
UNIVERSITÀ DEGLI STUDI DI PADOVA

Department of Information Engineering

Master Course in Computer Engineering

Computational methods to characterize

mutations in cancer phylogenetic trees

Graduate :

Tommaso SCARPA

Supervisor:

Fabio VANDIN

Academic Year 2016-2017

Abstract

This thesis introduces the problem of reconstructing the evolutionary tree from

single-cell sequencing data and the following problem of characterization of DNA

mutations.

The objective is to understand if it is possible to characterize such mutations

relying only on the reconstructed phylogenetic tree structure. This is done by first

implementing a software that simulates the growth of a potential tumoral mass

starting from a single cell, in order to be able to simulate a real size phylogenetic

tree. On this tree are then executed the Two Proportion Z Test, the Two Sample

Kolmogorov-Smirnov Test and the 2 Sample Anderson-Darling Test. These tests

are experimented on instances with different specifics in order to find best and

worst application scenarios for each one of them.

The final results are encouraging and show that characterizing mutations relying

solely on a tree structure can be possible and there should be high margins of

improvement.

i

Contents

Abstract i

1 Introduction 1

1.1 Background . 1

1.2 Tumoral evolution and Motivation . 2

2 State of the Art 7

2.1 Single Cell Inference of Tumor Evolution - SCITE 7

2.1.1 Model of tumor evolution and tree representation 8

2.1.2 Errors and missing data . 11

2.1.3 Markov Chain Monte Carlo . 12

2.1.4 SCITE Conclusions . 16

2.2 Oncogenetic Nested Effects Model - OncoNEM 16

2.2.1 Likelihood of clonal trees . 17

2.2.2 Searching the tree space . 19

2.2.3 Bayes factor ε . 24

2.2.4 OncoNEM Conclusions . 24

2.3 Comparison . 25

iii

iv Abstract

3 Simulator 29

3.1 Model . 29

3.2 Algorithm . 34

3.3 Implementation . 39

4 Tools Used 45

4.1 Two Proportion Z Test . 45

4.2 Kolmogorov-Smirnov Test . 47

4.3 Anderson-Darling Test . 49

5 Results 51

5.1 Experimental Design and Setup . 51

5.2 Two Sample Kolmogorov-Smirnov Test results 52

5.3 Two Proportion Z Test results . 62

5.4 Combined comparison . 64

6 Discussion and conclusions 69

6.1 Objectives . 69

6.2 Conclusions . 69

6.3 Future Work . 70

Bibliografia 73

Acknowledgments 77

1
Introduction

1.1 Background

Our bodies are amazing proofs of the power of teamwork. Our cells work

together in symbiosis in order to let us live our frenetic 21st century lives. What

we consider so common that we barely pay attention (like breathing or our heart

beating), is in fact the the result of millions of cells fulfilling their purpose and

working together.

Every cell has a sort of instruction set, called DNA. The DNA is a double

helix shaped molecule that carries the genetic instructions used in the growth,

development, functioning and reproduction of all known living organisms and

many viruses. The two DNA strands are composed of units called nucleotides.

There are four type of nucleotides (named by the kind of nitrogenous base they

incorporate): cytosine (C), guanine (G), adenine (A) and thymine (T). These bases

go in pairs along the two helices, in such a way that if a certain place contains a C

nucleotide, the corresponding place on the other helix will contain an A and vice

versa. The same goes for G and T nucleotides.

The process of reading a substring of DNA can be, unfortunately, prone to errors.

Most of the time these errors do not have any repercussions, but sometimes they

1

2 Chapter 1. Introduction

can bring to very dangerous situations. One very delicate situation is the moment

when a cell reproduces. During this process a single cell has to duplicate each one

of its subcellular components and all its genetic code in order to create a copy of

itself.

During the duplication process of the DNA string there is the chance that some

nucleotides are not copied correctly generating some anomalies in the genetic code

(mutations). In most cases this won’t have any negative effects. The mutations

might appear in segments of DNA that are not read during the cell life or, even if

that’s the case, they could be harmless due to some redundancy in the string that

could help reducing the effects of the mutation or again they could trigger some

new behavior so abnormal to cause the cell to die or be killed by the organism’s

immune system. There are some cases though in which these mutations, especially

when accumulated, can give the cell some advantages; advantages that could let

it escape or even resist the immune system response, causing it to reproduce and

live more easily than its pairs. It is in these cases, that we talk about tumoral or

cancerous cells.

1.2 Tumoral evolution and Motivation

Tumor development can be described as a dynamic evolutionary process

acting at the level of individual cells, in which a cell population accumulates

mutations over time and evolves into a mix of genetically distinct subpopulations,

called clones [1]. A tumor usually derives from a single ancestor cell whose

unique set of genetic material conferred it a growth advantage over its pairs and

helped it evade the body’s immune system response. Consequently the clones

derived from this cells acquire the same advantages and will develop furhter into

more subclones, accumulating additional mutations. In this tumoral environment

different clones compete against each other for resources, while the most successful

1.2. Tumoral evolution and Motivation 3

Figure 1.1. Example of tumor evolution (taken from [3]).

ones will replace the others, until they themselves are replaced by other clones [2]

(Figure 1.1).

The genetic diversity that arises from this process inside the tumoral environment

is believed to be one of the main causes of treatment failure and relapse. This is

because usually the drug targets the dominant clone at the moment of the diagnosis

and, once it has been eliminated, there might be an expansion of other subclones

not targeted by the drug or an arising of drug resistant subclones.

Understanding the evolution of the tumoral growth can help in creating new drugs

able to target the most effective clones or perform preemptive treatment in patients

with similar histories [4] [5] [6].

Since every tumoral cell is related to the others via a binary genealogical tree it

has become more and more important nowadays to find a method to reconstruct

such tree from the data obtained from the sequencing experiments. Modern

DNA sequencing technologies have improved to the point that is now possible

to sequence the DNA of a tumoral mass with the precision of a single cell. The

so called single-cell sequencing technologies, however, have the major drawback

of being still very prone to errors compared to other older sequencing techniques.

Usually the false positives rate varies from 2.67 × 10−5 to 6.7 × 10−5 [7] [8] [9],

meaning that the number of false positives could outnumber true somatic variants

4 Chapter 1. Introduction

[10], while the false negatives rate, mostly due to allele dropout, varies from 0.16 to

0.43 [7] [8] [9]. Related to this there is the issue of missing values, that occurs when

all copies of a genetic locus fail to amplify, unfortunately a very common problem

in this kind of datasets [7] [8] [9].

Another

challenge when facing this kind of data lies in unobserved subpopulations. Due

to sampling biases, undersampling or subpopulations extinction it is very likely

for the sampled cells to be only a fraction of the subpopulations that evolved in the

tumoral environment. This has to be taken into account when trying to reconstruct

the phylogenetic tree.

Lastly one of the biggest issues when using this datasets is their number and size.

Of the few datasets that are available, most of them contain data from not more

than 60 cells [7] [8] [9]. Although the problem of tree reconstruction is not trivial

even with datasets this small, it is easy to see that they do not reflect the size of a

real tumoral mass. So the statistical value of the results on those datasets is yet to

be proved.

Despite the issues described so far, more and more efforts are being put on

the topic of reconstructing the phylogenetic tree of a tumoral mass from single-cell

sequencing data. However, at the moment of the writing of this thesis, no one is

addressing an issue that is strictly linked to the reconstruction of phylogenetic trees.

After having inferred the tree that better describes the history of the tumoral mass,

there is no information about which of the mutations that occurred during the

history of such tumor are the ones responsible for the disease. In other words there

is no mean to differentiate between passenger (harmless) and driver (potentially

carcinogenic) mutations once the tree is reconstructed.

Seeing this gap we thought to address the issue and try to understand how one

could characterize such mutations based on the study of the phylogenetic tree. One

of the purposes of this thesis is, in fact, to understand if it is possible to differentiate

1.2. Tumoral evolution and Motivation 5

between harmless and potentially harmful mutations by looking at the behavior of

the phylogenetic tree.

2
State of the Art

In this chapter we’ll describe the latest algorithms used to rebuild such a tree

from single-cell sequencing data of a tumoral mass. In particular we’ll confront two

of the most recent algorithms developed on such topic: SCITE [3] and OncoNEM

[11]. For each algorithm we’ll describe the model they use followed by a brief

report on their conclusions. We’ll then conclude with a brief comparison of the two

algorithms.

2.1 Single Cell Inference of Tumor Evolution - SCITE

SCITE is a stochastic search algorithm capable of identifying the evolutionary

history of a tumor even from noisy and incomplete mutation profiles of single

cells. The algorithm uses a flexible Markov Chain Monte Carlo (MCMC) sampling

scheme that allows: to compute the maximum-likelihood mutation history, to

sample from the posterior probability distribution, and to estimate the error rates

of the underlying sequencing experiments.

The only required assumptions are the restriction of the evolutionary model to

point mutations (single nucleotide base mutations in the form of insertion/deletion

or substitution) and the infinite sites assumption (which states that every genome

7

8 Chapter 2. State of the Art

position mutates at most once in the evolutionary history of a tumor).

2.1.1 Model of tumor evolution and tree representation

To describe the mutation status of m single cells at n different loci they use

a binary n × m mutation matrix E. In this matrix a 1, respectively a 0, at

entry (i, j) denotes the presence, respectively the absence, of mutation i in cell

j (Figure 2.1b). With the exclusion of convergent evolution (that is the process

by which two unrelated species evolve similar characteristics), due to the infinite

sites assumption, this matrix defines a perfect phylogeny of the single cells. This

means that there exists a rooted binary tree, with the cells as leaves, in which every

mutation can be placed on one edge, such that the mutation status of every leaf

equals the set of mutations on its path to the root (Figure 2.1a). To simplify the

notation mutations present in all cells and mutations observed only in a single

cell can be removed from the data as their location in the tree does not bring any

relevant information. So example, the mutation matrix shown in Figure 2.1b can be

reduced to:

E =


s1 s2 s3 s4 s5 s7 s6

M1 1 1 1 0 0 0 0

M2 0 0 0 0 1 1 1

M3 0 0 0 0 1 1 0

 (2.1)

where each line represents a different mutation M1, M2 and M3 and each

column represents one cell. In general, the binary tree defined by the matrix E

will not be unique. In the tree in Figure 2.1a, since the three leftmost leaves all

have the same mutation status, they can be interchanged arbitrarily. We can also

representE more compactly as a mutation tree T (Figure 2.1c), which represents the

mutations as nodes and connects them according to their order in the evolutionary

2.1. Single Cell Inference of Tumor Evolution - SCITE 9

(a) (b) (c)

(d) (e)

Figure 2.1. (a) Binary genealogical tree of sequenced cells. (b) Binary mutation matrix

representing the mutation status of sequenced tumor cells. (c) Representation of a mutation

tree. (d) Representation of a mutation tree with single-cell samples attached. (e) Representation

of a noisy mutation matrix with missing values. Figures taken from [3].

10 Chapter 2. State of the Art

history. The empty node indicates the root. The mutation tree is in fact very similar

to the perfect phylogeny tree, where instead of placing the mutations along the

edges they are encapsulated inside the nodes. This mutation tree can be augmented

with the sequenced cells by attaching them to the node that matches their mutation

state (Figure 2.1d). In this kind of trees the order of mutations that are shared by

the exact same set of cells is unidentifiable (see the two mutations grouped in the

bigger node).

A rooted mutation tree T over n mutations can also be represented as an

augmented ancestor matrix A(T), where every element is:

Ai,k =


1, if i = k or i is an ancestor of k,

0, elsewhere.
(2.2)

and every node is considered an ancestor of itself. For example, the augmented

ancestor matrix for the tree shown in Figure 2.1c that we reduced to the mutation

matrix E in Equation 2.1 is

A =


M1 M2 M3 R

M1 1 0 0 0

M2 0 1 1 0

M3 0 0 1 0

 (2.3)

Where each line and each column represents a different mutation M1, M2 and

M3 except for the fourth column that represents the rootR of the mutation tree. The

placement of the cells attached tot the mutation tree is represented by a vector σ,

which holds at the j-th position the attachment point of sample j. Again relying on

the example in Equation 2.1 and Figure 2.1c, we obtain σ = (1, 1, 1, 4, 3, 3, 2) where

4 represents the root.

The connection between the mutation matrix E and the mutation tree represented

by A is

2.1. Single Cell Inference of Tumor Evolution - SCITE 11

(Eij |T, σ) = A(T)iσj . (2.4)

In other words, for a given tree T and sample attachment σ, the mutation status

Eij of a sample is identical to the one observed in the node where the sample

attaches to the tree.

2.1.2 Errors and missing data

In real situations though, we do not observe a perfect mutation matrix as in

(Figure 2.1b). Usually we see a noisy version of it (Figure 2.1e) that we’ll denote

with D.

If the true mutation value is 0, we may observe a 1 with probability α (false

positive), and if the true mutation value is 1, we may observe a 0 with probability

β (false negative).

In presence of errors the likelihood of the data, given a mutation tree T , knowledge

of the attachment of the samples σ and the error rates θ = (α, β), is

Pr(D|T, σ, θ) =

n∏
i=1

m∏
j=1

Pr(Dij |Eij) (2.5)

where E is the mutation matrix defined by T and σ, and n and m are

respectively the number of detected mutations and the number of cells taken into

exam.

Now using the posterior

Pr(T, σ, θ|D) ∝ Pr(D|T, σ, θ) Pr(T, σ, θ) (2.6)

we can factorize the prior, Pr(T, σ, θ) = Pr(σ|T, θ) Pr(T, θ). We can also assume

the independence of the error rates to set Pr(T, σ, θ) = Pr(σ|T) Pr(T) Pr(θ). This

way the attachment prior Pr(σ|T) will depend on T . Such a prior might be useful

if one suspects that cells are more likely to be sampled from later stages in tumor

development and lower down in the tree, although here we sample using a uniform

distribution.

12 Chapter 2. State of the Art

2.1.3 Markov Chain Monte Carlo

The model with which they try to learn the mutation histories from single-

cell mutation profiles consists of three parts: the mutation tree T , the sample

attachment vector σ , and the error rates of the sequencing experiment θ. The

resulting search is too big to allow for an exhaustive search, so using Equation 2.5

and Equation 2.6 is possible to build a MCMC sampling scheme to sample from

the joint posterior, given the data. The scheme moves from a state (T, σ, θ) to a

new state (T, σ′, θ′) with an ergodic mixture of moves changing one component at

a time. With properly defined transition probabilities and acceptance ratio, the

chain will then converge to the posterior and so we’ll be able to use the chain

to approximate such posterior. In practice, however, it is possible to marginalize

out the sample attachments σ in order to speed up convergence and focus on the

mutation tree T as the informative part for understanding the mutation history.

This can be achieved by first noting that a move where we pick uniformly a sample

and a new parent for that sample would satisfy the necessary properties for the

MCMC chain on σ to converge. Moreover, since the likelihood in Equation 2.5 can

be rewritten as

Pr(D|T, σ, θ) =
n∏
i=1

m∏
j=1

Pr(Dij |A(T)iσj) (2.7)

the convergence can be achieved much faster. This is because (as said in

subsection 2.1.2), for a given tree and sample attachment, the mutation status of

a sample is identical to the one observed in the node where the sample attaches to

the tree. This way the likelihood can be computed directly from T and σ. Written

like this, the likelihood in Equation 2.7 can be factorized into a product for each

sample to be attached. As long as the prior Pr(σ|T, θ) can be factorized (so that

the attachment for each sample is independent from the others), we can include

the priors as in Equation 2.6 and efficiently sum Equation 2.7 over σ to finally

marginalize it out:

2.1. Single Cell Inference of Tumor Evolution - SCITE 13

Pr(T, θ|D)

Pr(T, θ)
∝
∑
σ

m∏
j=1

[
n∏
i=1

Pr(Dij |A(T)iσj)

]
Pr(σj |T, θ)

=
m∏
j=1

n+1∑
σj=1

[
n∏
i=1

Pr(Dij |A(T)iσj)

]
Pr(σj |T, θ)

(2.8)

Since Equation 2.8 can be efficiently computed and it is now possible to search

over the (n + 1)m times smaller space of trees T and error rates θ, the MCMC

convergence can be achieved at higher speed.

With the attachments σ marginalized out, we can now consider only MCMC

moves in the joint (T, θ) space. We can change one component at a time to propose

a new pair (T ′, θ′) with transition probabilities q(T ′, θ′|T, θ) and accepting moves

with the ratio

ρ = min

{
1,
q(T, θ|T ′, θ′) Pr(T ′, θ′|D)

q(T ′, θ′|T, θ) Pr(T, θ|D)

}
(2.9)

to sample proportionally to Pr(T, θ|D). Once we have sampled a tree, we can

easily sample each attachment independently following Equation 2.8.

Now fixing the error rates θ it is possible to build a scheme on rooted mutation

trees as follows. Given a tree T , we find the neighborhood of all trees reachable

with the MCMC move from T . Then we sample a tree T ′ from this neighborhood

accordingly to a probability q(T ′, θ|T, θ) and accept the move with the probability

in Equation 2.9.

Once the chain converges this scheme would allow us to sample trees

proportionally to P (T, θ|D), as long as the moves are reversible (that is, if the move

from T to T ′ can be proposed with a non-zero probability, the reverse move from

T ′ to T can also be proposed with a non-zero probability), irreducible (that is, there

has to exist a sequence of moves that leads from any tree to any other tree), and

aperiodical (which can be ensured by including the tree T in its neighborhood or

adding a non-zero probability not to move).

14 Chapter 2. State of the Art

(a) (b) (c)

Figure 2.2. Prune and reattach move. (a) Selection and detachment of the first node. (b)

Selection of the second node. (c) Attachment of the first node on the second. Taken from [3].

The MCMC move used is denoted prune and reattach (Figure 2.2). The first move

consists on sampling a node i uniformly from the n available and cutting the edge

leading to this node, removing its subtree from the tree, then the second move

consists on uniformly sampling one of the remaining nodes (including the root)

and the third move consists in attaching there the subtree.

The reverse move, in which we sample again i as first move but then pick its

old parent as second move, has the same proposal probability q(T, θ|T ′, θ) =

q(T ′, θ|T, θ) since the set among which we chose the second node has the same size

both times. The moves are also irreducible since there exist a path from any tree

to a tree with all nodes attached to the root (obtained by moving each node to the

root step by step). Finally they are also aperiodical since we can also choose the old

parent when sampling a new one with non-zero probability. The prune and reattach

move then suffices the conditions to sample trees according to their posterior. In

order to speed up the convergence of the chain they implemented two other moves:

swap nodes (in which they swap the labels of two nodes) and swap subtrees (in which

2.1. Single Cell Inference of Tumor Evolution - SCITE 15

they swap two subtrees). At each step of the chain one of these three moves is

selected with a fixed probability.

After convergence, the MCMC chain can be used along with Maximum

Likelihood (ML) estimates. In this framework let’s keep the error rates θ fixed

for simplicity and consider the full space (T, σ) of trees with attachments. After

maximizing over all possible placements, we can define the following score for

each tree:

S(T) = Pr(D|T, σ∗), σ∗ = argmax
σ

Pr(D|T, σ) (2.10)

Since we can factorize the likelihood in Equation 2.7 it is possible to find the

best attachment for each sample independently:

σ∗j = argmax
k

n∏
i=1

Pr(Dij |A(T)ik) (2.11)

If more than one configuration provide the same maximum we can choose

arbitrarily among them to calculate S(T), that is:

S(T) = maxσ Pr(D|T, σ) (2.12)

with which we can find the maximum likelihood tree

T ∗ = argmax
T

S(T) (2.13)

Since the number of trees with (n + 1) nodes (including the root) grows

factorially, an exhaustive search becomes infeasible for trees with more than a few

nodes. We can then use the MCMC scheme on this space of trees where, given a

tree T , we propose a new tree T ′ according to one of the three move types explained

above. The proposal probability q(T ′|T) remains the same but now we accept a

move with probability

ρ = min

{
1,
q(T |T ′)S(T ′)γ

q(T ′|T)S(T)γ

}
(2.14)

16 Chapter 2. State of the Art

γ is a parameter used to flatten the distribution (for γ < 1) or make it more

pronounced (for γ > 1) depending on the type of search one is conducting.

In the Bayesian framework, we can also search for the MAP tree. With this

scheme we would find the joint MAP tree and attachments by including the prior

on all discrete components and accordingly updating S(T) or we could search just

for the MAP tree by instead averaging out the attachments.

2.1.4 SCITE Conclusions

In conclusion they say that SCITE’s strength is the fact that it considers single

cells as taxonomic units, meaning that we are working using a single cell as unit of

measure, instead of a set of cells. The algorithm, when analyzing a cell, is capable of

making use of the fact that each cell provides information about all the mutations,

allowing for a more robust reconstruction of the mutation tree. This leads to a better

identification of driver mutations, providing, however, a less certain placement of

individual cells. On the other hand clustering cells into clones and considering

these as the taxonomic units means that we can use the consensus of single-

cell information in each clone to deduce more clearly the ancestral relationships

between the clones themselves, but at the expense of reducing the accuracy in the

reconstruction of the mutational history.

Even if, at the moment we are writing, the algorithm is not able to handle copy-

number variations the authors claim that they will incorporate them into the model.

One of the main challenges is the fact that in this case the infinite sites assumption

wouldn’t hold anymore.

2.2 Oncogenetic Nested Effects Model - OncoNEM

OncoNEM is a probabilistic method for inferring intra-tumor evolutionary

lineage trees from somatic single nucleotide variants (SSNVs) of single cells.

2.2. Oncogenetic Nested Effects Model - OncoNEM 17

The algorithm accounts for genotyping errors and tests for unobserved

subpopulations, while clustering cells with similar mutation patterns into

subpopulations and inferring relationships and genotypes of observed and

unobserved subpopulations.

2.2.1 Likelihood of clonal trees

In OncoNEM we represent a binary genotype matrix of n cells each one with m

possible mutation sites as D = (dkl), where k ∈ {1, . . . , n} is the label of a single

cell and l ∈ {1, . . . , n} is the index of a mutation site. dkl ∈ {0, 1,NA} denotes then

the mutation status (that could be respectively unmutated, mutated or unknown)

of cell k at site l. This matrix together with the false positive rate (FPR) α and

false negative rate (FNR) β consists in the input necessary to OncoNEM to infer

the tumor subpopulations, a tree describing the evolutionary relationships among

these subpopulations and the posterior probabilities of the occurrence of mutations.

In order to compute the likelihood associated with a clonal lineage tree T we

assume it to be a directed, not necessarily binary, tree whose root is the unmutated

normal (this is equivalent to restrict the search space of θl to {2, . . . , N}). Each node

of this tree represents a clone c ∈ {1, . . . , N} that contains 0, 1 or multiple cells of

the data set. Now let c(k) denote a clone containing cell k assuming, without loss

of generality, that the root has index 1. Together with a lineage tree we also need

the occurrence parameter Θ = {θl}ml=1, where θl is equal to the value c of the clone

where mutation l appeared for the first time.

Given a dataset D we can derive the posterior probability of T and Θ given D as

Pr(T,Θ|D) =
Pr(D|T,Θ) Pr(Θ|T) Pr(T)

Pr(D)
(2.15)

We assume the model prior Pr(T) (that can be used to incorporate prior

biological knowledge) to be uniform over the search space. This together with the

18 Chapter 2. State of the Art

fact that the normalizing factor P (D) is constant for all models and can be omitted,

lets us rewrite Equation 2.15 as

Pr(T,Θ|D) ∝ Pr(D|T,Θ) Pr(Θ|T) (2.16)

Now we have two possible cases: either Θ is known or Θ is unknown.

If Θ is known we then know for each locus l in which clone the mutation

occurred the first time. Let’s also assume that no mutation occurred in the root.

Then given a tree T and the occurrence parameter Θ we can predict the genotype

of every cell. If c is the clone where a mutation occurred, then such mutation is

present in c and all its descendants and is absent in all other clones. In other words

given θl = c, we can use the tree to determine the predicted genotype δkl.

To calculate the likelihood of (T,Θ), we compare the expected genotypes with

the observed ones. We also model the genotyping procedure as draws of binary

random variables ωkl from the sample space Ω = {0, 1} and assume that, given T

and Θ, the random variables are independent and identically distributed according

to the probability distribution

Pr(ωkl|δkl) =

Pr(0|0) Pr(1|0)

Pr(0|1) Pr(1|1)

 =

1− α α

β 1− β

 (2.17)

where α and β are respectively the FPR and FNR respectively.

The observed genotypes dkl are then interpreted as events from the event space

P(Ω) = {∅, {0}, {1}, {0, 1}} (a missing value NA corresponds to the event {0, 1}).

Then the likelihood of observing the genotypes D given T and Θ is

Pr(D|T,Θ) =

m∏
l=1

n∏
k=1

Pr(ωkl ∈ dkl|δkl) (2.18)

where

2.2. Oncogenetic Nested Effects Model - OncoNEM 19

Pr(ωkl ∈ dkl|δkl) =



1− α if dkl = {0} ∧ δkl = 0

α if dkl = {1} ∧ δkl = 0

β if dkl = {0} ∧ δkl = 1

1− β if dkl = {1} ∧ δkl = 1

1 if dkl = {0, 1}

(2.19)

is the probability of a single observation given the predicted genotype.

If Θ is unknown we can consider it as it was noise and marginalize over it. If

we also make the assumptions that (1) the occurrence of a mutation in independent

of the occurrence of all other mutations, such that

Pr(Θ|T) =
m∏
l=1

Pr(θl|T) (2.20)

and (2) that the prior probability of a mutation occurring in a clone is

Pr(θl = c|T) =


0/ if c is the root (c = 1)

1
N−1 otherwise

(2.21)

Then the marginal likelihood is

Pr(D|T) =

∫
Pr(D|T,Θ) Pr(Θ|T)dΘ

=
1

(N − 1)m

m∏
l=1

N∑
c=2

n∏
k=1

Pr(ωkl ∈ dkl|T, θl = c)

=
1

(N − 1)m

m∏
l=1

N∑
c=2

n∏
k=1

Pr(ωkl ∈ dkl|δkl)

(2.22)

2.2.2 Searching the tree space

With the scoring functions calculated in the previous section we can now search

for the optimal tree.

OncoNEM inference is a three-step process where we start with an initial search,

20 Chapter 2. State of the Art

restricting the model space to cell lineage trees. Then we continue by testing

whether adding unobserved clones to the tree might improve the likelihood.

Finally we cluster the cells within the previously derived tree into clones to obtain

the final tree.

2.2.2.1 Step 1: Initial search

Since the the search space of cell lineage trees with n nodes has nn−2 possible

solutions, an exhaustive search by enumeration becomes infeasible for trees with

more than nine nodes. Therefore they implemented function heuristicSearch to

perform an heuristic local search. Note that the algorithm avoids getting stuck in a

local optimum by returning to neighbors of high-scoring previous solutions.

2.2.2.2 Step 2: testing for unobserved clones

Since the number of sequenced single cells is usually small compared to the

tumor size, some clones of the tumor may not be represented in the single cell

sample. OncoNEM accounts for this possibility and tests if there is a lineage tree

with new, unobserved, branch nodes that can better explain the observed data.

Unfortunately unobserved clones that linearly connect observed clones cannot be

inferred, but this is not a problem since they also do not change the shape of the

tree.

In function expandTree we generate trees with n+1 nodes from a previous solution

by inserting a new unobserved node into its branch points. These trees are used as

start trees in a new heuristic search that will optimize the position of the new node

node in the tree. Then a larger model is accepted if the Bayes factor of the larger

versus the smaller model is bigger than a threshold ε. If the larger model passes the

test, the steps are repeated, otherwise the algorithm terminates with the previous

solution.

2.2. Oncogenetic Nested Effects Model - OncoNEM 21

Input: Genotype matrix D, FPR, FNR, list startTrees of starting trees (for the initial search

the starting tree has a star topology), number of iterations δ without any

improvement before stopping the execution

Output: List consideredTrees of candidates scored trees

/* We define the neighbors of a given tree as those trees that can

be generated from the current tree by assigning a new parent to

one of the nodes or by swapping two nodes that are connected by

an edge */

1 Initialize consideredTrees as empty;

/* List ordered by likelihood */

2 Initialize priorityQueue as empty;

/* List of all trees that have been scored and whose neighbors have

not yet been scored explicitly, ordered by likelihood */

3 Initialize counter = 0 /* Counts search steps since last change of highest

scoring solution */

4 foreach tree in startTrees do

5 score tree;

6 add tree to consideredTrees;

7 add tree to priorityQueue;

8 end foreach

9 bestTree = consideredTrees[1];

10 while counter ≤ δ do

11 currentTree = priorityQueue[1];

12 delete currentTree from priorityQueue;

13 foreach neighbor of currentTree do

14 if neighbor /∈ consideredTrees then

15 score neighbor;

16 add neighbor to consideredTrees;

17 add neighbor to priorityQueue;

18 end if

19 end foreach

20 if bestTree 6= consideredTrees[1] then

21 counter = 0;

/* Highest scoring solution changed */

22 bestTree = consideredTrees[1];

23 end if

24 else

25 counter = counter + 1;

26 end if

27 end while

28 return consideredTrees

Function heuristicSearch

22 Chapter 2. State of the Art

Input: Cell lineage tree Tn with n nodes inferred by function heuristicSearch, Bayes factor

threshold ε

Output: Expanded tree Tn+i−1

1 Initialize i = 0;

2 repeat

3 i = i+ 1;

/* Generate start trees */

4 startTrees = star tree with n+ i nodes;

5 foreach node in Tn+i−1thathasatleasttwochildren do

6 Generate a new tree by inserting an unobserved node into the branch point;

7 Add tree to startTrees;

8 end foreach

9 Pass startTrees to function heuristicSearch and store the output in consideredTrees;

10 Tn+i = highest scoring tree in consideredTrees in which every unobserved node has at

least two children;

/* Calculate Bayes factor */

11 K = Pr(D|Tn+i)/Pr(D|Tn+i−1);

12 until K < ε;

13 return Tn+i−1

Function expandTree

2.2. Oncogenetic Nested Effects Model - OncoNEM 23

Input: Cell lineage tree T inferred by expandTree(), Bayes factor threshold ε

Output: Tree T clustered

/* Current tree */

1 Initialize T = Tstart;

/* Best tree scored so far */

2 Initialize T ∗ = Tstart;

3 repeat

4 foreach edge ei do

5 Generate clustered tree Tei from T by merging the clones connected by ei;

6 end foreach

7 Te∗i
= argmaxTei

Pr(D|Tei);

8 K = Pr(D|T ∗)/Pr(D|Te∗i
);

9 if K ≤ ε then

/* Accept clustering solution */

10 T = Te∗i
;

11 if Pr(D|T ∗) < Pr(D|Te∗i
) then

/* Save clustering solution as new best tree */

12 T ∗ = Te∗i
;

13 end if

14 end if

15 until K > ε;

16 return T

Function clusterTree

24 Chapter 2. State of the Art

2.2.2.3 Step 3: clustering cells into clones

There might be the possibility that the data could be better or equally well

explained by a clonal lineage tree in which a single node might contain multiple

cells (function clusterTree).

Nodes are iteratively merged along branches until the likelihood decreases by more

than a factor 1
ε in respect to the best clustering solution found. The criteria for

merging cells could be because they are genetically very similar or because the

limited information content of the data makes us see those cells as possibly similar.

2.2.3 Bayes factor ε

The choice of the Bayes factor ε has to be done keeping in mind that it represents

a trade-off between declaring clones with little support from the data and an

overly strict clustering. In the paper’s setting they chose ε > 1, meaning that

they will prefer the smaller model unless the strength of evidence for the larger

model compared to the smaller one exceeds a certain threshold. For a better

understanding one can use as guide Jeffrey’s [12] or Kass and Raftery’s [13] scale

for the interpretation of the Bayes factor. They report to have used a value of ε = 10,

which denotes strong evidence according to Jeffreys’s scale.

2.2.4 OncoNEM Conclusions

In conclusion they say that OncoNEM can be easily applied to present single-

cell data sets. However, for larger data sets, the current search algorithm may

become too computationally expensive. Unfortunately the model can’t be used

to model copy number variations, since they are not independent of each other and

show horizontal dependencies [14], but the authors plan to extend the model to

incorporate this kind of data in the future.

At the moment the the authors also recommend to to blacklist regions affected by

2.3. Comparison 25

loss of heterozigosity (LOH) before applying OncoNEM inference, if additional

data like bulk-sequencing is available, since OncoNEM is not fully capable of

handling this kind of setting. So If is known that the evolution of the tumor is copy

number driven and LOH affects very large parts of the genome, they recommend

using a copy-number-based method instead for inferring tumor evolution.

2.3 Comparison

The two algorithms described in the previous sections are two (if not ”the two”)

of the most recent algorithms used to reconstruct the phylogenetic history of a

tumor.

Both of them make the same assumptions and base their scoring function on the

likelihood function, what they differ is, to begin with, the fact that SCITE returns

a mutation tree (where each node contains one or more mutations and the cells

can be attached to the leaves of the tree) while OncoNEM returns an evolutionary

lineage tree (in which every node contains one or more cells). Moreover OncoNEM

performs an explicit clustering of the cells in its tree, while SCITE does something

slightly different. Since it focuses on mutation rather than the single cells, the only

kind of clustering involved in the computation is performed when is not possible

to understand the ancestral relationships among two or more mutations. However

one could see a sort of implicit clustering, similar to OncoNEM’s, when we choose

to attach the single cells to the respective leaves of the mutation tree.

While they both return their respective maximum-likelihood tree they implement

two different approaches. SCITE uses an MCMC sampling method to build a chain

which converges at its equilibrium to the posterior probability. It then uses MAP

or ML estimates to obtain the the maximum-likelihood tree from this distribution.

OncoNEM, on the other hand, implements a three-step algorithm considering only

the likelihood score. After heuristically finding a set of candidate trees, for each one

26 Chapter 2. State of the Art

of them, they try to improve its likelihood score first by adding possible missing

nodes and then by trying to understand if a clustered tree might further improve

the score.

Even though the two algorithms return two different kinds of trees we can show

their results on a common dataset. Both of them have been tested on the dataset

derived by a single-cell exome sequencing of 58 single cells from an essential

thrombocythemia [8]. it is worth mentioning (although probably just a typo) that

OncoNEM reports that Hou at al. estimated a FPR of 6.4× 10−5 and a FNR of 0.42,

while SCITE reports a FPR of 6.04× 10−6 and a FNR of 0.4309. By looking directly

at Hou et al. paper we saw that they actually estimated a FPR of 6.04× 10−5 and a

FNR of 0.4309.

The trees reconstructed by SCITE and OncoNEM are shown respectively in

Figure 2.3a and Figure 2.3b. Even if they do not represent the same kind of tree

we should expect some similarities. In fact we can see how they both share the

same mostly linear structure with very few branches in the lower part of the tree.

Also both algorithms performed better than any other similar algorithm they were

compared with, obtaining log-likelihood scores way higher than the others. SCITE

calculated a score of −378.4 against a best score of −1059.7 from its competitor.

OncoNEM, on the other hand, obtained a score of −9964 compared to a −11584.

2.3. Comparison 27

(a) (b)

Figure 2.3. (a) SCITE’s reconstructed tree from Hou et al. data. Picture taken from [3]. (b)

OncoNEM’s reconstructed tree from Hou et al. data. Picture taken from [11].

3
Simulator

This chapter describes the algorithm that has been developed. Section 3.1

introduces the general model, section 3.2 describes the algorithm and section 3.3

describes the code implementation.

3.1 Model

The program produces a phylogenetic tree describing the potential evolution

of a tumor by simulating the duplication process of a cell that could lead to the

creation of a tumoral mass.

The initial state is a single cell called root. When the simulation starts the cell begins

its duplication process following a probability distribution (given as input). The

duplication stops when the tree reaches a certain number of leaves. We selected

this stopping condition (instead, for example, total number of nodes or a maximum

height for the tree) in order to better simulate the progression over time of a given

tumoral mass, since the number of cells in the tumoral mass, when it is extracted,

is in fact the number of leaves of the phylogenetic tree that describes the evolution

of such tumor.

By default the probability distribution that describes the duplication process of a

29

30 Chapter 3. Simulator

cell is given by two probabilities: p0, that is the probability for a cell of not having

any children (and so dying or entering a so called ”quescent” state), set by default

to 0.18 and p1, the probability for a cell of having just one child, set by default

to 0.45 (note that from these two is possible to derive the probability of having

two children p2 so there’s no need to make it explicit). The value of p0 has been

obtained from the results of [15], in which they state that the death-birth rate δ of

a cells population is usually in the range [0.72, 0.99]; this toghether with a standard

birth rate of 0.25 (also according to [15]) make it possible to easily calculate that

p0 ∈ [0.18, 0.2475]. p1’s value instead is based purely on the intuition that probably

it is more plausible for a cell to have a higher probability of generating one child

than two children.

Every time a cell duplicates there’s a chance that, due to many factors, one or

more of the children might carry a mutation. We modeled this aspect with

another probability distribution, of which we are interested in only two values:

pd (the probability for a mutation to be driver) that has a default value of 0.00015

and pp (the probability for a mutation to be passenger) with a default value of

0.01485. We derived the values of these two probabilities from the product of

the average mutation rate u = 0.015 of the exome part of the DNA of a single

cell (as stated in [15]) and the probability Pr[driver|mutated] = 0.01 (respectively

Pr[passenger|mutated] = 0.99), based on the assumption that on average only 1%

of the exome mutations end up being drivers.

The effects on a cell’s behavior of a driver mutation can be many: it could make the

cell slightly more resistant to antibodies (making it slightly more difficult to kill),

or it could make it more resistant to some particular substances (again increasing

its potential lifespan), or it could increase the duplication rate of the cell and its

children and so on. Anyway, in general, the long term effect of a driver mutation on

a cell’s behavior is to increase the number of offspring generated. Either by simply

increasing the duplication rate or the cell’s toughness, the final result is that the cell

3.1. Model 31

and its progeny will have an advantage over the others and will duplicate more

easily. To model this fact we chose to decrease the value of p0 of a value ε and to

increase p1 of ε/2 (effectively increasing also p2 by ε/2) every time a driver mutation

occurs. By default the value of ε has been set to 0.03.

After the simulator creates a tree the aim is to find a way to distinguish the

potentially harmful mutations (drivers) and the harmless ones (passengers). In

order to do this three statistical tests have been used: the Two Sample Kolmogorov-

Smirnov Test, the 2 Sample Anderson-Darling Test and the Two Proportion Z Test.

The Two Sample Kolmogorov-Smirnov Test and the 2 Sample Anderson-Darling

Test have the purpose to find out if two samples come from the same probability

distribution or not. The assumption is that when a driver mutation happens in

a cell, the behavior of its subtree will deviate from the standard behavior that it

would have had if the mutation was passenger or if the cell wouldn’t have mutated

at all. This means that if we consider a subtree as the output of a stochastic process,

the stochastic process that generated a tree whose root is a driver mutated cell will

be different from the one that generated a tree with a passenger mutated (or not-

mutated) root. Of course this holds only in the case that the roots of these two trees

have the same father, meaning that the two corresponding probability distributions

will have the same past history and so that won’t affect the analysis. If that’s not

the case then this reasoning can’t be applied, since the different behavior of the two

trees could be caused by the different past history of the two root cells. Now the

problem becomes how to use the two tests to analyze these two subtrees since they

take as input a set of numbers and not a tree. We chose to consider as output of

the random variables associated with the stochastic process the number of cells in

every subtree of every cell located at a certain depth from the root of the examined

subtree. The idea is that since the duplication probabilities of a driver cell change in

respect to the probabilities of a normal cell, the distribution of the number of cells

present in those subtrees should be statistically different in the two trees if one of

32 Chapter 3. Simulator

the two roots has a driver mutation. The two tests are performed on every pair of

siblings of which at least one is mutated, if the test returns a value that allows to

reject the null hypothesis with sufficiently high probability then the mutated cell

can be labeled as potentially driver. In the case both cells have a mutation nothing

can be said. At the end of the analysis there are going to be two lists (one for

each test) containing the cells on which it was possible to perform the tests and

their associated corrected p-values. We say ”corrected p-value” when referring to

a p-value on which has been applied the Bonferroni correction [16] for multiple

hypothesis testing. This correction allows to take into account the fact that since

we are analyzing a large number of mutations (and so evaluating a large number

of similar hypotheses), there’s the possibility that what we observe is due simply

to chance instead of a particular property of that cell.

The Two Proportion Z Test is a test used to assess if two proportions coming from

different samples can be considered equal. The idea in this case is that if in a tree

there are no driver mutations, the probability for a cell of not having children never

changes. So if we consider a sample of cells at a certain depth (in such a way that

it also corresponds to the state of a possible tumor at a certain time instant) we

can estimate the probability of not having children of those cells by measuring the

proportion of leaves in that sample. If the estimated probability can be deemed

sufficiently similar to the default probability of not having any child then we can

say with a certain degree of confidence that the subtree whose evolution led to that

sample didn’t came from a driver mutated root. This idea was applied to check if

two subtrees, with the same constraints used for the tests explained above, could

have been generated from the same type of cell or not. In order to do this we

extracted two samples from the subtrees of two sibling cells, of which only one

was mutated, and if the proportions of leaves in one of those samples could be

considered statistically different from the other, then we would be able to say, with

a certain degree of confidence, that the mutated sibling is in fact a driver mutated

3.1. Model 33

cell.

In addition to this it is possible to perform another kind of analysis in order to

simulate the kind of situation that can be found in currently available datasets. The

aim is to model the fact that currently available datasets based on real data from

single-cell sequencing techniques, come in fact from samples of a few hundreds of

cells of bigger tumoral masses. The idea is that if we consider the leaves of the

main tree as the whole tumor, then a sample of those leaves is indeed the sample

of cells from which the real dataset has been derived. Once this subtree has been

obtained then it is analyzed using the same method used for the main tree in order

to identify the mutations that, with the highest probability, are the ones responsible

for the tumor we observe.

34 Chapter 3. Simulator

3.2 Algorithm

Input: Number of leaves N , prob. p0 of dying, prob. p1 of having only one

child, prob. p2 of having two children, prob. pd for a child to

develop a driver mutation, prob. pp for a child to develop a passenger

mutation, ε

Output: Phylogeny tree T having N leaves starting from a cell with

reproductive probabilities: p0, p1, p2, pd and pp. Every time a driver

mutation occurs p1 and p2 are both increased by
ε

2
and p0 is

decreased by ε

1 Create root cell with default reproductive parameters p0, p1, p2, pd, pp and

ε, set it is reproduction time t and label it as leaf ;

2 while T has less than N leaves and there is at least one leaf that can reproduce do

3 Select the leaf with the least reproduction time and take off the leaf label;

4 Generate the resulting (possibly mutated) offspring according to its

reproductive probabilities and label it as leaf ;

5 foreach newly generated child c do

6 if c has a driver mutation then

7 Set c.p0 = c.p0 − ε;

8 Set c.p1 = c.p1 +
ε

2
;

9 Set c.p2 = c.p2 +
ε

2
;

10 end if

11 end foreach

12 end while

13 if T has less than N leaves then

14 Delete T and go to line 1;

15 end if

Function BuildTree

3.2. Algorithm 35

Input: Phylogeny tree T , test samples size lower bound lb

Output: Lists listZT , listKS and listAD containing every ”analyzable”

mutated cell with the corresponding corrected p-value obtained

respectively by the Two Proportion Z Test, the Two Sample

Kolmogorov-Smirnov Test and the 2 Sample Anderson-Darling

Test

/* A mutated cell is considered "analyzable" if it has

a sibling and it is possible to retrieve a

sufficiently large sample for the statistical tests

from both their subtrees */

1 foreach cell c in T that could be considered ”analyzable” do

2 Try to retrieve two samples of size at least lb from the subtree of c and

its sibling’s;

3 if it is not possible to obtain such samples then

4 Continue with the next cell;

5 end if

6 Perform the statistical tests on both samples and apply the Bonferroni

correction [16] obtaining the corrected p-values p-valZT, p-valKS and

p-valAD;

7 Append p-valZT, p-valKS and p-valAD respectively to the lists listZT ,

listKS and listAD;

8 end foreach

Function AnalyzeWholeTree

36 Chapter 3. Simulator

Input: Phylogeny tree T , test samples size lower bound lb, number of

leaves samples k, leaves samples size n

Output: k couples {listZTi, listKSi, listADi}, 0 < i < k − 1 of lists

containing every ”analyzable” mutated cell with the

corresponding corrected p-value obtained respectively by the Two

Proportion Z Test, the Two Sample Kolmogorov-Smirnov Test and

the 2 Sample Anderson-Darling Test for each subtree

/* A mutated cell is considered "analyzable" if it has

a sibling and it is possible to retrieve a

sufficiently large sample for the statistical tests

from both their subtrees */

1 for i = 0 to k − 1 do

2 Extract a random sample l of size n from the set of leaves L of tree T ;

3 Extract the subtree t that corresponds to the set l of leaves (all the way

up to T ’s root);

4 foreach cell c in t that could be considered ”analyzable” do

5 Try to retrieve two samples of size at least lb from the subtree of c

and its sibling’s;

6 if it is not possible to obtain such samples then

7 Continue with the next cell;

8 end if

9 Perform the statistical tests on both samples and apply the

Bonferroni correction [16] obtaining the corrected p-values p-valZT,

p-valKS and p-valAD;

10 Append p-valZT, p-valKS and p-valAD respectively to the lists

listZT , listKS and listAD;

11 end foreach

12 Add listZTi, listKSi and listADi to the list of couples to be returned;

13 end for

Function AnalyzeTreeWithSamples

3.2. Algorithm 37

Input: A different set of {N , p0, p1, p2, pd, pp, ε, lb} for each tree T that you

want to build and analyze in its entirety, or

{N , p0, p1, p2, pd, pp, ε, lb, k, n} for each tree you want to analyze by

sampling its leaves

Output: A list of lists mainList containing the output of

function AnalyzeWholeTree and/or

function AnalyzeTreeWithSamples for each set of parameters

specified in input

1 foreach set of parameters {N , p0, p1, p2, pd, pp, ε, lb} given in input do

2 Pass parameters {N , p0, p1, p2, pd, pp, ε} to function BuildTree and

retrieve its output T ;

3 Pass T and lb to function AnalyzeWholeTree and retrieve its output

listZTi, listKS and listAD;

4 Add listZTi, listKS and listAD to mainList;

5 end foreach

6 foreach set of parameters {N , p0, p1, p2, pd, pp, ε, lb, k, n} given in input do

7 Pass parameters {N , p0, p1, p2, pd, pp, ε} to function BuildTree and

retrieve its output T ;

8 Pass T , lb, k and n to function AnalyzeTreeWithSamples and retrieve its

set of k output couples s = {listZTi, listKSi, listADi}, 0 < i < k − 1;

9 Add s to mainList;

10 end foreach

Algorithm 1: BuildAndAnalyze()

38 Chapter 3. Simulator

Algorithm 1 is the main procedure that takes care of building and analyzing

the different trees that we want to generate according to the given input

parameters. It starts by calling function BuildTree generating the tree T according

to the first set of input parameters, then, depending on the kind of analysis

that the user wants to perform, it calls either function AnalyzeWholeTree or

function AnalyzeTreeWithSamples in order to analyze T and retrieve the results

that are then stored in the list of lists mainList.

Function BuildTree is responsible to generate a new tree T according to the given

input parameters. It starts by creating a single cell with the chosen reproductive

parameters and basically it lets the cell free to reproduce until the associated

phylogeny tree has the desired number of leaves. Since this is a random process it

is possible that all the leaves die before their number reaches the desired threshold,

in this case the faulted tree is destroyed and the process starts over until a proper

tree has been generated.

Function AnalyzeWholeTree is responsible to analyze a tree T in order to find

which are the mutations that most probably are drivers. As first thing the algorithm

needs to know which mutated cells can be analyzed. Since the analysis process

compares the behavior of two subtrees of two cells having the same father, only

those cells that that are mutated and have a sibling can be considered to be

”analyzable”. Once all the mutated cells with siblings have been collected, for each

one of them the algorithm tries to retrieve a sample (that’s going to be used by the

statistical tests) of size at least lb from them and their sibling, if that’s not possible

it continues with the next cell. If it is possible to retrieve such a sample then the

mutated cell was indeed ”analyzable” so the algorithm executes the statistical tests

and stores the results in the corresponding output list.

Function AnalyzeTreeWithSamples instead performs a different analysis. In this

case T is not analyzed in its entirety, instead the algorithm performs k random

samples of its leaves of size n and for each sample extracts the corresponding

3.3. Implementation 39

subtree (up to T ’s root). The same kind of analysis of the previous algorithm is

then performed on each of these subtrees obtaining a set s of couples of lists.

3.3 Implementation

The main focus when implementing this algorithm was on scalability. The

program needed to be able to generate statistically valid instances (whose size

would allow the correct use of statistical tools), since the biggest datasets available

today are made of a few more than 100 cells. So it was crucial to make the program

as easy as possible towards the machine main memory. Because of this a massive

use of pointers and references (to avoid making copies of data structures) was

necessary.

it is important to mention that when talking about the size of an instance we refer

to the number of leaves that the tree has (instead of the total number of nodes),

since the leaves represent the stage of development, at a certain point in time, of an

hypothetical potential tumoral mass.

The second most important focus was on speed. Working with such huge

instances needed to be as fast as possible. For this reason the choice of the

programming language fell on C++, that combines the convenience of an object

oriented language with a speed that’s just a bit lower than C’s. Also the explicit

use of pointers and references comes very useful when managing the impact of the

program on the main memory is crucial.

Another important topic was about how to simulate the passing of time and

be able to efficiently understand which will be the next cell that will duplicate. A

priority queue ordered by the cell’s duplication time seemed to be the best option.

This queue contained pointers to the active leaves of the tree. A leaf is considered an

active leaf if it hasn’t done the duplication process yet.

Now a few details about the thread architecture of the program. In order to

40 Chapter 3. Simulator

be able to speed up the program’s execution it has been implemented a simple

multithreaded, and possibly multi-leveled, variant of the Producer-Consumer

model in order to create multiple trees in parallel. The first stage of this multi-

level model is formed by the loader, a single thread that has the job to read the

parameters of the instances that need to be created and to store them in a thread-

safe access queue queue L S. The second stage is formed by the simulators, a group

of one or more threads with the purpose of building new instances according to the

parameters they extract from queue L S. Once an instance has been built the thread

passes it forward to the third stage using one of two thread-safe queues queue S A1

and queue S A2, depending on the selected execution mode (explained below). The

third stage is formed by the analyzers, a group of one or more threads that have

the job to extract a completed instance from either queue S A1 or queue S A2 and

analyze it in order to find the mutations that are more likely to be drivers using the

kind of analysis that the user selected. The fourth and final stage is synchronized

with the third by a third queue queue SW and is formed by one or more threads

called sweepers having the job to delete from the hard drive (if the selected execution

mode so provides) the instances that have already been analyzed.

The fourth stage can be optionally activated and has been made because there is an

execution mode in which the program does not store direct references or pointers

to the newly created instances in the second queue but it stores the name of the

text file where the instance representation can be found instead. Once an analyzer

thread retrieves the name it rebuilds the instance in memory reading the file and

proceeds to analyze it. This has been done in order to let the program be able to

work on the same instances more than once, if needed, without the need to build

new ones from scratch. The downside of this approach is, of course, the fact that

there is a huge bottleneck on the writing and reading process on the hard drive,

and due to the size of the files representing the instances this can become quite a

problem on some systems.

3.3. Implementation 41

And now a let’s see the different execution modes.

There have been implemented a few global flags that trigger different execution

modes in order to change the behavior of the program in resect to the

user’s needs. They are called: activate sweepers, one at a time, save hd space,

filename simulator inputs and work with samples.

activate sweepers is the flag responsible of the optional activation of the sweepers

threads. When active these threads will help freeing memory on the hard drive by

deleting the instances already analyzed.

one at a time triggers a particular execution mode in which the multithreaded code

executes as it was single-thread. Only one instance at a time is created and a new

one is built only if the previous one has been completely analyzed. This mode

hugely increases the execution time of the program, since all the benefits coming

from a parallel execution are lost, but is easier on both the hard drive and the main

memory, not mentioning the CPU.

save hd space has been implemented to fix the main bottleneck of the program’s

execution, that is the I/O operations involved in writing a new instance to a file and

then read again that file to rebuild that instance in order to analyze it. When this

flag is active the simulators will no longer write the new instances to file and pass

its name to the analyzers using a queue queue S A1, but they will directly pass the

new trees to the analyzers inside the main memory using another queue queue S A2.

This way the execution speed can also be increased, provided that the machine

on which the code is running has enough memory to contain the instances being

created and analyzed. In any case this flag can be used together with one at a time

if the machine’s main memory can’t hold more than one instance at a time.

filename simulator inputs is not actually a binary flag, but is a string. By default it

is set to the string ”NULL”, otherwise it contains the filename on which are stored

the names of already built instances that the user wants to analyze again. If this

is the case, no simulator thread will be activated since all the program has to do is

42 Chapter 3. Simulator

read the file and rebuild the instance from that.

work with samples triggers the execution of a different kind of analysis, in which the

trees are not analyzed in their entirety but as described in the previous section.

Concerning the Two Sample Kolmogorov-Smirnov Test and 2 Sample

Anderson-Darling Test used by the analyzers threads, since they weren’t already

implemented in C++, it was necessary either to implement them from scratch or use

libraries imported from some other language. We chose the second option since the

tests were too complex to try to implement them from scratch. In the end the choice

fell onto the Python programming language since it was easier to embed in a C++

code, since a large part of it is written in C and the documentation and examples

were sufficiently clear.

This does not mean it was an easy job. In particular the implementation of the

garbage collection was a bit tricky. Python manages automatically the garbage

collection by monitoring the reference count (the number of references associated

with a certain object) of each object. Since C++ does not work this way there’s the

need to manually keep track of the reference count of each object that’s been created

and decrease or increase it in order not to create memory leaks or segmentation

faults. The general rule is to decrease the reference counter once you are sure that

you won’t need that object anymore in the successive lines of code; references can

also be manually increased but that’s more rare and, if needed, it is usually told

inside the API’s documentation.

Another not so easy part to learn was how to use the Python C API in a

multithreaded environment. By default the Python C API does not fully support

multithreading and without the proper adjustments errors are very likely to occur,

for example when two threads try to increase the same reference counter. In this

case the API has implemented a global lock called Global Interpreter Lock (or GIL)

that must be held by the current thread before it can safely access Python objects

or call any kind of function from the API. The acquiring and releasing of the GIL

3.3. Implementation 43

has to be done manually, however (in order to emulate concurrency) the Python

interpreter tries to regularly switch threads, especially around potentially blocking

I/O operations (like reading or writing a file) so that other Python threads can run

in the meantime.

The code should run on most Unix based systems able to support at least the

C++11 and Python 3.5 standards. In particular it was tested on a macOS 10.12.6 PC

with an Intel Core i7 CPU 4770HQ having a clock speed of 2.2GHz and 4 physical

cores with hyperthreading technology, 16GB of DDR3 RAM 1600MHz and a solid

state hard drive running Python 3.6.2 and on the Linux based departmental cluster

composed of 14 DELL PowerEdge M600 nodes with 2 quad core Intel Xeon E5450

with a clock speed of 3.00GHz, 16GB of RAM and 2 72GB hard drives in a RAID-1

configuration running Python 3.5.3.

4
Tools Used

4.1 Two Proportion Z Test

The Two Proportion Z Test is a statistical test used to determine whether the

difference between two sample proportions p1, p2 is significant. The test procedure

is appropriate when the following conditions are met:

1. The sampling method for each population is simple random sampling.

2. The samples are independent.

3. Each sample includes at least 10 successes and 10 failures.

4. Each population is at least 20 times as big as its sample.

As a side note we should mention that in some cases we executed this test even if

not all these conditions were met. For example when analyzing a tree by sampling

its leaves we need to use small samples of size not bigger than 10, since the trees we

are analyzing are very small and so it could be difficult to extract bigger samples.

So in these cases usually conditions 3 and 4 are not met.

For this test one can choose among three sets of hypotheses:

1. p1 − p2 = 0

45

46 Chapter 4. Tools Used

2. p1 − p2 ≥ 0

3. p1 − p2 ≤ 0

In case 1 the test is a two tailed test, since an extreme value on either side of

the sampling distribution would cause one to reject the null hypothesis. In cases

2 and 3 the test is a one tailed test, since an extreme value on only one side of the

sampling distribution would cause one to reject the null hypothesis.

Once the null hypothesis has been stated it is possible to calculate the test statistic

(z-score).

Let n1 and n2 be the sizes of the two samples associated respectively with p1 and

p2, the pooled sample proportion P is:

P =
p1n1 + p2n2
n1 + n2

(4.1)

Given P we can compute the standard error S as:

S =

√
P(1− P)

(
1

n1
+

1

n2

)
(4.2)

Now we can compute the z-score.

z =
p1 − p2

S
(4.3)

Once we have the test statistic we can easily compute the corresponding p-

value. Since the p-value is the probability of observing a sample statistic at least as

extreme as the test statistic, that is a z-score, we can use a Normal Density Function

to compute that probability depending on the kind of null hypothesis we chose at the

beginning. If we performed a two tailed test then we’ll have to consider both tails

of the distribution, while if we chose a one tailed test we’ll only need to consider

one.

4.2. Kolmogorov-Smirnov Test 47

4.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test is a non parametric, distribution-free test used

to decide if a given sample could be generated by a specific random variable. The

test statistic is based on the maximum distance between the empirical cumulative

distribution function (ECDF) of the sample and the cumulative distribution

function (CDF) of the reference distribution.

Given n iid observations the ECDF Fn is defined as:

Fn(x) =
1

n

n∑
i=1

I[−∞,x](Xi) (4.4)

where I[−∞,x](Xi) is an indicator function equal to 1 if Xi ≤ x and equal to 0

otherwise.

Based on that the Kolmogorov-Smirnov statistic is defined as:

Dn = sup
x
|Fn(x)− F0(x)| (4.5)

where supx is the supremum of the set of distances between the ECDF Fn(x) and the

reference CDF F0(x).

By the Glivenko-Cantelli Theorem [17], if the sample comes from the reference

distribution, then Dn
n→∞−−−→ 0.

The strength of this test lays on the fact that under the null hypothesis H0, that

assumes that the empirical data comes indeed from the reference distribution, the

Kolmogorov-Smirnov statistic Dn converges to a distribution (called Kolmogorov

distribution) that does not depend on the empirical data.

In particular the Kolmogorov distribution is the distribution of the random variable

K = sup
t∈[0,1]

|B(t)| (4.6)

whose cumulative distribution function is

Pr(K ≤ x) = 1− 2
∞∑
k=1

(−1)k−1e−2k
2x2 =

√
2π

x

∞∑
k=1

e−(2k−1)
2π2/(8x2) (4.7)

48 Chapter 4. Tools Used

where B(t) is the Brownian Bridge [18].

Under the null hypothesis that the sample comes from the reference distribution

F0(x) (and F0 is continuous),
√
nDn converges to the Kolmogorov distribution

(which does not depend on F0)

√
nDn

n→∞−−−→ sup
t
|B(F (t))| (4.8)

In the goodness-of-fit test the null hypothesis is rejected at level α if
√
nDn > Kα,

where Kα is calculated from Pr(K ≤ Kα) = 1− α.

This test can also be used to assess whether two one-dimensional probability

distributions differ. Given two samples of sizes n and m the Kolmogorov-Smirnov

statistic becomes:

Dn,m = sup
x
|F1,n(x)− F2,m(x)| (4.9)

where Fi,k(x) is the ECDF of sample i of size k.

The null hypothesis that the two samples come from the same distribution is rejected

at level α if

Dn,m > c(α)

√
n+m

nm
(4.10)

The value of c(α) in general is equal to c(α) =

√
−1

2
ln(

α

2
). Below are reported the

most common values of c(α):

α 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Table 4.1. Values of C(α) for the most common values of α

Generally, though, what we consider when deciding whether to reject the null

hypothesis or not is not directly the relationship between Dn and the significance

level α, but the p-value corresponding to the observed value of the test statistic.

In order to compute the p-value associated with the current Dn we first assume

that the null hypothesis is valid. Under this assumption we know that the test

4.3. Anderson-Darling Test 49

statistic follows a predefined distribution called Kolmogorov Distribution. So,

using this distribution, we can compute the probability to observe a value at least as

”extreme” as the one we are observing at the moment (that is in fact the definition of

p-value). If the obtained probability is not high enough it means that the assumed

distribution didn’t reflect the actual distribution of the data. We can then conclude,

with enough confidence, that our initial hypothesis was in fact wrong, thereby

rejecting the null hypothesis.

It is important to note that the Kolmogorov-Smirnov Test, as described up to

now, can be used as long as the distributions involved are continuous. This does

not mean that this test can’t be applied to discrete distributions, as in the cases

treated in this thesis, but the results have to be interpreted differently. In particular,

in the case the distributions involved aren’t continuous, the p-value returned by

the test are conservative. So if p is the true p-value that is associated with the test

between two discrete distributions f1(x) and f2(x), the observed p-value p′ will be

greater or equal than p. However this does not change the relative order between

different p-values, meaning that if p1 < p2 then also p′1 < p′2.

This is why it was possible to use this test in this project, since the results are mostly

based on the relative order between p-values and not their effective values.

4.3 Anderson-Darling Test

The Anderson-Darling Test [19] is a modification of the Kolmogorov-Smirnov

Test that gives more weight to the tails of the distribution than the latter. While in

its general form (so assuming that no parameters of the tested distribution need to

be estimated) the Anderson-Darling Test is distribution free, like the Kolmogorov-

Smirnov Test, the test is most often used in contexts when a family of distributions

is being tested. In this case the computation of critical values and/or test statistics

needs to take into account the tested distribution; of course this has the advantage

50 Chapter 4. Tools Used

to allow a more sensitive test, but the disadvantage that the values have to be

calculated for each reference distribution.

As the Kolmogorov-Smirnov Test, this test is based on the CDF (or ECDF) of the

distributions taken into exam. The test statistic A to assess if a set of samples

{Y1, . . . , Yn}, such that Yi ≤ Yi+1 ∀ 1 ≤ i ≤ n, comes from a reference CDF F0

is

A2 = −n− S (4.11)

where

S =
n∑
i=1

2i− 1

n
[ln(F0(Yi)) + ln (1− F0(Yn+1−i))] (4.12)

The critical values, in general, depend on the distribution being tested and the null

hypothesis can be rejected if the statistic Ais greater than a certain value.

This test can also be slightly modified in order to assess whether two or more

samples can be considered outputs of the same random variable.

Given k different random samples with combined size and distinct values

respectively n and z1, . . . , zL, such that zi ≤ zi+1 ∀ 1 ≤ i ≤ L (note that L < n

if there are tied observations), the test statistic becomes

Ak =
n− 1

n2(k − 1)

k∑
i=1

[
1

ni

L∑
j=1

hj
(nFij − niHj)

2

Hj(n−Hj)− nhj4
] (4.13)

where hj is the number of values in the combined samples equal to zj , Hj is the

number of values in the combined samples less than zj plus 1
2hj and Fij is the

number of values in the i-th group that are less than zj plus one half the number

of values in the same group that are equal to zj . Also in this case the critical values

usually depend on the data that’s being tested and so they need to be calculated for

each case.

Important to point out is the fact that, unlike the Kolmogorov-Smirnov Test, the

Anderson-Darling Test can be used with every kind of distribution, be it continuous

or discrete, without any issue.

5
Results

In the following chapter we report the results obtained by applying the

statistical tests on different kinds of instances generated by the simulator algorithm

that has been developed. Since, after implementing it, we found out that the 2

Sample Anderson-Darling Test had a lower minimum precision than the other

two, we chose to exclude it from the results and consider only the Two Sample

Kolmogorov-Smirnov Test and Two Proportion Z Test.

5.1 Experimental Design and Setup

In total we analyzed 51 different sets of instances, each one of them comprising

instances with a specific common set of parameters. We chose to model 42 sets of

instances so they would have only one driver mutated cell forced as one of root’s

children and 9 sets so they would have a single driver mutated cell but not forced in

one particular position in the tree but let free to appear in any possible node. As for

these 9 sets they differ by the size of the instances (intended as number of leaves of

the trees) and by the lower bound on the size of the samples used by the statistical

tests. Specifically we chose to consider instances of 1 million, 5 millions and 10

millions of leaves (mostly for machine-related compromises) and lower bounds of

51

52 Chapter 5. Results

100, 200 and 300. Looking at the other 42 instances, they were always divided in the

same three sets of sizes mentioned before. For each one of them we changed the

following parameters: (1) We first changed ε using the values {0.06, 0.1, 0.5, 0.9}

while keeping the statistical tests samples size lower bound equal to 200; (2) we

then performed a sampled analysis and for each tree we extracted 100 samples

of 100, 1000 and 10000 leaves, then the subtrees were analyzed keeping a fixed

statistical tests lower bound of 2; (3) finally we kept every parameter with its

default value except the statistical tests lower bound, that we changed using the

values {2, 5, 10, 50, 100, 200, 300}.

For each one of these configurations we created and analyzed 500 different

instances. This is true except for the ones where the trees were analyzed by

sampling their leaves; in this cases were created 5 trees from which were extracted

and analyzed 100 samples. So in total the number of subtrees analyzed is the same,

but the runs are not all independent from each other.

The runs have been executed on the Linux based departmental cluster composed

of 14 DELL PowerEdge M600 nodes, each with 2 quad core Intel Xeon E5450 with

a clock speed of 3.00GHz, 16GB of RAM and 2 72GB hard drives in a RAID-1

configuration, running Python 3.5.3.

5.2 Two Sample Kolmogorov-Smirnov Test results

Applying the Two Sample Kolmogorov-Smirnov Test to the instances listed in

the introduction of this chapter we obtained the results that we are about to report

in this section.

We first grouped the instances by size, looking at the percentage of driver mutated

cells (keeping in mind that each single instance is a tree with only one driver

mutated cell) that the algorithm could rank in the top 5,10 and 50 positions and

the percentage for driver mutated cells that the algorithm could rank in the top 1%,

5.2. Two Sample Kolmogorov-Smirnov Test results 53

5% and 10%. The number on top of each bars triplet corresponds to the proportion

of driver mutated cells that have been labeled ”analyzable” and so the maximum

value that those bars can achieve. For example, if we look at the bar labeled

”0,1 1 1 lb200” in Figure 5.1a we can see that, out of 500 driver mutated cells (one

for each instance) only 35.6% (178) were labeled ”analyzable”. Let’s recall that a

mutated cell can be labeled as ”analyzable” when it has a sibling and is possible to

retrieve from its subtree a sufficiently large sample to be used in the statistical tests.

We will first compare the results inside the four main groups highlighted before

(that are: (1) driver mutation forced on root’s child and varying ε, (2) driver mutation

not forced in a particular position inside the tree, (3) driver mutation forced on root’s

child and analyze the trees by sampling their leaves and (4) driver mutation forced

on root’s child and varying the lower bound of the statistical tests) and then we’ll

compare the results among these four groups.

Let’s begin by looking at Figure 5.1a and Figure 5.1b and considering the first

group of four instances while keeping the bar labeled 1 1 lb200 as reference. This

last bar corresponds to the base case in which ε is at its default value. We can see

that increasing ε also increases the performances of the test, since the driver mutated

cell appears more frequently in the ranking top positions. This is true up to a certain

threshold, whose value is in the interval (0.1, 0.5), where the performances begin

to drop. This behavior, that might seem odd at first, is due to the fact that by

increasing ε we proportionally decrease the probability p0 of not having children

for the offspring of the driver mutated cell. So if ε has a value greater than p0 then

every offspring of the driver mutated cell will have probability 0 of not generating

any child. This implies that the driver mutated subtree will grow way faster, and

then deeper, than the other one. For the kind of analysis we are performing this

is not a favorable condition since for being able to analyze a cell we need that

both that cell and its sibling have subtrees sufficiently deep to be able to retrieve

54 Chapter 5. Results

0.356

0.054

0.364

0
0.1240.084 0.08 0.2

0.4

0.2

0.49 0.342

0.358
0.354

0.304
0.3220.302

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1mil K-S test recall top1%

1mil K-S test recall top5%

1mil K-S test recall top10%

(a)

0.356

0.054

0.364

0
0.1240.084

0.08

0.2

0.4

0.2

0.49 0.3420.358

0.354

0.304

0.322
0.302

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1mil K-S test recall top5

1mil K-S test recall top10

1mil K-S test recall top50

(b)

0.364

0.142

0.384

0.01

0.1560.168
0.122

0.182
0.2

0.4

0.43
0.334

0.332

0.3260.3460.334

0.342

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5mil K-S test recall top1%

5mil K-S test recall top5%

5mil K-S test recall top10%

(c)

0.364

0.142

0.384

0.01
0.156

0.1680.122

0.182
0.2

0.4

0.43 0.3340.332

0.326

0.346

0.3340.342

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5mil K-S test recall top5

5mil K-S test recall top10

5mil K-S test recall top50

(d)

0.394

0.144

0.356

0.018

0.1660.172

0.138

0.22

0.8

0

0.48
0.336

0.372
0.3 0.3

0.358

0.326

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10mil K-S test recall top1%

10mil K-S test recall top5%

10mil K-S test recall top10%

(e)

0.394

0.144

0.356

0.018
0.1660.1720.138

0.22

0.8

0 0.48 0.3360.372

0.3

0.3

0.3580.326

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10mil K-S test recall top5

10mil K-S test recall top10

10mil K-S test recall top50

(f)

Figure 5.1. (a) 1 million size, top1%, 5% and 10%. (b) 1 million size, top5, 10 and 50. (c)

5 million size, top1%, 5% and 10%. (d) 5 million size, top5, 10 and 50. (e) 10 million size,

top1%, 5% and 10%. (f) 10 million size, top5, 10 and 50.

5.2. Two Sample Kolmogorov-Smirnov Test results 55

a sample of cells at least of the desired size. In the case we are considering the

driver subtree has probably monopolized the growth of the tree and didn’t let its

sibling ’subtree grow. So when we dive deep into the tree to retrieve the samples

for the statistical tests we find that we can’t extract a sufficiently large sample from

the sibling ’subtree, making the driver mutated cell ”not analyzable”. This effect

is visible in the instances where ε = {0.5, 0.9}, where the number of ”analyzable”

drivers is practically 0, while when ε is less than the default value of p0 this problem

does not occur. This behavior is consistent in both Figure 5.1a and Figure 5.1b.

Now let’s consider the second group of instances, where the driver mutated cell

wasn’t forced to be a child of the root node. We can clearly see that this group of

instances is the one with the lowest proportion of drivers both labeled ”analyzable”

and in the top positions. This highlights the fact that this kind of test, to be effective,

needs the mutated cells to have a certain height in order to be able to retrieve a

sample of cells of the desired size from its subtree.

Let’s now look at the third group, where the instances were analyzed by sampling

the leaves of the trees instead of looking at the entire tree. One thing that we can

note by looking at Figure 5.1b is that almost every ”analyzable” driver is ranked

among the top50. This is because of the fact that with such little trees (these trees

are very high but very narrow) the number of ”analyzable” cells is very small

(compared with the main tree) and so it happens that the number of ”analyzable”

cells is actually less than 50, so every the driver mutated cell will always appear

int he top50. This is true for instances created with samples of 100 and 1000

leaves, but not for the bigger instances. In the latter case the fact that most of the

driver mutated cells appear in the top50 is due to the increase in precision with the

increase in instance size. In fact to really analyze the performance with this kind of

instances we need to look at Figure 5.1a, where we can see that with the increase in

size of the samples the algorithm manages to put more drivers in the top ranking

positions. Another interesting fact can be noted by comparing these results with

56 Chapter 5. Results

the bar labeled ”1 1 lb2”. In both scenarios the same lower bound was used, but

in one case the instance has been analyzed by sampling the leaves, while in the

other we considered the tree as a whole. We can see that, despite the fact that the

number of ”analyzable” driver mutated cells is higher when analyzing the whole

tree at once, the number of driver mutated cells in the top positions is higher when

analyzing the tree by sampling.

And now the last group of instances, where the driver is still forced to be one of

root’s children and we only changed the lower bounds of the statistical tests. By

looking at Figure 5.1a we can see that increasing the lower bound increases also the

percentage of drivers in the top positions up to a certain value. When the lower

bound value is higher than 50 the percentage of drivers both in the top positions

and labeled ”analyzable” stays mostly constant. This is true for the sizes we chose

to analyze, but we actually do not expect this behavior to continue indefinitely.

This is because by increasing the size of the samples for the statistical tests on

one hand we improve the precision of the algorithm in discerning, while on the

other hand we decrease the number of cells that can be considered ”analyzable”.

So we actually expect to find a point after which the performances will begin to

drop, because the gain in precision will be overruled by the loss in number of

”analyzable” cells.

As a general comment we can say that the algorithm, for instances of size 1 million,

is more sensible to variations of the value of ε (given that the variation is not too

high) since the instances with the best average behavior in both Figure 5.1a and

Figure 5.1b are the ones with ε = {0.03, 0.06}.

Let’s now focus on Figure 5.1c and Figure 5.1d and follow the same steps as in the

paragraph above. Most of what was said before for instances of size 1 million is

valid also in this case. We need to mention though a few differences. First of all, by

comparing Figure 5.1a and Figure 5.1c, we can see how the precision increases for

almost every kind of instance, while by comparing Figure 5.1b and Figure 5.1d this

5.2. Two Sample Kolmogorov-Smirnov Test results 57

behavior is reversed. This is because we increased the size of the instances but kept

fixed the thresholds to 5, 10 and 50 so with more mutations on the plate is simply

more probable that the driver mutated cell does not appear in those top positions.

The gain in performance can be seen by looking at the percentage thresholds where

the increase in size of the instance was kept into account.

Another fact important to mention is that, looking at the instances of the last group

of Figure 5.1c, now we can spot that descending trend that we expected when the

loss in number of ”analyzable” cells has overruled the gain in precision obtained

with the increase of the size of the samples for the statistical tests. In fact we can

clearly see that the maximum of that Gaussian-like curve is placed around 100 and

after that value the general performances of the test begin to decrease.

This behavior can be better seen in the instances of size 10 million in Figure 5.1e

and Figure 5.1f. In this case the maximum of the Gaussian-like curve moved to a bit

higher value (this time around 200), as we expected since with an higher tree there’s

an higher chance to retrieve larger samples from an higher number of nodes. Also

in this case we can see a general improvement in the performances by looking at

the percentage top thresholds and a decrease by looking at the fixed top thresholds.

In Figure 5.2 we grouped the instances by the value of the lower bound used in

the statistical tests.

The purpose is to show again how, by increasing the size of the instances analyzed

or the value of the samples lower bound used in the statistical tests, we can improve

the general performances of the algorithm and find a higher number of driver

mutated cells in the top positions of our ranking. Also everything else we said,

for example comparing the instances having the driver mutated cell forced in a

particular position inside the tree with the instances where the driver mutated cell

could be found anywhere in the tree, is confirmed by looking at these graphs.

One other interesting performance evaluation could be done by analyzing the

58 Chapter 5. Results

0.342
0.334 0.336

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb5 K-S test recall top1%

lb5 K-S test recall top5%

lb5 K-S test recall top10%

(a)

0.342 0.334 0.336

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb5 K-S test recall top5

lb5 K-S test recall top10

lb5 K-S test recall top50

(b)

0.358 0.332

0.372

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb10 K-S test recall top1%

lb10 K-S test recall top5%

lb10 K-S test recall top10%

(c)

0.358 0.332 0.372

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb10 K-S test recall top5

lb10 K-S test recall top10

lb10 K-S test recall top50

(d)

0.354

0.326 0.3

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb50 K-S test recall top1%

lb50 K-S test recall top5%

lb50 K-S test recall top10%

(e)

0.354

0.326 0.3

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb50 K-S test recall top5

lb50 K-S test recall top10

lb50 K-S test recall top50

(f)

5.2. Two Sample Kolmogorov-Smirnov Test results 59

0.124
0.156

0.166

0.304

0.346 0.3

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb100 K-S test recall top1%

lb100 K-S test recall top5%

lb100 K-S test recall top10%

(g)

0.124 0.156 0.166

0.304

0.346
0.3

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb100 K-S test recall top5

lb100 K-S test recall top10

lb100 K-S test recall top50

(h)

0.084

0.168
0.172

0.322

0.334

0.358

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb200 K-S test recall top1%

lb200 K-S test recall top5%

lb200 K-S test recall top10%

(i)

0.084 0.168 0.172

0.322

0.334
0.358

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb200 K-S test recall top5

lb200 K-S test recall top10

lb200 K-S test recall top50

(j)

0.08
0.122 0.138

0.302
0.342

0.326

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb300 K-S test recall top1%

lb300 K-S test recall top5%

lb300 K-S test recall top10%

(k)

0.08
0.122 0.138

0.302

0.342
0.326

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb300 K-S test recall top5

lb300 K-S test recall top10

lb300 K-S test recall top50

(l)

Figure 5.2. (a) Lower bound = 5, top1%, 5% and 10%. (b) Lower bound = 5, top5, 10 and 50.

(c) Lower bound = 10, top1%, 5% and 10%. (d) Lower bound = 10, top5, 10 and 50. (e) Lower

bound = 50, top1%, 5% and 10%. (f) Lower bound = 50, top5, 10 and 50. (g) Lower bound =

100, top1%, 5% and 10%. (h) Lower bound = 100, top5, 10 and 50. (i) Lower bound = 200,

top1%, 5% and 10%. (j) Lower bound = 200, top5, 10 and 50. (k) Lower bound = 300, top1%,

5% and 10%. (l) Lower bound = 300, top5, 10 and 50.

60 Chapter 5. Results

Average K-S test # of false positives (Bonferroni corrected p-value < 0.01)

by instance size and lower bound

1
m

il_
0

,1
_
1

_
1
_

lb
2
0

0
1

m
il_

0
,5

_
1

_
1
_

lb
2
0

0
1

m
il_

0
,0

6
_
1

_
1

_
lb

2
0

0
1

m
il_

0
,9

_
1

_
1
_

lb
2
0

0
1

m
il_

0
_

1
_

lb
1

0
0

1
m

il_
0
_

1
_

lb
2

0
0

1
m

il_
0
_

1
_

lb
3

0
0

1
m

il_
1

_
1

_
lb

2
1
m

il_
1

_
1

_
lb

2
_

1
0

0
_

1
0
0

1
m

il_
1

_
1
_

lb
2

_
1

0
0

_
1

0
0

0
1

m
il_

1
_

1
_

lb
2

_
1

0
0

_
1

0
0

0
0

1
m

il_
1

_
1

_
lb

5
1
m

il_
1

_
1

_
lb

1
0

1
m

il_
1

_
1

_
lb

5
0

1
m

il_
1
_

1
_

lb
1

0
0

1
m

il_
1
_

1
_

lb
2

0
0

1
m

il_
1
_

1
_

lb
3

0
0

5
m

il_
0

,1
_
1

_
1
_

lb
2
0

0
5

m
il_

0
,5

_
1

_
1
_

lb
2
0

0
5

m
il_

0
,0

6
_
1

_
1

_
lb

2
0

0
5

m
il_

0
,9

_
1

_
1
_

lb
2
0

0
5

m
il_

0
_

1
_

lb
1

0
0

5
m

il_
0
_

1
_

lb
2

0
0

5
m

il_
0
_

1
_

lb
3

0
0

5
m

il_
1

_
1

_
lb

2
5
m

il_
1

_
1

_
lb

2
_

1
0

0
_

1
0
0

5
m

il_
1

_
1
_

lb
2

_
1

0
0

_
1

0
0

0
5

m
il_

1
_

1
_

lb
2

_
1

0
0

_
1

0
0

0
0

5
m

il_
1

_
1

_
lb

5
5
m

il_
1

_
1

_
lb

1
0

5
m

il_
1

_
1

_
lb

5
0

5
m

il_
1
_

1
_

lb
1

0
0

5
m

il_
1
_

1
_

lb
2

0
0

5
m

il_
1
_

1
_

lb
3

0
0

1
0
m

il_
0

,1
_
1

_
1

_
lb

2
0

0
1

0
m

il_
0

,5
_
1

_
1

_
lb

2
0

0
1

0
m

il_
0

,0
6
_

1
_

1
_
lb

2
0
0

1
0
m

il_
0

,9
_
1

_
1

_
lb

2
0

0
1

0
m

il_
0

_
1

_
lb

1
0

0
1

0
m

il_
0

_
1

_
lb

2
0

0
1

0
m

il_
0

_
1

_
lb

3
0

0
1
0

m
il_

1
_

1
_
lb

2
1
0

m
il_

1
_
1

_
lb

2
_

1
0

0
_

1
0

0
1

0
m

il_
1

_
1

_
lb

2
_

1
0

0
_

1
0

0
0

1
0
m

il_
1

_
1

_
lb

2
_

1
0

0
_
1

0
0

0
0

1
0

m
il_

1
_

1
_
lb

5
1

0
m

il_
1

_
1

_
lb

1
0

1
0
m

il_
1

_
1

_
lb

5
0

1
0
m

il_
1

_
1

_
lb

1
0

0
1

0
m

il_
1

_
1

_
lb

2
0

0
1

0
m

il_
1

_
1

_
lb

3
0

0

0

50

100

150

200

250

300

350

400

(a)

Average K-S test recall (Bonferroni corrected p-value < 0.01)

by instance size and lower bound

1
m

il_
0
,1

_
1
_
1
_
lb

2
0
0

1
m

il_
0
,5

_
1
_
1
_
lb

2
0
0

1
m

il_
0
,0

6
_
1
_
1
_
lb

2
0
0

1
m

il_
0
,9

_
1
_
1
_
lb

2
0
0

1
m

il_
0
_
1
_
lb

1
0
0

1
m

il_
0
_
1
_
lb

2
0
0

1
m

il_
0
_
1
_
lb

3
0
0

1
m

il_
1
_
1
_
lb

2
1
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0

1
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0

1
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0
0

1
m

il_
1
_
1
_
lb

5
1
m

il_
1
_
1
_
lb

1
0

1
m

il_
1
_
1
_
lb

5
0

1
m

il_
1
_
1
_
lb

1
0
0

1
m

il_
1
_
1
_
lb

2
0
0

1
m

il_
1
_
1
_
lb

3
0
0

5
m

il_
0
,1

_
1
_
1
_
lb

2
0
0

5
m

il_
0
,5

_
1
_
1
_
lb

2
0
0

5
m

il_
0
,0

6
_
1
_
1
_
lb

2
0
0

5
m

il_
0
,9

_
1
_
1
_
lb

2
0
0

5
m

il_
0
_
1
_
lb

1
0
0

5
m

il_
0
_
1
_
lb

2
0
0

5
m

il_
0
_
1
_
lb

3
0
0

5
m

il_
1
_
1
_
lb

2
5
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0

5
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0

5
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0
0

5
m

il_
1
_
1
_
lb

5
5
m

il_
1
_
1
_
lb

1
0

5
m

il_
1
_
1
_
lb

5
0

5
m

il_
1
_
1
_
lb

1
0
0

5
m

il_
1
_
1
_
lb

2
0
0

5
m

il_
1
_
1
_
lb

3
0
0

1
0
m

il_
0
,1

_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
,5

_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
,0

6
_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
,9

_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
_
1
_
lb

1
0
0

1
0
m

il_
0
_
1
_
lb

2
0
0

1
0
m

il_
0
_
1
_
lb

3
0
0

1
0
m

il_
1
_
1
_
lb

2
1
0
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0

1
0
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0

1
0
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0
0

1
0
m

il_
1
_
1
_
lb

5
1
0
m

il_
1
_
1
_
lb

1
0

1
0
m

il_
1
_
1
_
lb

5
0

1
0
m

il_
1
_
1
_
lb

1
0
0

1
0
m

il_
1
_
1
_
lb

2
0
0

1
0
m

il_
1
_
1
_
lb

3
0
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

K-S test recall

0

50

100

150

200

250

300

350

400

K
-S

 t
e
s
t
a
v
e
ra

g
e
 #

 f
a
ls

e
 p

o
s
it
iv

e
s

Combined K-S test recall and average # of false positives

0,1
0,5

0,06
0,9

lb100lb200lb300
100100010000lb2lb5lb10lb50 lb100 lb200 lb300

0,1

0,5

0,06

0,9

lb100

lb200
lb300

100100010000lb2lb5lb10
lb50

lb100

lb200
lb300

0,1

0,5

0,06

0,9

lb100

lb200

lb300

100100010000lb2lb5lb10

lb50

lb100

lb200

lb300

10mil-epsilon

10mil-lb

10mil-not-fixed

10mil-subtrees

1mil-epsilon

1mil-lb

1mil-not-fixed

1mil-subtrees

5mil-epsilon

5mil-lb

5mil-not-fixed

5mil-subtrees

(c)

Figure 5.3. (a) Average number of false positives by instance. (b) Percentage of true positives

by instance. (c) Combined visualization of graphs (a) and (b).

5.2. Two Sample Kolmogorov-Smirnov Test results 61

number of true and false positives that the algorithm manages to find for each kind

of instance. We define a mutated cell as false positive if it is a passenger mutated

cell and its associated p-value is less than 0.01, while we define a mutated cell as

true positive if it is a driver mutated cell and its associated p-value is less than 0.01.

In Figure 5.3a is reported the average number of false positives for each instance,

while in Figure 5.3b is reported the proportion of driver mutated cells correctly

identified (true positives). What we are looking for are instances with the highest

ratio
true positives

false positives
. In order to better visualize such instances we combined

Figure 5.3a and Figure 5.3b obtaining Figure 5.3c. In this figure we used the colors

green, blue and red to highlight respectively instances with 10, 1 and 5 millions

leaves and the shapes circle, triangle, star and diamond to distinguish respectively

between instances where we varied the value of εwhile keeping the driver mutated

cell as root’s child, instances where we varied the size of the statistical tests lower

bound while keeping the driver mutated cell as root’s child, instances where we

kept every parameter with its default value but didn’t force the driver mutated

cell to be one of root’s children and instances where we analyzed the trees not

as a whole but by sampling their leaves. We then labeled every point with the

corresponding value of the parameter that was modified.

Instances with the highest ratio
true positives

false positives
are the ones placed in the lower

right corner of the scatter plot. These instances are characterized by the highest

percentage of true positives and the lowest average number of false positives.

The instances with the highest ratio are then the ones where ε was the modified

parameter and especially the ones having ε = {0.06, 0.1}. it is interesting to note

that the better results are achieved with instances of 1 million leaves, while by

increasing the size of such instances the performances seems to degrade. Actually

we need to remind that all these instances have only one driver mutated cell at

the top of the tree, so by increasing the size of such instances we also increase

the probability of detecting false positives, since we are practically adding more

62 Chapter 5. Results

passenger mutated cells while keeping the driver one constant. So it is not

surprising that the average number of false positives increases with the increase

of the instances ’sizes. What we can see is also that the percentage of true positives

increases with the instances ’size, proving again that bigger instances improve the

algorithm precision. The second kind of instances that best suit our algorithm are

the ones where the driver mutated cell is forced as a root’s child and the lower

bound for the samples used in the statistical tests has the value 200 or 300. Also

in this case we can see the same behavior we saw before, in which the percentage

of true positives increases with the increase of the instance size together with the

average number of false positives. The other kind of instances instead perform

very poorly and so our algorithm is not suited to handle the kind pf parameters

that characterize those instances.

5.3 Two Proportion Z Test results

We also applied the Two Proportion Z Test to instances of the same kind as the

ones listed before. Unfortunately, due to machine related and last minute issues,

we were not able to perform this test on the exact same instances we used for the

Two Sample Kolmogorov-Smirnov Test.

The analysis results were grouped as the ones in the previous section with the same

criteria.

In Figure 5.4 instances are grouped by size.

This test, in terms of percentage of drivers found over the total of 500 (one driver

per run), performs very poorly except in those scenarios where ε is the parameter

we chose to change. While in these cases the algorithm has performances

comparable with the Two Sample Kolmogorov-Smirnov Test (actually we can see

that, in these cases, almost every ”analyzable” driver is ranked in the top positions),

in all other cases the algorithm is not capable of placing in the top positions not even

5.3. Two Proportion Z Test results 63

0.364

0.2

0.364

0.204

0.1420.1160.092
0.586 0.8 0.6 0.45

0.35 0.3680.324 0.31
0.3160.332

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1mil Z-T test recall top1%

1mil Z-T test recall top5%

1mil Z-T test recall top10%

(a)

0.364

0.2

0.364

0.204

0.142
0.1160.092

0.586 0.8 0.6 0.45 0.35 0.3680.324 0.31

0.316

0.332

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1mil Z-T test recall top5

1mil Z-T test recall top10

1mil Z-T test recall top50

(b)

0.36
0.278

0.32

0.296

0.1820.1240.164
0.326 0.4 0.2 0.4280.3280.3220.3260.3180.358 0.35

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5mil Z-T test recall top1%

5mil Z-T test recall top5%

5mil Z-T test recall top10%

(c)

0.36
0.278

0.32

0.296

0.1820.1240.164
0.326 0.4 0.2 0.4280.3280.3220.3260.3180.358 0.35

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5mil Z-T test recall top5

5mil Z-T test recall top10

5mil Z-T test recall top50

(d)

0.3960.344

0.33

0.354

0.1740.1680.178
0.174 0.2 0.6 0.4660.3160.3080.3160.3220.314 0.31

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10mil Z-T test recall top1%

10mil Z-T test recall top5%

10mil Z-T test recall top10%

(e)

0.396

0.344

0.33

0.354

0.1740.1680.1780.174 0.2 0.6 0.4660.3160.3080.3160.3220.314 0.31

0,
1_

1_
1_

lb
20

0

0,
5_

1_
1_

lb
20

0

0,
06

_1
_1

_l
b2

00

0,
9_

1_
1_

lb
20

0

0_
1_

lb
10

0

0_
1_

lb
20

0

0_
1_

lb
30

0

1_
1_

lb
2_

10
0_

10
0

1_
1_

lb
2_

10
0_

10
00

1_
1_

lb
2_

10
0_

10
00

0

1_
1_

lb
2

1_
1_

lb
5

1_
1_

lb
10

1_
1_

lb
50

1_
1_

lb
10

0

1_
1_

lb
20

0

1_
1_

lb
30

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10mil Z-T test recall top5

10mil Z-T test recall top10

10mil Z-T test recall top50

(f)

Figure 5.4. (a) 1 million size, top1%, 5% and 10%. (b) 1 million size, top5, 10 and 50. (c)

5 million size, top1%, 5% and 10%. (d) 5 million size, top5, 10 and 50. (e) 10 million size,

top1%, 5% and 10%. (f) 10 million size, top5, 10 and 50.

64 Chapter 5. Results

half of the ”analyzable” drivers, even when increasing the size of the instances.

This could indicate that the method used by this test has an intrinsic lesser precision

than the one used by the Two Sample Kolmogorov-Smirnov Test. In fact even in

the cases where the two tests didn’t analyze exactly the same instances the number

of ”analyzable” driver mutated cells remains similar, but the number of such cells

in the top ranks is much worse when looking at the Two Proportion Z Test.

The poor performances are also visible in the bar graphs in Figure 5.5, where

the results were grouped by the samples size lower bound used in the statistical

tests.

For a better visualization of the performances of this test we can look at

Figure 5.6c. We can see how instances with ε = {0.5, 0.9} have almost a constant

false positives, true positives rate varying the instances ’sizes, while the instances

with ε = 0.1 don’t seem to notice the change in size. Surprisingly the instances with

ε = 0.06 are way worse than these, while in Figure 5.4 it seemed that they had the

same performances. This behavior is probably due to the fact that when ε = 0.06

the corrected p-values returned by the test are not high enough to allow to consider

the associated cells as true or false positives, but if we look at their relative values

then we can see that the test can still discriminate between the driver and not driver

mutated cells well enough to place the first ones in the top ranking positions.

5.4 Combined comparison

It is interesting to show how the two tests perform when compared with each

other on similar instances.

If we consider as performances measure the number of true and false positives

and look at Figure 5.7 we can see that this test, even in the worst case, has a

false positives rate lesser than the Two Sample Kolmogorov-Smirnov Test, while

the recall can reach values comparable with the last test. This doesn’t change the

5.4. Combined comparison 65

0.35 0.328 0.316

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb5 Z-T test recall top1%

lb5 Z-T test recall top5%

lb5 Z-T test recall top10%

(a)

0.35 0.328 0.316

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb5 Z-T test recall top5

lb5 Z-T test recall top10

lb5 Z-T test recall top50

(b)

0.368 0.322 0.308

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb10 Z-T test recall top1%

lb10 Z-T test recall top5%

lb10 Z-T test recall top10%

(c)

0.368 0.322 0.308

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb10 Z-T test recall top5

lb10 Z-T test recall top10

lb10 Z-T test recall top50

(d)

0.324 0.326 0.316

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb50 Z-T test recall top1%

lb50 Z-T test recall top5%

lb50 Z-T test recall top10%

(e)

0.324
0.326 0.316

1 million 5 millions 10 millions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb50 Z-T test recall top5

lb50 Z-T test recall top10

lb50 Z-T test recall top50

(f)

66 Chapter 5. Results

0.142
0.182 0.174 0.31 0.318 0.322

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb100 Z-T test recall top1%

lb100 Z-T test recall top5%

lb100 Z-T test recall top10%

(g)

0.142 0.182 0.174
0.31

0.318 0.322

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb100 Z-T test recall top5

lb100 Z-T test recall top10

lb100 Z-T test recall top50

(h)

0.116 0.124 0.168 0.316
0.358 0.314

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb200 Z-T test recall top1%

lb200 Z-T test recall top5%

lb200 Z-T test recall top10%

(i)

0.116
0.124 0.168

0.316

0.358 0.314

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb200 Z-T test recall top5

lb200 Z-T test recall top10

lb200 Z-T test recall top50

(j)

0.092 0.164 0.178 0.332
0.35 0.31

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb300 Z-T test recall top1%

lb300 Z-T test recall top5%

lb300 Z-T test recall top10%

(k)

0.092

0.164 0.178

0.332

0.35 0.31

1m
il_

0_
1

5m
il_

0_
1

10
m

il_
0_

1

1m
il_

1_
1

5m
il_

1_
1

10
m

il_
1_

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lb300 Z-T test recall top5

lb300 Z-T test recall top10

lb300 Z-T test recall top50

(l)

Figure 5.5. (a) Lower bound = 5, top1%, 5% and 10%. (b) Lower bound = 5, top5, 10 and 50.

(c) Lower bound = 10, top1%, 5% and 10%. (d) Lower bound = 10, top5, 10 and 50. (e) Lower

bound = 50, top1%, 5% and 10%. (f) Lower bound = 50, top5, 10 and 50. (g) Lower bound =

100, top1%, 5% and 10%. (h) Lower bound = 100, top5, 10 and 50. (i) Lower bound = 200,

top1%, 5% and 10%. (j) Lower bound = 200, top5, 10 and 50. (k) Lower bound = 300, top1%,

5% and 10%. (l) Lower bound = 300, top5, 10 and 50.

5.4. Combined comparison 67

Average Z-T test # of false positives (Bonferroni corrected p-value < 0.01)

by instance size and lower bound

1
m

il_
0

,1
_
1

_
1
_

lb
2
0

0
1

m
il_

0
,5

_
1

_
1
_

lb
2
0

0
1

m
il_

0
,0

6
_
1

_
1

_
lb

2
0

0
1

m
il_

0
,9

_
1

_
1
_

lb
2
0

0
1

m
il_

0
_

1
_

lb
1

0
0

1
m

il_
0
_

1
_

lb
2

0
0

1
m

il_
0
_

1
_

lb
3

0
0

1
m

il_
1

_
1

_
lb

2
1
m

il_
1

_
1

_
lb

2
_

1
0

0
_

1
0
0

1
m

il_
1

_
1
_

lb
2

_
1

0
0

_
1

0
0

0
1

m
il_

1
_

1
_

lb
2

_
1

0
0

_
1

0
0

0
0

1
m

il_
1

_
1

_
lb

5
1
m

il_
1

_
1

_
lb

1
0

1
m

il_
1

_
1

_
lb

5
0

1
m

il_
1
_

1
_

lb
1

0
0

1
m

il_
1
_

1
_

lb
2

0
0

1
m

il_
1
_

1
_

lb
3

0
0

5
m

il_
0

,1
_
1

_
1
_

lb
2
0

0
5

m
il_

0
,5

_
1

_
1
_

lb
2
0

0
5

m
il_

0
,0

6
_
1

_
1

_
lb

2
0

0
5

m
il_

0
,9

_
1

_
1
_

lb
2
0

0
5

m
il_

0
_

1
_

lb
1

0
0

5
m

il_
0
_

1
_

lb
2

0
0

5
m

il_
0
_

1
_

lb
3

0
0

5
m

il_
1

_
1

_
lb

2
5
m

il_
1

_
1

_
lb

2
_

1
0

0
_

1
0
0

5
m

il_
1

_
1
_

lb
2

_
1

0
0

_
1

0
0

0
5

m
il_

1
_

1
_

lb
2

_
1

0
0

_
1

0
0

0
0

5
m

il_
1

_
1

_
lb

5
5
m

il_
1

_
1

_
lb

1
0

5
m

il_
1

_
1

_
lb

5
0

5
m

il_
1
_

1
_

lb
1

0
0

5
m

il_
1
_

1
_

lb
2

0
0

5
m

il_
1
_

1
_

lb
3

0
0

1
0
m

il_
0

,1
_
1

_
1

_
lb

2
0

0
1

0
m

il_
0

,5
_
1

_
1

_
lb

2
0

0
1

0
m

il_
0

,0
6
_

1
_

1
_
lb

2
0
0

1
0
m

il_
0

,9
_
1

_
1

_
lb

2
0

0
1

0
m

il_
0

_
1

_
lb

1
0

0
1

0
m

il_
0

_
1

_
lb

2
0

0
1

0
m

il_
0

_
1

_
lb

3
0

0
1
0

m
il_

1
_

1
_
lb

2
1
0

m
il_

1
_
1

_
lb

2
_

1
0

0
_

1
0

0
1

0
m

il_
1

_
1

_
lb

2
_

1
0

0
_

1
0

0
0

1
0
m

il_
1

_
1

_
lb

2
_

1
0

0
_
1

0
0

0
0

1
0

m
il_

1
_

1
_
lb

5
1

0
m

il_
1

_
1

_
lb

1
0

1
0
m

il_
1

_
1

_
lb

5
0

1
0
m

il_
1

_
1

_
lb

1
0

0
1

0
m

il_
1

_
1

_
lb

2
0

0
1

0
m

il_
1

_
1

_
lb

3
0

0

0

10

20

30

40

50

60

70

80

90

100

(a)

Average Z-T test recall (Bonferroni corrected p-value < 0.01)

by instance size and lower bound

1
m

il_
0
,1

_
1
_
1
_
lb

2
0
0

1
m

il_
0
,5

_
1
_
1
_
lb

2
0
0

1
m

il_
0
,0

6
_
1
_
1
_
lb

2
0
0

1
m

il_
0
,9

_
1
_
1
_
lb

2
0
0

1
m

il_
0
_
1
_
lb

1
0
0

1
m

il_
0
_
1
_
lb

2
0
0

1
m

il_
0
_
1
_
lb

3
0
0

1
m

il_
1
_
1
_
lb

2
1
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0

1
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0

1
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0
0

1
m

il_
1
_
1
_
lb

5
1
m

il_
1
_
1
_
lb

1
0

1
m

il_
1
_
1
_
lb

5
0

1
m

il_
1
_
1
_
lb

1
0
0

1
m

il_
1
_
1
_
lb

2
0
0

1
m

il_
1
_
1
_
lb

3
0
0

5
m

il_
0
,1

_
1
_
1
_
lb

2
0
0

5
m

il_
0
,5

_
1
_
1
_
lb

2
0
0

5
m

il_
0
,0

6
_
1
_
1
_
lb

2
0
0

5
m

il_
0
,9

_
1
_
1
_
lb

2
0
0

5
m

il_
0
_
1
_
lb

1
0
0

5
m

il_
0
_
1
_
lb

2
0
0

5
m

il_
0
_
1
_
lb

3
0
0

5
m

il_
1
_
1
_
lb

2
5
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0

5
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0

5
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0
0

5
m

il_
1
_
1
_
lb

5
5
m

il_
1
_
1
_
lb

1
0

5
m

il_
1
_
1
_
lb

5
0

5
m

il_
1
_
1
_
lb

1
0
0

5
m

il_
1
_
1
_
lb

2
0
0

5
m

il_
1
_
1
_
lb

3
0
0

1
0
m

il_
0
,1

_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
,5

_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
,0

6
_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
,9

_
1
_
1
_
lb

2
0
0

1
0
m

il_
0
_
1
_
lb

1
0
0

1
0
m

il_
0
_
1
_
lb

2
0
0

1
0
m

il_
0
_
1
_
lb

3
0
0

1
0
m

il_
1
_
1
_
lb

2
1
0
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0

1
0
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0

1
0
m

il_
1
_
1
_
lb

2
_
1
0
0
_
1
0
0
0
0

1
0
m

il_
1
_
1
_
lb

5
1
0
m

il_
1
_
1
_
lb

1
0

1
0
m

il_
1
_
1
_
lb

5
0

1
0
m

il_
1
_
1
_
lb

1
0
0

1
0
m

il_
1
_
1
_
lb

2
0
0

1
0
m

il_
1
_
1
_
lb

3
0
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Z-T test recall

0

10

20

30

40

50

60

70

80

90

100

Z
-T

 t
e
s
t
a
v
e
ra

g
e
 #

 f
a
ls

e
 p

o
s
it
iv

e
s

Combined Z-T test recall and average # of false positives

0,1

0,5

0,06

0,9

lb100lb200lb300100100010000lb2lb5lb10lb50lb100lb200lb300

0,1

0,5

0,06

0,9

lb100lb200lb300100100010000lb2lb5lb10lb50lb100lb200lb300

0,1

0,5

0,06

0,9

lb100lb200lb300
100100010000lb2lb5lb10lb50lb100
lb200
lb300

10mil-epsilon

10mil-lb

10mil-not-fixed

10mil-subtrees

1mil-epsilon

1mil-lb

1mil-not-fixed

1mil-subtrees

5mil-epsilon

5mil-lb

5mil-not-fixed

5mil-subtrees

(c)

Figure 5.6. (a) Average number of false positives by instance. (b) Percentage of true positives

by instance. (c) Combined visualization of graphs (a) and (b).

68 Chapter 5. Results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Test recall

0

50

100

150

200

250

300

350

400

T
e

s
t

a
v
e

ra
g

e
 #

 f
a

ls
e

 p
o

s
it
iv

e
s

Combined Z-T test and K-S test recall and average # of false positives

KS-test

ZT-test

Figure 5.7. Combined view of false and true positives for the Two Sample Kolmogorov-Smirnov

Test and the Two Proportion Z Test

fact that the Two Sample Kolmogorov-Smirnov Test, on average, performs better

among all kinds of instances.

6
Discussion and conclusions

This chapter restates the objectives of this thesis (section 6.1), then we discuss

the conclusions of our results (section 6.2) and finally we have a few words about

future improvements (section 6.3).

6.1 Objectives

In this thesis we aimed to understand if it was possible to characterize the

mutations that occur during the evolution of a tumoral mass. Besides we also

wanted to implement a model that could simulate the growth of a potential tumoral

mass by building its phylogenetic tree.

6.2 Conclusions

In this thesis we introduced in chapter 1 the problem of working with datasets

of single-cell sequencing data and the problem of rebuilding the evolutionary tree

that led to the observed tumoral mass. We then stated the objective of this thesis,

that is: trying to understand if it is possible to characterize mutations once the

phylogeny tree of the tumoral mass is known. In chapter 2 we then described

and compared two of the state-of-the-art algorithms in the reconstruction of trees

69

70 Chapter 6. Discussion and conclusions

capable of describing the history of a group of cells. In chapter 3 we explained the

model we used to simulate the growing process of a potential tumoral mass from

a single cell and we then tested the goodness of some statistical tools (described

in chapter 4) in characterizing the mutations that occurred inside the phylogenetic

tree. The results of those tests have been reported and analyzed in chapter 5.

The phylogeny tree model, described in chapter 3, was intended to be used

to simulate datasets containing an higher number of cells than currently available

datasets have. On these instances we used three statistical tests in order to try to

characterize the mutations arisen during the duplication process. We implemented

the Two Proportion Z Test, the Two Sample Kolmogorov-Smirnov Test and the 2

Sample Anderson-Darling Test, described respectively in section 4.1, section 4.2

and section 4.3. Unfortunately the selected implementation of the 2 Sample

Anderson-Darling Test had an intrinsic low precision that forced us not to use

it in our final tests. So we compared the performances of the other two tests in

chapter 5, observing that the Two Proportion Z Test had lower performances than

the Two Sample Kolmogorov-Smirnov Test. This was rather unexpected, since we

believed the Two Proportion Z Test would have performed better than the Two

Sample Kolmogorov-Smirnov Test. If the probability of not having children p0

is constant among all cells, if we collect every cell at a certain level l, we expect

the number of childless cells to be, on average, equal to the initial probability p0.

Probably what we miscalculated was the fact that we need cells samples of greater

size than the ones we used or, instead of confronting two proportions, we need to

confront two average proportions, averaged on different levels of the tree.

6.3 Future Work

Several areas of this thesis work can be extended and improved in a future

work.

6.3. Future Work 71

First of all there’s the coding part. Since I can’t call myself an expert nor in C++ nor

in software engineering I’m sure that the code can be implemented in a much more

efficient way, speaking about both coding style and general performances.

For sure some better results can also be achieved by using some other statistical

tool that can better adapt to the specifics of the problem, since in our case we used

some general statistical tests that do not take advantages on any of the specifics

of this particular problem. In particular, a first step might be to upgrade the Two

Proportion Z Test with the suggestion reported in section 6.2. We might improve

the Two Proportion Z Test by considering not only the proportion on one level, but

by averaging it on multiple levels. Of course we should take into account the fact

that now the samples that we want to average are not independent anymore and

probably a simple arithmetic mean is not correct.

Bibliography

[1] P. C. Nowell, “The clonal evolution of tumor cell populations,”

Science, vol. 194, no. 4260, pp. 23–28, 1976. [Online]. Available:

http://www.jstor.org/stable/1742535

[2] L. Yates and P. J Campbell, “Evolution of the cancer genome,” vol. 13, pp.

795–806, 10 2012.

[3] K. Jahn, J. Kuipers, and N. Beerenwinkel, “Tree inference for single-cell

data,” Genome Biology, vol. 17, no. 1, p. 86, May 2016. [Online]. Available:

https://doi.org/10.1186/s13059-016-0936-x

[4] M. Greaves and C. C. Maley, “Clonal evolution in cancer,” Nature,

vol. 481, no. 7381, pp. 306–313, 01 2012. [Online]. Available:

http://dx.doi.org/10.1038/nature10762

[5] M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,”

Nature, vol. 458, no. 7239, pp. 719–724, 04 2009. [Online]. Available:

http://dx.doi.org/10.1038/nature07943

73

http://www.jstor.org/stable/1742535
https://doi.org/10.1186/s13059-016-0936-x
http://dx.doi.org/10.1038/nature10762
http://dx.doi.org/10.1038/nature07943

74 BIBLIOGRAPHY

[6] C. Swanton, “Intratumour heterogeneity: Evolution through space and time,”

Cancer research, vol. 72, no. 19, pp. 4875–4882, 10 2012. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712191/

[7] X. Xu, Y. Hou, X. Yin, L. Bao, A. Tang, L. Song, F. Li, S. Tsang, K. Wu, H. Wu,

W. He, L. Zeng, M. Xing, R. Wu, H. Jiang, X. Liu, D. Cao, G. Guo, X. Hu, Y. Gui,

Z. Li, W. Xie, X. Sun, M. Shi, Z. Cai, B. Wang, M. Zhong, J. Li, Z. Lu, N. Gu,

X. Zhang, L. Goodman, L. Bolund, J. Wang, H. Yang, K. Kristiansen, M. Dean,

Y. Li, and J. Wang, “Single-cell exome sequencing reveals single-nucleotide

mutation characteristics of a kidney tumor,” Cell, vol. 148, no. 5, pp. 886–895,

Mar. 2012.

[8] Y. Hou, L. Song, P. Zhu, B. Zhang, Y. Tao, X. Xu, F. Li, K. Wu, J. Liang,

D. Shao, H. Wu, X. Ye, C. Ye, R. Wu, M. Jian, Y. Chen, W. Xie, R. Zhang,

L. Chen, X. Liu, X. Yao, H. Zheng, C. Yu, Q. Li, Z. Gong, M. Mao, X. Yang,

L. Yang, J. Li, W. Wang, Z. Lu, N. Gu, G. Laurie, L. Bolund, K. Kristiansen,

J. Wang, H. Yang, Y. Li, X. Zhang, and J. Wang, “Single-cell exome

sequencing and monoclonal evolution of a jak2-negative myeloproliferative

neoplasm,” Cell, vol. 148, no. 5, pp. 873 – 885, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0092867412002280

[9] Y. Li, X. Xu, L. Song, Y. Hou, Z. Li, S. Tsang, F. Li, K. M. Im, K. Wu, H. Wu,

X. Ye, G. Li, L. Wang, B. Zhang, J. Liang, W. Xie, R. Wu, H. Jiang, X. Liu, C. Yu,

H. Zheng, M. Jian, L. Nie, L. Wan, M. Shi, X. Sun, A. Tang, G. Guo, Y. Gui,

Z. Cai, J. Li, W. Wang, Z. Lu, X. Zhang, L. Bolund, K. Kristiansen, J. Wang,

H. Yang, M. Dean, and J. Wang, “Single-cell sequencing analysis characterizes

common and cell-lineage-specific mutations in a muscle-invasive bladder

cancer,” GigaScience, vol. 1, no. 1, p. 12, Aug 2012. [Online]. Available:

https://doi.org/10.1186/2047-217X-1-12

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712191/
http://www.sciencedirect.com/science/article/pii/S0092867412002280
https://doi.org/10.1186/2047-217X-1-12

BIBLIOGRAPHY 75

[10] J. G. Lohr, V. A. Adalsteinsson, K. Cibulskis, A. D. Choudhury, M. Rosenberg,

P. Cruz-Gordillo, J. M. Francis, C.-Z. Zhang, A. K. Shalek, R. Satija, J. J.

Trombetta, D. Lu, N. Tallapragada, N. Tahirova, S. Kim, B. Blumenstiel,

C. Sougnez, A. Lowe, B. Wong, D. Auclair, E. M. Van Allen, M. Nakabayashi,

R. T. Lis, G.-S. M. Lee, T. Li, M. S. Chabot, A. Ly, M.-E. Taplin, T. E.

Clancy, M. Loda, A. Regev, M. Meyerson, W. C. Hahn, P. W. Kantoff, T. R.

Golub, G. Getz, J. S. Boehm, and J. C. Love, “Whole-exome sequencing of

circulating tumor cells provides a window into metastatic prostate cancer,”

Nat Biotech, vol. 32, no. 5, pp. 479–484, 05 2014. [Online]. Available:

http://dx.doi.org/10.1038/nbt.2892

[11] E. M. Ross and F. Markowetz, “Onconem: inferring tumor evolution from

single-cell sequencing data,” Genome Biology, vol. 17, no. 1, p. 69, Apr 2016.

[Online]. Available: https://doi.org/10.1186/s13059-016-0929-9

[12] H. Jeffreys, Theory of Probability, 3rd ed. Oxford, England: Oxford, 1961.

[13] R. E. Kass and A. E. Raftery, “Bayes factors,” Journal of the American Statistical

Association, vol. 90, pp. 773–795, 1995.

[14] R. F. Schwarz, A. Trinh, B. Sipos, J. D. Brenton, N. Goldman, and

F. Markowetz, “Phylogenetic quantification of intra-tumour heterogeneity,”

PLOS Computational Biology, vol. 10, no. 4, pp. 1–11, 04 2014. [Online].

Available: https://doi.org/10.1371/journal.pcbi.1003535

[15] I. Bozic, J. M. Gerold, and M. A. Nowak, “Quantifying clonal

and subclonal passenger mutations in cancer evolution,” PLoS

Computational Biology, vol. 12, no. 2, 2016. [Online]. Available:

http://dx.doi.org/10.1371/journal.pcbi.1004731

[16] (2017) Bonferroni correction. [Online]. Available: https://en.wikipedia.org/

wiki/Bonferroni correction

http://dx.doi.org/10.1038/nbt.2892
https://doi.org/10.1186/s13059-016-0929-9
https://doi.org/10.1371/journal.pcbi.1003535
http://dx.doi.org/10.1371/journal.pcbi.1004731
https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/Bonferroni_correction

76 BIBLIOGRAPHY

[17] (2017) Glivenko-cantelli theorem. [Online]. Available: https://en.wikipedia.

org/wiki/Glivenko%E2%80%93Cantelli theorem

[18] W. C. Chow, “Brownian bridge,” Wiley Interdisciplinary Reviews: Computational

Statistics, vol. 1, no. 3, pp. 325–332, 2009. [Online]. Available:

http://dx.doi.org/10.1002/wics.38

[19] (2017) Anderson-darling test. [Online]. Available: http://www.itl.nist.gov/

div898/handbook/eda/section3/eda35e.htm

[20] (2017) Kolmogorov–smirnov test. [Online]. Available: https://en.wikipedia.

org/wiki/Kolmogorov%E2%80%93Smirnov test

[21] (2017) Anderson-darling test. [Online]. Available: https://en.wikipedia.org/

wiki/Anderson%E2%80%93Darling test

https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem
https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem
http://dx.doi.org/10.1002/wics.38
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test
https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test

Acknowledgments

I would like to thank my supervisor, without whom I wouldn’t have had the

chance to work on a project like this.

I would like to thank my relatives and my family: my mother, my father and

my sister for everything they’ve done for me in these years, for their support and

because I know they’ve always given me the best they could.

I also would like to thank all my dearest friends, that have been around

me during good and bad times and have always supported me (even though

sometimes I know it was not easy) during my journey up to here.

Lastly I would like to thank two people in particular. One of them has been with

me for a long time, we’ve been through a lot together, he is almost like a brother for

me and I’ll always carry him in my heart. The other has been with me only for five

years, but during those few years I’ve grown in a way I didn’t think was possible.

Thanks to her I finally managed to fully be myself and I’ll never be grateful enough.

I couldn’t be happier for who and where I am now and it’s all been thank to

you guys.

77

	Abstract
	Introduction
	Background
	Tumoral evolution and Motivation

	State of the Art
	Single Cell Inference of Tumor Evolution - SCITE
	Model of tumor evolution and tree representation
	Errors and missing data
	Markov Chain Monte Carlo
	SCITE Conclusions

	Oncogenetic Nested Effects Model - OncoNEM
	Likelihood of clonal trees
	Searching the tree space
	Bayes factor
	OncoNEM Conclusions

	Comparison

	Simulator
	Model
	Algorithm
	Implementation

	Tools Used
	Two Proportion Z Test
	Kolmogorov-Smirnov Test
	Anderson-Darling Test

	Results
	Experimental Design and Setup
	Two Sample Kolmogorov-Smirnov Test results
	Two Proportion Z Test results
	Combined comparison

	Discussion and conclusions
	Objectives
	Conclusions
	Future Work

	Bibliografia
	Acknowledgments

