
Università degli Studi di Padova

Dipartimento diMatematica “Tullio Levi-Civita”

Master Thesis in Computer Science

Study and design of an application for

door smart-locks and smart-keys

Supervisor Master Candidate
Prof.ssa Eleonora Losiouk Nicola Salvadore
Università di Padova

ii

Don’t let us forget that the causes of human actions are usu-
ally immeasurablymorecomplexandvariedthanoursubsequent
explanations of them.

(Fyodor Dostoevsky—The Idiot)

iv

Abstract

With the increasing use of platforms on which an individual canmake available his property
for short-term rent, it grows the need of a smart way to manage the access rights to their
holding. The common way for the guests to check-in or check-out during the accommoda-
tion involves physical key. For a host who lives or is located far away from the rented prop-
erty, this can be time consuming and sometimes expensive to manage in person. Nowadays,
many companies have developed various solutions for this problem, from key-pads, using
temporary code numbers, which the guests must insert to have access grants, to properly
door smart-locks, unlockable by simply approaching with the smartphone. This leads to the
need to generate and manage secure virtual keys, which is a process that can even be auto-
mated, given the arrival and departure dates of the guests.
In this thesis, I describe my work at Kuama s.r.l., the company with which I designed and
developed Kerbero.
Kerbero is an application that interfaces with smart-locks, in order to generate and manage
secure virtual keys. It is designed to communicate with the external APIs of different smart-
lock vendors, in order to retrieve and manage the devices available to the host. Moreover, it
is able to generate and send temporary virtual keys to guests based on the reservation details
provided. Kerbero is composed of a RESTAPI and a Single-Page Application (SPA), which
implements part of these features.
As such, in this document, I discuss indetail the analysis, thedesign, and the technical choices
performed during this project.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

1 Introduction 1
1.1 Thesis Outline . 3

2 The project 5

3 The background 9
3.1 Smart homes . 9
3.2 Smart-locks . 11

3.2.1 Smart-lock interfaces . 11
3.2.2 Smart-locks network design . 15
3.2.3 Smart-lock application . 16

3.3 Related work . 17
3.3.1 The RESTful architecture in a smart home system 17
3.3.2 Handle a third-party adapter . 18
3.3.3 Smart-lock vulnerabilities . 19
3.3.4 Application attacks . 21
3.3.5 Preventing the attacks . 22

4 Nuki study case 23
4.1 Nuki components . 23
4.2 Nuki smart-lock configurations . 25

4.2.1 Nuki Bluetooth protocol . 26
4.3 Nuki application . 27
4.4 Security and encryption . 29

4.4.1 End-to-end encryption . 29
4.4.2 The challenge on response . 29

4.5 Nuki web API andWebhooks . 30
4.5.1 Security . 30
4.5.2 Authentication . 30

vii

4.5.3 Advanced API integration and webhooks 32
4.6 Smart vacation rental Nuki solution . 33

5 Kerbero 35
5.1 Requirements analysis . 35

5.1.1 Actors . 36
5.1.2 Use cases . 37
5.1.3 Other diagrams . 42

5.2 Feasibility study . 44
5.2.1 The vacation rental management integration 45

5.3 Software design . 46
5.3.1 Smart-lock keys design . 46
5.3.2 Smart-lock management . 47
5.3.3 Application identity management 48
5.3.4 Cookies authentication . 49
5.3.5 OAuth2 authentication flowmanagement 51
5.3.6 Error management design . 53

5.4 Project plan . 55
5.4.1 The Kerbero architecture . 55
5.4.2 Workflow, versioning and conventions 60
5.4.3 The client architecture . 60
5.4.4 Tests and security . 61
5.4.5 Technologies and frameworks 62

6 Evaluation 67
6.1 Requirements satisfied . 67
6.2 Requirements not satisfied . 68
6.3 Limitations, future works and improvements 69
6.4 Workflow evaluation . 69

7 Conclusion 71

Glossary 73

References 75

Acknowledgments 81

viii

Listing of figures

2.1 Average prices for online purchases of smart door lock solutions. 7

3.1 Histogram showing the frequency of responses to the question ”How do
prospective users perceive the specific benefits and risks of smart home tech-
nologies?” on a sample of a hundred people in the UK [1]. 10

3.2 Bluetooth Protocol Stack. 13
3.3 The Device-Gateway-Cloud model, the smart-lock use the smartphone as

a gateway to the server. 16

4.1 The smart-lock parts and the mounting system. 24
4.2 ANuki bridge. 24
4.3 Two different configuration for the Nuki devices. 25
4.4 Screenshots from the Nuki mobile application. 28
4.5 Two possible workflows for correctly manage webhooks. 33

5.1 Actors scheme from the requirements analysis. 36
5.2 General use case. 37
5.3 Authentication use case. 38
5.4 Smart-lock accounts management use case. 39
5.5 User devices use case. 39
5.6 Key use case, with automatic creation from reservation and key archive. . . 40
5.7 Vacation rental management system use case. 41
5.8 Key creation flow diagram. 42
5.9 Link a Nuki account sequence diagram. 43
5.10 The Kerbero entity-relationship diagram. 44
5.11 Key functional process. 47
5.12 A schema for opening a Kerbero smart-lock, an interactor (a method satis-

fying a use case) communicate con repositories on the data layer. 48
5.13 The cookie session and authentication management. 49
5.14 OAuth2 protocol flow. 52
5.15 High level architecture of Kerbero. 56
5.16 The Kerbero components organized with the clean architecture. 57
5.17 The dependencies schema of Kerbero. 58

ix

x

Listing of tables

3.1 Comparison of wireless technologies, focusing on power consumption and
performance in the context of smart grid communication. [2] 16

4.1 Transfer format for encrypted BLEmessages. 26

5.1 Comparison between product of different manufacturer, related to some
characteristics of interest. 45

xi

xii

1
Introduction

The most annoying and time consuming thing of renting a property for short pe-
riods is managing the check-in and check-out of guests. Airbnb hosts, for example, are com-
pelled to meet their guests. They are obliged to deliver the keys and, at the end of the accom-
modation, they have to retrieve them. This turns out to be a problem when the property is
located far from the owner, who has two alternatives: to hire a manager or to lose every time
a huge amount of time reaching his rented house.
A solution to this problem comes from the Internet of Things (IoT) world. In recent years,
smart-locks technology has developed very quickly. Smart-locks are devices that can replace
the common door lock, in order to abandon the physical keys using. Smart-locks have dif-
ferent implementations from the simple keypads, to devices that can simply turn the key for
you. The market for this technology is growing constantly, is valued at USD 1.64 billion in
2021, with a growth rate of 19.5% and in 2030 it will reach a value of USD 8.13 billion[3].
The advantages of not using physical keys are multiple: from security reasons, thanks to the
fact that you cannot lose them, to the possibility of remotely managing everything, from
the opening and closing process, to the selection of who is handling the access permissions.
Moreover, if you are managing large properties with multiple entrances or areas, you can
model a central system that can control all the doors of the aforementioned building.
The use of smart-locks in rented properties is constantly increasing, thanks to the spread of
platforms such as Airbnb. There are several reasons, such as the possibility of reducing the

1

managing time of the listed property, when the owners do not want to manage its houses
full-time and even the security that this type of device can provide. As such, they allow one
to lock and unlock their rental properties remotely using the smartphone, which, for exam-
ple, can be especially useful in case of an emergency.
There are also some potential drawbacks and challenges of using smart-locks in the Airbnb
context. One concern is the upfront cost of purchasing and installing these devices, which
can be significant for hosts. In addition, there is the risk of technical issues or malfunctions,
which could cause delays or inconvenience for guests. Finally, there is the potential for pri-
vacy concerns, since the smart-locks can record data about who has accessed a property and
when.
However, the monitoring feature is not always a drawback, since, from the host’s perspec-
tive, smart-locks offer an additional security layer, especially for owners who are not present
at their properties during the entire duration of a guest’s stay. We will explore later that this
trust balance between guests and host is important in platform likeAirbnb, and how a smart-
lock can have an impact on that.
With the collaboration of Kuama s.r.l., I developed Kerbero, an application to manage and
interface with multiple smart-locks and generate secured keys. Kerbero is developed modu-
larly, since he can provide support to different smart-locks models and providers, through
the simple adding of plugins. The first vendor that we started to provide support was Nuki.
Nuki develops smart-locks to open and close the door, which are simple, secure and quite af-
fordable. The peculiarity of these devices is that they do not need to replace the existing door
system, since the smart-lock is designed to automatically turn on the existing system. Nuki
has several interfaces, but the common way is Bluetooth using the proprietary application.
Another way is through the Web application, but the smart-lock must be connected to the
Internet via a dedicated bridge.
Kerbero provides a host-oriented user interface, which allows owners to connect their Nuki
devices through the internet, linking their existing account. The application can generate
temporary virtual keys that can be assigned to upcoming guests. Kerbero is designed to be
linked with vacation rental management services, such as Airbnb or Booking, to retrieve the
reservation information and automatically create the keys based on these data.
In this thesis, we will explore the context in which the application has been conceived and
the technologies involved in it, the analysis, the design and, finally, the resulting evaluation
of the project.

2

1.1 Thesis Outline

The second chapter describes the context in which the project is developed and the sce-
nario covered.

The third chapter provides an insight on the smart-lock technologies, the interfaces and
the security vulnerabilities.

The fourth chapter summarizes the Nuki solutions as a case study, with insight into the
component and framework with which their devices work.

The fifth chapter describes the analysis, the design and the implementation choices taken
during the Kerbero project.

The sixth chapter is an evaluation of the choice made during analysis and design, with a
focus on the results and the adopted workflow.

The last chapter is the conclusion of the thesis, in which I analyze personal achievement
and present a critical evaluation of my work.

3

4

2
The project

In the last twenty years, with the advancement of technology, many Internet-based
accommodation reservation systems have been developed, allowing travelers to find a place
for the night in a fast and easy way. There are two types of online accommodation booking
system[4]:

• property management system, used mainly by hotel or hotel groups to manage their
operations;

• vacation rental management system, which is for anyone who wants to offer or book
a non-hotel accommodation.

The first type can easily manage the guests check-in and the room lock access, and all the
problems derived by having physical keys, with a simple front desk. However, in a vacation
rental management system, the previous process can be a problem. The features of the exist-
ing platforms grant the property listing, booking, and transactions. The most common way
to manage the check-in process is passing the physical keys, and that requires the encounter
between the guests and the host, or sometimes a paid collaborator. This is particularly time-
consuming for both the locator and the lessee, opening up to the risks of losing keys, or
even worse, such as housebreaking and theft. Furthermore, we can identify two more cate-
gories in the vacation rentalmanagement system, which involvewhether the host lives on the

5

rented property or not, which are, respectively, remote hospitality and on-site hospitality[5].
While in the latter the check-in management requires little effort because it does not involve
distance, with remote hospitality it becomesmore complicated. Amore common scenario is
the second type of hosting, in which a properties owner, which lives in a city, has an unused
property on the mountain or near the sea, which is listed on a vacation rental management
platform. As a consequence, hemust go back and forth in order tomanage the rented house.
The most widely used vacation rental management system is Airbnb. This platform counts
6 million active listings worldwide, more than 4 million hosts and it covers more than 220
countries and regions. The reason Airbnb is growing so much inside the market is the ease-
of-use of its services. Another reason is that the platform try to instill a sense of trust between
the two parts. Platforms operating inside a sharing economy [6] puts a lot of weight on the
power of the reviews. Both hosts and guests are encouraged to leave a review on the platform
itself. Airbnb has focused a lot on this aspect and the presence of a working review system
is part of its success. Another reason for the popularity of Airbnb is the well-designed rent
processes, which are fast, easy to use and secure, for all the actors involved in them. For
this reason, they are developing more and more features to smooth out existing processes.
Airbnb is, for example, pushing hosts to create smart homes to provide a more easy way to
access and manage the property[7]. This new feature is called ”self check-in”, and it is grad-
ually integrated into the platform. Airbnb outline three alternatives to enable self check-in
option.

• Lockboxes are themost affordable solution. They are a simple locked storage for phys-
ical keys, accessible with temporary codes.

• Smart-locks are the object of this analysis, they provide temporary access to the build-
ing and they can be used with the vendor mobile application.

• Keypads allow guests to access by providing a code, previously generated anddelivered
by the host. They are often inserted into the smart-lock category.

This variety of solutions comes with the differences in cost and features, which can con-
fuse the host. The exponential growth of the market contributes to exacerbate the situation.
Many companies are proposing their solution, with different features and as a consequence
cost. In the graph 2.1, the variations of prices are shown, in relation to the categories identi-
fied before.
Lockboxes are the less expensive alternative for a host but show clear shortcomings. First of

6

lockboxes smart-locks keypads

0

200

400

10

150

75

200

300

400
Pr
ice

($
)

Min Max

Figure 2.1: Average prices for online purchases of smart door lock solutions.

all, the use of physical keys is involved, which are exposed to the usual security problems. Ad-
ditionally, the box must be placed externally, making it vulnerable to any kind of tempering.
Keypads are not exposed to the lockboxes first problem, because they do not involve keys,
but have to be placed externally, making them vulnerable to the public. Lastly, most smart
locks have wireless interfaces and as such they have the ability to be designed to not expose
any hardware to the exterior of the house. Smart-locks have other shortcomings, like the pos-
sibility of jamming, the discharge of batteries and the cybersecurity problems of the wireless
protocol in use.
However, despite the price, a smart-lock seems to be the preferred solution for an host, be-
cause offers all the features remotely and let the guest feel safer. As shown in this investigation
[6], in a population of Airbnb hosts in the United States who decide to install smart devices
in their rented properties, all had installed a smart lock. Their opinion was mostly positive,
except for the problems described before.
A final argument involves the advantage of using smart locks, when managing more than
one property. Analyzing the data of the population of Airbnb[8] is easy to notice that the
number of listings is significantly more than the number of hosts. As such, the host having
more than one property listed can be approximately be the majority. Suppose you are a host
withmore than one property listed on a vacation rentalmanagement system, such asAirbnb,
and live far from them, the commonway he has tomanage their guests is to go to their rented
house and meet them in person. If the host decides to install a smart-lock or a keypad, then
the problem is solved, but he has to face with another one. The number of solutions is dif-

7

ferent for each type of door and even the vendor can be different. Moreover, after this type
of investment, what an host expects is a sort of automation, from the receiving of the book
to the generation of the access permission.
The solution proposed in this thesis is an portal for host, in which he can connect all the
smart-lock account he owns. This let him to pair the devices, control remotely, generate
keys based on the reservation and send that to the guests, without caring about the smart-
locks model and provider. The idea is to create a central tool to manage all the properties in
one place and give the opportunity of linking all the rental management systems account.

8

3
The background

3.1 Smart homes

Since they were released, smartphones changed the way people do things and behave.
The reason for their success was the addition of the portability feature to the computers.
With portability and miniaturization of the hardware, including new sensors, which in a
normal portable computer would lack usefulness, we now can fit very powerful devices into
our pockets. Moreover, thanks to their sensors and interfaces, they are giving us the possibil-
ity to interact with objects in the environment, which before was not commonly defined as
”smart”. The interfaces we are talking about range from the wired and commonUSB, to the
wireless Bluetooth, ZigBee,Wi-Fi and so on. Since smartphones are changing themarket and
products, it is common that if we take any object in a house and search on the Internet we
should find a smart version of it. There are shutter models, for instance, that are automated
and can be connected to the smartphone or a smart home device, all through the Wi-Fi in-
terface. The widespread use of such products has developed a new discipline in computer
science called the Internet of Things (IoT). The IoT refers to the interconnected network of
physical devices, vehicles, buildings, and other items embedded with electronics, software,
sensors, and connectivity, allowing these objects to connect and exchange data. IoT allows
everyday objects to be connected to the Internet and to send and receive information con-
cerning their functioning. Moreover, this connection allows for the collection and sharing

9

of data on the device’s usage and status, enabling improvements in efficiency, accuracy, and
economic benefit. However, the IoT does not impact only the lives of customers. Alongside
robotics, this discipline is changing the industry by directly intervening in processes or col-
lecting useful data.
Nonetheless, the focus of this thesiswill be on smart homes, which gathers all the IoTdevices
that can be installed in our dwellings, and, since they are connected to the Internet, they can
provide some automation to everyday actions. They include not only the shutters described
above but many others, such as thermostats, TVs, and so on.
A study [9] shows how the pandemic changes thewaywe live, in particular inside our homes.
In fact, people and companies are adopting the work fromhome, as such people who are not
in the office all day, are experiencing changes in their home, in order to make them not only
a better place to live, but also to be productive. The reasons why someone wants to buy a
smart device can range from economic reasons, such as savingmoney and energy, to security
or health reasons. A study on the benefits and risks of smart home devices [1], conducted on
a sample of a hundred people in the UK, shows what customers think are the main benefits
of having one of them installed at home (fig. 3.1). Therefore, it is not surprising that we are

0 5 10 15 20 25 30 35 40 45 50 55

Save time

Save money

Save energy

Fun

Efficiency

Security

Health

Other

Figure 3.1: Histogram showing the frequency of responses to the question ”How do prospective users perceive the
specific benefits and risks of smart home technologies?” on a sample of a hundred people in the UK [1].

talking about a large and constantly growingmarket in whichmany companies are investing.

10

3.2 Smart-locks

Locks and keys, as we know them today, have not changed much since they were invented.
A lock is installed inside the door profile and a deadbolt can fit a key with a specific shape,
which turning can enable or disable the lock. This solution, with a few variations, has re-
mained unchanged through the era, since it actually fits the purpose. However, the advent
of IoT raises the question of whether having physical keys is always a benefit in terms of se-
curity. Keys until now were the best solution to prevent unwanted people from accessing a
private property, but they can be stolen and cloned, even from the deadbolt shape.
As such, door lock manufacturers start to produce new models with a wireless interface,
which drives their interest in the IoT market. The proposed solutions are really different
from each other, due to the number of possible implementation and hardware involved,
such as keypad, deadbolt, handle, fingerprint and so on; and even due to the type of inter-
faces, such as Bluetooth, ZigBee, NFC,Wi-Fi. A customer who experiences the purchase of
this type of product must face a variety of devices, each with different technologies, and has
to choose the one that fits his needs. Even the installation method, for example whether the
device can operate with the existing lock or not, could be a discriminating factor. As such,
this market is fragmented and there are many products that are spreading through it.

3.2.1 Smart-lock interfaces

A smart-lock, as it is intended in this thesis, is an electromechanical device that performs lock-
ing/unlocking operations of a door, after receiving the command through a wireless interface.
The emphasis on the wireless nature of a smart-lock is mandatory for us, since some defini-
tions do not include this particular characteristic, as a consequence involving devices that are
not in our interest.
The following types of smart locks differ from each other by the type of wireless interface
used. In particular, what the context requires from the connection technology are the fol-
lowing features.

• High reliability, which can be translated into low power consumption. Smart-locks
are usually based on lithiumbatteries, as such they are not connected to a stable power
line. A wireless technology has always to deal with a standby power consumption
value, which in this case must be low.

• Low cost: these devices are not usually cheap, but they have to reach a consumer mar-
ket, in order to spread as much as possible.

11

• Secure: the implementationof a safe communication channel is a prioritywhenwe are
considering a device which is designed to protect the home accesses. The focus is on
the wireless protocol used to communicate, whichmust be secured and implemented
with encryption.

The followingwireless interfaces list are not complete, there aremany other interfaces, like
NFC, fingerprint and so on. They can be neglected, because they are not more widespread
than the one presented or relevant for the purpose of the project. Moreover, it must be
specified that smart-locks use not only an interface, but they usually use hybrid wireless con-
nections of the following.

Bluetooth

Bluetooth is the commercial name of the standard IEEE 802.15.1, for short-range wireless
technology. The protocol architecture can be divided into different layers.

• The core protocols are the low level management system, including, for example, the
radio interface, the link manager protocol, which assures authentication, encryption
and other security features.

• The cable replacement and telephony control are emulationprotocols over theLogical
LinkControl andAdaptationProtocol (L2CAP)whichprovides an interface for each
of the high level protocols.

• Other existing protocols, such as TCP/IP, which are customized to communicate
with L2CAP.

Despite its age, Bluetooth is gaining popularity, especially in the last decade, with the
spread of wireless devices, such as headphones, because it provides low latency. The main
purpose of this technology is the wire replacement, but in the various updates, many other
features have been added, like, for example, the possibility of internet bridging. Another im-
portant characteristic is that Bluetooth is designed to be low cost, eventually under $10/unit
[10]. It assures a communication range of 10 meters, which is more than sufficient if we do
not need remote control on the device. Finally, the telephony control protocol allows con-
nected devices to handle both data and voice transmission. This is the main reason why a
Bluetooth module is now installed in most smartphones.
As such, many smart-locks usually implement Bluetooth, because it meets all its require-
ments. The biggest limitation of this particular approach is the lack of remote control capa-
bility. The short-range nature of the protocol does not allow communication over 10meters,

12

Figure 3.2: Bluetooth Protocol Stack.

and, to patch up this limitation, information must be forwarded by a bridge connected to
WorldWideWeb.

Zigbee

IEEE 802.15.4 is a standard released in 2004 for a low-rate wireless network. The character-
istics of this technology could be summarized as follows [11].

• Reliable and self-healing.

• Supports a large number of nodes.

• Secure, with standards based security [AES128].

• Low cost.

• Low power (ability to operate on batteries measured in years).

• Lowmaintenance (meshing, self organizing).

Part of these goals are reached through theDirect Sequence Spread Spectrum(DSSS)mod-
ulation technique, which grants a range up to 150 meters and a low power consumption,
compared to the FrequencyHopping Spread Spectrum (FHSS), used by other technologies,
including Bluetooth. Zigbee devices are usually organized on a network with a coordinator
at the center, who is responsible for the initialization of the channels and security parameters.

13

Moreover, it is the component in charge of bridging to other networks type.
Then, there is the router, which acts as an intermediate node, accepting connections from
the other devices and retransmitting to the receiver. Finally, the end devices are the ones op-
erating actions, with sensors and switches.
Thanks to the technologies in use and the specific radio frequencies chosen, Zigbee devices
can rely onbatteries and last for years, due to the incredible lowpower consumption achieved
in standby. We must not forget that IoT devices are on standby most of the time and the la-
tent consumption must be lower than possible.
The performance of this technology is overall better than that of Bluetooth; however, Zig-
bee presents a non-negligible limitation, which is the absence of the dedicatedmodem inside
almost all smartphones. While Bluetooth is widespread in the consumer market, thanks to
its integration inside smartphones, ZigBee can rely only on the smart home implementation,
when it is supported. A ZigBee smart home configuration usually has various sensors as
nodes and a central server which acts as controller and it bridges to another network, which
are commonlyWi-Fi or Ethernet. Only then, from the latter network, user applications can
interface with the ZigBee devices.
In the case of smart-locks, theZigBee interface, if implemented, is not used tooperate directly
with a smartphone, but to share information about access with the smart home application.
However, communication can even occur, but must be bridged through another network
to which the smartphone can connect, such as Bluetooth or Wi-Fi.

Wi-Fi

Wi-Fi is the name of a family of standards with the official name of IEEE 802.11. Wi-Fi tech-
nologies are commonly used to provide a wireless access point for the Internet, since they
usually operate in WLAN. It is the most widespread wireless technology in the consumer
market and the reasons for that are various. First of all, it supports high bandwidth, up to
600 Mbps with 2.4 Ghz frequency spectrum and 1.3 Gbps with 5 Ghz. Moreover, it is re-
liable, secure and its signal can reach high distances, for instance some of its extensions can
reach 1 km of range.
Most mobile devices that connect to the Internet have a Wi-Fi modem inside, including
smartphones. As such, it is always the primary choice when building a smart home that al-
lows devices to communicate through its dedicated modem. This scenario is justified by the
fact thatWi-Fi exists, in most houses, before the spread of the IoT, due to its use for Internet
connection purposes. As such, most IoT devices and the relative application communicate

14

over a Wi-Fi network, which provides an eventual internet connection.
Smart-locks connected to Wi-Fi are usually remotely controllable. In fact, Internet access
makes these devices available by HTTP requests over WWW.
From a security point of view, Wi-Fi provides different options. Most access points provide
an authentication system with the WPA2/PSK protocol, which also allows the network to
identify the connected devices. Furthermore, having access to the HTTP protocol allows
applications to implement its security protocols, such as Transport Layer Security (TLS).
However, the use of Wi-Fi technologies can have downsides. For example, power consump-
tion is much higher than in previous technologies. This is usually a problem with mobile
devices that are powered by batteries and not connected to a power line. In the IoT, this
could be bypassed in some ways, like using hybrid approaches. Many smart-locks, for exam-
ple, use external bridges that can be connected to the power socket and communicate to the
hardware with Bluetooth. As such, the smart-locks uses a low power protocol to communi-
cate with the bridge and the latter forwards the data to the home server. Moreover, with the
development of these protocols, power consumption has taken many steps forward. Blue-
tooth, for example, to fill the concurrency gap, has developed a low-power version, called
Bluetooth Low Energy (BLE). BLE is able to consume less power approaching the commu-
nicationwith a client-server architecture, using smaller packets, improving the idle timewith
a sleeping mode and better managing the frequencies in use. Even Wi-Fi has recently intro-
duced new protocols, such as TargetWake Time (TWT), which improves the wake-up time
scheduling of devices.
It is important to specify that the values in the below table 3.1 are referring to older, but
widespread implementations of the protocols. However, this table is useful for giving an
idea of the overall differences between the technologies.

3.2.2 Smart-locks network design

Comparing the various solution proposed by the manufacturer, it is possible to identify a
common pattern on how smartphone and smart-lock communicate. The most popular is
the Device-Gateway-Cloud model [12] (fig. 3.3), in which the smartphone pairing acts as a
gateway to the Internet sending the information to the provider server. This is forced by the
lack of aWi-Fi modem in most smart-lock solutions. However, if it is able to connect to the
home network, smart-lock and server can communicate directly, as such the state updates
are transmitted through the internet connection.

15

Standard Bluetooth ZigBee WiFi

Chipset BlueCore2 ZigBee Chip CX5311

Range (m) 10 40-100 100

VDD (volt) 1.8 2.4-3.4 3.3

Bit rate (Mbps) 0.72 0.25 52

Battery Life (days) 1 - 7 100 - 1000 0.5 - 5

Table 3.1: Comparison of wireless technologies, focusing on power consumption and performance in the context of
smart grid communication. [2]

Figure 3.3: The Device‐Gateway‐Cloud model, the smart‐lock use the smartphone as a gateway to the server.

3.2.3 Smart-lock application

The mobile application, installed in the smartphone, plays an essential role in smart-lock
management. As we mentioned in the Device-Gateway-Cloud model, the application is re-
sponsible to collect data from the device and sent in to the cloud. Moreover, it is able to send
request, like the unlock/lock one, to the smart-lock and listen to the answer. Most of the
applications provided by the smart-lock manufacturer run on Bluetooth, and as such, the
first communication between device and smartphonemust be preceded by the pairing of the
two. Pairing sets the wireless connection and, most of the time, creates a handshake key that
grants communication even offline.
Theunlocking process could be slightly different, depending on the smart-lockmodel. Some
of the devices have to be physically touched and if the smartphone paired is in the Bluetooth
range, it will unlock. Some others have a virtual button inside the application and do not
expose any hardware to the exterior.
Moreover, within the app, the access log list is usually available, which is particularly useful
in this context. Through this feature, the application can show the usage history of a key and

16

see who is entered in the house, as such it can also detect the unexpected access.
Finally, the killer feature is the possibility to generate virtual keys that can abstract different
access levels in complex systems, or simply can generate temporary permissions.

3.3 Relatedwork

The aim of the project is the integration of third-party smart-locks in a centralized applica-
tion, which can easily manage them from a centralized tool. As such, it is easy to notice that
the availability of public APIs is a strong precondition in the development of the project.
Fortunately, smart home appliances usually expose any kind of integration due to their in-
trinsic nature. The IoT world is relatively young and many products are released every year;
as such, the market is very fragmented intomultiple systems. The integration between these
latter is essential when a manufacturer is designing a new device.
Moreover, smart home appliance customers want to build their own custom system, buying
products following thephilosophyof the cheapest, themost functional or thebest integrated.
It is common to find IoT devices integrated with Amazon Alexa, implementing the related
skill, or with Google Assistant. However, most of the time people who buy smart home
appliances have technical skills and usually require the device manufacturer to expose more
advanced integration possibilities.
Those are the reasons for the availability of public APIs in mainly smart devices on the mar-
ket. This is common even in smart-lock products, where the manufacturer ships the object
with awell-stocked integration services collection. This bringsmany others developers to cre-
ate integrated systems for their own projects and researcher to implement and test various
solutions.

3.3.1 The RESTful architecture in a smart home system

Representational State Transfer (REST) APIs are a type of Web interface that uses HTTP
requests to manipulate external resources. They are the easiest way to expose features world-
wide exploiting the wide spread of the Web. The REST architecture is used in the smart
home context to provide a standard and remote way to access information and to perform
actions. Many works showed us how to integrate various devices in our home with this type
of solution.
There is the possibility of creating, for example, a Smart Home Protocol (SHP)[13]. The
solution divides the service into the following five parts.

17

• There is a setup procedure by which the controller devices (smart home, smart assis-
tance, etc.) access the home network.

• Registration is the phase in which the controller device assists the controlled one, the
smart home appliance, register to the cloud server.

• Then, the controller can acquire the information from the smart home device and
perform actions based on those specific data.

• After a change occurs in the controlled devices, an event can be broadcast, and other
devices react to that.

• Finally, a remote controller, located far from home or not connected to the same net-
work of controlled devices, can perform actions and receive events due to the cloud
connection.

The cloud modeling as REST API provides a specific URI for each of the resources pro-
vided. As such, the client installed in the controller device sends a request to the server in
the cloud, which performs actions or retrieves information from the controlled device. The
event handler is usually implemented as a webhook with a subscription-notification mecha-
nism.

3.3.2 Handle a third-party adapter

Services implemented as an SHP can be exposed to a third-party application that canmanage
IoT devices. They are represented by software not developed by manufacturer of the prod-
uct, for such third-party, which aims to gather all the functionalities of different devices, or
tomanage integration between them that is not natively supported. For example, a customer
needs to synchronize its smart alarmwith the smart light bulb to turning on when the alarm
rings. Otherwise, a user owns the same sensor from different manufacturers and wants to
manage them in a single application, to interface with another controller. In those cases, a
developer can implement an adapter to achieve those goals. In particular, a solution similar
to that has already been developed with smart-locks[14]. The solution must be clever, be-
cause it has to take into account many actors and phases. SHP can be refined with a specific
procedure as follows:

• profile linking manages the user profile and external platform account;

• device inclusionmust take place to select the appliance and sync with the application;

18

• commands processing, requests must be filtered and sorted to call different REST
APIs.

Profile linking is a central process for third-party applications. The user must give the
access and permission from the application and it is usually performedwith anOAuth2 flow.
As such, the applicationmust present a link to the authentication provider of the smart-lock
manufacturer account. After the authentication the user provides the confirmation on the
permission required, then the application can retrieve and access token which can be used to
perform theHTTP requests. Inclusion of the device is implemented byQR scanning on the
device that provides the serial number[14], but it depends on the procedure implemented
by the smart lock vendor. Finally, when an action is initiated in the smart home application
by the user, it is transmitted to the gateway. Since the remote device is controlled via an
external cloud, the command is sent to the smart lock adapter located in the cloud. The
adapter then deciphers themessage and sends it to the third-party API, causing the device to
change state, such as unlocking the door. For this process to be successful, the request must
have the linked user’s access token attached. The reverse occurs when someone unlocks the
door, with the smart lock indicating the change in state to the cloud, which then sends the
change event to the registered webhook. The smart home adapter receives this message and
informs the rest of the smart home system of the change. The smart lock supports various
commands and states, such as locking/unlocking, notifications when the door is open or
closed, low battery alerts, and the possibility to unlock the door using a keypad or pin code
(thus requiring CRUD operations for pins, etc.).

3.3.3 Smart-lock vulnerabilities

Because of the importance of the subject, the literature is treating smart-lock device security
issues with particular attention. A possible spreading of this technology in everyone’s homes
could be a new opportunity for new cyber-thieves, which want to break into not them prop-
erties.
Sometimes, vulnerabilities are based on device design, so it is very important to discover these
defects during their analysis. For example, a basic type of attack could affect the hardware di-
rectly. We all know that tech gadgets most of the time are not built to withstand, for various
reasons, from maintenance costs to production costs. As such, it is better that a smart-lock
does not expose anymechanical part to the outside face of the door. Otherwise, anyone could
have access to the device, understand the model and act accordingly.

19

However, due to the design of a smart-lock, it is not always possible to hide the hardware. As
such, we can only analyze software vulnerabilities.

Architectural attacks

This type of attacks can be executed remotely because they rely on architectural vulnerability,
in particular in communication between the gateway and the server.

Man-In-The-Middle attacks. This type of attack can be performed by routing the commu-
nication flow through a malicious proxy by changing the API URL parameter, which is the
server address to which the smartphone application is connecting[15]. As such, the entire
data passing through the proxy can be read and the proxy can even fake the response to the
application. This can still happen in a system using certificates signing the software involved,
because the application does not know that the server to which it is connecting is a proxy.
As such, it keeps sending the certificate, which can be easily forwarded to the real server by
proxy, leaving no trace.

Overpriviledge attacks. As we have seen before, many smart lock manufacturers expose
public API to third-party developers. This is not only a benefit for who is integrating the
smart-lock functionality, but even for the provider, can have positive effects, such as a better
user experience, thanks to a richer ecosystem.
However, this approach can expose a critical part of the system to software that is not under
the control of themanufacturer. In fact, most of theAPIs are accessible withOAuth authen-
tication flows, which require a client ID to prove the identity. In the case that a developer
lets this client ID be in plain text, accessible with a simple code inspection, this can represent
a serious vulnerability.
This category includes attacks that can be performed on bad design APIs by the manufac-
turer itself. That can happen if a third-party application is requesting a type of privileges, for
example, reading the status of the battery, but the bad designed library gives them access to
resources which are not requested, or worse, are meant to be hidden.[16]

Eventual consistency. Eventual consistency verifies when data in the smart-lock application
and the server must remain continuously synchronized. This is a problem, especially in the
Device-Gateway-Cloudmodel, where the smart-lock state in the server is a projection of the
state on the application. In this type of architecture, the two states must be synchronized

20

or the system can accused vulnerabilities. For example, if the owner creates a one time key,
giving permission to a temporary guest, and then he/she revokes the permission on the key,
if the guest smartphone is not reachable, because he/she can simply had disabled the internet
connection, the server can not revoke the permission. As such, the guest application can still
have access until the connection is restored and the synchronization is available again. [12]

3.3.4 Application attacks

Most of the time, the mobile application is the vital part of the system. As such, its vul-
nerabilities are serious points of failure. In particular, are not uncommon attacks on the
communication between the application and the smartphone.
As mentioned in section 3.2.3, most applications use a Handshake Key, in order to establish
a connection between the smartphone and the smart-lock. In the mobile operating system,
there are many ways to access sensitive information from the application. One can be using
a rooted/jailbroken operating system in which the smartphone owner acts as a superuser, so
that he/she is able to access the storage of the device and see protected data. As has been
shown in other works[17], the Handshake Key can be stolen simply by accessing a XML file
from the manufacturer’s application.

Denial of Service (DoS)

With the possibility of controlling the communication between the smartphone and the
smart-lock, the attacker can disable the functionality of the device. It has been shown that
if a smart-lock can handle only a Bluetooth connection at the time and there is no priority
system, the attacker can continuously send a link request to the device, preventing the own-
er/user from connecting with its application[17].

Storage attacks

We have described above how to steal the Handshake Key. However, with the samemethod,
it is possible in some cases to steal even personal information from the application storage.
This happens primarily due to the application developers fault, which is letting the data save
without encryption.

21

3.3.5 Preventing the attacks

As we can see in the above sections, most of the fault, of the vulnerability presence, relies on
developers’ care. Sometimes, a well-designed system is enough to prevent unnecessary infor-
mation from reaching the wrong hands. However, when this is not possible, especially in
mobile application storage, it is always best practice to use a state-of-the-art cryptosystem to
protect sensitive data.
Thanks to their features, smart locks can even be improved with more security layers by de-
sign. Some of the manufacturer applications are able to use the GPS location of the user
and determine if he/she is in the near the device (geo-fencing). With this system, it is easy to
prevent malicious applications from gaining the unlock challenge too easily.
However, from the perspective of a third-party application developer, the security is based
on the correct implementation of the TLS protocol. This most of the time grants that only
certificated client can access to the sensitive information on the server. Moreover, appropri-
ate method for the accountmanagement and the securing of the authentication are essential
in this context to not provide a major vulnerability in the system.

22

4
Nuki study case

Nuki is an Austrian company, which design and distribute smart-lock solutions for
smart homes and offices. We decided to analyze the Nuki smart-locks first, mainly because
there was the immediate availability of these devices and, second, for their security and ease
of use. Moreover,Nuki follows an open software integration philosophy andhas a large com-
munity supporting its forum and blog.
Themain characteristic of their devices is the lack of replacement parts for your existing ”ana-
log” lock. Smart-locks are designed toworkwith the already installed door key and deadbolt,
with only a few steps to mount and unmount the device.
They already offer support for many of the vacation rental management systems, integrat-
ing smart-lock functionality with reservation information. Moreover, they grant support to
third-party developers to integrate their system, with many options like their REST API.

4.1 Nuki components

Nuki offers different configurations to its customers. For the project, we used two of their
products: the smart-lock and the bridge.
The main characteristic of a Nuki smart-lock is the implementation of a small electric drive,
which is capable of turning the key inside the deadbolt (fig. 4.1). The device can bemounted
inside the house, making it physically inaccessible from the outside. Moreover, its structure

23

depends only on the shape of the key, for which a few adapters are provided. As such, it is
compatible with almost any double cylinder lock.

Figure 4.1: The smart‐lock parts and the mount‐
ing system.

The user can interact with the button placed on
the device to lock andunlock the door, but only from
the inside of the house. Moreover, the device still al-
lows for the use of the physical key from outside the
building, which is particularly useful in case of emer-
gency.
This type of smart-lock canwork standalonewith the
Device-Gateway-Cloud architecture described in sec-
tion 3.2.2. The device uses Bluetooth Low Energy
(BLE5) to pair and communicatewith an ad-hocmo-
bile application, available for Android and iOS. This
allows the user to connect in the limited Bluetooth
range. As such, if we want to interact with the smart-
lock remotely, we have to buy a bridge.

Figure 4.2: A Nuki bridge.

A Nuki bridge connects the smart-lock to the
home Wi-Fi network, allowing the device to access
the Internet. The bridge uses two protocols: a BLE
module, which interacts with the smart lock, and
IEEE 802.11 to communicate with the home mo-
dem. The choice of using separate solutions al-
lows the smart lock device to prevent batteries from
draining due to the power consumption of the Wi-
Fi module. In fact, to work, the bridge must be
connected to an electric outlet, within range of the
smart-lock.
There are other products that allow interaction with the smart-lock, which are the keypad
and a clicker, called the fob, to replace themobile application. Moreover, provides an opener
to integrate with the home intercom and door sensors, which are not subject of this thesis.

24

4.2 Nuki smart-lock configurations

The out-of-the-box configuration of the smart-lock involves only the device and a smart-
phone. The application on the smartphone performs a pairing with the smart-lock, creating
(but not exchanging) the key used to communicate. Then, the mobile application acts as a
gateway, because the smart-lock is not directly connected to the Nuki server (fig. 4.3a). All
the information and the state of the smart-lock are gather and sent to the cloud by the smart-
phone.

(a) Device‐gateway‐cloud configuration with a Nuki smart‐lock.

(b) A Nuki smart‐lock connected directly with the server through the bridge.

Figure 4.3: Two different configuration for the Nuki devices.

In the second figure 4.3b, we can see that the bridge replaces the smartphone and connects
the smart-lock directly to the server. If the bridge is available, not all the operations, launched
from the smartphone, pass through the server. Opening and closing actions, for instance, act
as in the Device-Gateway-Cloud configuration if the device is in Bluetooth range. However,
immediately after this operation the smart-lock is able to update its state on the server, con-
tributing to maintain a consistent state.
The two wireless technologies involved are Bluetooth andWi-Fi.

25

4.2.1 Nuki Bluetooth protocol

As we mentioned in section 4.1, the Nuki smart-lock uses BLE 5 to communicate with the
smart-lock and thebridge. To achieve lowpowerdata transfer, the technologyuses a protocol
named the Attribute Profile (ATT)[18]. This protocol is responsible for storing data in the
form of tables. The fields of this table are the following:

• a nonce, which identify an handler,

• an attribute type, which is defined by an Universal Unique Identifier (UUID),

• the read/write permission,

• the attribute value.

Alongwith theATTprotocol, BLE5uses theGeneralAttribute Profile (GATT),which is
an abstraction layer that allows communication in a client(the smartphone)-server(the smart-
lock) architecture. This protocol, combined with advertising and a caching system, permits
BLE to reach low power consumption, comparable with the Zigbee’s performance.
The protocol developed by Nuki to exchange data uses the following message format (table
4.1).

ADATA PDATA
nonce authorization id message length authorization id command id payload CRC
24 Byte 4 Byte 2 Byte 4 Byte 2 Byte n Byte 2 Byte

unencrypted unencrypted unencrypted encrypted

Table 4.1: Transfer format for encrypted BLE messages.

As we can see from the table, the protocol information is in the ADATA section, which is
not encrypted. Moreover, in the PDATA, we can find the attribute value with a command
identifier and the payload, which are encrypted.
Following an example of a read lock state command flow.

Shared key: 217FCB0F18CAF284E9BDEA0B94B83B8D
10867ED706BFDEDBD2381F4CB3B8F730

Authorization-ID: 2

• Client (CL) writes Request Data command with Keyturner States command identifier
to USDIO

26

– Unencrypted: 0200000001000C00418D
– Encrypted:

37917F1AF31EC5940705F34D1E5550607D5B2F9FE7D496B602000000
1A00670D124926004366532E8D927A33FE84E782A9594D39157D065E

– CL sends encrypted message

• Smart-Lock (SL) sends Keyturner States command via multiple indications onUSDIO

– CL receives 90B0757CFED0243017EAF5E089F8583B9839D61B
– CL receives 050924D2020000002700B13938B67121B6D528E7
– CL receives DE206B0D7C5A94587A471B33EBFB012CED8F1261
– CL receives 135566ED756E3910B5
– Decrypted: 020100E0070307080F1E3C0000200A

* Nuki state: 02

* Lock state: 01

* Lock trigger: 00

* Time: 2016-03-07 08:15:30

* Offset: 60

* Battery critical: false

As we can see, from the above example, the communication flow goes through different key
exchanges. In fact, Nuki has created a custom encryption protocol to have complete control
over the security of its devices. A focus on Bluetooth communication security and an in-
depth description of the protocol choices will be carried out in section 4.4.

4.3 Nuki application

The mobile application is an essential component within the Nuki system, because it allows
the user to access the available features and manage the smart-lock configuration. In order
to start using the application, it is needed, of course, an identity for the system; as such, the
user must log in or sign up with a Nuki account. After that, it is possible to configure the
smart-lock for the first time, that gives the configuring user a key with special permissions,
which grants the ability to modify all the settings, see the activity log, and all the status infor-
mation. Moreover, the application gives the possibility to invite new users to only the owner
account. It is possible to delegate these permissions to another account.
When an invitation has been created (fig. 4.4c), the invited receives an email asking you to
install the app and create an account. Then, in the email, there is a one-time link that redi-
rects to the application and launches the key creation process. The first time the key is used
with the smart-lock, the device will be paired to the smartphone. When the new user owns

27

(a)Overview page. (b) Available actions on smart‐lock. (c) Key creation form.

Figure 4.4: Screenshots from the Nuki mobile application.

the access permission, it is possible to see the current status of the smart-lock (lock, unlock,
uncalibrated, etc.). (fig. 4.4a) or, with a swipe up, to use the actions available (fig. 4.4b).
The application is available for both Android and iOS and even for smartwatchOSs. The

developersmake available anURLscheme to interactwith it fromother applications. Through
the OS intent system, it is possible to:

• jump to a specific smart-lock by name or ID and opens the available actions, as in
figure 4.4b;

• open the invite code page with a specific invite code (needed by the invitation link in
the email);

• delete a specific smart-lock by id, from the list.

Another important application in theNuki ecosystem is theWeb portal, calledNukiWeb.
This is available only if the smart-lock is connected to the Internet with a bridge. From there
it is possible to manage the device, see the logs, the status, and manage the users. Moreover,
from here it is possible to connect with a short-term rental account (a vacation rental man-
agement system) andmanage the integration with third party options. In the section ”API”,
there is the possibility to retrieve the client ID, assigned to the account, or to generate API
token, in order to authenticate with the Nuki REST API.

28

4.4 Security and encryption

One of the strengths of the Nuki smart-lock is the focus on security with which they have
designed their products. To ensure a high degree of security, they had designed a protocol
over Bluetooth connections. In particular, they ensure strong end-to-end encryption and
resistance to ”replay attacks”[19].

4.4.1 End-to-end encryption

Every Nuki application uses its own key to communicate with the smart-lock. Nobody else
than your device and your mobile application knows that key. In particular, every message
exchanged that runs through the Bluetooth channel is not readable without that key. En-
cryption is performed with a state-of-the-art algorithm, which is a combination between
salsa20[20] and poly1305[21], thanks to the NaCl cryptography utility library. Even in a
configuration with a bridge all the data are safe, because they are all encrypted on the source
and decrypted on the receiver.
In order to secure the key use for decryption the protocol uses a so called Diffie-Hellman
Key Exchange mechanism. This allows the device and the application to create a secret key,
known by both sides, without exchanging the key itself.
Finally, the key are saved on both devices; however, as we mentioned in section 3.3.3, the
XML of the application, where the key is probably stored, is accessible if the smartphone is
rooted or jailbreaked.

4.4.2 The challenge on response

In order to avoid the ”replay attack”, the protocol implements a challenge on the response
of every message. The ”replay attack” consists of a channel sniffer that can record all bytes
during Bluetooth communication. If a malicious application resends the exact byte stream
to the smart-lock, it possibly can retrieve the same result. In particular, the attack can be
conducted as follows:

• a sniffer records the exact bytes the owner application sent to unlock a device;

• those bytes are sent again by a malicious entity;

• the smart-lock recognizes those bytes as valid and repeats the action.

29

However, the Nuki smart-lock implements a challenge to secure this malicious behavior.
Before the application can send any requests, it receives from the smart-lock a 32byte random
number, which must be sent again with the request. If another command with the same
number is received, the smart-lock recognizes the request as invalid and it answers to the
malicious application with an unsuccessful response.[22]

4.5 Nuki web API andWebhooks

Nuki offers REST API to developers who want to integrate their services with the smart-
lock features. In order to work, the smart-lock must be connected to internet and accessible
remotely. As such, it must be in the bridged configuration.
Moreover, the system needs to activate the Nuki web API from the dedicated portal. Once
done, it is possible to use the client ID and apply the client secret forOAuth2 authentication.
Furthermore, there is the possibility of creating and deleting API tokens.

4.5.1 Security

TheAPI transmits all commands directly through a permanentHTTPS/TLS connection to
the corresponding Nuki bridge, which transmits them via Bluetooth to the smart-lock for
execution[23].
When the Nuki Web API is initialized for the first time, the system creates a server-stored
Nuki Web Authentication Key, which gives you the ability to execute commands on all de-
vices associated with the account and connected to the Internet.
Thanks to its ownAuthentication Key, NukiWeb acts independently from the other clients
(e.g. Nuki iOS or Android App).
Despite the fact that the communicationbetween theNuki server and thebridge is encrypted
end-to-end, the one between the APIs and the external client relies only on TLS security.

4.5.2 Authentication

TheNuki RESTAPIs use bearer authentication, which is anHTTP authentication scheme
that involves the usage of a security token called bearer. To avoid receiving an unauthorized
response, the commands to the API must contain this token to be performed as in the fol-
lowing example:

Listing 4.1: Simple curl command towards the Nuki web API with bearer token.

30

curl -X GET --header 'Accept: application/json'
--header 'Authorization: Bearer c2c0981ffcab78eecd13c8b7ae9fdec4706045bdbb17b1ef06a335

b832f36641322c5c3357b7fe47'
'https://api.nuki.io/smartlock'

As such, the clientmust obtain the token to perform the request to the RESTAPI. There
are different methods to retrieve this information.

API tokens

From the Nuki Web portal it is possible to initialize API integration services. Moreover,
it can be generated as a permanent API token, with different levels of permission. This is
particularly useful if a smart-lock owner wants to build its own application or if a developer
wants to have a fast way to access the API.
Once the key has been generated, itmust be saved, because it only appears once. Additionally,
from the portal, it is possible to edit permissions or delete a target API token.

OAuth2 authentication

For third-party applications that want to integrate APIs, it is suggested to use the OAuth2
authentication flow. This is particularly useful when there are three actors, the owner of the
smart-lock, the third-party client application and the REST API, which must authenticate
to each other with a central entity. In particular, the user delegates the authentication to a
service that is hosting the user account (NukiWeb), authorizing a third-party application to
access the user account permissions.
To achieve that, the external application must be recognized as trustworthy by the REST
API. In fact, the developer of the application must apply to receive a client secret from the
Nuki web portal, which identify the client. In the Nuki case, this is called ”Advanced Nuki
API integration”, which gives the account the possibility to use the webhooks.
However, in general, there are twodifferent types ofOAuth2 authenticationflows: the ”code
flow” and the ”implicit”. In the ”implicit” method, there is no need for the client secret,
but the bearer token received at the end of the process lasts only for an hour. Transactions
proceed as follows.

• The client of the third-party application starts the authentication request, stating its
client ID (a unique identifier), the permissions that want to exploit and finally a redi-
rect URL, which represents an endpoint of the application which can be called.

31

• The OAuth2 service opens the authentication page (in our case, Nuki Web authenti-
cation) for the user, declaring the permission he is giving to the external application.

• If the authentication is successful, the server calls the redirect URL provided in the
first request with the token as parameter.

• The application then has a bearer token that can be used for one hour.

The ”code flow” method gives, as output, a valid API token and a refresh token, which
can be used after the other token is expired in order to retrieve a new valid token. However,
the process required a few more steps and the client secret to be completed.

• The first two steps remain the same as in the implicit method, of course, specifying
the type of transaction it is requesting.

• In this case, the server returns a code, which is not the API token, and it has to be used
to perform another request, adding client secret as a parameter.

• The response to the second request contains the actual bearer token, with its expira-
tion time, and the refresh token.

4.5.3 Advanced API integration andwebhooks

The ”advanced API integration” is a Nuki program, to which a user must be applied to re-
trieve a client secret. Furthermore, it will give access to additional API endpoints to manage
webhooks. Webhooks are an event system that is used to asynchronously inform about any
changes in the device in a timely manner[24]. Even in this case, there are two possible work-
flows.
The central webhook workflow forwards all events to a single URL endpoint (fig. 4.5a),
whereas the decentralized one can manage more than one URL (fig. 4.5b).

32

(a) Central webhook workflow.

(b) Decentral webhook workflow.

Figure 4.5: Two possible workflows for correctly manage webhooks.

4.6 Smart vacation rental Nuki solution

Nuki has already created a solution to the problem highlighted in the introduction of this
document. A vacation rental management system host can install the smart-lock and the
bridge in its property and then link theNukiweb account towhatever platform account they
are using as a vacation rental management system. The Nuki is able to check the reservation

33

and automatically send the invitation code to the guests. After their stay, the invitation code
is disabled.
This brings more than one advantage: check-in and check-out can be done 24/7, without
human interaction; the service providers and cleaning staff can access and be issued at any
time and from anywhere; and finally, the host has remote full control of accesses.
In theproject, the goal is to emulate the samebehaviour implementedbyNuki, but including
more than one provider, giving an application more centered on the host needs.

34

5
Kerbero

This chapter outlines design and implementation choices about the project in which
I had worked during my internship with Kuama Srl. The project is called Kerbero and it
is a new application which provides one-point access for multiple smart-lock devices. In
addition, it is strongly oriented toward the check-in and check-out of users of the vacation
rental system. The application aims to integrate with these platforms, in order to provide
the possibility to create a temporary key for the guests, which expires at the end of their stay.
Moreover, the application should be compliant with the highest number of open APIs for
smart-locks. In order to do that, an architecture must be implemented that can interface
with multiple plugins for each of the devices that the goal is to support.
Continuing, we discuss the initial requirement analysis; the feasibility study and the first
tests on the technologies chosen; a discussion on the design choices about how tomodel the
concept of keys for the guest, how to manage the identity of an host in the system and how
to authenticate.

5.1 Requirements analysis

The initial phase of the project involves many meetings with the committer. Being Kerbero
an internal project, the committer wasmy tutor, withwhomwe defined all the requirements
and the use cases of the application. As such, all the use cases and requirements are retrieved,

35

updated and documented during the whole project, thanks to the continuous interaction
between developers and committer. In this section, the whole requirement analysis is not
reported, but only the use cases and scenarios useful to understand the choices we made
during the design of the architecture and the choice of technologies are reported. As such,
this analysis results being more discursive and less formal.

5.1.1 Actors

First of all, we defined the roles involved in the use of the application. During the analysis, we
found that the application is strongly oriented towards the host ”actor”. The idea composed
around the project foresees that the host is the actual user which, once logged in, can have
access to the application features. However, we later realized that guests also need a way to
interact. In fact, they have to receive an actual virtual keywithwhich they can lock or unlock
the smart-lock.
Finally, we realize that only the host needs an identification within the system. As such, we
decided to have the ease approach for the guests, which foresees that they should not have to
register any account.

Figure 5.1: Actors scheme from the requirements analysis.

In light of the previous considerations, the identified actors are the following (fig. 5.1):

• the guest, which does only own a key and can open and close the door;

• the not authenticated host, which has the possibility to register an account or logwith
an already existing one;

• the authenticated host, indeed, has all the permissions, as such he can have access to
all the features of the application.

36

5.1.2 Use cases

In order to analyze the requirements defined by the committer, it is best practice to produce
use cases. Use cases are usually represented by UML diagrams and define the interaction of
the actors with the system.
The definition of use cases wasmade top-down and, as such, we first define themain features
and then refine them step by step.

General

Figure 5.2: General use case.

Starting from the highest level, the general use case defines themain features that we identify
to be implemented in the application, giving an abstract idea of what the application must
do.
First of all, there are all the features related to authentication and identity. In particular, a
not authenticated host can sign up and login, while an authenticated one can sign out.
After that, a guest is able to receive a key and through a link opens a page fromwhich he can
lock and unlock the smart-lock.
Furthermore, an authenticated host can access the main feature of the application, which
are:

• manage the smart-lock provider accounts (e.g. add/remove a Nuki account);

37

• manage the reservations, manually add guests details, arrival and departure time, in
order to create the correct keys;

• manage the devices, downloaded from the linked accounts;

• remote lock and unlock the smart-locks;

• manage the app settings.

Authentication

Figure 5.3: Authentication use case.

The authentication is managed with a common log in and sign up system. Moreover, since
account management (known as sign-up) is entrusted to the user, there is the possibility to
recover the account if the user has forgotten the credentials.

38

Smart-lock accounts management

Figure 5.4: Smart‐lock accounts management use case.

The authenticated host must be able to add a new smart-lock provider account. This in-
tegration with the external account should synchronize the information. He can remove a
selected account as well.

Devices management

Figure 5.5: User devices use case.

Wedecided to give the host the ability to see the list of devices synchronizedwith the provider
accounts. Moreover, it is possible to lock and unlock, edit and show a status page for each of

39

them.

Keys management

Figure 5.6: Key use case, with automatic creation from reservation and key archive.

40

The management of virtual keys is the core feature of the application. The host should be
able to create a key from scratch following this process:

• select the smart-lock for which the key will be created;

• if the connection with the device can be established the process continues, otherwise
it can be retry or abort;

• then the host can set the starting and expiring validity date;

• finally, it is possible to insert the guest emails and send the invitationwith the key link.

From the list of keys, it is possible to select an item and have access to the actions, which
are the editing and the status display. Automatic new key detection is the system that allows
the host to automatically create keys starting from a confirmed reservation. The reservation
can be detected by a webhook and is reported to the host.

Vacation rental management system links

Figure 5.7: Vacation rental management system use case.

Finally, to enable automatic key generation, the system must use the webhook of the vaca-
tion rental systemmanagement. As such, as in the smart-lock case, there is the possibility of
linking and unlinking an external account, through the related authentication mechanism.
This is actually an optional requirement; as such, the system can be designed without those
particular features.

41

5.1.3 Other diagrams

During the analysis, some other diagrams were created, which can now be useful to under-
stand howmany parts of the architecture work.

Create Key

Figure 5.8: Key creation flow diagram.

Key creation is a core feature of the application; therefore, we focus on the details of its
steps. As we can see in the flow diagram in figure 5.8 there is emphase on the initial check of
the availability of the device. The importance of using a reachable smart-lock is fundamental,

42

as such the host is always notified about the status of their devices. In particular, we thought
that a user should not have the possibility of creating a key on a non-accessible device.

Add aNuki account

Figure 5.9: Link a Nuki account sequence diagram.

The link of a Nuki account that follows the OAuth2 authentication process was trivial
during the design of the application. In particular, during the feasibility study, the initial
test and the Proof of Concept implementation, as such wemade a sequence diagram to clear
up the entire flow. This process will be better explained in the next section 5.3.5.

Entities diagram

Once determined the use cases and requirements, we proceeded with defining the entities in-
volved in the application. An entity is any identifiable and separate object that is significant
for the application. The diagram, in figure 5.10, defineswhich are the entities, their attribute
and how they are related to each other.
This entity diagram refers only to the host, which is identified as user. As we can see, a user
can ownmore than one ProviderAccount orRentProviderAccount, which are abstractions of
an external account, respectively, of a smart lock provider and of a vacation rental manage-
ment system. Moreover, both of these entities are considered as interfaces with zero or one
relationship between the main entity and its specifications.

43

Figure 5.10: The Kerbero entity‐relationship diagram.

5.2 Feasibility study

While performing the requirement analysis, we conducted a feasibility study to checkwhether
our assumptions were actually implementable with existing technologies.
The focus was, of course, on the state-of-the-art technologies involving smart-locks, which
are already and extensively treated in the previous chapters. However, it was important
searching and selecting the smart-lock solution, which could actually satisfy the use cases
we had defined.
The most important feature a product must have is, of course, the availability of the public
APIs. The integration of Kerbero with manufacturer software and systems was an essential
precondition that we searched over all the alternatives taken into account.
Moreover, we searched for the characteristic of the product, the independence of the main
operation from the manufacturer application and an integration with the already existing
invitation system, which is translated in our project as the creation of virtual keys.
In light of this, a wide search on internet of the products was performed, which better fit the
model we traced. In particular, we classified products according to the characteristic of our

44

interest, as shown in the table 5.1.

Host device Bluetooth pairing without app C1
System invitation acceptance without app C2
Possibility to Lock/Unlock without app C3
Must have to apply for more integration C4
Already offers an integration with a vacation rental management service C5

Nuki Kisi Salto Latch Operto Yale/August Brivo
C1 x x x ? ? x∗∗ x

C2 x ✓∗∗∗ ✓ ? ? ✓ ✓
C3 ✓ ✓ ✓ ? ? ✓ ✓
C4 ✓ ✓ ? ✓∗ ✓∗ ? ?

C5 ✓ ✓ x x ✓ x x

Legend:
✓ Feature available
x Feature not available
? No access to this information
* no access without
** wi-fi only - need a code
*** with white labelling

Table 5.1: Comparison between product of different manufacturer, related to some characteristics of interest.

The choice of the first device to integrate in our systemwas relapse in theNuki smart lock,
the description of which is already widely covered in the chapter 4.

5.2.1 The vacation rental management integration

The integration with the vacation rental management systems are intentionally excluded
from the mandatory requirements of the project, because of the difficulties of accessing
their APIs. In particular, Airbnb and Booking APIs were considered the most used plat-
form worldwide. We found that their APIs was selectively open, and as such if a developer
wants to use them, he must perform a request to the vacation rental management system
support service.
Moreover, it is a common thought that Airbnb is very selective with companies asking for ac-
cess to their APIs. As such, when a company wants to apply, it is suggested that they already

45

have a working application to give as proof. * Those are the reasons we decide to develop
the application modularly, from the core features to the plugins for each of the providers.
However, the main module of the application was only prepared to work without adding
any integration with a vacation rental management system.

5.3 Software design

In this section, I would like to outline most of the design choices we decided to adopt to
implement the previous detected features. For each of the following, a PoC was developed
to prove the validity of the assumption and to test the features in a real world scenario.

5.3.1 Smart-lock keys design

An essential decision during the design of the application was how to properly model the
concept of virtual key. In the real world, keys are the only way to lock/unlock a door. We
expect that this behavior remains invariantwith the virtualmodel, aswell. However, a virtual
key has an important upcoming that the traditional key does not have: the possibility to be
invalidate immediately. This benefit bringsmany others, such as the possibility to temporize
the key or to give access to a person once and then revoke the permission.
Another important characteristic of the Kerbero keys is the ease of use of guests. As such,
the requirements we fixed for the keys were:

• no mobile application to open and close the door;

• availability for mobile;

• security relying on a password.

Therefore, we decide that the keymust be a public page accessible with a link and available
only through the insertion of a keyword as a password, randomly generated by the applica-
tion. The idea is that a guest receives a link to the virtual key page and a random password
by email (fig. 5.11). The guest is suggested to save the key link on the smartphone home and

*

”At this time, we are not accepting new access requests for our API. Our global team of partner
managers will reach out to prospective partners based on the supply opportunity your business
represents, the strength of your technology, and the ability to support our shared customers.”

(From the Airbnb site: https://www.airbnb.com/partner)

46

https://www.airbnb.com/partner

to keep the password safe and private.
This approach does not reach the security level of using a dedicated application, but is much
easier to use for the end user, who does not have to download an application and create a
new account. Moreover, the security level of the provider application rely on the use of a
Bluetooth pairing between the devices, which assures that both of them are distinct entities
that recognize each other. If the request is coming from the internet, this benefit is lost; the
request is signed by the client ID of the application which is sending it, but the identity of
the guest can not be tracked, except by the client itself. However, the smart-lock does not
recognize information of this type coming from the client, as such that becomes useless.

Figure 5.11: Key functional process.

Moreover, the non-usage of the official smart-lock application brings to others comedowns.
Most of the features available through Bluetooth, such as auto-unlock or geo-fencing, are
not usable through APIs. However, it is important to note that these features are mostly
used in a smart house context, which is not our purpose. The design we proposed is guided
by the assumption that an Airbnb host already knows what are the risks of giving the access
to a stranger, as such, we premised that in the overall process mutual trust is involved.

5.3.2 Smart-lock management

Since the application is designed to operate with all the smart-lock through their APIs, the
Kerbero specific model must be more generic than possible. In Kerbero the smart-lock data
is not persistent, the information are fetched with the external API, in order to avoid out of
sync and inconsistency. As such, most of the work of the plugin is to translate the informa-
tion coming from the external APIs into a readable object for the Kerbero system.
About the ”writing” operations, such as the open and closed, keeping the object generic be-
comes more complicated. The process divides into various steps, as can be seen in figure

47

5.12. The logged in user has saved different credentials for each of the provider supported
byKerbero. As such, the requestmust supply aProvider Identifier, which serves theKerbero
component to switch between the right credentials and the repository to select.

Figure 5.12: A schema for opening a Kerbero smart‐lock, an interactor (a method satisfying a use case) communicate
con repositories on the data layer.

5.3.3 Application identity management

In the section 5.1.1, we had given a hint of the authentication model through the specifica-
tion of the actors involved. In particular, it was revealed that the host is the only role which
must have a distinguished identity. As is said before about the keys, the guests do not need
to identify themselves into the system, because they use keys which are not associated with
any identity.
Therefore, the host needs an identity system that he can authenticate and, as a consequence,
have access to the features of the application. The design of this type of functionality gener-
ates a lot of discussion and the choices we make here have involved the overall system archi-
tecture. The identity systemwe were looking for was not complicated; however, it needs the
following properties:

• one level permission for the user, which means that the application does not need to
have different access level or locked features only for a specific type of user. This is a
choice tight with the concept of ease of use outline in the requirements.;

• persistence of information related to the user;

• scalability oriented;

• email account confirmation.

The framework which grants to us this specification and the following authentication
system is ASP.NET core identity, which will be described later in section 5.4.5.

48

5.3.4 Cookies authentication

The Kerbero client runs on a Web application which provides a Graphical User Interface
(GUI) for the host. Moreover, there is a sever side application which performs the core ac-
tions. To maintain the authentication session, it was chosen to use browser cookies. They
are managed in order to provide a user state both on the application side; therefore, provid-
ing a session for the client and a valid user identity on the server.
The operations on the cookies are simple and robust: the client sent the log in information
to the server, the server checked the information, and if they are correct, it creates a cookie
which is attached to the response of the authentication request. The browser that receives
the cookie in the header of theHTTPmessage saves the content in its immutable cache stor-
age, called the cookie jar. As such, every time the client does a request, the cookie is attached,
the server receiving the message checks the validity and the content of it.

Figure 5.13: The cookie session and authentication management.

Cookies specification

In order to better understand the reason for the choice of cookie authentication, it is impor-
tant to know their specifications.
Cookies are born as a way to pass a small piece of information from the client to the server
and vice versa. As such, the purpose is to create a shared state between the two actors over
the HTTP protocol.

49

By default, the cookie was not built for security; it guarantees neither confidentiality nor in-
tegrity of the transferred data. However, it is worthmentioning two attributes of the cookie:
Secure andHttpOnly. Secure attribute limits the use of a cookie to only secure channels. As
such, the client attaches the cookie only when the request is over TLS. Note that, while this
protects the confidentiality of the cookie, it does not protect its integrity if an attacker sends
the request from a secure site. The second attribute,HttpOnly, limits the cookie to be used
only on HTTP request, which means that it cannot be modified by the JavaScript of the
browser and, as such, it can only be writable on the server side[25]. Thanks to this mecha-
nism, the cookies can only be saved in the browser, as such the ones created by the client and
attached to anHTTP request are ignored by the server when received. As a consequence, the
unique flow available to manage them starts from the server, which attaches the cookies he
needs on the HTTP request and the browser receiving them has to store in the cache. Then,
it can resend their content with the following request. As such, the cookie jar, if correctly
managed from the server, is read-only on the client side. As a result, the server is considered
a trustworthy entity that can manage the state of the browser.
Therefore, the client is resistant to many attacks related to cookies, in which malicious code
writes a copy of an existing cookie, to emulate authentication, for example. If the cookie
is properly configured, those attacks cannot be launched from the client side, by injecting
JavaScript code. This is avoided by the fact that, due to the HttpOnly attribute, JavaScript
scripts can access read-only cookies.
Moreover, the update process of a cookie grants a low level of integrity. In fact, all cookies are
identified by a key that provides uniqueness. If a new cookie with the same key and different
content is received by the browser, he must update the existing one with the new informa-
tion.
An additional security layer is granted by the SameSite attribute. The same-site cookies are a
relatively newHTTP specification, which provides to the client a way to decide which cook-
ies can be sent in the request to the server. SameSite attribute was specified to avoid cross-site
request forgery attacks, which are particularly dangerous to security[26]. This type of attack
affects authentication; in fact, if an attacker manages to provide a stolen cookie, he can set
the cookie with a malicious application and call the real server. As such, the real server rec-
ognizes the cookie as valid, and it provides a valid response. The same-site cookie prevents
that with anURL restriction, which limits the cookies to the origin site with a URL domain
check. SameSite can be set with three different values:

• None, which disables the whole protection mechanism;

50

• Strict, which defines that the client can send the cookie only to the origin site;

• Lax, which is similar to strict, but the client can send the cookie even if he is on another
domain, reached after a redirection from the origin site.

Why cookies over Bearer token

As we have seen so far, cookies are strongly bound to browser technology. As such, they
cannot be used for other types of client, like a mobile or desktop application. Therefore, a
bearer token solution, maybe combined with a OAuth2 authentication flow, seems to be a
better solution in the context of an Web API. Moreover, bearer tokens are generally more
secure than cookies, since they are not stored on the client machine and are less vulnerable
to tampering. However, they can be more difficult to use since the server must keep track
of the tokens and implement additional security measures to prevent unauthorized access.
Furthermore, cookies technology, withHttpOnly, SameSite and Secure attributes, improves
a lot in recent years, reaching almost the same security level of the bearer token.
The two benefits we recovered from using the cookies were:

• they are lightweight and more informative;

• completely managed by the browser and the server side framework;

• they are valid for the entire session, until the browser wipes the cache.

It is important to note that most complex applications usually combine these two meth-
ods. The reason is that a large application has many different clients. If the client is a web
browser it is commonly used the cookies solution; however, if the client is a dedicatedmobile
or desktop app, the bearer token is the only way. Therefore, Kerbero is now implementing
only cookie authentication, but is already prepared for the future addition of another au-
thentication method.

5.3.5 OAuth2 authentication flowmanagement

During the analysis, we noticed that access to the smart-lock service RESTAPIs is almost al-
ways protectedwith anOAuth2 authorization flow. OAuth2 is an authorization framework
that enables external applications to obtain access to a user account linked to an HTTP ser-
vice. It is usually used when a service is integrating an external one; as such, the first one

51

needs to ask the permission to the user of the second. As such, OAuth2 works by delegating
user authentication to the service that hosts the user account, in order to give the access per-
mission to the application requesting the integration.
The roles involved in the process are:

• the resource owner, which is the entity that is responsible of the user account;

• the client is the application which requires the resource;

• the resource server, which is the place where is located the data the client is looking
for;

• the authorization server, which is the authority managing the authentication and the
permission access to the resource.

Figure 5.14: OAuth2 protocol flow.

As we can see in the figure 5.14 the components interact with each other, in order to pro-
vide the client with the possibility of reading or writing the protected resource, in the form
of an access token. [27]
In order to represent a valid application, the client must register with the service. The com-
mon way is to provide the client with a client identifier and a client secret, which must be
exchanged during the authorization phase.
From the client’s perspective, the authorization process requires two phases.

• First of all, the client must ask the user permission to use the information in his ac-
count. In order to do so, the resource owner must expose an authentication service

52

dedicated to the OAuth2 service. The client user is commonly redirected to the au-
thentication service page of the resource owner, where he must log in and accept the
read or write permission request to the resource. Once the user completes this proce-
dure successfully, the authorization server returns a code which is not yet the access
token.

• In the second phase, the client must request the access token to the authorization
server. The request is performed using the code given in the previous phase, which is
temporary and usually single-use. The response of the authorization server contains
the access token, which is the bearer token, and the refresh token, which is used, in-
deed, to update the access token when it expires.

One of the most difficult challenges faced during the design of the application is the in-
tegration of the OAuth2 authentication flow with our authorization system. The problem
relies on the end of the first phase, when the authorization server calls the client with a call-
back to provide the code. The endpoint exposed by the client must be anonymous, that is
the server can be not authenticated to call it. This choice is mandatory since the authoriza-
tion server does not know anything about the client authentication system. However, when
the client endpoint computes the information, it does not have clues about the identity of
the user who started the OAuth2 flow.
In this case, the cookie authentication flow is handy, in particular, the SameSite attribute
Lax. This attribute solves the problems of applying a less rigid same-site cookie policy, as
such the authentication cookies are sent back from the user-agent (in fig.5.14) to the client,
which in this case is Kerbero. As a result, the client can use the cookie to authenticate and
retrieve all the information about the user.
It is important to note that this solution can only be implemented with cookies. As such,
being only available within the browser, the only possible way to manage OAuth2 authenti-
cation seems to be restricted to web applications. However, most of the development frame-
work, like Java/KotlinAndroid, Swift, etc., has libraries which can typicallymanage the flow
with a redirect to a web view.

5.3.6 Error management design

HTTP errors

The error management was another challenge during application design. It is important to
assume that the application is client-server. The client, as we already mentioned, is a web

53

application, while the server is a REST API.
The REST API typically responds to client requests with an HTTP response, which con-
tains a JSON object, which is a standard data format, used to define data objects that can
be read by different languages and frameworks. Inside the JSONwe usually find couple for-
matted as keys and values. In case of error, theHTTPmessage contains a specific field called
response status code, which contains a number indicating the a standard HTTP error.
Kerbero uses a message-status code approach, as such the client everytime receives an error
as response, the latter will contain both a proper status code and a message inside the JSON
object. As such, the client has a filter which determines if the error has to be shown as a
pop-up or managed internally.

Language exceptions

About the exceptions, the strategy applied was ”catch everything”. The server side approach
is translated in functional, as such every source of error is closed in a try-catch block. There-
fore, the catch encloses the return object of the function in a specific result type. This ap-
proach has proven to fit particularly well, with the architectural choices we made for the ap-
plication, treated deeply in section 5.4.1. In general, we can say that a functional approach
grants modularity because force the error to be managed in the function scope. Moreover,
the object result can contain more than one error, as such it can be more informative of a
managed exception. However, the correctness of this approach depends a lot on the imple-
mentation and the responsibility relies on the developer. Moreover, many server-side frame-
works offer an automatic way to filter and return HTTP status code based on the type of
exception returned. However, this approach most of the time does not give the possibility
of returning other information, such as amessage, which brings this feature out of our scope.

External errors

The last design choices on errormanagement are related to external services. Kerbero is imple-
mented to communicate with external APIs, as such it needs a well design way to handle the
errors coming from them. As we said in the previous section, all the exceptions are wrapped
in a try-catch and translated into a result object with an error field. This approach is used
with external errors too, in fact the client HTTP is designed to throw exception in case of
status code different from success (i.e. 2XX). Then, the exception is caught and wrapped in
a result object, including a custom error or a list of custom errors. This approach is more

54

flexible than the exception propagation, because it allows the server to decide which errors
have to be managed or ignored.

5.4 Project plan

In this section, we will discuss architectural choices and a brief description of the technolo-
gies involved in the project. These choices were particularly crucial during the development
of the application. Architecture, in particular, was difficult to design because we had to take
into account many different factors. At first sight, from the requirement analysis, it seems
that there are not many problems that require a complicated solution. However, Kerbero
has a scaling nature; in fact, the goal is to implement more and more plugins in the future,
in order to give support to new smart-lock devices. As such, the modularity and, as a conse-
quence, the dependencies question was crucial on the application designing.

5.4.1 The Kerbero architecture

In order to provide a robust split between the user interface and the business logic, Kerbero
is divided into a client-server application (fig. 5.15). The reasons for this choice are based
on allowing the application to implement different types of client. If, in the future, the re-
sources will allow an implementation of a mobile application, the architecture is studied to
give the possibility to be upgraded with only few changes server-side.
The server-side is also designed as modular as possible, dividing layers and business logic in
low code dependency sections. Moreover, these modules are organized inside the architec-
ture to have isolated communication with all external resources. This will be discussed in
depth in the next section.

The clean architecture

The specification. As we said previously, the application must implement software that is
as less dependent as possible. As such, the choice of architecture falls on the Clean architec-
ture.
The Clean architecture, also known by the name Onion architecture, is not a properly de-
fined standard pattern, but a collection of best practice and rules to apply to achieve separa-
tion of concerns[28]. This allows the architect to produce a system which is:

• independent of frameworks and existing library;

55

Figure 5.15: High level architecture of Kerbero.

• independent of any external agency, database or UI;

• testable, thanks to the low dependency between the components.

The main rule to follow in Clean architecture is Dependency rule, which says that all de-
pendencies of the source code can only point inward. As such, we can see the system as a set
of concentric circles in which the inner ones do not know anything about the outer ones.
In the clean architecture the Entities play an important role. They are object containing
methods, attributes, or data structures that represent system-wide business rules. The latter
are the high-level behaviors of the application, which represent the smallest and least depen-
dent unit of logic. Furthermore, entities should not be affected by operational changes. As
such, they are inserted in the inner circle of the architecture.
The entities are wrapped by the use cases, which represent the application specific business
rule. They should encapsulate exactly the use cases defined in the requirement analysis.
The following circles are out of business logic and have to deal with external resources. As
such, the first layer we encounter is the interface adapters, which translate the data into a
convenient format for the underneath layers.

The implementation. Following the Clean architecture rules, the system obtained results
to be robust andwith a low level of dependencies. The architecture is divided aswe can easily
see in figure 5.16.
We managed to combine the entities and use cases in a single module, which is called Do-

56

main. The unusual thing in this architecture is the separation of the identity module from
the business logic of our application. This was forced by the fact that this library was already
implemented and we simply imported it inside the project with few modifications. The li-
brary was not implemented in clean architecture, as such, in order to not disrupt the depen-
dencies, wemanaged to put it as inner circle next to theDomain layer, however, without any
dependency with it.
The middle circle contains the infrastructure level. As such, here we can find the interface
to the external resources and the mappers, which manage to translate the data from and to
the inner circle. Finally, the outermost circle physically represents external resources, such
as the database, external APIs, and the web application, which is the user interface.

Figure 5.16: The Kerbero components organized with the clean architecture.

Evaluation of the architecture. After the implementation of the architecture, the dependen-
cies schema appears to be as in the figure 5.17.
Following the previous rules was not that easy, in fact, the figure 5.16 represents the last
version of the architecture to which we came. As such, the initial version of the architecture
was substantially different from the latest one. The analysis and the feasibility study were
not enough to determine the final architecture a priori. This is caused by the rigidity ofDe-
pendency rule, which sometimes does not conform to the best practices of external libraries
or frameworks, as it declares. In fact, it turns out that if a library needs to be inserted in-

57

Figure 5.17: The dependencies schema of Kerbero.

side an internal circles (which in most of the cases must be avoided), then many problems
emerge, especially if the latter does not implement the clean architecture first. As such, dur-
ing the development can happen that the library, chosen as data access framework, needs a
dependency on an object in order to work and the developer must move this object from an
inner circle to an outer one; or he must create a copy of that class inside the module, and, as
a consequence, he has to code the mappers and the utilities for that specific unit. As such,
Clean architecture requires a large codebase to be implemented in a real-world scenario, with
respect to the alternatives, such as the layered or the monolithic architecture. Moreover, we
found that it was not that easy to read by an external developer, as such the components need
a detailed description first.
However, the resulting application turned out to be, as expected, modular and with a low
level of interdependencies between its components. This was a requirement for the scala-
bility of the application, but the latter was not the only benefit. The application tests were
easier to implement than expected, even the integration and end-to-end tests. Also, the de-
bugging of the application was helped by the modularity, thanks to the ease of finding the
error in isolated components.

Project structure and component naming

The architecture, finally, has determined the structure of the project. As such, from there is
possible to understand even better the concepts outline in the previous sections.
From the below directory tree we can also notice the naming of the component in the archi-

58

tecture. Starting fromDomain, we can identify the clean architecture entities and use cases,
respectively, as models and interactors. Then, there are the errors, the interactors and the
repositories interfaces, useful to be used with the Dependency Injection (DI).

docker-development-db
web-api

src
Kerbero.Data

Common
Context
Helpers
Interfaces
Repositories

Migrations
<Module Name>

Dtos
Entities
Mappers
Repositories

Kerbero.Domain
Common
<Module Name>

Errors
Interactors
Interfaces
Models
Repositories
Utils

Kerbero.Identity
…

Kerbero.Identity.Library
…

Kerbero.WebApi
Controllers
Dtos
Exceptions
Extensions
Mappers

tests
…

web-app
…

Inside theData component, we identify some of the classes and concepts related to exter-
nal libraries, such as Context of the Entity Framework core tool. Specific of this layer is the
implementation of the repositories, which are specific for each entity and provide the basic
methods to manage them, as such the creation, reading, updating and deletion (CRUD).
Moreover, there is a strangeness, which is the presence of entities. The latter are not to be
interpreted in the clean architecture way, but they are named according to the naming of
the library with which they are used, EF core. Both in the Data andWebApi layers, there are
dtos andmappers. The first one are the Data Transfer Objects (DTOs), which represent the
data structure entering and exiting the system. The characteristic of this type of data is the
possibility of being serialized and deserialized the object, in order to fit in anHTTPmessage
as a JSON. Finally, to deal with the different forms that the same data type can have (DTO,

59

entity, or model), there are mappers, which have the task of transforming the object from
one type to another, modifying and filtering their attributes.

5.4.2 Workflow, versioning and conventions

The implementation of the application never reached the production state, therefore, it re-
mained in a development state for the duration of the project. As such, we needed only two
types of environment in which run the application. We used a workbench in which we can
experiment the technologies and test the integration between the components, as such here
weused to build Proof ofConcept software. The other environment is the development one,
which includes a database on a virtual machine and the client-server architecture, which run
with ad hoc scripts on the localhost.
While the first environment was not versioned, the development environment is traced in
a Version Control System. In particular, we use Git and Github to maintain a shared and
remote repository for our codebase. Moreover, we used branching, rebasing and merging,
in order to manage the concurrent and parallel development of features. In particular, there
were three types of branch: master contains the most stable and reviewed code; the feature
branches, which were used to develop a newmodule starting from themaster or another fea-
ture branch code; andfix branches, which contain little, but disruptive, modification, aimed
at solving bugs or errors.
Github has played an important role in the workflow during the development of the applica-
tion. In particular, we exploited the Pull Requests (PR) feature. A PR is a merging request
of a non-master branch into themaster one. The importance of requesting first relies on the
code that, before becoming part of the codebase, must be reviewed. Reviews were an impor-
tant part of the project implementation phase. Moreover, Github offers other services, such
as the possibility of launching actions on code pull, such as building and test commands.
This grants having a working code in all branches.

5.4.3 The client architecture

The client of the application is developed as a Single Page Application (SPA). A SPA is a web
application or website that loads a single HTML page and dynamically updates the content
as the user interacts with the application. It is designed to provide a smooth user experience
similar to a traditional desktop application. SPAs are built using client-side JavaScript frame-
works, such as Angular, React, and Vue, which allow them to update the content dynami-

60

cally without having to refresh the entire page. When a user interacts with the application,
the JavaScript framework updates the necessary parts of the page rather than loading a new
page from the server. This results in a faster and more responsive user experience, since the
application does not need to reload the entire page every time a user takes an action. SPAs
typically use a routing mechanism to handle different URLs and will update the content
based on the URL. They usually communicate with the server using APIs and JavaScript
libraries, such as Axios or Fetch, to retrieve and update data. Kerbero uses a wrappedHTTP
client around the Fetch library.
One of the main benefits of SPAs is that they can provide a smooth user experience, with
fast and responsive navigation, similar to a traditional desktop application. They also reduce
the amount of data transfer between the server and the client, which can improve the per-
formance of the application. However, one of the main challenges of SPAs is that they are
not as SEO-friendly as traditional web applications, as search engines may have difficulty in-
dexing the dynamic content of the application. Additionally, if the JavaScript code fails to
load or execute correctly, the SPA may not be able to function at all. This limitation was
taken into account before choosing this approach. In fact, we think that, like many other
web applications, Kerbero does not need the search engine indexing the site; moreover, the
problem can be bypassed easily with a workaround, such as linking the application from an
indexed presentation page.

5.4.4 Tests and security

Most of the application was implemented using Test-Driven Development (TDD). The
TDD is a software development process that involves writing automated tests for a specific
feature or behavior the actual implementation. The tests are then continuously run to en-
sure that they fail until the feature is not completely implemented. When the tests are passed,
it means that the feature is ready and that the developer can refactor its code tomake it more
efficient and readable. This process helps to ensure that the code is thoroughly tested and
that the new changes do not break existing functionalities. It also encourages a more mod-
ular and flexible design, as developers are forced to think about how their code will be used
and how it will interact with the other parts of the system.
We focus, in particular, on server tests, which are of three types: unit tests, integration tests,
and end-to-end tests (e2e tests). Unit tests were organized as a mirror of the source code di-
rectory. As such, all methods and functions are designed and tested before implementation
following the TDD process.

61

The integration tests ensure that developers understand that all modules and layers commu-
nicate correctly with each other, while the end-to-endmanaged to test an entire feature from
client input to response.
Testing was also designed to improve the security aspects, particularly those that involve au-
thentication. During the end-to-end tests, for each of the actions exposed by the endpoint,
it was verified that request with not valid cookies does not pass the identity controls, acted
by the framework library.

5.4.5 Technologies and frameworks

The committer did not imposed any limitation about the technologies to use during the im-
plementation. As such, having this freedom,wemanaged to choose the best frameworks and
libraries that fit the requirements of the application. This process involves many elements
and, as such, takes a significant part of the scheduled time for application development. In
fact, for each of the following frameworks, a PoCwas produced first, and then an evaluation,
to better understand which combination of them can generate an application with such de-
signing choices.

.NET and ASP.NET core

About the implementation of the application server and the web API, .NET was chosen
a framework maintained and developed by Microsoft. .NET is a free, open source, cross-
platform framework for building various types of applications, including web, mobile, desk-
top, gaming, and IoT. It includes a large library of pre-written code, a common runtime
environment, and a set of tools and languages that can be used to build and run applications.
Some of the languages that can be used with .NET include C#, F#, and Visual Basic. The
.NET framework supports multiple operating systems such as Windows, Linux, and ma-
cOS.
Kerbero was initially be implemented with .NET 6, but during the development we found
out that many features of the just released .NET 7 might be useful to us. As such, we man-
aged an upgrade rollout of the application, upgrading the associated libraries as well.
The specific framework used to develop the web API was the ASP.NET core. ASP.NET is
part of the .NET platform and is designed to be lightweight, high-performance, and modu-
lar. It provides a number of features that make it well-suited for building web applications,
including support for routing, middleware, persistence and dependency injection, as well as

62

built-in support for security features like authentication and authorization. One of themain
benefits of ASP.NETCore is its ability to be hosted in different ways, such as IIS, Apache, or
self-hosting. Additionally, it provides a flexible pipeline for handling requests and responses,
which allowsdevelopers to easily add custommiddleware and services to handle specific func-
tionality. ASP.NETCore is designed to be highly performant, scalable, and easy to test, and
it can be used to build a wide variety of web applications, including web APIs, MVC web
applications, and the one of our interest: SPAs.

The dependency injection. A feature that helps to implement the clean architecture is the
Dependency Injection (DI). The DI is a design pattern that allows a class or component
to receive its dependencies from an external source, rather than creating them internally or
hard-coding them. These dependencies are typically services or objects that the class needs
to perform its intended function. The key benefit of using dependency injection is that it
promotes loose coupling between classes, making an applicationmore flexible, maintainable,
and testable. When classes are loosely coupled, they can be easily replaced or modified with-
out affecting other parts of the application. Thismakes it easier to add new features, fix bugs,
and improve performance.
One way to implement DI in .NET is to use constructor injection. This involves injecting
the dependencies of a class through its constructor, allowing the class to use the dependen-
cies without having to create or manage them. For example, using the built-in DI feature in
.NET Core, you can register a service and its dependencies in the Startup class and then use
the service in a controller by injecting it through the constructor.
Another way to implement DI in .NET is to use property injection. This involves injecting
the dependencies of a class through its properties, allowing the class to use the dependencies
without having to create or manage them. Overall, the basic steps to implement DI in .NET
are:

• create an interface for the service that you want to inject;

• create a class that implements the interface;

• register the class and its dependencies in the container;

• inject the service into the constructor or property of the class that needs it.

63

EF core. Moreover, we managed to choose a framework that allows abstract database man-
agement, integrated with the .NET framework. As such, the choice has been left to the
EF Core. Entity Framework Core (EF Core) is an open source and cross-platform Object-
Relational Mapping (ORM) framework for .NET. In particular, it enables developers to
work with relational data using domain-specific objects, and eliminates the need to write a
lot of low-level data access code.
EF Core provides a set of APIs that allow developers to interact with a database using C#
code, rather than writing raw SQL statements. It automatically generates the necessary SQL
commands based on the C# code and the database schema, and maps the results to the ap-
propriate domain objects.
EF Core also provides a powerful querying capability, allowing developers to use LINQ
(Language-IntegratedQuery) towrite type-safe, composable and expressive queries inC#. It
also supports lazy loading, change tracking, and caching, which makes it easy to work with
large data sets.
EF Core can work with different databases such as Microsoft SQL Server, MySQL, SQLite,
PostgreSQL, and more through different providers, making it versatile and can be used in
different types of project.
One of the key features of EF Core is its flexibility and ability to work with different data
access scenarios. It can be used in server-side applications as well as in client-side applications
(desktop and mobile). It also supports different deployment scenarios, such as on-premises
and cloud-based.

ASP.NET core identity. For identity management, we integrate an existing project, which
is a personalized version of the ASP.NET core identity library. As such, we make use of this
wrapped version and adapt it to our purposes. ASP.NETCore Identity is a membership sys-
tem that allows you to add authentication and authorization functionality to yourASP.NET
Core web application. It provides a set of APIs and services for managing users, roles, and
claims, and is built on top of the ASP.NET Core framework. ASP.NET Core Identity al-
lows you to easily create user accounts and authenticate users in your application. It supports
different types of authentication, including cookies, JWT tokens, and external providers like
Google, Facebook, and Microsoft. It also provides built-in support for two-factor authenti-
cation, password hashing and salting, and account lockout policies. ASP.NETCore Identity
also provides a way to manage users and their roles in your application. Provides a built-in
user store that supports basic user management functionality, such as creating, updating,

64

and deleting users. It also allows you to define and manage roles and assign users to specific
roles. Another important feature of Identity is claims-based authentication, which allows
you to add additional information about a user, such as their name, email, and address, and
use this information to make authorization decisions in your application.
While role management was not part of our scope, claims allow us to save user information
and use it to perform our authentication checks. Moreover, ASP.NET Identity provides a
testable process for implementing email confirmation of an account, which was particularly
useful.

PostgreSQL

For the persistence it was selected PostgreSQL, due to its renown quality, such as stability, ro-
bustness, and feature richness. It is often used for web and enterprise applications, as well as
data warehousing and analytics workloads. PostgreSQL supports a wide range of data types,
including text, numbers, dates, and binary data, and also supports advanced data types such
as arrays, hstore (a key-value store) and JSON. It also supports full-text search and GIS (Ge-
ographic Information System) data types. Additionally, it has a large number of built-in
functions, operators and aggregates. PostgreSQL supports multi-version concurrency con-
trol (MVCC), which allows multiple transactions to access the same data simultaneously
without conflicts. With respect to performance, they have particular impact features such as
point-in-time recovery, hot standby, and logical replication, making them a suitable option
for large-scale, high-availability systems. Moreover, PostgreSQL is known for its robustness
and stability, and it is widely used in production environments, it is also a good option for
large-scale and complex projects, it is supported by many operating systems, and it can be
easily integrated with other software and tools.

Vue.js

The Single Page Application was developed with Vue. Vue.js is an open-source JavaScript
framework for building user interfaces and single-page applications (SPAs). It is known
for its simplicity and ease of use, making it a good choice for developers who are new to
JavaScript frameworks. It uses a template syntax that allows you to declaratively render dy-
namic data into the DOM, making it easy to understand and debug the application. It also
supports a component-based architecture, allowing developers to create reusable and com-
posableUI components. Vue also provides a powerful set of directives and built-in directives

65

that allow you to easily manipulate the DOM, listen to events, and handle form inputs. It
also provides a centralized statemanagement systemcalledVuex, whichmakes it easy to share
data between components and manage the application’s state. Vue is also known for its flex-
ibility and adaptability, it can be easily integrated with other libraries or existing projects,
it also has a large and active community, which provides many resources such as tutorials,
plugins, and packages.

66

6
Evaluation

The analysis and design of the application occupied a lot of time, as such the final
Kerbero implementation was limited to the essential requirements. However, the system
was developed to scale, therefore, the project is open to future improvements.
In this chapter, I will perform an evaluation of the results and givemy opinion on the choices
made during the design of the application.

6.1 Requirements satisfied

During the analysis, we identified few mandatory, but essential requirements. The discrim-
inating factor was the requirements that classify essential and improving features. The fol-
lowing are the ones which were actually implemented in the system. The properties are all
verified by integration and end-to-end tests.

User authentication. The user authentication is the basic way to protect user data and pro-
vide identity for the system; as such, this was an essential requirement for the system. Ker-
bero provides the possibility to sign in, with a classic flow,with the possibility of filling a form
with email and password, and the email confirmation. The login is simple as well; therefore,
the user inserts the email and password, while cookies grant the authentication state for the
entire duration of the session.

67

Key generation and management. Key generation was a priority in Kerbero’s design and
development. The virtual key was actually implemented in the system, as such it is possible
to operate on the following CRUD operations (Create, Read, Update, Delete). Moreover,
the opening and closing of a smart-lockby its identifier froman anonymous endpoint, which
does not require authentication, are available. The latter operation requires a random pass-
word that is created with the key and sent when it is shared.

Generic smart-lock management. The design of generic smart-locks was described in pre-
vious sections. The operations on smart-lock we managed to achieve with Kerbero are the
display of all the smart-locks associated to a Kerbero user account, as such iterating on all the
Provider account available. Moreover, a single smart-lock can be opened and closed remotely
by an authenticated account.

Nuki authentication integration. It is possible to perform all OAuth2 authentication for
the Nuki REST API, giving Kerbero user access to the operations on the Nuki smart-locks
through the provider account. The credentials are persistent, as such the user does need to
perform the authentication once and Kerbero remains linked to the Nuki account unitl the
user decides to remove the integration.

Nuki smart-lock integration. The entire information, coming from Nuki REST API, is
filtered and adapted to the Kerbero use cases. Moreover, Kerbero has a plugin that integrates
the main operations (open and close) of the Nuki smart-lock devices.

6.2 Requirements not satisfied

Some of the expected requirements that we aim to achieve were not implemented. The rea-
sons are different, but it is reasonable to think that they will be implemented in the future.

Integrationwithmore than one provider. Integration ofmore than one smart-lock provider
was a desirable requirement because it can verify the feasibility of a system that acts as a proxy
interface for different REST APIs. A study of a new provider was started on the Kisi prod-
ucts. However, the lack of time and tools changes the priority of this particular requirement.

Integration with a Vacation Rental Management system. The idea of Kerbero starts from
the analysis of howVacationRentalManagement systems, likeAirbnb, canbetter implement

68

remote check-in. However, during the feasibility study, we identified some limitations on
the integration of the APIs of the latter. In fact, all the analyzed platforms do not provide
any public API with which to interface. Access to the actual existing APIs of Airbnb and
Booking, is available only after an explicit request. Wedecided that this feature canbe delayed
after the development of a first version of the application in such a way that we can attach an
example software to the integration request.

6.3 Limitations, future works and improvements

On the current implementation we discover several limitations and defects that can be im-
proved in future versions.
Thefirstwehighlighted is the still presence of coupling between theKerbero andNuki smart-
lock. During the design, there was a focus on generalizing the model and the operation re-
lated to the smart-lock. However, there are still too many references from the Kerbero core
operations to theNuki plugin. This is provoked by a less generic authentication flow, which
couples the Nuki credentials (access token and refresh token) to the user account directly.
We are aware that in this part of the application, a different design pattern can be applied to
reduce dependencies.
Another improvement can bemade in error management, flowing from theWebAPI to the
client. In fact, all the error management has been done manually by the developer, which is
not always a good idea. As such, a better system handled by the framework is desirable, but
the current one does not provide a process that fits our requirements.
Concerning the security and authentication, there is a limitation of the cookies client authen-
tication with the OAuth2 one server-side. In fact, the OAuth2 flow forces the cookie policy
to be Lax, which means that the authentication session is valid for all domains reached by
navigation from the main (which is the Kerbero client domain). As such, this exposes Ker-
bero to a security vulnerability. However, it is possible to create an ad hoc cookiewith claims,
which is lax and can only be used to performOAuth2 authentication. The other cookie can
be set as Strict to fill the security gap.

6.4 Workflow evaluation

Eventually, I want to express an opinion on the workflow adopted during the project. In
particular, the one used by the company in which I collaborate during the development of
the project.

69

The steps, we might have followed in order to address the release of the code, follow this
order:

• the selection of an issue to solve fromGitHub, preceded by the filtering using priority
and affinity with others already in progress;

• the coding of a solution for the previous issue;

• the creation of a commit following the conventional rule;

• if the commit closes a feature, the generation of a Pull Request;

• finally, the reviewing and the merging of the code in the master branch.

The whole process is preceded by a weekly plan of work, through the use of milestones
and the creation of the issues, based on the fixes and features to be done.
I, most of all, appreciate the review system. The creation of a Pull Request forces the devel-
oper to stop developing over the just produced code, and it allows others developers to check
and comment on it. This brings about two clear advantages:

• a constant reviewed code, as such a good level of code quality;

• a positive knowledge transfer from developer to developer inside the team.

The latter grants continuous learning, both from the reviewer side, which can read the
code of others, and from the reviewed one, which must adjust the code based on the com-
ment received. In summary, this method is particularly useful for the knowledge-transfer
process, even without a large documentation layer below.
This workflow can be adopted only in a continuous integration context, in which new fea-
tures are constantly released in the main codebase, with the support of the automatic build
and test system.
This concepts are important to me, because part of my experience was adapting to the com-
pany workflow and developing an infrastructure for my project which grants the previous
assumptions.

70

7
Conclusion

Inconclusion, the implementationof an application formanaging smart-locks andAirbnb
rentals has been shown to be a valuable addition to the current self check-in workflow. The
application can provide a convenient and secure way for Airbnb hosts to manage access to
their properties while also improving the overall guest experience. The use of the smart-lock
technology ensures that access is granted only to authorized individuals and also eliminates
the need for key exchanges, which can be time-consuming and potentially unsafe. Further-
more, the ability of hosts to remotelymonitor andmanage access to their properties through
the application provides added peace of mind. Overall, the implementation of this applica-
tion has been found to be a successful and practical solution for managing smart-lock and
Airbnb rentals. Additionally, integration with Airbnb allows for easy management of mul-
tiple properties and bookings.
One of themost significant benefits of this technology is the convenience it provides for both
hosts and guests. With the ability to remotely control access to the property, hosts no longer
have to worry about coordinating key exchanges and can instead focus on managing their
properties and bookings. Guests also benefit from the convenience of being able to access
their rental at any time, without the need to coordinate key pick-up or drop-off.

Another important benefit is the added security layer provided by using a smart-lock.
With the ability to remotelymonitor access to the property, hosts can ensure that only autho-
rized guests can enter. This added security also provides peace of mind for guests, knowing

71

that their rental is protected and secure.
Integration with Airbnb also allows for the easy management of multiple properties and

bookings. Hosts can now manage all their listings and reservations from one central loca-
tion, saving them time and effort. In addition, guests can easily book and access multiple
properties through the same platform, providing a seamless and convenient experience.

Overall, the implementation of an application managing smart-lock and Airbnb has the
potential to greatly benefit the vacation rental industry. It provides added convenience, secu-
rity, and revenue for hosts, while also improving the customer experience for guests. It is clear
that this technology should be considered for future developments in the vacation rental in-
dustry and could potentially become the new standard for managing vacation rentals.

Eventually, the technologies used in this project shows how it is possible to implement a
robust and secure application. There are, of course, few compromises between usability and
security, which are widely justified. The requirements outlined in the analysis bring to light
the limitation and the strong points. The design of the software is an advanced example of
what technology can do nowadays with less effort in implementation, in order to dedicate
more time to the actual analysis.

72

Glossary

Airbnb is a online vacation rentalmanagement system, that enables people to rent out their
properties or spare rooms to guests. It allows individuals to list their spaces on the
platform andmake them available to travelers looking for short-term lodging. Guests
can search for available listings, view property details, and make reservations directly
with the host. 2, 45, 68

Booking is an online platform that helps people find and book accommodation, transporta-
tion, and other travel-related services. It allows users to search for lodging options,
compare prices, and make reservations with properties around the world. Services
include hotels, vacation rentals, resorts, apartments, hostels and more. 2, 45, 69

Smart home is a residence that uses internet-connected devices to enable the remote con-
trol and automation of appliances and systems, such as lighting, heating, security, and
entertainment. Smart home technology allows homeowners to monitor and control
their home’s functions from a smartphone or other device. 10

Application Programming Interface (API) is a set of rules and protocols that allows dif-
ferent software applications to communicate with each other. It is a way for one ap-
plication to access the functionality of another application or service. 17, 20, 28, 30,
35, 44, 45, 47, 51, 54, 69

Bluetooth Low Energy (BLE) is a variation of the classic Bluetooth technology and oper-
ates in the 2.4GHz ISM band. It is designed to provide a low-cost, low-power and
low-complexity wireless communication solution while maintaining a similar com-
munication range as classic Bluetooth. 15, 24, 26

Extensible Markup Language (XML) is a markup language that is used to store and trans-
port data. It is a way of encoding data in a format that can be easily read and un-
derstood by both humans and machines. XML uses a system of tags to define the
structure and organization of the data. 21

73

HyperText Transfer Protocol (HTTP) is a protocol for sending and receiving data over
the internet. It is the foundation of data communication for the World Wide Web.
HTTP defines how messages are formatted and transmitted, and what actions Web
servers and browsers should take in response to various commands. 15, 19, 30, 54

Institute of Electrical and Electronics Engineers (IEEE) is amembership-basedorganiza-
tion that provides a wide range of services to its members, including publishing aca-
demic journals, organizing conferences and seminars, and developing industry stan-
dards. 12, 13, 24

Internet of Things (IoT) refers to the network of physical devices, vehicles, buildings and
other items embedded with electronics, software, sensors and connectivity which en-
ables these objects to connect and exchange data. This allows for the collection and
sharing of data in real-time, enabling new efficiencies and capabilities in many indus-
tries. 1, 11

Logical Link Control and Adaptation Protocol (L2CAP) is a data link protocol that is
part of the Bluetooth stack, that provides multiplexing, segmentation and reassembly
of packets over the link between the two Bluetooth devices. 12

Near Field Communication (NFC) is a technology that allows twodevices, such as a smart-
phone and a point-of-sale terminal, to communicate with each other when they are
brought within close proximity, typically a few centimeters or inches. 11

Proof of Concept (PoC) is a prototype that is built to test the design or the underlying
technology of a proposed solution, and to determinewhether it can be developed into
a full-fledged product or service. 46

Representational State Transfer (REST) is an architectural style forbuildingweb services.
It is based on a set of principles for creating web services that are lightweight, client-
server based, and stateless. 17, 23, 28, 30, 51, 54

Transmission Control Protocol/Internet Protocol (TCP/IP) is a set of networking pro-
tocols that define the way data is transmitted over the internet and other networks.
12

74

Transport Layer Security (TLS) is a widely-used security protocol for establishing secure
connections betweenweb servers and clients. It is the successor to SSL (Secure Sockets
Layer) and is used to encrypt data sent over a network, such as the internet. 15, 22, 30,
50

Uniform Resource Identifier (URI) is a string of characters used to identify a resource,
such as a web page, an image, or a file, on the internet.. 18

Universal Serial Bus (USB) is a standard type of connector for devices such as computers
and consumer electronics. USB is used to connect devices, as well as to charge and
transfer data between devices. 9

Universal Unique Identifier (UUID) is a 128-bit string that is guaranteed to be unique
across all devices and all time. 26

Wi-Fi Protected Access 2 with Pre-Shared Key (WPA2/PSK) is a security protocol for
wireless networks that uses a pre-shared password, known as the PSK, for authenti-
cation. It is an improvement over the original WPA standard and provides stronger
security by using Advanced Encryption Standard (AES) encryption. 15

World Wide Web (WWW) is a systemof interlinked hypertext documents accessed via the
internet using a web browser. 13, 15

75

76

References

[1] C. Wilson, T. Hargreaves, and R. Hauxwell-Baldwin, “Benefits and risks of smart
home technologies,” Energy Policy, vol. 103, pp. 72–83, 2017.

[2] A. Y. Mulla, J. J. Baviskar, F. S. Kazi, and S. R. Wagh, “Implementation of zig-
bee/802.15.4 in smart grid communication and analysis of power consumption: A
case study,” in 2014 Annual IEEE India Conference (INDICON), 2014, pp. 1–7.

[3] Anon., smart lock market size, share &; trends analysis report by type (deadbolt, lever
handle, padlock), by application (residential, hospitality, enterprise), by region, and seg-
ment forecasts, 2022 - 2030. Grand View Research, 2020. [Online]. Available:
https://www.grandviewresearch.com/industry-analysis/smart-lock-market

[4] C.-Y. Law, K.-O. Goh, W.-S. Ng, C.-Y. Loh, and Y.-W. Sek, “The integration of smart
lock in vacation rental management system,” in 2020 IEEE 20th International Con-
ference on Communication Technology (ICCT), 2020, pp. 846–850.

[5] T. Ikkala and A. Lampinen, “Monetizing network hospitality: Hospitality and
sociability in the context of airbnb,” in Proceedings of the 18th ACM Conference on
Computer Supported CooperativeWork & Social Computing, ser. CSCW ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p. 1033–1044.
[Online]. Available: https://doi.org/10.1145/2675133.2675274

[6] R. Dey, S. Sultana, A. Razi, and P. J. Wisniewski, “Exploring smart home
device use by airbnb hosts,” in Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems, ser. CHI EA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–8. [Online]. Available:
https://doi.org/10.1145/3334480.3382900

[7] Airbnb, “The do’s and don’ts of providing self check-in,” https://www.airbnb.com/
resources/hosting-homes/a/the-dos-and-donts-of-providing-self-check-in-238,
2020.

77

https://www.grandviewresearch.com/industry-analysis/smart-lock-market
https://doi.org/10.1145/2675133.2675274
https://doi.org/10.1145/3334480.3382900
https://www.airbnb.com/resources/hosting-homes/a/the-dos-and-donts-of-providing-self-check-in-238
https://www.airbnb.com/resources/hosting-homes/a/the-dos-and-donts-of-providing-self-check-in-238

[8] Anon., “About us.” [Online]. Available: https://news.airbnb.com/about-us/

[9] M. Umair, M. A. Cheema, O. Cheema, H. Li, and H. Lu, “Impact of covid-
19 on iot adoption in healthcare, smart homes, smart buildings, smart cities,
transportation and industrial iot,” Sensors, vol. 21, no. 11, 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/11/3838

[10] K. Sairam, N. Gunasekaran, and S. Redd, “Bluetooth in wireless communication,”
IEEE CommunicationsMagazine, vol. 40, no. 6, pp. 90–96, 2002.

[11] C.M.Ramya,M. Shanmugaraj, andR. Prabakaran, “Study on zigbee technology,” in
2011 3rd International Conference on Electronics Computer Technology, vol. 6, 2011,
pp. 297–301.

[12] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner, “Smart locks:
Lessons for securing commodity internet of things devices,” in Proceedings of the
11th ACM onAsia Conference on Computer and Communications Security, ser. ASIA
CCS ’16. New York, NY, USA: Association for Computing Machinery, 2016, p.
461–472. [Online]. Available: https://doi.org/10.1145/2897845.2897886

[13] S. Kim, J.-Y. Hong, S. Kim, S.-H. Kim, J.-H. Kim, and J. Chun, “Restful design and
implementation of smart appliances for smart home,” in 2014 IEEE11th Intl Conf on
Ubiquitous Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic
and Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and
Communications and Its AssociatedWorkshops, 2014, pp. 717–722.

[14] A.Zagorac andM.Antić, “Integration of third-party smart locks into the smart home
system,” in 2022 30th Telecommunications Forum (TELFOR), 2022, pp. 1–4.

[15] Jmaxxz, “Backdooring the frontdoor,” 2016. [Online]. Available: https://www.
youtube.com/watch?v=MMB1CkZi6t4

[16] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home
applications,” in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 636–
654.

[17] M. Ye, N. Jiang, H. Yang, and Q. Yan, “Security analysis of internet-of-things: A case
study of august smart lock,” in 2017 IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), 2017, pp. 499–504.

78

https://news.airbnb.com/about-us/
https://www.mdpi.com/1424-8220/21/11/3838
https://doi.org/10.1145/2897845.2897886
https://www.youtube.com/watch?v=MMB1CkZi6t4
https://www.youtube.com/watch?v=MMB1CkZi6t4

[18] K. T’Jonck, B. Pang, H. Hallez, and J. Boydens, “Optimizing the bluetooth low
energy service discovery process,” Sensors, vol. 21, no. 11, 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/11/3812

[19] M. Mikolits, “The nuki encryption concept,” Oct 2015. [Online]. Available:
https://nuki.io/en/blog/nuki-news/nuki-encryption-concept/

[20] D. J. Bernstein, “Salsa20 specification,” eSTREAM Project algorithm description,
http://www. ecrypt. eu. org/stream/salsa20pf. html, 2005.

[21] G. Procter, “A security analysis of the composition of chacha20 and poly1305,”Cryp-
tology ePrint Archive, 2014.

[22] C. Caballero-Gil, R. Álvarez, J.Molina-Gil, andC.Hernández-Goya, “Smart-lock at-
tack through bluetooth communications replication,” in Proceedings of the Interna-
tional Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022),
J. Bravo, S. Ochoa, and J. Favela, Eds. Cham: Springer International Publishing,
2023, pp. 977–982.

[23] P. Chavan, “Nuki web api,” Nuki Home Solutions GmbHMünzgrabenstrasse 92/4,
8010 Graz, Nov. 2021. [Online]. Available: https://developer.nuki.io/page/
nuki-web-api-1-4/3/

[24] ——, “Nuki web api,” Nuki Home Solutions GmbHMünzgrabenstrasse 92/4,
8010 Graz, Feb. 2021. [Online]. Available: https://developer.nuki.io/page/
nuki-web-api-webhooks-11/8/

[25] K. LaCroix, Y. L. Loo, and Y. B. Choi, “Cookies and sessions: A study of what they
are, how they work and how they can be stolen,” in 2017 International Conference on
Software Security and Assurance (ICSSA), 2017, pp. 20–24.

[26] S. Bingler, M. West, and J. Wilander, “Cookies: HTTP State Management
Mechanism,” Internet Engineering Task Force, Internet-Draft draft-ietf-httpbis-
rfc6265bis-11, Nov. 2022, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/draft-ietf-httpbis-rfc6265bis/11/

[27] M. Anicas, “An introduction to oauth 2,” Jul 2014. [Online]. Available: https:
//www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

79

https://www.mdpi.com/1424-8220/21/11/3812
https://nuki.io/en/blog/nuki-news/nuki-encryption-concept/
https://developer.nuki.io/page/nuki-web-api-1-4/3/
https://developer.nuki.io/page/nuki-web-api-1-4/3/
https://developer.nuki.io/page/nuki-web-api-webhooks-11/8/
https://developer.nuki.io/page/nuki-web-api-webhooks-11/8/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/11/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/11/
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

[28] R. C. Martin (Uncle Bob), “The clean architecture,” Aug 2012. [Online]. Available:
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

80

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Acknowledgments

First, I would like to thank my supervisor, Prof. Eleonora Losiouk, who helped me write
this thesis and assisted me during the development of the project.
I alsomust thank Kuama, the hosting company, and the tutor, who gaveme all the tools and
knowledge to implement such a project.
Finally, I would like to thank, my University mate, Alessandro Sgreva, without which I
couldn’t overcomemost of the challengeswe facedduring the courses projects; andmy friends
and family, that supported me during all these years and eventually allows to achieve this im-
portant goal.

81

	Abstract
	List of figures
	List of tables
	Introduction
	Thesis Outline

	The project
	The background
	Smart homes
	Smart-locks
	Smart-lock interfaces
	Smart-locks network design
	Smart-lock application

	Related work
	The RESTful architecture in a smart home system
	Handle a third-party adapter
	Smart-lock vulnerabilities
	Application attacks
	Preventing the attacks

	Nuki study case
	Nuki components
	Nuki smart-lock configurations
	Nuki Bluetooth protocol

	Nuki application
	Security and encryption
	End-to-end encryption
	The challenge on response

	Nuki web API and Webhooks
	Security
	Authentication
	Advanced API integration and webhooks

	Smart vacation rental Nuki solution

	Kerbero
	Requirements analysis
	Actors
	Use cases
	Other diagrams

	Feasibility study
	The vacation rental management integration

	Software design
	Smart-lock keys design
	Smart-lock management
	Application identity management
	Cookies authentication
	OAuth2 authentication flow management
	Error management design

	Project plan
	The Kerbero architecture
	Workflow, versioning and conventions
	The client architecture
	Tests and security
	Technologies and frameworks

	Evaluation
	Requirements satisfied
	Requirements not satisfied
	Limitations, future works and improvements
	Workflow evaluation

	Conclusion
	Glossary
	References
	Acknowledgments

