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Abstract

The management of longitudinal datasets in the context of clinical research,

particularly in the presence of missing data, is a complex and diverse task that

requires meticulous deliberation. Longitudinal datasets are very important in

the context of evaluating disease development and treatment success due to

their ability to record information over multiple time points. Nonetheless, the

occurrence of missing data might be attributed to a range of factors, including

patient dropping out, irregular follow-up, or technical errors. In order to tackle

this problem, researchers often use advanced statistical methodologies such as

imputation methods, which we have used in this work to handle missing data.

In our case, we worked on longitudinal height and weight data of 3897 patients

between 0 to 24 years old and the missing data ratio of our dataset was around

35%. As we wanted to get the BMIs of the patients and cluster them, at őrst we

replaced these missing data with different imputation approaches, and accord-

ing to the obtained results, we chose the Mean Expected Growth approach and

then calculated the BMIs of the patients. Choosing the best clustering method

depends on the nature and distribution of data and the problem deőnition and

requirements raised in a project. In this research, the Gaussian Mixture Model

(GMM) was selected as the clustering algorithm due to the Gaussian distribution

of the data. The objective was to comprehend the dynamic changes in patient

clusters using a novel forgetting factor approach in the context of longitudinal

data to identify age-adjusted BMI growth trajectories. Forgetting factor is an

approach used in time-series analysis and forecasting that involves assigning

weights to previous data that decrease exponentially with time and analyzes

previous observations’ effect on future outcomes. Our dataset had a very high

percentage of missing data, therefore we chose to cluster the data in two differ-

ent ways. In the őrst scenario, we separated the data that did not have missing

data, performed clustering on them, and considered it as a gold standard. Then,

in the second scenario, we imputed the missing data and performed clustering

on the entire dataset. By focusing on early life factors such as gestational smok-

ing, lactation, and preśgestational and gestational BMI control, our őndings

contribute additional evidence to the OECD guidance regarding high BMI risks

and interventions (World Health Organization, 2016[20]).
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1
Introduction

In recent years, the widespread accessibility of longitudinal data has fa-

cilitated signiőcant advancements in study across several disciplines, yielding

useful perspectives on the progression and maturation of individuals. The anal-

ysis of longitudinal data has the potential to reveal signiőcant patterns and

trends, providing insights into the intricate relationship between physical char-

acteristics and age-related changes. The analysis of longitudinal data holds

signiőcance in correlational studies that seek to establish connections between

observations of identical variables over an extended duration. Examples of such

studies include investigations into substance use or mental health in the őeld

of psychology, recidivism behavior in sociology, and relapse or medication ad-

herence in the realm of medicine. Longitudinal studies provide researchers the

opportunity to evaluate and investigate the temporal ŕuctuations of the vari-

ables under investigation. Due to advancements in data collecting and storage,

there has been a growing trend in the development of longitudinal studies that

incorporate a substantial number of repeated measurements of a single variable

per person over an extended period. When a substantial quantity of observa-

tions is included, the dataset is typically denoted as intense longitudinal data.

The use of Individual Learning Diagnostics (ILD) offers the beneőt of enabling a

more detailed evaluation of changes occurring over a period, particularly when

considering individual subjects. The use of appropriate models that account for

the inherent structure of longitudinal data is essential for conducting effective

analysis. The evaluation of variability is crucial since it is recognized that no

two people exhibit similar characteristics. In addition to considering the exis-
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tence of measurement variability within individual subjects, it is necessary for

models to include variations that exist between individuals. In the investigation

of medication adherence, it is possible to see signiőcant variations in adherence

levels among individuals during the duration of the study. An instance of such

a modeling method is multilevel modeling [25]. An area of considerable interest

is the examination of height and weight data obtained from individuals at de-

velopmental stages from infancy to early adulthood, which I worked on in this

project. Our data set is very unique and has been collected by the Karolinska

Institute in Sweden over 24 years and the height and weight of people have been

measured during this period.

Artiőcial intelligence (AI) is a subőeld within the discipline of computer

science that aims to enhance the intelligence of computers. Learning is consid-

ered a fundamental prerequisite for the manifestation of intelligent behavior.

The prevailing consensus among contemporary scholars is that the presence

of learning is a necessary condition for the manifestation of intelligence. Ma-

chine learning is widely recognized as a prominent subject within the domain

of artiőcial intelligence (AI). It is noteworthy that machine learning has seen

substantial advancements, positioning it as one of the fastest-evolving subdis-

ciplines of AI study. Medical dataset analysis began using machine learning

methods. Machine learning offers various essential data analysis techniques

nowadays. The digital revolution made data collection and storage affordable,

especially in recent years. Modern hospitals have data-collecting equipment and

big information systems. Machine learning is ideal for assessing medical data,

especially minor, specialized diagnostic issues. Medical records at specialist

hospitals or departments typically provide reliable diagnosis data. Simply enter

patient data with proper diagnoses into computer software to execute a learn-

ing process. This is a simpliőcation, but medical diagnostic information may

be automatically extracted from prior instances. The generated classiőer may

then be used to help clinicians diagnose new patients faster, more accurately,

and more reliably, or to teach trainees or non-specialist physicians to detect a

speciőc diagnostic issue[15].

One of the most important methods in machine learning is clustering, which

we have used in this project. Clustering is a widely used methodology in many

domains such as data analysis, machine learning, and pattern recognition. It

involves the grouping of a collection of objects or data points according to their

shared similarities and differences. The objective of clustering is to generate clus-
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CHAPTER 1. INTRODUCTION

ters or groups in which the items belonging to the same cluster exhibit a higher

degree of similarity among themselves compared to those in other clusters[3]

[28]. Clustering is categorized as an unsupervised learning technique, indicat-

ing its independence from labeled data. It serves as a means of exploratory

data analysis, facilitating the acquisition of insights and comprehension of the

underlying structure within a given dataset[28]. There are different types of

clustering methods such as Centroid-based Clustering, Density-based Cluster-

ing, Distribution-based Clustering, and Hierarchical Clustering[4]. In this work,

I use the Gaussian Mixture Model (GMM) for Clustering which is a Distribution-

based clustering method. GMM is predicated on the underlying premise that

each cluster is derived from a combination of Gaussian distributions. GMM is a

statistical model that is capable of capturing intricate patterns within a dataset

and assigning each individual data point to a speciőc cluster with a matching

probability score and it has the capability to effectively handle datasets that are

not linearly separable or include overlapping clusters. This characteristic makes

GMM a ŕexible and potent clustering technique[26].

1.1 Challenges

Within the framework of longitudinal studies, the matter of missing data

acquires a central and crucial role, presenting complex issues that need careful

and deliberate examination. In the context of these studies, every experimental

or observational unit undergoes measurement at the initial stage and thereafter

at various intervals during the study duration. Nevertheless, the prevalence of

incomplete data is a frequent phenomenon, arising from several factors such as

participant attrition or irregular involvement resulting in nonmonotone missing

data patterns.

The őeld of longitudinal studies encompasses a wide range of disciplines, in-

cluding clinical trials, quality-of-life studies, and environmental research, which

together provide many instances of nonignorable missing data. In the context

of health studies, it is possible for the occurrence of treatment side effects to

inŕuence the level of participation among participants. This may lead to a non-

random pattern of missing data, which is directly associated with the outcome

being studied. In the context of quality of life research, the level of adherence

shown by participants may be subject to impact from their prognosis, hence

3



1.2. GROWTH TRAJECTORIES OF PATIENTS

introducing additional complexity to the structure of missing data[11, 21].

The presence of missing data within a longitudinal dataset has the potential

to introduce bias and inaccuracies in clustering results. The presence of bias

in cluster assignments, altered computations of similarity, decreased ability to

detect patterns, and poor comprehension of temporal dynamics may arise as

consequences. The process of imputing missing data presents difficulties and

has the potential to impact the outcomes. These factors result in a reduction

in statistical power, an increase in uncertainty, and a consequential impact on

the interpretation of the results. It is vital to utilize specialized approaches and

exercise great attention in order to successfully address the impacts of missing

data and assure the correctness of insights while clustering longitudinal data.

This can only be accomplished by paying close attention and using speciőc

procedures.

1.2 Growth Trajectories of Patients

The age range of 4-11 years is of utmost importance in the context of child

development due to its inclusion of signiőcant developmental milestones. These

milestones include the occurrence of the ’adiposity rebound’ (AR), which refers

to a dip in the growth curve between the peak of infancy and the peak of ado-

lescence, typically observed between the ages of 4 and 6 years. Additionally,

this age range encompasses the period of a ’mid-growth spurt’, characterized

by a rapid increase in growth velocity between the ages of 4 and 11 years. Fur-

thermore, in certain individuals, this age range may also involve the onset of

’pre-puberty’. The form of the development trajectory throughout childhood

has been shown to have a signiőcant association with a considerable number

of health issues associated with obesity. The temporal occurrence of the mid-

growth spurt has been shown to have predictive value for the beginning of

metabolic syndrome, non-alcoholic fatty liver disease, and type 1 diabetes. Sim-

ilarly, the timing of adrenarche has been seen to be indicative of subsequent

developmental milestones, such as the onset of puberty. Children who start AR

after age 5.5 have comparatively fewer health concerns, but AR happening be-

fore age 5.5 increases the likelihood of adult obesity. The "signiőcant gap" in the

research surrounding overweight and obesity in children over 5 years old was

noted by the World Health Organization (WHO) in 2016. This review synthe-
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CHAPTER 1. INTRODUCTION

sizes research published since 2010 that presents data on body mass index (BMI)

values at the group or individual level within the age range of 4 to 11 years. The

majority of treatments aimed at preventing childhood obesity typically focus on

children between the ages of 6 and 12 years. This trend is expected to continue

owing to the advantageous accessibility of school settings for reaching kids[22].

1.3 Contributions

My whole Master’s thesis project’s goal was to design and implement a

machine-learning-based system to act as a medical assistant for physicians to

predict diseases and prescribe preventive healthcare advices to their patients.

In the following, you can őnd the contributions of this work:

• We worked on unique dataset of heights and weights provided by Karolin-
ska Institute under the BAMSE project[2]. To the best of my knowledge,
there is no previous work on this dataset for BMI clustering using longi-
tudinal trajectory analysis through the implementation of unsupervised
clustering.

• As we had around 35% missing data ratio in our dataset, I implemented the
Mean Expected Growth imputation based on the mean of BMIs of patients
at different time points and their growth patterns.

• In addition to the hard clustering which assigns each patient to only one
cluster, we proposed the Forgetting Factor approach to analyze trajectories
in a way that considers previous observations’ effect on the current age’s
BMI cluster assignment.

• Our results adds additional evidence to the OECD guidance regarding
high BMI risks and interventions (World Health Organization, 2016) by
targeting early life factors such as gestational smoking, lactation, and
preśgestational and gestational BMI control.

1.4 Thesis Organization

In Chapter 2, the preliminary concepts of Clustering algorithms, Missing

data, and, Imputation methods will be discussed. Then, in Chapter 3, Dataset

description, Mean Expected Growth approach, Cluster selection, Experimental

results, and Results discussion will be explained. Finally, in Chapter 4, you can

őnd some content about possible future works and conclusions of this thesis.
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2
Background

2.1 Chapter overview

The task of extracting signiőcant structures from raw data is a fundamental

aspect of analyzing information within this domain, clustering methods are of

utmost importance. Clustering is a fundamental technique within the domain of

unsupervised learning, whereby data points are organized into distinct groups

based on their similar properties. This chapter will go into an examination of

several clustering methodologies, each of which offers a distinct approach to

the task of splitting data into coherent clusters. Through an extensive examina-

tion of many methodologies for data segmentation, including hierarchical and

partitioning algorithms, density-based and model-based techniques, and oth-

ers, our objective is to get a comprehensive understanding of the existing tools

and strategies available for this task. You will learn about the important things

researchers need to think about when picking the right clustering method for

certain analysis tasks during this talk. It will also lay a foundation for the next

study.
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2.2. CLUSTERING ALGORITHMS

2.2 Clustering algorithms

2.2.1 K-means

The K-means clustering strategy is a widely used unsupervised learning

method. This approach requires an integer 𝑘 and 𝑛 observations. The őnal

result is a division of the 𝑛 observations into 𝑘 sets, where each observation is

assigned to the cluster with the closest mean. The procedures of k-means are

outlined in the stages that follow. Begin by initializing 𝑘 cluster centers. In

practical application, the task may be accomplished by using either a random

selection method for 𝑘 center selection. In the following and in Figure 2.1, you

can őnd the algorithm of K-means steps:

1. The points obtained from the 𝑛 observations or the randomly generated 𝑘
center points.

2. Compute the distance between each individual observation and the re-
spective cluster centers.

3. Assign every single point to the cluster with the shortest distance from its
center among all cluster centers.

4. Calculate the cluster mean again using the locations of the 𝑘 centers.

5. Recalculate the distance between each individual data point and the re-
cently calculated centroids. Continuously iterate through steps 3 and 4
until all data points have been allocated to a single cluster and remain
stationary.

In most cases, previous information about the nature of the data or the use

of clustering validity metrics will have an impact on the selection of the value of

𝑘[17, 24].

The objective of k-means clustering is to divide a set of observations (𝑥1, 𝑥2, ..., 𝑥𝑛),
where each observation is a d-dimensional real vector, into 𝑘 ≤ 𝑛 sets 𝑆 =

{𝑆1, 𝑆2, ..., 𝑆𝑘} in a way that minimizes the sum of squares in each cluster [14].

Objective:

arg min𝑆
∑︁𝑘
𝑖=1

∑︁

𝑥∈𝑆𝑖 ∥𝑥 − 𝜇𝑖 ∥2 = arg min𝑆
∑︁𝑘
𝑖=1 | 𝑆𝑖 | 𝑉𝑎𝑟𝑆𝑖(2.1) where 𝜇𝑖 is

the mean, commonly referred to as the centroid, of the points inside 𝑆𝑖 :

𝜇𝑖 =
1

| 𝑆𝑖 |
∑︂

𝑥∈𝑆𝑖
𝑥 (2.2)
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CHAPTER 2. BACKGROUND

Figure 2.1: K-means Clustering [5]

• 𝜇𝑖 : Centroid or mean

• | 𝑆𝑖 | : Size of 𝑆𝑖

• ∥.∥ : Norm

The idea of k-means clustering is very advantageous due to its simplicity of

implementation and its adaptability in many application domains. However, it is

important to acknowledge the existence of certain disadvantages and constraints.

In the k-means algorithm, it is seen that all the clusters formed have a circular

shape. This is due to the cluster centroids being updated repeatedly using the

mean value. So, it couldn’t be applied to a dataset in which the distribution of

the points does not circular shape. Here a distribution-based model (Gaussian

Mixture Model) will thus be used going forward in place of a distance-based

approach[10].

2.2.2 Gaussian mixture model

Gaussian Mixture Models (GMMs) are a probabilistic framework used for the

purpose of modeling real-world datasets. Gaussian Mixture Models (GMMs) are

an extension of Gaussian distributions, enabling the representation of datasets

that exhibit clustering patterns characterized by several Gaussian distributions

in őgure 2.2. The Gaussian mixture model is a probabilistic model that posits

the generation of all data points from a combination of Gaussian distributions
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2.2. CLUSTERING ALGORITHMS

with parameters that are not known. The use of a Gaussian mixture model is

applicable in the context of clustering, a computational activity that involves

splitting a collection of data points into distinct groups.

The mentioned method may be used in őnding clusters in datasets with

uncertain or unclear cluster boundaries. Additionally, GMMs can be employed

to estimate the probability that a new data point belongs to each speciőc cluster.

Gaussian Mixture Models have a signiőcant level of robustness against outliers,

hence allowing them to generate accurate results even when faced with data

points that depart from normal trends observed within the clusters. GMMs

provide a signiőcant level of adaptability and effectiveness when used for the

task of data clustering [30, 1].

The GMM may be conceptualized as a probabilistic model in which Gaus-

sian distributions are postulated for each group, characterized by their respective

means and covariances determining their parameters. It is comprised of two

fundamental components, namely the mean vectors (𝜇) and the covariance ma-

trices (∑︁). It is important to note that a Gaussian distribution is characterized

as a continuous probability distribution that exhibits a bell-shaped curve. The

Gaussian distribution is also often referred to as the normal distribution[26].

Here you can őnd different steps of the Gaussian Mixture Model(GMM)

which you can őnd in őgure2.3:

1. To determine the appropriate number of clusters for the given dataset,
one may use many ways such as using domain expertise or employing
statistical techniques like the Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIC), and Silhouette score.

2. Initializing mean, covariance, and weight parameter per cluster.

3. Utilize the Expectation Maximization method to accomplish the following
objectives:

• The Expectation Step (E step): involves the calculation of the proba-
bility of each data point being assigned to each distribution. Subse-
quently, the likelihood function is evaluated using the current estima-
tion for the parameters.

• The Maximization step (M step): involves updating the mean, covari-
ance, and weight parameters from the previous iteration in order to
maximize the anticipated likelihood obtained in the Expectation step
(E step).

• Continue iterating through these stages until the model reaches con-
vergence.
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Figure 2.2: Mixture of 1D Gaussians [8]

Mathematics of Gaussian Mixture Model:

The Gaussian Distribution in one dimension is represented as:

𝐺(𝑋 |𝜇, 𝜎) = 1

𝜎
√

2𝜋
𝑒
− (𝑥−𝜇)2

2𝜎2 (2.3)

• 𝜇: Mean

• 𝜎2: Variance of the distribution
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Figure 2.3: Clustering using Gaussian Mixture Model [8]

The probability density function for the Multivariate Gaussian Distribution

is expressed as follows:

𝐺(𝑋 |𝜇,Σ) = 1
√︁

(2𝜋)|𝚺|
exp

(︃

−1

2
(𝑋 − 𝜇)𝑇𝚺−1(𝑋 − 𝜇)

)︃

(2.4)

• 𝜇: d-dimensional vector represents the mean of the distribution

• Σ: dxd covariance matrix

Assuming a predetermined number of clusters, denoted as K, let us consider

the scenario. The parameters 𝜇 and Σ are also calculated for each value of k. If

there had been just one distribution, the estimation would have been conducted

using the maximum-likelihood technique. However, given the existence of K

clusters, the probability density may be expressed as a linear function of the

densities of all K distributions,i.e.

𝑝(𝑋) =
𝐾
∑︂

𝑘=1

𝜋𝑘𝐺(𝑋 |𝜇𝑘 ,Σ𝑘) (2.5)
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• 𝜋𝑘 : The mixing coefficient for 𝑘𝑡ℎ distribution

To estimate the parameters using the maximum log-likelihood approach, it

is necessary to calculate the following:

ln 𝑝(𝑋 |𝜇,Σ,𝜋) =
𝑁
∑︂

𝑖=1

𝑝(𝑋𝑖) =
𝑁
∑︂

𝑖=1

ln

𝐾
∑︂

𝑘=1

𝜋𝑘𝐺(𝑋𝑖 |𝜇𝑘 ,Σ𝑘) (2.6)

Create a random variable 𝛾𝑘(𝑋) such that 𝛾𝑘(𝑋) = 𝑝(𝑘 |𝑋).
Based on the Bayes theorem,

𝛾𝑘(𝑋) = 𝑝(𝑋 |𝑘)𝑝(𝑘)
∑︁𝐾
𝑘=1 𝑝(𝑘)𝑝(𝑋 |𝑘)

=
𝑝(𝑋 |𝑘)𝜋𝑘

∑︁𝐾
𝑘=1 𝜋𝑘𝑝(𝑋 |𝑘)

(2.7)

Now, in order to maximize the log-likelihood function, the derivative of

𝑝(𝑋 |𝜇,Σ,𝜋) with respect to 𝜇,
∑︁

, and 𝜋 should be equal to zero. Therefore,

reorganizing the terms as follows:

Σ𝑘 =

∑︁𝑁
𝑛=1 𝛾𝑘(𝑥𝑛)(𝑥𝑛 − 𝜇𝑘)(𝑥𝑛 − 𝜇𝑘)𝑇

∑︁

𝑛 = 1𝑁𝛾𝑘(𝑥𝑛)
(2.8)

And,

𝜋𝑘 =
1

𝑁

𝑁
∑︂

𝑛=1

𝛾𝑘(𝑥𝑛) (2.9)

Therefore, it is rather obvious that the parameters cannot be evaluated in

closed form. It is in situations like these when the Expectation-Maximization

method comes in handy[9].

Expectation-Maximization (EM) Algorithm:

The Expectation Maximization (EM) algorithm is a widely applicable itera-

tive computational technique for estimating maximum likelihood (ML) param-

eters. It is particularly effective in addressing incomplete-data situations, where

more complex algorithms like the Newton-Raphson method may be less suit-

able. The EM method is used in a range of scenarios, including not just situations

with clearly incomplete data, characterized by missing values, but also a diverse

array of circumstances where the incompleteness of data is not inherently or

immediately apparent. The EM approach has been used to address previously

intricate maximum likelihood prediction problems in many contexts, either by

directly resolving them or by simplifying the maximum likelihood prediction
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procedures that were previously sophisticated. The underlying principle of the

Expectation-Maximization (EM) approach is to create a relationship between an

incomplete-data problem and a complete-data problem. This link allows for the

application of maximum likelihood estimation to the complete-data problem,

making it computationally more viable and yielding closed-form estimates. To

summarize, the EM algorithm comprises two independent procedures, includ-

ing the E-step and the M-step. The E-step involves calculating the log-likelihood

of the complete data issue by using the observed data set from the incomplete-

data problem and the current parameter values. The M-step involves maxi-

mizing the log-likelihood that is created by the E-step. The aforementioned two

procedures are iteratively executed until the condition of convergence is met[16].

2.2.3 K-medoid

One of the primary drawbacks of the k-Means approach is its susceptibil-

ity to outliers, since the presence of one item with an exceptionally high value

may signiőcantly affect the overall distribution of the data. Instead of using the

mean value of the items inside a cluster as a point of reference, an alternative

approach involves employing a medoid, which represents the object that is sit-

uated at the centermost position within the cluster, an example is shown in2.4.

Therefore, the partitioning technique may still be executed by adhering to the

idea of reducing the total dissimilarities between each item and its respective

reference point. The K-Medoids approach is founded around this particular

principle. The fundamental approach used by K-Medoids clustering algorithms

is the identiőcation of k clusters within a set of n items. This is achieved by őrst

selecting a representative object, referred to as the medoid, for each cluster in an

arbitrary manner. Every remaining item is grouped along with the medoid that

it has the most similarity with. The K-Medoids technique uses representative

items as reference points rather than computing the average value of the objects

inside each cluster. The method accepts a parameter, denoted as k, which repre-

sents the desired number of clusters to be allocated among a given collection of n

items [11]. The K-medoid algorithm is a well-established partitioning approach

used for clustering, which aims to group a dataset of n items into k clusters.

The value of k, which represents the number of clusters necessary, is to be pro-

vided by the user. The method operates based on the premise of reducing the

total dissimilarities between each item and its respective reference point. The
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approach employs a random selection process to choose k items from dataset D

as the őrst representative objects, which are referred to as medoids. A medoid

may be characterized as the entity inside a cluster that exhibits the lowest av-

erage dissimilarity to all other entities in the cluster. In other words, it is the

point that is most centrally positioned within the provided dataset. After each

assignment of a data item to a certain cluster, the new medoid is determined

for all medoids. The issue is that K-Medoids do not provide the same results

on each run since the ensuing clusters are determined by the original random

assignments. It is more resilient than K-medoids in dealing with the presence

of noise and outliers, but it is more expensive to process than the K-medoid

approach. Finally, since the ideal number of clusters k is difficult to anticipate, it

is challenging for a user with no previous information to select the value of k[13].

Next, we will examine the internal workings of the k-medoids Algorithm, which

may be described as follows:

1. The process of initializing 𝑘 clusters is performed inside the provided data
space 𝐷.

2. The process involves the random selection of 𝑘 items from a set of n objects
in a dataset, followed by the assignment of each selected object to a distinct
cluster, ensuring that each object is allocated to just one cluster. Therefore,
it is designated as the őrst medoid for every cluster.

3. Calculate the Cost(distance from all medoids as determined by Euclidean,
Manhattan, or Chebyshev techniques) for all existing non-medoid objects.

4. Next, allocate each remaining non-medoid item to the cluster whose
medoid has the smallest distance to that object, in comparison to the
medoids of the other clusters.

5. Calculate the total cost, which refers to the sum of distances between each
non-medoid item and its respective cluster medoid. This value will be
assigned to 𝑑𝑗.

6. Select a non-medoid item 𝑖 in a random manner.

7. Next, do a temporary exchange of the object 𝑖 with the medoid 𝑗. Sub-
sequently, repeat the őfth step in order to recompute the overall cost and
assign it to 𝑑𝑖.

8. If 𝑑𝑖 is less than 𝑑𝑗, the temporary swap made in step number 7 should be
made permanent in order to create the new set of k medoids. Furthermore,
it is necessary to reverse the temporary exchange that was executed in step
number 7.
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Figure 2.4: K-medoids vs K-means clustering [12]

9. Continuously iterate through the execution of steps 4, 5, 6, 7, and 8 until a
state is reached where no more modiőcations occur.

2.3 Missing data

When there is no information recorded for some of the expected variables or

individuals this is known as missing data. Incomplete data input, device fail-

ure, deleted őles, and other accidents are only a few of the numerous possible

causes of data loss. The presence of missing data is a frequent phenomenon

that may have a substantial impact on the inferences that can be derived from

the available data[19]. Research of all kinds, including that in the medical őeld,

sometimes suffers from a lack of full data, particularly in longitudinal studies.In

the context of a longitudinal study, it is customary to measure each observation

at the initial stage and thereafter at regular intervals throughout the research

duration. It is fairly uncommon to encounter incomplete data in studies using

such designs, since some people may not be accessible for measurement at all

time periods. Furthermore, it is possible for a subject to exhibit missing data

at one follow-up time point and then have their measurements taken at one of

the subsequent time points, leading to the emergence of nonmonotone missing
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data patterns. The statistical modeling of such data is a signiőcant problem for

the statistician.

In [11], Ibrahim et al. describe three different categories for missing data:

MCAR:

Missing data are said to be missing completely at random (MCAR) when

the absence of a particular value is unrelated to any observable or unobserved

values. For instance, consider a scenario where some elements of the variable 𝑦𝑖

are absent, whereas the variable 𝑋𝑖 is fully observed. The missing values of 𝑦𝑖

may be classiőed as Missing Completely At Random (MCAR) if the probability

of seeing 𝑦𝑖 is not dependent on the values of Xi or the values of 𝑦𝑖 that have been

observed or would have been seen. According to the Missing Completely At

Random (MCAR) assumption, the observed data may be regarded as a random

sample drawn from the whole dataset. The use of a complete-case analysis may

result in a decrease in efficiency, but, it does not add any kind of bias. Accord-

ing to the Missing Completely At Random (MCAR) assumption, the missing

data mechanism may be represented as 𝑓 (𝑟𝑖 |𝑋𝑖 , 𝜙), where 𝜙 is a vector of un-

known parameters. In other words, the values of the missing-data indicators

𝑅𝑖 = (𝑅𝑖1 , ..., 𝑅𝑖𝑛𝑖 )′ are not inŕuenced by the outcomes 𝑦𝑖 𝑗 in the model, where

𝑅𝑖 𝑗 equals 1 if 𝑦𝑖 𝑗 is observed and 0 otherwise.

MAR:

missing data are said to be missing at random when the reason for not seeing

a particular value is unrelated to the unobserved values of 𝑦𝑖 , given the seen

values. However, the presence of missing data may be inŕuenced by other vari-

ables that have been detected. For instance, let us consider the scenario when

𝑋𝑖 is seen in its entirety, whereas some components of 𝑦𝑖 may be absent. The

missing values of 𝑦𝑖 are considered to be missing at random (MAR) if the prob-

ability of witnessing 𝑦𝑖 is not reliant on the speciőc values of 𝑦𝑖 that would have

been seen, but may still be dependent on the observed values of 𝑦𝑖 and 𝑋𝑖 . The

assumption being discussed here is considered to be more realistic compared to

the Missing Completely at Random (MCAR) assumption. However, due to the

fact that the observed answers are no longer derived from a random sample,

some changes need to be implemented. Performing a complete case analysis

is likely to be both inefficient and biased. It is evident that in cases when data
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exhibits missing completely at random (MCAR) patterns, it may be inferred that

the missingness is missing at random (MAR). In the context of a clinical study, if

the occurrence of missing data is solely dependent on the treatment allocation,

which is considered a covariate, then the missingness mechanism may be clas-

siőed as Missing Completely At Random (MCAR). Consequently, it can also be

inferred that the missingness mechanism is Missing At Random (MAR). In the

context of Missing at Random (MAR), the missing data mechanism may be rep-

resented as 𝑓 (𝑟𝑖 |𝑋𝑖 , 𝑦𝑜𝑏𝑠,𝑖,𝜙), where 𝑦𝑜𝑏𝑠,𝑖 refers to the observed components of 𝑦𝑖 .

MNAR:

The missing data mechanism is considered to be non-random if the non-

observation of a certain value is dependent on the value that would have been

noticed. For instance, consider a scenario where some elements of the variable 𝑦𝑖

are absent, whereas the variable𝑋𝑖 is entirely seen. The missingness mechanism

of the values of 𝑦𝑖 may be classiőed as Missing Not at Random (MNAR) if the

likelihood of 𝑦𝑖 being missing is dependent on the missing values of 𝑦𝑖 , even

if it is dependent on the observed values of 𝑦𝑖 or Xi. Missing Not At Random

(MNAR) is a commonly seen phenomenon in longitudinal research including

repeated assessments, representing a broad and prevalent scenario. In order

to make valid conclusions, it is often necessary to either accurately determine

the appropriate model for the missing data mechanism, or make assumptions

about the distribution of the variable 𝑦𝑖 , or both. The estimators and tests that

arise from these assumptions often exhibit sensitivity. Hence, it is essential for

the mechanism to assume a pivotal position in what are often referred to as

sensitivity assessments. In the context of missing not at random (MNAR), the

missing data mechanism may be represented as 𝑓 (𝑟𝑖 |𝑋𝑖 , 𝑦𝑜𝑏𝑠,𝑖 , 𝑦𝑚𝑖𝑠,𝑖 , 𝜙), where

𝑟𝑖 denotes the missing data, Xi represents the observed data, 𝑦𝑜𝑏𝑠,𝑖 refers to the

observed outcome, 𝑦𝑚𝑖𝑠,𝑖 represents the missing outcome, and 𝜙 represents the

parameters of the mechanism.

The absence of some data raises a number of issues. First, there is a reduction

in the statistical power of the test due to the lack of data. Statistical power is the

chance that the experiment will ignore the null hypothesis when it is incorrect.

Second, the missing data may introduce an element of bias into the parameter

estimate process. Third, it may lessen the samples’ ability to be representative

of the whole. Fourth, it might make the interpretation of the research more

difficult. Each of these issues poses a potential risk to the reliability of the trials
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and may result in wrong conclusions being drawn. In suggest some techniques

for handling missing data as follows:

Listwise or case deletion:

Listwise deletion, in which instances with incomplete data are simply elimi-

nated from analysis, is the method that is used the most often when dealing with

missing data. This approach is commonly used, however, it has the potential to

induce bias if the assumption of Missing Completely at Random (MCAR) is not

satisőed. When this assumption isn’t satisőed by the data, using listwise dele-

tion might result in biased parameter estimations, despite the fact that MCAR

considers it to be unbiased and cautious. When there is a big sample size and

when power is not an issue, it is possible that listwise deletion is feasible. How-

ever, it is not the best method when used for smaller numbers of samples or

when the MCAR threshold is not reached.

Pairwise deletion:

Pairwise deletion is a technique for managing missing data that keeps in-

formation if particular data points are necessary for testing assumptions. This

approach may be used in situations when the information would otherwise

be lost. It applies statistical testing to the data that is available, regardless of

whether or not further data points are absent from the dataset. Pairwise dele-

tion is superior to listwise deletion in terms of the amount of information it

maintains. On the other hand, it does have a few drawbacks:

• It has the potential to result in the model parameters relying on distinct
sets of data with changing statistics, including sample size and standard
errors.

• It has the potential to yield an intercorrelation matrix that does not have a
positive deőnite result, which may make future analysis more difficult.

When working with data that are Missing Completely at Random (MCAR) or

Missing at Random (MAR), as well as when suitable mechanisms are included

as variables, pairwise deletion is the method that produces the least amount of

bias. However, if there are too many observations that aren’t included in the

analysis, it can turn out to be ŕawed.

Mean substitution:

The technique of mean substitution is used as a means of addressing missing

data, whereby the average value of a given variable is utilized to substitute the
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missing values associated with that variable. This technology allows academics

to make use of datasets that are not fully comprehensive. The justiőcation for

using mean substitution is based on the notion that the mean is a suitable ap-

proximation for randomly chosen observations from a distribution that follows

a normal pattern. Nevertheless, in the case of non-random missing values, par-

ticularly when there is a notable disparity in the frequency of missing values

across variables, using mean replacement may result in the introduction of in-

consistent bias. Furthermore, this approach does not provide novel insights

but rather serves to augment the sample size, perhaps leading to an underesti-

mation of mistakes. Therefore, mean substitution is typically not considered a

recommended approach for addressing missing data.

Regression imputation:

Imputation refers to the procedure of substituting missing data with ap-

proximated values. Instead of excluding any instance with missing values, this

methodology retains all cases by imputing the missing data with estimated val-

ues derived from other available information. Once all missing values have

been substituted using this methodology, the dataset is subjected to analysis

using conventional procedures applicable to datasets with no missing values.

Regression imputation involves using the available variables to generate a fore-

cast, which is then used as a replacement for an actual observed value. The

use of this method has many beneőts, since it preserves a substantial amount of

data compared to listwise or pairwise deletion, while also preventing substan-

tial modiőcations to the standard deviation or distribution shape. In contrast

to mean substitution, regression imputation involves replacing missing values

with anticipated values based on other variables. This method does not provide

any new information, but it does expand the sample size and decrease the stan-

dard error.

Last observation carried forward:

Within the realm of anesthesiology research, a considerable number of in-

vestigations are conducted using the longitudinal or time-series methodology,

whereby the participants’ measurements are collected periodically throughout

a sequence of time intervals. The latest observation carried forward (LOCF) is a

commonly used imputation approach in this scenario. The aforementioned ap-

proach involves substituting each missing value with the most recent observed
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value obtained from the corresponding subject. In instances when a value is

absent, it is substituted with the most recent observed value. This approach

offers notable beneőts due to its inherent simplicity in facilitating comprehen-

sion and effective communication among statisticians, doctors, sponsors, and

researchers. Despite its simplicity, this strategy makes a signiőcant assumption

that the missing data does not alter the value of the result, which seems improb-

able in several contexts, particularly in the context of anesthetic studies. The

estimation generated by this method has a bias towards a particular treatment

effect and tends to underestimate the level of variability associated with the

projected outcome. The National Academy of Sciences has advised against the

uncritical utilization of simple imputation techniques, such as last observation

carried forward (LOCF) and baseline observation carried forward (BOCF). They

assert that these single imputation methods should not be employed as the pri-

mary approach for handling missing data unless there is scientiőc justiőcation

for the assumptions upon which they are based.

Maximum likelihood:

Various solutions may be used within the framework of the greatest likeli-

hood approach to address the issue of missing data. The assumption that the

observed data represent a sample chosen from a multivariate normal distribu-

tion is comprehensible in these cases. The missing data are approximated based

on the recently estimated parameters once the parameters have been calculated

using the available data. In situations when there is a lack of full data, al-

though the available data is rather comprehensive, the statistical analysis of the

correlations between variables may be conducted via the use of the maximum

likelihood technique. The estimation of missing data may be achieved through

the use of the conditional distribution of the remaining variables.

Expectation-Maximization:

The Expectation-Maximization (EM) algorithm is a statistical technique often

used for estimating missing values in a dataset based on maximum likelihood

principles. The process consists of two distinct stages, namely expectation and

maximization. During the expectation stage, the estimation of parameters in-

cluding variances, covariances, and means is conducted, often commencing

with the use of listwise deletion. The aforementioned estimations are used in

the formulation of regression equations with the purpose of predicting data
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that is absent or missing. The maximizing stage then uses these equations to

complete the missing data. The iterative procedure continues until stability is

achieved, as shown by the presence of a covariance matrix that remains stable

throughout.

It is worth mentioning that EM imputation incorporates random perturba-

tions for each imputed value in order to address the uncertainty associated with

the imputation process. But there are disadvantages to EM imputation:

• Convergence may be sluggish, particularly when there are a lot of missing
data.

• Some analysts may őnd it hard to understand how complicated it is.

• The presence of bias in parameter estimations and the underestimation of
standard errors may be seen as a consequence.

• Single imputation, which is often used as a consequence of the expectation-
maximization (EM) algorithm, has a tendency to underestimate standard
errors. This might possibly lead to an inŕation of the perceived statistical
power.

Hence, it is advisable to exercise caution while using EM imputation, and it

is often advised to use several imputations in order to mitigate the uncertainty

that arises from the imputation process.

Multiple imputation:

Multiple imputation is a robust and effective approach for addressing the is-

sue of missing data. Instead of substituting missing data with a single imputed

value, the approach involves replacing them with a collection of probable val-

ues that include the inherent variety and uncertainty associated with the actual

values. The procedure starts by making predictions for absent data by the use of

current data derived from other factors. Subsequently, the absence of data points

is addressed by the substitution of estimated values, so generating a collection of

imputed datasets. The iterative technique described herein produces numerous

imputed datasets, each of which is then subjected to independent analysis using

conventional statistical methodologies. The őndings derived from these studies

are aggregated to provide a uniőed overall analysis outcome.

Some major beneőts of multiple imputation are:

• One potential approach to address the issue of missing data is to restore
its natural variability via the incorporation of correlations with other vari-
ables.
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• By incorporating uncertainty resulting from missing data, one may achieve
reliable statistical inference.

• suited for low-volume data sets or those with signiőcant missingness, as
well as robustness to deviations from normality assumptions.

Although the concept of multiple imputation may seem intricate in principle,

advancements in statistical software have greatly facilitated its implementation,

making it more attainable for researchers. The aforementioned methodology

has signiőcant value in effectively tackling the challenges posed by missing data

and generating dependable statistical outcomes.

Sensitivity analysis:

Sensitivity analysis is a research approach that examines the manner in

which the uncertainty in the outcome of a model may be attributed to the

many sources of uncertainty in its inputs. When doing an analysis of missing

data, it is common to make additional assumptions on the causes behind the

missing data. These assumptions are often relevant to the main analysis being

performed. Nevertheless, the assumptions cannot be conclusively veriőed for

their accuracy. Hence, the National Research Council has recommended the

use of sensitivity analysis as a means to assess the resilience of the őndings in

relation to departures from the Missing at Random (MAR) assumption.

2.4 Imputation methods

2.4.1 Linear interpolation:

Linear interpolation is a method of imputation that posits a linear association

between data points and uses neighboring non-missing values to approximate

the missing values that you can őnd in őgure2.5. It is a technique for creating

new data points that fall within the bounds of a discrete group of existing data

points.

The linear extrapolation method works like this:

• Locate the data point(s) that are missing in the dataset.

• Find the non-missing values that are located immediately next to the miss-
ing value(s) on each side.
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Figure 2.5: Linear Relationship Between Non-Missing Observations A and B,
and Missing Observation [29]

• Find the slope of the line that joins the two non-missing data points.

• The slope of the data may be used to approximate missing value(s) while
considering how close they are to the nearest existing values.

The mathematical representation for linear interpolation may be expressed

using the following formula:

𝑦1 − 𝑦2

𝑥1 − 𝑥2
(2.10)

2.4.2 Forward-Fill(ffill) and Backward-Fill(bfill)

Forward-őll and backward-őll imputation are often used approaches for

handling missing values in a dataset. Both methodologies are used in scenarios

when a dataset contains missing values, necessitating the imputation of these

values to facilitate calculations such as calculating the mean value.

The technique known as forward-őll, sometimes denoted as ffill, is used in

data analysis to replace missing data in a dataset with the most recent non-

missing value. The aforementioned strategy is used for extending the most

recently veriőed observation progressively. The use of forward őll is beneőcial
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in situations when the data has a series pattern, and it is expected that the

missing values will resemble the previous values.

Backward őll, commonly referred to as bőll, is the antithesis of forward

őll. The process involves substituting missing values with the subsequent non-

missing value inside the dataset. The very őrst valid observation after a "NaN"

value is propagated backward along the chosen axis using a technique called

backward őll. The use of sequential or series data is advantageous in situations

where the absence of values is anticipated to exhibit similarity with subsequent

values.

Forward őll and backward őll may be used in combination with the group

by an operation to execute őlling inside certain groups. Furthermore, both

approaches have the capability to restrict the propagation of valid observations

to a certain number of rows utilizing the limit parameter.

The selection between forward őll (ffill) and backward őll (bőll) is contingent

upon the particular contextual characteristics of the data. In a general con-

text, the ffill method is considered more suitable for addressing missing values

located at the beginning of a dataset, while the bőll method is deemed more

acceptable for addressing missing values located at the conclusion of a dataset.

Nevertheless, there are instances when the decision between using forward őll

(ffill) or backward őll (bőll) may not be straightforward. In such situations, it

becomes imperative to conduct empirical investigations employing both tech-

niques in order to ascertain which one yields the most optimal outcomes[7].
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3
Analysis

In this section, we review all the work done in this project in detail. At őrst, we

have explained the dataset that we used, then we will talk about the imputation

methods that have been used to impute missing data in our dataset. After that,

we examined the different criteria by which the best number of clusters can be

selected and őnally analyzed the clustering results and their interpretation.

3.1 Dataset description

The research sample consisted of children who were part of the BAMSE

cohort [2], a Swedish population-based birth cohort established in Stockholm

between 1994 and 1996. In summary, a total of 3,897 children (each patient has

14 different values so there exist 54,572 values in the dataset) have been moni-

tored throughout time by administering parental questionnaires to gather data

on symptoms of allergic illness as well as environmental and lifestyle factors.

During the clinical exams conducted at the ages of 4, 8, and 16 years, partici-

pants’ weight was assessed using an electronic scale with a precision of 0.1 kg.

The measurements were taken while the participants were wearing light indoor

clothing. Additionally, height was measured with a wall-mounted stadiometer

with a precision of 0.1 cm. Furthermore, within the original cohort, a total of

2,594 children (representing 63% of the cohort) had their weight and height

measured at 10 speciőc ages ranging from 6 months (±2 weeks) to 12 years.

These measurements were obtained from school and health-care records. The
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speciőc ages at which measurements were taken include 6 months (±2 weeks),

12 months (±4 weeks), 18 months (±4 weeks), 2 years, 3 years, 4 years, 5 years

(±6 months), and 7 years, 10 years, and 12 years (with a range of −6 to ±11

months). Nevertheless, the precise age of the kid for each measurement was

not provided. Data on weight and height, as reported by the individuals them-

selves, were gathered at two speciőc time points: at the ages of 12 and 16 years.

The aforementioned data was used in cases when an individual had insufficient

information available from either the health record (n = 455 at age 12 years) or

the clinical evaluation (n = 458 at age 16 years). The validity of self-reported

height and weight has been established throughout adolescence, namely at the

age of 16, demonstrating a substantial level of concordance with objectively

measured values.[6]. The information was obtained from the Swedish Medical

Birth Register (the size of the dataset is 3,897). This dataset includes measure-

ments of height and weight for children at different time points from birth up

to 24 years of age. Speciőcally, data was taken at 14 distinct time points over

this period. The time points include 0-month, 6-months, 18-months, 2-years(24

months), 3-years (36 months), 4-years (48 months), 5-years (60 months), 6-years

(72 months), 7-years (84 months), 8-years (96 months), 10-years (120 months),

12-years (144 months), 16-years (192 months) and 24-years (288 months).

Unfortunately, our dataset had around 35% missing data ratio due to many

reasons such as:

• Absence of participants during the measurement

• Data deletion due to negligence or device problem

• Participants might prefer not to disclose their medical information owing
to worries about privacy and secrecy

• Use of several healthcare systems without adequate data integration

• Data entry errors refer to mistakes or inaccuracies that occur during the
process of inputting data into a computer system or database. These errors
may arise from several factors.

So, handling the missing data was one of our main challenges we őgured

it out by imputing these missing data using different imputation approaches.

Before that, we visualized all the data to have a graphical representation of

missing data which showed missing data in white color and non-missing data

in black color using the missing data matrix Figure3.1. We found that the pattern

of missingness in our dataset is MCAR(Missing Completely At Random).
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Figure 3.1: Graphical Representations of Missing data

There are some informative statistics that are shown in Tables 3.1 and 3.2

related to heights and weights respectively. As can be seen in Table3.1 the

highest number of missing height data is related to the age of 4-years which

is 2,630 and the lowest number of missing height data is related to the age of

0-month which is 365, in Table3.2 the highest number of missing weight data

is related to the age of 4-years which is 2601 and the lowest number of missing

weight data is related to the age of 0-month which is 39.

3.2 Mean expected growth

Mean Expected Growth is an approach that can be used to estimate missing

values in a dataset In this way, by calculating the mean of the longitudinal data

at each time point, we can obtain the growth rate of the data from each time

point to another time point. In this project, we used Mean Expected Growth to

impute missing data in the following steps:

• Computing the mean of data over each column which refers to time points
including 0-month, 6-months, 18-months, 2-years(24 months), 3-years (36
months), 4-years (48 months), 5-years (60 months), 6-years (72 months),
7-years (84 months), 8-years (96 months), 10-years (120 months), 12-years
(144 months), 16-years (192 months) and 24-years (288 months). So we
have 14 different mean values.

• Calculating the difference between 𝑀𝑒𝑎𝑛𝑖 and 𝑀𝑒𝑎𝑛𝑖−1
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Table 3.1: Number of Missing and not Missing Values of Height Data
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Table 3.2: Number of Missing and not Missing Values of Weight Data
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• If we have missing data, considering the difference of means in two con-
secutive columns, we add the difference of means to the data before that
missing data and replace the missing data with the obtained value.

𝑥𝑐𝑖 = 𝑥𝑐−1
𝑖−1 + (𝑀𝑒𝑎𝑛𝑐 −𝑀𝑒𝑎𝑛𝑐−1) (3.1)

• 𝑥𝑐
𝑖
: Missing data for a patient at time point ”𝑖”

• 𝑥𝑐−1
𝑖−1

: A data which refers to the previous time point ”𝑖 − 1” for a patient

• 𝑀𝑒𝑎𝑛𝑐 : Mean of data over a column at time point 𝑖

• 𝑀𝑒𝑎𝑛𝑐−1: Mean of data over a column at time point 𝑖 − 1

You can őnd how the missing data are imputed using Mean Expected Growth

in Table3.3 refers to part of the dataset before imputation and Table3.4 after

imputation.

3.3 Multivariate imputation by chained equation (MICE)

3.3.1 The core principles behind multiple imputation (MI)

The multiple imputation (MI) process is used to replace each missing value

with a range of potential values. In contrast to single imputation, this tech-

nique considers the uncertainty associated with estimating missing values. The

methodology generates many datasets, from which estimations of relevant pa-

rameters may be derived. For instance, if one is interested in determining the

coefficient for a covariate in a multivariable model, the coefficients will be pre-

dicted from each dataset, resulting in a total of 𝑚 coefficients. Ultimately, these

coefficients are aggregated to provide an approximation of the coefficient, while

considering the inherent uncertainty associated with estimating missing values.

The method of estimating the coefficient variance in this manner is less prone

to underestimation in comparison to a single imputation. The imputation tech-

nique involves őrst constructing a predictive model for the target variable using

the other variables that do not have missing values, Figure3.2. To put it another

way, the variable that is being imputed is referred to be the response variable,

while any other relevant variables are referred to as independent variables.
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Table 3.3: The part of the original dataset for the weights (before imputation)
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Table 3.4: The part of the dataset after imputation for the weights using Mean
Expected Growth approach
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Figure 3.2: The schematic representation of the functionality of the MICE pack-
age in handling missing values inside a data frame. The sequential use of the
mice(), with(), and pool() methods can be observed. [31]

3.3.2 MICE

The acronym MICE refers to Multivariate Imputation by Chained Equations.

The statistical technique used to address missing data within a dataset is referred

to as a missing data handling approach. The methodology employs multiple

imputation methods to address missing data, followed by the integration of

outcomes from numerous imputations to provide a conclusive imputed dataset

[18]. The objective of Multiple Imputation by Chained Equations (MICE) is to

maintain the association between variables in the original dataset while miti-

gating the potential bias that arises from imputing missing values. Multiple

Imputation by Chained Equations (MICE) is a versatile and resilient approach

for managing missing data.

The MICE (Multiple Imputation by Chained Equations) technique is an iter-

ative imputation approach that uses a regression model to replace missing data

with multiple imputations. The values that have been imputed are then utilized

for estimating the values that are missing in the next iteration, continuing until
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the convergence conditions are satisőed.

The following are some justiőcations for why MICE is signiőcant:

• Preserves relationships: The preservation of variable associations in the
original data is a crucial aspect for ensuring the accuracy of őndings in
machine learning models, and the MICE approach fulőlls this purpose
well.

• Reduces bias: By iteratively imputing missing values and aggregating the
outcomes, Multiple Imputation by Chained Equations (MICE) effectively
decreases the potential bias that may arise from incomplete data.

• Flexibility: The MICE method is a ŕexible approach capable of effectively
managing many forms of missing data, including both missing at-random
and missing not-at-random data.

• Handles large amounts of missing data: MICE is especially beneőcial for
datasets with a signiőcant number of missing values, when other imputa-
tion strategies may be ineffective.

• Comprehensive: MICE is an all-inclusive method for dealing with missing
data that takes into consideration the uncertainty of imputation.

The procedure of the chained equation is divided into four fundamental

parts that are iterated until optimum outcomes are attained. The őrst stage is

substituting any missing data using the mean value of the observable variables,

serving as a temporary substitute. The second step is resetting these imputed

means to the position of ’missing’. The third stage involves doing a regression

analysis where the observed values of a variable, denoted as 𝑥, are treated as

the dependent variable while the other variables are considered as independent

variables. The fourth step is substituting the missing data with the predictions

obtained from the regression model. The imputed value would thereafter be

included as one of the independent variables, alongside the observed values for

other variables. The process of steps 2 to 4 is then repeated for every variable that

has missing values, forming a single iteration. The regressed predictions based

on the observed data are used to replace all missing values after one iteration.

The imputed values are substituted after each iteration, and the number of

iterations can change.
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3.4 Cluster selection

Within the domain of cluster selection, the process of determining the most

suitable number of clusters is a crucial and often complex endeavor. The pro-

cedure is a methodical assessment of several clustering methods in order to

choose the conőguration that most effectively encompasses the inherent pat-

terns within the dataset. This selection procedure is greatly aided by a number

of quantitative scoring techniques, including the elbow method, silhouette score,

Davies-Bouldin index, gap statistics, Calinski-Harabasz index, and information

criteria like AIC (Akaike Information Criterion), and BIC (Bayesian Information

Criterion). The scores serve as objective measurements, providing perceptions

of the quality and consistency of various clustering results. By using these

scores, researchers may make well-informed judgments on the optimal number

of clusters that best match the inherent structure of the data. This allows for the

optimization of the usefulness and interpretability of the resulting clusters. Nev-

ertheless, it is essential to recognize that relying just on one scoring technique

may not always provide a conclusive outcome. Instead, using a comprehen-

sive strategy that integrates quantitative measures, qualitative evaluations, and

domain expertise often generates more reliable and signiőcant clustering out-

comes. Sometimes the choice of the best number of clusters depends on the

form of the problem proposed in the project, and őnally, we ourselves have to

decide how many clusters are the best. However, at őrst, we just used AIC score,

BIC score, and Silhouette score, which we have discussed in detail below:

3.4.1 AIC

The Akaike Information Criterion (AIC) is a statistical methodology used

for the purpose of selecting the most suitable model from a set of potential

models, with the aim of addressing a decision issue rather than a hypothesis

testing problem. The AIC is widely recognized as a valuable tool for selecting

variables in multivariable modeling. Additionally, it serves as a signiőcant aid

in determining the most appropriate representation of explanatory variables

that have been gathered. The Akaike Information Criterion (AIC) is a statistical

metric that quantiőes the quality of őt of a model by taking into account both

the empirical probability and the total number of parameters included in the

model. The empirical likelihood, denoted as 𝐿 serves as a metric that quantiőes
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the predictive accuracy of a model in relation to the data it was built upon. Put

simply, a stronger correlation between variables leads to a higher probability.

The equation used to compute the Akaike Information Criterion (AIC) is as

follows[27]:

𝐴𝐼𝐶 = −2 log𝑒(𝐿) + 2𝑝 (3.2)

• 𝐿 = Empirical Likelihood

• log𝑒 = Natural Log Function

• 𝑃 = Number of Parameters in the Model

In the above formula, it can be seen that higher likelihoods, indicative of

a better őt, correspond to greater values of 𝑙𝑜𝑔𝑒(𝐿), thereby leading to lower

values of −2 log𝑒(𝐿). Increasing the number of parameters (denoted as p) in

the model results in a proportional increase in the penalty. The őrst term,

referred to as the goodness-of-őt term, will exhibit a drop in correspondence

with enhancements in the őtting of the model. Conversely, the subsequent

term, known as the penalty term, will manifest an increase in response to the

inclusion of more complexities in the model. Models with lower AIC values

are generally considered more favorable since they strive to strike an optimum

balance between accurately őtting the data and maintaining simplicity. AIC

plays a crucial role in identifying the essential variables required for accurate

prediction while avoiding the problem of overőtting the model. AIC may be

seen as a metric that quantiőes the degree of distinction between the candidate

model that has been őtted and the model that is assumed to have created the

data. Consequently, models with lower AIC values are considered to be closer

to the underlying "truth."

3.4.2 BIC

The Bayesian Information Criterion (BIC) is a statistical metric used in the

process of model selection and comparison. In the domain of clustering, it aids

in the identiőcation of the most suitable number of clusters to be used in a

clustering process. The important concept is to strike a balance between model

complexity (the number of parameters employed in the model) and goodness

of őt (how well the model describes the data). The fundamental principle

behind the BIC is the assessment of the data’s probability in relation to the
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model. The likelihood measure provides a quantiőcation of the extent to which

the clustering model effectively accounts for the observed data. The metric

quantiőes the probability of seeing the actual data points given the anticipated

clustering model. In the context of clustering, the likelihood often encompasses

the joint probability of data points being assigned to their respective clusters

according to the underlying model. BIC implements a penalty for the level of

complexity shown by a model. The penalty term exhibits a direct proportionality

to the number of parameters included inside the model. inside the realm of

clustering, parameters include many elements such as the number of clusters,

the centers of these clusters, and maybe more characteristics that delineate the

clusters or the distribution of data inside them.

The following is the formula for the BIC:

𝐵𝐼𝐶 = −2 log𝑒(𝐿) + 𝑝 log𝑒(𝑁) (3.3)

• 𝐿 = Empirical Likelihood

• log𝑒 = Natural Log Function

• 𝑃 = Number of Parameters in the Model

• 𝑁 = The number of data points included inside the dataset.

In the context of cluster selection, it is customary to use the Bayesian Informa-

tion Criterion (BIC) to evaluate and compare clustering solutions characterized

by various numbers of clusters. The BIC value is computed for each clustering

solution using the aforementioned algorithm. The objective is to determine the

optimal number of clusters that results in the lowest BIC score. In essence, the

optimal clustering solution is chosen based on achieving an optimal balance

between the suitability of the model in explaining the data (model őt) and the

level of complexity involved in the model (model complexity), including the

number of clusters and associated parameters.

A decrease in BIC values suggests an improved balance between the ability

to explain the observed data and the level of complexity in the model. Hence,

the selection of the number of clusters that yield the minimum BIC is often

regarded as the ideal decision. BIC is inclined towards simpler models that

include fewer clusters, while simultaneously penalizing excessively complex

models. Consequently, BIC serves as a valuable tool in the context of clustering

analysis by mitigating the risk of overőtting.
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3.4.3 Silhouette score

Various techniques exist for assessing the quality of clustering outcomes,

including the Rand index, corrected Rand index, distortion score, and Silhouette

index. Although the majority of performance assessment techniques often need

a training set, the Silhouette index stands out as an exception, since it does not

necessitate a training set for evaluating clustering outcomes. This modiőcation

makes it more suitable for clustering purposes. The Silhouette index is used in

this study to assess the clustering performance. The following is the deőnition

of the silhouette width 𝑠(𝑥𝑖) for the point 𝑥𝑖[23]:

𝑠(𝑥𝑖) =
𝑏(𝑥𝑖) − 𝑎(𝑥𝑖)

𝑚𝑎𝑥{𝑏(𝑥𝑖), 𝑎(𝑥𝑖)}
(3.4)

• 𝑥𝑖 : A data in cluster 𝜋𝑘

• 𝑎(𝑥𝑖) : The average distance of 𝑥𝑖 to all other elements in the cluster 𝜋𝑘 (in
the context of dissimilarity)

• 𝑏(𝑥𝑖) : 𝑚𝑖𝑛{𝑑1(𝑥1)}, among all clusters 𝑙 ≠ 𝑘

• 𝑑1(𝑥1) : The average distance from 𝑥𝑖 to all points in cluster 𝜋𝑙 and 𝑙 ≠ 𝑘
(between dissimilarity)

The average distance, measured in terms of "between dissimilarity", between

each point in cluster 𝜋𝑙 and 𝑥𝑖 . The Silhouette width, as shown by the formula,

exhibits a range of values spanning from -1 to 1. A negative value is considered

unfavorable due to its association with a scenario where 𝑎(𝑥𝑖) is greater than

𝑏(𝑥𝑖), resulting in a higher level of dissimilarity within a group compared to the

dissimilarity between groups. A positive value is acquired when the value of

𝑎(𝑥𝑖) is less than 𝑏(𝑥𝑖), and the Silhouette width achieves its maximum value of

𝑠(𝑥𝑖)=1 when 𝑎(𝑥𝑖) = 0. A component has a better chance of being clustered in

the right group if its (positive) s(xi) value is larger. Elements exhibiting negative

𝑠(𝑥𝑖) values are more prone to being concentrated inside incorrect clusters.

3.5 Experimental results

When we did some statistics on our dataset we found that there were 458

patients in the dataset that had no missing data, we called it the Full Data

Patients dataset. So, we decided to analyze the Full Data Patients dataset and

the original dataset with imputation separately.
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3.5.1 Full Data Patients

As our dataset contains the heights and weights of patients we computed the

BMIs of all patients using the formula that has been mentioned below:

𝐵𝑀𝐼 =
𝑊𝑒𝑖𝑔ℎ𝑡(𝑖𝑛 𝐾𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)
𝐻𝑒𝑖𝑔ℎ𝑡2(𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠) (3.5)

Also, we created three different subsets of our dataset, namely, full (boys

and girls together), only girls, and only boys. Then, we computed BMIs of each

subset dataset and due to the presence of substantial changes in the range and

distribution of features within a dataset we standardized BMIs using Min-Max

Scaler in the preprocessing step to convert our dataset into a standard format so

that they have a standard deviation of one and a mean of zero that is crucial and

helps to improve the performance, stability, and interpretability of the clustering.

The next step is clustering and we chose the Gaussian Mixture Model to cluster

our data because the distribution of our dataset was a mixture of Gaussian. After

that, we considered the number of clusters in the range of two to nine. Then

we compared their results and őnally found the best results for the numbers of

clusters that were two and three according to different types of evaluation scores

which are AIC, BIC, and Silhouette scores.

BIC scores have been shown in Figure 3.3 for full patients, Figure 3.4 for girls,

and Figure 3.5 for boys. also, AIC scores can be seen in the following Figures

which 3.6 stands for full patients, 3.7 for girls, and 3.8 for boys. In addition to

BIC and AIC scores, there are Silhouette scores which can be seen in Figures 3.9

for full patients, 3.10 for girls, and 3.11 for boys. The analysis of these criteria

is as follows: őrst, we checked the values of AIC and BIC for all the clusters

together, and wherever both of these criteria have the lowest value, that value

was set to the best number of clusters. In the subsequent stage, the evaluation

of the silhouette score is conducted. Unlike AIC and BIC, a higher silhouette

score indicates a more optimal number of clusters. In the őnal stage, the optimal

number of clusters is determined by collectively evaluating these three criteria.

This selection is based on the premise that the model achieves the most favorable

number of clusters as indicated by these three criteria. We analyzed different

subsets of our dataset separately. For the full patients, according to the plots, we

understood that the three clusters case is the best model because BIC and AIC

scores had the lowest values for three clusters, and the Silhouette score had the
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Figure 3.3: BIC scores of each number of clusters for Full dataset(Full Data
Patients)

highest values for two and three clusters respectively, so we decided to choose

three clusters based on these scores. For girls dataset, we selected three clusters,

as the AIC and BIC scores had the lowest values for three clusters and Silhouette

scores had the highest values for two and three clusters. But for boys, we chose

two clusters because AIC and BIC both had the lowest values for two clusters

and the Silhouette score had the highest value for two clusters.

After őnding the best number of clusters of each subset of our dataset we

visualized the data in each cluster, you can see the trajectories of our dataset in

each cluster in the following Figures, 3.12 is related to full patients, 3.13 for girls,

and 3.14 for boys.

Then to őnd how each patient can jump from one cluster to another at

different time points, őrst we computed the mean of trajectories of each cluster

and then chose őve random patients. For each randomly selected patient at

each time point, we compared the value of its BMI with the mean of different
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Figure 3.4: BIC scores of each number of clusters for girls dataset(Full Data
Patients)

clusters’ trajectory by computing Euclidean Distance and forgetting factor using

the formula that has been mentioned below:

𝑑 =

𝑛
∑︂

𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2 (3.6)

• 𝑥𝑖 : BMI of a patient in time point 𝑖

• 𝑦𝑖 : Mean of a trajectories in time point 𝑖

• 𝑤𝑖 = 𝑒−𝜆(𝑡): Forgetting factor in time point 𝑡

It is worth mentioning that the forgetting factor is a method used in time-

series analysis and forecasting that involves assigning weights to previous data

that decrease exponentially with time. This indicates that observations made

more recently have a greater weight in shaping the present forecast or estimate,

but observations made in the past have progressively less inŕuence as time
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Figure 3.5: BIC scores of each number of clusters for boys dataset(Full Data
Patients)

goes on. So, we used the forgetting factor to have more precise results. After

calculating the Euclidean distance for different BMI values of each patient with

the mean of trajectories at each time point, the data is assigned to a cluster that

has a lower Euclidean distance.

We decided to observe two different values of 𝜆 including 0 and 0.5 to őnd

out how it affects patients jumping from one cluster to another at different time

points. We chose 𝜆 = 0.5 as a middle range and 0 to have equal weights to őnd

Euclidean Distances. We selected őve random patients and showed them with

the different mean trajectories. Figure 3.15 refers to girls with 𝜆 = 0, Figure 3.16

for girls with 𝜆 = 0.5, Figure 3.17 for boys with 𝜆 = 0, Figure 3.18 for boys with

𝜆 = 0.5.

Also, an example of patient cluster changing for the őve random patients has

been shown in Table 3.19 for girls and Table 3.20 for boys, the őrst column shows

the patient ID and the second and third columns show the changes of clusters
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Figure 3.6: AIC scores of each number of clusters for full dataset(Full Data
Patients)

for each random patient with 𝜆 = 0.5 and 𝜆 = 0.

3.5.2 Imputed Dataset

In the previous section, we clustered and analyzed the Full Data Patients

dataset but in this section, we are analyzing the original dataset with missing

data and imputed missing values. The total number of data was n = 3,897

including girls (n = 1931), and boys (n = 1966). We imputed the missing data

using different imputation approaches such as Mean Expected Growth, Linear

Interpolation, Forward-Fill, Backward-Fill, and MICE but found that the best

approach was Mean Expected Growth which had better results, for instance in

the case of MICE imputation When we compared the results of its clustering,

which included the trajectories of the patients, with the gold standard, we

realized that the behavioral pattern of the patients after imputation is very

different from the gold standard, and the BMI of the patients often has many
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Figure 3.7: AIC scores of each number of clusters for girls dataset(Full Data
Patients)

changes and ups and downs over time while we did not see such changes in the

results of Mean Expected Growth and chose it as a best imputation approach

in our project. Since our dataset contained heights and weights in 14 time

points, at őrst we divided the dataset into two subsets of girls and boys then

imputed them using Mean Expected Growth. The missing values in the dataset

were approximated by computing the mean of the longitudinal data at each

time point. This allowed us to determine the growth rate of the data between

consecutive time points using the equation that has been mentioned before as

follows:

𝑥𝑐𝑖 = 𝑥𝑐−1
𝑖−1 + (𝑀𝑒𝑎𝑛𝑐 −𝑀𝑒𝑎𝑛𝑐−1) (3.7)

• 𝑥𝑐
𝑖
: Missing data for a patient at time point ”𝑖”

• 𝑥𝑐−1
𝑖−1

: A data which refers to the previous time point ”𝑖 − 1” for a patient

• 𝑀𝑒𝑎𝑛𝑐 : Mean of data over a column at time point 𝑖
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Figure 3.8: AIC scores of each number of clusters for boys dataset(Full Data
Patients)

• 𝑀𝑒𝑎𝑛𝑐−1: Mean of data over a column at time point 𝑖 − 1

After that, we calculated the BMIs of all patients using heights and weights

using the formula that has been written below:

𝐵𝑀𝐼 =
𝑊𝑒𝑖𝑔ℎ𝑡(𝑖𝑛 𝐾𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)
𝐻𝑒𝑖𝑔ℎ𝑡2(𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠) (3.8)

We considered three different subsets of our dataset, the same as for Full

Data Patient in the previous section namely, full(girls and boys together, n =

3,897), only boys(n = 1966), and only girls(n = 1931). In the preprocessing step,

we standardize the dataset to convert them into a standard form. After that, we

clustered our dataset using Gaussian Mixture Models as a soft clustering method

with the different number clusters between two and nine, then compared their

results together and found the best number of clusters based on BIC, AIC, and

Silhouette scores which was three for all the subsets of the dataset.
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Figure 3.9: Silhouette scores of each number of clusters for full dataset(Full Data
Patients)

BIC scores can be seen in őgures 3.21 for full patients, 3.22 for girls, and 3.23

for boys, we have shown these scores for AIC in the same way in őgures 3.24

for full patients, 3.25 for girls and, 3.26 for boys. Also, we got Silhouette scores

for full patients in őgure 3.27, girls in őgure 3.28, and boys in őgure 3.29. Same

as the previous section we have, the smaller the BIC and AIC, the better the

models, and the larger the Silhouette score, the better the model, so according

to this and the problem deőnition and requirements we have chosen the best

number of clusters for each subset of the dataset n this way, we considered the

number of clusters for the full data to be three, three for girls, and three for boys,

but as the result of the full dataset was not satisfying, we analyzed girls and

boys separately.

After choosing the best number of clusters, here, like the previous procedure

of Full Data Patient we visualized the trajectories of data in each cluster that can

be seen in the following őgures, 3.30 for full (girls and boys together), 3.31 for
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Figure 3.10: Silhouette scores of each number of clusters for girls dataset(Full
Data Patients)

girls, and 3.32 for boys. Since we wanted to know how each patient changes

their clusters from one time point to another one, őrst we computed the mean

of trajectories of each cluster and then chose őve random patients to show the

mean of trajectories and random patients together to analyze it better. In this

step, we wanted to compare the BMIs of each random patient with the BMIs of

the mean of trajectories using Euclidean Distance and forgetting factor(weights)

through the equation below:

𝑑 =

𝑛
∑︂

𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2 (3.9)

• 𝑥𝑖 : BMI of a patient in time point 𝑖

• 𝑦𝑖 : Mean of a trajectories in time point 𝑖

• 𝑤𝑖 = 𝑒−𝜆(𝑡): Forgetting factor in time point 𝑡
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Figure 3.11: Silhouette scores of each number of clusters for boys dataset(Full
Data Patients)

Everything about the forgetting factor method has been discussed in the

previous section, so based on that, we found the Euclidean Distances for each

BMI of random patients with respect to the BMIs of mean trajectories of different

clusters in 14 time points and compared them together. Each patient is assigned

to a cluster whose BMIs are less far apart(has the lowest Euclidean distance).

Choosing the 𝜆 was challenging for us. 𝜆 should be in the range of zero and

one, so we decided to choose the middle range which is 0.5. When we had a 𝜆 =

0, equal weights were given to the earlier data so it was interesting to understand

how random patients change their clusters with equal weights. You can őnd the

őgures of Five random patients with different 𝜆 (0 or 0.5) for each subset of the

dataset, Figure3.34 refers to girls (𝜆 = 0), and Figure 3.33 refers to girls (𝜆 = 0.5),

Figure 3.36 for boys (𝜆 = 0), and Figure 3.35 for boys (𝜆 = 0.5).

Furthermore, we presented an illustration of the alteration in patient clusters

for the őve randomly selected patients. Speciőcally, Figure 3.37 pertains to girls,
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Figure 3.12: Trajectory of full dataset(girls and boys together) for Full Data
Patients

while Figure 3.38 pertains to boys. The őrst column of these őgures denotes

patient ID, while the second and third columns represent the modiőcations in

clusters for each random patient, with 𝜆 = 0.5 and 𝜆 = 0.

3.6 Results Discussion

This prospective cohort study utilized population-based longitudinal data

from the ongoing Swedish birth cohort (born between 1994-96) called BAMSE[2].

Height and Weight measurements were collected from a combination of clinical

follow-ups and merging school records after taking relevant consent from the

study subjects. In the current study, three and two trajectories were identiőed

in sex-stratiőed analysis in the non-missing dataset, Figure3.13 for girls and Fig-

ure3.14 for boys respectively, (considered the gold standard) where all fourteen

time points were available.

The current study also provides beneőts of imputing missing data as this is-

sue has a big impact in longitudinal studies and needs to be addressed. With as

much as 67% data at one time point, we evaluated linear interpolation, forward-

őll (Főll) and backward-őll (Bőll), Mean Expected Growth, and MICE. Some

informative statistics are shown in Tables 3.1 and 3.2 related to heights and

weights respectively. As can be seen in Table3.1 the highest number of miss-

ing height data is related to the age of 4-years which is 2,630 and the lowest
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Figure 3.13: Trajectory of girls for Full Data Patients

number of missing height data is related to the age of 0-month which is 365,

in Table3.2 the highest number of missing weight data is related to the age of

4-years which is 2601 and the lowest number of missing weight data is related to

the age of 0-month which is 39, and we visualized all the data to have a graphical

representation of missing data which showed missing data in white color and

non-missing data in black color using the missing data matrix Figure3.1. We

found that the pattern of missingness in our dataset is MCAR(Missing Com-

pletely At Random).

Given the size of our dataset, the compute time was similar for all meth-

ods. We compared these methods’ performances and found the mean expected

growth approach to give the best results, for instance in the case of MICE impu-

tation When we compared the results of its clustering, which included the tra-

jectories of the patients, with the gold standard, we realized that the behavioral

pattern of the patients after imputation is very different from the gold standard,

and the BMI of the patients often has many changes and ups and downs over

time while we did not see such changes in the results of Mean Expected Growth

and chose it as the best imputation approach in our project, although there are

sensitivity analyses that could have been performed furthermore, but due to

lack of time, we didn’t manage to undertake them.

Another aspect of undertaking these longitudinal studies is the difference in

the time points for data collection, their coverage of the growth spurt years and

what impact this can have on the post-adolescence BMI trajectories. The widely
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Figure 3.14: Trajectory of boys for Full Data Patients

accepted children growth spurt phases between 2-3 years and 6-7 years, show

a sex-stratiőed effect in our gold standard and fully imputed dataset alike. Of

the three clusters that we identify in the mean of girls clustering trajectories,

the highest mean group (cluster 0 with 44% samples in fully imputed) doesn’t

see any signiőcant dip after the 2-3 year phase Figure3.15 and goes on a steep

increasing AR (adiposity round) after 6-years till 24 years time point in gold

standard or fully imputed dataset, while cluster 1 and cluster 2 does see a dip

after the 2-3 year phase, with nominal growth spurt at 6-year time point and

a noticeable AR at 12-year timepoint. This signiőcant őnding adds further

evidence to the OECD guidance about high BMI risks and interventions (World

Health Organization, 2016 [20]) by targeting early life factors e.g. gestational

smoking, breastfeeding, and control of preśgestational and gestational BMI[22].

The same growth dip is again not noticeable in the highest mean group (cluster

0 with 26% samples in fully imputed) for boys, and their AR gains are noticeable

at 6-year and 12-year time points. One further factor that could inŕuence these

trajectories is the signiőcance of these growth spurts and any differences in

measurement time points.

Most other studies don’t account for these phenomena or give equal weight to

every instance. While, we looked into the measure of forgetting factor, and how

it can be used as a weighting technique to account for variation at the different

measurement time points like growth spurts, different puberty impacts on boys

and girls, impact of other linked known phenotypes like asthma, etc. In the
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Figure 3.15: Mean of girls clustering trajectory with őve random patients and
𝜆=0 for Gold Standard (Full Data Patients)

current study, we looked at one alternative (𝜆=0.5) apart from the default (𝜆=0)

and we observed changes in clustering patterns of some samples (Figure3.33),

where they get allocated to a different cluster at 𝜆=0.5, compared to 𝜆=0 to

jump. As a next step, we could look into how we can implement a biological

link driven weighting technique for improving these sample clustering at each

time point to create a more continuous growth curve. Since we wanted to know

how each patient changes their clusters from one time point to another one,

őrst we computed the mean of trajectories of each cluster and then chose őve

random patients to show the mean of trajectories and random patients together

to analyze it better. In this step, we wanted to compare the BMIs of each random

patient with the BMIs of the mean of trajectories using Euclidean Distance and

forgetting factor(weights) through the equation below:

𝑑 =

𝑛
∑︂

𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2 (3.10)

• 𝑥𝑖 : BMI of a patient in time point 𝑖
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Figure 3.16: Mean of girls clustering trajectory with őve random patients and 𝜆
= 0.5 for Gold Standard (Full Data Patients)

• 𝑦𝑖 : Mean of a trajectories in time point 𝑖

• 𝑤𝑖 = 𝑒−𝜆(𝑡): Forgetting factor in time point 𝑡

In the equation that has been mentioned choosing the best values for 𝜆 was

challenging for us, as the range of 𝜆 is between zero and one, we chose the

middle range which is 0.5.

forgetting factor is a method used in time-series analysis and forecasting that

involves assigning weights to previous data that decrease exponentially with

time. This indicates that observations made more recently have a greater weight

in shaping the present forecast or estimate, but observations made in the past

have progressively less inŕuence as time goes on. So, we used the forgetting

factor to have more precise results. After calculating the Euclidean distance for

different BMI values of each patient with the mean of trajectories at each time

point, the data is assigned to a cluster that has a lower Euclidean distance.

To őnd the best number of clusters we evaluated different criteria including

AIC, BIC, and Silhouette scores that have been explained and analyzed before

in detail. The smaller the BIC and AIC, the better the models, and the larger the
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Figure 3.17: Mean of boys clustering trajectory with őve random patients and 𝜆
= 0 for Gold Standard (Full Data Patients)

Silhouette score, the better the model. Based on these criteria we chose three

clusters for the girls dataset and two clusters for the boys dataset in our gold

standard and chose three clusters for the girls dataset and three clusters for the

boys dataset for the Imputed dataset.
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Figure 3.18: Mean of boys clustering trajectory with őve random patients and 𝜆
= 0.5 for Gold Standard (Full Data Patients)

Figure 3.19: Patient cluster Changing of őve random Patients for girls
dataset(Full Data Patients)
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Figure 3.20: Patient cluster Changing of őve random Patients for boys
dataset(Full Data Patients)

Figure 3.21: BIC scores of each number of clusters for Full dataset(Imputed
Dataset)
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Figure 3.22: BIC scores of each number of clusters for girls dataset(Imputed
Dataset)
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Figure 3.23: BIC scores of each number of clusters for boys dataset(Imputed
Dataset)
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Figure 3.24: AIC scores of each number of clusters for Full dataset(Imputed
Dataset)
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Figure 3.25: AIC scores of each number of clusters for girls dataset(Imputed
Dataset)
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Figure 3.26: AIC scores of each number of clusters for boys dataset(Imputed
Dataset)
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Figure 3.27: Silhouette scores of each number of clusters for Full dataset(Imputed
Dataset)
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Figure 3.28: Silhouette scores of each number of clusters for girls
dataset(Imputed Dataset)
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Figure 3.29: Silhouette scores of each number of clusters for boys
dataset(Imputed Dataset)

Figure 3.30: Trajectory of full patients for Imputed Dataset(girls and boys to-
gether)
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Figure 3.31: Trajectory of girls for Imputed Dataset

Figure 3.32: Trajectory of boys for Imputed Dataset
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Figure 3.33: Mean of girls clustering trajectory with őve random patients and 𝜆
= 0.5 for Imputed Dataset
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Figure 3.34: Mean of girls clustering trajectory with őve random patients and 𝜆
= 0 for Imputed Dataset
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Figure 3.35: Mean of boys clustering trajectory with őve random patients and 𝜆
= 0.5 for Imputed Dataset
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Figure 3.36: Mean of boys clustering trajectory with őve random patients and 𝜆
= 0 for Imputed Dataset

Figure 3.37: Patient cluster Changing of őve random Patients for girls
dataset(Imputed Dataset)
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Figure 3.38: Patient cluster Changing of őve random Patients for boys(Imputed
Dataset)
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4
Conclusions and Future Works

This research explores the domain of longitudinal data analysis, with a con-

centration on the tracking of measurements of height and weight over a period

of time. The dataset used for this analysis consisted of 3,897 data. The issues as-

sociated with missing data were thoroughly examined in this study. To ensure

the integrity of our research, we applied many imputation techniques. After

careful consideration, we ultimately selected the Mean Expected Growth strat-

egy, which yielded superior őndings compared to other imputation approaches.

The proposed methodology involves estimating missing values within a dataset

by computing the average of the longitudinal data for each speciőc time point.

The growth rate of the data may be determined by comparing the values at

different time points.

Additionally, the use of clustering techniques, notably Gaussian Mixture

Models (GMM), has been emphasized in our study as a potent tool for revealing

hidden patterns in longitudinal data. The usefulness of longitudinal data in

comprehending patterns and trends through time, particularly in relation to

anthropometric measures including heights and weights, has been effectively

proven. The present investigation has yielded valuable insights pertaining to

the patterns of development, levels of variability, and possible correlations with

diverse elements. The forgetting factor was used to help with one of the goals,

which was to get an understanding of the dynamic changes occurring within

patients in each cluster via the use of a unique weighted technique to identify

age-adjusted BMI growth trajectories. In time-series analysis and forecasting,

the forgetting factor method includes giving increasingly smaller weights to
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older data.

The dataset used in our study exhibited a substantial number of missing data

points. The consideration of missing data is a crucial aspect in the context of

longitudinal research. We’ve evaluated how missing data may affect our results

and used reliable imputation techniques to adjust for omitted observations. This

has enabled us to reduce biases and enhance the precision of our őndings.

The dataset was examined using two distinct approaches. Initially, patients

with complete data were chosen (n=458) and subjected to clustering using Gaus-

sian Mixture Models (GMM). The resulting clustering outcomes were treated as

the Gold Standard. Subsequently, missing data in the entire dataset (n=3,897)

were imputed using the Mean Expected Growth method, followed by clustering

using GMM. The Gaussian Mixture Model (GMM) was used to cluster the data

due to the presence of a mixture of Gaussian distributions within the data.

While the analysis of longitudinal data and the use of GMM have beneőted

greatly from our research, there are still a number of directions that warrant fur-

ther research. One such direction is the use of advanced imputation techniques

to investigate and develop more sophisticated imputation techniques that can

handle missing data even more effectively. The enhancement of imputation

accuracy may be achieved by using machine learning methodologies, includ-

ing deep learning and probabilistic models. Additionally, it is noteworthy to

remark that a comparative examination of several imputation approaches may

be conducted using sensitivity analysis in order to choose the most optimal

strategy.

Our őndings support the OECD’s recommendations on how to reduce the

risks and improve outcomes associated with excessive body mass index (BMI)

(World Health Organization, 2016 [20]) by focusing on preventative measures

taken early in life, such as not smoking throughout pregnancy, breastfeeding,

and maintaining a healthy weight before and during pregnancy.

Incorporating more patient parameters beyond heights, weights, and BMI

may enhance the predictive power of our analysis. The inclusion of these new

features expands the dimensionality of our dataset and offers a more complete

perspective on the phenomena under investigation. This enhancement greatly

enhances the predictive power of the models we use and facilitates a deeper

comprehension and anticipation of events within our speciőc őeld of study. By

expanding the dimensions of our data collection, we will introduce a broader

spectrum of causes and variables that have the potential to inŕuence our goal
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variable. The enhanced contextual information enables us to identify previously

unnoticed connections, so yielding outcomes that are more precise and reliable.

The recently implemented functionality, often obtained from an alternative do-

main, facilitates the acquisition of insights across other domains. The use of

an interdisciplinary approach enhances the depth and breadth of our study by

drawing from a wide range of knowledge sources and broadening the reach of

our results. The incorporation of this particular function presents opportunities

for further investigation in the future. The previously mentioned contribution

not only enhances the current research but also establishes a basis for future in-

quiries, perhaps revealing unexplored facets of the phenomena and furthering

our comprehension.
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