C(f)}{1+A(f) B(f) C(f)} \frac{V_{N, E A(F B)}}{\sqrt{\Delta f}} \tag{A.18}
\end{equation*}
$$

that in the band of the regulator $|T(s)|=|A(s) B(s) C(s)| \gg 1$ it reduces to

$$
\begin{equation*}
\frac{V_{N, o u t}}{\sqrt{\Delta f}} \approx-\frac{H_{R_{4}}(f)}{B(f) C(f)} \frac{V_{N, R_{4}}}{\sqrt{\Delta f}}-\frac{H_{R_{3}}(f)}{B(f) C(f)} \frac{V_{N, R_{3}}}{\sqrt{\Delta f}}-\frac{1}{B(f)} \frac{V_{N, E A(F B)}}{\sqrt{\Delta f}} \tag{A.19}
\end{equation*}
$$

The calculation of $H_{R_{3}}$ and $H_{R_{4}}$ is similar to that of R_{1} and R_{2} Noise in Appendix. A. 6 because the two circuits (Figure 3.25 and Figure 3.18) are the same except for C_{4}.

R_{4} Noise

R_{4} Noise "sees" substantially the same transfer function ($H_{R_{4}}$) of R_{2} Noise, so it seems injected in an inverting integrator at medium-high frequencies, it is amplified by $-\frac{R_{3}}{R_{4}}$ at medium frequency and then, when C_{3} starts to make effect, the transfer function decreases. The difference is at low frequency, because C_{4} "opens" the branch $C_{4}-R_{4}$ at DC and so the R_{4} Noise has no effect. It starts to have effect when C_{4} impedance is comparable to R_{4} one. These explained effects leads to a transfer function of this type:

$$
\begin{equation*}
\frac{V_{F B}}{V_{N, R_{4}}}(s)=H_{R_{4}}(s)=-\frac{s R_{3} C_{4}}{\left(1+s R_{4} C_{4}\right)\left(1+s R_{3} C_{3}\right)} \tag{A.20}
\end{equation*}
$$

The total transfer function to output is obtained combining Eq. A. 19 with Eq. A. 20 and its shaping is shown in Figure A. 25.

Fig. A.25: R_{4} Noise, $R_{4}=10 k \Omega, R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F$

R_{3} Noise

R_{3} Noise has the same transfer function ($H_{R_{3}}$) of R_{1} Noise, it is transferred with a unitary gain at the $V_{F B}$ node until C_{3} shorts it, so the gain reduces definitively.

$$
\begin{equation*}
\frac{V_{F B}}{V_{N, R_{3}}}(s)=H_{R_{3}}(s)=-\frac{1}{1+s R_{3} C_{3}} \tag{A.21}
\end{equation*}
$$

The total transfer function to output is obtained substituting Eq. A. 21 in Eq. A. 19 and its shaping is shown in Figure A.26.

Fig. A.26: R_{4} Noise, $R_{4}=10 k \Omega, R_{3}=100 k \Omega, C_{3}=16 p F, C_{4}=10 n F$

Feedback Error Amplifier Noise

The $E A(F B)$ contributes to the output Noise as in Eq. A.19, so its transfer function is simply $\approx \frac{1}{B(s)}$, in fact we recognize the shape of Figure 3.19 in Figure A.27.

Fig. A.27: $E A(F B)$ Noise, $V_{i, N} / \sqrt{\Delta f}=20 n V / \sqrt{H z}, R_{1}=630 k \Omega, R_{2}=200 k \Omega, C_{B}=$ $1 n F$

A. 8 Miller Theorem

Fig. A.28: Miller Effect
If we have a "longitudinal" bipole of impedance $Z, A_{v}=V_{2} / V_{1}$ is the voltage gain, we can substitute this bipole with two "transverse" bipoles (one at input port and one at output port) with impedance:

$$
\begin{align*}
Z_{1} & =\frac{1}{1-A_{v}} Z \tag{A.22}\\
Z_{2} & =\frac{A_{v}}{A_{v}-1} Z \tag{A.23}
\end{align*}
$$

This is true if the voltage gain doesn't vary appreciably after the substitution.

In practical cases we usually use this theorem to "increase" a capacitor. We think $Z(s)=\frac{1}{s C}$ and $A_{v}<0$, in this case if $A_{v} \ll-1$:

$$
\begin{gather*}
Z_{1} \approx \frac{1}{s\left(C A_{v}\right)} \tag{A.24}\\
Z_{2} \approx \frac{1}{s C} \tag{A.25}
\end{gather*}
$$

So at the input port the capacitor "seems" increased and it "seems" the same at the output port.

A. 9 MOS and BJT Noise

MOS transistor may be modeled for Noise analysis in two equivalent ways as in Figure A. 29 .

Fig. A.29: MOS, equivalent Noise models

Thermal Noise The model that shows the physical Noise phenomena is the "Current Model" where, for long-channel devices:

$$
\begin{equation*}
\frac{\overline{i_{N}^{2}}}{\Delta f}=\frac{8}{3} k T g_{m} \tag{A.26}
\end{equation*}
$$

But in some cases is useful to use the equivalent "Voltage Model" obtained by the division by g_{m}^{2} :

$$
\begin{equation*}
\overline{\frac{v_{N}^{2}}{\Delta f}}=\frac{8}{3} k T \frac{1}{g_{m}} \tag{A.27}
\end{equation*}
$$

so it's like the device is an equivalent resistance of $R_{\text {eq.MOS }}=\frac{2}{3} \frac{1}{g_{m}}$.
Flicker Noise Flicker Noise is modeled, exactly as Thermal, with a current generator between Source and Drain:

$$
\begin{equation*}
\frac{\overline{i_{N, 1 / f}^{2}}}{\Delta f}=\frac{K_{f} I_{D}}{C_{o x} L^{2}} \frac{1}{f} \tag{A.28}
\end{equation*}
$$

if we are interested in the equivalent input voltage Noise, we have to divide by g_{m}^{2} (remember that $\left.g_{m}=\sqrt{2 I_{D} \mu C_{o x}(W / L)}\right)$:

$$
\begin{equation*}
\frac{\overline{v_{N, 1 / f}^{2}}}{\Delta f}=\frac{B}{W L} \frac{1}{f} \tag{A.29}
\end{equation*}
$$

where $B=\frac{K_{f}}{2 \mu C_{o x}^{2}}=\frac{K_{f}}{2 C_{o x} K^{\prime}}$ is a coefficient depending from a particular technology.
BJT transistor has its two equivalent Noise models of Figure A. 30 .

Fig. A.30: BJT, equivalent Noise models
Neglecting the effect of the Shot Noise in the Base current, the "Current Model" has a Noise power:

$$
\begin{equation*}
\frac{\overline{i_{N}^{2}}}{\Delta f}=2 q I_{c} \tag{A.30}
\end{equation*}
$$

The equivalent "Voltage Model", obtained by the division by g_{m}^{2} and observing that $g_{m}=\frac{I_{c}}{V_{T}}\left(V_{T}=k T / q\right)$, has a Noise power:

$$
\begin{equation*}
\frac{\overline{v_{N}^{2}}}{\Delta f}=4 k T \frac{1}{2 g_{m}} \tag{A.31}
\end{equation*}
$$

so it's like the device is an equivalent resistance of $R_{\text {eq.BJT }}=\frac{1}{2 g_{m}}$. BJT presents generally a lower input Voltage Noise than MOS, due to the greater transconductance, but the big problem is the Base Shot Noise.

A. 10 Gain Stage, Noise

A fundamental circuit to study Noise performance is a gain stage like a Common Emitter stage (CE) or a Common Source stage (CS), we study the CE-stage because the presence of Shot Noise in the base current $\left(i_{N, B}\right)$ and the finite input resistance $\left(r_{\pi}\right)$ make more complicated the calculation.

Fig. A.31: CE stage, complete circuit and the equivalent input referred Noise model
The target is to have an equivalent input referred Noise model of the stage, so to calculate $v_{N, i n}$ and $i_{N, i n}$ (notations are referred to Figure A.31). At first we concentrate to $v_{N, i n}$, its main sources are $i_{N, L}, i_{N, C}, i_{N, R_{E}}$ so we calculate their effect on $i_{N, \text { out }}$ using the complete circuit:

$$
\begin{equation*}
\frac{\overline{i_{N, o u t}^{2}}}{\Delta f}=\frac{\overline{i_{N, L}^{2}}}{\Delta f}+\left(\frac{1}{1+g_{m} R_{E}}\right)^{2} \frac{\overline{i_{N, C}^{2}}}{\Delta f}+\left(\frac{g_{m} R_{E}}{1+g_{m} R_{E}}\right)^{2} \frac{\overline{i_{N, R_{E}}^{2}}}{\Delta f} \tag{A.32}
\end{equation*}
$$

Eq. A. 32 may be found with the complete calculations using the $A C$-model, in practice there are two case of interest: Low degeneration $g_{m} R_{E} \ll 1$ and High degeneration $g_{m} R_{E} \gg 1$.

Low degeneration in this case Eq. A. 32 reduces to Eq. A. 33

$$
\begin{equation*}
\frac{\overline{i_{N, o u t}^{2}}}{\Delta f} \approx \frac{\overline{i_{N, L}^{2}}}{\Delta f}+\frac{\overline{i_{N, C}^{2}}}{\Delta f}+\left(g_{m} R_{E}\right)^{2} \frac{\overline{i_{N, R_{E}}^{2}}}{\Delta f} \tag{A.33}
\end{equation*}
$$

$i_{N, C}$ tends to flow at the output and $i_{N, R_{E}}$ tends to circle in R_{E} and not to reach the output.

High degeneration in this case Eq. A. 32 reduces to Eq. A. 34

$$
\begin{equation*}
\overline{\frac{i_{N, o u t}^{2}}{\Delta f}} \approx \frac{\overline{i_{N, L}^{2}}}{\Delta f}+\left(\frac{1}{g_{m} R_{E}}\right)^{2} \frac{\overline{i_{N, C}^{2}}}{\Delta f}+\frac{\overline{i_{N, R_{E}}^{2}}}{\Delta f} \tag{A.34}
\end{equation*}
$$

$i_{N, C}$ tends to circle in the BJT and not to reach the output and $i_{N, R_{E}}$ tends to flow in the BJT and to reach the output (remember that $i_{N, R_{E}} \propto 1 / \sqrt{R_{E}}$). So with high degeneration $i_{N, \text { out }}$ is reduced (see Figure A.32).

Fig. A.32: $i_{N, o u t}$ of a CE stage

Using the equivalent model (neglecting for the moment the effect of $i_{N, i n}$ and considering $R_{S} \ll R_{\text {in-stage }}$) the $i_{N, \text { out }}$ is:

$$
\begin{equation*}
\frac{\overline{i_{N, o u t}^{2}}}{\Delta f}=\left(g_{m, t o t}\right)^{2} \frac{\overline{v_{N, i n}^{2}}}{\Delta f} \tag{A.35}
\end{equation*}
$$

with

$$
g_{m, t o t}=\frac{g_{m}}{1+g_{m} R_{E}}
$$

is the effective transconductance of the stage.

Equating Eq. A. 35 with Eq. A. 32 we find

$$
\begin{equation*}
\overline{\overline{v_{N, i n}^{2}}} \overline{\Delta f}=\left(\frac{1}{g_{m, t o t}}\right)^{2} \frac{\overline{i_{N, L}^{2}}}{\Delta f}+\left(\frac{1}{g_{m}}\right)^{2} \frac{\overline{i_{N, C}^{2}}}{\Delta f}+\frac{\overline{v_{N, R_{E}}^{2}}}{\Delta f} \tag{A.36}
\end{equation*}
$$

An interesting thing is that R_{E} influences directly the input with its voltage Noise and this is bad because at high degeneration when R_{E} is a big resistance we have $v_{N, i n} \propto \sqrt{R_{E}}$ (see Figure A.33).

Therefore degeneration is suitable if we are interested at a low $i_{N, o u t}$ and is to avoid if we are interested at a low $v_{N, i n}$.

As regards $i_{N, B}$, its effect in $i_{N, \text { out }}$ is

$$
\begin{equation*}
\frac{\overline{i_{N, o u t}^{2}}}{\Delta f}=f\left(R_{E}, R_{S}\right) \frac{\overline{i_{N, B}^{2}}}{\Delta f} \tag{A.37}
\end{equation*}
$$

Fig. A.33: $v_{N, i n}$ of a CE stage
with in the two cases of practical interest (considering also $R_{S} \ll R_{E}$):

$$
f\left(R_{E}, R_{S}\right)= \begin{cases}\left(g_{m}\left(R_{S} / / r_{\pi}\right)\right)^{2} \approx\left(g_{m} R_{S}\right)^{2} & \text { if } g_{m} R_{E} \ll 1 \tag{A.38}\\ \left(\frac{g_{m}\left(R_{E} / / r_{\pi}\right)}{1+g_{m}\left(R_{E} / / r_{\pi}\right)}\right)^{2} \approx 1 & \text { if } g_{m} R_{E} \gg 1\end{cases}
$$

Instead, the effect on $v_{N, i n}$ due to $i_{N, B}\left(\right.$ so $\left.v_{N, i n(B)}\right)$ is

$$
\begin{equation*}
\frac{\overline{v_{N, i n(B)}^{2}}}{\Delta f}=g\left(R_{E}, R_{S}\right) \frac{\overline{i_{N, B}^{2}}}{\Delta f} \tag{A.39}
\end{equation*}
$$

with, as in the previous case:

$$
g\left(R_{E}, R_{S}\right)= \begin{cases}\left(R_{S} / / r_{\pi}\right)^{2} \approx\left(R_{S}\right)^{2} & \text { if } g_{m} R_{E} \ll 1 \tag{A.40}\\ \left(R_{E}\right)^{2} & \text { if } g_{m} R_{E} \gg 1\end{cases}
$$

A.10.1 Low degenerated CE stage

An important thing to keep in mind is that in the case of Low degeneration (or not degeneration), we can confound $i_{N, i n} \approx i_{N, B}$, so there is a total effect on input voltage Noise by the addition of effects of Eq. A. 36 and Eq. A.39:

$$
\begin{equation*}
\frac{\overline{v_{N, i n(t o t)}^{2}}}{\Delta f}=\frac{\overline{v_{N, i n}^{2}}}{\Delta f}+\left(R_{S} / / r_{\pi}\right)^{2} \frac{\overline{i_{N, B}^{2}}}{\Delta f} \tag{A.41}
\end{equation*}
$$

and since $g_{m} R_{E} \ll 1$ the Noise of R_{E} is negligible respect the Noise $i_{N, C}$ and Eq. A. 41 simplifies in

$$
\begin{equation*}
\frac{\overline{v_{N, i n(t o t)}^{2}}}{\Delta f}=\left(\frac{1}{g_{m}}\right)^{2}\left(\frac{\overline{i_{N, C}^{2}}}{\Delta f}+\frac{\overline{i_{N, L}^{2}}}{\Delta f}\right)+\left(R_{S} / / r_{\pi}\right)^{2} \frac{\overline{i_{N, B}^{2}}}{\Delta f} \tag{A.42}
\end{equation*}
$$

It is evident from Eq. A. 42 that the $i_{N, B}$ may increase strongly the Noise. We may calculate to which value of R_{S} the Power of Base current Shot Noise is equal to the Power of Collector current Shot Noise, considering $R_{S} \ll r_{\pi}$ and neglecting the contribution of $i_{N, L}$:

$$
\begin{aligned}
\left(\frac{1}{g_{m}}\right)^{2} \frac{\overline{i_{N, C}^{2}}}{\Delta f} & =\left(R_{S}\right)^{2} \frac{\overline{i_{N, B}^{2}}}{\Delta f} \\
\left(\frac{1}{g_{m}}\right)^{2}\left(2 q I_{C}\right) & =\left(R_{S}\right)^{2}\left(2 q I_{B}\right)
\end{aligned}
$$

therefore

$$
\begin{equation*}
R_{S}=\frac{\sqrt{\beta}}{g_{m}} \tag{A.43}
\end{equation*}
$$

where β is the current gain of the BJT, with I_{C} few or tens of $\mu A, R_{S}$ will be tens or hundreds of $k \Omega$ that could be in some cases. The $i_{N, B}$ could be a serious problem using Bipolars, this problem there isn't using MOS because there isn't a gate current of polarization.

A. 11 Current Mirror Noise

Another very important circuit is the Current Mirror, we study the Noise performance of the Bipolar version because the MOS version is totally identical except for the absence of Base current Shot Noise (remember that $i_{N, C}$ plays the role of $i_{N, D}$ with MOS, but Noise formulas are different).

Fig. A.34: Bipolar Current Mirror, circuit and Noise sources
We are interested in the $i_{N, \text { out }}$, so the best way to make the calculation is to transform some Noise sources in their equivalent voltage Noise sources in the Base node of BJT T1, as in Figure A.35, and then we know the behavior of the CE stage $T 1$.

In Figure A.35, the contribution of $i_{N, B_{2}}$ is incorporated (but can be neglected) in that of $i_{N, C_{2}}$, we suppose $g_{m(1)}=g_{m(2)}=g_{m}$ and, as we have seen in the CE stage, the equivalent voltage Noise sources are (see Eq. A.36):

$$
\frac{\overline{v_{N, C_{1}}^{2}}}{\Delta f}=\frac{\overline{v_{N, C_{2}}^{2}}}{\Delta f}=\left(\frac{1}{g_{m}}\right)^{2} \frac{\overline{i_{N, C}^{2}}}{\Delta f}
$$

Fig. A.35: Bipolar Current Mirror, AC model
and

$$
\frac{\overline{v_{N, R_{E}}^{2}}}{\Delta f}=4 k T R_{E}
$$

For the contribute of $i_{N, B_{1}}$, we can consider that no current flows into the base of $T 1$ so all the current flows in the sum of three resistances $2 R_{E}+1 / g_{m}$ and thus produce a voltage Noise source at the base of $T 1$:

$$
\frac{\overline{v_{N, B_{1}}^{2}}}{\Delta f}=\left(2 R_{E}+1 / g_{m}\right)^{2} \frac{\overline{i_{N, B_{1}}^{2}}}{\Delta f}
$$

Now we know that the effective transconductance of $T 1$ is

$$
g_{m, t o t}=\frac{g_{m}}{1+g_{m} R_{E}}
$$

thus:

$$
\begin{equation*}
\frac{\overline{i_{N, \text { out }}^{2}}}{\Delta f}=\left(g_{m, t o t}\right)^{2}\left(2 \frac{\overline{v_{N, C}^{2}}}{\Delta f}+2 \frac{\overline{v_{N, R_{E}}^{2}}}{\Delta f}+\frac{\overline{v_{N, B_{1}}^{2}}}{\Delta f}\right) \tag{A.44}
\end{equation*}
$$

So, substituting:

$$
\begin{equation*}
\overline{\overline{i_{N, \text { out }}^{2}}} \overline{\Delta f}=2 \times 2 q I_{C}\left(\frac{1}{1+g_{m} R_{E}}\right)^{2}+2 \times 4 k T R_{E}\left(\frac{g_{m}}{1+g_{m} R_{E}}\right)^{2}+2 q I_{B}\left(\frac{1+2 g_{m} R_{E}}{1+g_{m} R_{E}}\right)^{2} \tag{A.45}
\end{equation*}
$$

Eq. A. 45 predicts that if we make a strong degeneration $\left(g_{m} R_{E} \gg 1\right), i_{N, \text { out }}$ could be strongly decreased (very similar to Figure A.32) until the limit of $i_{N, B_{1}}$. Theoretically a MOS current mirror doesn't suffer of this minimum limit but indeed it's impossible to eliminate at all the Noise. In practice MOS or Bipolar current mirror could reach the same Noise performance.

A. 12 Transconductance of the Mirrored OTA with asymmetric compensation

Fig. A.36: Output stage of the Mirrored OTA with asymmetric compensation
For the complete circuit see Figure 4.13.

The current of the high-side $\left(i_{H S}\right)$ is roughly:

$$
\begin{equation*}
i_{H S}=-\frac{g_{m 0}}{g_{m 3}} g_{m 6}\left(-\frac{v_{i, d i f f}}{2}\right) \tag{A.46}
\end{equation*}
$$

The low-side current ($i_{L S}$) can be calculated solving the following system (use the AC model for the transistor M5):

$$
\left\{\begin{array}{l}
i_{L S}=v_{g s(M 4)} \frac{1}{R_{x}+\frac{1}{s C_{\mathcal{C}}}}-g_{m 5} v_{g s(M 5)} \tag{A.47}\\
v_{g s(M 5)}=v_{g s(M 4)} \frac{\frac{1}{s C_{c}}}{R_{x}+\frac{1}{s C_{c}}}
\end{array}\right.
$$

it leads to:

$$
\begin{equation*}
i_{L S}=-g_{m 5} \frac{\left(1-s \frac{C_{c}}{g_{m 5}}\right)}{\left(1+s R_{x} C_{c}\right)} v_{g s(M 4)} \tag{A.48}
\end{equation*}
$$

with $v_{g s(M 4)}=-\frac{g_{m 1}}{g_{m 4}}\left(+\frac{v_{i, d i f f}}{2}\right)$.
Thus the total output current is (consider $g_{m 1}=g_{m 0}, g_{m 3}=g_{m 4}, g_{m 5}=g_{m 6}, g_{m 7}=$ $\left.g_{m 8}\right):$

$$
\begin{align*}
i_{o(T O T)} & =i_{L S}+i_{H S} \\
& =\frac{1}{2} \frac{g_{m 1}}{g_{m 4}}\left(g_{m 5} \frac{\left(1-s \frac{C_{c}}{g_{m 5}}\right)}{\left(1+s R_{x} C_{c}\right)}+g_{m 6}\right) v_{i, d i f f} \tag{A.49}
\end{align*}
$$

Fig. A.37: Example of $i_{o(T O T)}$ and $i_{L S}, i_{H S}$

An example of the shaping of $i_{o(T O T)}$ is depicted in Figure A.37.
The transconductance of the OTA is:

$$
\begin{equation*}
g_{m(T O T)}=\frac{i_{o(T O T)}}{v_{i, d i f f}}=\frac{1}{2} \frac{g_{m 1}}{g_{m 4}}\left(g_{m 5} \frac{\left(1-s \frac{C_{c}}{g_{m 5}}\right)}{\left(1+s R_{x} C_{c}\right)}+g_{m 6}\right) \tag{A.50}
\end{equation*}
$$

Important is to note that in the two cases of low and medium frequency the total transconductance becomes:

$$
g_{m(T O T)}= \begin{cases}\frac{1}{2} \frac{g_{m 1}}{g_{m 4}}\left(g_{m 5}+g_{m 6}\right) \approx \frac{g_{m 1}}{g_{m 4}} g_{m 5} & \text { Low-frequency } \tag{A.51}\\ \frac{1}{2} \frac{g_{m 1}}{g_{m 4}}\left(g_{m 6}-1 / R_{x}\right) \approx \frac{1}{2} \frac{g_{m 1}}{g_{m 4}} g_{m 6} & \text { Medium-frequency }\end{cases}
$$

so at medium frequency the total transconductance is only that of the High-side path, therefore is halved. The same, obviously, it's for the output current that reduces to $i_{o(T O T)} \approx i_{H S}$ as depicted in Figure A.37.

A. 13 PTAT and CTAT behaviors

How we can create a PTAT (Proportional To Absolute Temperature) or CTAT (Complementary To Absolute Temperature) reference?

The starting point is the relation $I_{C}-V_{B E}$ of a Bipolar transistor:

$$
\begin{equation*}
I_{C}(T)=I_{S}(T) e^{\left(\frac{V_{B E}(T)}{V_{T}}\right)} \tag{A.52}
\end{equation*}
$$

where $I_{S}(T)=A_{e} J_{S}(T)$ is the saturation current $\left(A_{e}\right.$ is the emitter area and $J_{S}(T)$ is the saturation current density), $V_{T}=k T / q$ is the Thermal Voltage.

The inverse relation is:

$$
\begin{equation*}
V_{B E}(T)=V_{T} \ln \left(\frac{I_{C}(T)}{I_{S}(T)}\right) \tag{A.53}
\end{equation*}
$$

- PTAT

Consider a structure like that of circuit in Figure 5.1, transistors T_{0} and T_{1} differs only for the emitter area and the mirror current $M_{2}-M_{3}$ imposes $I_{C_{0}}(T)=I_{C_{1}}(T)$. The voltage drop on R_{1} is:

$$
\begin{align*}
\left|\Delta V_{B E}\right| & =\left|V_{B E_{0}}\right|-\left|V_{B E_{1}}\right| \\
& =\frac{k T}{q} \ln \left(\frac{I_{C_{0}}(T)}{A_{e} J_{S}(T)} \frac{n A_{e} J_{S}(T)}{I_{C_{1}}(T)}\right) \tag{A.54}\\
& =\frac{k T}{q} \ln (n)
\end{align*}
$$

that is a PTAT voltage. Related to the voltage there is a PTAT current that is simply:

$$
\begin{equation*}
I_{P T A T}=\frac{V_{R_{1}}}{R_{1}}=\frac{\left|\Delta V_{B E}\right|}{R_{1}}=\frac{1}{R_{1}} \frac{k T}{q} \ln (n) \tag{A.55}
\end{equation*}
$$

The derivative in temperature is:

$$
\begin{equation*}
\frac{\partial I_{P T A T}}{\partial T}=+\frac{1}{R_{1}} \frac{k}{q} \ln (n) \tag{A.56}
\end{equation*}
$$

- CTAT

Deepen the Eq. A.53, considering that $I_{S}(T)=I_{0} e^{\left(-\frac{V_{G 0}}{V_{T}}\right)}$ (consider I_{0} independent from the temperature in a first approximation, $V_{G 0}=1.205 \mathrm{~V}$ is the Bandgap of $S i$ at $0 K$):

$$
\begin{align*}
V_{B E}(T) & =\frac{k T}{q} \ln \left(\frac{I_{C}}{I_{0}} e^{\frac{q V_{G 0}}{k T}}\right) \tag{A.57}\\
& =V_{G 0}-\frac{k T}{q} \ln \left(\frac{I_{0}}{I_{C}}\right)
\end{align*}
$$

so this is a CTAT behavior around the voltage shift $V_{G 0}$.
The derivative in temperature is:

$$
\begin{equation*}
\left.\frac{\partial V_{B E}(T)}{\partial T}\right|_{T=T^{*}} \approx-\frac{k}{q} \ln \left(\frac{I_{0}}{I_{C}}\right)=\frac{V_{B E}\left(T^{*}\right)-V_{G 0}}{T^{*}} \tag{A.58}
\end{equation*}
$$

Considering the ambient temperature $T^{*}=300 K$ and a classic $V_{B E} \approx 0.6 V$, we can calculate $\frac{\partial V_{B E}}{\partial T}\left(T^{*}=300 K\right) \approx \frac{0.6-1.205}{300} \approx-2 m V / K$ that is a useful value to start with a manual design.

Ringraziamenti

Vorrei fare un sincero ringraziamento a:

- Prof. Andrea Neviani e Infineon Technologies per avermi dato la possibilità di fare questa bella e professionale esperienza.
- Marco Piselli e Marco Flaibani per avermi costantemente seguito, aiutato e avermi dato brillanti suggerimenti per questo lavoro.
- Tutto il team STANDARD e soprattutto il LINEAR TEAM per avermi fatto passare dei bei momenti e per avermi sempre aiutato ed avermi trasmesso molte conoscenze.
- Alla mia famiglia per avermi sempre supportato e incoraggiato in questo lungo percorso.
- Ai miei amici e a Fanny per essere sempre presenti in tutti gli altri aspetti indispensabili e complementari allo studio e al lavoro.

Padova, 10 marzo 2015
Luca Oripoli
[1] Paul Brokaw. "A Simple Three-Terminal IC Bandgap Reference". In IEEE JOURNAL OF SOLID-STATE CIRCUITS, volume SC-9, pages 388-393, december 1974.
[2] David Meintrup Georg Denk and Stefan Schäffler. "Transient Noise Simulation: Modeling and Simulation of $1 / \mathrm{f}-$ Noise". pages 1-17.
[3] Guen-Soon Kang Joon-Jea Sung and Suki Kim. "A Transient Noise Model for Frequency-Dependent Noise Sources". In IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, volume 22, pages 1097-1104, august 2003.
[4] Sh. Kogan. "Electronic noise and fluctuations in solids". Cambridge University Press, 1996.
[5] R. D. Middlebrook. "Measurement of Loop Gain in Feedback Systems". In Int. J. Electronics, volume 38, pages 485-512, december 1975.
[6] Edoardo Milotti. "1/f noise: a pedagogical review.". Dipartimento di Fisica, Università di Udine and I.N.F.N. Sezione di Trieste.
[7] Stephen H. Lewis Robert G. Meyer Paul R. Gray, Paul J. Hurst. "ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS". JOHN WILEY \& SONS, INC., 5 edition, 2010.
[8] Alberto Pullia and Stefano Riboldi. "Time-Domain Simulation of Electronic Noises". In IEEE TRANSACTIONS ON NUCLEAR SCIENCE, volume 51, pages 1817-1823, august 2004.
[9] Veljko Radeka. "1/|f| NOISE IN PHYSICAL MEASUREMENTS". Brookhaven National Laboratory, Upton, N. Y.
[10] Behzad Razavi. "Design of Analog CMOS Integrated Circuits". McGraw-Hill.
[11] Gabriel Alfonso Rincón-Mora. "ANALOG IC DESIGN with LOW-DROPOUT REGULATORS". McGraw-Hill, 2009.
[12] Chris Wang Siew K. Hoon Wonseok Oh, Bertan Bakkaloglu. "A CMOS Low Noise, Chopper Stabilized Low-Dropout Regulator With Current-Mode Feedback Error Amplifier". In IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, volume 55, pages 3006-3015, november 2008.
[13] Meng Chen Yacong Zhang Zhongjian Chen Yongqiang Xiao, Wengao Lu. "A Low Noise, Fast Set-up Low-Dropout Regulator in 65nm Technology". Key Laboratory of Microelectronic Devices and Circuits, Department of Microelectronics, Peking University, Beijing, China.

