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Abstract

In the proposed experiment, we want to investigate whether correlations
exist between the conductor gestures while conducting an orchestra, and the
movement responses of people, merely listening to the musical outcome of the
orchestra performance. Additionally, we would like to assess whether people
familiarity with the music contributes to this correlation. The main purpose
of my thesis is to investigate several analysis techniques that one can use to
treat expressive gestures signal.



Introduction

The main task of a music conductor is to temporally coordinate a musi-
cal ensemble performance. Therefore, a conductor typically uses expressive
gestures to inform musicians about his/her musical goals and interpretation.
From the side of the listener, research has demonstrated that listening to mu-
sic induces body movements that convey how people interpret and perceive
musical expressiveness.

The pillar behind this research is the existence of a model of musical

communication (Leman, [1]) in which the transmission of intention is possible
through the encoding and decoding of bio-mechanical energy (the playing of
an instrument).

Figure 1: Scheme of the model of musical communication

• It all starts with the conductor: he/she gives the orchestra instructions
(expressive gestures) to deliver his/her interpretation of the score;

• the orchestra has then to translate these instructions into a musical out-
come (sound) using both the human body and a mediation technology
(musical instrument);

• the instrument transforms part of the bio-mechanical energy into sound
energy and part into haptic energy, that returns through the touch to
the performer (see Fig. 2);
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• for this experiment only the sonic energy is then delivered to the lis-
tener (in fact the participants can't see the conductor or the orchestra
playing);

• through mirror processes, the listener can understand the music inten-
tion although it can be di�erent from the conductor/performers one;

• the understanding is then processed and expressed through movements
(expressive gestures).

Figure 2: Detail of the general model between performer and listener. Figure
from [1].

The aim is �rst to see if there is a connection between the expressive gestures
of the conductor and the ones of the listeners, as they should be an encoding
of the same intention. Then I want to check if familiarity with the music will
modify this correlation. During the experiment there will be in fact a phase
where subjects will learn the music listening to it multiple times. We know
in fact that the repetition of an experience creates a link between it and a
peculiar motor action that leads to a development of an internal model (see
[2]). The hypothesis is in fact that, due to familiarity, expression-responding
gestures will change:

• for excerpt with higher familiarity they will become intention-driven
(listeners movements will come closer to conductors movements), and
have a higher group-commonality;
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• for the others they will be less intention-driven, but higher than in
pre-test.

I will dedicate the �rst Chapter of my thesis to brie�y introduce the
reader to the experiment we performed: the equipment, the participants and
the music stimuli (Chapter 1).

I have then divided the rest into two main parts. Part I is dedicated
to the pre-processing that is a sort of data manipulation that is required
before starting the analysis: in particular I will treat the inconvenience of
the �False-values� in Chapter 2 and the necessity of a preliminary smoothing
in Chapter 3. Finally in Chapter 4 I will explain how to obtain the useful
signals of speed and acceleration from the raw data.

Part II instead, will treat the main argument of my thesis that is the
analysis. First, in Chapter 5, I will talk about the Functional Principal
Component analysis, both on a theoretic level and on a more practical one:
I will do a brief description of the principal components of the data and then
I will use the results to compare participants and conductors.

In Chapter 6 I will look directly at the plots of the data and I will deduce
interesting conclusions on the in�uence of familiarity both on the amplitude
of the movement and on the concept of anticipation.

I will talk about the correlation analysis in Chapter 7 where I will treat
both the intra-group correlation and the one with the conductor.

Finally in Chapter 8, I will introduce brie�y the possibility of using Mu-
tual Information to check for correspondences between the signals.

At the very end of my thesis I will try to deduce some �nal conclusions
of my work, underlying some problems and some suggestions for a further
analysis.



1. Procedure and stimuli

The experiment is set in a circular environment where a Motion Capture
system is in action at sampling frequency of 100Hz. Each participant is
seated on a high chair, that recalls the position of the actual conductor, for
the whole duration of the tasks and he/she has to wear some markers: on
both hands, on the back and on the head (see Fig. 1.1).

(a) (b)

Figure 1.1: Position of the markers on the head and on the back (a) and on
both hands (b).

The stimuli chosen are three excerpts from the opera �Don Pasquale� of
Gaetano Donizetti performed by two di�erent conductors (Fig. 1.2): Ric-
cardo Muti (M1, M2 and M3) and Carla Del Frate (DF1, DF2 and DF3).

4
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The peculiar excerpts are chosen for practical reasons in addition to analysis
ones:

• �rstly it is necessary to pick segments for which the conductor move-
ments (acquired through motion capture system in a previous time)
don't have missing values;

• lastly there have to be some important di�erences between the two
executions of the same excerpt and possibly some di�erences in style
in the excerpt itself.

Figure 1.2: Amplitude plots of the three excerpts executed by the two con-
ductors. The beginning of the bars are highlighted.

As we can see in Figure 1.2, there are some di�erences between the two
executions especially in timing: for excerpts 1 and 2 the Muti signal has
some delay in respect to the Del Frate one, while for excerpt 3 it happens the
contrary. The black vertical lines represent the beginning of the measures
and one can see that, while they start together (Muti and Del Frate), towards
the end they are slightly out-of-sync. Furthermore one can see that, while
excerpt 1 has quite a fast tempo (the distance between the bars is really
small), excerpt 2 and 3 are slower and, in particular, one can notice that in
excerpt 2 there is an increase of the tempo towards the end as the bars get
more crammed.

For what concerns the magnitude of the amplitude, the di�erences are
less visible. As I have highlighted in Figure 1.3, for excerpts 1 and 2 there
is a moment in time when the Del Frate segment is quite evidently over
the Muti one; however for excerpt 3 one can notice some more interesting
discrepancies. In the central part of the signal it is evident that there are
three repetitions of the same melody with di�erent intensities: while for the
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Del Frate excerpt(blue curve) there is a crescendo in the amplitude, for the
Muti excerpt (red curve) there is an increase between the �rst and second
repetition but then the intensity remains the same.

Figure 1.3: Envelope of the magnitude of the music excerpts: comparison
between Muti and Del Frate

The group of participants is formed by 32 people, half female and half
male, of age between 18 and 35 years and with some formal musical back-
ground, because they have a stronger auditory-motor couplings. Before the
beginning of the experiment they are sorted into two gender-balanced groups
of 16 people and, to each group, one of the two conductors was assigned:
therefore we have the �Muti Group� and the �Del Frate Group�. The di�er-
ence between the two groups lays on the di�erent training they get as I will
now explain.
In fact the experiment consists mainly of three parts (Fig. 1.4):

1. pre-test;

2. training phase;

3. post-test.

For each part the participants have to do the same task:

To move along the music with hands and arms acting like they

were the conductor, not using technical gestures or instructions

but expressing the general feeling.

Pre-test

In this �rst part each participant has to move along all six excerpts one
time. The movements are recorded using the optical motion-capture system.
The lights are o� so that the participants can feel more comfortable and less
embarrassed in their movements.



7

Training phase

The aim of the training phase is for the participants to become familiar
with the three excerpts corresponding to the one particular conductor their
group is assigned. Participants are informed about this goal, but they don't
know about the two di�erent conductors. For that purpose, we instruct
participants to listen and move in response to the excerpts. This is similar
to the previous phase, although only excerpts of one conductor are used and
the movements are not recorded. Each excerpt is repeated four times in
total: this number has been chosen because the subjects have to listen to the
excerpt a su�cient number of times to learn it, without being so tired for
the post-test that it in�uences their movements. Afterwards, all excerpts are
played twice more, and participants are asked to merely listen to the music,
without performing movements so that they can be more concentrated on
the music itself than on the gestures. For this part the lights are on but dim.

Post-test

In this third part participants are asked again to move along the music as in
the pre-test: all six excerpts from both the conductors are played once. The
lights are o� again.

Figure 1.4: Scheme of the experiment



Part I

Pre-processing
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2. �False-values� and interpolation

Once the experiment is completed for all the participants I have to deal
with a huge amount of data: in fact the Motion Capture system produces a
positional signal that is a 3D position versus time signal. Therefore for every
person (32 in total) there is one 3D-signal for each marker (12 in total) for
each excerpt (12 in total).

The system is set up in such a way that a sync signal is recorded as soon
as the music starts so that I can be sure that all signals of all participants
are synchronized. From the sync signal (Fig. 2.1) I have extracted the exact
beginning of the music in term of samples and I can take out the part of the
movement signal corresponding to the musical excerpt.

Figure 2.1: Example of sync signal

Once I have the movement signal of the same length as the musical excerpt
and synchronized, a new problem is presented: in fact, during the acquisition
of the data, some technical problems seem to have occurred and the signals
present some �jumps� as one can see in Figure 2.2.

9
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Figure 2.2: Example of �false value�.

These values deviate too much from the signal and appear as disconti-
nuities: because I am dealing with human movement and because the signal
represents position (hence it should be continuous), I can consider them
errors. I have decided to treat them as missing values (NaN) and then inter-
polate over these gaps to obtain a whole signal.

Because they seem to appear randomly in the signal, to �nd them I
proceed as follows (see Listing 2.1):

• I �x a threshold as a percentage of the standard deviation of the signal,
depending on the marker (the hands have more variation in respect to
the head or the back).

• I set the �rst non-NaN value of the signal as reference value.

• I compare it with the next value:

� if their di�erence is under the threshold, the sample is okay and
it is set as the new reference value,

� otherwise it is marked as �false value� and substituted with NaN:
the reference value isn't changed.

f o r k=1:3
r e f e r e n c e ( k ) = data ( f i n d (~ i s n an ( data ( : , k ) ) , 1 , ' f i r s t ' ) , k ) ;
%i n i t i a l i z a t i o n o f r e f e r e n c e v a l u e = f i r s t
%non−NaN va l u e o f s i g n a l
f o r i =1: l e n g t h ( data )

i f abs ( data ( i , k)− r e f e r e n c e ( k ) ) <= par ∗dev_st ( k )
%i f the d i f f e r e n c e wi th the r e f
%value i s under the t h r e s h o l d new
%r e f value i s s e t and the sample
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%i s okay : no f a l s e −value
r e f e r e n c e ( k ) = data ( i , k ) ;
temp ( i , k ) = data ( i , k ) ;

e l s e
%o t h e rw i s e the r e f value does not
%change and a NaN i s put i n s t e a d
%of the f a l s e −value
temp ( i , k ) = NaN ;

end
end

Listing 2.1: Code for �nding the �false values�

After I found all the �false values� and I put NaNs in their place, I need to
interpolate over the new missing values because my analysis techniques don't
behave well with NaNs.

Because interpolation doesn't work if NaNs are at the beginning or at the
end of the signal, I decide to run the algorithm only from the �rst until the last
non-NaN value. By doing this I don't loose any information because anyway
I should have discarded the beginning and the end of the signal. In fact in
those parts the movements of the participants are not exactly expressive as
people are just beginning to move or they sense that the music is ending and
they stop moving earlier. I will take this aspect into account when I do the
analysis.

I choose to use a cubic spline interpolation to gain in precision without
losing too much in complexity: for precaution I set the limit of the gap
that can be interpolated at 70 samples (0,7 seconds) because if I attempt
to reconstruct a bigger interval I would be facing some lack of precision in
respect to the original movement.

For the analysis I need only one signal for each
body part, so I calculate the barycenter between
the three markers as the mean of each dimension.

position(t) =
(
s1,x(t)+s2,x(t)+s3,x(t)

3
,

s1,y(t)+s2,y(t)+s3,y(t)

3
,

s1,z(t)+s2,z(t)+s3,z(t)

3

)



3. Smoothing

Because all the experiments were executed in a long span of time, I can't
be sure that the noise conditions are the same for all participants and for
all excerpts. Inspired by the work of Desmet et al. in [3], I proceed to do a
preparatory smoothing on the positional data.

My idea, not having at disposal the noise of the system, is to bring all the
signals to the same noise level. Therefore I proceed as follows, considering
only one dimension:

• First I use a Moving average �lter on the signals cycling on the size of
the window (considering only odd numbers as I use a central window).

• Then I subtract the smoothed signal from the original one, obtaining
a sort of noise.

n(win) = sig − sigsmooth(win)

• I model it as a Gaussian random variable an then I extract the standard
deviation.

Figure 3.1: Example of noise with window size of 5 samples

• Lastly I plot for each excerpt the standard deviation of the noise varying
in respect to the window of the smoothing �lter for all participants (see
Fig. 3.2).

12
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Figure 3.2: Standard deviation vs window size curves

For each participant I choose the window size that produces a standard de-
viation of the noise equal to 3, that is the lowest possible applicable to all
participants and all excerpts (Fig. 3.3). Once decided the windows sizes,
I apply the corresponding Moving Average �lters to the positional data. I
choose a version of the �lter that behaves well with NaNs and that preserves
the extremes.

Figure 3.3: Standard deviation vs window size curves

I use the same method both for the listeners and the conductors data: at
this point I can �nally calculate speed and acceleration that I will use in my
analysis.



4. Speed and acceleration

With the 3D positional data at disposal, I can �nally build the speed and ac-
celeration signals that will be used in the analysis. To perform the derivative
I use the second order Savitzky-Golay �lter on each dimension of the posi-
tional data: I then obtain the speed signal by calculating the norm among
the three axes.

speedx = filter(sigx); speedy = filter(sigy); speedz = filter(sigz)

speed(t) =
√
speed2x(t) + speed2y(t) + speed2z(t)

The �lter has 36 taps that correspond with a delay of 0.175 seconds: this
parameter is decided, as explained by Amelynck in [4], by inspecting partic-
ipants movements.
As shown in Figure 4.1 the useful fre-
quency band of the listeners movements is
approximately 0 − 4Hz that corresponds
with the regression window of 0.175 sec-
onds of the �lter. The number of taps
used is then calculated using the following
equation and solving for N (considering
Fs = 100Hz and delay = 0.175s):

N − 1

2Fs
= delay

Figure 4.1: Spectrogram

14



15

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Example of speed plots for participant 23: (a), (c) and (e) rep-
resent excerpt DF1, DF2 and DF3; (b), (d) and (f) represent M1, M2 and
M3.
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I obtain signals as illustrated in Figure 4.2.
When the analysis requires a direct confrontation between participant and
conductor movement I have to solve a practical problem: in fact having at
disposal also the video of the conductors, I could notice that not all their
movements are expressive or related to the act of conducting at all.

(a) (b)

Figure 4.3: Non-expressive gestures

The real issue is that the �bad movement� happens with the wand for
Muti and with the hand for Del Frate. For this reason I have decided to use
shorter segments of the excerpts: starting from the same bar (see Fig. 1.2), I
take only 2000 samples (20 seconds) that contain only expressive movements.
The starting point is decided upon visual inspection on the music excerpt:
I have tried to choose segments that contain the most di�erences possible
between the two executions.

Samples

Excerpt Starting bar Del Frate Muti

1 5 1945 2090

2 10 3985 4115

3 2 1235 1175

Table 4.1: Choices of starting points

For some applications I will need a rougher representation of the signal,
that are only the main features of the movement. For this reason I calculate
also the envelope of the signal using again a Moving Average �lter with a
window size of 250 samples (approximately the length of a bar) and of 500
samples (see Fig. 4.4).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Example of speed envelopes for participant 11: (a), (c) and (e)
represent excerpt DF1, DF2 and DF3; (b), (d) and (f) represent M1, M2 and
M3.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Example of acceleration for participant 6: (a), (c) and (e) rep-
resent excerpt DF1, DF2 and DF3; (b), (d) and (f) represent M1, M2 and
M3.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Example of acceleration magnitude for participant 10: (a), (c)
and (e) represent excerpt DF1, DF2 and DF3; (b), (d) and (f) represent M1,
M2 and M3.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Example of acceleration magnitude envelopes for participant 5:
(a), (c) and (e) represent excerpt DF1, DF2 and DF3; (b), (d) and (f) rep-
resent M1, M2 and M3.
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To obtain the acceleration signal, I �lter the speed signal again with the same
derivative �lter (Savitsky-Golay) and then I take the absolute value to have
its magnitude (see Fig. 4.6 and 4.5). With the same procedure as the speed I
calculate also the acceleration magnitude envelope with the Moving Average
�lter (see Fig. 4.7).

Another important step to consider before starting the analysis is to check
the signals for normality. For the acceleration e.g., if we look at the histogram
or we compare the data with the CDF of a normal r.v. we can see that we
don't have a correspondence. As suggested by Desmet in [3], I proceed with
taking the square root of the magnitude (Fig. 4.8).

(a) (b)

(c) (d)

Figure 4.8: Histogram and CDF before (a-b) and after (c-d) taking the square
root of the acceleration magnitude

For the speed envelope in particular we can follow the procedure of Ame-
lynck in [4]: by �tting a Weibull distribution I can assert that the best
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approximation (see parameters from [5]) is a log-normal distribution. For
this reason I will use the log-envelope of the speed.

β

Excerpt Muti Del Frate

1 2.8062 2.6542

2 1.7619 1.6112

3 1.4237 1.7939

Table 4.2: β paramenter of the Weibull distribution for all excerpts



Part II

Analysis
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5. Functional Principal

Components Analysis

Theoretic background

Principal Components Analysis (PCA) is widely used in data analysis since
it allows to reshape a potentially in�nite dimensional problem to a �nite one.
In the traditional approach a �nite dimensional parametric model is used,
but if the data are functional a more ad hoc methodology is needed. My goal
is to show the modes of variation of the data and this is achievable through
the study of the eigenfunction associated with each eigenvalue. We know
in fact that the eigenvalues of the bivariate variance-covariance function are
indicators of the importance of the principal components: in other words,
by observing the eigenvalues, we can determine how many components are
required to have a quality representation of the data. The use of the covari-
ance function (5.1) instead of the correlation function is explained by the fact
that, when data are functional, values of the observations xi(s) and xi(t), at
di�erent times s and t, have the same origin and scale.

ν(s, t) =
1

N − 1

∑
i

[xi(s)− x̄(s)] [xi(t)− x̄(t)] (5.1)

where N is the number of observations and x̄(k) is the mean value at time k
among all of them.

My aim is thus to �nd a weight function ξ that maximize the variation
of the probe scores ρξ (5.2)

ρξ(xi) =

∫
ξ(t)xi(t)dt (5.2)

under the restriction that
∫
ξ2(t)dt = 1. In other words we want to calculate
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the variance µ as

µ = max

{
V ar

[∫
ξ(t)(xi(t)− x̄(t))2dt

]}
(5.3)

= max
ξ

{∑
i

ρ2ξ(xi)

}
subject to

∫
ξ2(t)dt = 1

where the mean has been removed because it is a well-known variation shared
by most of the observations. Because the probe ρξ, being a variably weighted
linear combination of function values, is a tool for highlighting speci�c varia-
tion, by maximizing its variance, we want in some way to isolate some trends.
We call µ and ξ the largest eigenvalue and eigenfunction.

It is important to notice that in functional data the number of values
n is usually much greater than the number of observations N : this implies
that the maximum number of non-zero eigenvalues is min{N − 1, n} and in
most of the cases this is N − 1. So for each choice of ` ∈ [1, N − 1] the
` principal eigenfunctions de�ne an orthogonal basis system ξ` that can be
used to approximate the sample function xi. An important characteristic of
the basis ξ` is that it is the most e�cient possible among the bases of size
` in the sense that the total error sum of squares is the minimum possible
(5.4).

` = argmin

{
N∑
i

∫
[xi(t)− x̄(t)− c′iξ`(t)]

2dt

}
(5.4)

The number of ` bases that have to be used is decided upon a visual
inspection of a plot of the eigenvalues µj versus the indices j: the optimal
total square error is in fact equal to the sum of the discarded eigenvalues. We
will therefore choose the number of bases ` equal to the index that minimizes
the sum (5.5). This kind of plot is usually referred as scree plot.

` = argmin

{
N−1∑
j=`+1

µj

}
(5.5)

The coe�cient vector ci in (5.4) describes the optimal �t to each function
xi and its elements are called principal components scores : we will use them
to interpret the variation identi�ed by the PCA.

cij = ρξj(xi − x̄) =

∫
ξj [xi(t)− x̄(t)] dt (5.6)
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Application

Practically, what I'm trying to do, is express each subject signal (square
root of acceleration magnitude) as a sum of �xed functions. To perform the
analysis I use the FDA Matlab Toolbox of Ramsay (see [6] and [7]).

f̃(t) = f̄(t) +
∑̀
k=1

cikξk(t) (5.7)

where

• f̃(t)→ is the performance of each subject (i = 1, ..., 32)

• f̄(t)→ is the mean performance among all participants (commonality)

• `→ is the number of eigenfunctions chosen

• cik → component scores, factor that weights the eigenfunctions
(individuality)

• ξk(t)→ eigenfunctions (commonality)

Figure 5.1: MSE plot

The number of basis-functions used is determined upon inspection of plots
as Figure 5.1: here it is presented the variation of the MSE error (confronta-
tion between original signal and approximated one) with the increasing of the
number of basis-functions. Looking at all the possibilities, 60 basis-functions
are a good trade-o�; but working with less functions could reduce the com-
putational costs (calculating eigenfunctions has a complexity of O(K2) with
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K the number of functions): for this reason I choose to calculate the num-
ber of eigenfunctions K that explain at least 70% of variability among the
participants (see Fig. 5.2).
For my experiment I veri�ed that for all excerpts 3 eigenfunctions are always
enough to cover at least this percentage of variability and in most of the cases
this is around 80− 90%.

Figure 5.2: Example for excerpt M2 of variability covered with 3 eigenfunc-
tions

The analysis is performed distinctly for each excerpt (pre- and post-test)
and for all the participants together. In Figures 5.3-5.8 the eigenfunctions
are presented as variation in respect to the mean (blue curve): the red and
the green curves represent plus and minus the largest eigenvalue among all
subjects. The gap between red and green curve is proportional to the amount
of variance explained. At the end of the analysis each participant is repre-
sented by a vector containing the component scores and this, together with
the set of eigenfunctions, is enough to identify his/her movement.

Excerpt 1 (Fig. 5.3-5.4)

For both tests the �rst eigenfunction covers most of the variability in the
whole segment (we can see that the curves never intersect): in particular for
the post-test the only �rst eigenfunction would be enough (more than 70%
of variability). This can be explained by the fact that the movement of the
group tends to have the same shape, di�ering only in amplitude.

It's interesting to notice that both for the Muti and the Del Frate seg-
ments, in the second eigenfunction the excerpt is split in half: in the �rst
part the green curve is above the red one and in the second half the opposite.
The subjects that have an high coe�cient for this eigenfunction will have a
movement higher than the average for the �rst part and lower for the second.
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Excerpt 2 (Fig. 5.5-5.6)

Also for the second excerpt we can see that the variability explained increases
between pre- and post-test, especially the one relative to the �rst eigenfunc-
tion: for both excerpts in the post-test the �rst eigenfunction explains the
variability of the whole segment (the curves do not intersect), meaning that
all the participants tend to move in the same way.

In the post-test one eigenfunction already covers more than 70% of vari-
ability: while in the pre-test the third eigenfunction contains important and
meaningful parts of the movement, in the post-test it is responsible only of
small details (small gap between green and red curve).

Excerpt 3 (Fig. 5.7-5.8)

For the third excerpt this behavior is less visible: while in the post-test
the curves do not intersect, however the variability seems to diminish. It is
therefore interesting in this case to perform the analysis distinctly for the
two training groups (see Fig. 5.9): for the trained excerpts the variability
increases in both cases but we need two or all three eigenfunctions to reach
the desired variability covered.
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Figures

(a)

(b)

Figure 5.3: First three eigefunctions : excerpt DF1 pre-test (a) and post-test
(b)
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(a)

(b)

Figure 5.4: First three eigefunctions: excerpt M1 pre-test (a) and post-test
(b)
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(a)

(b)

Figure 5.5: First three eigefunctions: excerpt DF2 pre-test (a) and post-test
(b)
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(a)

(b)

Figure 5.6: First three eigefunctions: excerpt M2 pre-test (a) and post-test
(b)
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(a)

(b)

Figure 5.7: First three eigefunctions: excerpt DF3 pre-test (a) and post-test
(b)
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(a)

(b)

Figure 5.8: First three eigefunctions: excerpt M3 pre-test (a) and post-test
(b)
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(a)

(b)

Figure 5.9: First three eigefunctions of Del Frate training group excerpt DF3
post-test (a) and Muti training group excerpt M3 post-test (b)
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Conductors movements

To compare the conductors movement with the participants ones it is neces-
sary to have also for the conductor a vector of component scores derived from
the same set of eigenfunctions. For this reason I have decided to implement
Least Mean Square (LMS) algorithm (Listing 5.1).

i t e r =1e4 ;
C=z e r o s ( i t e r , l e n g t h ( e i g f t o s how ) ) ;
mu=0.001;
%x=e i g e n f u n c t i o n s
%fun=o r i g i n a l conduc to r s i g n a l ( w i thout mean )
f o r n=1: i t e r

y=C(n , : ) ∗ x ;
e r=fun−y ;
C( n+1 ,:)=C(n , : )+ (mu∗ e r ∗ con j ( x ) . ' ) ;

e r r ( n)=mean ( e r . ^ 2 ) ;

end

Listing 5.1: Code for LMS

As we can see from Figure 5.10 both the coe�cients and the error converge
quite fast but it is evident that the error remains too high. If we have a look
at the reconstructed signal (Fig. 5.11) we can see that three eigenfunctions
don't express even the main features of the movement: this can tell us already
that the participant movements and the conductor ones are totally di�erent
and we need a more indirect method to confront them.

(a) (b)

Figure 5.10: Convergence of coe�cients (a) and error (b) during LMS algo-
rithm
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Figure 5.11: Original VS approximated conductor signal with 3 eigenfunc-
tions

One important thing to notice at this point is that, while 3 eigenfunctions
are enough to describe all the variability among the participants, we need
more of them to be able to reconstruct the conductor signal. Trying with 16
eigenfunctions the di�erences are notable (see Fig. 5.12).

Figure 5.12: Original VS approximated conductor signal with 16 eigenfunc-
tions

Because the conductor signal is derived from the participants movement, I
try now to check the variation of the MSE (between approximated conductor
signal and original one) with the increasing of the number of eigenfunctions
used, setting up the analysis separately for the two training groups. For
example for excerpt 1 in Figure 5.13, we can observe that while for the trained
segment I have a reduction of the error between pre- and post-test, for the
untrained one there is an increase. It seems that the training had a positive
in�uence on the trained segments but a negative one on the untrained.
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(a) (b)

(c) (d)

Figure 5.13: Plots of MSE varying the number of eigenfunctions



6. Direct inspection

While for the PCA analysis I used the acceleration signal, I want now to
inspect the speed of the participants: in particular I will use the mean speed
among all the participants. As it is evident in the example of Figure 6.1,
the speed envelope of the subjects has almost the same shape as the music
amplitude except for a scaling value.

Figure 6.1: Example of confrontation between log of music amplitude mag-
nitude (left) and log of speed envelope (right).

For this reason I tried to look directly at the plots of the speed envelope
signals trying to �nd any correspondence with the music amplitude. The
most interesting excerpt is the third one, that is the one with the most
di�erences between the two executions. In fact as I explained in Chapter 1
(pg. 6), beside the tempo di�erences, this excerpt has also a discrepancy in
the amplitude. I want to see if I can �nd this trend also in the movement.
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(a) (b)

(c) (d)

Figure 6.2: Plots of speed envelope signals in pre- and post-test for excerpt
3: (a)-(b) Muti training group and (c)-(d) Del Frate training group.

As we recall from Figure 1.3 the repetitions in the Del Frate excerpt have
an increasing trend in amplitude, while the ones in the Muti excerpt have
a more �at one. Now we can �nd this behavior again in the participants
movements (Figure 6.2): for the Muti training group e.g., the �at trend,
typical of excerpt M3, is not only present in the speed signal relative to this
excerpt, but also in the DF3 one. In the same way the increasing trend of
DF3 is mantained from the Del Frate training group both on the trained
excerpt and on the un-trained one.

This is a further proof that the training, despite what was my original
hypothesis, in�uences also the un-trained segments, even if in a �negative�
way.
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Another interesting feature we can notice not only for excerpt 3 in Figure
6.2 but also for excerpt 2 (see Fig. 6.3) is the phenomenon of anticipation
due to the learning (see [8] and [9]). As we can see, the red curves (relative to
the post-test) are always skewed to the left in respect to the blue ones (pre-
test): that is because knowing the music, participants tend to anticipate
their movements remembering in some way what it is to come. Because they
expect the upcoming event they react more quickly: in fact we can see that
this anticipation e�ect is more prominent during �important� events in the
music, that is for example big changes on speed.

(a) (b)

Figure 6.3: Example of anticipation in trained excerpt: M2 (a) and DF2 (b).



7. Correlation analysis

Another interesting way to treat the data is to look at the correlation among
participants belonging to the same group, between participants speed move-
ments and music amplitude and between participants and conductors accel-
eration movements.

Figure 7.1 is an example of correlation between the movement of partici-
pants, that is how each sample of all participants correlates with every other
sample. If I have a matrix with the various samples on the columns and the
various participants on the rows, I am calculating the correlation between
each pair of columns of this matrix.

xp1(1) · · · xp1(t) · · · xp1(Nsam)
...

. . .
...

xpk(1) xpk(t) xpk(Nsam)
...

. . .
...

xpNp
(1) · · · xpNp

(t) · · · xpNp
(Nsam)


One can see that after the training, the correlation among the participants
changes:

• for the Del Frate training group the correlation seems to decrease but
there are more de�ned coherence intervals (the high correlation squares
on the diagonal);

• for the Muti training group the correlation gets really higher everywhere
but still one can identify the same coherence intervals.
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(a)

(b) (c)

Figure 7.1: Correlation intra-group: pre-test (a), post-test Muti training
group (b) and post-test Del Frate training group (c) for excerpt M1. Corre-
lations values are from -1 (blue) to 1 (red).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.2: Correlation between log speed envelope and music amplitude for
excerpt DF1 [(a)-(b)], M1 [(c)-(d)], DF3 [(e)-(f)] and M3 [(g)-(h)]. Pre-test
plots are on the left and post-test on the right.
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Figure 7.2 shows some examples of the correlation between speed envelope
of participants and music excerpts: doing the direct analysis in Chapter 6
in fact I noticed that the speed-movement was very similar in shape to the
music amplitude and for this reason I think that it can be interesting to try
to confront them.

To perform this analysis �rst I calculate the mean performance (speed
envelope signal) within one training group by taking the mean among sub-
jects for each time sample; then I proceed on doing the correlation (Pearson
Linear correlation) between the mean performance and the music amplitude
(blue blocks, 1 for Muti training group and 2 for Del Frate's) and between
the single participants and the music (red stars). Highlighted in green is the
mean of the correlations of the single subjects.

The �rst interesting thing to notice is that there are cases where the
correlation between the mean performance and the music is higher than any
other correlation of one single participant (in Figure 7.2 it happens when
the blue block is higher than any red star): in other words the mean speed
among all subjects in the group can perform better (in term of correlation)
than the members of the group themselves.

Furthermore, while for trained excerpt the correlation increases after the
training, in some cases it decreases for non-trained one as for example for
excerpt M3 and DF3 (Figure 7.2 (e)-(f)):

• for the Muti excerpt we have that for the Muti training group the
correlation goes from 0.796 to 0.867 while for the Del Frate training
group from 0.803 to 0.754;

• in the same way for the Del Frate excerpt it goes from 0.708 to 0.865
for the Del Frate training group and from 0.833 to 0.777 for the Muti
training group.

It seems that training has a sort of negative e�ect on the untrained excerpt
beside the obvious improvement on the trained ones. Because the music is
almost the same, subjects tend to concentrate on the known melody more
than on the di�erent tempo. The fact that also for the pre-test the correlation
is quite high, proves that subjects movement wants to reproduce the music
amplitude.

In Figure 7.3 there are the plots of the correlation performed between
participants and conductors acceleration magnitude envelope. In this case
I used the Kendall correlation that is a type of non-linear correlation that
checks the concordance in the variations of the signal. In other words, be-
ing x1, ....., xN the samples of the mean performance among the group and
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y1, ..., yN the samples of the conductor movement, one can de�ne the corre-
lation coe�cient τ as

τ =
number of concordant pairs− number of discordant pairs

number of pairs

where a pair (xi, yi) is called concordant if ∀ j the pair (xj, yj) has to meet
one of the following criteria:

{xi > xj & yi > yj}
∧
{xi < xj & yi < yj}

All other possibilities lead to a discordant pair.
Despite the fact that the correlation is generally lower than the one in

Figure 7.2, one can notice the same behavior as before: values increasing for
trained excerpts and decreasing for non trained ones.

While for the music amplitude the correlation was high for all excerpts,
in this case we have a distinction: in fact it is quite low for excerpt 1 (even
negative in the pre-test) that has a faster tempo and slightly higher for
excerpt 2 that has a slower tempo.

(a) (b)

(c) (d)

Figure 7.3: Correlation between acceleration magnitude envelope of partic-
ipants and of conductor for excerpt M1 [(a)-(b)] and M1 [(c)-(d)]. Pre-test
plots are on the left and post-test on the right.



8. Mutual Information

Another possible way to check for correspondences between participants and
conductors movements (in particular acceleration) is to treat the signals as
random variables and look at their mutual information (see [10] and [11]).
From Shannon's de�nition we have

I(X;Y ) = H(X) +H(Y )−H(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)

where X and Y are random variables, p(x, y) is the joint probability density
function, p(x) and p(y) are the marginal probability density functions for X
and Y and H(·) is the entropy.

From mutual information and entropy we can obtain a distance measure
that allows to put into one number the di�erences between conductor and
participants gestures.

D(X, Y ) = 1− I(X;Y )

max{H(X), H(Y )}

where we can consider X as the mean acceleration envelope among all par-
ticipants and Y the acceleration envelope of the conductor.

The results, particularly for excerpt 3, are what we expect as one can see
in Figure 8.1 where the di�erence between distance conductor-participants
in post- and in pre-test is plotted: the negative value means an improvement
(distance getting lower thus signals getting closer) while a positive value is a
worsening.
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(a) (b)

Figure 8.1: Mutual information based distance measure for excerpt DF3 (a)
and M3 (b).

As we can see for the trained excerpts the di�erence between distances
before and after the training is negative (thus the participants are closer to
the conductor), while for the untrained ones is positive: this, even if it is
just the introduction of a possible analysis, it is in line with the previous
conclusions.



Conclusions
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Conclusions and further

investigations

The aim of my thesis was to show some analysis techniques useful when one
is dealing with expressive gestures, in this case movements that mirror how
listeners perceive the music.

My work was focused on proving two main points:

• �rstly that, following the model of musical communication (Leman,
[1]), the listeners movements are similar to the conductor ones because
they should be the expression of the same intention;

• secondly, that familiarity with the music increases the correlation.

As we recall from the analysis (especially from Chapters 6 and 7), listeners
gestures (in particular speed) are almost a precise replica of the music am-
plitude: even after the training, their movements are guided by the intensity
of the music and the conductor intention is quite lost. With this analy-
sis we have seen that correlation between participant and conductor exists:
therefore some information encoded by the conductor in his/her gestures and
conveyed by the orchestra through the music, was correctly received and �re-
encoded� in gestures by the listeners. This correlation is however generally
lower than the one between participants and music amplitude: it did increase
with the training but surprisingly this is not a general statement.

From the direct inspection in Chapters 6 we found that some features
of the movements, derived from the characteristics of the trained excerpts,
remain also in the gestures performed during the un-trained one: in this case
training did not increase the correlation. This phenomenon on the speed was
also found in the comparison between conductor and participants movements
in the correlation and mutual information analysis (Chapter 7 and 8): in fact
for some excerpts (the un-trained case) there was a reduction of the values
in the post-test, sign that in some way training contributed to �distance�
conductor and listeners.
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A possible continuation to the research would be in my opinion to repeat
the experiment by adding also the visual stimulation during the training: in
other words to let participants look at the conductors while conducting, so
that maybe some more information concerning the intention can be retrieved.

Another aspect to take into account is the choice of the musical excerpt:
for them to be meaningful there should have been in my opinion a stronger
di�erence between the two executions, given that I obtained the most in-
teresting results with excerpt 3 that was the one with both amplitude and
tempo di�erences.

More research can be done on this topic by focusing on the analysis point
of view but I think that my work, even if it has only scratched the surface
of the argument, can be a well-rounded overview and an interesting starting
point.
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