
Università degli Studi di Padova

Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

Tesi di Laurea Magistrale

Effect of damping in VIV

energy harvesting devices

Laureando:

Umberto Pavan

Relatore:

Prof. Francesco De Vanna

Correlatore:

Prof. Giovanna Cavazzini

Anno accademico 2023 / 2024





A mio nonno Antonio





Riassunto

Le fonti di energia rinnovabile stanno acquisendo sempre maggiore impor-
tanza, in questo ambito i VIV energy harvester possono giocare un ruolo
importante nello sfruttamento delle cosiddette micro-hydro. In questo con-
testo nasce questo studio che si prefigge come obiettivo la delineazione di
linee guida, rispetto allo smorzamento meccanico, per la progettazione degli
energy harvester VIV Lo studio consiste nell’analisi di due configurazioni,
una con un corpo cilindrico come corpo oscillante e l’altra con un prisma
a base quadrata. Lo studio è stato seguito tramite simulazioni unsteady
RANS bidimensionali. Si vogliono osservare gli effetti dello smorzamento
sull’interazione tra fluido e sistema meccanico in configurazione open stream
cross-flow.

La struttura ed i contenuti di questa tesi vengono riassunti di seguito:

• Il capitolo 1 consiste in una breve presentazione del contesto dello
studio insieme a una rassegna dei contenuti disponibili in letteratura
riguardanti il fenomeno delle scie vorticose, il suo studio in ambito
ingegneristico per poi soffermarsi maggiormente sugli studi legati allo
sfruttamento delle vibrazioni indotte da vortici.

• Il capitolo 2 contiene una descrizione fisica del fenomeno della for-
mazione delle scie vorticose, indicando i parametri di riferimento rispetto
a questo fenomeno, quali il numero di Reynolds e il numero di Stourhal.
Di seguito viene illustrato il modello meccanico adottato per questo stu-
dio, all’interno del quale vengono presentati tutti i parametri che re-
golano il moto del corpo oscillante. Vi è poi un paragrafo dedicato alla
dettagliata descrizione del setup numerico e computazionale. Le simu-
lazioni sono state eseguite tramite ANSYS Fluent; il setup del sofrtware
viene descritto nel dettaglio argomentando le scelte effettuate, in parti-
colare, riguardo lo schema risolutivo adottato, le condizioni al contorno,
la caratterizzazione della mesh dinamica e la definizione di una UDF
necessaria per introdurre lo smorzamento nel modello. Il capitolo si
conclude con un paragrafo dedicato alla discussione delle variabili che
caratterizzano il modello; si evidenzia la suddivisione dello studio in due
macrogruppi. Per il primo viene mantenuta costante la vera e propria
rigidezza adimensionale del sistema, mentre per il secondo gruppo viene
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Riassunto

mantenuto costante il parametro k∗, rappresentativo della rigidezza ma
appositamente definito per avere particolari caratteristiche, tra le quali
garantire la costanza di Ä.

• Il capitolo 3 riguarda il caso a sezione circolare. Vi è la descrizione e
l’analisi della mesh adottata per questo caso, seguita da un breve para-
grafo riguardante la convergenza delle simulazioni. Dopodiché vi è un
paragrafo dedicato all’analisi dinamica che comprende l’illustrazione e
la discussione dei risultati ottenuti. Viene descritto il comportamento
del corpo oscillante in questa configurazione, evidenziando la concor-
danza dei risultati ottenuti con le informazioni reperibili in letteratura.
I risultati delle simulazioni vengono esposti separatamente per i due
gruppi di simulazioni presentati al capitolo precedente. Per ciascuno
vengono analizzati tramite uno studio delle frequenze di oscillazione,
delle ampiezze e dei valori di potenza al variare della velocità del flusso
incidente e del rapporto di smorzamento.

• Il capitolo 4 riguarda il caso a sezione quadrata. Inizia con la pre-
sentazione delle differenze, sia del modello meccanico sia del setup nu-
merico, rispetto a quello con sezione circolare A questo segue la presen-
tazione della mesh utilizzata. La presentazione dei risultati inizia con
la descrizione del comportamento tipico mantenuto dal prisma, eviden-
ziando l’assenza di sincronia tra le oscillazioni del corpo e il distacco
dei vortici. La medesima analisi dei risultati proposta per il cilindro
viene fatta anche per questo caso.

• Il capitolo 5 contiene un riassunto delle conclusioni tratte da questo
studio. In breve lo studio evidenzia una netta differenza di comporta-
mento tra cilindro e prisma a base quadrata. Il moto del corpo cilindrico
rispetta l’andamento atteso per le vibrazioni che hanno come causa il
“vortex shedding”. Presenta infatti una zona di sincronia limitata sia
inferiormente che superiormente e da valori di potenza considerevoli
solo per un range di velocità specifiche. Il prisma a base quadrata
invece si oscilla in maniera non sincrona con i vortici che si distac-
cano, il suo comportamento è tipico delle vibrazioni “wind galloping”.
Il regime di funzionamento in questa configurazione è a velocità più
elevate rispetto al precedente caso. Inoltre le potenze prodotte si man-
tengono all’incirca costanti per un ampio range di velocità.
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Summary

Renewable energy sources are becoming increasingly important, and in this
context, VIV energy harvesters can play a relevant role in the exploitation
of the so-called micro-hydro resources. This is the background of this study,
which aims to outline guidelines, concerning mechanical damping, for the
design of VIV energy harvesters.
The study analyses two configurations, one with a circular cross-section
and the other with a squared cross-section, performed using unsteady bi-
dimensional RANS. The effects of damping on the interaction between fluid
and mechanical system in an open-stream cross-flow configuration are to be
observed.

The structure of this thesis is as follows:

• Chapter 1 1 consists of a brief presentation of the context of the study
together with a literature review describing some of the studies carried
out in the field and the state of the art regarding VIV energy harvesters.

• Chapter 2 contains a physical description of the phenomenon of vortex
street formation, followed by an illustration of the mechanical model
adopted for this study. This section contains a paragraph dedicated
to the detailed presentation of the numerical and computational setup
and concludes with a focus on the variables characterising the model.

• Chapter 3 relates to the circular section case. A short paragraph con-
cerning the convergence of the simulations follows a description and
analysis of the mesh adopted for this case. The following section is
devoted to the dynamic analysis, which includes the illustration and
discussion of the results obtained for all the configurations of the cylin-
drical case.

• Chapter 4 relates to the case with a square cross-section. It begins
presenting the model’s differences from the circular cross-section model,
and then focuses on the description of the mesh used. The results ob-
tained from the dynamic analysis are then presented and discussed.
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Summary

• Chapter 5 contains a summary of the conclusions drawn from this
study.
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Nomenclature

D [m] Inflow flow velocity
U∞ [m/s] Inflow flow velocity
St [−] Strouhal number
fv [Hz] Vortex shedding frequency
fn [Hz] Natural frequency of the spring-mass system
fy [Hz] y-translation frequency
m0 [Kg] Reference mass
h [m] Cylinder length
m [Kg] Cylinder mass
k [N/m] Spring stiffness constant
k0 [N/m] Reference Spring stiffness constant
k∗ [N/m] Adimensional spring stiffness
y [m] y-translation
y∗ [−] Adimensional y-translation
Äs [Kg/m3] Density of the cylinder material
Äf [Kg/m3] Density of the fluid
Ä∞ Kg/m3] Density of the fluid
Ä∗ [−] Cylinder/flow ratio
µ∞ [−] Dynamic viscosity
Re [−] Reynolds number
Ur [−] Reduced velocity
Sty [−] Adimensional y-translation frequency
· [−] Damping ratio
P ∗ [−] Adimensional mechanical power
L [N ] Lift force acting on the cross-section
ẏ [m/s] Cross-flow translation velocity
ÿ [m/s2] Cross-flow translation acceleration
L [m] characteristic length of the cross-section
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- I -

Introduction

In recent years, there has been an increasing interest in the energetic field,
mainly due to the economic and industrial growth of emerging nations and
the need of shifting energy production from fossil sources to renewable or
low-emission sources.
Implementing this energy transition means facing several challenging prob-
lems, including issues related to the intermittency in the energy production
of renewable sources, particularly solar power plants and wind farms.
Compared to other renewable energy sources, hydropower provides greater
stability and consistency in production, almost comparable to that of classic
natural gas or coal-fired power plants. However, hydro resources with suitable
characteristics for constructing power plants are relatively saturated. For this
reason, it has become necessary to exploit also those sources in respect of
which it is not convenient to undertake the high investments of conventional
hydropower solutions. Smaller scale resources, or resources placed in areas
where dams cannot be built, due to the conformation of the soil or the re-
lated geological risk, could still be exploited with other innovative solutions.
Conventional hydropower plants, in fact, are currently only exploitable where
it is possible to generate power outputs of at least 12-15kW and thus leave
many potential smaller resources untapped. In this area, it is opportune to
find types of plants that can be competitive despite the lower power outputs
involved.

Energy harvesters are a significant innovation in this field. These devices
are able to extract energy from fluid flows differently from conventional tur-
bines. In fact, they derive energy from the phenomenon of vortex-induced
vibration (VIV). This phenomenon takes place under certain determinate
conditions, such as when a vortical wake (Von Karman vortex street) is
formed downstream of a bluff body, which is invested by a fluid flow. The
vortices in the wake alternately detach from the body, resulting in an al-
teration of the pressure field around the body, which, if it is free to move,
is subject to oscillatory motion. The mechanical energy of the oscillatory
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Introduction

motion can then be converted into electrical energy. Usually, these devices
use piezoelectric crystals or electromagnetic generators capable of converting
the energy of the motion.

The existence of vortex-induced vibrations has been well-known for a long
time in the engineering field. In fact, this type of vibration is considered
dangerous in most engineering applications because it can lead to excessive
amplitude vibrations and to the collapse of structures such as bridges, trans-
mission lines, aircraft control surfaces and many others.

However, this phenomenon can also be used to extract energy from the
flow by coupling the bluff body to an electric generator or a piezoelectric
crystal. To achieve good performance when using VIV energy harvesters, it
is necessary to have a deeper understanding and knowledge of the motion of
the bluff body. For example, what are the configurations for which energy
harvesters are most effective in collecting energy? Given a particular configu-
ration, how do energy harvesters behave when the parameters controlling the
motion, such as stiffness, damping or density ratio of the system, vary? For
some time now, VIV energy harvesters have been attracting some interest,
and literature studies have provided answers to some of the above questions.

Starting from the concepts behind the phenomenon, many studies have
been conducted with the aim of understanding the causes and behaviour of
vortex streets, studying stationary bluff bodies, mainly cylinders, invested
by a fluid flow. In 1980, Friehe (1980) conducted a study focusing on the
detachment frequency of vortexes downstream of a cylinder to provide quan-
titative data on the relationship between Stourhal and Reynolds numbers.
Subsequently, Achenbach and Heinecke (1981), maintaining the stationary
cylinder configuration, investigated the effects of roughness on vortex shed-
ding by conducting an experimental study involving flow analysis for a cylin-
der inside a wind tunnel; they found that surface roughness influences the
Stourhal number in the critical regime, causing it to increase compared to the
case with a smooth cylinder. Maintaining the focus on stationary cylinders,
Triantafyllou et al. (1986) focused their study on the cause of vortex for-
mation downstream of the cylinder by combining experimental studies with
equations based on the inviscid fluid hypothesis. These studies provide valu-
able information on the physical principles governing vortex trails and are
a good starting point for understanding the pivotal mechanisms of vortex-
induced vibrations.

More specific information on this phenomenon can also be found in the
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literature by consulting those studies interested in the containment of vortex-
induced vibrations since these can be a danger to structures. In particu-
lar, there are interesting studies concerning marine riser applications. In
this area, Ding et al. (2004) conducted a study simulating at a riser-scale
Reynolds number on smooth cylindrical bodies of various roughness and
streaked cylindrical bodies, both in a cross-flow configuration. This study
revealed a marked difference between smooth and streaked cylinders. Ac-
cording to Ding, oscillations as large as two diameters can occur for smooth
cylinders, whereas for streaked cylinders, the vortex wake is almost absent,
as is the induced oscillation. In 2006, Constantinides and Oakley (2006)
conducted a study to develop a numerical model to predict the phenomenon
in the same sector, but with a numerical approach based on RANS and DES
(Detached Eddy Simulation).

Turning the focus to studies conducted on energy harvesters, a variety
of information is available in the literature. Studies in this field assume dif-
ferent approaches, either emphasising the VIV phenomenon or researching
configurations capable of extracting more power.
In this area, Goswami et al. (1993) conducted an experimental study on a
cylinder mounted on springs in a wind tunnel; he investigated the effects of
certain control variables of the system, including mechanical damping, which
seems to have a certain relevance in the range of speeds at which the lock-in
condition is maintained. Blackburn and Henderson (1996) then conducted
a numerical analysis using a two-dimensional approach in a cross-flow con-
figuration for one cylinder. The study clarified that the numerical method is
an alternative to the experimental setup.
Maintaining the cross-flow configuration, Fu et al. (2013) experimentally in-
vestigated the behaviour of a flexible cylinder in a specific velocity range by
subjecting it to both steady and oscillatory flows; this study exposed relevant
differences concerning hysteresis and amplitude of oscillations depending on
the type of incident flow. Remaining in the area of flexible cylinders, an
interesting study conducted by Singh et al. (2012) approaches the problem
by developing a bi-seismic mathematical model to describe the oscillations
of a flexible cylinder.

Concerning power generation, a widely used approach for the conversion
of mechanical energy is the use of piezoelectric crystals. In this area, Molino-
Minero-Re et al. (2012) conducted a study with an energy harvester using
a piezoelectric crystal connected to a cantilever as a voltage generator; the
study also revealed a decrease in oscillation frequency as the diameter of
the cylindrical body increased. Also, Wang et al. (2021), again exploiting
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piezoelectric materials, studied a particular configuration involving the posi-
tioning of a rectangular plate downstream of the cylinder in order to extend
the range of speeds at which the harvester is able to generate energy. His
studies, which were carried out experimentally in wind tunnels, have shown
that this configuration can better harness the power of the vortex wake.
Another interesting configuration was studied by Badhurshah et al. (2019),
which involves mounting the cylinder on a bi-stable spring, again in order to
extend the range of speeds for which the lock-in is maintained; they found
out that the non-linearity of the spring is quite effective in pursuing this
aim.
There are also other interesting approaches to the problem of VIVs, e.g.
Raissi et al. (2019) conducted a study that exploited deep natural networks
that encode the dynamic motion equation for the structure along with the
incompressible Navier-Stokes equations to predict the velocity and pressure
fields around the copes; these results can then be exploited in control appli-
cations.

Although a number of researches has been carried out on the VIV phe-
nomenon and a great amount of information i available in the literature
dealing with this topic, no clear guidelines can be identified for developing
an energy harvester from start to finish. Therefore, the need arises to conduct
studies that maintain simple configurations and can provide valid informa-
tion in most cases.

The current study arises within the framework of the H-HOPE project, a
European project that aims to identify the untapped potential of hydropower
resources in the EU and develop technologies capable of exploiting hidden
hydro. To this end, it seeks to develop an innovative technology capable of
exploiting VIVs.

As can be seen from the 1.1, there are several harvester configurations
proposed in this project:

• Piping

• Open stream

• Open channel

This study focuses on the open-stream cross-flow configuration with a
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Figure 1.1: Energy harvester configurations studied within the H-HOPE project.

simple oscillating body; among the proposed configurations, it is probably
the most studied due to its simplicity, and, for this reason, it is suitable for
the purpose of deriving results of broader applications. Among the various
areas available in this configuration, the focus is on the effect of the system’s
mechanical damping on the interaction between fluid and oscillating body. It
aims to provide general guidelines regarding this parameter in VIV systems.
In carrying out the study, a two-dimensional model was adopted, on which
numerical analyses were conducted using Computational Fluid Dynamics
(CFD), building a database of results.
Two different geometric configurations were adopted for this study, the first
using a cylindrical body and the second using a square-based prism. On the
one hand the configuration with the cylinder was chosen because it is the
one which is mostly dealt with in the literature and, in any case, it gives
good results in terms of energy collection. On the other hand, the second
configuration, was chosen because, from preliminary studies, it appears to
have good performance in different velocity ranges than those optimal for the
cylinder, and could therefore be useful in exploiting resources that cannot be
used with the first configuration.
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- II -

Model definition and setup

In this chapter, everything concerning the approach to the problem is pre-
sented, both from an analytical point of view and from the point of view of
the computational setup. In both cases, in order to avoid continual repeti-
tion, reference is always made to the case of the cylinder with a circular base
throughout the length of the chapter. Note that the approach adopted for
the case of the square-base prism is entirely similar to that of the cylindrical
case; the few differences present will be highlighted in the chapter devoted
to the square case.

Focusing now on the phenomenon of wake vortex formation, different
behaviour can be observed depending on the value of the Reynolds number.
In the study of bluff bodies interaction with fluid flows, cylindrical bodies
are by far the most studied, so the next few lines, based on the literature,
will describe the behaviour of a generic cylindrical body interacting with a
fluid current.
For a given cylinder transversely crossed by a fluid flow, wakes of different
shapes can be observed depending on the speed of the flow, since the Reynolds
number and the speed are linked by the following relationship:

Re = Ä∞DU∞/µ∞ 2.1

According to Pantazopoulos (1994), if the surface of the cylinder is smooth,
the following behaviour can be observed: if the Reynolds number is less than
5, the boundary layer is completely attached; as the Reynolds number in-
creases between 5 and 40, two symmetrical delta vortices form downstream
of the cylinder due to the separation of the boundary layer. As the Reynolds
number increases in a range between 40 and 150, two regimes, in which vor-
tex street is laminar, are observed. After a transition region between 150
and 300, a fully turbulent vortex street is reached for Reynolds numbers up
to 3 · 105, this last region is called "subcritical". For even higher values of
Reynolds number, a transition region is reached where the boundary layer be-
comes turbulent, causing a drastic drop in the drag coefficient. For Reynolds
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numbers higher than 3.5 · 106, a vortex street with a turbulent cylindrical
boundary layer is again observed and it persists up to 1011.

However, the Reynolds number is not the only parameter controlling the
behaviour of the wake; many other factors such as cylinder surface roughness
and turbulence of the incident flow can influence it, in addition to which,
when considering real applications, there are even other modifying factors
such as end effects for finite length cylinders or the flexibility of the body. In
this study it is always assumed that the cylinder surface is smooth, there is
no turbulence in the incident flow, the cylinder is infinite in length and has
infinite stiffness.

If we now look at the vortex shedding frequency, we can see that it’s a
key parameter for harvesting energy from the flow, because when it’s equal
to the natural frequency of the mechanical system, resonance conditions are
reached. As reported in Vortex Shedding From Bluff Bodies in a Shear Flow:
Griffin (1985), the periodic lift force is amplified in this condition.
The vortex shedding frequency is considered via the Strouhal number, which
is closely related to the Reynolds number as it can be seen in figure 2.1

Figure 2.1: Plot of Strouhal and Reynolds numbers for a circular cylinder. Ex-
perimental figure from Kaneko et al. (2008).

The general formula for the Strouhal number is:

St = fvD/U∞ 2.2

where fv is the vortex shedding frequency. When fn is equal to fv , the
so-called "lock-in" condition is reached.

As De Vanna et al. (2023) report, the orthogonal displacement of the
cylinder is considerably greater when the lock-in condition occurs, therefore
more energy can be extracted from the flow in this condition.
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Mechanical model description

Many other physical parameters such as density, stiffness, damping, etc.
have a significant influence on the behaviour of the cylinder, so the next
section will introduce the mechanical system of the case studied.

2.1 Mechanical model description

Since the objective of the current study is to investigate how the VIVs vary
as the damping of the mechanical system varies and knowing that a large
number of CFD simulations would be required to have a sufficiently large
database, the mechanical system adopted is as simple as possible in order to
reduce the computational time. Apart from that, note that the present study
is part of the continuation of De Vanna et al. (2023)’s study and therefore
adopts exactly the same mechanical model.

The mechanical system adopted consists in a 2D model in which the cylin-
der suspended in the fluid flow. The body is elastically suspended in the flow,
with the height of the cylinder being perpendicular to the undisturbed flow
direction, this is called a cross-flow configuration. Obviously the cylinder
has a mass, the springs on which it is mounted aren’t considered ideal, so
they are characterised by stiffness and damping too. The cylinder can be
displaced in the vertical direction, any other movement is not allowed, so
the system has only one degree of freedom and is governed by the following
differential equation:

m¨̃y(t) + c ˙̃y + kỹ(t) = Fy 2.3

where m is the mass of the cylinder, c is the damping of the springs, k is
their stiffness and Fy is the resulting lift force on the cylinder. Furthermore
ỹ, ˙̃y, ¨̃y are verical displacement, velocity and acceleration respectively. In
order to ensure that the results of the study are as general as possible, a
non-dimensional formulation is adopted. It is obtained by normalising the
parameters for a characteristic length and a characteristic time: D and U∞/D
respectively.

The physical quantities that are obtained are as follows:
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y = ỹ/D 2.4 t = t̃U∞/D 2.5

where y is the non-dimensional length and t is the non dimensional time.
Equation 2.3 in the non-dimensional form becomes:

ÄAÿ/D2 + µẏ + Ày = 2cy 2.6

which includes: the cylinder to fluid density ratio

Ä = Äs/Ä∞ 2.7

the non-dimensional damping

µ = c/(Ä∞U∞D) 2.8

the non-dimensional stiffness

À = k/(Ä∞U2

∞
) 2.9

the lift coefficient

cy = Fy/q∞ 2.10 q∞ = 1/(2Ä∞U2

∞
D) 2.11

While A/D2 is only a geometric parameter resulting from the cylindrical
shape chosen, Ä, µ, À are key parameters influencing the behaviour of the
body. As De Vanna found out, different values of Ä significantly change both
the speed range and the power output, so it was also expected that motion
would be strongly dependent on the À and µ values. The choice of these
values in this study was therefore crucial, as will be discussed later.
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Computational setup and

numerical methodology

2.2 Computational setup and

numerical methodology

The present work was conducted using the commercial computational fluid
dynamics platform ANSYS Fluent as the numerical reference solver, it has
been used to solve the 2D Unsteady Reynolds-Averaged Navier-Stokes equa-
tions (URANS), it has been used to solve the Navier-Stokes equations which,
given the incompressible nature of the problem that comes from the fact that
the operating fluid is water, are reduced to just three equations: the conti-
nuity equation, the equation of conservation of momentum along the x-axis
and the equation of momentum along the y-axis. The same equation along
z-axis is not necessary since the problem is two-dimensional in the same way
the energy equation is not implemented due to the incompressibility of the
fluid.

Given the complexity of the problem and the need to run a significant
number of simulations, within the H-Hope project a customised Python code
was developed. This code can automatically edit a given journal file by
entering into it the desired values for simulation parameters such as density,
stiffness, fluid inlet velocity etc., which is all that’s needed to set up the
correct simulation. It can also generate appropriate commands within the
journal file to implement a user-defined function (UDF) within a simulation;
in short a UDF is a code defined outside of Fluent in which it is possible to
create variables and mathematical functions that are not available in the main
solver; more on UDFs will be discussed later. Finally, the code is capable
of running simulations by entering the desired number of iterations in the
journal file and generating the Slurm files which contain all the information
required to run the simulations on Galileo100, such as the number of nodes
desired to be used for the simulation, the memory allocation, which partition
to use and all the information about the solver licence, the user and the
project to which the simulation belongs.

It is important to emphasise that the simulations were conducted in
the unsteady regime, taking into account the oscillating nature of the phe-
nomenon under investigation. This approach made it possible to explore in
detail system’s behaviour over time, providing a complete and in-depth view
of the phenomena at involved.
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2.2.1 Journal file

As mentioned earlier, the journal file contains all the information required by
the ANSYS Fluent solver to perform an adequate simulation of the fluid field;
this section describes in detail the contents of the journal file and explains
the choices made during the study. The journal file is nothing more than a
text file that can be summarised into nine sections:

• Mesh import

• Model definition

• Cell-zone conditions and boundary conditions definition

• Dynamic Mesh Characterisation

• User-defined Function Import

• Reference Values Set

• Solver Scheme Set

• Report Definition

Mesh import

The geometry to be simulated is imported into Fluent via a mesh file contain-
ing the mesh information described in the previous paragraph. To verify that
the mesh has been imported correctly, a check command is given; this com-
mand corresponds, in Fluent’s output file, called “fluentOut”, to a section
where it is possible to check various information about the imported mesh,
such as domain extension, number of cells, number of nodes and others, to
verify that there are no errors.

Model definition

The Models section defines the various settings to be used for the simulation,
such as the type of algorithm to be implemented, the turbulence model and
the type of fluid selected for the simulation.
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Computational setup and

numerical methodology

The first decision to be made is whether to run a steady-state or a tran-
sient simulation. A steady-state simulation computes the fully developed
solution that does not change over time, when a steady-state model is used
the mean values are computed; this choice is appropriate when the flow field
does not change significantly within time. Steady-state simulations are less
expensive, in terms of computational cost, compared to transient simula-
tions, but transient simulations are required when there is a time-dependent
phenomenon of interest. The transient approach is best suited to simulate
unsteady flows, such as turbulent flows, flow instabilities, transient events
like start-up or shut-down processes and flow around moving objects, which
happens to be the case in this study.

The second thing to choose is the algorithm to implement in the solution
of the continuity and momentum equations.
Two approaches are available: density-based and pressure-based. Each pro-
vides several implementable options for solving the non-linear system govern-
ing fluid motion. The density-based approach solves the momentum conti-
nuity equations and, if necessary, energy and other equations simultaneously.
This means that the non-linear equations are coupled and cannot be solved
separately. The density-based calculation method linearises the non-linear
system governing the motion in each mesh cell. This results in a linear sys-
tem for each cell, the resolution of which provides updated values for the
fluid field. The density-based approach provides two ways of linearising the
equations of motion: an implicit way and an explicit way. In the implicit
case, each unknown value in each cell corresponds to an equation containing
both known values and unknowns values from neighbouring cells; therefore,
each unknown value appears in several equations of the linear system, and
they must be solved simultaneously. In contrast, in the explicit system, each
unknown value in each cell is associated with an equation that contains only
known values and can, therefore, be solved separately from the others. In
summary, the implicit system solves for all variables in the whole mesh at
the same time, whereas the explicit system solves for all variables one cell
at a time. The explicit method is generally more accurate than the implicit
method, but, since it uses information from the previous time step, the time
step size must be limited to avoid the fluid travelling more than one cell per
time step. This can result in a slower simulation and can be avoided using
the implicit method.

The density-based solver is mainly recommended for high-speed com-
pressible flows. This is because if the difference between the fluid velocity
and the sound speed is minimal, which happens for low Mach numbers, the
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Navier-Stokes equations, as they are written in the density-based approach,
become (numerically) highly stiff. This also happens in incompressible fluids,
where acoustic waves travel endlessly quickly regardless of the fluid velocity.
Poor convergence rates are caused by the numerical stiffness of the equations.
Fluent can overcome this problem by using a method known as precondition-
ing, but the density-based approach remains unrecommended for this study.

A better option for the current study is a pressure-based approach, which
is recommended for incompressible or low-compressible flows. The pressure-
based approach solves the non-linear system of equations governing the fluid
flow by implementing an algorithm that comes from the projection method.
In this method, the continuity equation is not solved directly. Instead, a
so-called “pressure-correction” equation is solved. The pressure-correction
equation comes from both the continuity and momentum equations, and it
is used to correct the pressure so that the continuity is satisfied. As well as
the density-based method, the pressure-based one comes in two forms: the
coupled and segregated algorithms. The coupled algorithm solves simultane-
ously both the equations of momentum and the pressure-correction equation,
more in detail it consists of the following steps:

1. Update the properties of the fluid based on the current solution;

2. Solve simultaneously the system of momentum and pressure-based con-
tinuity equation;

3. Update mass flux;

4. Solve energy equation (and others) if required;

5. Check if the solution converged;

6. End or iterate, depending on the convergence.

In contrast, the segregated method solves the governing equations segre-
gated from one another; this means that each equation, while being solved,
is decoupled from other equations. Since the equations aren’t really segre-
gated from one another in the non-linear system governing the fluid flow,
the solution has to be calculated iteratively. Each iteration consists of the
same steps followed by the coupled algorithm reported in the numbered list
above, apart from step number two, which is split into two parts. In fact,
the segregated algorithm solves each momentum equation sequentially first
and then solves the pressure-correction equation for the continuity.
This last algorithm has a significantly lower rate of solution convergence
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compared to the coupled algorithm; this happens because the equations are
solved in a decoupled manner. On the other hand, the segregated approach is
far more memory-efficient than the coupled algorithm because it only needs
to store one equation in the memory at a time and not all of them together,
as in the case of the coupled algorithm.
Both of these methods are suitable for the present study, but the segregated
approach has been chosen because it provides a pressure-velocity coupling
algorithm called “PISO”, which is recommended for the case of this study.
More about the PISO algorithm will be discussed later in the journal file
section.

The third thing to choose is the turbulence model. Turbulence models
are needed to find unknown variables introduced in the equations to avoid
the resolution of small scales, which are too computationally expensive to
simulate. In fact, since the velocity fields are characterized by fluctuations
of velocity, quantities such as momentum and energy result to be fluctuating
also. These fluctuations can be of small scales at high frequency, and the
simulation of these scales can not be performed either in a reasonable time
or with limited computing resources. Instead, the equations are manipulated
(removing the small scales or time-averaging them), resulting in equations
that are cheaper to solve but contain the unknown variables mentioned ear-
lier.
As will be mentioned in the paragraphs on meshes, three different turbulence
models were tested in this study. k-É SST was the one that performed best,
so it has been chosen.
Even if it is impossible to establish an absolute hierarchy among the turbu-
lence models, the k-w SST is an excellent choice for problems of this kind.
Its effectiveness derives from the fact that it can exploit both the omega and
epsilon. The following formula wants to be representative of this capability:

É equation + blend function × ϵ equation 2.12

Where the blend function assumes values close to zero near the wall, and
therefore, the equation for W is exploited, while it assumes values equal to
one far from the wall (far field), and consequently, the equation for epsilon
is exploited.

The fourth and last thing to choose is material. A lot of physical proper-
ties may be defined for the material, such as density, viscosity, heat capacity,
thermal conductivity and others.
In this case, the choice is pretty easy since the study aims to investigate the
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behaviour of bluff bodies submerged in a water flow. The material has been
copied from the Fluent library as “water-liquid”.

Cell-zone conditions and boundary conditions definition

In this section, two types of conditions are assigned to the control volume:
cell-zone conditions and boundary conditions. The cell zone conditions cover
the entire region in which the solver actually has to simulate the flow; this
occurs in the whole domain, excluding the edges. On the other hand, bound-
ary conditions are assigned to the edges of the control volume; through these,
it is possible to impose the configuration of the motion to be simulated.

Cell zone conditions can be fluids or solids; in the present study, we want
to simulate a water flow, so obviously, the condition will be fluid. A fluid
zone consists of a group of cells in which all the equations governing mo-
tion are solved. It is also possible to specify other information, such as the
presence of a source (of heat, mass, momentum, turbulence, etc.), a fixed
value for a variable in the fluid zone, a zone in which the flow is simulated
as laminar or a porous zone. It was not necessary to implement any of the
above options during this study. Furthermore, if required, it is possible to
specify a translating or rotating reference frame. In the case of this study,
the reference frame is fixed. The fluid-cell-zone condition has been assigned
to both the square region surrounding the cylinder and the rectangular zone
outside the square visible in Figure 3.1.

As for boundary conditions, these must be assigned to the four outer sides
of the mesh and the cylinder surface. The last is assigned the wall condition
because the cylindrical surface is solid. It is possible to specify three settings
within the wall condition: wall motion, shear condition and wall roughness.
Regarding the wall motion, it has been excluded in the present study be-
cause, although the cylinder moves within the fluid field, there is no relative
motion between fluid and cylindrical surface at the interface (as could be the
case, for example, if a rotational motion around his axis was imposed to the
cylinder). The shear condition at the interface is set as "no-slip,"this setting
is the default in Fluent and dictates that the fluid and the wall must move
with the same velocity meaning that the fluid has to stick to the wall. Fi-
nally, the surface roughness affects the wall-bounded flow, and Fluent takes
this into account by changing the Law-of-the-wall. In this study, the rough-
ness was simulated by keeping the default value proposed by Fluent for the
roughness constant (0.5).
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The sides limiting the control region above and below were assigned the
symmetry condition. Although this is usually used to simulate geometries
with mirror symmetry, in this case, it is used to model a wall with zero-
shear slip. In fact, the symmetry condition imposes that there must be fields
with no component orthogonal to the surface, as happens in the case of the
wall boundary condition, but without imposing the no-slip condition. In
the problem to be simulated in this study, the symmetry boundary condition
turns out to be adequate because, although the control volume has no mirror
symmetry with respect to the outer sides, it is assumed that the oscillatory
motion of the cylinder does not affect the fluid velocity field in regions far
away from the cylinder. Thus, the flow proceeds parallel to the horizontal
sides, and the absence of the wall adhesion condition is sufficient to simulate
the presence of an indefinitely extended fluid zone, as established by the open
stream.

The boundary condition imposed at the inlet is velocity-inlet. This type
of condition imposes the velocity of the flow in the specified region and ad-
justs the total pressure of the flow so that the imposed velocity is met. It
is a condition designed specifically for incompressible flows and, therefore,
appropriate for this problem. Since the total pressure of the flow is adjusted
to meet the velocity, one must pay attention to the position of the inlet
concerning the solid areas obstructing the flow, in this case, the cylindrical
body. In fact, if the inlet is placed too close to an obstruction in the flow,
the total pressure may be too non-uniform, and this worsens the quality of
the results; in creating the geometry to be simulated, this problem was taken
into account, and the distance of 15 diameters separating the inlet from the
cylinder is sufficient for this purpose.
Within this boundary condition, it is possible to set the reference frame,
which, in this case, is set as absolute. It is also possible to specify a par-
ticular velocity profile desired at the inlet; in the present study, we want to
simulate an open stream, and consequently, the velocity profile at the inlet
must be constant. Fluent requires you to specify how the turbulent quan-
tities must be transported when the flow enters the fluid domain. In order
to do that, several ways are available; in this study, we chose to specify the
turbulent intensity and the viscosity ratio.
Turbulent intensity takes velocity fluctuations into account through an index
called I, which is equal to the root mean square of the velocity fluctuation
from the mean flow velocity. Typical values of this index are between 1%
and 10%, and the index varies as the Reynolds number varies. For the val-
ues of the Reynolds number in this study, a turbulent intensity of 5% was
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considered adequate. The turbulent viscosity ratio is the ratio of Boussinesq
turbulent viscosity to flow viscosity. The turbulent viscosity ratio also follows
a law proportional to the Reynolds number and was set equal to 10 in this
study.

The last region on which to impose a boundary condition is the outlet.
The condition chosen is pressure outlet. This involves the specification of a
reference system again set as absolute. It is possible to choose a desired pres-
sure profile at the outlet; in the present study focused on the open stream,
there are no constraints on the expected pressure profile, so no pressure profile
has been imposed. It is necessary to set the gauge pressure at the reference
outlet, which, as in the case of the inlet, has been set equal to 0 Pa.
By choosing the pressure outlet setting, Fluent requires the specification of a
method to be implemented to establish the backflow direction. The backflow
condition happens when, because of the fluctuations of the velocity field and
the turbulence, there is a reverse flow entering the domain from the outlet.
Fluent offers many possibilities for the specification of the backflow direction;
in the present study, the calculation from the neighboring cell has been cho-
sen; within this option, Fluent determines the backflow direction, computing
it from the cell layer adjacent to the pressure outlet.
As in the velocity inlet, parameters must be set for turbulence simulation
in the pressure outlet condition. Again, turbulent intensity and turbulent
viscosity ratio are chosen to be set, the same values assigned for the velocity
inlet,5 and 10, respectively, have been assigned.

With this last boundary condition set, all flow variables have been set,
and the physical model is correctly set up.

Dynamic Mesh Characterisation

If the shape of the domain changes over time during the simulation, a dy-
namic mesh must be used in Fluent. This feature allows the mesh to be
adjusted to the change in shape, either in the case where the user imposes
the deformation or in the case where it results from solving the equations of
motion at the current time. The latter occurrence corresponds to the present
study, which is studied through the six DOF solver theory. In fact, Fluent
solves the equations governing the fluid field at each instant; then, by com-
puting the integral of the forces insisting on the cylinder, it determines the
acceleration and velocity of the cylinder’s centre of mass and, consequently,
its position. In this way, the shape of the domain is updated, and the mesh
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has to be updated, too.
There are many ways available for mesh updating. In this study, the smooth-
ing method was used in the case of the cylinder. By implementing this
method, the mesh is modified by moving the nodes of the dynamic mesh zone
while preserving their number and connections. The movement is absorbed
by the mesh deformation; to achieve this goal, the diffusion-based smooth-
ing method based on boundary distance was used. It involves the choice of
specific parameters that adjust the diffusion to keep the mesh quality high
in the area close to the deforming edge and have most of the deformation
absorbed far away in areas of less interest, where the flow is smoother, and
the mesh quality remains high even in the presence of deformation.
It is also necessary to specify which mesh areas are free to deform and which
are not. In this case, the square-shaped area surrounding the cylinder was
chosen to be allowed to deform, while the cylinder was specified to be a rigid
body. As mentioned earlier, it is necessary to specify how to calculate the
motion of the rigid body. Among the opportunities offered by Fluent, there
isn’t the possibility of choosing a differential equation that includes damping
as in equation 2.3. However, it was possible to get around this problem by
using a user-defined function, which Fluent builds and implements starting
from an external script specified by the user.

User-defined Function Import

As mentioned before, the UDF in this study was used to introduce damp-
ing into the equation of motion of the cylinder. Since it is defined with a
script external to Fluent, it must be imported and compiled. However, it is
necessary to build it first. Starting from the script, folders and system files
are created, which Fluent then uses to compile the function. The journal
file contains a few lines, written in bash, that perform these actions. More
information regarding the contents of the UDF will be discussed later.

Reference Values Set

Reference values are used by Fluent only in post-processing; they have no
function during simulation. They are used to make the results "exact," that
is, to correctly calculate the derived quantities from the results actually com-
puted during the simulation.
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In the case of this study, it has been necessary to specify reference values
for:

1. Area = 1m

2. Length = 1m

3. Velocity = U∞

4. Density = Äs

5. Viscosity = 0.001003kg/(m s)

Solver Scheme Set

Some other parameters and algorithms need to be set before the simulation
can be run.

First, a pressure velocity coupling method. As specified in the section
on model definition, a segregated pressure-based algorithm was chosen for
this study. For this type of algorithm, Fluent requires the specification of
a method for pressure-velocity coupling. Several possibilities are available:
SIMPLE, SIMPLEC, PISO, and FSM. Of these, the most recommended for
transient-type simulations is PISO (Pressure-Implicit with Splitting of Op-
erators). This algorithm is able to tolerate larger time steps and optimal
under-relaxation factor for both momentum and pressure while maintaining
stable computation. It is also particularly adequate in the case of RANS sim-
ulations; for all these reasons, it was considered appropriate for the present
study.

It is necessary to specify which criterion Fluent should use in discretising
the equations governing the motion. The second-order scheme was chosen
to ensure high accuracy for both pressure discretisation and momentum dis-
cretisation.

A convergence criterion must be set; in this case, it was chosen to use
the residuals. For continuity, 10−4 was set as the target value, while for x
and y velocities, for k and É, 10−5 was set. A timestep must then be set,
which was chosen the same for all simulations in this study. That is, equal to
one-hundredth of a convective time. Convective time is defined as the time
that the undisturbed flow (traveling at U∞ velocity) takes to travel through
a characteristic length of the system, in this case, the diameter.
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The simulation is initialized by hybrid initialization, through which the
solver interpolates, starting from the boundary conditions, the velocity and
pressure fields. It then derives from these the fields of all other quantities
such as turbulence, temperature, etc. The hybrid initialization used in this
study consists of 10 iterations that guarantee the solver a better starting
condition in the actual resolution.

Finally, the actual resolution is launched, specifying the maximum num-
ber of iterations allowed for each time step and the total number of time steps
to be simulated. Fluent will continue to iterate, remaining at the same time
step, until it reaches the maximum number of iterations allowed or until it
reaches the convergence criterion assigned for each simulated quantity. After
that, it will update the fluid field to the next time step and proceed with the
new iterations. It will terminate when the maximum number of time steps
has been reached. For this study, the maximum number of sub-iterations
was set to 20, which is appropriate for the convergence criteria chosen and
the convergence speed of the simulations. The number of time steps was
different for each simulation.

Report Definition

In this section of the journal file, commands needed to store the simulated
variables values have to be written. In this case, the values of both the lift
and drag coefficients were saved. In addition, the motion history of the mass
centre of the cylindrical body was stored. All of these variables are needed
for the post-processing of the simulations, but they’re also required to check
the convergence of the simulations. In fact, by observing the history of mo-
tion, we can check if the simulation has reached a regime or is still in the
transitory phase; the drag and lift coefficients can be helpful in the same way.

2.2.2 User-defined function

A user-defined function is a function that can be used to enhance the possibil-
ities of Fluent, such as creating boundary conditions, materials with specific
properties, customized model parameters, etc. They consist of a source file
written in the C programming language, which is then compiled or inter-
preted by Fluent. A compiled UDF was used in this study; Fluent takes two
separate steps to use it: first, it builds the UDF library and then implements
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its contents. In the course of this study, it was necessary to create a UDF to
include the damping of the mechanical system among the parameters that
govern the motion of the cylindrical body since, in Fluent, it was possible to
create only elastic models.
The structure of the UDF can be divided into four parts.
The first requires that, using the command “#include”, libraries are im-
ported. In particular, “#include "udf.h"” allows the use of “DEFINE”
macros for the definition, in this case, of parameters and degrees of free-
dom. “#include "dynamesh_tools.h"” allows access to the time macros
of the dynamic mesh. Finally, “#include "math.h"” provides access to the
standard C library that contains definitions of functions and types used for
mathematical operations.
In the second section, the variables of the function are declared; in this case,
it was necessary to declare: the position of the centre of mass of the cylinder
and its velocity, the mass of the cylinder, the elasticity of the mechanical
system and its damping. Regarding mass stiffness and damping, the values
are constant and user-defined for each simulation, while the position and ve-
locity of the cylinder’s center of mass are calculated by Fluent.
In the third section of the UDF, the degrees of freedom of the mechanical
system are defined. In this case, the system has only one degree of freedom.
It is free to translate vertically (along the y axis), translations along x and
z are blocked, as are the three rotations along each axis. In addition, the
value of the previously stated mass is assigned to the cylinder. In the fourth
section, the previously declared variables, the position and velocity of the
centre of mass are defined so that Fluent updates their values over time. Fi-
nally, there is the differential equation of motion into which all variables are
entered. Note that Fluent already counts inertia forces, so only the terms
related to damping and stiffness appear explicitly.
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2.3 Variable Selection

When approaching the choice of values to be assigned to the variables gov-
erning the system, one notices that there are many variables and that many
equations link them together. In fact, only a few variables can be chosen
completely independently. This choice is critical because, by imposing some
variables to the exclusion of others, it influences the areas in which the sys-
tem’s behaviour can be observed.
In order to make this choice, it is therefore appropriate to comment on the
purpose of the analysis and the fields of applicability of these configurations.
The first observation that can be made is to consider the fact that the pur-
pose of the system is to extract as much energy as possible from the flow,
and therefore, it would be appropriate to calibrate the system’s parameters
so that this happens.
Another thing to consider is the physical feasibility of the system whose be-
haviour is simulated. In the realisation of a mechanical system, in fact, some
parameters can hardly be variable; just think of the mass of the cylinder
or the stiffness of the springs that control its movement; to make these pa-
rameters vary, one has to complicate the mechanical system, and this is not
appropriate in a phase of the study in which one only wants to explore the
behaviour of the model as the damping varies.

Regarding the first observation, the maximum energy transfer, between
fluid and oscillating body, occurs when the lock-in condition takes place, as
stated by De Vanna et al. (2023) de Vanna and by Badhurshah et al. (2019).
We need to consider the conditions under which the mechanical system ex-
hibits suitable characteristics with respect to the flow so that the lock-in state
can be achieved. This condition, in the case of no damping, only occurs when
the system’s fundamental frequency corresponds to the vortex detachment
frequency. The Strouhal number can explain this condition well.
Two Strouhal numbers must be used to characterize the system, one associ-
ated with the body motion:

Sty =
fyD

U∞

2.13

and one associated with the flow:

Stv =
fvD

U∞

2.14
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where fy indicates the fundamental frequency of the mechanical system in
the absence of damping µ = 0, i.e., in the dimensionless case :

ÄAÿ/D2 + Ày = 2cy 2.15

while fvindicates the frequency associated with vortex shedding.

To better describe this situation, it is appropriate to introduce the reduced
speed thus defined:

Ur =
U∞

fnD
2.16

where fn is the natural frequency of the cylinder:

fn =
1

2Ã

√

k

m
2.17

The lock-in state is obtained when:

Sty =
1

Ur
2.18

and it is appropriate to choose which parameters, among those governing the
motion, to impose in order to achieve this condition.

First of all, remember that we want to maintain a non-dimensional ap-
proach to the problem and, therefore, the geometric parameters remain nor-
malised, D = 1m. Also, some of the parameters concerning the fluid can
not be chosen, e.g. the density value Ä∞, since the operating fluid adopted
is water.
Next, we can consider the fact that we want to observe how the system is
affected by damping as the flow velocity varies with different values for each
simulation. To vary these values, we chose to impose different values of Ur

and, from these, derive the values of Uinfty. The ranges of velocity to be sim-
ulated were evaluated to focus on the most promising values for each case,
in order to best represent the lock in area.
Another parameter to be imposed is, obviously, the mechanical damping of
the system c. The choice of values for this parameter must remain uncon-
strained so that different values can be imposed for each group of simulations;
the choice of these values was evaluated on a case-by-case basis.
In order to have a reference concerning the intensity of the imposed damp-
ing, various values of the damping ratio were imposed, starting with the free
case and proceeding with gradually increasing damping intensities so that
we could accurately observe the effect of this parameter in the interaction
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between fluid and mechanical system.
The damping ratio · is defined as follows:

· =
c

ccr

2.19

where ccr is the critical damping of the mechanical system, which is an
excellent benchmark since it represents the smallest damping value for which
there are no free oscillations, and it is defined as follows:

ccr = 2
√

km 2.20

After these considerations, when analysing the remaining parameters, we
realise that it is still possible to assign values to at most two parameters
independently.

In this study, we chose to keep constant, for each set of simulations, the
value of the first natural frequency of the free system defined by the formula
2.17. This choice implies a series of constraints between the other variables;
in fact, observing the equation 2.17, it can be seen that by imposing a value
for the first natural frequency of the system, the values of stiffness and mass
of the body can no longer both be chosen independently.

The second parameter on which a constant value was imposed for all
simulations is the non-dimensional stiffness À.
This choice was made because preliminary simulations yielded promising
results about the lock-in condition, which always seems to be satisfied in the
cylindrical case with zero damping, as the undisturbed velocity varies.
With the imposition of a value for xi the problem is entirely mathematically
defined; in fact, recalling the definition of xi (equation 2.9), the following
steps can be performed by substituting the undisturbed flow velocity U∞,
obtained from equation 2.16:

À =
k

Ä∞U2
∞

=
k

Ä∞U2
r D2f 2

n

2.21

now fn, defined in equation 2.17, can be substituted into the previous equa-
tion giving:

À =
1

Ä∞U2
r

1

4π2

D2

m

2.22

where k was simplified from the fraction.
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In order to obtain a relationship between xi and rho, one can proceed by
substituting in 2.22 the definition of the mass, which, for the cylindrical case,
is:

m =
ÄsÃD2

4
2.23

Note that this is a mass per unit length, consistent with the two-dimensional
model used for the study.

The following relation is obtained:

À =

(

Ä∞

Äs

U2
r

Ã3

)

−1

=
ÄÃ3

U2
r

2.24

where Ä is the ratio of cylinder density to water density defined in the
equation 2.7. From the relation 2.24, since Ã is a constant, it can be seen
that by imposing a constant value for À, the ratio between the square of Ur

and Ä must remain constant.
Since the relative flow velocity Ur, the natural frequency fn and the diameter
D are imposed, the undisturbed flow velocity U∞ is uniquely determined.
Similarly, since xi is imposed, the values of the density ratio are derived
from the 2.24. Then, from the density ratio, we derive the density of the
solid Äs given that of the fluid Ä∞. Finally, given the geometry, the mass of
the cylinder is derived.
It is now sufficient to derive the stiffness k to characterise the system. Explicit
from the equation 2.21, the value of the stiffness k can be obtained:

k = Ä∞U2

r D2f 2

nÀ 2.25

For this first macro group of simulations, which will later be called “constant
À simulations”, the system’s operating conditions are entirely defined, and it
is possible to proceed with the dynamic simulations.

Further considerations can be made concerning the system at constant À.
From the equation 2.25, it can easily be observed that k is directly propor-
tional to U2

r . Since Ur is made to vary in each group of simulations, k assumes
a wide range of values. From the point of view of the physical realisation
of the mechanical device, this is not optimal, as one would have to vary the
stiffness of the springs a lot when the undisturbed flow velocity varies.
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To overcome this problem, an additional parameter called k∗ was intro-
duced into the system. It is a modified stiffness defined as follows:

k∗ =
k

k0

2.26

where k0 is the stiffness of a spring which, subjected to a compression
equal to the length one diameter of the cylinder, produces a force equal to
the weight of the cylinder itself (where the gravitational acceleration is set
equal to g = 9.80665 m/s2):

k0 =
mg

D
2.27

The link between k∗ and the dimensionless stiffness of the system À is as
follows:

À = k∗
mg

Ä∞U∞

2D
2.28

From the formulas 2.26 and it can be seen that assigning a constant value
to k∗ has two effects:

1. It implies the constancy of k.

2. It allows Ä and Ur to be chosen independently.

Thus, as in the constant-À case, the geometric parameters D, the fluid
density Ä∞, the damping ratio · and the relative velocity Ur assume imposed
values. In addition, a constant value is imposed on k∗ which also implies a
constant value for k. A constant value is also imposed for the density ratio
Ä.
The constancy of the values of k and rho as the flow velocity varies, unlike
in the constant À case, allows the practical realisation of the system while
continuing to refer to dimensionless quantities; this would not have been pos-
sible without the introduction of the parameter k∗.

The values for the remaining parameters can be determined as follows:
the undisturbed flow velocity U∞ comes from equation 2.16 given fn and D,
the density of the body Äs is determined can be computed via the product
between Ä and Ä∞ which are both assigned values, the mass values is than
calculated multiplying the solid density for the volume remembering that
the model is bi-dimensional and therefore the mass is a mass per unit length.
Than the dimensional stiffness k is calculated from equation 2.26 after the
determination of k0 value, while the non-dimensional stiffness, À, values come
from equation 2.3. Finally the parameters concerning the damping are de-
termined in the same way as the À-constant case that is the imposition of a

27



Model definition and setup

constant damping ratio · for each set of simulations and the real damping
comes from equation 2.19. With these explanations, even for this second
type of equation, the mathematical problem is entirely formulated.

To summarise, for each configuration of the system analysed, i.e. cylinder
in cross-flow configuration or square-base prism in cross-flow configuration,
two sets of simulations were run:

1. À-constant simulations

2. k∗-constant simulations

For both of these cases, the system’s behaviour under varying imposed damp-
ing values and varied Ur imposed values was analysed.

Having set up the journal file and the source file for the UDF, the prob-
lem has been numerically set up. With the characterisation of mathematical
parameters, the problem is entirely set up and, therefore, simulations can be
launched.
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- III -

Cylinder

This chapter is dedicated to the open stream configuration with the cylinder
as the oscillating body. The first section contains a description of the compu-
tational grid used for the simulations and important information regarding
the quality of the mesh. Next, some information is presented regarding the
convergence of the simulations and strategies to decrease the convergence
time of the simulations. Finally, the results in frequency analysis, displace-
ments and powers are presented and discussed, illustrating the À-constant
and k∗-constant cases separately.

3.1 Cylinder mesh

The mesh used in the current study has been extensively tested in a sen-
sitivity study comparing it with other meshes of different refinement. Its
behaviour as a function of the turbulence model adopted was also studied.

The chosen mesh has about 40K elements and represents a good com-
promise between the more refined 90K elements mesh and the coarser 20K
elements mesh, both in terms of computational performance and accuracy.

In addition to the sensitivity test, the mesh was also validated by compar-
ing the results obtained with experimental data in literature, in particular
with the results obtained by Achenbach and Heinecke (1981) This com-
parison confirmed the good performance of the mesh and provided useful
information for the selection of the best turbulence model.

Three different turbulence models were tested. A one-equation model
(Spalat-Allmaras), developed by Spalart and Allmaras (1994), is the least
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Figure 3.1: Domain geometry with parametric dimensions in function of the
diameter

computationally expensive and can generally perform well for applications in-
volving wall-bounded flows. A two-equation model (k-É Shear Stress Trans-
port) developed by Menter (1994), which generally performs very well thanks
to the combination between the k-É and k-ϵ model, which are exploited for
their best behaviour in different zones of the fluid domain (wall zone or free-
stream zone), since it implements two equations it has a higher computational
cost than the previous one. A four equation model (Transition Shear Stress
Transport) developed by Menter et al. (2006), it implements equations for
“µ” and “Retheta” in addition to the “k” and “É” equations of SST, it has
the highest computational cost of the three simulated models. The chosen
turbulence model is k-É Shear Stress Transport, since among the models
adopted (k-É Shear Stress Transport, Transition Shear Stress Transport and
Spalart-Allmaras) it gives the best results in both steady and unsteady sim-
ulations.
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(a)

(b) (c)

Figure 3.2: Full fluid domain (a); cylinder wall zone (b); focus on the cylinder
(c).

This section briefly introduces the geometry of the mesh. The simulated
fluid domain is shown in figure 3.1. In order to maintain the generality of the
problem, the domain was designed using the cylinder diameter as a param-
eter; it is 50 diameters wide and 30 diameters high. The cylinder is located
15 diameters from the inlet, and it is surrounded by a square zone with a
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side of 10 diameters, which is still part of the fluid zone; this is the dynamic
mesh zone that has been assigned to allow the adaptation of the grid to the
movements of the cylinder.

A hybrid mesh, composed of triangular and quadrangular elements, has
been used. It is unstructured everywhere except for some square cell layers
(inflation layers) around the cylinder, which form a so-called “O-grid”. This
approach allows the behaviour of the boundary layer to be correctly captured;
in this respect, the y+ parameter has also been evaluated, and the values it
assumes are less than one with a good margin along the entire cylinder wall
area; this detail can be seen in figure 3.2b.

At the same time, the use of a hybrid mesh allows for excellent filling of the
fluid domain while maintaining good skewness and orthogonality parameters.

Finally, in order to accurately capture the behaviour of the fluid in the
areas of interest, the cell density was increased both in the area surrounding
the cylinder and in the wake area along the entire length of the domain, as
can be seen in figure 3.2a. Clearly, these are the areas of most significant
interest, for it is in these that the pressure and velocity fields are most altered
by vortex formation, which must be properly captured.

3.2 Convergence of simulations

A convergence criterion was discussed in the setup of the simulations, the
imposition of a target value for the residuals set equal to 10−5. However,
once this value is reached, the simulation does not terminate because the
solver proceeds by updating the momentum field at the next timestep; the
updated pressure and velocity fields produce a new thrust on the cylindrical
body, and the simulation enters a loop where the residuals never consistently
fall below the threshold value. If only this convergence criterion had been
imposed, the simulation would never have ended. In fact, the cylinder would
continue to oscillate indefinitely since the undisturbed flow velocity always
remains nonzero. Therefore, it is necessary to impose an additional criterion
to establish the end of the simulation.

In this study, for each simulation, the maximum number of timesteps

32



Convergence of simulations

that could be simulated by Fluent was imposed, and in order to verify the
actual convergence of the simulations, it was necessary to refer to the dis-
placements of the body over time. Typical cylinder behaviour involves an
initial transient part during which the amplitude of the oscillations varies
until a specific amplitude, generally different for each case, is reached and
then maintained. Convergence was considered to have been reached when
the variation in oscillation amplitude ceased. In addition, after convergence
was reached, some margin was maintained, which was necessary to accu-
rately compute time-averaged values of displacements and power and have
adequate data for good frequency analysis.
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Figure 3.3: Typical displacements of the cylinder’s centre of mass over time.
Note that the x-axis shows dimensionless time values. The graphs shown refer to
the case with the circular cross-section for simulations conducted at k∗

= 0.5 and
ζ = 0.01. In particular, (a) refers to Ur = 2.0; (b) refers to Ur = 7.0; and (c) to
Ur = 15.0.

The simulations conducted take a long time to converge. In addition, they
consume many hours of computing time due to their large number, and the
hours available were limited. Therefore, techniques were adopted to try to
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reduce the time required for convergence. In particular, the choice was made
to impose a non-zero initial velocity on the cylinder, with different values for
each simulation, attempting to guess the amplitude at the convergence of the
oscillations. The choice of initial velocities was based on the available data,
giving higher velocities for areas where the lock-in condition was expected.

Figure 3.3 shows the displacements, normalised to the diameter, for 3
different velocity values Uinfty from the same set of simulations. In these
figures, one can easily identify the zones of transient regime and the zones
for which convergence has been achieved. One can also note the significant
difference in displacement between 3.3b with respect to 3.3a and 3.3c cases.
The three velocity values have, in fact, been purposely chosen to highlight
the difference in the behaviour of the cylindrical body when outside the lock-
in zone (figures 3.3a and 3.3c) and when inside (figure 3.3b).

3.3 Dynamic analysis

The simulations were divided into two main groups, one with all cases at con-
stant À and one with all cases at constant k∗. The data were post-processed
by a frequency study of the cylinder displacements and the power produced
as the damping changes. The results give important information on the effect
of mechanical damping on the system and the conditions required to operate
the device properly.

The figure 3.4 (from De Vanna et al. (2023)) gives an excellent graphical
description of the lock-in condition; one can, in fact, see the relative move-
ment between the cylindrical body and the primary vortex downstream of
it, which is responsible for the lift force that moves the cylinder. It can be
seen that the vortex is in a very close position to the cylinder in the 3.4b and
3.4d figures, while in a more distant position in the 3.4a and 3.4c figures, the
first two figures correspond to conditions of maximum displacement while
the second two to conditions of maximum velocity of the cylindrical body.
In fact, according to Guilmineau and Queutey (2002), when the oscillation
frequency of the cylinder and the detachment frequency of the vortices have
similar values (Guilmineau suggests frequency ratios between 0.8 and 1.20),
the primary vortex downstream of the cylinder assumes the following be-
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haviour: it tends to approach the cylinder when the amplitude is maximum,
and then suddenly switches to the other side of the cylinder, changing the
pressure field, and exerting a force on the cylinder that tends to make it
accelerate in the opposite direction.

(a) (b)

(c) (d)

Figure 3.4: Velocity field streamlines and ωz vorticity contours for an oscillating
cylindrical body.

3.3.1 Constant À cases

In this paragraph, we present the results of simulations conducted a constant
À. Note that, as specified in paragraph 2.3 , this case is of purely theoreti-
cal interest since the imposition of constant values on the natural frequency
of the system fn and the non-dimensional stiffness À impose constancy on
the ratio U2

r to Ä. Therefore, since Ur varies for each simulation, Ä assumes
on very different values in the simulations, as is the case for the stiffness k.
However, it was chosen to explore this configuration because, from prelimi-
nary simulations, it was seen that, in the case of no mechanical damping, the
constancy of À causes the lock-in condition to be maintained for all veloci-
ties, and it was desired to study the effect of damping with respect to this
condition.
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The values imposed on the variables for this set of simulations are as
follows:

• À = 9

• fn = 0.1

• · = 0.00, 0.01, 0.05, 0.1

• Ur = 1.5 − 20.0
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Figure 3.5: The plot of the Strouhal number Sty versus velocity Ur = U∞/fnD
for simulations at ξ = 9 and values of the damping ratio given in the legend.

As far as the frequency analysis is concerned, the Strouhal number plot
against the non-dimensional velocity is plotted; in addition to the simulation
results, the curve 1/Ur is also plotted, which represents the matching condi-
tion between the vortex shedding frequency and the natural frequency of the
system. That is, the points that belong to that curve represent conditions
for which the system is in a lock-in condition. It can clearly be seen that the
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points that make up the curve in purple, at zero damping, · = 0, all belong
to the curve dashed in grey. This indicates that the lock-in condition has
been maintained at zero damping for any simulated velocity.

Turning our attention to the other curves instead, we can clearly see that
the damping dramatically affects the speed range for the lock-in condition.
In fact, for · = 0.05, the lock-in condition is maintained for only Ur values
between 3.5 and 5; while increasing the value of the damping ratio even fur-
ther, the cylinder is practically never in lock-in.
It should also be noted that, outside the lock-in zone, the value of the
Strouhal number Sty is consistently around 2.7; this value does not differ
from what is suggested by Kaneko et al. (2008). However, the Reynolds
values Re∞, typical of these simulations, are slightly higher than those for
which Kaneko suggests the constancy of the Strouhal number with respect
to Reynolds. They, in fact, reach up to 7 · 106; despite this, it is shown that
the system remains in lock-in condition throughout the simulated velocity
range for both the free case and the case with · = 0.01.

The root mean square value of the displacements was studied for analysis
of the cylinder oscillation amplitude, it can be seen in figure 3.6. Interest-
ing results were obtained. About the zero-damping curve, as expected, the
displacements are more significant than in all the other curves; the bell hor-
izontal amplitude is also greater than in the cases with non-zero damping.
This agrees with the graph 3.5, in which the purple curve corresponds to a
broader range of lock-in velocities. It can also be seen that, although the
lock-in condition is maintained for high values of Ur, the displacements tend
to become smaller and smaller.
As for the curves with damping ratio values other than zero, these show the
same effects as those observed in graph 3.5. Damping, as already observed,
has, in fact, intense effects on the range of velocities at which the lock-in
condition is maintained, and in addition to this, it also has an important
effect in lowering the peak amplitude of the oscillations; already for · = 0.01
we obtain a reduction of about 25% of the maximum peak of yrms.

Finally, it should be noted that in addition to the curves for the sim-
ulations performed, an exponential curve interpolating the peaks was also
plotted, which shows that as the damping increases, the maximum displace-
ment values are obtained for lower reduced velocities.
Since this study aims to derive guidelines for energy production using en-

ergy harvesters, it is interesting to observe the power values produced in the
various simulations, even though the constant-À case is a case of primarily
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Figure 3.6: The plot of the yrms/D versus velocity Ur = U∞/fnD for simulations
at ξ = 9 and values of the damping ratio given in the legend.

theoretical interest.

In this study, we were only interested in the values of mechanical power
rather than those of electrical power, which will be easy to obtain once an
energy conversion device, piezoelectric or electromagnetic, has been chosen.
From the instantaneous velocity values of the cylinder’s centre of mass, it
is easy to calculate the mechanical power at each instant. To maintain the
study’s dimensionless approach, a non-dimensional power parameter, the P ∗,
has also been defined in this field:

P ∗(t) =
ẏ(t)

U∞

Fy

1/2Ä∞DU2
∞

3.1

The results represented in the graph 3.1 reflect what has already been
shown in the case of displacements. However, there are some differences; it
can be seen that all the curves, including the one with zero damping, are
characterised by a great peak between Ur = 3 and Ur = 4; the maximum
height of the peak decreases as · increases, and the range of velocities for
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Figure 3.7: The plot of the P ∗

rms versus velocity Ur = U∞/fnD for simulations
at ξ = 9 and values of the damping ratio given in the legend.

which a significant amount of power is produced decreases, but less intensely
than observed for the displacements.

3.3.2 Constant k∗ cases

This section reports the results of simulations performed at constant k∗ val-
ues. This case, compared to the previous one, is of greater practical interest
since the parameter k∗ (formula 2.26) has been purposely defined so that the
values of Ä and k remain constant, while k∗ also remains constant. The sim-
ulations performed for this case aim to highlight the effects of the damping
ratio · on the system over a certain speed range.

The values imposed on the variables for this set of simulations are as
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follows:

• k∗ = 0.5

• Ä = 5

• · = 0.001, 0.005, 0.010

• Ur = 2.0 − 20.0

The value k∗ = 0.5 was specially chosen and, according to the 2.26 def-
inition, corresponds to half the weight force of the body when the spring is
compressed by one unit of length.
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Figure 3.8: The plot of the Strouhal number Sty versus velocity Ur = U∞/fnD
for simulations at k∗

= 0.5 and values of the damping ratio given in the legend.

Starting from the frequency analysis, Figure 3.8 shows the Strouhal num-
ber versus relative velocity. It can clearly be seen that all the curves have
very similar behaviour, presenting an initial zone, for Ur < 3 where the lock-
in condition does not exist; in fact, the Stourhal number appears to have a
constant value of approximately 0.28. For the speed range between Ur = 3
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and Ur = 10, the lock-in condition is guaranteed for all the curves, and
this can be seen by the fact that they correspond to the grey dashed line,
whereas, for higher speeds, the behaviour differs. In fact, as the damping
ratio increases, the range of velocities for which the lock-in condition exists
decreases slightly. For relative velocities higher than Ur = 12, all four curves
assume the same behaviour again.
One can note the fact that outside the lock-in range, the Stourhal number
again assumes a constant value as hypothesised; one can also note that, even
though for these simulations, the typical Reynolds values oscillate between
3 · 104 3 · 105, Sty assumes values of approximately 0.32, higher than those
suggested by Kaneko et al. (2008). The damping ratio seems to have little
effect on the system, with a slight reduction in the lock-in range being the
only appreciable one. Compared to the previous case, À constant, damping
seems a much less relevant parameter.
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Figure 3.9: The plot of the yrms/D versus velocity Ur = U∞/fnD for simulations
at k∗

= 0.5 and values of the damping ratio given in the legend.

Also in this case at constant k∗, the amplitude of the oscillations was
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analysed as the velocity varied. The graph 3.9S represents the results ob-
tained. The curves represented are all very similar, and this is precisely the
behaviour expected of a spring-dumping-mass lumped model. In fact, As
the damping ratio · increases, the oscillation amplitude decreases for any
velocity. The curves are all very similar: they show significant displacements
starting from Ur = 4 and the oscillation amplitudes continue to increase up
to Ur = 7.5 and then decrease quite rapidly. Another effect of the damp-
ing is also observed, as already shown by the graph 3.8, the amplitude of
the lock-in zone decreases slightly at its right edge. Even in this analysis of
the amplitude of the oscillation, a clearly different effect of the mechanical
damping on the system can be seen compared to the effect in the constant À
case.
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Figure 3.10: The plot of the P ∗

rms versus velocity Ur = U∞/fnD for simulations
at k∗

= 0.5 and values of the damping ratio given in the legend.

For the analysis of non-dimensional power, roughly the same conclusions
can be drawn as for the study of amplitudes. The graph 3.10 shows a very
high peak for velocity values of Ur = 3, which is formed abruptly; increasing
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the relative velocity further, the power produced decreases almost linearly
to become practically null for values of Ur = 10 or greater. The damping
ratio also has little effect on the power produced; the curves are, in fact, all
almost overlapping; it can only be seen that as · increases, the power values
decrease slightly for each velocity value.
The graph 3.10 gives good information for the design of an energy harvester;
in fact, it clearly identifies the speed range at which this mechanical system
performs well and also shows that the system well tolerates the presence of
damping.

In conclusion, it can be said that the system configuration adopted for
this case at constant k∗ seems to be promising for an energy harvester. In
fact, the mechanical system, in order to produce electrical energy, will cer-
tainly be coupled with an energy conversion device, and a certain mechanical
damping will surely characterise the latter. The analysis carried out in this
study shows that the mechanical system tolerates the presence of damping
very well; furthermore, the fact that the range of speeds at which large oscilla-
tions are obtained is limited at the top protects against possible malfunctions
due to excessive flow velocities. Should the fluid velocity increase excessively,
the cylindrical body will cease to oscillate once it exits the lock-in range.
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- IV -

Square-based prism

This chapter is focused on the open stream configuration with a square-cross
section. This type of section was chosen because, from preliminary studies,
it seemed to be promising from the point of view of the maximum amplitude
of oscillation and the range of velocities at which it takes place. Compared
with the case with the circular cross-section, in fact, larger Ur values predict
larger amplitudes of oscillation; thus, the configuration with the square could
be exploited where flow velocities were too high for the configuration with
the cylinder.
Below, the setup differences from the configuration with the cylinder will be
exposed, followed by the mesh presentation. Finally, simulation results will
be exhibited with a similar structure as in the previous chapter.

4.1 Setup differences

The setup adopted for this configuration was kept as similar as possible to
that used for the cylindrical configuration. However, there are some differ-
ences, both in the mechanical model and in the computational setup.

The mechanical model is basically the same as the one presented in Chap-
ter 2; the differential equation of motion remains the same, but now the side,
L, is used instead of the diameter D. The non-dimensional quantities then
become:

y = ỹ/L 4.1 t = t̃U∞/L 4.2
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and consequently the non-dimensional equation of motion becomes:

ÄAÿ/L2 + µẏ + Ày = 2cy 4.3

where the non-dimensional damping is:

µ = c/(Ä∞U∞L) 4.4

and the lift coefficient is:

cy = Fy/q∞ 4.5 q∞ = 1/(2Ä∞U2

∞
L) 4.6

The remaining parameters remain unchanged.

Regarding the computational setup, there are differences in the solving
method used in Fluent. About the definition of the solver model, pressure-
based is still used because it is the most suitable in this case as well. In
fact, the configuration is practically unchanged from the cylinder case; the
simulations conducted are transient, the fluid used is incompressible, and the
imposed boundary conditions are the same. However, it was not possible to
use the PISO algorithm for pressure-velocity coupling. In fact, by trying to
use this method, the simulations were being stopped by Fluent after a few
iterations due to the collapse of some cells. This probably happened because
the square underwent too large displacements within a timestep, and there-
fore, Fluent could not tolerate them. It was desired to maintain the same
proportion between the chosen timestep and the convective time for each
simulation so as not to overly lengthen the convergence time, which, already
with the previous setup, was very long. Therefore, the coupled method was
used as the pressure-velocity coupling algorithm. This method, in fact, of-
fers some advantages over the segregated approach; it is more robust when
compared with SIMPLE or PISO and is, in addition, able to tolerate larger
timesteps. Generally, it performs well even with coarser meshes, and this
serves the purpose. The main difference from the PISO algorithm is that the
momentum and continuity equation, based on pressure, are solved together
instead of separately. This makes the algorithm more robust and, in fact,
has been shown to be suitable for this case.
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4.2 Square-section mesh

Even for the configuration with the squared cross-section, the domain, shown
in figure 4.1, was modelled parametrically with respect to the reference
length, which in this case is the side of the square L. The overall size of
the domain is 55L in length and 30L in height. The square section has its
center positioned 15L apart from the inlet; it is surrounded by a square area
that measures 9L on the side and corresponds, similarly to the cylinder case,
to the area of the dynamic mesh, i.e., within which the mesh fits to follow
the movements of the square.

 9
L 

 9L 

 55L 

 3
0L

 

 15L  L
 

 L 

Figure 4.1: Domain geometry with parametric dimensions in function of the
square side L

A sensitivity study also extensively tested the mesh used for the square-
section case. In fact, three meshes of different resolutions were tested in
this case as well. The coarsest mesh has approximately 25K elements, the
medium-resolution mesh has approximately 50K elements, and the most re-
fined mesh has approximately 95K elements. Simulations were run for each
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of these meshes by adopting three different turbulence models. These simula-
tions computed the values of drag coefficients, pressure coefficients and skin
friction coefficients. The results were then compared to identify the best mesh
for this case. The results obtained were also compared with the information
available in the literature; in particular, the values of the drag coefficient
were compared with what results from the DNS (Direct-Navier-Stokes) of
Trias et al. (2015). The values obtained from the RANS simulations with
the meshes agree with what was calculated by Trias; the variation in results
between the three meshes is minimal. The pressure coefficient values were
also compared with the results obtained by Cao and Tamura (2016) and
Bearman and Obasaju (1982); again, the values are in agreement.

Regarding the turbulence models tested, as in the cylinder case, the
Spalart-Allmaras, k − É-SST and Transition-SST were used. For all the
parameters tested, these showed no significant differences between the vari-
ous simulations.

Therefore, the mesh adopted is the coarsest among the proposals, and
although the Salart-Allmaras turbulence model also gave good results, the
kÉ-SST was chosen as the turbulence model.
Finally, the value of y+ along the entire perimeter of the square profile was
calculated to check the mesh’s ability to capture the boundary layer correctly.
The values that were obtained turned out to be less than one everywhere for
both the steady and unsteady cases tested.

Again, a hybrid mesh was used, as can be seen in figure 4.2, composed of
triangular and quadrangular elements in an O-grid configuration.
The inflation layer, figure 4.2c, is arranged around the square to capture
the fluid wall behaviour correctly. Note that the corners of the square are
not right angles but have been rounded, as can be seen in figure 4.2b, with
a fillet radius of length 0.01L in order to avoid edges, which, by going to
affect the skewness of the elements, considerably deteriorate the quality of
the mesh. Finally, one can see the thickening of the mesh in the areas of
interest, namely the area surrounding the square and the wake area.
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(a)

(b) (c)

Figure 4.2: Full fluid domain (a); square wall zone (b); focus on the square
section (c).

49



Square-based prism

4.3 Dynamic analysis

As in the cylindrical case, the simulations for the square case were divided
into two main groups at constant xi and at constant k∗, evaluating for each
the oscillation frequency via the Stourhal number, the amplitude of the os-
cillations and the non-dimensional mechanical power produced.

However, a few remarks should be made before presenting the data ob-
tained. The configuration with the square cross-section was chosen because
it is expected to have large oscillations for larger values of Ur than the case
with the circular cross-section. This is because the expected frequency of
vortex detachment is higher than in the cylinder case. Trias et al. (2015)
suggests values of St around 0.13 and, recalling the definition of the Stourhal
number in our case, these would correspond to relative velocity values of ap-
proximately Ur = 8 in the lock-in zone.
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Figure 4.3: Lift coefficient and normalized displacement vs. non-dimentional
time; Ur = 14 k∗

= 0.5.

However, as it turns out, the lock-in condition never seems to occur for
this configuration. The graph 4.3 is shown here to highlight how the lift
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coefficient is characterised by a higher oscillation frequency compared to that
of the body. This underlines the fact that the lock-in condition does not exist,
as the square body does not follow the primary vortex that is responsible for
the lift force that the fluid applies on the body. As will be discussed later, the
frequency analysis of the simulated cases confirms the absence of the lock-in
condition for practically all simulated velocities.

(a) (b)

(c) (d)

Figure 4.4: Velocity field streamlines and vorticity magnitude contour for an
oscillating square body.

The same conclusion can be drawn by looking at figure 4.4, where stream-
lines and vorticity magnitude are plotted. It can be seen that the cylinder
and the downstream primary vortex are not synchronised, which is at odds
with the vortex-shedding vibration pattern that was intended to be exploited.

Another point to be noted is that, unlike in the case of the cylinder, the
Stourhal number is not necessarily constant as Reynolds varies; however, in
this study, the assumption of constancy of St is maintained for the Reynolds
range of the simulations from 104 to 105.
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4.3.1 Constant À cases

Once again, it is recalled that this case is of mainly theoretical interest due
to the fact that the constancy of À imposes significant variations of Ä as the
velocity varies. However, given the behaviour of the cylinder in the free case
at constant À, which always resulted in the lock-in condition, it was decided
to study the same configuration also for the square section case.
The values that were imposed on the variables in this set of simulations are
as follows:

• À = 9

• fn = 0.1

• · = 0.00, 0.05, 0.1

• Ur = 2.0 − 20.0

The range of velocities for which the simulations were performed is at
higher values than for the cylinder because, given the considerations made
earlier regarding the typical Stourhal number for this case, the most interest-
ing occurrences are expected at higher velocities, with values around Ur = 8.

With regard to the analysis of the oscillation frequencies, the trends of
the curves are shown in figure 4.5 . Along with the points corresponding to
the simulations results, the hyperbola indicating the frequencies for which
the lock-in condition exists is also shown. The curves obtained approximate
the lock-in curve but never consistently adhere to it. The observed behaviour
is very different from the cylinder case; in fact, firstly, it can be observed that
the purple curve, corresponding to the null value of the damping, does not
adhere to the lock-in condition and, moreover, it has not very regular trend
in the interval between Ur = 4 and Ur = 6. Furthermore, the increase in
the damping ratio does not seem to have any effect on the behaviour of the
body; the course of the curves remains almost unchanged compared to the
free case, although it retains some irregularity. Part of this irregularity could
be attributed to the imperfect convergence of some simulations; however, as
the results are not particularly promising, the level of accuracy achieved was
deemed sufficient. Finally, it can be noted that the values of the Sthoural
number, excluding the lowest velocity values, assume relatively low values,
lower than those suggested by Trias et al. (2015).
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Figure 4.5: The plot of the Strouhal number Sty versus velocity Ur = U∞/fnL
for simulations at ξ = 9 and values of the damping ratio given in the legend.

About the amplitude of the oscillations, the root mean square values of
the displacements were also evaluated. The 4.6 graph shows the curve trends
obtained from the simulations. A clear difference between the free and the
damped case can be seen. The violet curve, with zero damping, always grows
as Ur increases; this trend is in contrast to what one would expect from a
vortex shedding-induced vibration, which has a bell-shaped trend, like that
of the cylinder case. On the other hand, the increasing behaviour agrees
with what Kaneko et al. (2008) reports for diverse types of flow-induced
vibration for which vortices are formed differently, for example, by shedding
from the forward corners of the square or by other phenomena that change
the pressure field. The effect of damping with respect to the amplitude of
oscillation in this configuration is drastic; curves with · values greater than
zero show minimal amplitudes and a somewhat irregular pattern. The blue-
coloured curve, representative of the maximum simulated damping, shows
almost zero displacement over almost the entire range of simulated velocities.
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Figure 4.6: The plot of the yrms/L versus velocity Ur = U∞/fnL for simulations
at ξ = 9 and values of the damping ratio given in the legend.

Again, the dimensionless mechanical power P ∗ is evaluated as a parame-
ter of interest, and it’s calculated as follows:

P ∗(t) =
ẏ(t)

U∞

Fy

1/2Ä∞LU2
∞

4.7

The results represented in the 4.7 graph reflect what has already been
noted in the two previous graphs. The curve corresponding to the non-
damped case presents the highest values of power produced at very high
speeds; we note that in the interval between Ur = 6 and Ur = 12, P ∗ assumes
almost constant values. On the other hand, the damped curves assume the
highest values at lower speeds and then decrease to nearly zero. At one point,
these seem to exceed the power values produced by the non-damped case,
however, this irregularity is also due to the imperfect convergence of some
simulations.
In general, the power values produced are relatively low when compared with
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those produced by the cylinder in the same configuration; furthermore, their
irregularity makes the case uninteresting from studying vortex shedding.
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Figure 4.7: The plot of the P ∗

rms versus velocity Ur = U∞/fnL for simulations
at ξ = 9 and values of the damping ratio given in the legend.

4.3.2 Constant k∗ cases

Moving on to the analysis of the simulations at constant k∗, remember that
the constancy of k∗ implies the constancy of k and allows the value of Ä to
be imposed, so again, this set of analyses is of practical interest. In this set
of simulations, relatively high values of the damping ratio · were also evalu-
ated; this was done because we wanted to see if it was possible to make the
operation of the device stable over a range of speeds, with the amplitude of
the oscillations decreasing beyond certain values of Ur instead of increasing
indefinitely.
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The values set for this set of simulations are as follows:

• k∗ = 0.5

• Ä = 8

• · = 0.1, 0.2, 0.3, 0.4

• Ur = 2.0 − 20.0
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Figure 4.8: The plot of the Strouhal number Sty versus velocity Ur = U∞/fnL
for simulations at k∗

= 0.5 and values of the damping ratio given in the legend.

Regarding the frequency analysis, figure 4.8 shows that the lock-in con-
dition is almost never reached in this configuration. Only the violet curve,
at zero damping, seems to highlight a zone, at low values of Ur, in which the
oscillations of the square body and the detachment frequency of the vortices
are synchronous; for higher values of reduced velocity, the curve settles in-
stead along with the others.
As far as the effect of damping on the system is concerned, there are no
significant differences between the analysed cases. The trend shown by the
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curves indicates almost constant values as Ur changes, and these are not al-
tered even by the intense increase in the damping ratio, which reaches the
value of · = 0.4. It should also be noted that the measured Stourhal number
values are slightly lower than those measured by Trias et al. (2015), which
vary between Sty = 0.1 − 0.03. This difference is mainly attributable to the
difference in Reynolds number compared to the Trias case.

0 5 10 15 20

Ur

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y
rm

s
/L

 = 0.00

 = 0.05

 = 0.10

 = 0.20

 = 0.30

 = 0.40

Figure 4.9: The plot of the yrms/L versus velocity Ur = U∞/fnL for simulations
at k∗

= 0.5 and values of the damping ratio given in the legend.

Concerning the oscillations’ amplitude, the root mean square values are
evaluated once again. From the 4.9 graph, one can see the increasing and
almost linear trend of the zero-damping case. This behaviour is typical of
flow-induced vibrations not driven by vortex shedding and can instead be at-
tributed to wind galloping in accordance with Kaneko et al. (2008). In this
set of simulations, relatively high · values were imposed in order to obtain a
lowering of the curve that would show a Ur regime where the operation of the
device was stable, as was the case for the cylinder. However, it can be seen
from the graph that this result was not achieved; increasing the damping
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ratio does indeed reduce the amplitude of the oscillations, which, however,
always increase as Ur increases. Not even very high values of · give effective
results in these terms, they tend instead to make the course of the curves
very irregular and are not very exploitable for our purposes.
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Figure 4.10: The plot of the P ∗

rms versus velocity Ur = U∞/fnL for simulations
at k∗

= 0.5 and values of the damping ratio given in the legend.

As far as power is concerned, the dimensionless power P ∗ is also evalu-
ated. The graph 4.10 shows an initial range of Ur, between 2 and 10, where
the power generated grows proportionally with the flow velocity; for higher
values instead, P ∗ seems to stabilise around 0.2 and remains more or less
constant throughout the simulated velocity range.
The generated power decreases as the damping increases, maintaining the
same trend as shown for the undamped curve. Excessive values of the damp-
ing ratio, · = 0.3 − 0.4, once again make the curve trend uneven. Finally,
it can be seen that the maximum values of P ∗ are obtained in the velocity
range around Ur = 10, which is much greater than that found in the cylinder
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case, where the maximum peak was for Ur = 3.

In conclusion, some general observations can be made concerning the case
with the square section. First of all, we highlight the fact that the best per-
formance for this configuration occurs for higher values of Ur than for the
cylinder case; this confirms the initial hypothesis and makes this configu-
ration exploitable where flows have higher velocities. Regarding the power
output, its constancy as Ur varies is appreciated; this characteristic could be
helpful in conditions where the flow velocity undergoes significant variations.
However, it must be noted that the square body presents less regular trends
when compared with the cylinder and, in particular, lacks a range of veloci-
ties for which the operation is stable.
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Conclusions

The objective of this study was to give guidelines, concerning mechanical
damping, for the design of VIV energy harvesters. The information to be
obtained was intended to be as general as possible in order to keep their field
of applicability broad.

The configuration adopted for this research is the open stream, for which
two different configurations were studied: the cylinder and the square-based
prism. The model adopted has only one degree of freedom, and the sim-
plicity of this configuration is in line with the objective of outlining general
guidelines. It must also be said that, in general, this type of energy harvester
has fields of applicability for which high reliability and low maintenance re-
quirements are advisable, so simple configurations are to be preferred.

The two cases analysed gave very different results:

• The circular section case shows a wide range of velocities for which
the vortices and body oscillations are synchronous, i.e. the lock-in
condition exists. Of the two cases analysed for this configuration, the
constant À configuration produced very interesting results; it shows
that for an undamped system, the lock-in condition is maintained for
any flow velocity while in the presence of damping, even with small ·,
the behaviour of the body changes radically. It would be necessary to
conduct further studies at constant À to understand what phenomena
extend the range of lock-in velocities so much in order to understand
better why mechanical damping negates this condition. As far as the
case of greatest application interest at constant k∗ is concerned, this
shows good behaviour of the cylinder as the damping varies. In fact,
the lock-in area is not excessively altered by ·, as is the amplitude
of oscillation. The study of the power produced has shown that the
cylinder configuration has a relatively narrow range of applicability
and needs the correct flow velocity to produce significant amounts of
energy.
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• The study of the behaviour of the square-base prism has highlighted
the fact that the body oscillates asynchronously with respect to the
detachment of the vortices, unlike the cylinder. The lock-in condition is
never achieved in this configuration, neither for simulations conducted
at constant À nor those conducted at constant k∗. The simulations
at constant k∗, which are of interest for the application, do, however,
show certain characteristics that can make this configuration useful.
The applicability range with the square cross-section is different from
that of the circular cross-section, which may be useful in conditions
with high flow velocity. Furthermore, the study of the power output
shows that an energy harvester with this configuration can produce
significant amounts of energy over a much wider speed range. This can
be very useful where the flow velocity varies frequently.
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