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Chapter 1 

INTRODUCTION 

 

Concrete is certainly the most used and important construction material of this era, 

but even some mathematical models of it exist in specialist literature, this model 

can’t  represent, with precision, the particular material characteristics under all 

loading conditions. The principal fault is the limited knowledge towards calibration 

and validation requirements and the availability of complete methods. Another 

problem for the progress in this area is the computational cost, the difficultly to 

solve the nonlinear systems, and the scarcity of comprehensive experimental data 

sets. 
The Experimental database used in this work, was done to promote the study about 

concrete models by providing an overview of required tests and data preparation 

techniques and making a comprehensive set of concrete test data, cast from the same 

batch, available for a model development, calibration and validation. 

In recent years many new construction materials have been created, these have novel 

properties, like strengths of up to 200 Mpa, superior rheology, or increased 

ductility .There are, for example fiber reinforced concretes (FRC), ultra-high 

performance concretes (UHPC) , sefl consolidating concretes (SCC) and engineered 

cementitious composites (ECC) . The main difficulty for a spread of these novel 

materials is a scarcity of experience. 

Traditionally, large experimental investigation and many years of practical 

experience has led to the development of suitable design codes and design rules 

which are very safe and characterized by cautious assumptions. However, for the 

clean materials this approach is difficult to realize because the time on your hands is 
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short, thus, the only solution is complement experiments with analytical predications 

founded on correct, reliable and validated models. 

The cracking and strain softening are the main characteristics of the tensile behavior 

of the quasi-brittle materials, like concrete. Such behavior, characterized from a loss 

of carrying capacity for increasing deformation, is normally described by non-linear 

fracture mechanics and fitting strain softening laws.  

In literature we can find many constitutive models to describe the behavior of 

concrete. They utilize different concepts, like the plasticity, damage mechanics or 

fracture mechanics. They are included in the continuum mechanics and are 

formulated in tensorial form. Another formulation is the microplane models, these 

are formulated in vectorial form, which has some advantages that tensorial 

formulations. Microplane models don’t use the functions of macroscopic stress and 

strain tensor invariant, and its constitutive laws are actuate by utilizing either the 

kinematic or the static constraints. Kinematically constrained formulations can be 

used with microplane constitutive laws exhibit softening and for this reason they 

have been adopted for quasi-brittle materials. 

The solution for continuum formulations are independent of the numerical solution 

about the finite element discretization, and have to be inherent to the constitutive 

model, indeed methods that don’t suffer from mesh sensitivity use the cohesive 

discrete cracks for strain softening. 

The lattice is another formulation to simulate quasi-brittle materials, this class of 

models are discretized deducting their internal structure and utilize the characteristic 

lengths to furnish the formulation for example to particle size, particle models or 

size of the contact area among particles. 

This allows there to have suitable ability of simulating the geometrical characteristic 

of material internal structure and thanks to it the simulation of damage initiation and 

crack propagation are accurate. 
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In conclusion, there are many different concrete material models in the literature, but 

difficulty still lies in choosing the model that is most suitable for a specified 

application. Even for the input parameters it’s difficult to find the suitable values, 

these can be model parameters that have to be inversely identified or can have direct 

physical meaning. 

To determinate and validate the model parameters the experimental data is required 

and the data of test types have to be of a sufficient number, meaning there have to be 

an adequate number of samples to obtain significant results. The most important 

necessary tests are uniaxial compression, confined compression of triaxial tests, and 

direct or indirect tension tests. 

The 3-point-bending test or splitting test, to define the indirect tension, is usually 

preferred for the brittle nature of concrete. At least two sizes or otherwise two 

different types of tests have to be obtained to assure unique softening parameters 

and softening post-peak data. 

For the clean materials, or for predictions under high loading rates, other tests are 

obligatory, and for the predictive capabilities this new model is not enough to be 

satisfactory after calibration, but they also need to be validated. This step includes a 

division of test and specimens into subpopulations for calibration and prediction. In 

this investigation a specific size of three- point bending (beam C) and the cube 

40x40mm of unconfined compression, were chosen and allocated to calibration, the 

rest of the specimens of three point bending test were used for prediction and 

validation. 

All specimens of this comprehensive set of tests were cast from the same batch and 

tested at an age of more than 400 days with the exclusion of standard 28-day 

compressive tests because their influence of ageing is of importance. For all the tests, 

including uniaxial compression, confined compression and size-effect tests (3-point 

bending and splitting), the raw data obtained has been pre-processed with the 
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purpose to find statistical indicators for material properties and the curves trend 

including post-peak softening. 

Even if there is plenty of experimental data in the literature which is about different 

phenomena and mechanisms, there isn’t an abundance of publications reporting 

response curves for uniaxial compression, confined compression and indirect tension 

with the same batch of concrete, and none at the same time provide post-peak 

response for various sizes. 

 

1.1 Aims and Objectives 

This thesis presents the numerical calibration and validation of the concrete material 

model formulated and used in ATENA software. The model parameters are firstly 

calibrated through optimum fitting of typical basic material test data. Then the 

model is verified through comparing the numerical simulation results with a large 

group of experiment data. The simulated experiments include three point bending 

tests scaled in four size and unconfined compression of cubes. Conclusions from the 

current research efforts and recommendations for future studies are included. 

Finite element method (FEM) models were developed to simulate the behavior of 

four full-size beams and two size cubes from linear through nonlinear response and 

up to failure. 

In the calibration methods proposed and discussed in this thesis, traditional 

experimental information consisting of stress-strain curves. It was comparison 

stress-strain curves obtained through experimental tests and stress-stain curves 

obtained through numerical simulation 

Three-point bending tests and unconfined compression tests are often employed for 

calibrating and validating mechanical models of homogeneous materials. 

Mechanical calibration means here identification of parameters which are contained 
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in constitutive elastic-plastic and fracture models and turn out to be not directly 

measurable by traditional elementary tests. 

Either semi-empirical formulae can be used for such calibration, finite element 

simulations of the test allows to exploit wider sets of experimental data and to 

increase the number of estimated parameters and estimation accuracy. 

.The response of a concrete structure is determined in part by the material response 

of the plain concrete of which it is composed. Thus, analysis and prediction of 

structural response to static or dynamic loading requires prediction of concrete 

response to variable load histories. The fundamental characteristics of concrete 

behavior are established through experimental testing of plain concrete specimens 

subjected to specific, relatively simple load histories. Continuum mechanics 

provides a framework for developing an analytical model that describe these 

fundamental characteristics. Experimental data provide additional information for 

refinement and calibration of the analytical model. 

In this paper the concrete material model used in this investigation for finite element 

analysis of the three-point bending and unconfined compression tests will be 

presented. 

 

1.2 Organisation of the thesis 

This thesis is formed of 9 chapters. 

In the first chapter the aims and objectives were explained after an introduction to 

the work. 

In the second chapter the laboratory tests available, and the experimental data 

obtained from them, were analyzed, while the different types of specimens used and 

the individual tests performed have been described. 
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In the third chapter the behavior of concrete under the action of the laboratory tests 

has been explained, explaining the failure mechanisms and the problem called "size 

effect" based on the difference in size of the specimens. 

In the fourth chapter a general overview of all existing constitutive models for 

concrete has been made, focusing on aspects that could affect the constitutive model 

calibrated and validated in this work. 

The fifth chapter talks about the software ATENA, describing the implemented 

Material Model and the various solution methods of nonlinear analysis used to solve 

the FEM model. It also describes the finite elements used for the creation of the 

FEM model. 

In the sixth chapter the creation of FEM models is described, explaining the 

procedure and the Characteristics. 

In the seventh chapter the calibration of Material Model was addressed, describing 

the process and the results obtained. A parametric analysis of the most significant 

parameters considered in the calibration has also been conducted. 

In the eighth chapter the validation of the model Material was performed, analyzing 

the different aspects and describing the results obtained. 

In the ninth chapter, the conclusions found and possible future studies were reported 
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Chapter 2 

THE EXPERIMENT USED 

 

2.1 The speciment used 

The investigation used in this research represents an extension of a size-effect 

investigation in 3-point bending conducted by Hoover et al. where 164 concrete 

specimens were cast in one batch in early 2011 and tested in 2012. After that, 105 

specimens were cut from remaining shards in order to supplement, among others, 

con_ned compression tests, Brazilian splitting tests, direct tension tests, and 

hysteretic loading-unloading tests. 

In detail, response curves for the following tests were done in the experimental tests 

treated: 

- 128 three-point bending tests of 400 day old geometrically scaled unreinforced 

concrete beams of four sizes with a size range of 1:12.5 including un-notched 

specimens and beams with relative notch depths of α = a/D = 0.30, 0.15, 0.075, 

0.025. 

- 12 centrically and eccentrically loaded 466 day old 3-point bending specimens of 

size D = 93 mm, with and without unloading cycles in the softening regime. 

- 40 Brazilian splitting tests, of roughly 475 day old prismatic specimens of 5 sizes 

with a size range of 1:16.7. 

- 12 standard ASTM modulus of rupture tests at 31 days and 400 days. 

- 24 uniaxial compression tests of 3"x6" (75x150 mm) cylinders at 31 days and 400 

days. 
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- 22 uniaxial compression tests of approximately 470 day old cubes with D = 40 mm 

and D = 150 mm, loaded partly monotonically and partly with several loading-

unloading cycles in the softening regime. 

- 6 uniaxial compression tests of approximately 950 day old cubes with D = 40 mm. 

- 6 uniaxial tension tests of approximately 950 day old prisms. 

- 4 confined compression tests of 560 day old cored cylinders with D = 50 mm and 

L = 40 mm including 4 unconfined uniaxial compression tests of cored companion 

specimens. 

- 11 torsion tests of prisms with W = 40 mm and D = 40; 60; 80 mm.  

It was not possible to treat all tests in this thesis, for this reason the most significant 

tests for doing a complete numerical simulation were chosen.  All of three-point 

bending tests and one unconfined compression tests were chosen. In Figure 2.1 is 

shown the beam of three-point bending test and in Figure 2.2 is shown the cube 

40x40mm chosen. 

 
Figure 2.1: Specimen geometry, three point bending tests, geometrically scaled in four sizes 
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Figure 2.2: Specimen geometry, unconfined compression of cubes of two sizes 

 

 

2.2 Mix properties and curing 

One batch of ready-mixed concrete was used. All 164 specimens of the initial 

investigation include 128 beams, 12 ASTM beams, 24 cylinders. The specified 

compressive strength was f’c =31MPa. The coarse aggregate was pea gravel, with a 

maximum diameter of 10 mm, a water-cement ratio w/c = 0.41, and a water-binder 

ratio w/b = 0.35. A slump retention admixture guaranteed workability for the full 3 

hours duration of casting period with a consistent of 150 mm of slump. The depth 

for the 128 beams is constant, your value is W=40 mm. 

 All specimens were cast horizontally and later were vibrated. The remaining shards 

of the original investigation had been exposed to additional analysis and special 

attention was focus on avoiding areas of high stress concentration and pre-damaged 

areas. Beams and cylinders, after the casting, remained covered with plastic and 

untouched for 36 hours. Until testing they stayed in a ambient with around 23°C and 

approximately 98% relative humidity. 



Calibration and validation of ATENA concrete material model with respect to experimental data 
 

22 
 

2.3 Overview of material properties 

In the table 2.1 there are the basic concrete properties, that their results come from 

various tests perfomed at different ages.  The fracture parameters are given in table 

2.2. The coefficient of variation  CoV =std/mean have been utilized, where possible, 

for the inherent scatter. 

 The casting and specimen preparation were done highly carefully and caused low 

experimental scatter with coefficient variation less 10%. Also the statistical outliers 

was suitable because just one beam and two of early age compression cylinders 

didn’t pass the Grubb’s test for outliers, and obviously   these specimens were 

excluded from the investigation. Compressive strength was settled relating on 

75x150 mm cylinders, 40 mm and 150 mm cubes. The value of poisson ratio  is ν = 

0.172 it was determined based on the circumferential expansion of standard cylinder 

in compression. 

Material property  unit mean CoV [%] 
Compressive cylinder strength fcyl,75(31) MPa 46.5 3.2 
Compressive cylinder strength fcyl,75(400) MPa 55.6 3.7 
Compressive cube strength fcu,40(470) MPa 56.16 9.5 
Compressive cube strength fcu,150(470) MPa 57.1 5.5 
Compressive cube strength fcu,40(950) MPa 61.2 8.2 
Modulus of  elasticity,75 mm cyl Ecyl,75(31) GPa 27.74 6.2 
Modulus of  elasticity,75 mm cyl Ecyl,75(400) GPa 34.38 3.9 
Modulus of  elasticity,D=40 mm Er,40(400) GPa 35.70 7.0 
Modulus of  elasticity,D=93 mm Er,93(400) GPa 41.29 6.8 
Modulus of  elasticity,D=215 mm Er,215(400) GPa 43.68 9.4 
Modulus of  elasticity,D=500 mm Er,500(400) GPa 43.66 12.7 
Modulus of  elasticity, inverse Er,inv(400) GPa 37.94  
Poisson ratio ν - 0.172 10.0 

 
Table 2.1: Material properties extracted from cylinder tests and ASTM modulus of rupture 

tests 
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According to the fib Model code 2010, the Eq. (2.1) can be used to determinate the 

strength and modulus development, with parameter s=0.25 for R-type cement. 

𝑓(𝑡) = 𝑓28𝛽𝑓𝑖𝑏(𝑡),   𝐸(𝑡) = 𝐸28√𝛽𝑓𝑖𝑏(𝑡),   𝛽𝑓𝑖𝑏(𝑡) = 𝑒𝑠(1−√28 𝑡⁄ )                (2.1) 

Another equivalent formulation is from ACI, given by Eq. (2.2) with a=4.0 and b = 

0.85 for type-I cement.  

𝑓(𝑡) = 𝑓28𝛽𝐴𝐶𝐼(𝑡),   𝐸(𝑡) = 𝐸28√𝛽𝐴𝐶𝐼(𝑡),   𝛽𝐴𝐶𝐼(𝑡) =
𝑡

𝑎+𝑏𝑡
                 (2.2) 

While these two formulations fail to predict the modulus development, the strength 

development calculate with the model code is very good, and the prediction with the 

ACI formulation is fair. Strength an modulus values extracted 28-day are given 

including the 95% confidence bounds, and they are reported in table (2). With the 

ACI formulation (Eq. 2.3) or the fib formulation (Eq. 2.4) can be predicted the 

Young modulus utilizing the compressive strength. About the fib formulation the 

parameters E0 and αE are dependent on aggregate type. 

 

         𝐸28,𝐴𝐶𝐼 = 4734√𝑓28                                                    (2.3) 

 

𝐸28,𝑐𝑖,𝑓𝑖𝑏 = 𝐸0𝛼𝐸 (
𝑓28

10
)

1
3⁄

                                              (2.4) 

 

Parameter model value unit RMSE 
fcyl,75(28) fib 46.1 MPa 0.184 
fcyl,75(28) ACI 46.8 MPa 1.243 

fr(28) fib 6.8 MPa 0.158 
fr(28) ACI 6.9 MPa 0.314 

Ecyl,75(28) fib 29.63 GPa 1.988 
Ecyl,75(28) ACI 29.81 GPa 2.313 
Ecyl,75(28) Fib* 27.31 GPa - 
Ecyl,75(28) ACI* 26.78 GPa - 

Table 2.2: Strength and modulus development: quality of  fit. 
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In the table 2.3 there are the values of fracture energy. They were obtained from the 

study of size-effect in 3-point-bending push through to Hoover et al. With the 

Bazant’s Size Effect Law he obtained the initial fracture energy Gf whereas the total 

fracture energy GF based on the work of fracture method. As thought probable, the 

total fracture energy is around double the initial fracture energy. 

Material property unit mean CoV [%] 
Fitting of Type 2 SEL α = 0.30    

Initial fracture energy Gf N/m 51.87 - 
Characteristic length cf m 23.88 - 

Fitting of Type 2 SEL α = 0.15    
Initial fracture energy Gf N/m 49.78 - 
Characteristic length cf m 20.99 - 

Work of fracture energy α = 0.30    
total fracture energy Gf N/m 96.94 16.9 

Work of fracture energy  α = 0.15    
total fracture energy Gf N/m 111.1 20.7 

Table 2.3:  Fracture parameters according to Hoover et al. 

 

2.4 Detailed description of tests 

For all the tests three MTS closed-loop testing machines with sevo-hydraulic system 

and tree different capacities were used. For the uniaxial compression and the 

confined compression tests the machines with 4.5 MN load frame were used. For the 

three-point bending tests and splitting tests of specimens with the size D= 215 mm 

and D= 500 mm were carried out in the 980 KN load frame. For all remaining 

specimens the 89 kN load frame was used. The dimensions of each specimen, during 

the preparation, and the crack pattern were recorded and documented with pictures. 

The displacement of the piston measured inside the machine (stroke), force and 

loading time were recorded. All the test specific quantities (load-point displacement, 

axial shortening, circumferential expansion and crack mouth opening displacement) 
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were also recorded. Every day the machines were exposed to rigorous control to 

calibrate the load cells. 

 

2.4.1 Test control and stability 

About the testing of quasi-brittle materials, an issue to calibrate the model 

parameters which control softening in tension, shear-tension, or compression under 

low confinement is to obtain the suitable values for the post–peak softening curves 

for different types of tests and various sizes. The energetic stability condition is used 

to describe the stability problem in the softening regime, that represents the ability to 

control a specimen. This problem is formulated in terms of the second variant of the 

potential energy (δ2II  >0)  and represent a limit state called “snap-down”. This issue 

happens when under displacement control the stability path remains, providing that 

no point with vertical slope is reached. This phenomenon is characterized by an 

equilibrium path with global energy release and represents the transition to a “snap-

back” instability. 

The practical problem of a specimen with elastic stiffness Kel  in a load-frame with 

stiffness Km is equivalent to a serial system with total current tangential stiffness 

K(u)=(1/Km+1/(Kel-ΔK(u)))-1. The term ( Kel-ΔK(u)) represents the true tangential 

specimen stiffness and  ΔK(u) is a total stiffness change due to softening. Basically 

if K(u) tend to minus infinite there is a snap-down, therefore the only solution for a 

stable test in displacement control in the softening regime is that K(u) is finite along 

the entire equilibrium path. The features of the specimen or by means of the test 

setup are the most common reasons for the instability. The condition ΔK(u) < Kel or 

mathematically  Kcrit < ∞ guarantee the stability if assuming an ideal load frame with 

infinite stiffness. If in elastically unloading parts of the specimen more energy is 

released than required to propagate the crack the snapback is noted on the other side. 

The condition Km > Kcrit represents a minimum stiffness of the machine frame 
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indispensable for the stability of the test. Essentially, if it is possible to continuously 

find an increase of the quantity for the control, the post-peak test will be stable. 

The success of fracture tests ultimately depends on the proper selection of specimen 

geometry, test setup, sensor instrumentation, and control mode. Thus, during the 

development of experimental campaigns compliance tests of the load frame, fixtures, 

and preliminary simulations of the specimens to determine a stable mode of control 

are highly advised. 

 

2.4.2 Data preparation and analysis 

All data obtained from the experimental are impartial and objective because they 

were processed automatically. The pre-processing set only the statistics of the 

specimen dimensions, and all the automatic operations of removal of pre-test and 

post-test data were normalized with a limit frequency of 0.10.   

During the initial setting, the load displacement diagrams is extracted by linear 

extrapolation of the elastic part of the loading branch and the constant movement by 

the respective displacement intercept. The values of the linear region considered are 

(0.50-0.90)σpeack for beam, (0.25-0.90)σpeack for compression specimens and (0.60-

0.90)σpeack for Brazilian beams. The figures referential showed the result for each 

specimen family in terms of a mean response curve and envelope. In the depiction of 

the curves, it averaged the pre-peak and post-peak branches separately  

 

2.5 Unconfined Compression 

The compression tests are the most traditional test used to characterize the concrete. 

The Eurocode indicate two kinds of specimen, cylinders or cubes, the first one has 

150 mm of diameter and 300 mm height, while the second one has 150 mm side 

length. 



Alessio Pizzocchero 

Unconfined compression tests not only yield a material's uniaxial compressive 

strength but also provide insight into the softening behavior already starting before 

the peak-load. 

From the undamaged part of the ASTM modulus of rupture specimens eight 150 

mm cubes were cut and from the remainder of the 3-point-bending size effect 

investigation fourteen 40 mm cubes were cut. These cubes were tested at about an 

age of 470 days like the Brazilian splitting size effect investigation. The ASTM test 

standard specifies that during the application of the load, only the top load platen 

can rotate. Before the tests, it was used solfur compound to cover the top of the 

cubes to ensure initially co-planar and smooth loading surfaces and the load was 

applied in both surface up and down. According to ASTM C39, the observed 

fracture patterns were conformed to Type 1, with the form similar a cone. 

To obtain an adequate friction especially when there were the peak loads, between 

specimen and load platens some degree of lateral confinement in the contact surface 

was introduced. This procedure can be reproduced without problem in the numerical 

analyses by suitable interface elements, but in the standard analyses assuming just 

the ideal uniaxial conditions. In these tests solely sulphur compound capping was 

applied. 

Before and after capping the specimen dimensions recorded were length of all edges 

and the height. The force F and machine stroke δ was measured during the tests 

where the second one was the stable mode of control. With four equiangularly 

distributed LVDTs the load platen to platen distance u was also measured. 

In The diagram of uniaxial compression originated to the experimental tests, in the 

x-coordinate there is the nominal strain εN  and in the y-coordinate the nominal stress 

σN. These two parameters are defined by Eq. (2.5) and Eq. (2.6) respectively. In the 

first formula ū is the mean shortening of the specimen and D is the mean of the 

specimen dimension in the respective axis, obtained from four measurements. 
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𝜎𝑁 =
𝑘𝐹

𝐷2
                                                              (2.5) 

 

𝜀𝑁 =  
𝑢

𝐷
                                                               (2.6) 

In Figure 2.3 and 2.4 the nominal stress σN versus nominal strain εN diagrams for 

uniaxial compression tests of 40 mm and 150 mm cubes is shown in terms of mean 

response curves and envelope. Specimen dimension, peak stresses and elastic 

module is given by mean values and coefficients of variation.  

 
 

 
 

Figure 2.3: Nominal stress σN  versus nominal strain εN  for uniaxial compression tests: cubes 40x40 mm 
at 470 days 
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Figure 2.4: Nominal stress σN  versus nominal strain εN  for uniaxial compression tests: cubes 150x150 

mm at 470 days 

 

2.6 Flexural fracture by 3-point-bending 

The investigation considered focus on the flexural fracture, where, in total, 128 

beams were tested. There were four sizes of beams with a size range of 1:12:5.The 

principal survey about size dependency focused on flexural strength and toughness, 

however, the parameters, including the relative notch depth α= a/D, and the relative 

load eccentricity ξ = x/l were studied. The notch depths were studied in different 

values of α= 0.3,0.15,0.075 for all sizes and α= 0.025 for the two larger sizes. 

Therefore, six specimens for each size and notch depth combination were tested. For 

each different size, only the thickness W and the notch width were left constant, 

while all dimensions including the steel support block were geometrically scaled. 

The notches were cut after 96 days with a diamond coated band saw with a width of 

1.8 mm. 
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In 11 days, all 128 beams of the bending size effect investigation were tested around 

400 days after casting. For notched specimens the stable mode of control was 

CMOD and for un-notched beams was average tensile strain. The large specimens of 

sizes A and B were loaded in the 220 kip load frame whereas specimens of size C 

and D were tested in the 20 kip load frame (figure 2.5). Force, stroke and center-

point displacement were obtained by averaging two LVDT measurements. In 

addition to these, there was an extensometer that read the tension side of the beam 

for all tests.  

Where the elastic deformation within the gauge length g is negligible, the CMOD 

(crack mouth opening displacement) corresponds to measurements for the notch 

depths. For un-notched specimens and also for specimens with shallow notch 

sensors of larger gauge length g were instrumental to guarantee a crack localization 

within. 

 
Figure 2.5 Three point bending: size comparison, 
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Property A[mm] B[mm] C[mm] D[mm] 
Thickness,W 40.0 40 40.0 40.0 
Height, D 500 215 92.8 40.0 
Length,L 1200 517 223 96.0 
Span, l 1088 469 202 87.0 
Guage length,g 162;218 94.5;137 60.0;25.4 25.4 
Guage length,g (α = 0.3) 25.4 25.4 12.7 12.7 
Loading block width,w 60 26 11.0 5.2 
Loading block height, h 40 20 10.0 5.0 

Table 2.4: Nominal geometry of 3-point-bending specimens 

For notched or un-notched specimens of all different sizes, the response is pictured 

in terms of nominal strain eN (x-coordinate) and nominal stress σN (y-coordinate). 

The nominal stress is defined by Eq. (2.7) and the nominal strain is defined by Eq. 

(2.8) where u is the measured opening of the extensometer, g is the gauge length and 

the nominal stress is based according to beam theory. 

 For both equations D is the height of the specimen and W is the thickness. For 

specimens with deep notch the extensometer reading at the surface of the beam is 

proportional to the CMOD, therefore the crack mouth opening can be well 

approximated by the first ones. For small specimens with short notch elastic 

deformation within, the gauge length is small if it is compared to the total 

extensometer reading, and this characteristic is more accentuated for specimens with 

wide sizes. 

The gauge length can therefore be neglected to calculate the nominal strain for a 

notched specimen. However, for a meticulous research, the gauge length and 

consequently the contributions of elastic deformation should be considered. 

𝜎𝑁 =
6𝐹(1 − 𝜉)𝜉𝑙

𝑊𝐷2
                                                             (2.7) 

 

𝜀𝑁 = {

𝛽𝑢

𝑔
 𝑓𝑜𝑟      𝛼 = 0

𝑢

𝐷
 𝑓𝑜𝑟        𝛼 > 0 

                                                   (2.8) 
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For un-notched specimens a correction factor β is required because the gauge length 

is finite and not negligible compared to span length l, this matter doesn’t change for 

different sizes. 

As expected, with specimen size D, strength decreases and the post-peak regime 

shows a transition from ductile to rather brittle behavior. For all five geometrically 

similar beam sets, the slope in the elastic regime coincides. 

Being that cement is a heterogeneous material, its distribution of strength can be 

random as it has a significant scatter in structural response. This characteristic shows 

that the macroscopic strength of specimens without initial notch have a wide-spread 

crack localization on the tension side. 

The specimen response is plotted in terms of nominal stress σN and nominal strain εN 

for the un-notched and notched specimens of all four sizes in Figure 2.6 - 2.7 - 2.8 - 

2.9 - 2.10. 

 

Figure 2.6: Three point bending: nominal stress-strain diagram for un-notched beams 



Alessio Pizzocchero 

                             ,  

Figure 2.7: Three point bending: nominal stress-strain diagram  for beams with α = 2.5%, 

 

Figure 2.8: Three point bending: nominal stress-strain diagram  for beams with α = 7.5%, 
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Figure 2.9: Three point bending: nominal stress-strain diagram  for beams with α = 15%, 

 

Figure 2.10: Three point bending: nominal stress-strain diagram  for beams with α = 30%, 
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Chapter 3 

EXPERIMENTAL BEHAVIOUR OF 

CONCRETE 

 

3.1 Brief literature review on fracture mechanics of plain concrete 

How material fails can be described by two basic fracture mechanics approaches. 

- When the intensity of stress concentration at micro-flaw (say, a crack tip) exceeds 

the intrinsic cohesive strength of the material (stress intensity approach) a material 

fails. 

- When the energy stored in it during loading exceed the energy required for creating 

fresh macro-flaws (say, crack surfaces), the energy balance approach a material fails. 

Single Edged Notched (SEN) beams using the fictitious crack model also known as 

Damage zone model have been analyzed by Hillerborg et al. The tensile stress is 

assumed not to fall to zero immediately after the attainment of limiting value but to 

decrease slowly with increasing crack widths. To describe the tensile fracture 

behavior of concrete Modulus of elasticity E, uniaxial tensile strength σt and fracture 

energy GF; defined as the area under post-peak stress vs. COD diagram are the 

material properties required. The concept of crack band theory for fracture of 

concrete was introduced by Bazant & Oh. The fracture front is modeled as a blunt 

smeared crack band. 

Three parameters GF; σt and the width of crack band WC (fracture process zone) 

characterize the material fracture parameters. GF is however defined as the product 

of WC and the area under the tensile stress-strain curve. The maximum load carrying 

capacity of several beams are predicted using this model. GF is found to depend on 
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the specimen size. The values of GF so obtained are used to obtain an empirical 

relationship to predict GF from the knowledge of material properties. These model 

irrespective of the approach adopted requires a complete stress-crack opening 

relation. They are particularly well suited for numerical techniques like the finite 

element method. Some models also proposed do not require the finite element 

technique. Wecharatana & Shah based on some simple and approximate extensions 

of the concepts of LEFM, have predicted the extent of the non-linear fracture 

process zone in concrete. Critical COD equal to 0.025mm and a constant closing 

pressure to exist along the length of the fracture process zone are assumed. 

Fracture loads of a large number of notched beams are reported to have been 

estimated with a reasonable degree of accuracy. Two parameter fracture models 

have been proposed by Jenq & Shah. The two parameters are critical stress intensity 

factor calculated at the tip of the effective crack and critical COD. Based on their 

test results, the two parameters are found to have size dependency. A critical review 

of works dealing with concrete fracture has been presented by Alberto Carpinteri. 

He concludes that heterogeneity is only a matter of scale and notch sensitivity is 

necessary but not sufficient condition for the applicability of the linear elastic 

fracture mechanics. Tests on cement mortar and concrete beams in two stages have 

been performed by Nallathambi & Karihaloo, with a view to study the influence of 

several variables upon the fracture behavior of concrete. 

 On the basis of the results from the first stage of test in which a single water/cement 

ratio and type of coarse aggregate were used, a simple formula was ascertained to 

estimate the fracture toughness of concrete in terms of specimen dimensions, 

maximum aggregate size and notch depth together with the mix compressive 

strength and modulus of elasticity (determined from separate standard cylinder test). 

It was found to predict with satisfactory accuracy, the results from the second stage 

of test in which, besides variation of the type of coarse aggregate and water/cement 

ratio, some of the specimen sizes were outside the range used in the first series. 

Peterson determined fracture energy GIC using load-deflection curve. The test 
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results indicate that GIC is independent of both notch depth and beam depth. Raghu 

Prasad et al proposed a simple numerical method called Initial stiffness method and 

Modified lattice model. to analyze fracture behavior of plain concrete beam (strain 

softening material) in mode-I using finite element method. 

 A new parameter namely, strain softening parameter has been introduced. By 

analyzing a significant number of beams tested and reported by various researchers 

the method is validated. 

 

3.2 Behaviour of concrete under uniaxial compression 

This is the most commonly used test (Figure 3.1). It is carried out on cylinders or 

cubes of concrete. In general, the normalized test is controlled at an imposed stress 

rate, but an imposed displacement allows the post-peak regime of the response to be 

obtained. 

 
Figure 3.1:Principe of simple compression test 

The typical curve stress-strain of concrete when exposed to uniaxial compression is 

presented in Figure (3.2). There are three levels of deformation: the elastic phase, 

the inelastic phase and the phase where there the deformation is. The first phase is 

shown until the value of stress is about 30% of f’c, where f’c is a cylindrical uniaxial 

compressive strain. For higher stress, there is the second phase, where the reaction is 

nonlinear and becomes more clear if the stress is about the value of the pick  f’c. 
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After that, it becomes the descending branch where increasing the deformation 

decrease the stress up to breakage for crushing. If the material is exposed cyclic 

loads, remaining deformations and a decline of the stiffness is observed. 

During loading, deformations perpendicular to the principal compressive stress 

appear, creating micro-cracks as the tensile deformation threshold is being exceeded. 

Micro-cracks coalescence leads to the collapse of the specimen. Moreover the elastic 

characteristics of the material evolve; the elasticity modulus decreases during the 

loading whereby the material becomes damaged due to micro-cracking. Some 

irreversible deformations appear. The boundary conditions of the specimen play an 

important role on the characterization of the behavior of the material during simple 

compression. Due to friction, bracing cones appear at failure. Just the central part of 

the specimen is subjected to a uniaxial compression stress. After the peak load, the 

Poisson coefficient suddenly increases. In the same way, damage growth is 

occurring more rapidly. 

Experimental observation shows that after the pick, the deformation is no longer 

uniform, but tends to localize in one section. In this phase a better representation of 

the behavior has to be in terms of stress-displacement instead of stress-strain. These 

examinations were studied from Van Mier where the geometry of the specimen has 

influence on stress-strain branch. The results are shown in Figure (3.3). 

Before the pick, the curves trend is almost identical, but after the pick, with the 

reduction of the height of the specimen there is a decrease of the slope of the stress-

strain branch instead. However, if the same results are represented in terms of stress-

displacement, this different response of the specimen practically disappears Figure 

(3.4). 
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Figure 3.2: stress-strain curve for cyclic uniaxial compression 

 
 

 

 
Figure 3.3:dependence of stress-strain curve due to specimen size 
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Figure 3.4: independence of stress-displacement curve due to specimen size 

 
 

Interlayer water within the material influences its visco-elastic behavior. Several 

other phenomena are related to the water content and the presence of hard inclusions 

(aggregates) within a cementitious matrix, which retracts as the water leaves. 

Concrete and mortar strengths increase when free water leaves, because of the 

capillary effect and increased suction within the partially saturated porous medium. 

Concrete can be considered as an initially isotropic material. The elastic parameters 

of the material are Young’s modulus (E) and Poisson coefficient (ν). Regarding 

common concretes, those usual values of the parameters are 30,000 MPa and 0.2, 

respectively, and are used in numerous constitutive laws and numerical calculations 

for concrete structures, as well as for the determination of the delayed (time 

dependent) deformations of concrete. 

The peak corresponds to the maximal value reached by the compression stress. In 

general, at this state, we observe the formation of macro-cracking parallel to the 

direction of compression. Experimentally, it is difficult to obtain the softening 
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response because redistribution inside the specimen occurs and the strain 

distribution is no longer homogenous over the specimen 

The post-peak response of concrete is necessary, for example, in studies related to 

the durability of the material as transport properties are very sensitive to the 

cracking of the material. In the axial stress-strain curve, Stress is calculated from the 

force of the machine and strain is global, that is to say computed from the variation 

of distance between the supports of the specimen. This type of curve cannot be used 

for the absolute measurement of elastic parameters or behavior, but allows 

comparisons between the tests performed under the same conditions. 

 

3.3 Behaviour of concrete under uniaxial tensile 

Due to the experimental difficulty of carrying out direct traction tests, different tests 

are more commonly used, relying on the dissymmetry of the compressive and tensile 

strengths of the concretes. In some specific experimental situations, it is possible to 

obtain locally a tensile fracture of the specimen being loaded in compression. The 

most commonly used test is called the “Brazilian” or splitting test. 

Another type of indirect traction test is the three-point bending test on a concrete 

specimen that may or may not be notched. The principle is to develop a moment 

within the beam, and therefore, to call upon the tensile lower fibers, the higher fibers 

being elastic due to dissymmetry behavior. The boundary conditions used are roll 

supports at the ends of the beam, to enable shrinkage during loading. The applied 

force and the deflection at the center of the beam are measured. It is possible to stick 

deformation gages on the beam in order to get local information, or cracking 

recording gages above the notch. The test control is achieved through an imposed 

displacement or an imposed force. 

In this experimental test the tensile strain is not homogenous within the body of the 

specimen so the interpretation of the obtained results is sometimes difficult. For the 
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simplicity of the distribution of the normal stress within the median section of the 

beam, in the three-point bending test it is possible to determine the tensile response 

of the material using a reverse analysis. Moreover, a notch is generally placed in this 

median cross section in order to introduce a defect minimizing the resistant section, 

and therefore to enable better control of the cracking and collapse process. It is then 

possible to control the test as a function of the crack propagation, which allows the 

tensile softening response of concrete to be determined because loss of stability of 

the loading process is avoided. This test is most often used for the determination of 

rupture parameters. The three-point bending test requires some caution. Crushing of 

concrete at the supports often occurs. 

The typical curve trend stress-strain for a concrete under a uniaxial tensile is shown 

in Figure  

 
Figure 3.5: Typical stress-strain curve for concrete under a uniaxial tensile 

 

Behavior of concrete is almost linear up to last strength. After the pick, there is the 

development of the crack, and the stress decreases while the stretch increases. This 

phenomenon is known like tensile strain softening. In this phase the deformation is 

not uniform in the specimen, but is localized in one area called “fracture zone”, 

while the remainder of the structure gets unloaded. The total deformation is 
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composed of two separate parts: the elastic strain of the compression concrete and 

the cracking strain. 

It was demonstrated experimentally that the stress-strain reaction depends on 

specimen size, therefore it is better to describe the crack behavior with a relationship 

stress-opening of the crack as shown in Figure (3.6). 

 

 

Figure 3.6: Relationship stress-opening in the crack 

 
 

3.4 Size Effect of Structural Concrete 

Traditional laboratory tests are aimed at the characterization of the mechanical 

response of materials, assuming of course that the constitutive relations deduced 

from the tests are not dependent on the type of test performed. Another important 

assumption is that the response of the material should be independent of the size of 

the structure, the considered structure being a laboratory specimen or a real-size 

structure. This is not always true, at least some deviations to this basic principle 

have been observed quite a number of times. This phenomenon is called structural 

size effect and it will be considerate in this thesis. 
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Structural size effect is defined here as the dependence of the mechanical response 

on the size of the structure. This is a well known phenomenon has demonstrated that 

geometrically similar concrete beams subjected to three-point bending exhibited a 

structural size effect. From experimental results, the material strength has been 

computed using standard elasticity and the results show that the larger the beam, the 

smaller the material strength (Figure 3.7). 

 

Figure 3.7: Size effect observed on three-point bending beams. ft is the tensile strength computed on the 

bottom fiber according to elasticity at peak load 

 

Based on the results of Mariotte [MAR 86], Weibull [WEI 39] proposed a 

probabilistic theory constructed on the weakest link principle. The strength of a 

structure is the smallest strength of the elements from which the structure is 

assembled. As the probability of finding a weak element of any given strength 

decreases as the volume of the structure decreases, the apparent strength of a 

structure increases as its size decreases. This probabilistic model relies on a specific 

distribution of the local strength, more precisely on a specific description of the tail 

of this distribution. 
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In the weakest link theory, structures are considered to fail at crack initiation and the 

fracture process zone is considered to be very small – negligible compared to the 

size of the crack and to the size of the structure. 

Inspired by several works dealing with the fractality of cracks devised a size effect 

law based on the geometry of the crack and fracture surface. The  three principal 

theories are: 

– the probabilistic theory due to Weibull; 

– the deterministic theory due to Bazant ; 

– the fractal size effect theory due to Carpenteri et al. 

The foregoing probabilistic structural size effect law is based on the idea of random 

structural strength combined with Weibull distribution of probability of failure. A 

salient characteristic of this size effect law is that it does not contain an internal 

length because it is a power law. In a physical theory where the scaling law is 

expressed as a power law, there is no characteristic length. The structure size is 

compared to a reference, but the comparison is performed through a ratio and the 

actual size of the reference does not appear in the scaling law. 

A second source of size effect, besides a random distribution of strength, is due to 

the redistribution of stresses ahead of the crack tip, in the fracture process zone. This 

size effect applies typically to quasi-brittle materials which possess a fracture 

process zone whose size may not be considered as negligible 
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Chapter 4 

CONSTITUTIVE MODEL FOR 

CONCRETE 

 
 

In the last three decades, the constitutive modelling of concrete evolved 

considerably. This chapter  describes various developments in this field based on 

different approaches analyzing the plastic fracturing. It is the constitutive model that 

will be studied in this paper. 

Concrete is a heterogeneous, cohesive-frictional material and exhibits complex non-

linear inelastic behavior under multi-axial stress states. The increased use of 

concrete as primary structural material in building complex structures necessitates 

the development of sophisticated material models for accurate prediction of the 

material response to a variety of loading situations. The new developments 

regarding concrete technology which resulted in a new generation of concretes, 

which are better in terms of performance, such as high strength concrete (HSC), 

reactive powder concrete (RPC), high performance light weight concrete (HPLC) 

and self compacting concrete, further stressed the need for new material models. 

Concrete structures are often analyzed by means of the finite element method. This 

kind of Analysis, for structural engineering problems is based on solution of a set of 

equilibrium equations and a kinematically admissible displacement field. Every 

problem is combined with boundary and initial conditions. The statically and 

kinematically admissible sets of equations are independent of each other, and the 

constitutive relations are required to connect them. 

Concrete contains a large number of micro-cracks, especially at the interface 

between aggregates and mortar, even before the application of the external load. 
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Many theories proposed in the literature for the prediction of the concrete behavior 

are studied, such as empirical models, linear elastic, nonlinear elastic, plasticity 

based models, models based on endochronic theory of inelasticity, fracturing models 

and continuum damage mechanics models, micromechanics models. 

In the following section these kinds of models will be briefly discussed. 

 

4.1 Empirical models 

Usually the material constitutive law is obtained through a series of experiments, 

where the experimental data is used to propose functions, which describe the 

material behavior, by curve fitting. Obtaining the experimental data is not always 

easy, especially in cases of multiaxial stress situations. The experimental 

information after peak is often insufficient due to difficulties associated with the 

testing techniques of materials. One reason for the scarcity of test data is scatter of 

the test data associated with machine precession, testing technique and statistical 

variation of material properties from sample to sample. Fortunately, in literature 

there were many attempts that overcame these difficulties for specific loading 

situations such as uniaxial, biaxial, triaxial and cyclic loading. 

Many uniaxial and biaxial stress-strain relations are available in the literature. 

Typical uniaxial compressive and biaxial stress-strain curves are shown in Figure 

(4.1) and Figure (4.2) respectively. 
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Figure 4.1: Uniaxial stress-strain curve 

 

 

 

 
Figure4.2: Biaxial stress-strain curve 
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4.2 Linear elastic models 

Linear elastic models are the simplest constitutive models available in the literature. 

In this model concrete is treated as linear elastic until it reaches ultimate strength 

and subsequently fails in brittle manner. For concrete under tension, the linear 

elastic model is quite accurate and sufficient to predict the behavior of concrete from 

the failure strength. Linear elastic stress-strain relation can be written using the 

general notation as: 

 
𝜎𝑖𝑗 = 𝐹𝑖𝑗 (𝜀𝑘𝑙)                                                      (4.1) 

 
𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙                                                       (4.2) 

 
 

where 𝐹𝑖𝑗 is a function and 𝐶𝑖𝑗𝑘𝑙 represents material stiffness. 

A problem of this constitutive law is that it is often inappropriate, as concrete falls 

under the pressure sensitive group of materials whose general response under an 

imposed load is highly nonlinear and inelastic. 

 

4.3 Non linear elastic models 

Nonlinear constitutive models are used for concrete under multiaxial compressive 

stress, therefore where there is a significant nonlinearity. The two basic approaches 

used for nonlinear modeling are secant formulation (Total stress-strain) and 

tangential stress-strain (Incremental) formulation. Incremental stress-strain relation 

can be written in the following form: 

 
𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙

𝑡 𝑑𝜀𝑘𝑙                                                       (4.3) 
 

Where 𝐶𝑖𝑗𝑘𝑙
𝑡  is the tangent material stiffness. 
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Secant formulations are reversible and applicable primarily to monotonic or 

proportional loading situations. These models are simple extensions of linear elastic 

models and formulated by assuming functional relations for secant bulk modulus, 

secant shear modulus and assuming stresses and strains are derived as gradients of 

stress and strain potentials. Inelastic deformations and cyclic loading can be resolved 

using incremental or hypoelastic models with variable tangent moduli. 

For a complete description of the ultimate strength surface a suitable failure criterion 

is incorporated in the elasticity based models. Criteria such as yielding, load 

carrying capacity and initiation of cracking have been used to define failure. Failure 

can be defined as the ultimate load carrying capacity of concrete and represents the 

boundary of the work-hardening region. In the literature many failure criteria for 

normal, high strength, light weight and steel fiber concrete can be found. The most 

commonly used failure criteria are defined in stress space by a number of constants 

varying from one to five independent control parameters. In literature there are 

various criteria for concrete, the more familiar are Mohr-Coulomb criteria, Drucker-

Prager, Chen and Chen, Ottosen, Hsieh-Ting-Chen, Willam and Warnke. A more 

sophisticated criterion was developed by Menetrey and Willam, which is also 

utilized in ATENA. This criterion predicts the behavior of concrete in a better 

manner and is expressed by the following expression. 

 

𝐹(𝜉, 𝜌, 𝜃) = [√15
𝜌

𝑓𝑐
′
] + 𝑚 [

𝜌

√6𝑓𝑐
′

𝑟(𝜃, 𝑒) +
𝜉

√3𝑓𝑐
′
] − 𝑐 = 0                  (4.4) 

 

where ξ = Hydrostatic stress invariant, ρ = Deviatoric stress invariant and θ = 
Deviatoric. 

Polar angle and r(θ,e) is an elliptic function. 

 

𝜉 =
𝐼1

√3
, 𝐼1 = 𝜎𝑖𝑖 

𝜌 = √2𝐽2,           𝐽2 =
1

2
𝑆𝑖𝑗𝑆𝑗𝑖 



Calibration and validation of ATENA concrete material model with respect to experimental data 
 

52 
 

 

𝑐𝑜𝑠3𝜃 =
3√3𝐽3

2𝐽2

3
2

,        𝐽3 =
1

3
𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖 

 
 
 
4.4 Plasticity based models 
 

In literature there are many Classical plasticity based models developed in the recent 

past. The mechanism of material non-linearity in concrete consists of both plastic 

slip and micro cracking. The models which characterize the stress-strain and failure 

behavior of material under multidimensional stress states can have advantages and 

disadvantages, which depend, to a large extent on their particular application.  

In plasticity theory the total strain increment tensor is assumed to be the sum of the 

elastic and plastic strain increment tensors 

 
𝑑𝜎𝑖𝑗 = 𝑑𝜎𝑖𝑗

𝑒 + 𝑑𝜎𝑖𝑗
𝑝                                                          (4.5) 

 
 
 
4.4.1 Yield criteria 
 

Yield criteria of material should be known from experiments. The behavior of 

concrete is influenced by the effect of hydrostatic pressure. In the literature, it is 

possible to find the yield criterion with the hydrostatic pressure dependent or with 

hydrostatic pressure independent. Some failure models, developed specifically for 

concrete are also used as yield function by applying some corrections and by being 

integrated into the theory of plasticity to compute strains and stresses in the yielded 

materials. 

Any yield surface needs to satisfy certain physical requirements such as condition of 

irreversibility of plastic deformation and positive work which is expended on plastic 

deformation in a cycle. Non-smooth yield surfaces are often included in the 
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constitutive description of a material, these (Tresca or Mohr-Coulomb) cause an 

indeterminate situation while determining the direction of the plastic strain 

increment. 

The Drucker-Prager criterion represents moderately well the response of plain 

concrete subjected to multi-axial compression and provides a smooth yield surface 

(Figure 4.3). This criterion is incorporated into some currently proposed concrete 

material models and is defined in the Eq. (4.6). 

 
Figure4.3: Mohr-Coulomb and Drucker-Prager Failure Criteria 

 
 
 

√𝐽2 + 𝛼𝐼1 + 𝑦 = 0                                                       (4.3) 
 

 

In Equation (4.6) and y are material parameters that, in the original formulation, 

are considered to be constant but vary with load history in more recent 

implementations. 
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4.4.2 Flow rules 

Definition of a plasticity-based constitutive model requires establishing flow rules 

that define the evolution of a set of internal variables. Of particular interest is the 

plastic flow rule that defines the orientation of the plastic strain. 

A stress increment dσ to the current state of stress σ results in elastic as well as 

plastic strain, if the stress state falls outside the elastic region. To describe the stress-

strain relationship for an elastic-plastic deformation, we must define the flow rule 

which defines the direction of the plastic strain increment without any information 

regarding magnitude. Flow rule may or may not be associated with the yield criteria. 

 

𝑑𝜀𝑖𝑗
𝑝

= 𝑑𝜆
𝜕𝑄

𝜕𝜎𝑖𝑗

                                                                (4.4) 

 

where dλ is a non-negative scalar; Q is plastic potential function.  

Experimental data, however, indicates that associated flow may not be the most 

appropriate assumption for characterizing the response of concrete. Some 

researchers have noted that concrete displays shear dilatancy characterized by 

volume change associated with shear distortion of the material. In order to improve 

modelling of concrete material response, non-associated flow models, in which the 

yield and plastic potential functions are not identical, in the form of equation 18, 

were used. 

 

4.4.3 Hardening rules 

The law, which governs the phenomenon of configuration change in yield surface, 

which occurs during loading process, is the hardening rule. One of the major 

problems of work/strain hardening plasticity is finding the evolution of the yield 

surface (Ohtami and Chen). 
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Several hardening rules have been proposed in the literature. Depending on the 

hardening rule used, the material response after initial yielding differs considerably. 

The hardening rules available in the literature are isotropic hardening, kinematic 

hardening, independent hardening and mixed hardening. In isotropic hardening, the 

basic assumption is uniform expansion of the yield surface. Yield surface does not 

undergo any distortion or translation. The concrete behavior under monotonic 

loading has been modeled by many, such as Imran et al, Smith et al. using isotropic 

hardening. 

Prager proposed a model in connection with his kinematic model to predict the 

translation of the yield surface. The Kinematic model assumes that, during plastic 

loading, the yield surface translates as a rigid body in stress space without any 

expansion. 

 

4.5 Strain softening and strain space plasticity 

In the classical plasticity-based models, finding the yield surface poses many 

problems and an attempt was made to develop a continuous model for inelastic 

behavior which did not require the existence of the yield condition. This model is 

based on the concept of intrinsic (or endochronic) time, defined in terms of strain or 

stress and used to measure the degree of damage occurred to the internal structure of 

the material. This model was primarily developed for metals by Valanis. Sandler 

studied its stability and uniqueness and Rivlin critically evaluated the theory. The 

Endochronic model can describe inelastic volume dilatancy, unloading, strain 

softening, hydrostatic pressure sensitivity and pinching of hysteresis loops under 

cyclic loading. Even though this model gives superior results, its popularity is 

restricted by its complexity. The numerous numerical coefficients required for the 

development of a constitutive law are estimated by curve fitting of available 

experimental data. The main obstacle in the development and application of this 

method is the large number of parameters required. 
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A typical constitutive equation for linear endochronic theory with pseudo-time 

measure ξ is as follows in Eq. (4.5) 

𝜎𝑖𝑗 = ∫ 𝐸𝑖𝑗𝑘𝑙(𝜉 − 𝜉′)
𝜕𝜀𝑘𝑙

𝜕𝜀′
                                          (4.5)

𝜉

0

 

 

4.6 Fracturing and continuum damage models 

These models are based on the concept of propagation and coalescence of 

microcracks, which are present in the concrete even before the application of the 

load. Damage based models are often used to describe the mechanical behavior of 

concrete in tension. In the earlier class of models plastic deformation is defined by 

usual flow theory of plasticity and the stiffness degradation is modelled by 

fracturing theory. The second class of models is based on the use of a set of state 

variables quantifying the internal damage resulting from a certain loading history. 

The fundamental assumption in these models is that the local damage in the material 

can be averaged and represented in the form of damage variables, which are related 

to the tangential stiffness tensor of the material. The models of this category can 

describe progressive damage of concrete occurring at the microscopic level, through 

variables defined at the level of the macroscopic stress-strain relationship 

Krajcinovic and Fonseka. 

Kratzig (1998) derived a strain based damage theory by assuming a Helmholtz free 

energy expression of the Eq. (4.6) 

𝛹(𝜀𝑖𝑗 , 𝐶𝑖𝑗𝑘𝑙 , 𝑝) =
1

2𝜌
                                                   (4.6) 

where ρ= Material density, Cjkii is current stiffness tensor, and εij represents Strain 

tensor. P represents an internal variable describing the radius of the limit state 

surface. Among the variety of theories that describe the behavior of concrete, CDM 

has the advantage to be founded on a rational frame work of the material theory, 
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therefore having a sound physical background. The CDM formulations are also 

finite element oriented. 

 

4.7 Microplane models 

Micromechanical models attempt to develop the macroscopic stress-strain 

relationship from the mechanics of the microstructure. The only popular model in 

this category, which reached up to implementation stage, is the microplane model 

proposed by Bazant and his associates. 

Unlike the other constitutive models, which characterize the material behaviour in 

terms of second order tensors, the microplane model characterizes in terms of stress 

and strain vectors. The macroscopic strain and stress tensors are determined as a 

summation of all these vectors on planes of various orientations (Microplanes) under 

the assumption of static or kinematic constraint. The static constraint (the stress 

vector acting on a given plane is the projection of the macroscopic stress tensor) 

used in the earlier models, acts as an obstruction for the generalization of the 

microplane model for post peak strain softening quasi-brittle materials. The basic 

relations of the microplane model are briefly explained below. The normal strain on 

the microplane is in the Eq. (4.7) 

𝜀𝑁 = 𝑁𝑖𝑗𝜀𝑖𝑗                                                                    (4.7) 

 
where Nij = ni nj. 

In conclusion the three major steps of the microplane model are projecting macro 

stress/strain tensor to microplane using static or kinematic constraint, defining a 

constitutive law at microplane level and getting the constitutive law at macro level 

by summing up all the stress/strain vectors on microplane. The main advantage of 

the microplane model is its conceptual clarity as the model is formulated in terms of 

vectors and the inherent nature of satisfying tensorial invariance requirements. The 
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microplane model treats apparent corners (Vertex) which appear in the conventional 

yield surface based material models. The disadvantage in the microplane model is 

the huge computational work and storage requirements. 
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Chapter 5 

ATENA SOFTWARE: MATERIAL 

MODEL and NONLINEAL ANALYSIS 

 

5.1 Introduction to FEM (Finite Element Method) 

For structural design of concrete members, the non-linear finite element analysis has 

become an important tool. Over the last one or two decades numerical simulation of 

engineering materials has become a major research area. A successful numerical 

simulation demands choosing suitable elements, formulating proper material models 

and selecting proper solution methods. 

The finite element method (FEM) or finite element analysis is a numerical technique 

for finding approximate solutions of partial differential equations as well as of 

integral equations. The solution approach is based either on eliminating the 

differential equation completely, or rendering the partial differential equations into 

an approximating system of ordinary differential equations, which are then 

numerically integrated using standard techniques. 

The first challenge to solve this kind of problem, is to create an equation that 

approximates the equation to be studied, but the numerically stable do not 

accumulate and cause significant errors. The Finite Element Method is a good 

choice for solving partial differential equations over complex domains. 

The basic concept of FEM modelling is the subdivision of the mathematical model 

into disjoint components of simple geometry. The response of each element is 

expressed in terms of a finite number of degrees of freedom characterized as the 

value of an unknown function, or functions or at set of nodal points. The response of 
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the mathematical model is then considered to be the discrete model obtained by 

connecting or assembling the collection of all elements. 

 

5.2 Material model implemented in ATENA 

The program system ATENA offers a variety of material models for different 

materials and purposes. For metal von Mises plastic model is available, for rock and 

solids Ducker-Prager plasticity can be used, while for steel, reinforcement 

multilinear uniaxial model is determined. Nevertheless, the most important material 

models in ATENA are the material models for concrete. These advanced models 

evaluate all the important aspect of real material behavior in tension and 

compression. 

Three nonlinear material models for concrete are available in ATENA: SBETA 

model, Fracture-Plastic constitutive model, and Microplace material model. The 

following sections present the concrete material model used in this investigation for 

finite element analysis of the three-point bending and unconfined compression tests. 

 

5.2.1 Sbeta model 

SBETA is a damaged-based model in which a smeared approach is used to model 

both cracks and reinforcement. This model comprises non-linear compressive 

behavior that is capable of modeling hardening and softening. SBETA model also 

includes other effects of concrete behavior, like fracture of concrete in tension, 

based on the nonlinear fracture mechanics, biaxial strength failure criterion, 

reduction of compressive strength after cracking; and it can also find the tension 

stiffening effect, the reduction of the shear stiffness after cracking, and has two 

crack models: fixed crack direction and rotated crack direction. 
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Nonlinear elastic approach is used for the material matrix, where the elastic 

constants are derived from a stress-strain function which, in ATENA, is called the 

equivalent uniaxial law. This approach can also be considered as an isotropic 

damage model, where the damage modulus is represented from unloading modulus. 

 

5.2.1.1 Stress-strain relations for concrete 

Concrete shows a vast number of micro-cracks, especially, at the interface between 

aggregates and mortal, even before being loaded. The presence of these micro-

cracks has an important effect on the mechanical behavior of concrete, because their 

propagation during loading contributes to the nonlinear behavior at low stress levels 

and causes volume expansion of the mortal. Between aggregates and mortal there is 

a different stiffness that can develop some micro-cracks during loading. One of the 

most important reasons for the low tensile strength of concrete is that the aggregate-

mortal interface has a significantly lower tensile strength than mortal. 

The response of a structure under load depends on the stress-strain relation of the 

constituent materials and the magnitude of stress. 

 

5.2.1.2 Equivalent uniaxial law 

The nonlinear behavior of concrete in the biaxial stress state is described by means 

of the so-called effective stress бc
ef, and the equivalent uniaxial strain εeq. The 

effective stress is in most cases a principal stress. 

The equivalent uniaxial strain is introduced in order to eliminate the Poisson’s effect 

in the plane stress state. 

𝜀𝑒𝑞 =
б𝑐𝑖

𝐸𝑐𝑖
                                                               (5.1) 
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The equivalent uni-axial strain can be considered as the strain, that would be 

produced by the stress бci in a uniaxial test with modulus associated Eci with the 

direction i. Within this assumption, the nonlinearity representing damage is caused 

only by the governing stress бci.   

The complete equivalent uniaxial stress-strain diagram for concrete is shown in 

Figure (5.1).  The numbers of the diagram parts in Figure (5.1), (material state 

numbers) are used in the results of the analysis to indicate the state of damage of 

concrete. 

 
Figure 5.1: Uniaxial stress-strain law for concrete 

 
 

Unloading is a linear function to the origin. An example of the unloading point U is 

shown in Figure (5.1). Thus, the relation between stress бc
ef and strain εeq  is not 

unique and depends on a load history. A change from loading to unloading occurs, 

when the increment of the effective strain changes the sign. If subsequent reloading 
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occurs, the linear unloading path is followed until the last loading point U is reached 

again. Then, the loading function is resumed. 

The peak values of stress in compression f’c
ef and in tension f’t

ef are calculated 

according to the biaxial stress state. Thus, the equivalent uniaxial stress-strain law 

reflects the biaxial stress state. The above defined stress-strain relation is used to 

calculate the elastic modulus for the material stiffness matrices. The secant modulus 

is calculated as Eq. (5.2) 

𝐸𝑐
𝑠 =

б𝑐

𝜀𝑒𝑞
                                                              (5.2) 

 

It is used in the constitutive equation to calculate stresses for the given strain state. 

The tangent modulus Ec is used in the material matrix Dc for construction of an 

element stiffness matrix for the iterative solution. The tangent modulus is the slope 

of the stress-strain curve at a given strain. It is always positive. In cases where the 

slope of the curve is less than the minimum value Emin
t the value of the tangent 

modulus is set Ec
t= Emin

t. This occurs in the softening ranges and near the 

compressive peak. 

 

5.2.1.3  Tension before Cracking 

When the concrete is in tension without cracks, the behavior is assumed linear 

elastic. The elastic modulus of concrete is Ec, and the effective tensile strength 

derived from the biaxial failure is f’t
ef. 

б𝑐
𝑒𝑓 = 𝐸𝑐𝜀𝑒𝑞 , 0 ≤ б𝑐 ≤ 𝑓′

𝑡
 𝑒𝑓

                                           (5.3) 
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5.2.1.4  Tension after Cracking 

Atena uses two types of formulation for the crack opening. The first one expresses 

that a fictitious crack model utilizes the crack-opening law and fracture energy. This 

formulation is suitable for modeling of crack propagation in concrete and it is used 

in combination with the crack band, the second one is a stress-strain relation in a 

material point. This formulation is not suitable for normal cases of crack propagation 

in concrete and should be used only in some special cases. In the following 

subsections five softening models included in SBETA material Model are described. 

The first is shown in fig (5.2) and is the Exponential Crack Opening Law. 

 

 
Figure 5.2:Exponential Crack Opening Law 

 
 

Gf  is the fracture energy needed to create a unit area of stress-free crack. This 

Model uses the effective tensile strength derived from a failure function. The crack 

opening displacement w is derived from strains according to the crack band theory. 

The second one is the Linear Crack Opening Law shown in fig (5.3). 
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Figure 5.3:Linear Crack Opening Law 

 

The last one used is Linear Softening Based on Local Strain shown in fig (5.4) 

 

 

 
Figure 5.4: Linear Softening Based on Local Strain 

 
 

 

5.2.1.5 Compression before Peak Stress 

For the ascending branch of the concrete stress-strain law, ATENA used the formula 

recommended by CEB-FIP model Code 90, Figure(5.5). This formula allows curve 
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forms from linear to curved, and is appropriate for normal as well as high strength 

concrete. 

𝜎𝑐
𝑒𝑓 = 𝑓′𝑐

𝑒𝑓 𝑘𝑥 − 𝑥2

1 + (𝑘 − 2)𝑥
, 𝑥 =

𝜀

𝜀𝑐
, 𝑘 =

𝐸𝑜

𝐸𝑐
                                    (5.4) 

 
 

 
Figure 5.5: Compressive stress-strain diagram. 

 

 

Meaning of the symbols in the Eq. (5.4) are: 

- бc
ef  concrete compressive stress, 

- f’c
ef concrete effective compressive strength 

- x  normalized strain, 

- ε strain 

- εc strain at the peak stress f’c
ef 

- k  shape parameter, 

- Eo- initial elastic modulus 

- Ec - secant elastic modulus at the peak stress. 
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In this case distributed damage is considered before the peak stress. Contrary to the 

localized damage, which is considered after the peak. 

 

5.2.1.6 Compression after Peak Stress 

The softening law in compression is linearly descending. The model of strain 

softening in compression is founded on dissipated energy. This model is based on 

the assumption, that compression failure is localized in a plane normal to the 

direction of compressive principal stress. In this plane all post-peak compressive 

displacements and energy dissipation are localized. This model assumes that the 

displacement is independent on the size of the structure. 

 
Figure 5.6: Softening displacement law in compression 

 

 

 

When there is compression, the plastic displacement wd characterizes the end point 

of the softening curve, thus is defined the energy for generation of a unit area of the 

failure plane. For normal concrete the value of wd is around 0.5mm and it is used as 

a default for the definition of the softening in compression. In this case, for the 
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corresponding volume of continuous material the softening law is transformed from 

a fictitious failure plane, Figure (5.6), to the stress-strain relation.(fig). In the stress-

strain diagram two points define the slope of the softening part: a peak of the 

diagram at the maximal stress and a limit compressive strain εd at the zero stress. To 

calculate this strain the Eq.  (5.5) is used, where wd is a plastic displacement, and L’d 

is a band size. 

𝜀𝑑 = 𝜀𝑐 +
𝑤𝑑

𝐿𝑑
′                                                            (5.5) 

 

The advantage of this formulation is reduced dependency on finite element mesh. 

 
 

5.2.2 Fracture–Plastic Constitutive Model -CC3DNonLinCementitious 

The Fracture-plastic model implemented in ATENA software and used in this thesis 

is a three dimensional model that combines constitutive models for tensile 

(fracturing) and compressive plastic) behavior. The fracture model is based on the 

classical orthotropic smeared crack formulation and crack band model. It employs 

Rankine failure criterion, exponential softening, and it can be used as rotated or 

fixed crack model. The hardening/softening plasticity model is based on Menétrey-

Willam failure surface. Return mapping algorithm is used for the integration of 

constitutive equations. The algorithm for the combination of the two models is based 

on a recursive substitution. The two models have to be developed and formulated 

separately. The model can be used to simulate concrete cracking, crushing under 

high confinement, and crack closure due to crushing in other material directions. 

The material model formulation is based on the strain decomposition into elastic εe
ij, 

plastic εp
ij, and fracturing εf

ij components. 

 

𝜀𝑖𝑗 =  𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑝 + 𝜀𝑖𝑗
𝑓                                                     (5.6) 
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The stress state is then computed by the formula: 

 

𝜎𝑖𝑗
𝑛 =  𝜎𝑖𝑗

𝑛−1 + 𝐸𝑖𝑗𝑘𝑙(∆𝜀𝑘𝑙 − ∆𝜀𝑘𝑙
𝑝 − ∆𝜀𝑘𝑙

𝑓 )                               (5.7) 

 

where the increments of plastic strain  Δεp
kl and fracturing strain Δεf

kl must be 

evaluated based on the used material models. 

 

 

5.2.2.1 Rankine-Fracturing Model for Concrete Cracking 

For concrete cracking the software use the Rankine criterion: 

𝐹𝑖
𝑓 = 𝜎𝑖𝑖

′𝑡 − 𝑓𝑡𝑖
′ ≤ 0                                                     (5.8) 

 

In this case strains and stresses are converted into the material directions, therefore 

when the rotated crack model is adopted, it corresponds to the principal directions, 

and when the fixed crack model is used, it corresponds to the principal directions at 

the onset of cracking. In the preceding formulation fti
’ identifies the tensile strain in 

the direction i and σii
’t is the trial stress that is computed by elastic predictor. 

𝜎𝑖𝑖
′𝑡 = 𝜎𝑖𝑖

′𝑛−1 + 𝐸𝑖𝑗𝑘𝑙∆𝜀𝑘𝑙
′                                                    (5.8) 

 

When the trial stress does not satisfy, the increment of fracturing strain in direction i 

can be computed using the assumption that the final stress state must satisfy. 

 

𝐹𝑖
𝑓 = 𝜎𝑖𝑖

′𝑛 − 𝑓𝑡𝑖
′ = 𝜎𝑖𝑖

′𝑡 − 𝐸𝑖𝑗𝑘𝑙∆𝜀𝑘𝑙
′𝑓 − 𝑓𝑡𝑖

′ = 0                                    (5.9) 
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If we assume that the increment of fracturing strain is normal to the failure surface, 

and that always only the failure surface is being checked, the last equation can be 

simplified, and after substitution, a formula for the increment of the fracturing 

multiplier 𝜆 has the following form. 

∆𝜆 =
𝜎𝑖𝑖

′𝑡 − 𝑓𝑡
′(𝑤𝑘

𝑚𝑎𝑥)

𝐸𝑘𝑘𝑘𝑘
                                                     (5.10) 

 

Where 𝑤𝑘
𝑚𝑎𝑥 is  

 

𝑤𝑘
𝑚𝑎𝑥 = 𝐿𝑡(έ𝑘𝑘

′𝑓 + ∆𝜆)                                                     (5.11) 

 

This equation (5.11) must be solved by iterations considering that for softening 

materials the value of current tensile strength 𝑓𝑡
′(𝑤𝑘

𝑚𝑎𝑥) is a function of the crack 

opening w, where it is computed from the total value of fracturing strain 𝜀𝑘𝑘
′𝑓  in 

direction k, plus the current increment of fracturing strain ∆𝜆 , and this sum is 

multiplied by the characteristic length 𝐿𝑡. The characteristic length as a crack band 

size is calculated as a size of the element projected into the crack direction, Figure 

(5.7). This approach is satisfactory for low order linear elements. 

 

 
Figure 5.7:Tensile softening and characteristic length 
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The tensile strength 𝑓𝑡
′(𝑤𝑘

𝑚𝑎𝑥)  can be expanded into a Taylor series that this 

iteration scheme converges as long as: 

|
𝜕𝑓𝑡

′(𝑤𝑘
𝑚𝑎𝑥)

𝜕𝑤
| <

𝐸𝑘𝑘𝑘𝑘

𝐿𝑡
                                                (5.12) 

 

When snap back is observed in the stress-strain relationship, the equation (5.12) is 

violated for softening materials. This event can happen when large finite elements 

are used. The snap back on the constitutive level cannot be captured in the standard 

displacement based finite element method. This means that the critical region, with 

snap back on the softening curve, will be skipped in a real calculation, which 

physically means, that the energy dissipated by the system will be over estimated. 

This is of course undesirable, and finite elements small should be used. 

The total fracturing strain έ𝑖𝑗
′𝑓, which corresponds to the maximal fracturing strain 

reached during the loading process is different than the current fracturing strain 𝜀𝑖𝑗
′𝑓, 

which can be smaller due to crack closure. 

Shear strength of a cracked concrete is calculated using the Modified Compression 

Field Theory of VECHIO and COLLINS (1986). 

𝜎𝑖𝑗 ≤
0.18√𝑓𝑐

′

0.31 +
24𝑤

𝑎𝑔 + 16

                                                 (5.13) 

 

Where 𝑓𝑐
′ is the compressive strength in MPa, 𝑎𝑔 is the maximum aggregate size in 

mm and w is the maximum crack width in mm at the given location. This model is 

activated by specifying the maximum aggregate size 𝑎𝑔  otherwise the default 

behavior is used where the shear stress on a crack surface cannot exceed the tensile 

strength. 
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5.2.2.2  Plasticity Model for Concrete Crushing 

In the plastic model the stress state is computed using the predictor-corrector 

formula. 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑡 − 𝜎𝑖𝑗

𝑝                                                      (5.14) 
 

Where the plastic corrector 𝜎𝑖𝑗
𝑝 is computed directly from the yield function by the 

return mapping algorithm. 

𝐹𝑝(𝜎𝑖𝑗
𝑡 − 𝜎𝑖𝑗

𝑝) = 𝐹𝑝(𝜎𝑖𝑗
𝑡 − ∆𝜆𝑙𝑖𝑗) = 0                                 (5.15) 

 

In the preceding formulation the difficult aspect is the definition of the return 

direction 𝑙𝑖𝑗 . The failure surface used in the current version is from Menétrey-

Willam. 

𝐹3𝑝
𝑝 = [√15

𝜌

𝑓𝑐
′
] + 𝑚 [

𝜌

√6𝑓𝑐
′

𝑟(𝜃, 𝑒) +
𝜉

√3𝑓𝑐
′
] − 𝑐 = 0                (5.16) 

 

Where 

𝑚 = 3
𝑓′

𝑐
2 − 𝑓′

𝑡
2

𝑓′
𝑐
𝑓′

𝑡

𝑒

𝑒 + 1
                                                  (5.17) 

 

And 

𝑟(𝜃, 𝑒) =
4(1 − 𝑒2) cos2 𝜃 + (2𝑒 − 1)2

2(1 − 𝑒2) cos 𝜃 + (2𝑒 − 1)[4(1 − 𝑒2) cos2 𝜃 + 5𝑒2 − 4𝑒]
1
2

           (5.18) 

 

 

 

In the equations (5.16) f’c and f’t is compressive strength and tensile strength 

respectively and (ξ,ρ,θ) are Heigh-Vestergaard coordinates. Parameter e defines the 
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roundness of the failure surface. Its value is  from 0.5 in cases where the failure 

surface has sharp corners, from 1 if it’s fully circular around the hydrostatic axis. 

Depending on the value of strain hardening/softening parameter, the position of 

failure surface can move. The strain hardening is based on the equivalent plastic 

strain, which is calculated according to the following formula 

∆𝜀𝑒𝑞
𝑝 = 𝑚𝑖𝑛(∆𝜀𝑖𝑗

𝑝 )                                                   (5.19) 

 

In this surface the hardening/softening is controlled by the parameter c, which 

evolves during the the yielding/crushing process by the following relationship: 

𝑐 =  (
𝑓′

𝑐
(𝜀𝑖𝑗

𝑝 )

𝑓′
𝑐

)                                                          (5.20) 

The 𝑓′
𝑐
(𝜀𝑖𝑗

𝑝
) represents the hardening/softening law which is based on the uniaxial 

compressive test. The law is shown in Figure 5.8, where the softening curve is linear 

and the elliptical ascending part is given by the following formula: 

𝜎 = 𝑓𝑐𝑜 + (𝑓𝑐 − 𝑓𝑐𝑜)√1 − (
𝜀𝑐 − 𝜀𝑒𝑞

𝑝

𝜀𝑐
)

2

                                 (5.21) 

 

 
 

Figure 5.8:Compressive hardening/softening and compressive characteristic length. Based on 
experimental observations by VAN MIER 
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The law on the ascending and descending branch is based on strain and 

displacements  

respectively, where the mesh has objectivity into the finite element solution. The 

shape is based on the work of VAN MIER. The value of 𝑓′
𝑐𝑜

 is a input parameter in 

the beginning of nonlinear behavior as well as the value of plastic strain at 

compressive strength 𝜀𝑐
𝑝. The parameter 𝑓′

𝑐𝑜
 should be selected prudently because it 

is important to ensure that the fracture and plastic surfaces intersect each other in all 

material stages. On the descending curve, the length scale parameter Lc transforms 

the equivalent plastic strain into displacements. This parameter is defined through 

the crak band parameter in the fracture model, and it corresponds to the projection of 

element size into the direction of minimal principal stresses. 

In the constitutive model, the plastic potential is given by the following formula: 

 

𝐺𝑃(𝜎𝑖𝑗) = 𝛽
1

√3
𝐼1 + √2𝐽2                                                 (5.22) 

 

The parameter 𝛽 is needed to determine the return direction. When 𝛽 < 0 it means 

that the material is being compacted during crushing, when 𝛽 > 0 the material is 

dilating instead. If 𝛽 = 0 the material volume is preserved. Considering that the 

plastic flow is not perpendicular to the failure surface, usually the plastic model is 

non-associated. 

Figure 5.9 shows the predictor-corrector approach used in the return mapping 

algorithm for the plastic model. To simulate hardening and softening behavior, the 

failure surface moves along the hydrostatic axis during the corrector phase of the 

algorithm. At the origin of the Haigh-Vestergaard coordinate system there is an apex 

of final failure surface. The Secant method is used to determine the stress on the 

surface, which satisfies the yield condition and also the hardening/softening law. 
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:  

 
Figure 5.9: Plastic predictor-corrector algorithm. 

 

 
Figure 5.10: Schematic description of the iterative process. For clarity shown in two dimensions 
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5.2.2.3  Combination of Plasticity and Fracture model 

The two preceding models are combined into a single model such that plasticity is 

used for concrete crushing and the Rankine fracture model for cracking. This model 

is declared as a simultaneous solution of the two following inequalities.  

𝐹𝑝 (𝜎𝑖𝑗
𝑛−1 + 𝐸𝑖𝑗𝑘𝑙(∆𝜀𝑘𝑙 − ∆𝜀𝑘𝑙

𝑓 − ∆𝜀𝑘𝑙
𝑝 )) ≤ 0                            (5.23) 

 

𝐹𝑓 (𝜎𝑖𝑗
𝑛−1 + 𝐸𝑖𝑗𝑘𝑙(∆𝜀𝑘𝑙 − ∆𝜀𝑘𝑙

𝑝 − ∆𝜀𝑘𝑙
𝑓 )) ≤ 0                            (5.24) 

The first inequality is used to define the increase of plastic deformation ∆𝜀𝑘𝑙
𝑝 , while 

the second is used to define the increase of deformation of cracking ∆𝜀𝑘𝑙
𝑓 . 

Figure 5.10 shows the algorithm for the combination of plastic and fracture models. 

When both surfaces are activated, the behavior is quite similar to the multi-surface 

plasticity (SIMO et al. 1988). 

Contrary to the multi-surface plasticity algorithm covers all loading regimes regimes 

including physical changes such as for instance crack closure. At present, it is 

developed for only two interacting models, and its extension to multiple models is 

not straightforward. 

To describe the behavior of a concrete material correctly, it is necessary to consider 

two additional interactions between the two models. The first one is that after 

concrete crushing the tensile strength should decrease as well, and the second one is 

that compressive strength should also decrease when cracking occurs in the 

perpendicular direction (VECHIO and COLLINS 1986). The name of this theory is 

compression field and it is used to explain the shear failure of concrete beams and 

walls. 

The first interaction is resolved by adding the equivalent plastic strain to the 

maximal fracturing strain in the fracture model to automatically increase the tensile 

damage based on the compressive damage. The fracturing strains have to satisfy the 

following condition 
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έ𝑘𝑘
′𝑓 ≥

𝑓𝑡
′

𝑓𝑐
′

𝜀𝑒𝑞
𝑝                                                             (5.25) 

 
Collins proposed the formula (5.26) for the compressive strength reduction 

 
𝜎𝑐 = 𝑟𝑐𝑓𝑐

′                                                              (5.26) 
 

Where  

 

𝑟𝑐 =
1

0.8 + 170𝜀1
,   𝑟𝑐

𝑙𝑖𝑚 ≤ 𝑟𝑐 ≤ 1.0                                       (5.27) 

 

Where 𝜀1 is the tensile strain in the crack. 

 
 

5.2.3  Variants of the Fracture Plastic Model 

In ATENA there are some variants of the fracture plastic model with the following 

differences: CC3DCementitious assumes linear response up to the point when the 

failure envelope is reached, both in tension and compression. In this case there is no 

hardening regime in Figure 5.8. Contrary to it, the material 

CC3DNonLinCementitious assumes a hardening regime before the compressive 

strength is reached. It uses a total formulation for the fracturing part of the model. A 

material equivalent to CC3DNonLinCementitious, where the incremental 

formulation is used, is CC3DNonLinCementitious2. This material can be used in 

creep calculations or when it is necessary to change material properties during the 

analysis. The material that allows definition of history evolution laws is  

CC3DNonLinCementitious2Variable. 

The material CC3DNonLinCementitious2User allows for user defined laws for 

selected material laws such as: diagrams for tensile and softening behavior, shear 

retention factor and the effect of lateral compression on tensile strength. 
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Similarly to the SBETA material, the Cementitious material family offers the choice 

of fixed and rotated crack models. The fixed crack material parameter determines at 

which maximum residual tensile stress level the crack direction gets fixed. In other 

words, 0.0 means fully rotated crack model (as 0 in SBETA), 1.0 means fixed crack 

model (as 1 in SBETA), values between 0.0 and 1.0 determine the crack direction 

locking level, e.g., 0.7 fixes the crack direction as soon it opens so far that the 

softening law drops to 0.7 times the initial tensile strength. 

 

5.2.4  Modelling of cracks in concrete 

Figure 5.11 shows the process of crack formation can be divided into three stages. 

The uncracked stage is before a tensile strength is reached. The crack formation 

takes place in the process zone of a potential crack with decreasing tensile stress on 

a crack face due to a bridging effect. Finally, after a complete release of the stress, 

the crack opening continues without the stress. 

The crack width w is calculated as a total crack opening displacement within the 

crack band. 

𝑤 = 𝜀𝑐𝑟𝐿𝑡
′                                                            (5.28) 

 

where 𝜀𝑐𝑟 is the crack opening strain, which is equal to the strain normal to the crack 

direction in the cracked state after the complete stress release. 

The tension failure of concrete is characterized by a gradual growth of cracks, which 

join together and eventually disconnect larger parts of the structure. It is usually 

assumed that cracking formation is a brittle process and that the strength in tension 

loading direction abruptly goes to zero after such cracks have formed 
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Figure 5.11:Stages of crack opening 
 

Therefore, the formation of cracks is undoubtedly one of the most important non-

linear phenomenons, which governs the behavior of the concrete structures. In the 

finite element analysis of concrete structures, two principally different approaches 

have been employed for crack modelling. These are discrete crack modeling and 

smeared crack modeling. 

The discrete approach is physically attractive but this approach suffers from a few 

drawbacks, such as, employing a continuous change in nodal connectivity, which 

does not fit in the nature of finite element displacement method; the crack is 

considered to follow a predefined path along the element edges and excessive 

computational efforts are required. The second approach is the smeared crack 

approach. In this approach the cracks are assumed to be smeared out in a continuous 

fashion. 

Within the smeared concept two options are available for crack models: the fixed 

crack model and the rotated crack model. In both models the crack is formed when 

the principal stress exceeds the tensile strength. It is assumed that the cracks are 

uniformly distributed within the material volume. This is reflected in the constitutive 

model by an introduction of orthotropy. 
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5.2.5  Fixed Crack Model 

In the fixed crack model (CERVENKA 1985, DARWIN 1974) the crack direction is 

given by the principal stress direction at the moment of the crack initiation. During 

further loading this direction is fixed and represents the material axis of the 

orthotropy. After cracking the orthotropy is introduced, but in the uncracked 

concrete the principal stress and strain directions coincide for the isotropy 

assumption in the concrete component. The weak material axis m1 is normal to the 

crack direction, the strong axis m2 is parallel with the cracks. 

Figure 5.12 shows a shear stress on the crack face because the principal strain axes 

ε1 and   ε2 rotate and need not to coincide with the axes of the orthotropy m1 and m2.  

The stress components σc1 and σc2 denote, respectively, the normal stresses and 

parallel to the crack plane and, due to shear stress, they are not the principal stresses. 

 
Figure 5.12: Fixed crack model. Stress and strain state 
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5.2.6  Rotated Crack Model 

In the rotated crack model the direction of the principal stress coincides with the 

direction of the principal strain. Thus, no shear strain occurs on the crack plane and 

only two normal stress components must be defined, as shown in Figure 5.13. 

 

 
 

Figure 5.13: Rotated crack model. Stress and strain state 
 

 

If the principal strain axes rotate during the loading the direction of the cracks rotate, 

too. In order to ensure the co-axiality of the principal strain axes with the material 

axes the tangent shear modulus Gt is calculated according to CRISFIELD 1989 as 

𝐺𝑡 =
𝜎𝑐1 − 𝜎𝑐2

2(𝜀1 − 𝜀2)
                                                 (5.29) 

 

 

5.2.7  Interface material model 

To create the finite element model it was necessary to use the interface material 

model between specimen and frame, in fact the interface material model can be used 

to simulate contact between two materials. The interface material is based on Mohr-
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Coulomb criterion with tension cut off. The constitutive relation for a general three-

dimensional case is given in terms of tractions on interface planes and relative 

sliding and opening displacements 

 

{
𝜏1

𝜏2

𝜎
} = [

𝐾𝑡𝑡 0 0
0 𝐾𝑡𝑡 0
0 0 𝐾𝑛𝑛

] {
∆𝑣1

∆𝑣2

∆𝑢

}                                   (5.30) 

 

The initial failure surface corresponds to Mohr-Coulomb condition (5.31) with 

ellipsoid in tension regime. After stresses violate this condition, this surface 

collapses to a residual surface which corresponds to dry friction. 

|𝜏| ≤ 𝑐 − 𝜎 ∙ 𝜙, 𝜎 ≤ 0                                                (5.31) 
 

 

𝜏 = 𝜏0√
(𝜎 − 𝜎𝑐)2

(𝑓𝑡 − 𝜎𝑐)2
, 𝜏0 =

𝑐

√1 −
𝜎𝑐

2

(𝑓𝑡 − 𝜎𝑐)2

,     𝜎𝑐 = −
𝑓𝑡

2

𝑐 − 2𝑓𝑡𝜙
,   0 < 𝜎 < 𝑓𝑡 

 

 
𝜏 = 0, 𝜎 > 𝑓𝑡                                                 (5.32) 

 

In tension the failure criterion is replaced by an ellipsoid, which intersect the normal 

stress axis at the value of t f with the vertical tangent and the shear axis is intersected 

at the value of c (i.e. cohesion) with the tangent equivalent to –ϕ. The parameters for 

the interface model cannot be defined arbitrarily; there is certain dependence of 

some parameters on the others. When defining the interface parameters, the 

following rules should be observed 

 

𝑓𝑡 <
𝑐

𝜙
, 𝑓𝑡 < 𝑐                                                (5.33) 

 
𝑐 > 0, 𝑓𝑡 > 0, 𝜙 > 0                                     (5.34) 
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It is recommended that parameters 𝑓𝑡 , 𝑐 and 𝜙 are always greater than zero. In cases 

when no cohesion or no tensile strength is required, some very small values should 

be prescribed. 

 

 
Figure 5.14:Failure surface for interface elements 

 

For the three-dimensional case 𝜏 in Fig. 5.15 and equation (5.35) is calculated as: 

  

 𝜏 = √𝜏1 + 𝜏2                                                            (5.35) 
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Figure 5.15: Typical interface model behavior in shear 

 

 

 
 

Figure 5.16:Typical interface model behavior in tension 
 

The initial elastic normal is indicated with Knn and the shear stiffness with Ktt. When 

the thickness interfaces is zero, the value of these stiffnesses correspond to a high 

penalty number. It is recommended not to use extremely high values as this may 

result in numerical instabilities and to estimate the stiffness value it is advised to use 

the following formulas 
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𝐾𝑛𝑛 =
𝐸

𝑡
,        𝐾𝑡𝑡 =

𝐺

𝑡
                                                   (5.36) 

where E and G is minimal elastic modulus and shear modulus respectively of the 

surrounding material and t is the width of the interface zone. Its value can be 

selected either on the basis of the reality. t can be estimated as a dimension, which 

can be considered negligible with respect to the structural size. 

The Figure 5.15 and figure 5.16 also show 𝐾𝑛𝑛
𝑚𝑖𝑛 and  𝐾𝑡𝑡

𝑚𝑖𝑛 these are two additional 

stiffness values that need to be specified in the ATENA input. . They are used only 

for numerical purposes after the failure of the element in order to preserve the 

positive definiteness of the global system of equations. Theoretically, after the 

interface failure the interface stiffness should be zero, which would mean that the 

global stiffness will become indefinite. These minimal stiffnesses should be about 

0.001 times the initial ones. 

 

 

5.3  Finite elements in ATENA 

The available elements in ATENA can be divided into three groups: plane elements 

for 2D, 3D and axisymmetric analysis, solid 3D elements and special elements, 

which comprises elements for modeling external cable, springs, gaps etc. This 

Thesis will explain only the element used. 

For the most part all elements implemented in ATENA are constructed using 

isoparametric formulation with linear and/or quadratic interpolation functions. The 

isoparametric formulation belongs to the "classic" element formulations because this 

method, due to the fact that it is a versatile and general approach with no hidden 

difficulties and, also very important, these elements and formulation are easy to 

understand. This is very important particularly in nonlinear analysis. A big 

advantage of these elements is that their interpolation hi(r,s,t) functions  are 

constructed in hierarchical manner. 
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Although the concept of hierarchical elements was described for plane quadrilateral 

elements, in ATENA it applies for plane triangular elements, 3D bricks, tetrahedral 

and wedge elements too. There is always a set of basic interpolation function that 

can be extended by any “higher” interpolation function. 

Apart from interpolation functions finite element properties depend strongly on the 

numerical integration scheme used to integrate element stiffness matrix, element 

nodal forces etc. In Atena, the majority of elements are integrated by the Gauss 

integration scheme that ensures n(n -1) order accuracy, where n is the degree of the 

polynomial used to approximate the integrated function. 

 
Figure 5.17:Change of finite element mesh density 

 
 
 

5.3.1 3D Solid Elements 

3D solid brick element has three degrees of freedom at each node: translations in the 

nodal x, y and z directions. This is an isoparametric element integrated by Gauss 

integration at integration points. This element is capable of plastic deformation, 

cracking in three orthogonal directions, and crushing. The most important aspect of 

this element is the treatment of non-linear material properties. To create the FEM 

model two kinds of  finite element were used, the first one is a tetrahedral element 
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called CCIsoTetra with 4 to 10 nodes, see Figure 5.18, and the second is a brick 

element called CCIsoBrick with 8 to 20 nodes, see Figure 5.19. 

To reproduce the unconfined compression the interface element to model a contact 

between two surfaces needs to be used. The finite element used is 

CCIsoGap<xxxxxx>. The string in < > describes present element nodes. The 

elements are derived from the corresponding isoparametric elements, it uses the 

same geometry and nodal. Geometry of the supported gap elements is depicted in 

Figure 5.20. 

 

 
 

Fifure 5.18 : Geometry of CCIsoTetra  elements 
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Figure 5.19:Geometry of CCIsoBrick  elements 

 

 

 
 

Figure5.20:CCIsoGap elements 
 

 

The interface is defined by surfaces each located on the opposite side of interface. In 

the original geometry, the interface surfaces can share the same position, or they can 

be separated by a small distance. In this case we speak about the interface with 

nonzero thickness. 
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5.4 Nonlinear analysis in ATENA 

Structural response of elements can be simulated by nonlinear finite element 

analysis. This is a general approach based on principles of mechanics and should 

provide an objective tool for all types of geometry, material properties and loading. 

Such simulations have been recently used to supplement experimental investigations, 

where the value of experimental data has been significantly increased. This approach 

has provided a tool more general than simple design formulas, which are usually 

valid for limited ranges of parameters. The goal of this application for complex 

nonlinear analysis is proposed at the development of new technical solutions and 

special loading types and investigation of failure cases. 

An algorithm for nonlinear analysis is based on three basic parts: Finite element 

technique, constitutive model and nonlinear solution methods. The constitutive 

model is the most important object, because it decides the materials behavior, and 

therefore is treated more extensively here. Two of the most important effects to be 

included in the constitutive model of concrete are tensile fracturing and compressive 

confinement. Several constitutive models covering these effects are implemented in 

the computer code ATENA 

ATENA is a nonlinear finite element analysis program that specializes in the 

modeling and computer simulation of concrete behavior. The program was 

developed by Cervenka Consulting. The program consists of two primary 

components. The first one is the solution core which houses the 2D and 3D 

continuum models, the element, material, and solution libraries and the second one 

is the user interface. ATENA is capable of calculating load carrying capacity, push-

over analysis, crack widths, accurate deflections and areas of concrete crushing. 

Non-linear analysis can be classified according to a type of non-linear behavior. 

Where the deformation is relatively small, for example, in common reinforced 

concrete structures, not only the non-linear materials behavior needs to be 

considered but also the low tensile strength of concrete. In the case that the 
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deformation is significant, but still small, the constitutive equations are linear but the 

complete form of the geometric equations, including quadratic terms has to be 

employed. The most accurate and general approach uses non-linear, both material 

and geometric, equations. In this case it is not possible to apply the total value of 

load immediately but it is necessary to integrate it in time increment or loading 

increment. 

Considering the deformed shape, there are two possibilities for formulating the 

general structural behavior, the Lagrange formulation and the Euler formulation. 

The first one is ordinarily used to calculate civil engineering structures, and its 

formulation evaluates the behavior of infinitesimal particles of volume dV, which 

depend on the loading level applied and the deformations. The Euler formulation is 

used where there are material flows. For structural analysis the Lagrange 

formulation is more suitable, and can be divided into two forms. The Total 

Lagrangian formulation writes the governing equations in respect to the undeformed 

original configuration at time t=0, whereas the updated Lagrangian formulation 

refer to the most recent deformed configuration at time t. ATENA currently uses the 

latter one. 

Usually, for a common analysis of a structure, many small load increments have to 

be applied. We call the start of the load increment t, where its structural state is 

known, and the t+Δt the end of the load. For each increment an iterative solution 

procedure returns a structural response at the end of the increment. To research the 

final level of loading, this procedure is repeated as many times as needed. 

The most common method applied to introduce the equations that govern the 

problem is the principle of virtual work in its different form. Using this procedure it 

is possible to derive several different variation principles. This method is general for 

linear analysis, but unfortunately doesn’t always work in nonlinear analysis. The 

principle of virtual displacement is used in ATENA. The stress and strain tensor 

used in nonlinear analysis is symmetric.  
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All expressions of geometric and constitutive equations were derived independently 

of the structural shape or regarding the finite element used. Atena implements some 

types of element finite. 

There are plane elements for 2D, 3D and axisymmetric analysis, and solid 3D 

elements and special elements. The majority of elements implemented in ATENA 

are constructed using isoparametric formulation with linear or quadratic 

interpolation functions and are also principally integrated by Gauss integration 

scheme.  

 
 

5.4.1 Solution of nonlinear equation 

A major advantage of ATENA is the simpler way of solving the non-linear 

structural behaviour through finite element method and its incremental loading 

criteria. Different methods are available in ATENA for solving non-linear equations 

such as, linear method, Newton-Raphson Method, Modified Newton-Raphson 

method and Arc Length methods. 

These methods  need to be able to solve a set of linear algebraic equation in the form 

 
𝐴𝑥 = 𝑏                                                           (5.37) 

 

where A, 𝑥, 𝑏 stands for a global structural matrix and vectors of unknown variables 

and R.H.S. of the problem, respectively. Newton-Raphson Method and Modified 

Newton-Raphson Method are more commonly used methods. In the present study, 

Newton-Raphson method is used for solving the simultaneous equations. It is an 

iterative process of solving the non-linear equations.  

One approach to non-linear solutions is to divide the load into a series of load 

increments. The load increments can be applied either over several load steps or 

over several sub steps within a load step. At the completion of each incremental 
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solution, the program adjusts the stiffness matrix to reflect the nonlinear changes in 

structural stiffness before proceeding to the next load increment. 

The ATENA program overcomes this difficulty by using Full Newton-Raphson 

method, or Modified Newton-Raphson method, which drive the solution to 

equilibrium convergence (within some tolerance limit) at the end of each load 

increment. 

Using the concept of incremental step by step analysis in Full Newton-Raphson 

method the following set of nonlinear equations is obtained: 

𝐾 (𝑝) ∆𝑝 = 𝑞 − 𝑓 (𝑝)                                           (5.38) 
 
Where: 

 𝑞 is the vector of total applied joint loads 

𝑓 (𝑝) is the vector of internal joint forces 

∆𝑝 is the deformation increment due to loading increment 

𝑝 are the deformations of structure prior to load increment 

𝐾 (𝑝)  ) is the stiffness matrix, relating loading increments to deformation 

increments. 

The set of nonlinear equations shown in Eq. (5.38) represents out-of-balance forces 

during a load increment, that is the total load level after applying the loading 

increment minus internal forces at the end of the previous load step. For the most 

part the stiffness matrix is deformation dependent, that is a function of p , but this is 

usually neglected within a load increment in order to preserve linearity. In this case 

the stiffness matrix is calculated based on the value of p pertaining to the level prior 

to the load increment. 

Before each solution, the Newton-Raphson method evaluates the out-of -balance 

load vector, which is the difference between the restoring, forces (the loads 

corresponding to the element stresses) and the applied loads. The program then 
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performs a linear solution, using the out-of -balance loads, and checks for 

convergence. If convergence criteria are not satisfied, the out-of-balance load vector 

is re-evaluated, the stiffness matrix is updated, and a new solution is obtained. This 

iterative procedure continues until the problem converges. 

The set of equations (5.39) is nonlinear because of the non-linear properties of the 

internal forces: 

 

𝑓 (𝑘𝑝) ≠ 𝑘𝑓 (𝑝)                                                 (5.39) 

 

and non-linearity in the stiffness matrix 

 

𝐾 (𝑝) ≠ 𝐾 (𝑝 + ∆𝑝)                                       (5.40) 
 

where k is an arbitrary constant. 

The set of equations represents the mathematical description of structural behavior 

during one step of the solution. Rewriting equations (5.40) for the i-th iteration 

within a distinct loading increment we obtain: 

 
𝐾 (𝑝𝑖−1) ∆𝑝𝑖 = 𝑞 − 𝑓 (𝑝𝑖−1)                                   (5.41) 

 

All the quantities for the (i-1)-th iteration have already been calculated during 

previous solution steps. Now we solve for 𝑝𝑖 at load level q using: 

 
𝑝𝑖 = 𝑝𝑖−1 + ∆𝑝𝑖                                                       (5.42) 

 

As pointed out earlier, equation  (5.42) is nonlinear and therefore it is necessary to 

iterate until some convergence criterion is satisfied. 
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The concept of solution nonlinear equation set by Full Newton-Raphson method is 

depicted in Figure 5.21. 

Therefore, the most time consuming part of the Full Newton-Raphson method 

solution is the re-calculation of the stiffness matrix 𝐾 (𝑝𝑖−1) at each iteration. In 

many cases this is not necessary and we can use matrix 𝐾 (𝑝0)  from the first 

iteration of the step. 

 
Figure 5.21:Full Newton-Raphson method 

 

This is the basic idea of the so-called Modified Newton-Raphson method. It 

produces very significant time saving, but on the other hand, it also exhibits worse 

convergence of the solution procedure. The simplification adopted in the Modified 

Newton-Raphson method can be mathematically expressed by: 

𝐾 (𝑝𝑖−1) ≅  𝐾 (𝑝0)                                                (5.43) 
 

The modified Newton-Raphson method is shown in Figure 5.22. Comparing Figure 

5.21 and Figure 5.22 it is apparent that the Modified Newton-Raphson method 
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converges more slowly than the original Full Newton-Raphson method. On the other 

hand a single iteration costs less computing time, because it is necessary to assemble 

and eliminate the stiffness matrix only once. In practice a careful balance of the two 

methods is usually adopted in order to produce the best performance for a particular 

case. Usually, it is recommended to start a solution with the original Newton- 

Raphson method and later, i.e. near extreme points, switch to the modified 

procedure to avoid divergence. 

 
 

Figure 5.22:Modified Newton-Raphson method 
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Chapter 6 

CREATION OF THE FEM MODELS 

 

The models reproduced can be parted in two groups. The numerous group is about 

the three-point bending tests, where it was necessary to produce four different 

modes for each beam size, and for each size there are four or five different notch 

depths. In the other group a cube model for unconfined compression was produced. 

The creation of the models was done with ATENA 3D Graphical User Interface, 

which is a part of the ATENA program system. The program, which is determined 

for nonlinear finite element analysis of structures, offers tools specially designed for 

computer simulation of concrete structural behavior. The ATENA program system 

consists of a solution core and several user interfaces. The solution core offers 

capabilities for a variety of structural analysis tasks. 

ATENA 3D program is designed for 3D nonlinear analysis of solids with special 

tools for concrete structures in this case.  

The program has three main functions: 

1. Pre-processing. Input of geometrical objects (concrete and interfaces.), 

loading and boundary conditions, meshing and solution parameters. 

2. Analysis. It was possible a real time monitoring of results during calculations 

3. Post-processing. It was utilized for graphical and numerical results 

ATENA recognizes two models, geometrical and numerical. Data of these models 

are treated strictly separately. Geometrical model represents dimensions, properties 

and loading. It consists of an assembly of macro elements (solids). Macro elements 

are connected by contacts. Each macro element is an independent object defined by 

joints, lines and surfaces. Thus on a contact of neighboring macro elements there are 
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double surfaces. This provision assures that each object is independent of the others. 

All interaction between the macro elements is provided by contacts. Geometrical 

model is completed by defining loading (load cases and load history) and 

construction cases. 

The Numerical model is generated based on the geometrical model and represents a 

numerical approximation of the structural analysis problem. The Numerical model is 

a result of discretization made by the finite element method. The tool mesh 

generator was used to generate meshes automatically. As a consequence of 

independent macro elements the finite element meshes were made independently for 

each macro element. Thus, when two macro elements are connected as neighboring 

objects, there are two surfaces belonging to each object on the contact. 

In succession the basic steps used to define a complete geometrical, and then a finite 

element model for non-linear analysis will be explained. The purpose of the 

geometrical model is to describe the geometry of the structure, its material 

properties and boundary conditions.  

 

 

6.1 Three point bending tests 

The three point-bending test is composed of four different sizes, where the 

parameters that change are the height and length, whereas the thickness is always the 

same. Each size also has four or five different notch depths, the mesh is therefore 

different for each model.  

The analytical model for the finite element analysis was created during the pre-

processing with the initial help of the fully automated mesh generator. The 

geometrical model is composed of three-dimensional solid regions called “macro-

elements”. To reproduce the three point bending test it was necessary to create the 

concrete beam, that represents a macro-element, and the support. There are three, 

one positioned on the top of the beam, and the other two below, near to the corner. 
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Each macro-element is defined separately, and is composed of joints, lines and 

surfaces. In ATENA 3D each macro-element has its own joints, lines and surfaces. 

This means that no joint, line or surface can be shared by two macro-elements. 

Macro-element definition started with the creation of geometrical joints. These 

joints are later connected into boundary lines. The subsequent step is the creation of 

surfaces. They are composed of the previously defined lines. When two macro-

elements touch each other, the program automatically detects this condition and 

creates contacts at the appropriate locations. 

After examination of the user interface layout, it was possible to start with the 

definition of the geometrical model of the analyzed structure. The next step was the 

definition of material groups and material properties. For the current problem, it was 

necessary to define two material types: one elastic material for the steel plates at 

support and loading points and concrete material for the beam. For the support 3D 

elastic isotropic was used and for concrete 3D Nonlinear cementitiuos 2 was used. 

The material characteristics of the support are shown in the following table (6.1). 

The characteristics of the concrete will be shown later. 

 
3D elastic isotropic 

Elastic modulus E 200 [GPa] 
Poisson’s ratio ν 0.3 

Material density ρ 0.0023 [M/l3] 
Coef. of thermal expansion 0.000012 [l/T] 

Table 6.1:characteristics of the steel support 

After the material type of the concrete was inserted, ATENA asks for the cube 

strength of the concrete, and starting from that, the software generates the default 

values of material parameters. fcu= 31MPa was inserted, the same as what was 

specified from the experiment data tests. After that, it was possible to change all the 

properties of the concrete, such as the basic properties, the tensile and compressive 

properties, and the miscellaneous properties. 
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Next step in the Input data preparation was the definition of problem geometry. The 

geometry was created by defining individual solid regions. The first task was to 

define the concrete beam and subsequently the steel plates for loading and supports 

was created. Each macro-element has its own set of joints, lines and surfaces.  Every 

macro-element was created with the simplest approach. This method defines 

individual joints and then connects them to lines, which are later connected to form 

surfaces. Surfaces can be used directly to define a solid or the extrusion feature can 

be used to create a new solid by extruding a surface along a predefined vector.   

When macro-elements were defined for modeling the loading and supporting steel 

plates, it was necessary to consider some aspects. In nonlinear analysis it is often 

necessary to avoid any unrealistic stress concentration, as this may cause premature 

failure or cracking in these locations. If the support conditions or loads are applied at 

single nodes, this may create strong stress concentrations affecting the analysis 

results. It should be considered that in most cases such a stress concentration very 

seldom exists in reality as the supports or loads are usually applied over a certain 

area and never at single points. This is also the case in the current problem, which 

corresponds to an experimental setup, where loading and supports were realized 

using small steel plates. 

After the definition of macro-elements was completed it was possible to proceed to 

the next step in the definition of the numerical model that is the automatic mesh 

generation. Each macro-element was meshed independently. Many attempts 

regarding mesh generation were done to search for the best response of the software.  

There are three main options for the macro-element mesh generation. It was possible 

to create a structured mesh that consists of only brick elements. Such a method is 

possible only for macro-elements that have six boundary surfaces. An important 

factor is to set the mesh generation parameters. The finite element mesh quality has 

a very important influence on the quality of the analysis results, the speed, and 

memory requirements. Refining only the important parts can save a lot of processor 

time and disk space. The global default mesh size was changed many times, and it 
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was decided to intensify the area near the notch. At the beginning for the lateral area 

the value of 1 was used and for central area 0.4 was used. The result of this 

operation is shown in Figure 6.1, Figure 6.2 and Figure 6.3. 

 
Figure 6.1: Front view of Beam C with notch α=30% 

 
 
 

 
Figure 6.2: top view of Beam C with notch α=30% 

 

 
Figure 6.3: bottom view of Beam C with notch α=30% 
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It was possible to select what kind of elements are to be generated for which macro-

elements: linear or quadratic. Linear elements are low order elements with nodes at 

each element corner. Quadratic elements usually have additional nodes on each 

element edge. Some quadratic elements may have even nodes in the middle of 

element sides or inside the element.  

Even though the linear tetrahedral elements are generally not recommended for 

stress analysis, they can be used in this case for modeling the steel plates, since an 

accurate modeling of stresses and deformations in these areas is not as important as 

the modeling of the concrete beam itself. 

In this case, linear elements were used and for the steel plates the tetrahedral 

elements had to be used. In the case of contacts, it was possible to enforce 

compatible meshes on both sides of the contact. In general cases, ATENA supports 

contacts with incompatible meshes, but this feature should not be used if it is 

important to properly model stresses and deformation in the contact area. In the 

analyzed case, the contact regions between concrete beam and steel plates should 

not have a great influence on the beam behavior, so it is not necessary to enforce the 

full mesh compatibility on the two contacts. 

 Due to this assumption, it is also possible to mesh the beam with brick elements and 

the plates with tetras. This greatly simplifies the model definition, but it is necessary 

to understand that this will result in certain incompatibilities in the displacement 

field on these contacts. In this case, it is not a big problem, since in reality the 

connection among the steel plates and concrete would also not be perfect.  

 

6.1.1 Supports and Actions  

The next step in creating the model is to describe the definition of supports and 

loads for this problem. The analyzed beam is supported at the bottom steel plate in 

the vertical direction. The beam is loaded at the top steel plate. We are interested in 
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determining the maximal load-carrying capacity of the beam, which means we want 

to also be able to trace the structural response in the post-peak regime.  

The easiest method to accomplish this is by loading the beam by prescribed 

displacements at the top steel plate. It is also possible to apply the loading by 

vertical forces, which will be increased in each load step. In order to be able to go 

into post-peak, advanced non-linear strategies such as Newton-Raphson method 

solution was necessary. The first load cases were defined, and then they were 

combined together to form a loading history for an analyzed structure. In ATENA 

each loading step then represents a loading increment, which is added to the 

previous loading history. 

For this problem, two load cases are needed: one containing the vertical and 

horizontal supports, and one with the prescribed deformations at the top steel plate. 

The choice of how to secure the beam is very important because this may change the 

results and thus obtain different solutions more or less close to the real solution. The 

purpose is to try to bind the specimen in question in order to reproduce, as much as 

possible, the real constrain used in laboratory. 

 It was decided to constrain the beam with the static scheme support-support, as you 

can see in the picture (6.4) the left steel plate was bound in the x and y direction to 

play the zip tie. We could choose two different options for entry: tying the knots of 

the lower steel or tying the central line of the steel plate entirely. The second option 

considered fairer and more similar to the real situation was chosen. 

It was necessary for this support to also be fixed in the z direction in order to prevent 

any rigid body displacements.  To reproduce the simple constraint support, the right 

steel plate was bound only in the y direction. In this way a loaded beam support-

support was reproduced. 
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Figure 6.4: Constraint at the bottom, fixed in all direction 

 
 

 
Figure 6.5: Constraint at the bottom, fixed in y direction 

 
 
 

It was decided to apply the prescribed displacement to a line at the top steel plate. It 

was necessary to sum all the reactions at these nodes in order to obtain the total 

loading force. In this way, it is possible to have a more precise value of the loading 

force as we could monitor the reaction force at each node. Added together, they are 

directly equivalent to the total of the loading force necessary to break the beam.  
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6.1.2 Loading History and Solution Parameters  

The next step describes the definition of loading history for the analysis of the beam. 

The loading history consists of load steps. Each load step is defined as a 

combination of load cases, which has been defined previously. Each load step also 

contains a definition of solution parameters, which define solution methods that are 

to be used during the load steps. Analysis steps define loading history for solution, 

there are some rules to consider for the load steps. 

Load steps are incremental. This means that values of loadings applied in the current 

step are added to the loading applied in previous load steps. Total loading in a step is 

a sum of all loading in the entire load history up to, and including this step. Another 

important rule is that loading need not be proportional and loading history is unique. 

In a non-proportional load history the sequence of loading is important. A change of 

load sequence may produce different results. Superposition of stress states is not 

admissible in nonlinear analysis. 

ATENA 3D contains a standard set of solution parameters. This section defines 

methods and parameters for solution of nonlinear equations. Two default sets can be 

chosen, Standard Newton-Raphson method and Standard arc-length method.  The 

solution method used was Newton-Raphson. It was possible to set up many 

parameters of this method. Newton-Raphson method keeps the load increment 

unchanged and iterates displacements until equilibrium is satisfied within the given 

tolerance. This means that this method should be used in cases when load values 

must be exactly met..    

After that, it was possible to prescribe the loading history for the given problem. The 

objective was to keep increasing the load up to failure. Very often before an analysis 

is started it is difficult to estimate the required loading level that would lead to 

failure. The maximal load level however, can be often estimated either by simple 

hand calculation or by performing an initial analysis with a very small load level. 
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Then from the resulting stresses it is possible to estimate how much the load must be 

increased to fail the structure. 

In this case, it is known from the experimental results that the beam should fail at 

the deflection of about 0.003 m. In load case 2 a prescribed displacement of -0.0001 

mm was defined. This means that approximately 50 load steps would be needed to 

reach the failure. It required many steps because it was also necessary to know the 

behavior after pick.  

For each analysis step, it was necessary to select the load cases, which should be 

applied, solution parameters and a multiplier that was used to scale all forces or 

prescribed displacements for the given step. 

 

6.1.3 Monitoring Points  

Monitoring points serve to monitor results of calculation during analysis. 

Monitoring points have similar meanings as measuring gauges in laboratory 

experiments. 

During non-linear analysis it is useful to monitor forces, displacements or stresses in 

the model. The monitored data can provide important information about the state of 

the structure. For instance from monitoring of applied forces or reactions, it is 

possible to determine if the maximal load was reached or not. 

There are two kinds of monitoring points, in nodes and in integration points. In 

nodes the following can be monitored: external forces, reactions and displacements. 

In integration points the following can be monitored: stress, strain, temperature, 

initial stress and strain, body forces, crack attributes. Monitored data can be listed in 

printed output, exported and used for subsequent data processing, graphs, etc. 

There are two monitor Point types studied in this analysis. The first type was used to 

obtain the forces developed in the specimen due to the predetermined deformation in 
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sets summit. In fact, these monitor Points were positioned immediately below the 

top of the steel plate as shown in figure (6.6). Figure (6.7) shows the longitudinal 

arrangement of these points instead, where one was positioned for each node, so for 

about 5. In this manner, the force for each node was obtained and by summing all 5 

we also obtained the total force acting on the specimen 

 
 

Figure 6.6:Front view of  Monitor Points below the top of the steel plate 

 
Figure 6.7:Top view of  Monitor Points below the top of the steel plate 

 

The second type of monitor point was used to obtain the displacement between the 

two sides of the notch. As is shown in figure (6.8) per side 5 monitor points were 

positioned. Each monitor point on one side is exactly in front of the other on the 

opposite side. 
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In this way, it is possible to derive the opening for each step that the notch 

undergoes by comparing the displacements of the points. The obtained value of the 

opening will later be used in the formula (7.4) to get the strain. 

 

 
Figure 6.7:bottom view of  Monitor Points in the notch 

 
 
 

6.2 Unconfined compression tests 

To create the model of the unconfined compression, all the general rules utilized for 

the creation of the three-point bending beam were used. The size of cubes 

considerate are 40x40mm and 150x150mm. 

Also the analytical model for this finite element analysis was created during the pre-

processing with the help initially of the fully automated mesh generator. To 

reproduce the unconfined compression test it was necessary to create a cube that 

represents a unique macro-element. The second macro-element created was the steel 

plate up and down the cube. In this model there is another problem with the creation 

of the simulation, because an important factor to evaluate is the contact between the 

two materials. These contacts can be modified to simulate perfect connection, gaps 

or other interface types. The incorrect evaluation of this value can produce wrong 
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results. To study this, ATENA offers an interface material model, where by 

changing the value of the parameters it is possible to decide which kind of contact to 

use. The interface material model used is CC3Dinterface. For its calibration, there 

are seven parameters that can be set. These parameters are discussed in chapter 7. 

The first step was the definition of the geometrical model of the analyzed structure. 

The cube  started with the creation of geometrical joints. These joints were 

connected into boundary lines and later the surfaces were created. 

The material used for the unconfined compression were obviously the same as those 

used for the three-point bending tests. 3D elastic isotropic for steel plate and 3D 

Nonlinear cementitiuos 2 for the concrete. 

All the procedures regarding the setting of material model were done in the same 

way as the three-point bending tests. After the definition of macro-elements was 

completed it was possible to proceed to the next step in the definition of the 

numerical model that is the automatic mesh generation. Each macro-element was 

meshed independently. 

Considering the cube shape, it was easy to generate the mesh, using brick elements. 

The important thing to choose is the size of the ele1ments. For an accurate result this 

cannot be too wide or too small, because the model will become too busy in regards 

to the memory requirements.  After some attempts 3.3 mm was chosen for the 

element. The result of this operation is shown in Figure (6.8). 
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Figure 6.8: Model of Cube 40x40mm 

 

Figure 6.9: Model of Cube 150x150mm 
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.As in the three-point bending model the next step is to describe the definition of 

loading history for the analysis of the cube. The values of the parameters that can be 

decided for setting the Newton-Rapson method were almost the same as in the three 

point bending tests. In the beginning the prescribed deformation given was – 0.0001 

m. 

There are two monitoring points necessary for this simulation. One on the top, to get 

the reactions, and one on the bottom, to get the shortening of the specimen. The 

steps used initially was eighty, and its result enought. 

 

6.3 ATENA studio 

After the creation of the first three-point bending model, it was necessary to 

accelerate the creation process of the models, as four different models needed to be 

produced for each size, due to the different notches evaluated. There are four sizes 

considered, eighteen models were therefore needed in total. For this reason it was 

decided to use ATENA studio, which is a part of the ATENA program system. 

Thanks to this section of the software it was faster to produce these eighteen models.  

The basic description of the ATENA studio is shown in the following sections. 

The ATENA Studio is simple and has an intuitive user interface for ATENA 

solution core. It is a unified environment for all analysis types. The program has two 

main modules. Runtime module where a real time monitoring of results during 

calculations is made possible and Post-processor module where there is access to a 

wide range of graphical and numerical results. Calculation or post-processing phases 

are processed separately by these program modules by opening a corresponding 

window. By switching the programs, ATENA replaces one program module with 

another and all data related to the specific task, if available, are also loaded.  

ATENA recognizes two models, geometrical and numerical. Data from these models 

are treated strictly separately. Geometrical model represents dimensions, properties 
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and loading. It consists of an assembly of macro-elements (solids). Macro-elements 

may be connected by contacts. Each macro-element is an independent object defined 

by joints lines and surfaces. Geometrical model is supplemented by the definition of 

load cases, load history and construction cases. The current version of the ATENA 

Studio does not support the definition of the geometrical model, it operates strictly 

on the numerical model, which is created from the geometric model using a suitable 

pre-processor. 

The Numerical model is generated based on a geometrical model and represents a 

numerical approximation of the structural analysis problem. The Numerical model is 

a result of discretisation made by the finite element method. The mesh generator in 

ATENA makes it possible to generate meshes automatically for solid and 

reinforcing objects. The data of a new task must be imported from an input file. It 

can be produced by ATENA interface in other programs. The input can be edited 

after its import but not after executing command Runtime.  

The creation of each input file was done with support of MATLAB. Inside the input 

file there is all the information to create the model.  ATENA input commands were 

used to produce the input file. They are used to define finite element model, to 

specify the loading history and to activate the finite element non-linear analysis.   

The main function of Runtime module is to control calculation progress and to 

monitor intermediate results. During the process it is possible to monitor some 

useful graphics in the diagram window. The main graphics convergence criteria, 

which are of the greatest importance in nonlinear analysis, because they indicate 

solution accuracy. These are evaluated and shown automatically and need not be 

defined by the user. If desired, other results like forces, displacements, stresses can 

be defined in the input file by the user. Four solution errors serve to check the 

following criteria: displacement increment, normalized residual force, absolute 

residual force, energy dissipation. The load-displacement diagram is a useful tool to 

illustrate the response of a structure. 
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When the analysis is completed ATENA post-processing can be started. In this 

section it is possible to check all the results by the main window and see the 

graphics that can be done. There are several advanced processing options that can 

calculate average, or min. max. Values for the specified output request. 

ATENA studio produces an output file where there are the values that were decided 

to be shown in the creation of the input file. 

In the following are shown the model generate from ATENA Studio, for each size 

there are four or five different notch depth 

 

Figure 6.10: Beam D, 40x40x96mm, without notch.   

 

Figure 6.11: Beam D, 40x40x96mm, notch depth  α=7,5% 
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Figure 6.12: Beam D, 40x40x96mm, notch depth  α=15% 

 

Figure 6.13: Beam D, 40x40x96mm, notch depth  α=30%

 

Figure 6.14: Beam C, 40x93x223mm, without notch. 
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Figure 6.15: Beam C, 40x93x223mm, notch depth α=7.5%. 

 

 

Figure 6.16: Beam C, 40x93x223mm, notch depth α=15%. 
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Figure 6.16: Beam C, 40x93x223mm, notch depth α=30%. 

 

 

Figure 6.17: Beam B, 40x215x517mm, without notch. 
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Figure 6.18: Beam B, 40x215x517mm, notch depth α=2.5% 

 

Figure 6.19: Beam B, 40x215x517mm, notch depth α=7.5% 
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Figure 6.20: Beam B, 40x215x517mm, notch depth α=15% 

 

 

 

Figure 6.21: Beam B, 40x215x517mm, notch depth α=30% 
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Figure 6.21: Beam A, 40x500x1200mm, notch depth α=30% 

 

Figure 6.21: Beam A, 40x500x1200mm, without notch. 
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Chapter 7 

MATERIAL MODEL CALIBRATION  

 

7.1 Creation of graphics. 

The objective of this research is to compare the curves found through the 

experimental data, done in the laboratory, with the curve obtained through the 

nonlinear analysis of the analytical model.  

The first objective of the calibration is to create the graphics which will later they 

will be compared with the other graphics.  The diagrams are nominal stress σN 

versus nominal strain εN with the first one in the ordinate and the second one in the 

abscissa. When the process of nonlinear analysis is finished, ATENA returns an 

output file with the results of what was required in the input file. The data necessary 

for reaching the graphics was obtained by Microsoft Excel. The procedure is 

identical for both the tests. The output file was opened in Microsoft Excel and the 

formula to obtain the data necessary to draw the graphics was reproduced. The 

graphics were drawn by the program Grapher 8. It is a specific program for drawing 

the graphics. The method to compare the two curves is very simple, it consists of 

putting the founded curve on top of the curve that is already known 

 

7.1.1 Unconfined compression test 

The output file of unconfined compression returns two values for each step. The first 

one is a reaction, that represents the force applied on the step in question, and the 

second one is a displacement, that represents the shortening of the specimen. After 

arranging the values in a table, it was possible to obtain the curves sought. The 
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formula (7.1) obtains the values of nominal stress, where k is a coefficient equal to 

one, D is the mean of the specimen dimension in the respective axis, and F is the 

Force obtained from the output file. 

𝜎𝑁 =
𝑘𝐹

𝐷2
                                                               (7.1) 

 

To obtain the nominal stress the formula (7.2) was applied, where D is always the 

dimension of the specimen and u is the shortening of the specimen. 

𝜀𝑁 =  
𝑢

𝐷
                                                             (7.2) 

 

Both the formulas were applied for each step, in this way the values for the curve 

nominal stress-nominal strain to compare with the curve nominal stress-nominal 

strain reached from the experimental were found. 

 

7.1.2 Three-point bending test 

The output file from the three-point bending returns two different kinds of values. 

The prescribed deformation along the thickness was put on the top of the beam, 

precisely above the steel plate. Figure (7.1) shows how on the top of the steel plate 

there are 8 nodes. For each node the output file returns one value of the reaction that 

represents the force employed in the step in question. Summing each value we find 

the total force for each step. 

After that, thanks to the formula (7.3) it is possible to find the nominal stress used in 

the graphics. 

𝜎𝑁 =
6𝐹(1 − 𝜉)𝜉𝑙

𝑊𝐷2
                                                   (7.3) 
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Figure 7.1: Top of steel plate 

 

 F represents the sum of the force on each node, 𝜉  is the ratio of x and l and 

represents the eccentricity of the application of the force. W and D are the thickness 

and the height, respectively. 

To obtain the displacement the procedure is a bit more complex. It is necessary to 

know the opening between two sides of the notch. 

 

 
Figure 7.2: Bottom of beam, notch depth 

 

Considering there are 8 nodes for each side along the thickness of the specimen, the 

output file returns eight values of the displacement for each side. Summing each 
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value with the value of the node in front of the node considered, and taking the 

average of these eight values finds the opening of the notch. It was done for each 

step and the result of this operation was used in the formula (7.4) to obtain the 

nominal strain. 

𝜀𝑁 = {

𝛽𝑢

𝑔
 𝑓𝑜𝑟      𝛼 = 0

𝑢

𝐷
 𝑓𝑜𝑟        𝛼 > 0 

                                                   (7.4) 

 

In the previous formula for α=0 , g is the gauge length and β is a correction factor to 

explain the linear moment distribution between the extensometer feet with spacing g 

by converting the average measured strain to peak strain in mid-span. 

 

7.2 Numerical calibration 

Modeling of a structure with a nonlinear analysis usually involves multiple choices 

of constitutive relationships and modeling approaches. The variety of the choices 

demonstrates the versatility of the tools, but, at the same time, it can greatly 

complicate the validation procedure, because each combination of constitutive 

relationships and modeling approaches will usually produce different predictions. 

To understand the meaning of the Calibration, it is important to define the meaning 

of Computation model, that can be definite like a specific non linear  analysis with 

the selected behavioral model, constitutive relationships, and modeling approach. 

This definition is especially useful when a specific set of constitutive relationships 

and modeling approaches is determined a priori. Since it would be hardly feasible to 

consider all possible combinations to draw conclusions about a nonlinear analysis, 

the first step in the model validation procedure should be model calibration. It is 

possible definite as "The process of adjusting numerical or physical modeling 

parameters in the computational model for the purpose of improving agreement with 

experimental data." 
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It is important to note that the model calibration is not the process of finding the 

modeling parameters which give the best agreement with experimental data of 

structural level, but, it is the process to find parameters which are most suitable 

values in basic material level. Therefore, the calibration of material models is the 

task of model developers or researchers. 

In the experimental observations and model predictions, the specimens are identified 

by their own parameters. Usually, computational models use only selected 

parameters of which the effects are considered to be significant in defining physical 

behavior out of all available parameters from experiments 

In this study, the definition of calibration refers to the selection and tuning of 

material property relationships and the model adjustments that are often made to 

obtain a good fit between the measured and predicted overall-response of a 

laboratory test structure were not made. It was possible to select the most 

appropriate set of material models, but to modify the details of selected material 

models was not allowed. In ATENA, the freedom is limited by the program itself. 

The responses of the proposed model  are dependent upon several parameters, 

including three material parameters, i.e., the uniaxial compressive strength fc, the 

(macroscopic) initial tangent modulus E as well as the (initial) Poisson’s ratio ν and 

other dimensionless parameters defined on the fracture-plastic constitutive model. 

For the calibration of that material model, several parameters were studied, each one 

has a specific position in the behavior of concrete. For each parameters the most 

suitable value was found. 

.The calibration of this material model is a repetitive process that consists in setting 

the parameters in the input file, and once obtained the curve for the specimen in 

question, compare it with the curve obtained from experimental data, and then assess 

which parameters will be changed in the research of the most suitable value for each 

of  these.  
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Not being able to calibrate the material model for each laboratory test, it was 

necessary to choose a small number of tests to be calibrated and subsequently the 

validation on the other remaining tests was made. In the selection of tests to 

calibrate, the most appropriate in terms of size and also based on the solution that 

each specimen provides must be considered. 

Therefore it was decided the calibration of the model would be done on one kind of 

specimen for the three point bending test and unconfined compression test. The 

specimens chosen are beam C with the characteristic shown in the table (7.1) and the 

cube 40x40 mm. 

Once suitable values of the parameters regarding the three-point bending curve were 

found, the next step was setting the curve regarding the unconfined compression of 

the cube. In this time a repetitive process was started that consisted of proceeding 

from the unconfined compression curve to three-point bending curve. It was 

necessary to do it in that way because the purpuse is to find the best values for both 

tests, the best matching curve, as similar as possible to the experimental data curve. 

Therefore, when a good curve was found for the three-point bending test but an 

unsuitable unconfined compression curve with the same value, it was necessary to 

come back to three-point bending test and change the value again to be able to find a 

more suitable match. 

  

Specimen C (mm) 
Thickness,W 40.0 

Height,D 92.8 
Length,L 223 

Span,l 202 
Gauge length,g 12.7 

Loading block width,w 11 
Loading block height,h 10 

 
Table 7.1:Beam C, characteristic. 
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The first step was to analyze and study the curve of the three point bending test and 

later examine the unconfined compression. The calibration of these tests can’t be 

done separately because these two tests are interrelated to each other and the 

parameters used on one tests have to be verified in the other test. In this way it is 

possible to find the best value combination for each test.     

After reproducing the curve, it was put on top of the experimental test curve to 

compare them. 

In the beginning, for the first attempt, the values of the parameters given by the 

program ATENA were used, having used the specific compressive strength  f’c  

=31Mpa. 

The default values from ATENA are shown in the table (7.2) and the curve found is 

shown in the figure (7.3).   

 

Figure 7.3: Curve obtained with  3D Nonlinear cementitiuos 2 default values  
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3D Nonlinear cementitiuos 2 
Material type Units  
BASIC   
Elastic modulus EC   [Gpa] [Gpa] 30.73 
Poisson’s ratio  0.172 
Compressive strength fc   [Mpa] -26.35 
Tensile strength ft [Mpa] 2.368 
TENSILE   
Fracture energy Gf [MN/m] 5.921E-05  
MISCELLANEOUS   
Fixed crack model coefficiet  1 
Fail.surface excentricy  0.52 
Specific material weight ρ [MN/m3] 2.300E-02 

Coefficiet of termal expanzion α [1/K] 1.200E-05  
Multipler for the plastic flow dir β  0.0 
SHEAR   
Crack shear Stiff. Factor SF  20 
Aggregate size [m] 0.01 
COMPRESSIVE   
Critical compressive displacement 
Wd 

[m] -5.00E-4 

Plastic strain at compressive 
strength εcp  

-8.574E-
04 

Reduction of comp. strength due to 
cracks rc,lim 

 0.2 

 
Table 7.2:Default value of 3D Nonlinear cementitiuos 2 

 
 

It was noted that the value of Elastic modulus E is lesser than the value advised from 

the experimental test. ATENA uses the formula (7.5) to calculate the Elastic 

modulus, for the experimental tests the formula (2.1) was used instead. 

𝐸 = (6000 − 15.5𝑅𝑐𝑢)√𝑅𝑐𝑢 
𝑓𝐹

𝑓𝑙
2                                        (7.5) 

 

In this way the tensile strength ft and the compressive strength  fc, calculated with 

(7.6) and (7.7) respectively, also have lower values. 
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𝑓𝑡 = 024𝑅𝑐𝑢
2

3⁄ 𝑓𝐹

𝑓𝑙
2                                                     (7.6) 

 
 

𝑓𝑐 = −30
𝑓𝐹

𝑓𝑙
2                                                         (7.7) 

 

The curve found with these values is totally incorrect. The pick of the crack is very 

low compared with the pick from the experimental data, there is about 0.5 MPa of 

nominal stress difference between the two curves. For both curves the nominal strain 

of the pick is the same 

After that, the real process of the calibration was started, with the goal to find the 

best value for each parameter and research the more suitable curve. The research for 

the best value is not an easy process, because often the parameters are connected to 

each other and changing one, changes another. The first thing to understand is how 

the curve changes when adjusting the value for each parameter. Many attempts for 

researching the best value for each parameter were done.  

Every parameter has a different influence on the curve. In this chapter every effect 

for each parameter will be shown, however to bring some important examples, in the 

three point bending, the tensile strength  defines the peak, the fracture energy and 

the parameter β define the slope of the post-peak curve, the Elastic modulus changes 

the degree level of the peak . For the unconfined compression other significant 

examples are the influence of the compression strength that defines the peak, and the 

parameter wd (Critical compressive displacement) that defines the slope of the post-

peak.  

In the following each parameter and it’s correlations will be studied. The calibration 

procedure has been done in the following way: first we analyzed the behavior of the 

curve for the three-point bending and then we verified if the decisions made were 

also correct for the unconfined compression. If not, we turned back and changed 
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again the value of the parameters for the three-point bending and then rechecked on 

the unconfined compression.  

Once we found good values for the three-point bending, we went to set values for 

the parameters in the unconfined compression and then performed the same 

procedure done before and it occurred that the values used in unconfined 

compression are also good for the three point bending. This process took a long time 

because a lot of attempts had to be performed to search for the most suitable values 

for both tests. 

During this calibration process, the influence that each parameter has in the two tests 

analyzed has been studied, understanding how the curves change and looking for 

correlations between the various parameters and between the two tests. 

Studying the parameters it was noticed that some are correlated. For the three point 

bending the β and Gf parameters are correlated and hence the difficulty is to find the 

best pairing in order to obtain a curve as close as possible to the one obtained from 

the experimental data. These two parameters are also very influential in the 

unconfined compression, and in this chapter their influence to this test will also be 

shown. 

After many attempts two principal ways to follow with two different matches of the 

parameters were found. The first one is with Gf = 9.5x10-5 [MN/m] and 𝛽= -0.09 

called curve A and the second one with Gf = 9.0x10-5 [MN/m] and 𝛽= -0.09 called 

curve B. Therefore the problem now was to find the best fitting values for each 

curve and decide which one is suitable. Through the unconfined compression It was 

tried some time and it was see that the curve B needs value of compression strength 

higher that the curve A. For each curve was found the exact value for having a 

correct peak. For the curve A the result was -43 MPa and for curve B was -46 MPa. 

Seeing the characteristic of this batch of concrete it was noticed the value of the 

curve B is more suitable. In table (7.3) the values used for each parameter for the 

curve A and the curve B are shown. 
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3D Nonlinear cementitiuos 2 Curve A Curve B 
Material type Units   
BASIC    
Elastic modulus EC   [Gpa] [Gpa] 41.29 41.29 
Poisson’s ratio  0.172 0.172 
Compressive strength fc   [Mpa] -43.00 -46.00 
Tensile strength ft [Mpa] 3.00 3.00 
TENSILE    
Fracture energy Gf [MN/m] 9.50E-05  9.00E-05 
MISCELLANEOUS    
Fixed crack model coefficiet  1 1 
Fail.surface excentricy  0.52 0.52 
Specific material weight ρ [MN/m3] 2.300E-02 2.300E-02 

Coefficiet of termal expanzion α [1/K] 1.200E-05  1.200E-05  
Multipler for the plastic flow dir β  -0.09 -0.20 
SHEAR    
Crack shear Stiff. Factor SF  20 20 
Aggregate size [m] 0.01 0.01 
COMPRESSIVE    
Critical compressive displacement 
Wd 

[m] -1.500E-5 -1.700E-5 

Plastic strain at compressive 
strength εcp  -8.574E-04 -8.574E-04 

Reduction of comp. strength due to 
cracks rc,lim 

 0.2 0.2 

Table 7.3:Values used for curve A and curve B 

 

Figure (7.4) shows the difference between the curves A and B in the three-point 

bending and figure (7.5) shows the difference between these two curves for the 

unconfined compression. Analyzing the difference between the two curves in the 

three-point bending, it can be noticed, how for both curves, the peak coincides with 

the curve obtained from experimental data, this is because both have practically a 

value of identical tensile strength, which is the parameter that determines the 

position of the peak.  

Looking instead at the trend of the curve in the post-peak, we note how the curve A 

is closer to the curve obtained by experimental data and this is due to the fact that 

for curve A we used higher values of β and Gf than those used in the curve B. 
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Another important difference between the two curves is the difference of the value 

used for the compression strength. This parameter is also strongly connected with 

the β parameter. You can observe this correlation in the unconfined compression, 

where, for a higher value of compressive strength (in absolute value, whereas the 

compressive strength is negative) we need a lower β value. In fact, looking at the 

difference between curve A and B in the unconfined compression, one can notice 

that the peak is almost the same although the values of the compressive strength are 

different.  

This is precisely due to coupling with the value β just described. Always looking at 

the graph between the difference of the curves in unconfined compression one can 

notice how for the two curves the post-peak behavior is different. In this test, the 

post-peak behavior is governed by the parameter WD where by doing a series of 

tests it was found that lower values tend to increase the slope of the curve. However, 

we should be careful because here too, the coupling takes over with other parameters 

and however if the values WD are too high there is a risk that the analysis does not 

converge and stops before. Between the two curves the values WD are very similar 

differing only by a value equal to 0.2, however, it can be seen for the curve B that 

the inclination of the latter is more accentuated and better compared to the 

'inclination of the curve A which tends to enlarge in post-peak and shortly after stops 

due to problems of convergence of the solution. 

The next step was to decide which of the two is the best way to perform validation. 

This choice should be made considering also the results from experimental data. A 

first consideration that can be made is that the curve B is better because it has a 

higher value of compressive strength and therefore similar to values found from 

experimental data.  

One consideration that must be to the detriment of curve B is that it has a low value 

of the parameter β, and this parameter is difficult to calibrate and would therefore 

need more tests to determine it. In fact, in this calibration, it would be better not to 

modify or change this parameter too much. Regarding the value of the fracture 
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energy Gf, curve A would be more appropriate because it is closer to the value of 

96.94 obtained from experimental data as in fact it can be seen from the graph in 

figure (7.4) where curve A is closer to the curve obtained from experimental data. 

To obtain a correct decision in the choice between curve A and curve B some proof 

of validation was also made and tuning of parameters in the three-point bending but 

with a different dimension.  

The size that was considered is the beam D. After a careful analysis and a series of 

validation tests for other types of samples as well, it was decided that the values of 

curve B are more correct and better reflect the results obtained with experimental 

data.  

 
 

Figure 7.4: Curve A and Curve B differences in three-point bending test 
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Figure 7.5: Curve A and Curve B differences in unconfined compression test 

 

 

 
 
7.3 Parameters analysis 

Throughout the calibration, a parametric analysis for each parameter considered was 

carried out in order to understand how each one influenced the shape of the curve. 

To better understand the calibration done, in this chapter this parametric analysis 

will be shown and each parameter will be assessed individually.  

The correlation between the various parameters will also be shown. For each 

parameter, its influence both in the case of three-point bending and for the 

unconfined compression will be shown. The comparison between the different 

values for each parameter will be carried out on curve B, determined as the best 

possible solution after a careful calibration. 

7.3.1 Elastic modulus 
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The first parameter studied was the Elastic modulus E. The modulus of elasticity of 

concrete is a function of the modulus of elasticity of the aggregates and the cement 

matrix and their relative proportions. The modulus of elasticity of concrete is 

relatively constant at low stress levels but starts decreasing at higher stress levels as 

matrix cracking develops. It is a very important mechanical parameter reflecting the 

ability of the concrete to deform elastically 

The elastic modulus is a property of a material which tells how much tension is 

needed to make it a little bit longer or shorter. Normal concrete mixture has an E-

modulus of 25-30 Gpa Please note that the higher the E-module, the higher peak 

stresses will become, Which means that the higher the E-module in concrete, the 

sooner cracks will appear. If you get a really weak E-module, it will bend more. It 

this case the Elastic modulus is higher, because from the experimental test for the 

three point bending used, the value is 41,129 Gpa. 

Figure (7.6) shows the difference of the curves with the different Elastic modulus. In 

this picture the default parameters given from ATENA and the same parameters but 

with the Elastic modulus changed are compared. It shows how changing one 

parameter, the curve doesn’t change so much, but it is possible to see how the pick is 

moved up. The reason is the influence of the Elastic modulus, where greater values 

raise the pick of the curve. 

It is also important to differentiate elastic hardening from plastic hardening. Elastic 

hardening corresponds to the stiffening of the material due to the closure of porosity, 

which corresponds to an increase of the elastic modulus of concrete experimentally. 

The knowledge of the modulus of high-strength concrete is very important in 

avoiding excessive deformation, providing satisfactory serviceability and achieving 

the most cost-effective designs. The next step was to keep the same value of the 

Elastic modulus and research the best suitable values for the other parameters. 
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Figure 7.6: Three-point bending test, different values of Elastic modulus. 

 
 

7.3.2 Tensile strength 

The next parameter studied was the tensile strength. It is one of the basic and 

important properties of the concrete. It is one of the most significant parameters for 

the three-point bending because it helps to define the exact point of the pick.  The 

tensile strength of normal concrete may vary within a wide range depending, among 

other parameters, on the shape and surface texture of the aggregate. The concrete is 

not usually expected to resist the direct tension because of its low tensile strength 

and brittle nature. However, the determination of tensile strength of concrete is 

necessary to determine the load at which the concrete members may crack.  

Although concrete is not normally designed to resist direct tension, the knowledge 

of tensile strength is used to estimate the load under which cracking will develop. 

This is due to its influence on the formation of cracks and its propagation to the 
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tension side of reinforced concrete flexural member. In most cases member behavior 

changes upon cracking. So tension strength of concrete is also considered in 

proportioning concrete member.  

Tensile strength can be estimated from the compressive strength using the following 

equation: 

𝑓𝑡 = 𝑘𝑡(𝑓𝑐)𝑛                                                         (7.7) 

Where kt and n are two coefficients. Some studies suggest the value n = 0.57. 

Coefficient kt depends only on the nature of the aggregate and has to be calibrated 

using known results. It varies from about 0.35 for limestone aggregates to 0.45 for 

flints or basalts, on sealed specimens. For some specimens cured in water, 

coefficient kt slightly increases. 

 

Figure 7.7: Three-point bending test, different values of Tensile strength. 
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The ratio between tensile strength and compressive strength is an important material 

property of concrete. The value of this ratio is required for some applications. the 

ultimate strain value in uniaxial tension is expressed in terms of this strength ratio. 

The tensile strength of concrete is relatively low, about 10 to 15% of the 

compressive, occasionally 20%. 

The default value of tensile strength given from ATENA is very low if compared 

with the Elastic modulus obtained from the experimental data. This aspect brings the 

thought that the real value is higher. Therefore for the Calibration of these 

parameters higher values were researched and after some attempts it was found that 

a suitable value is around 3 MPa. To understand how the value of the tensile 

strength changes the curve, especially the peak, in Figure 7.7 three curves with three 

different values of it are shown. It is possible to see how for high values of tensile 

strength the peak is higher, this means that for breaking the specimen a greater force 

is needed.  

 

7.3.3 Fracture energy  

Another important parameter to trace the curve stress-strain is the fracture energy Gf. 

The fracture energy is defined as the amount of energy necessary to create one unit 

of area of a crack. It is a material property and does not depend on the size of 

structure. This can be well understood from the definition that it is defined for a unit 

area and thus influence of size is removed. Fracture energy can be expressed as the 

sum of surface creation energy and surface separation energy. Fracture energy is 

found to be increasing as we approach crack tip. Fracture energy is a function 

of displacement and not strain. Fracture energy deserves prime role in determining 

ultimate stress at crack tip. The area under the curve represents the amount of energy 

that is consumed by the crack when it grows through the beam (corrections have to 

be made for the energy supplied by the weight of the beam). ATENA calculates the 

fracture energy with the formula (7.8). 

http://en.wikipedia.org/wiki/Deformation_(mechanics)
http://en.wikipedia.org/wiki/Stress_(mechanics)
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𝐺𝑓 = 0.000025𝑓𝑡                                                   (7.8) 

During the experimental data two kinds of fracture energy were found. The initial 

fracture energy, with the value of 51.87 N/m and the total fracture energy with the 

value of 96.94 N/m. the second value could have errors and the calibration also 

needs to find a suitable value for it. After the exact point of the pick is found, some 

attempts were done changing the value of fracture energy for searching the post-

peak curve that follows the curve given from the experimental data as much as 

possible.   

 

Figure 7.8: Three-point bending test, different values of Fracture energy 

 

 



Calibration and validation of ATENA concrete material model with respect to experimental data 
 

140 
 

7.3.4 Multiplier for the direction of the plastic flow 

A parameter useful for obtaining the right slope of the curve is β. It represents the 

multiplier for the direction of the plastic flow. The calibration of this parameter is 

very difficult because it needs a specific experiment to predict the right value. The 

plastic potential controls the plastic flow, and uses a model parameter, which for 

positive values means volume expansion and for negative material compaction 

during the compressive crushing. 

 When 𝛽 < 0 it means that the material is being compacted during crushing, when 𝛽 

> 0 the material is dilating instead. If 𝛽 = 0 the material volume is preserved. In the 

Figure7.9 it is possible to see how 𝛽 influences the trend curve. If it uses 0.0 the 

slope curve is wrong, it is too high and using values below -0.25 the execution was 

killed due to violation of the step divergence criteria. After some attempts were 

made it was noticed that the suitable value is between -0.1 to -0.2, and the choice 

also depends on the other parameter. The 𝛽 parameter is correlated with the fracture 

energy. For high values of Gf (around 9.50E-05), 𝛽 has to be about -0.1 to keep the 

slope of the post-peak curve similar to the experimental data curve, instead for 

smaller values of  Gf the value of 𝛽 has to be -0.2. 

The analysis was conducted for several combinations of 𝛽 and Gf. the best matching 

parameter sets were 𝛽= -0.2 and Gf = 9.0E-05. 

The parameter β is also very influential in the unconfined compression. As you can 

see in fig (7.9) for a higher value of β, the peak tends to move upward with a stress 

of about 10 MPa higher than the optimum value that the peak should have. In this 

chart, it can also be noticed how, after the peak the curve with a greater value of β 

tends to expand more and have greater strain. 
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Figure 7.9: Three-point bending test, different values of β parameter. 

 

Figure 7.10: Unconfined compression test, different values of β parameter. 
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7.3.5 Compressive strength 

The more important parameter of this curve is the compressive strength. 

Compressive strength of concrete is the utmost important which gives an idea about 

all the characteristics of concrete. There are many factors which control concrete 

compressive strength. Concrete mix proportioning, aggregate quality, aggregate 

gradation, type of cement, mixing and placing method, concrete curing and curing 

temperature and the most important one is the water cement ratio. Water cement 

(W/C) ratio has a critical impact on concrete strength characteristics. A minimum 

amount of water is necessary for proper chemical reaction in the concrete and extra 

amount of water increases the workability and reduces strength. 

By this single test one can judge whether Concreting has been done properly or not. 

For the cube test one type of specimen cubes was analyzed, with the size 40x40 cm. 

The compressive strength is measured by breaking cube concrete specimens in a 

compression-testing machine. The compressive strength is calculated from the 

failure load divided by the cross-sectional area resisting the load and reported in 

units of megapascals (MPa). Compressive strength test results are primarily used to 

determine that the concrete mixture as delivered meets the requirements of the 

specified strength, f’c, in the job specification. 

The first problem that arises in the calibration of this test was the determination of 

compressive strength. To understand how influential the compressive strength is in 

the unconfined compression, in figure (7.10) three curves with three different values 

of the compressive strength are shown. Seeing it, it is possible to understand how the 

position of the peak changes, while for higher values of compression strength it has 

higher values of nominal stress.   

 



Alessio Pizzocchero 

 

Figure 7.11: Three-point bending test, different values of compressive strength 

 

Figure 7.12: Three-point bending test, different values of compressive strengt 
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7.3.6 Critical compressive displacement 

In unconfined compression, there is another parameter that governs the trend of the 

curve, this is the critical compressive displacement WD which has a strong influence 

in the trend of the post-peak curve but at the same time also affects the point of its 

peak. As shown in figure (7.11) for lower values of WD, after the peak curve tends to 

widen and not to follow the right trend that it should have. Always to lower values, 

the formation of the peak occurs for higher values of stress, although not by much. 

It is noted that this parameter is practically irrelevant in the three-point bending test. 

 

Figure 7.13: Unconfined compression test, different values of WD parameter. 
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Chapter 8 

MATERIAL MODEL VALIDATION  

 
 

In the validation procedure, the reality of interest is represented in terms of 

experimental data "A validation experiment is conducted for the primary purpose of 

determining the validity of a computational model. 

During the last two decades, several organizations and research communities 

developed and proposed terminology and general concepts for model verification 

and validation. 

A lot of the time the term validation is correlated with the term verification. These 

two terms have been used with ambiguous definitions among researchers and 

practitioners. Some disciplines have developed definitions for V&V, and the 

definitions by PCT60 of ASME (2006) are clear and useful: 

 Verification: "The process of determining that a model implementation accurately 

represents the underlying mathematical model and its solution, the essence of 

specifications for the simulation" 

 Validation: "The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the 

model." 

The objects of Validation and verification are the real world entity (concrete 

structure under experiment), the conceptual model for behavior (Fracture–Plastic 

Constitutive Model), and the computational tool  (ATENA). Software verification is 

the evaluation of the accuracy obtained when the conceptual model is implemented 

in the computational tool. Conceptual model validation assesses the appropriateness 
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of the model to predict the real world entity's behavior. Validation utilizes physical 

testing to assess the suitability of the computational tool for predicting the behavior 

of the real world entity. These three Validation and verification activities require 

computer programming, modeling, analysis and experimentation. 

Another important term is validation metrics. According to ASME (2006): 

Validation metrics: "mathematical measures used to assess the accuracy of the 

simulation results with respect to experimental data. These metrics can take the form 

of an error norm or a statistical test between response features from the 

computational model and corresponding features from the experimental data." 

The first step of any validation procedure is the identification and classification of 

the uncertainties. The possible sources of uncertainty associated with the model 

validation activity are listed below: 

- Random nature of basic variables, such as the uncertain material properties. 

- Measurement errors in experimental observations, such as noise in 

measurement apparatus, and errors from indirect measurements. 

- Uncertain estimation of parameters of probabilistic distribution of basic 

variables. 

- Inexact form or selection of basic variables in the computational or 

conceptual model. 

- Statistical uncertainty by assumption on the probabilistic distribution of 

model outcome. 

- Uncertainty of derived random variables from basic random variables, such 

as tensile strength of concrete derived from compressive strength. 

Ideally, all uncertainties should be included in the model validation procedure for 

precise assessment of accuracy of model prediction. However, since the importance 

of each uncertainty varies according to the characteristics of physical phenomena 
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and corresponding computational models and experiments, not all types of 

uncertainties are included in the model validation procedures of current practice. 

A probabilistic approach for model validation gives the level of agreement between 

experimental data and model prediction by the evaluation of confidence interval of 

experimental observation expressed in nonlinear regression model. 

This approach estimates the accuracy of computational models by a comparison of 

deterministic model prediction with the estimated mean of experimental data. By 

this comparison, it is possible to provide a statistical measure of quantitative 

agreement between computational models and the experimental data. 

In order to build up the validation, some fundamental assumptions were made in this 

approach. First, input variables were assumed to be measured the same as the 

experimental measurement. The variance of experimental observation coming from 

the model parameter uncertainty can be assumed to be negligible, and thus the 

variance analysis by propagation uncertainty becomes unnecessary. The expected 

value of a computational model is the model prediction at the mean values of model 

parameters. No variance is assumed in model prediction. Second, the experimental 

observation has uncertainty coming from measurement error. This uncertainty 

results in the uncertain location of the true mean of the experimental data. 

In building a validation procedure for a specific computational model, the initial step 

should be to understand the model and the associated potential sources of 

uncertainties. 

A computational model was selected to illustrate the proposed procedure, namely 

Fracture–Plastic Constitutive Model. This model incorporates several refined 

material models for structural concrete.  The ATENA programs have tractable pre- 

and post-processors, and they can thus be used immediately in design offices. 

In the model validation, it is often necessary to compare structural behaviors which 

are essential to evaluating the capability of the tools but difficult to be quantified. 
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For the model validation procedure to be more comprehensive and to avoid 

misleading, such aspects should be included in the model validation procedure. 

Among other such difficulties to quantify behaviors, this study deals with the 

aspects associated with cracking and failure modes to illustrate the importance of the 

qualitative comparison in the model validation. Cracking is one of the most 

important characteristics of structural concrete behavior; it is difficult to model 

individual cracks numerically because of the randomness of the locations and 

structural softening.  

Another essential capability of nonlinear analysis to be evaluated is their ability to 

predict modes. In the design of concrete structure, not only accurate prediction of 

failure strength but also correct prediction of failure mode is essentially important 

because it is usually related to the ductility of failure. In general, a design goal is to 

ensure ductile failures to avoid unpredictable brittle failures. Therefore, if a 

computational tool fails to predict the mode of failure, it is unlikely to be a as a 

proper design tool. However, since the decision of the failure mode frequently 

involves the identification of the order of damage of materials, it is also difficult to 

quantify the failure mode, and thus qualitative comparison would be a better choice. 

Since the beam is unreinforced, it may be expected that failure occurs at relatively 

low levels of load and reactions in supports. Thus, it may directly specify 

concentrated supports and loads, without a danger that these would cause local 

compressive crushing. The first objective is to trace the load-displacement curve up 

to the post-failure softening regime, and later, employing the exact formulas it is 

possible to reach stress-strain curve. 

To this end, it may prescribe loading in terms of forces and use the arc-length 

method, which automatically changes the sign of load increment once a peak is 

attained. Alternatively, it may control displacement. Since displacement will keep 

on increasing even after the beam fails, we can employ either the Newton-Raphson 

method or the arc-length method. Due to its better stability, we opt for the Newton- 

Raphson solution method. Note that, for large or brittle beams, a snap-back behavior 



Alessio Pizzocchero 

may occur, in which case both displacement and force increments at the loading 

point change their sign upon failure. In such a situation, the arc-length solution is the 

only applicable method. 

To speed up convergence of the solution, the full Newton-Raphson method was 

employed, with tangent stiffness updated in each iteration. To automatically adjust 

the speed of analysis according to the nonlinearity of the response, the line search 

method was utilized. 

  

8.1 Three-point bending tests of beam C 

The first valid dimension is the beam C. (93x40mm) having made the calibration on 

the beam with notch α = 30%, remained to validate the three remaining beams, the 

two with notch α =15% and α = 7.5% respectively and the un-notch beam. In figure 

you can see how for the un-notch beam the peak value is much lower than the one 

obtained through laboratory tests, and is in the rank of about a little less than 2 MPa. 

 We can say that the peak value is not in total agreement with the peak obtained in 

the laboratory and this will also be true for the other specimens without notch. 

Attempting to evaluate the performance of the post-peak curves obtained by the 

numerical computation, we note that this follows the curve obtained in the 

laboratory quite well even though the final part tends to rise and this suggests too 

high a fracture energy Gf  . 

The beam C validation with the notch α = 7.5% is shown in Figure 8.2. Even in this 

case it can be noted how the peak is incorrect even if closer than the results obtained 

in the un-notch beam. In this case the peak is about 1 MPa lower than the one 

obtained through laboratory tests. The trend of the curve after the peak in this case is 

not the best, because the slope of the curve tends to grow significantly in the final 

part and does not reflect the seeking trend. 
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The validation of the beam c with notch α = 15%, shown in figure (8.3) is definitely 

the best of the beam C ‘s group. This is certainly due to this type of beam being very 

close to the beam calibrated, and having the same size but changing only the depth 

of the notch. This can be noted also when comparing how the curve with notch α = 

30% obtained from calibration shows a trend very similar to the one obtained by the 

validation. Both the curves in fact follow the respective curves obtained from 

laboratory tests just below their progress.  

 

Figure 8.1: Beam C, without notch, comparison between Simulation-Experimental data 
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Figure 8.2: Beam C, notch depth α=7.5%, comparison between Simulation-Experimental data 

 

Figure 8.3: Beam C, notch depth α=15%, comparison between Simulation-Experimental data 
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8.2 Three-point bending tests of beam D 

The second dimension of the validated beam is Beam D. This is the smallest among 

all of the beams and it is the one that has shown better results. In figure (8.4) is 

shown the beam D without notch, which has a peak value lower than about 1 MPa 

and the softening branch is lower than the compared Curve. For Beam D with notch 

α = 7.5% (figure 8.5) the peak value obtained is the closest to the real one, differing 

only by 0.5 MPa. For the softening branch you can make the same considerations as 

in the previous case, even if the curve obtained numerically approaches a bit more 

the one obtained from experimental data. 

The curve relating to the beam D with notch α = 15%, shown in figure (8.6) is 

definitely the best between the curves of the Beam group D. This curve is practically 

in full agreement with the one obtained by experimental data, having a lower peak 

of only 0.3Mpa and having the post-peak trend identical to the curve to compare 

with. This result would be expected for the Beam with notch α = 30%. 

This can be interpreted as an early sign of the problem related to different sizes that 

will be noticed more and more when increasing  the size of the specimens. The beam 

with notch α = 30% is shown in figure (8.7). In this case the peak is exactly the same 

for the stress and the one obtained by experimental data, while it can be noted that 

the origin of the peak in this case was carried out with a slightly greater strain, and 

in fact this reflected in the softening branch where the curve appears to have a minor 

slope to the one compared with. This is the only case in which there is a situation of 

that kind. 

 Analyzing the validation of the beam Group D in his complexity, it can be seen that 

in the growth of the notch the value of the peak is getting closer and closer to the 

real value, reaching the optimal value for the beam with notch α = 30%. The same 

consideration can be done for the softening branch where it can be noted that the 

curve is always more in agreement with the one obtained by the experimental data 

when increasing the notch.  
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These observations find their explanation in the fact that the calibration was done on 

a specimen with a notch α = 30%, so, going closer and closer to this type of 

specimen we note a greater similarity between the two curves to compare. 

 
 

 

Figure 8.4: Beam D, without  notch, comparison between Simulation-Experimental data 
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Figure 8.5: Beam D, notch depth α=7.5%, comparison between Simulation-Experimental data 

 

 

Figure 8.6: Beam D, notch depth α=15%, comparison between Simulation-Experimental data 
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Figure 8.7: Beam D, notch depth α=30%, comparison between Simulation-Experimental data 

 

8.3 Three-point bending tests of beam B 

.The third group validated was the beam B. In this group instead of the usual 4 

different notches if it has one more, this is because the specimen size begins to 

change a lot, having a size far greater than the beam used for the calibration. In fact, 

as can be seen in the figures that represent the validation for this group of beam, it 

has values not entirely in agreement with the curves obtained through experimental 

date. In fig (8.8) is shown the case without notch, where it can be noticed, as in 

previous cases without notch, a lower peak of about 2 MPa and a softening branch 

that reflects only part of the right trend. A problem encountered in making the 

nonlinear analysis of these large specimens is that often the program was not 

orientated to the problem. (Convergence criteria not satisfied. The execution is 

killed two to violation of the step divergence criteria). 
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To solve this problem we choose to decrease the size of the step reducing the 

prescribe deformation. In this way it was possible to hold up multiple values for 

each simulation. 

In figure (8.9) and (8.10) are shown cases regarding the validation of the Beam B 

with notches α = 2.5% and α = 7.5%. In the first case the peak differs from the real 

situation of about 0.6 MPa and in the second of about 0.2 MPa. Even here, we can 

notice how rising up the notch values tend to be more suitable, this is due to the fact 

that the calibration has been done on a specimen with a greater notch than these. In 

these two cases softening branch does not reflect the shape of the curve obtained 

from experimental data, having much higher stress values. For the beam with notch 

α = 2.5% shown in figure (8.9) ,it is noted that the peak has a good value, close to 

the reality and even the softening branch began to follow a proper trend. 

Unfortunately, later on for convergence problems, the program stopped not 

continuing the simulation. 

As might be expected the best case concerns the beam with notch α = 30%. In figure 

8.12 it’s shown how in this case the results obtained from experimental analysis are 

in agreement with those obtained from experimental data. The peak is virtually 

identical and also the performance of the post-peak appears to be very similar to the 

real one. Regarding this group of beam, the later, with notch α = 30% appears to be 

best  validation and the only one that can be considered fully acceptable. 
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Figure 8.8: Beam B, without  notch, comparison between Simulation-Experimental data 

 

Figure 8.9: Beam B, notch depth α=2.5%, comparison between Simulation-Experimental data 
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 Figure 8.10: Beam B, notch depth α=7.5%, comparison between Simulation-Experimental data 

 

Figure 8.11: Beam B, notch depth α=15%, comparison between Simulation-Experimental data 
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Figure 8.12: Beam B, notch depth α=30%, comparison between Simulation-Experimental data 

 
 

8.4 Three-point bending tests of beam A 

The last group of beam to be validated is the Beam A. All the limits of the program 

in this group can be noticed as also the difficulty of analyzing large specimens even 

after having carried out the calibration on a specimen much smaller. This is also 

linked to the problem discussed above called "size effect". For all cases except the 

one with α = 30%, there have been problems in making the nonlinear analysis. 

Every time Convergence criteria was not satisfied. It has therefore been tried to 

decrease the prescribe deformation and thus increase the number of steps, reaching 

in some cases even 500 step but still it has not been able to reach satisfactory 

solutions. It can be seen in figure (8.13) and (8.14) how the curve obtained by 

numerical simulation reflects the  trends initially but then changes near the peak and 
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takes on greater strain values than the real ones. In fact, the peak appears even if 

with almost the right stress values and higher strain values of strain, you can see that 

the peak obtained is not real but tends to be more rounded instead of having a peak 

as it should have. The specimen with notch α = 30% is the only one for this group 

that has led to acceptable results, having a peak a little lower than the real one. The 

softening branch has not been possible to obtain, not even for this type of notch, 

even if it can be noticed that the initial post-peak trend is definitely more accurate 

than the other specimens with notches different to  α = 30%. 

Concluding, the validation of the beam A has not led to good results because of the 

too large a size specimen and therefore a high computational load.  

 

 Figure 8.13: Beam A, without  notch, comparison between Simulation-Experimental data 
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Figure 8.14: Beam A, notch depth α=2.5%, comparison between Simulation-Experimental data 

 

 

Figure 8.15: Beam A, notch depth α=7.5%, comparison between Simulation-Experimental data 
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Figure 8.16: Beam A, notch depth α=15%, comparison between Simulation-Experimental data 

 

Figure 8.17: Beam A, notch depth α=30%, comparison between Simulation-Experimental data 
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Overall it can be said that the validation of fracture-plastic constitutive model has 

brought good results for small specimens such as Beam C and beam D but failed to 

satisfy the requirements for other types of beams. Another important observation is 

that the validation results tend to be very successful for the specimens with notch α 

= 30%, that means for the specimens with the same notch used for calibration. 

Surely if the calibration had been performed on another type of specimen or notch 

the results of the validation would be different. 
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Chapter 9 

CONCLUSION 

 
 

This research activity has led to a number of important conclusions, showing how 

the numerical analysis by finite element software has become an essential tool in 

modern engineering, being able to recreate situations, in the case of laboratory tests 

treated, increasingly similar to reality. 

The importance of the use of laboratory tests made with all specimens from the same 

batch was very important and essential for a good comparison between the tests, and 

especially to be able to perform a proper calibration and subsequently a true 

validation. The set of all the tests performed in the laboratory, which were not all 

used in this research, may be useful for future research with the aim of improving 

the development and calibration of the same constitutive model treated in this thesis, 

or for other constitutive models and other software. 

The constitutive model implemented in the program ATENA and used in this 

research is a three-dimensional model that combines plasticity with fracture. 

CC3DNonLinCementitious2 is the fracture-plastic model combining constitutive 

models for the tensile (fracturing) and compressive (plastic) behavior. The fracture 

model is based on the classical orthotropic smeared crack formulation and crack 

band model. It employs Rankine failure criteria and exponential softening, and it can 

be used as a rotated or fixed crack model. The hardening/softening plasticity model 

is based on the Menétrey- Willam failure surface. The model can be used to simulate 

concrete cracking, crushing under high confinement, and crack closure due to 

crushing in other material directions. 
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Based on the criteria defined in this thesis and the application of the laboratory tests, 

it is possible to identify the constitutive parameters fracture-plastic model of 

concrete. The study also serves as a link between the real behavior of concrete and 

its numerical modelling. 

The known material parameters of concrete (compressive strength f’c and elastic 

modulus E) are used directly. The other material parameters (tensile strength f t , 

Poisson’s ratio ν, fracture energy Gf, and the end point WD of the strain-softening 

curve in compression) of the concrete material model are adjusted to match the 

measured load-deflection curve and reproduce the observed compression crushing 

mode of failure. 

Thanks to the ATENA program, we managed to recreate the specimen in an 

identical manner to the real ones, and thanks to the nonlinear analysis implemented 

in the software, we have been able to reproduce the trend of the tests. The choice of 

the mesh was important, having used brick elements, it was possible to have a 

regular mesh, so with less computational load and a more regular solution. 

Concerning the three-point bending test, for each specimen and for each different 

notch, the most appropriate mesh has been searched for and this has led to good 

results. The aim was to thicken the mesh near the notch, this means in the whole 

central part of the specimen, evaluating from multiple options we managed to find a 

good solution also useful for the proper performance of the crack. 

Through an adequate nonlinear analysis it was possible to recreate the trend of the 

laboratory tests, and then be able to extrapolate the data necessary to recreate the 

stress-strain curves to be compared with those obtained from the experimental data. 

Getting the ultimate load and the trend of the softening branch were two objectives 

completed. These results were achieved thanks to a step by step analysis where a 

predetermined deformation has been applied for each of these. The solution method 

used was the Newton Raphson ‘s method, which was sufficient for this type of 

analysis, although for large specimens (beam A, beam B) of the three-point bending 

test, problems like the snap-back have been found .So for future studies, we 
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recommend the use of solution methods such as arc-length present in the software 

ATENA. The simulations are found to capture the failure mechanism both 

qualitatively and quantitatively. 

Through certain equations it was possible to recreate the curves from data obtained 

from linear analysis and make a proper calibration of the model. The next step was 

to calibrate the constitutive model studying and varying the values of some basic 

parameters. The calibration was performed in Beam C of the three-point bending 

and in the 40x40mm cube of the unconfined compression. 

The calibration results were suitable. In the search for the most appropriate value for 

each parameter studied, it was possible to understand the influence of each 

parameter on the behavior of the material. A better understanding of this was made 

possible when performing parametric analysis for each parameter. The importance 

of tensile strength in three-point bending test has been understood through this 

analysis such as the importance of compressive strength in unconfined compression 

tests. 

Another important aspect that has been considered was the coupling of some 

parameters, such as the fracture energy Gf and in the β parameter. The search for 

more suitable pairing between these two parameters has led to good results in both 

the three-point bending tests as in the unconfined compression. The result of the 

calibration can be considered satisfactory, having found good matches between the 

values of the parameters used and those obtained from laboratory tests, and noting 

that the trends of the curves found reflect those obtained with the experimental data. 

For both tests the peak is virtually identical. In the three-point bending the slope of 

the softening branch is in agreement with the curve that it is to be compared with, 

only a lower fracture energy can be noted. 

Concluding in the calibration the good agreement between experimental and 

numerical stress-strain curve can be observed. 



Calibration and validation of ATENA concrete material model with respect to experimental data 
 

168 
 

Through the use of fracture–plastic constitutive model, after the calibration, the 

comparisons of the results prove the usefulness of the proposed constitutive model. 

The other three-point bending notched and unnotched concrete beams and the 

unconfined compression cube was used to compare the numerical results with the 

laboratory tests for doing the Validation. 

Using fracture–plastic constitutive model enables a proper definition of the failure 

mechanisms in concrete elements. This constitutive model can be used to model the 

behavior of concrete and the reinforced concrete structures in advanced states of 

loadings. 

Validation of the constitutive model has provided good results even if some limits 

have been found. Good results were obtained in the simulations of the beam C and D 

where the curves obtained are in agreement with the results obtained by 

experimental data. The size effect is the decisive reason for the use of design criteria 

based on the fracture mechanism. From the analysis of the three-point bending in 4 

different sizes it was found that increasing the dimensions of the specimen, the 

results deviate more and more from the results obtained by experiment data and it 

was noticed that for the beam A and beam B whether the peak or the softening 

branch are not in complete agreement with the data obtained from the laboratory. A 

possible solution would be to calibrate the model starting from these specimens, but 

then the problem will probably reoccur for the simulations of smaller specimens. 

 The proposed model with the estimated constitutive parameters can successfully 

serve for analyses of the concrete structures in advanced states of stresses far beyond 

the limits defined in engineering codes. 

To validate the implementation, an experiment from the specific experimental tests 

used has been analyzed and as a whole the numerical results show good agreement 

with the experimental data. Results from this research are intended to be used for 

validation of the numerical model of fatigue material behavior, parameter calibration, 

further model development and its improvements. 
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