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Abstract

Preparation of quantum states in physical systems, and in particular en-
tangled states, is a central task in many experimental settings, including
control of molecular dynamics, cooling of nano-mechanical resonators, and
the full spectrum of quantum information processing applications. In this
work we focus on entangled state preparation for multiple quantum bits.
We consider control capabilities and strategies that are readily available
for trapped-ion systems, one of the most promising physical support for
quantum computing.

After a brief introduction on quantum information theory and its ap-
plications, in Chapter 2 we discuss some mathematical preliminaries about
Quantum Mechanics. Chapter 3 is a short presentation of recent results
on discrete-time feedback control of quantum systems provided in [1, 4].
In Chapter 4, the core of the work, we analyze the solution proposed by J.
T. Barreiro et al. in [2] concerning Bell states and GHZ state preparation
and, exploiting the tools described in Chapter 3, we study an alternative
solution based on a elementary quantum feedback control. Most interest-
ingly, we show that the proposed approach can offer significant advantages
in terms of simplicity of the circuit and total implementation time if fast
measurement are employed.
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Sommario

La preparazione di stati quantistici in sistemi fisici, ed in particolare la
preparazione di stati entangled, è una tematica di ricerca centrale in molti
contesti sperimentali, riguardanti, ad esempio, il controllo della dinamica
molecolare, la realizzazione di risonatori nano-meccanici, e l’intero spet-
tro di applicazioni concernenti l’elaborazione di informazione di natura
quantistica. Questo lavoro tratta in particolare della preparazione di stati
entangled per più bit quantistici. Verranno prese in considerazione capa-
cità e strategie di controllo che sono attualmente disponibili nella pratica
in architetture ion-traps, una delle più promettenti nel campo della com-
putazione quantistica.

Dopo una breve introduzione sulla teoria dell’informazione quantistica
e su alcune delle sue applicazioni, nel capitolo 2 verranno discussi alcuni
preliminari matematici di Meccanica Quantistica. Il capitolo 3 consiste
in una breve presentazione dei recenti risultati forniti negli articoli [1, 4]
riguardanti il controllo feedback a tempo discreto di sistemi quantistici.
Nel capitolo 4, il corpo centrale del lavoro, verrà analizzata la strategia
proposta da J. T. Barreiro et al. in [2], adottata per la preparazione dello
stato di Bell |Ψ−〉 e dello stato entangled GHZ a 4 qubit. Quindi, sfrut-
tando gli strumenti descritti nel Capitolo 3, verrà studiata una soluzione
alternativa basata su una strategia di controllo a feedback. Tale approc-
cio è in grado di offrire significativi vantaggi in termini di semplicità del
circuito e di tempi di implementazione totale se si utilizzano operazioni di
misura abbastanza rapide.
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1
Introduction and Overview

In the beginning of the twentieth century two new revolutionary theories
shook the well-established field of physics: Einstein’s theory of relativity
and quantum mechanics. Nowadays these theories have found many prac-
tical applications even in the everyday life, for example to achieve accuracy
requirements the GPS (Global Positioning System) uses principles of Ein-
stein’s general theory of relativity and the operation of the transistor, the
fundamental device of modern electronics invented by Bardeen, Brattain
and Shockley in 1948, can be described by laws of quantum mechanics.

In the field of computation and information theory is taking place a
similar revolution. In particular, in the near future, quantum laws will
become fundamental for computation because of technological miniatur-
ization. The electronic industry for computers grows in accordance with
the decrease in size of integrated circuits. This miniaturization is neces-
sary to increase computational power and memory. In 1965 Gordon Moore
observed that the number of transistors that may be placed on a single
integrated-circuit chip doubles approximately every 18-24 months. This
observation has been verified in practice and became a law: Moore’s law.
The exponential growth, predicted by Moore, has not yet saturated and is
still valid. At the present time the limit is approximately 108 transistors
per chip and the typical size of circuit components is of the order of 100
nanometres. Extrapolating Moore’s law, one would estimate that around
the year 2020 it will be reached the atomic size for storing a single bit
of information. At that point, quantum effects will become unavoidably
relevant. For these and other reasons the study and the control of quan-
tum systems as a means for exchange of information has become a field of
ongoing research.
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1.1 Quantum Information Theory

Quantum information Theory (QIT) is concerned with using the special
features of quantum physics for the processing and trasmission of informa-
tion. QIT is closely linked to Quantum Computation science and provides
in particular the theoretical tools needed for analyzing and addressing chal-
lenging tasks such as preserving and storing this new kind of information,
two fundamental problems in the physical realization of a quantum com-
puter.

Quantum Information

Classical
Information

bit

qubit

0

0

1

1

Figure 1.1: When information is represented as a quantum state (qubit) rather
than in terms of classical bits, quantum information theory is described as being
generalization or extension of classical information theory. The well-established
theory of classical information and computation is thus a subset of a much larger
field, the emerging theory of quantum information and computation

The pioneer of this new research field can be considered the Nobel prize-
winning physicist Richard Feynman. Indeed in 1982 he thought up the
idea of a quantum computer, a computer that uses the effects of quantum
mechanics to its advantage. For some time, the notion of a quantum com-
puter was primarily of theoretical interest only, but recent developments
have brought the idea to everybody’s attention. One such development is
related to the field of cryptanalysis and was the invention of an algorithm
to factor large numbers on a quantum computer, the well-known Shor’s
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algorithm, proposed in 1994 by Peter Shor. By using this algorithm, a
quantum computer would be able to crack codes much more quickly than
any classical computer could. In fact a quantum computer capable of
performing Shor’s algorithm would be able to break current cryptography
techniques (based on RSA algorithm1) in a matter of seconds. With the
motivation provided by this algorithm, the topic of quantum computing
has gathered momentum, supported also by many national government and
military funding agencies, and researchers around the world are racing to
be the first to create a practical quantum computer.

A large number of different proposal to build experimental quantum
computers have been put forward. They range from NMR (nuclear mag-
netic resonance) quantum processor to cold ion traps (see also Appendix
B), superconducting tunnel-junction circuits and spin in semiconductors,
to name but a few. Even though in some cases elementary quantum gates
have been realized (e.g. Cirac-Zoller CNOT gate and Mølmer-Sørensen
gate in ion traps quantum computing) and quantum algorithms with small
number of qubits demonstrated, it is too early to say what type of imple-
mentation will be the most suitable to build a scalable piece of quantum
hardware.

A fundamental obstacle to the practical realization of a quantum com-
puter is decoherence, i.e. the decay of the quantum information stored
in a quantum computer, due to the inevitable interaction of the quantum
computer with the environment.

The unit of quantum information is known as a qubit (the quantum
counterpart of the classical bit) and a quantum computer may be viewed
as a many-qubit system. The fundamental difference between a bit and a
qubit is that the first one takes the value 0 or 1 insted a qubit can also
take all intermediate values between these two. This property is known as
superposition principle of quantum states. The two states in which a qubit
may be measured are known as basis states. Dirac, or bra-ket notation,
is used to represent them (see section §2.1). This means that the two
computational basis states are conventionally written as |0〉 and |1〉. As
noted earlier a pure qubit state is a linear superposition of the basis states.
This means that the qubit can be represented as a linear combination of

1In cryptography, RSA (which stands for Rivest, Shamir and Adleman who first
publicly described it) is an algorithm for public-key cryptography. It is the first algo-
rithm known to be suitable for signing as well as encryption, and was one of the first
great advances in public key cryptography. RSA is widely used in electronic commerce
protocols, and is believed to be sufficiently secure given sufficiently long keys and the
use of up-to-date implementations.
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and |0〉 and |1〉:
|ψ〉 = α|0〉+ β|1〉,

where α and β are probability amplitudes and can in general both be
complex numbers. When we measure this qubit in the standard basis, the
probability of outcome |0〉 is |α|2 and the probability of outcome |1〉 is |β|2.
Because the absolute squares of the amplitudes equate to probabilities, it
follows that α and β must satisfy the equation:

|α|2 + |β|2 = 1.

The possible states for a single qubit can be visualised using Bloch sphere
(Fig. 1.2). Represented on such a sphere, a classical bit could only be in
the locations where |0〉 and |1〉 are respectively. The rest of the surface of
the sphere is inaccessible to a classical bit, but a pure qubit state can be
represented by any point on the surface.

|ψ〉

φ

θ

|1〉

|0〉

|i〉|-i〉

x

y

z

Figure 1.2: Bloch sphere representation of a qubit: probability amplitudes are
given by α = cos(θ/2) and β = sin(φ/2)

1.2 The Importance of Entanglement

The second fundamental property, after superposition, on which quantum
computing is based is called entanglement. Using the words of one of the
father of quantum mechanics, Erwin Schrödinger:
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“Entanglement is not one but rather the characteristic trait of
quantum mechanics”.

Entanglement is the most spectacular and counter-intuitive manifes-
tation of quantum mechanics, observed in composite quantum systems:
it signifies the existence of non-local correlations, which Einstein called
“spooky action at a distance”, between measurements performed on well-
separated particles. After two classical systems have interacted, they are
in well-defined states. In contrast, after two quantum particle have inter-
acted, in general, they can no longer be described independently of each
other. There will be quantum correlations between two such particles,
independently of their spacial separation. This is the content of the fa-
mous EPR paradox, a thought experiment proposed by Einstein, Podolsky
and Rosen in 1935 that shook the not yet stable foundations of newborn
quantum mechanics. In this famous paper ([9]) the authors showed that
quantum theory leads to a contradiction, provided that we accept the two,
seemingly natural, principles of realism and locality. In 1964 John Bell
proved that the local realism lead to predictions, Bell’s inequalities, that
are in contrast with quantum theory. Aspect’s experiment (1982), per-
formed with pairs of entangled photons, exhibited an evident violation of
Bell’s inequality and an impressive agreement with quantum mechanics.
More recently, other experiments have come closer to the requirements of
the ideal EPR scheme. These results show that entanglement is a funda-
mentally new resource, beyond the realm of classical physics, and that it
is possible to experimentally manipulate entangled states.

Quantum entanglement is central to many quantum-communication
protocols. Of particular importance are quantum dense coding, which per-
mits transmission of two bits of classical information through the manipu-
lation of only one of the two entangled qubits, and quantum teleportation,
which allows the transfer of the state of one quantum system to another
over an arbitrary distance. Moreover another application of entanglement
can be found in quantum cryptography where entangled particles are used
to transmit signals that cannot be eavesdropped upon without leaving a
trace.
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2
Quantum Mechanics

In this chapter we describe the principal features and notions of Quantum
Mechanics. In the final section we present the formalism of quantum cir-
cuits and the main quantum gates that will be used in the work. For a
detailed intoduction on Quantum Mechanics we refer the reader to specific
literature, as for example [25, 7, 21] to name just a few.

2.1 States and Operators

2.1.1 Hilbert space

Postulate 1. The state of a quantum mechanical system is represented
by a vector in a separable Hilbert space.

Definition 2.1 (Hilbert space). Hilbert space H is a complex vector space
with an inner product that is an operation (·, ·) : H × H → C, which
satisfies the following properties:

1.
(~x, ~y) = (~y, ~x)∗, (2.1)

where a∗ denotes the complex conjugated of a,

2.
(~x+ ~y, ~z) = (~x, ~z) + (~y, ~z), (2.2)

3.
(α~x, ~y) = α∗(~x, ~y), (2.3)

for any complex scalar α, and,
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4.
(~x, ~x) ≥ 0, (2.4)

where equality holds if and only if ~x = 0.

The norm of a vector ~x, ‖~x‖, is defined as ‖~x‖ :=
√

(~x, ~x). The metric
of H is defined using this norm, the distance between the vectors ~x and ~y
being given by ‖~x− ~y‖. A Hilbert space is required to be complete1 with
respect to this metric.

Definition 2.2 (Separable Hilbert space). A Hilbert space is called sep-
arable if there exists a dense countable set {~ej}, with j in a set J which
forms an orthonormal basis, i.e., it is such that2:

(~ej , ~ek) = δjk, (2.5)

and every vector ~x ∈ H can be written in a unique way as:

~x =
∑

j∈J

~ej(~ej , ~x), (2.6)

2.1.2 Dirac bra-ket notation

In quantum mechanics, the state vectors are denoted using Dirac’s nota-
tion, that is, the state ψ is denoted as |ψ〉 and called ket. This state ket is
postulated to contain complete information about the physical state. Cor-
responding to every ket |ψ〉 there exist a bra, denoted by 〈ψ| contained in
a vector space (bra space) “dual to” the ket space. The bra dual to α|ψ〉,
with α a complex scalar, is α∗〈ψ|.

The inner product two kets |φ〉 and |ψ〉 is denoted by 〈φ|ψ〉. Using this
notation the property (2.1) can be replaced by:

〈φ|ψ〉 = 〈ψ|φ〉∗. (2.7)

Kets |ψ〉 and α|ψ〉, for any α ∈ C, α 6= 0, represent the same physical
state. For this reason, it is often more appropriate to speak about rays or

1In mathematical analysis, a metric space M is called complete (or Cauchy) if every
Cauchy sequence of points in M has a limit that is also in M or, alternatively, if every
Cauchy sequence in M converges in M.

2Symbol δjk denotes Kronecker’s delta function defined as:

δjk =

{
1 j = k
0 j 6= k
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directions in the Hilbert space H as representing the state of a quantum
system. It will be often assumed that the vector representing the state of
the system has norm equal to one, i.e., for every ket |ψ〉, 〈ψ|ψ〉 = ‖|ψ〉‖2 =
1. Physical states can be viewed as points on a complex sphere with radius
one in a Hilbert space, with points differing by a phase factor treated as
the same state.

2.1.3 Linear operators

Definition 2.3 (Linear operator). Given two Hilbert spaces H1 and H2 a
linear operator A , A : H1 → H2 , is a linear map from H1 to H2 . It is
called bounded if ‖A‖ := sup{‖A‖~x : ‖~x‖ = 1} is finite. If H1 and H2 are
both finite dimensional every linear operator A is bounded. From now on
we denote the set of bounded operators acting on the Hilbert space H by
the symbol M(H).

The bra 〈ψ| : H → C associate to the ket |ψ〉 is an example of a linear
operator which, when applied to the vector |φ〉, gives the number 〈ψ|φ〉.

Another important linear operator is the outer product of a bra 〈φ| and
a ket |ψ〉, which is defined as |ψ〉〈φ| : H → H. It maps the ket |ϑ〉 to the
ket |ψ〉〈φ|ϑ〉, i.e. the ket |ψ〉 multiplied by the scalar 〈φ|ϑ〉.

We list here some basic properties concerning composition of linear
operators:

1. Given two (or more) linear operators A and B in M(H) we can
construct a new sum operator A + B ∈ M(H) which acts on a ket
|ψ〉 as:

(A+B)|ψ〉 = A|ψ〉+B|ψ〉. (2.8)

2. If α is a scalar, α ∈ C, and B ∈ M(H), the operator αB ∈ M(H) is
defined as:

(αB)|ψ〉 = α(B|ψ〉). (2.9)

3. If A and B are two linear operators in M(H), the linear operator
AB ∈ M(H), i.e. the product of operators A and B, is defined as:

AB|ψ〉 = A(B|ψ〉). (2.10)

Definition 2.4 (Adjoint of a linear operator). Let A ∈ M(H) , there
exists a unique linear operator, denoted by A† , acting on H, such that for
every |ψ〉 and |φ〉:

〈Aψ|φ〉 = 〈ψ|A†|φ〉. (2.11)

A† is called the adjoint of A .
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Definition 2.5 (Hermitian operator). A linear operator A ∈ M(H) satis-
fying the relation A = A† is called Hermitian operator. We use the symbol
H(H) to denote the set of Hermitian operators in M(H).

Definition 2.6 (Unitary operator). A unitary operator U is defined by
the relation U †U = I, where I denotes identity operator. This implies
that, for every state |ψ〉,

〈Uψ|U |ψ〉 = 〈ψ|U †Uψ〉 = 〈ψ|ψ〉 = I. (2.12)

We use notation U(H) to define the set of unitary operators in M(H).

2.1.4 State of composite system and tensor product

Postulate 2. Consider two systems Σ1 and Σ2 with states represented
by vectors in the Hilbert spaces H1 and H2, respectively. The state of
the composite system (Σ1 together with Σ2) is represented by a vector in
a Hilbert space which is the tensor product of H1 and H2 , denoted by
H1 ⊗H2.

In particular suppose H1 and H2 are Hilbert spaces of finite dimen-
sion m and n respectively. The their tensor product H1 ⊗ H2 is a mn
dimensional vector space which satisfies the following properties:

1. For an arbitrary scalar α and elements |ψ〉 of H1 and |φ〉 of H2,

α(|ψ〉 ⊗ |φ〉) = (α|ψ〉)⊗ |φ〉. (2.13)

2. For arbitrary |ψ1〉 and |ψ2〉 in H1 and |φ〉 in H2,

(|ψ1〉+ |ψ2〉)⊗ |φ〉 = |ψ1〉 ⊗ |φ〉+ |ψ2〉 ⊗ |φ〉. (2.14)

3. For arbitrary |ψ〉 in H1 and |φ1〉 and |φ2〉 in H2:

|ψ〉 ⊗ (|φ1〉+ |φ2〉) = |ψ〉 ⊗ |φ1〉+ |ψ〉 ⊗ |φ2〉. (2.15)

A similiar reasoning can be extended to operators. Suppose |ψ〉 and
|φ〉 are vectors in H1 and H2, and A ∈ M(H1), B ∈ M(H2). Then we can
define a linear operator A⊗ B ∈ M(H1 ⊗H2) by the equation:

(A⊗ B)(|ψ〉 ⊗ |φ〉) ≡ A|ψ〉+B|φ〉. (2.16)
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In a matrix representation of operators A and B this rather abstract op-
eration is known as the Kronecker product. Suppose A is a m × n matrix
and B a p× q one. Then A⊗ B can be written as:

A⊗ B =

n× q
︷ ︸︸ ︷






A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
...

Am1B Am2B · · · AmnB














m× p. (2.17)

2.1.5 The density operator

The density operator provides a convenient means for describing a ensem-
ble of quantum states, i.e. a large number of identical systems in different
states. More precisely, suppose a quantum system is in one of states |ψi〉
with respective probabilities pi. We call {pi, |ψi〉} an ensemble of pure
states. The density operator for the system is defined as:

ρ ≡
∑

i

pi|ψi〉〈ψi|. (2.18)

The density operator, also known as the density matrix, is a linear operator
H → H as it is a linear combination of outer products. It completely
describes the state of the ensemble. Special cases are pure ensembles or
pure states which are such that pj = 1, for some index j . They are
described by density operators of the form:

ρ = |ψj〉〈ψj |. (2.19)

On the contrary, mixed ensembles (or mixed states) are described by den-
sity matrices with more than one pi different from zero.

Below we list the fundamental properties characterizing density opera-
tor which can be proved directly using the definition (2.18):

1. ρ is Hermitian and positive semidefinite3.

2. The trace4 of ρ must be unitary:

tr(ρ) = 1. (2.20)

3A Hermitian operator A : H → H is called positive semidefinite if 〈ψ|A|ψ〉 ≥ 0, for
every |ψ〉 ∈ H.

4The trace of a square matrix A is defined as the sum of the elements on the main
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3.
ρ2 = ρ (2.21)

if and only if ρ represents a pure ensemble.

4.
0 < tr(ρ2) < 1. (2.22)

if ρ represents a mixed ensemble.

Before proceeding we introduce some useful nomenclature. We indicate
with symbol D(H) the set of density operator acting on Hilbert space H.
The subset P(H) ⊂ D(H) denotes the set of pure ensembles or states.
Note that D(H) is a convex set, whose extreme points are the pure states
P(H) and its border δD(H) contains all the states that are not full rank
([1]).

2.1.6 The reduced density operator

One of the most important uses for the density operator formulation is
as a tool for describing the state of a subsystem of a composite system.
Consider a two-qubit pure state |ψ12〉 ∈ H1 ⊗ H2. The general state of
such a system may be entangled, and so it may not be possible to factor
out the state vector |ψ1〉 ∈ H1 for the state of the first qubit. However, the
state of the first qubit can in general be described as a mixed state. This
means that it can be described by a density operator ρ1 ∈ D(H1), called
reduced density operator. The mathematical operation for calculating the
reduced density operator is the partial trace.

Definition 2.7 (Partial trace). Let |ψ〉 and |φ〉 two generic states in H1

and H2 respectively. Now consider the composite system with Hilbert
space H1 ⊗H2. Then the partial trace over system H2 can be defined for
elementary operators as:

trH2
(|ψ1〉〈ψ2| ⊗ |φ1〉〈φ2|)
︸ ︷︷ ︸

operator in H1 ⊗H2

= |ψ1〉〈ψ2|tr(|φ1〉〈φ2|) = |ψ1〉〈ψ2|
︸ ︷︷ ︸

operator in H1

(〈φ1|φ2〉)
︸ ︷︷ ︸

∈ C

.

(2.23)

diagonal of A. Hence for a bounded linear operator A we can write:

tr(A) =
∑

i

〈i|A|i〉,

where kets {|i〉} are an orthonormal basis of finite-dimensional Hilbert space H in which
A acts.
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Since elementary operators contain a basis for the whole space of operators,
the definition can be extended by linearity.

The operation of computing the partial trace over the i-ith system is
sometimes referred to as tracing-out system i.

Now we have the tools to properly define the reduced density operator.

Definition 2.8 (Reduced density operator). Suppose we have a composite
system with Hilbert space H1 ⊗ H2 and let it be described by a density
operator ρ ∈ D(H1 ⊗H2). The reduced density operator of H1 (resp. H2)
is given by:

ρ1 = trH2
ρ, ρ2 = trH1

ρ. (2.24)

2.2 Observables and Measurement

2.2.1 Observables and spectral theorem

In general an observable is any dynamical variable that can be measured. In
quantum mechanics, observables are associated with Hermitian operators
on the Hilbert space H, i.e. with the set H(H).

For the characterization of an observable we must recall a fundamental
result in linear algebra: the spectral theorem (reported here for a finite-
dimensional case).

Theorem 2.1 (Spectral theorem). Let V be an n-dimensional inner prod-
uct space (real or complex) with the standard Hermitian inner product. Let
A be an n × n Hermitian matrix. Then there exists an orthonormal basis
of V consisting of eigenvectors of A and all corresponding eigenvalues are
real.

Proof. See, for example, [12, Section 9.5 - Theorem 9].

Hence a finite-dimensional observable O ∈ H(H) has a spectral decom-
position:

O =
∑

m

λmΠm, (2.25)

where Πm are the eigenvectors of observable O and λm the corresponding
real eigenvalues. The measurement described by such an operator is called
projective or von Neumann’s measurement and the eigenvectors Πm pro-
jectors or projections onto the eigenspace of O with eigenvalues λm. So
the possible outcomes of the measurement corresponds to eigenvalues of
the observable.
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2.2.2 The measurement postulate

Now we are ready to introduce a fundamental postulate of quantum me-
chanics, the meaurement postulate, a generalization of what we describe
previously:

Postulate 3. Quantum measurements are described by a collection {Mm}
of measurement operators in M(H). These are operators acting on the
state space of the system being measured. The measurement operators
satisfy the completeness equation, i.e.,

∑

m

M †
mMm = I, (2.26)

the index m in refers to the measurement outcome that may occur in
the experiment. If the state of the system is |ψ〉 immediately before the
measurement then the probability that result m occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉, (2.27)

and the state of the system right after the measurement is

Mm|ψ〉
√

〈ψ|M †
mMm|ψ〉

. (2.28)

This postulate can be reformulated in the density operator picture by
replacing the probability of outcome (2.27) with:

p(m) = tr(M †
mMmρ), (2.29)

and the corresponding state collapse equation (2.28) with:

MmρM
†
m

tr(M †
mMmρ)

. (2.30)

2.3 Dynamics of Quantum Systems

2.3.1 Closed quantum systems

Postulate 4 (Continuous-time evolution). The continuous time evolution
of the state of a closed quantum system is described by the Schrödinger
equation,

i~
d|ψ〉
dt

= H|ψ〉, (2.31)
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where ~ is a the Planck’s constant (in practice, it is common to absorb
this factor into H setting ~ = 1) and H ∈ H(H) is a fixed operator known
as the Hamiltonian of the closed system. Just as the Schrödinger equa-
tion describes how pure states evolve in time, the Liouville-von Neumann
equation describes how a density operator evolves in time:

i~
dρ

dt
= [H, ρ], (2.32)

where the brackets denote a commutator 5.

Since in the following chapters we we will restrict our analysis only to
the discrete-time case it is worth presenting the evolution postulate for the
discrete-time case.

Postulate 4′ (Discrete-time evolution). The discrete time evolution of a
closed quantum systems, i.e. a system that it is not interacting in any way
with other systems such the environment, is described by an unitary linear
transformation (2.12). That is the state |ψ〉 at the time t1 is related to the
state |ψ′〉 of the system at time t2 by a unitary operator U ∈ U(H) and
this operator depends only on the times t1 and t2:

|ψ′〉 = U |ψ〉 (2.33)

Similiarly in the density operator picture the state ρ at time t1 is related
to the state ρ′ of the system at time t2 by a unitary transformation:

ρ′ = UρU † (2.34)

The unitarity of discrete-time evolution can be demonstrated through
integration of the Schrödinger equation (2.31) in the time interval [t1, t2],
which gives:

|ψ(t2)〉 = exp

(−iH(t2 − t1)

~

)

|ψ(t1)〉 = U(t1, t2)|ψ(t1)〉, (2.35)

where U(t1, t2) is defined as follows:

U(t1, t2) = exp

(−iH(t2 − t1)

~

)

. (2.36)

5The commutator between two operators A and B in M(H) is defined to be:

[A,B] = AB −BA.

If it equals zero, that is AB = BA, then we say A commutes with B.



16 Quantum Mechanics

This operator can be easily proven to be unitary. In fact, since H ∈ H(H),
i.e. H† = H , it satisfies the definition 2.6 characterizing a unitary operator:

U(t1, t2)
†U(t1, t2) = exp

(
iH(t2 − t1)

~

)

exp

(−iH(t2 − t1)

~

)

= I. (2.37)

Some important properties of a unitary transformation U ∈ U(H)
which we have not presented yet are:

1. The rows of U form an orthonormal basis.

2. The colums of U form an orthonormal basis.

3. U preserves inner products, i.e. 〈φ|ψ〉 = 〈Uφ|Uψ〉. Indeed, (U |φ〉)†U |ψ〉 =
〈φ|U †U |ψ〉 = 〈φ|ψ〉. Therefore, U can be seen as a rotation in the
Hilbert space which preserves norms and angles (up to sign).

4. The eigenvalues of U are all of the form eiθ (since U is norm-preserving,
i.e., 〈ψ|ψ〉 = 〈Uψ, Uψ〉).

5. U can be diagonalized into the form:







eiθ1 0 · · · 0

0
. . .

. . . 0
...

. . .
. . .

...
0 0 · · · eiθn








(2.38)

2.3.2 Open quantum systems

In real-world applications all systems interact at least weakly with other
systems, so unitary evolutions are in fact difficult to obtain in practice.
Nevertheless every open system can be described as part of a larger closed
quantum system which evolves unitarily.

Hence the full discrete-time dynamics of an open quantum system S
coupled to an environment or bath E is described by the unitary transfor-
mation:

ρSE 7→ UρSEU
†, (2.39)

with ρSE the joint density matrix of the composite system S + E.
To obtain the reduced state of the system S alone we perform a partial

trace (definition 2.7) over the environment E (see Fig. 2.1 for an intuitive
representation of this operation). Thus the discrete-time dynamics of the
system, ρS , will evolve as

ρS 7→ trE(UρSEU
†). (2.40)
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The resulting time evolution for the reduced system is then associated
to a completely positive trace preserving (CPTP) Kraus map6:

ρS 7→ E(ρS) =
∑

k

EkρSE
†
k, (2.41)

with {Ek} operation elements satisfying completeness relation
∑

k E
†
kEk=I.

 

ρE ρSρS

HS HE

HS ⊗ IE + IS ⊗HE +HSE

trE(·)

Figure 2.1: Reduced density operator, ρS = trE(ρSE).

2.4 Quantum Circuits Formalism

Here we describe the main quantum gates acting on one or more qubits.
Some gates have their classical counterpart, e.g. the X gate corresponds to
the NOT classical logic gate, others, instead, are completely new, such as
the Hadamard gate. Moreover, in this section, we introduce some useful
circuit notations that we will use in the rest of the work. For further
information on quantum computation theory and quantum circuit theory
see [20, 3, 13, 22].

2.4.1 Single qubit gates

Operations on a single qubit are described by 2-dimensional unitary ma-
trices. Unitarity is the only constraint that a quantum gate must satisfy.
The Pauli gates are some of the most important single qubit gates and for

6Kraus representation is also known as Operator-Sum Representation (OSR).
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this importance they will be widely used in the following sections. We list
them below:

σ0 ≡ I ≡
[
1 0
0 1

]

, σ1 ≡ σx ≡ X ≡
[
0 1
1 0

]

,

σ2 ≡ σy ≡ Y ≡
[
0 −i
i 0

]

, σ3 ≡ σz ≡ Z ≡
[
1 0
0 −1

]

.

(2.42)

Fig. 2.2 shows on Bloch sphere some examples of action of Pauli gates.
Pauli X,Y and Z gates give rise to three useful classes of unitary ma-

trices when they are exponentiated, the rotation gates, about the x, y and
z axis, defined as:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]

,(2.43)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

[
cos θ

2
sin θ

2

sin θ
2

cos θ
2

]

, (2.44)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

[
e−iθ/2 0
0 eiθ/2

]

. (2.45)

x

y

z
|0〉

|1〉

(a) X gate

x

y

z
|0〉

|1〉

(b) Y gate

  

  

x

y

z

|i〉|-i〉

(c) Z gate

Figure 2.2: Action of Pauli gates (the initial state is represented in blue, the
final in red): (a) Pauli X gate flips the state |0〉 to |1〉, (b) Pauli Y gate performs
the operation: |0〉 7→ i|1〉, (c) Pauli Z gate flips the state |i〉 ≡ (|0〉 + i|1〉)/

√
2

to state |-i〉 ≡ (|0〉 − i|1〉)/
√
2

Other useful single qubit gates are the Hadamard gate, the phase gate
and π/8 gate. This gate turns the computational basis {|0〉, |1〉} into the
new basis {|+〉, |−〉}, whose states are a superposition of the states of the
computational basis:

H|0〉 = |+〉 ≡ |0〉+ |1〉√
2

,

H|1〉 = |−〉 ≡ |0〉 − |1〉√
2

.

(2.46)
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Hence, with respect to the computational basis, Hadamard gate has the
following matrix representation:

H =
1√
2

[
1 1
1 −1

]

(2.47)

The action of Hadamard gate on the state |+〉 is visualized in Fig. 2.3.

xxx

yyy

zzz |0〉

|1〉

|+〉

θy = π/2 θx = π

Figure 2.3: Action of Hadamard gate on input state |+〉 = (|0〉 + |1〉)/
√
2

Phase gate S is defined as:

S =

[
1 0
0 i

]

. (2.48)

This gate turns |0〉 into |0〉 and |1〉 into i|1〉. Since global phases have no
physical meaning, the states of the computational basis remain unchanged.

Finally π/8 gate has the form:

T =

[
1 0
0 eiπ/4

]

. (2.49)

Note that T is equivalent to:

T =

[
e−iπ/8 0
0 eiπ/8

]

(2.50)

(up to global phase), which is why it is called π/8 gate.
In Fig. 2.4 we report the symbolic circuit representation for the ana-

lyzed single qubit gates.

2.4.2 Controlled gates

Controlled gates act on two or more qubits, where one or more qubits act
as a control for some operation. A fundamental controlled gate acting on
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Pauli X gate X

Pauli Y gate Y

Pauli Z gate Z

Hadamard gate H

Phase gate S

π/8 gate T

Figure 2.4: Circuit symbols for the most important single qubit gates

two input qubits is the controlled-NOT or briefly CNOT. In terms of the
computational basis the action of this gate is given by: |c〉|t〉 → |c〉|t⊕ c〉,
where |t〉 denotes the target qubit while |c〉 the control qubit ; that is, it
flips the state of the target qubit if the control qubit is in state |1〉 and
does nothing otherwise. The matrix representation for the CNOT gate is

CNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






, (2.51)

and its circuit symbol is shown in Fig. 2.5.

CNOT
|c〉 • |c〉

|t〉 �������� |t⊕ c〉
Figure 2.5: Circuit symbol for the controlled-NOT gate

A more general two-qubit controlled gate is the controlled-U gate. In
this case if the control qubit is set to |1〉 then operator U ∈ U(C2) is
applied to the target qubit, otherwise the target qubit is left alone, in
mathematical terms |c〉|t〉 → |c〉U c|t〉. In matrix form controlled-U gate is
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given by:

C(U) =

[
I O
O U

]

, (2.52)

where matrix block O denotes a 2 × 2 matrix of zeros and block I a 2-
dimensional identity matrix. Fig. 2.6 shows the circuit representation of
this operation.

C(U)
|c〉 • |c〉

|t〉 U U c |t〉

Figure 2.6: Circuit symbol for the controlled-U gate

2.4.3 Measurements

In quantum circuits we denote a projective measurement in the computa-
tional basis using the symbol shown in Fig. 2.7. For more general mea-
surements it is conventional to not use special circuit symbols to denote
them, since they can always be represented by unitary transformations
with auxiliary ancilla qubits followed by projective measurements.

Measurement |ψ〉
NM




 |0〉 / |1〉

Figure 2.7: Circuit symbol for measurement in the computational basis

In the work we will often use quantum measurements to conditionally
control subsequent quantum gates. Hence for these cases we represent with
a double line a classical bit used to perform controlled operations. This
procedure is illustrated in Fig. 2.8.

Measurement + Control
|ψ1〉 NM




 |0〉 / |1〉

|ψ2〉 U U c |ψ2〉

Figure 2.8: Circuit symbol for a classical control based on measurement out-
come
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3
Control of Quantum Systems

In this chapter we present some useful notions and theorems provided
recently by Albertini and Ticozzi in [1] and by Bolognani and Ticozzi in
[4] for the discrete-time feedback control of quantum systems. First we
introduce the basic notions on controllability of quantum systems which
evolve discretely in time. Then we describe the feedback control model and
report the main results on controllability and stability of such a model.
Finally we analyze an approach based on Lyapunov stabilization for the
state inizialization of a quantum system.

3.1 Controllability Definitions

The controlled discrete-time evolution of a quantum system is described
by:

ρ(t + 1) = E(ρ(t), ~u(t)), (3.1)

with, recalling notations given in chapter 2, ρ(·) ∈ D(H), ~u(t) ∈ U , where
U denotes the set of control actions, and E : D(H) → D(H) a Completely
Positive and Trace Preserving (CPTP) map which admits a Kraus rep-
resentation of the form (2.41). Let RT (ρ) the reachable set from ρ in T
steps.

Definition 3.1 (PPC). The system is said to be Pure state to Pure state
Controllable (PPC) in T steps if ∀ρ0 = |ψ〉〈ψ| ∈ P(H), RT (ρ) ⊇ P(H).

Definition 3.2 (DDC). The system is said to be Density Operator to
Density Operator Controllable (DDC) in T steps if ∀ρ0 ∈ D(H), RT (ρ) =
D(H).
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Definition 3.3 (PDC). The system is said to be Pure state to Density
Operator Controllable (PDC) in T steps if ∀ρ0 = |ψ〉〈ψ| ∈ P(H), RT (ρ) =
D(H).

Definition 3.4 (DPC). The system is said to be Density Operator to Pure
state Controllable (DPC) in T steps if ∀ρ0 ∈ D(H), RT (ρ) ⊇ P(H).

Note that, since P(H) ⊂ D(H), we have the following relations:

DDC

DPC

PPC

PDC

Definition 3.5 (UC). The system is said to be Unitary Controllable (UC)
in T steps if ∀U ∈ U(H) there exist a choice of T controls ~ui, such that,

UρU † = ET ◦ · · · ◦ E1(ρ), ∀ρ ∈ D(H),

where Ei(A) = E(A, ~ui).

Definition 3.6 (KC). The system is said to be Kraus Controllable (KC)
in T steps if for any CPTP map E there exists a choice of T controls ~ui,
such that E = ET ◦ · · · ◦ E1.

It can be demonstrated that the following implications hold:

KC

DDC

PPC

UC

1

2
2

Indeed implication 1 can be easily proven considering a constant map
K : D(H) → D(H), which maps the initial state ρ to the target state ρf .
K can be extended to a linear CPTP map on M(H), and hence it admits
a Kraus representation.
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3.2 Discrete-Time Feedback Control

3.2.1 The model

We present here a discrete-time feedback model for controlling dynamics of
open quantum systems. The model is based on the application of a unitary
operator Uk ∈ U(H) chosen in the set {Uk} conditioned to the outcome
Mk ∈ M(H) of a finite set of generalized measurements {Mk}. We recall
that the probability of measuring the k-th outcome is given by:

Pρ(k) = tr(MkρM
†
k), (3.2)

and the conditioned state after the measurement takes the form:

ρ|k =
MkρM

†
k

Pρ(k)
. (3.3)

Hence if the state at time t was ρ(t) ∈ D(H), the state at time t + 1
conditioned to the k-th outcome of the generalized measurement is1:

ρ(t + 1)|k =
UkMkρM

†
kU

†
k

Pρ(k)
. (3.4)

By averaging over the possible outcomes we get the CPTP map:

ρ(t + 1) =
∑

k

Uk(t)Mk(t)ρ(t)Uk(t)
†Mk(t)

†. (3.5)

A scheme of the control model is shown in Fig. 3.1.

3.2.2 Results on controllability and stabilization

First we report some results regarding generic aymptotic controllability of
systems which evolve under feedback control dynamics (3.5).

Theorem 3.1. Given a measurement with Kraus operators {Mk} and arbi-
trary conditional control actions {Uk} ⊂ U(H), the system (3.5) is asymp-
totically DPC if and only if there is a k such Mk 6= qVk, ∀q ∈ C, and
Vk ∈ U(H).

1In writing equation (3.4) we used the cyclic property of the trace,that is, for three
operators A,B,C ∈ M(H):

tr(ABC) = tr(CAB) = tr(BCA).
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E :
-

ρt {Mk}
Gen. Measurement

-
ρt|k

{Uk}
Unitary Control

Classical Information k

6ρt+1 = Ukρt|kUk
†

         

Figure 3.1: Schematic representation of the feedback control model. If the
measurement-control loop is iterated the average over the measurement results
at each step yields to the CPTP map given by (3.5)

Proof. See [1, Theorem 3.2].

Corollary 3.1. If there is a k such Mk 6= qVk, with q ∈ C, and Vk ∈
U(H), and in addition we can pick a control action at random from a
finite set {Ûj} with an arbitrary probability distribution pj, then the system
is approximately DDC.

Proof. See [1, Corollary 3.1].

Other useful results, provided in [1], concern the case of a given gener-
alized measurements with only two outcomes and associated operators M1

and M2 satisfying the completeness relation. This is the case that we will
consider in chapter 4.

These results are based on the following intial assumptions:

1. Both matrices M1 and M2 are diagonal;

2. Both matrices M1 and M2 are singular;

Assumption 1 is not restricitive using the feedback control model ana-
lyzed previously since the following Lemma help us.

Lemma 3.1. Consider two operators M̃1, M̃2 ∈ M(H) that satisfy com-
pleteness relation M̃ †

1M̃1+M̃
†
2M̃2 = I. Then there exist unitaries U0, U1, U2 ∈

U(H) such that Mk = UkM̃kU0 is diagonal for k = 1, 2.

Proof. See [1, Lemma 4.1].
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Under these assumptions, the following proposition states that a N -
level system can be made DPC in finite-time through a sequence of con-
trolled operations of length N .

Proposition 3.1. There exists a sequence U1(0), · · · , U1(N−2) and U2(0),
· · · , U2(N − 2), such that ∀ρ0 ∈ D(H), ρ(N) is a pure state.

Proof. See [1, Proposition 4.1].

The converse is also true, that is, the system is finite-time PDC.

Proposition 3.2. Assume that ρ0 is a pure state, then ∀ρf ∈ D(H) there
exists a sequence of controls of length N that steers ρ0 to ρf .

Proof. See [1, Proposition 4.2].

So from propositions 3.1 and 3.2 it can be deduced that a N -level
system is also finite-time DDC and the (maximum) number of feedback
steps needed to obtain any desired state-to-state transition is equal to 2N .

3.3 Lyapunov Stabilization

In Lyapunov stabilization of quantum systems, one specifies a function of
the state, the Lyapunov function V (ρ), where ρ ∈ D(H) is the density
operator of the system, and designs the control so that the value of the
V (ρ) decreases to a desired value ([6]).

In the following we describe the approach given in [4] for the choice of a
possible Lyapunov function V (ρ). This approach is useful when applied to
control the discrete-time dynamics of open quantum systems and specially
for the case of quantum states preparation, that is the issue we address in
this work. First we define what is a quantum subspace.

Definition 3.7. A quantum subspace S of a system I with associated
Hilbert space HI is a quantum system whose Hilbert space is a subspace
HS of HI :

HI = HS ⊕HR (3.6)

for some remainder space HR. The set of linear operators on S , M(HS), is
isomorphic to the algebra on HI with elements of the form HI = HS⊕OR,
with O the zero operator.
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Let n = dim(HI), m = dim(HS), and r = dim(HR), and let {|s〉j}mj=1,
{|r〉k}rk=1 denote orthonormal bases for HS and HR, respectively. Decom-
position (3.6) is then associated with the following basis for HI :

{|i〉l}nl=1 = {|s〉j}mj=1 ∪ {|r〉k}rk=1

This basis induces a block structure for matrices representing operators in
M(HI):

X =

[
XS XP

XQ XR

]

. (3.7)

We call ΠS and ΠR the projection operators over the subspaces HS and
HR, respectively.

Now we give the definition of state inizialization, i.e. the preparation
of a certain quantum state ρS ∈ D(HS).

Definition 3.8. The system I with state ρ ∈ D(HI) is initialized in S
with state ρS ∈ D(HS) if ρ is of the form:

ρ =

[
ρS O
O O

]

. (3.8)

We use symbol IS(HI) to denote the set of state of the form (3.8) for
some ρS ∈ D(HS).

D(HI)

IS(HI)

Figure 3.2: Representation of the set D(HI) and the target subset IS(HI)

Next, following the analysis given in [4], we characterize invariance and
attractivity of IS(HI).
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Definition 3.9. Let I evolve under iterations of a CPTP map T : HI →
HI . The set IS(HI) is invariant if the evolution of any initialized ρ ∈
IS(HI) obeys:

T [ρ(t)] =

[
TS[ρ(t)] O
O O

]

∈ IS(HI), ∀t ≥ 0. (3.9)

Definition 3.10. Let I evolve under iterations of a CPTP map T : HI →
HI . The set IS(HI) is attractive if ∀ρ ∈ D(HI) we have:

lim
t→∞

‖T [ρ]−ΠST [ρ]ΠS‖ = 0. (3.10)

Definition 3.11. Let I evolve under iterations of a CPTP map T : HI →
HI . The set IS(HI) is Globally Asymptotically Stable (GAS) if it is invari-
ant and attractive.

The value of the state ρ ∈ D(HI) will tend to a limit set which can be
characterized using La Salle’s invariance principle for discrete-time sys-
tems.

Theorem 3.2. Consider a discrete-time system x(t + 1) = T [x(t)]. Sup-
pose V ∈ C1(Rn), bounded below and satisfying:

∆V (x) = V (T [x])− V (x) ≤ 0, ∀x, (3.11)

that is, V (x) is non-increasing along forward trajectories of the plant dy-
namics. Then any bounded trajectory converges to the largest invariant
subset W contained in the locus Ω = {x : ∆V (x) = 0}.

Proof. A proof can be found in [14, Theorem 3.4] for continuous-time sys-
tems, which can be extended to the discrete-time case.

Hence a possible candidate for the Lyapunov function is:

V (ρ) = tr(ΠRρ). (3.12)

V (ρ) represents the probability of the event ΠR, i.e., the probability that
the system is found in the reminder subspace HR after the measurement.
Moreover can be proved that this function satisfies the conditions imposed
by La Salle’s theorem when IS(HI) is invariant.

Now we present the main results concerning conditions for invariance
and attractivity of IS(HI).
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Proposition 3.3. Consider the Kraus representation T [ρ] =
∑

k EkρE
†
k

of the CPTP map T : HI → HI . Let the matrices Ek be expressed in the
block form:

Ek =

[
Ek,S Ek,P

Ek,Q Ek,R

]

, (3.13)

according to the space decomposition (3.7). Then the set IS(HI) is invari-
ant if and only if:

Ek,Q = 0 ∀k. (3.14)

Proof. See [4, Section IV - Proposition 1].

Theorem 3.3. Consider the Kraus representation T [ρ] =
∑

k EkρE
†
k of

the CPTP map T : HI → HI . Let HS ⊕HR an orthogonal subset decom-
position of HI with IS(HI) invariant. Consider the block form expression
of matrices Ek:

Ek =

[
Ek,S Ek,P

O Ek,R

]

. (3.15)

Then the set IS(HI) is GAS if and only if there are no invariant states
with support2 on

⋂

k ker(Ek,P ).

Proof. See [4, Section IV - Theorem 2].

2We recall some mathematical definitions. The support of a complex function f (on
any topological space) is the closure of {x : f(x) 6= 0} ([24]). The kernel of a matrix
A ∈ Cm×n is the set: ker (A) = {~x ∈ Cn : A~x = ~0}.
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Entanglement Generation

In this chapter we first analyze the approach proposed in [2] concerning
Bell-state |Ψ−〉 and GHZ-state preparation, then we study the experimen-
tal quantum circuits engineered for this purpose through numerical simu-
lations. In the second section we introduce a new approach based on an
elementary quantum feedback control paradigm and using this approach
we engineer two alternative quantum circuits implementing both Bell-state
|Ψ−〉 and GHZ-state preparation. Finally in the last section, for each case,
we list pros and cons of the two analyzed solutions.

4.1 J. T. Barreiro et al. approach

In this section we study the approach used in [2] for entanglement gener-
ation. First we focus our attention on the Bell-state |Ψ−〉 generation case
study and on the relative solution offered by the authors of the article.
Then we analyze the solution given for the GHZ-state generation.

4.1.1 Article review

In [2] the authors present a toolbox for simulating and controlling dynam-
ics of an open quantum system with up to five qubits. To do so experi-
mentally they use a quantum computing architecture with trapped ions,
combining multi-qubit gates with optical pumping to implement coherent
operations and dissipative processes. In a string of trapped ions, each
ion encoding a qubit, the qubits are divided into “system” and “environ-
ment”. The system-environment coupling is engineered through the uni-
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versal set of quantum operations available in ion-trap quantum computers
and a dissipative mechanism based on optical pumping. In particular, The
Mølmer-Sørensen (MS) entangling gate plays a key role in the experimental
quantum circuits realization and for its importance it will be analyzed in
detail in paragraph §4.2.2. Specifically Barreiro et al. study how to engi-
neer the process of dissipative preparation of entangled states. In the first
part of the article is illustrated a process for the Bell-state |Ψ−〉 “cooling”
by pumping the initially mixed system state in appropriate eigenspaces of
stabilizer operators1 of Bell-states. Then, in the second part, the same
approach used for Bell-states generation is applied to dissipatively prepare
a 4-qubit GHZ-state2.

4.1.2 Bell-state |Ψ−〉 generation

Process implementation

The system, described by density matrix ρS, is prepared in the Bell-state
|Ψ−〉 realizing the quantum operator: ρS 7→ |Ψ−〉〈Ψ−|. This is achieved
by constructing two dissipative maps and exploiting the useful properties
of stabilizer operators Z1Z2 and X1X2 of the Bell-states3. First of all we
recall the definitions of the four Bell-states:

|Φ±〉 = 1√
2
(|00〉 ± |11〉), |Ψ±〉 = 1√

2
(|01〉 ± |10〉). (4.1)

It is worth noting that Bell-states are stabilizer states: for instance |Φ+〉
is said to be stabilized by the two stabilizers Z1Z2 and X1X2 as it is the
only two-qubit state being simultaneously an eigenstate of eigenvalue +1
of these two commuting operators ( Z1Z2|Φ+〉 = +|Φ+〉, X1X2|Φ+〉 =
+|Φ+〉). Moreover each of the four Bell-states (4.1) is uniquely determined
as an eigenstate with eigenvalues ±1 with respect to Z1Z2 and X1X2.

1Suppose S is a subgroup of the Pauli group Gn on n qubits and define VS to be
the set of n qubit states which are fixed by every element of S. VS is the vector space

stabilized by S and S is said to be the stabilizer of the space VS , since every element of
VS is stable under the action of elements in S. For further details on stabilizer formalism

refer to [20].
2Greenberger-Horne-Zeilinger (GHZ) state state is a certain type of entangled quan-

tum state of M qubits that is defined as:

|GHZ〉 = |0〉⊗M + |1〉⊗M

√
2

,

where M > 2 denotes the number of qubits entangled.
3Xi, Yi, Zi stand for X, Y, Z Pauli gates repectively acting on the i-th system qubit.
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Noting that |Ψ−〉 state is an eigenstate with eigenvalue -1 of these two sta-
bilizers, the key idea to prepare the initial system state in the |Ψ−〉 state is
to engineer two maps under which the two system qubits are irreversibly
transferred from the +1 into the -1 eigenspace of Z1Z2 and X1X2. The
first map is performed by two dissipative Kraus operators E1, E2:

ρS 7→ E ′(ρS) = ρ′S = E1ρSE
†
1 + E2ρSE

†
2 (4.2)

E1 =
√
p X2

1

2
(1 + Z1Z2) (4.3)

E2 =
1

2
(1− Z1Z2)−

√

1− p
1

2
(1 + Z1Z2) (4.4)

The map implements the process of “pumping” the initial random system
state, described by the density matrix ρS, from eigenspace with eigenvalue
+1 of stabilizer operator Z1Z2 of the Bell-states, into the -1 eigenspace.
The operation element E1 can be interpreted as follows: first, apply the
projector 1

2
(1 + Z1Z2) onto the +1 eigenspace of Z1Z2; then, the spin flip

X2 converts +1 into -1 eigenstates of Z1Z2 , e.g. |Φ+〉 7→ |Ψ−〉.The process
can be visualized intuitively in Fig. 4.1.

|Φ+〉

|Φ−〉

|Ψ+〉

|Ψ−〉
Z1Z2+1 −1

Figure 4.1: Schematic representation of Z1Z2 map

Then a similar process is achieved by the two operators E ′
1, E

′
2:

ρ′S 7→ E(ρS) = E ′
1ρSE

′†
1 + E ′

2ρSE
′†
2 (4.5)

E ′
1 =

√
p Z2

1

2
(1 +X1X2) (4.6)

E ′
2 =

1

2
(1−X1X2)−

√

1− p
1

2
(1 +X1X2) (4.7)
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The process implemented by E ′
1 and E ′

2 is similar to the previous one but in
this case it implements the pumping of the system state ρ′S from eigenspace
with eigenvalue +1 of stabilizer operator X1X2 of the Bell states, into the
-1 with a probability p. The map action is represented in Fig. 4.2.

|Φ+〉

|Φ−〉

|Ψ+〉

|Ψ−〉

+1

−1

X1X2

Figure 4.2: Schematic representation of X1X2 map

So the action of the two maps described above implements the pro-
jection or pumping of the initial unknown state, ρS, into the target |Ψ−〉
Bell-state, as it is summarized in Fig. 4.3.

=

+

|Φ+〉

|Φ+〉 |Φ+〉

|Φ−〉

|Φ−〉 |Φ−〉

|Ψ+〉

|Ψ+〉 |Ψ+〉

|Ψ−〉 |Ψ−〉

|Ψ−〉

+1

+1

−1

−1

Z1Z2
X1X2

Target State

Figure 4.3: Action of Z1Z2 +X1X2 map
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Experimental quantum circuit

To implement experimentally the two maps described in the previous para-
graph the authors suggest to use the quantum circuit shown in Fig 4.4,
which consists of three unitary operations, (i), (ii), (iii) and a dissipative
one (iv). Both maps act on the two system qubits, denoted by subscript
S, and an ancilla which plays the role of the environment, with subscript E.

(i) (ii) (iii) (iv) (i) (ii) (iii) (iv)
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)
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




Z1Z2(p) X1X2(p)

Figure 4.4: Quantum circuit used to generate Bell-state |Ψ−〉

The first map implementation proceeds as follows:
(i) Information about whether the system is in the +1 or -1 eigenspace

of Z1Z2 is mapped by unitary M(Z1Z2) onto the logical states |0〉 and |1〉
of the ancilla (initially in |1〉).

(ii) A controlled gate, C(p) in figure, converts +1 into -1 eigenstates
by flipping the state of the second qubit with probability p:

C(p) = |0〉〈0|E ⊗ UX2
(p) + |1〉〈1|E ⊗ I, (4.8)

where UX2
(p) = eiαX2 and p = sin2(α).

(iii) The initial mapping is inverted by M−1(Z1Z2). At this stage, in
general, the ancilla and system qubits are entangled.

(iv) The ancilla is dissipatively reset to |1〉, which carries away entropy
to “cool” the two system qubits. This reinitialization is performed through
optical pumping technique.

The second map for cooling into the -1 eigenspace of X1X2 is obtained
by interchanging the roles of X and Z above.

Indeed the real circuit used in the experiment is a little more different
from the one analyzed above, as can be seen in Fig 4.5.
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Figure 4.5: Quantum circuit used to experimentally generate Bell-state |Ψ−〉

In this new inplementation the authors exploit the fact (see [2], sup-
plementary informations) that the Bell-state |Ψ−〉 is not only uniquely
determined as the simultaneous eigenstate with eigenvalue -1 of the two
stabilizer operators X1X2 and Z1Z2, but also by X1X2 and Y1Y2.
So equations (4.2), (4.3), (4.4), describing map Z1Z2 action, can be re-
placed respectively by:

ρS 7→ E ′(ρS) = ρ′S = E1ρSE
†
1 + E2ρSE

†
2 (4.9)

E1 =
√
p Y1

1

2
(1 +X1X2) (4.10)

E2 =
1

2
(1−X1X2)−

√

1− p
1

2
(1 +X1X2) (4.11)

The map generates pumping from intial system state into the -1 eigenspace
of X1X2 stabilizer and its action, similar to that described in the previous
section, is shown in Fig 4.2.

In the same way equations (4.5), (4.6), (4.7), describing map X1X2

action, can be replaced equivalently by:

ρ′S 7→ E(ρS) = E ′
1ρSE

′†
1 + E ′

2ρSE
′†
2 (4.12)

E ′
1 =

√
p X1

1

2
(1 + Y1Y2) (4.13)

E ′
2 =

1

2
(1− Y1Y2)−

√

1− p
1

2
(1 + Y1Y2) (4.14)



4.1 J. T. Barreiro et al. approach 37

|Φ+〉

|Φ−〉

|Ψ+〉

|Ψ−〉+1

+1−1

−1Y1Y2

Y1Y2

Figure 4.6: Schematic representation of Y1Y2 map

The map implements the pumping of the system state ρ′S from eigenspace
with eigenvalue +1 of stabilizer operator Y1Y2, into the -1 with a proba-
bility p. The map action is represented in Fig. 4.6.

The overall action of the two maps can be seen in Fig. 4.7.
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|Φ+〉|Φ+〉

|Φ−〉

|Φ−〉|Φ−〉
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+1

+1

−1

−1

−1

Y1Y2

Y1Y2

X1X2

Target State

Figure 4.7: Action of X1X2 + Y1Y2 map

The great advantage of this substitution is that the mapping and un-
mapping steps, shown as (i) and (iii) in Fig 4.4, now can be simply realized
by a single Mølmer-Sørensen gate UX2(π/2) and UY 2(π/2)4, respectively.
The great benefit in using such a gate lies in its experimental availability.

4Mølmer-Sørensen gates UX2(θ) and UY 2(θ) are defined as: UX2(θ) = exp(−i θ4Sx
2)

and UY 2(θ) = exp(−i θ4Sy
2), where Sx and Sy denote collective spin operators: Sx =

∑n

i=0Xi and Sy =
∑n

i=0 Yi.
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The main steps of this experimental quantum circuit are listed below:
(i) Information about whether the system is in the +1 or -1 eigenspace

of X1X2 is mapped by MS gate UX2(π/2) onto the logical states |0〉 and
|1〉 of the ancilla.

(ii) A controlled gate performs a conversion from the +1 eigenvalue of
the stabilizer X1X2 to -1 exchanging status of the first system qubit |ψ1〉S
with a certain probability p:

C(p) = |0〉〈0|E ⊗ UZ1
(p) + |1〉〈1|E ⊗ I, (4.15)

where UZ1
(p) = eiαZ1 and p = sin2(α) 5.

(iii) The initial MS gate is inverted to perform successfully the projec-
tion onto -1 eigenspace.

(iv) The ancilla qubit is then reinitialized dissipatively in state |1〉.

Numerical simulation

For the numerical simulation of the circuit described above (Fig. 4.5) we
wrote a code in Matlab language. In this code the user can enter the de-
sired probability p of pumping and the program calculates the final system
density matrix after 20 iterations of the process. The video output of the
program by setting a probability p = 0.5 is shown below. In particular Fig.
4.8 shows the evolution of the initial system described by a random density
matrix, ρS, increasing the number of iterations of the process. Moreover in
Fig. 4.9 is reported the evolution of the system after sequentially pumping
the stabilizers X1X2, Y1Y2 for the first iteration of the process.

I n s e r t a p r ob ab i l i t y o f pumping : 0 . 5

I n i t i a l d en s i ty matrix :

p s i =

0.4092 −0.0938 − 0.1104 i 0.1617 + 0.2033 i −0.0089 − 0.0807 i

−0.0938 + 0.1104 i 0.2395 −0.2224 − 0.0501 i 0.0805 + 0.0298 i

0.1617 − 0.2033 i −0.2224 + 0.0501 i 0.2978 −0.0903 − 0.0231 i

−0.0089 + 0.0807 i 0.0805 − 0.0298 i −0.0903 + 0.0231 i 0.0535

Final den s i ty matrix d es i r ed :

PSIm =

0 0 0 0

0 0.5000 −0.5000 0

0 −0.5000 0.5000 0

0 0 0 0

5In the experiment the gate is realized through the following sequence of operators:

C(p) = UZ1
(α)UY (π/2)U

(0,1)
X2 (−α)UY (−π/2) con U

(0,1)
X2 (−α) = exp(i(α/2)X0X1). In

the following sections for simplicity we will refer to equation (4.15).
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System dens i ty matrix a f t e r 1 i t e r a t i o n :

phi =

0.2162 − 0.0000 i −0.0800 − 0.0933 i 0.1041 + 0.1261 i −0.0045 − 0.0403 i

−0.0800 + 0.0933 i 0.3582 + 0.0000 i −0.3612 − 0.0251 i 0.0466 + 0.0035 i

0.1041 − 0.1261 i −0.3612 + 0.0251 i 0.3873 + 0.0000 i −0.0501 − 0.0011 i

−0.0045 + 0.0403 i 0.0466 − 0.0035 i −0.0501 + 0.0011 i 0.0383 + 0.0000 i

System dens i ty matrix a f t e r 20 i t e r a t i o n s :

phi =

0.0000 − 0.0000 i −0.0001 − 0.0001 i 0.0001 + 0.0001 i −0.0000 − 0.0000 i

−0.0001 + 0.0001 i 0.5000 + 0.0000 i −0.5000 − 0.0000 i 0.0000 − 0.0000 i

0.0001 − 0.0001 i −0.5000 + 0.0000 i 0.5000 + 0.0000 i −0.0000 + 0.0000 i

−0.0000 + 0.0000 i 0.0000 + 0.0000 i −0.0000 − 0.0000 i 0.0000 − 0.0000 i

If the probability of pumping is unitary the results change as shown
below. It is worth noticing that |Ψ−〉 “cooling” is successfully performed
after one iteration (as can be seen in Fig. 4.11).
The full Matlab code is listed in Appendix A.

I n s e r t a p r o bab i l i ty o f pumping : 1

I n i t i a l d en s i ty matrix :

p s i =

0.1896 0.0108 + 0.0106 i −0.0990 − 0.0642 i 0.1418 + 0.0765 i

0.0108 − 0.0106 i 0.2172 0.0309 + 0.0222 i −0.0516 + 0.0273 i

−0.0990 + 0.0642 i 0.0309 − 0.0222 i 0.3409 −0.0837 + 0.1232 i

0.1418 − 0.0765 i −0.0516 − 0.0273 i −0.0837 − 0.1232 i 0.2523

Final den s i ty matrix d es i r ed :

PSIm =

0 0 0 0

0 0.5000 −0.5000 0

0 −0.5000 0.5000 0

0 0 0 0

System dens i ty matrix a f t e r 1 i t e r a t i o n :

phi =

0.0000 − 0.0000 i 0.0000 + 0.0000 i −0.0000 − 0.0000 i 0.0000 − 0.0000 i

0.0000 − 0.0000 i 0.5000 − 0.0000 i −0.5000 − 0.0000 i −0.0000 + 0.0000 i

0 − 0.0000 i −0.5000 − 0.0000 i 0.5000 0.0000 − 0.0000 i

0.0000 − 0.0000 i 0.0000 + 0.0000 i −0.0000 − 0.0000 i −0.0000 − 0.0000 i

System dens i ty matrix a f t e r 20 i t e r a t i o n s :

phi =

−0.0000 + 0.0000 i 0 0 −0.0000 − 0.0000 i

0 0.5000 − 0.0000 i −0.5000 + 0.0000 i 0

0 −0.5000 + 0.0000 i 0.5000 − 0.0000 i 0

−0.0000 − 0.0000 i 0 0 −0.0000 + 0.0000 i

4.1.3 GHZ-state generation

Process implementation

The process implementing the dissipative preparation of a four-qubit Green-
berger - Horne - Zeilinger (GHZ) state (|0000〉+ |1111〉)/

√
2, described in

[2], can be seen as an extension to a four-qubit system of the method used
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Figure 4.8: Probability of finding the system in one of the Bell-states for 20
iterations of the process (p = 0.5)

PHIp

PHIm

PSIp

PSIm

0

0.2

0.4

0.6

0.8

4°

Bell States projectors

3°

Action of the map X
1
X

2
 and Y

1
Y

2

2°

Y
1
Y

2

1°

X
1
X

2

First iteration map steps

Initial state

P
ro

ba
bi

lit
y

Figure 4.9: Action of the maps X1X2 and Y1Y2 on the system density matrix
after the first iteration (p = 0.5)

for the Bell-states cooling, analyzed in section §4.1.2. The aim here is to
achieve the projective operator: ρS 7→ |GHZ〉〈GHZ| through stabilizers
pumping. First of all, for convenience, we rename the four-qubit system
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Figure 4.10: Probability of finding the system in one of the Bell-states for 20
iterations of the process (p = 1)
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Figure 4.11: Action of the maps X1X2 and Y1Y2 on the system density matrix
after the first iteration (p = 1)

orthonormal basis states containing GHZ-state:

|b0/1〉 :=
(|0000〉 ± |1111〉)√

2
, |b2/3〉 :=

(|0001〉 ± |1110〉)√
2

,

|b4/5〉 :=
(|0010〉 ± |1101〉)√

2
, |b6/7〉 :=

(|0011〉 ± |1100〉)√
2

,

|b8/9〉 :=
(|0100〉 ± |1011〉)√

2
, |b10/11〉 :=

(|0101〉 ± |1010〉)√
2

,

|b12/13〉 :=
(|0110〉 ± |1001〉)√

2
, |b14/15〉 :=

(|0111〉 ± |1000〉)√
2

.

(4.16)
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In this notation |GHZ〉 = |b0〉.

GHZ-state is uniquely characterized as the simultaneous eigenstate of
the four stabilizers Z1Z2, Z2Z3, Z3Z4 and X1X2X3X4, all with eigenvalue
+1. Hence the pumping dynamics into the GHZ-state are realized by
four consecutive dissipative steps, each pumping the system into the +1
eigenspaces of the four stabilizers. In the table below we list the eigen-
values of each state (4.16) for stabilizer operators Z1Z2, Z2Z3, Z3Z4 and
X1X2X3X4.

State Z1Z2 Z2Z3 Z3Z4 X1X2X3X4

|b0〉=|GHZ〉 +1 +1 +1 +1
|b1〉 +1 +1 +1 −1
|b2〉 +1 +1 −1 +1
|b3〉 +1 +1 −1 −1
|b4〉 +1 −1 −1 +1
|b5〉 +1 −1 −1 −1
|b6〉 +1 −1 +1 +1
|b7〉 +1 −1 +1 −1
|b8〉 −1 −1 +1 +1
|b9〉 −1 −1 +1 −1
|b10〉 −1 −1 −1 +1
|b11〉 −1 −1 −1 −1
|b12〉 −1 +1 −1 +1
|b13〉 −1 +1 −1 −1
|b14〉 −1 +1 +1 +1
|b15〉 −1 +1 +1 −1

Table 4.1: Eigenvalues of eigenstates |bi〉 (i = 0, ..., 15) of stabilizers Z1Z2,
Z2Z3, Z3Z4, X1X2X3X4

Returning to the implementation of the process, the first three pumping
steps are described by the Kraus map:

ρS 7→ E ′(ρS) = ρ′S = E1ρSE
†
1 + E2ρSE

†
2 (4.17)

E1 =
1

2
(1 + ZiZj) (4.18)

E2 = Xj
1

2
(1− ZiZj) (4.19)
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for i, j = 12, 23, 34.

The Kraus maps are constructed such that the +1 eigenspace of ZiZj is
left invariant, whereas a spin flip Xj on the second spin (index j) converts
with unitary probability -1 into +1 eigenstates. The action of the maps
Z1Z2, Z2Z3 ans Z3Z4 on the four-qubit system are shown in Fig 4.12, 4.13
and 4.14 respectively.

|b0〉 |b1〉 |b2〉 |b3〉

|b4〉 |b5〉 |b6〉 |b7〉

|b8〉 |b9〉 |b10〉 |b11〉

|b12〉 |b13〉 |b14〉 |b15〉

Z1Z2

+1

−1

Figure 4.12: Schematic representation of Z1Z2 map action

|b0〉 |b1〉 |b2〉 |b3〉

|b4〉 |b5〉 |b6〉 |b7〉

|b8〉 |b9〉 |b10〉 |b11〉

|b12〉 |b13〉 |b14〉 |b15〉

Z2Z3

Z2Z3

+1

+1

−1

Figure 4.13: Schematic representation of Z2Z3 map action
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Figure 4.14: Schematic representation of Z3Z4 map action
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Figure 4.15: Schematic representation of X = X1X2X3X4 map action

The fourth dissipative step, which realizes pumping into the +1 eigenspace
of X1X2X3X4, is described by the Kraus map (see also Fig. 4.15):

ρ′S 7→ E(ρS) = E1ρSE
†
1 + E2ρSE

†
2 (4.20)

E1 =
1

2
(1 +X1X2X3X4) (4.21)

E2 = Z4
1

2
(1−X1X2X3X4) (4.22)

Fig. 4.16 shows the action of the four maps on the system state.
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Experimental quantum circuit

The experimental quantum circuit of GHZ state pumping has been engi-
neered using an ancilla qubit and this universal set of operators (experi-
mentally realized through laser techniques):

1. a Mølmer-Sørensen (MS) entangling gate:

UX2(θ) = exp
(

− i
θ

4
(
∑

i

Xi)
2
)

, (4.23)

2. a collective single-qubit rotation gate6:

UX(θ) = exp
(

− i
θ

2

∑

i

Xi

)

, (4.24)

3. a single-qubit rotation Z-gate:

UZi
(θ) = exp

(

− i
θ

2
Zi

)

. (4.25)

The experimental implementation of the four dissipative maps described
in the previous section is given schematically in Fig. 4.17.
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Figure 4.17: Quantum circuit used to generate GHZ-state

Here unitary operators denoted by UZ1Z2
, UZ2Z3

, UZ3Z4
and UX1X2X3X4

consist of a well-defined sequence of operators (4.23), (4.24) and (4.25).

6Shifting the optical phase of the bichromatic light field by π/2 exchanges Xi by Yi
in these operations.
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These gate sequences are explicitly given below7:

Step 1: UZ1Z2
(pumping into the +1 eigenspace of Z1Z2):

UY (−π/2)UZ2
(−π/2)

UX(−π/2)UZ2
(−π/2)UX(−π/2)

UZ1
(π)UX2(π/4)UZ2

(π)UZ0
(π)UX2(π/4)

UX(−π/2)UZ2
(−π/2)UZ0

(−π/2)UX(π/2)

UX2(π/4)UZ4
(π)UZ3

(π)UX2(π/4)

UY (π/2)UX(−π/2)UZ0
(−π/2)UX(π/2)

(4.26)

Step 2: UZ2Z3
(pumping into the +1 eigenspace of Z2Z3):

UY (−π/2)UZ3
(−π/2)

UX(−π/2)UZ3
(−π/2)UX(−π/2)

UZ2
(π)UX2(π/4)UZ3

(π)UZ0
(π)UX2(π/4)

UX(−π/2)UZ3
(−π/2)UZ0

(−π/2)UX(π/2)

UX2(π/4)UZ4
(π)UZ1

(π)UX2(π/4)

UY (π/2)UX(−π/2)UZ0
(−π/2)UX(π/2)

(4.27)

Step 3: UZ3Z4
(pumping into the +1 eigenspace of Z3Z4):

UY (−π/2)UZ4
(−π/2)

UX(−π/2)UZ4
(−π/2)UX(−π/2)

UZ3
(π)UX2(π/4)UZ4

(π)UZ0
(π)UX2(π/4)

UX(−π/2)UZ4
(−π/2)UZ0

(−π/2)UX(π/2)

UX2(π/4)UZ2
(π)UZ1

(π)UX2(π/4)

UY (π/2)UX(−π/2)UZ0
(−π/2)UX(π/2)

(4.28)

Step 4: UX1X2X3X4
(pumping into the +1 eigenspace of X1X2X3X4):

UX(−π/2)
UZ4

(−π/2)UX(π/2)UZ4
(−π/2)

UX2(π/4)UZ4
(π)UZ0

(π)UX2(π/4)

UZ4
(−π/2)UX(−π/2)UZ0

(−π/2)UX(π/2)

UX2(π/4)UX2(π/4)

(4.29)

7Local rotations of the system ions at the end of a pumping step, which would be
compensated at the beginning of the subsequent pumping step, were omitted when
several dissipative maps were applied in a row. The corresponding gate operations of
the sequences are displayed in blue in Steps 1-3.
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Hence the complete circuit decomposition of one pumping cycle involves
16 five-ion entangling operations (4.23), 28 (20) collective unitaries (4.24)
and 36 (34) single-qubit operations (4.25), for a total of 80 (70) quantum
operations with (without) optional operations in blue.

Numerical simulation

We wrote a Matlab program to test the experimental quantum circuit.
The complete Matlab code can be found in Appendix A.
Here we report the output of the program for a completely mixed initial
state and in Fig. 4.18 and 4.19 the evolution of the system after each
pumping step.

I n i t i a l d en s i ty matrix :

Columns 1 through 8

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

Columns 9 through 16

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

Final den s i ty matrix :

0 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 5
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Figure 4.18: Probability of finding the system in one of the GHZ states basis after each pumping step
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Figure 4.19: Evolution of real and imaginary part of system density matrix: (a) initial completely mixed state, (b) pumping
into the +1 eigenspace of Z1Z2, (c) pumping into the +1 eigenspace of Z2Z3, (d) pumping into the +1 eigenspace of Z3Z4,
(e) pumping into the +1 eigenspace of X1X2X3X4
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4.2 An elementary quantum feedback control

approach

4.2.1 Description of the control strategy

The goal of this section is to illustrate an alternative implementation of
the solutions proposed in [2] that employs the simple feedback control cir-
cuit previously analyzed in chapter 3. A scheme of this circuit can be seen
below.

-
ρt

{Mk}

Gen. Measurement

-
ρt|k =

MkρtMk
†

tr(MkρtMk
†)

{Uk}

Unitary Control

Classical Information k

6
ρt+1 = Ukρt|kUk

†

According to the result obtained with a set of generalized measurements
{Mk}8, the corresponding unitary operator {Uk} is applied to the system,
resulting in a discrete-time evolution of the system ρ as described by:

ρ(t+ 1) =
∑

k

UkMkρ(t)Mk
†Uk

† (4.30)

In the next paragraphs we try to find two sets of operators {Mk} and
{Uk} that implement the maps described in the previous section for both
Bell-state and GHZ-state “cooling” processes.

8We recall that a set of operators {M1,M2, ..,Mm} on a Hilbert space H is called
generalized measurement operators if they satisfy the condition:

∑m

i=1Mi
†Mi = I.

A general measurement on the system for these operators is a process such that when
the system is in state |ψ〉:
(i) the result i is obtained with probability pi = 〈ψ|M †

iMi|ψ〉,
(ii) the state collapses to 1√

p
Mi|ψ〉.
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4.2.2 Bell-state |Ψ−〉 generation

Application of the control strategy:

(i) A trivial case: p = 1

For a unitary probability of pumping it’s trivial to find the set of gener-
alized measurements M1 and M2. In fact, in this case the maps (4.10),
(4.11) can be rewritten as:

E1 = Y1
1

2
(1 +X1X2) = Y1 · Π+1 (4.31)

E2 =
1

2
(1−X1X2) = Π−1 (4.32)

where Π+1 denotes the “bad" projective operator for the +1 eigenspace of
X1X2 and Π−1 is the “good" one. So in this simple case M1,M2 are the
projective or von Neumann’s mesurements9 Π+1 and Π−1. The unitary
operators U1,U2 in this case are respectively Y1 and I, where I is the iden-
tity operator. For the maps (4.13), (4.14) the reasoning is analogous and
we can write: {M ′

1,M
′
2} = {Π′

+1,Π
′
−1} and {U ′

1, U
′
2} = {X1, I}, where we

define Π′
+1 = 1 + Y1Y2 and Π′

−1 = 1 − Y1Y2. The implemented control
process can be described as a dead-beat control10.

A possible experimental quantum circuit that implements the feedback
control strategy is shown in fig 4.20.

In step (i) we apply the operator X ⊗ Π+1 + I ⊗ Π−1, so that the
information about which of the two eigenspaces the system is in is stored
in an ancillary qubit (i.e. if the system state is in +1 eigenspace of X1X2,
or Y1Y2 for the second map, then the ancilla qubit is flipped).

Then in (ii) the ancilla qubit is measured and according to the result
a Y gate (or a X gate for second map) is applied to the first qubit of the
system.

9We recall that (see paragraph §2.2) a Projective or von Neumann’s measurement is
a set of mutually orthogonal projection operators {Π1,Π2, ...,Πm} which complete to
identity, i.e., ΠiΠj = δi,jΠj and

∑m

i=1 Πi
†Πi = I.

When this measurement is carried out on a system with state |ψ〉 then:

(i) the result i is obtained with probability pi = 〈ψ|Π†
iΠi|ψ〉,

(ii) the state collapses to 1√
p
Πi|ψ〉.

10The dead-beat controller aims for the best response possible to a set-point change.
Qualitatively, this means that following a set-point change, and after a time period
equal to the system time-delay, the output should be at set-point and remain there.
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(i) (ii) (iii) (i) (ii) (iii)
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Figure 4.20: Scheme of a quantum circuit realizing Bell-state |Ψ−〉 generation
through feedback control strategy

Finally in (iii) the ancilla qubit is reset to |0〉 through a X gate condi-
tioned on the ancilla measurement result.

We make use of an ancilla qubit, instead of simply making the projec-
tive measurement on the system and then acting according to the result,
because in this case it’s possible to engineer the first quantum gate using
a MS gate.

(ii) The general case: p 6= 1

If the probability of pumping is not unitary, in choosing a suitable set of
measurement {M1,M2} we must include the value of the desired probabil-
ity p.

First of all we rewrite (4.10), (4.11) in the new notation:

E1 =
√
p · Y1 · Π+1 (4.33)

E2 = Π−1 +
√

1− p · Π+1 (4.34)

For the map X1X2(p) we can choose M1 =
√
p · Π+1 and M2 = Π−1 +√

1− p ·Π+1, as they satisfy the completeness relation. In this way the set
of unitary operators is still the same: {U1, U2} = {Y1, I}.
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For the map Y1Y2(p) we have:

E ′
1 =

√
p ·X1 · Π′

+1 (4.35)

E ′
2 = Π−1 +

√

1− p · Π′
+1. (4.36)

So, in analogy with the previous case, we can write {M ′
1,M

′
2} = {√p ·

Π′
+1,Π

′
−1 +

√
1− p · Π′

+1} and {U ′
1, U

′
2} = {X1, I}.

In this general case, the problem of finding an experimental circuit
which performs the measurements M1,M2 andM ′

1,M
′
2 gets trickier and the

availability of such an experimental implementation depends on the state
of-the-art in the field of experimental quantum computing and simulation.

MS gate analysis

In this paragraph we try to study the Mølmer-Sørensen gate (MS for sim-
plicity) in detail.

The MS gate is often used in the experimental field of quantum infor-
mation processing and computation with trapped ions.

The MS entangling gate (see also [18]) is based on pairwise two-ion
interaction terms and can be parametrized by two angles θ and φ:

UMS(θ, φ) = exp
(

− i
θ

4
(cosφSx + sin φSy)

2
)

, (4.37)

The sum in the collective spin operators Sx =
∑n

i=0Xi and Sy =
∑n

i=0 Yi
with X, Y the usual Pauli matrices, is understood to be performed over all
ions involved in the gate.
On the rest of the work we suppose φ = 0, in this way the relation (4.37)
can be rewritten as:

UX2(θ) = exp
(

− i
θ

4

( n∑

i=0

Xi

)2)

. (4.38)

In the experimental quantum circuit proposed in [2] it’s used an MS
gate with a phase angle θ = π/2. In this case the UX2(π/2) operator can
be decomposed in a more explicit form as:

UX2

(π

2

)

= U ′
X(I ⊗Π−1 +X ⊗Π+1), (4.39)
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where U ′
X is a unitary 8× 8 matrix of the form:

U ′
X =

1

2
e−iπ/8















1 −1 −1 −1 0 0 0 0
−1 1 −1 −1 0 0 0 0
−1 −1 1 −1 0 0 0 0
−1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 −1
0 0 0 0 −1 1 −1 −1
0 0 0 0 −1 −1 1 −1
0 0 0 0 −1 −1 −1 1















. (4.40)

In particular U ′
X can be rewritten as:

U ′
X = I ⊗ 1

2
e−iπ/8







1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1






= I ⊗ U ′′

X . (4.41)

The action of the unitary operator U ′′
X on the Bell states basis (4.1) is

described as:

U ′′
X |Φ+〉 = − 1√

2
e−iπ/8 · |Ψ+〉

U ′′
X |Φ−〉 =

1√
2
e−iπ/8 · |Φ−〉

U ′′
X |Ψ+〉 = − 1√

2
e−iπ/8 · |Φ+〉

U ′′
X |Ψ−〉 =

1√
2
e−iπ/8 · |Ψ−〉

Then U ′′
X is not harmful for our purpose since it swaps the Bell-states in

+1 eigenspace of X1X2 and does not change, except for a constant, the
other Bell-states in the -1 eigenspace. So In the Bell U ′′ basis, BBell =
{|Φ+〉, |Ψ+〉, |Φ−〉, |Ψ−〉}, can be written as:

U ′′
X,Bell =

1√
2
e−iπ/8

[
X O
O I

]

, (4.42)

where symbol O denotes a 2× 2 matrix of zeros.

Finally we have obtained a decomposition of the MS gate UX2(π/2) in
a form that includes two terms:
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1. The operator U⋆ = I⊗Π−1+X⊗Π+1 that stores in the ancilla qubit
the information about in which of the two eigenspaces the system is.

2. An additional operator U ′
X : a unitary matrix not harmful for our

purposes.

The MS gate UY 2(π/2), used to implement the dissipative map Y1Y2,
can be similiarly decomposed in the form:

UY 2

(π

2

)

= U ′
Y (Z ⊗ Π′

−1 +X ⊗Π′
+1), (4.43)

where in this case unitary operator U ′
Y stands for:

U ′
Y =

1

2
e−iπ/8















1 1 1 1 0 0 0 0
−1 1 −1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
1 −1 −1 1 0 0 0 0
0 0 0 0 −1 −1 −1 −1
0 0 0 0 1 −1 1 −1
0 0 0 0 1 1 −1 −1
0 0 0 0 −1 1 1 −1















, (4.44)

U ′
Y can be rewritten in the form:

U ′
Y = Z ⊗ 1

2
e−iπ/8







1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1






= Z ⊗ U ′′

Y . (4.45)

Even in this case the two operators Z, acting on the ancilla qubit, and U ′′
Y ,

acting on system qubits, do not affect the desired result as Z gate does
not change the outcome of the measurement in the standard basis of the
ancilla qubit and the unitary operator U ′′

Y swaps the +1 Bell eigenstates
of the stabilizer Y1Y2 and does not change the -1 Bell eigenstates.

In conclusion we have found a decomposition of the MS gate UY 2(π/2)
which involves:

1. The operator U⋆ = Z⊗Π′
−1+X⊗Π′

+1 that stores in the ancilla qubit
the information about in which of the two eigenspaces of stabilizer
Y1Y2 the system is.

2. An additional operator U ′
Y : a unitary matrix that does not affect

the relevant action of U⋆ operator, since it maps the +1 and -1
eigenspaces into themselves.
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An alternative quantum circuit implementation

A quantum circuit that implements the elementary quantum feedback con-
trol for the Bell-state |Ψ−〉 “cooling” process with a probability of pumping
p = 1 using MS gates UX2(π/2) and UY 2(π/2) is shown in Fig. 4.21.
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Figure 4.21: Quantum circuit for Bell-state |Ψ−〉 generation using feedback
control strategy

Here the main steps related to X1X2 map:

(i) Information about whether the system is in the “good” (-1) or “bad”
(+1) eigenspace of X1X2 is mapped by the MS gate onto the logical states
0,1 of the ancilla qubit.

(ii) A measurement is made on the ancilla qubit: if it collapses on the
|1〉 state then an Y1 operator is applied to the system, otherwise nothing
is made.

(iii) The ancilla qubit is reset to |0〉 through the application, which
depends on the outcome of the measurement, of a X gate on the ancilla.

By comparing the experimental quantum circuit engineered by Barreiro
et al. in [2] (Fig. 4.5) with the circuit analyzed here (Fig. 4.21), the main
difference is that using an elementary feedback control strategy we save
two MS gates. Furthermore, if we consider that the real circuit used in the
experiment consists of 18 unitary operations and 2 dissipative steps (see
supplementary informations of [2]) this difference rises to 14 gates11.

11In the count of gates we assumed the dissipative step of ancilla qubit resetting



60 Entanglement Generation

4.2.3 GHZ-state generation

Application of the control strategy

In this case the Kraus operators of the first three dissipative maps (4.18),
(4.19) can be rewritten as:

E1 = Πij,+1, (4.46)

E2 = Xj · Πij,−1 ij = 12, 23, 34, (4.47)

where the projective operators Πij,+1 and Πij,−1 stand for 1
2
(1 +ZiZj) and

1
2
(1−ZiZj). Hence the two sets of operators {Mk} and {Uk}, k = 1, 2, are

given respectively by: {Πij,+1,Πij,−1} and {I,Xj}, for ij = 12, 23, 34.

For the fourth pumping step X1X2X3X4, described by Kraus operators
(4.21) and (4.22), we can write:

E1 = Π′
+1, (4.48)

E2 = Z4 ·Π′
−1, (4.49)

here the von Neumann’s operators Π′
+1 and Π′

−1 are the projections onto +1
and -1 eigenspaces of stabilizer X1X2X3X4:

1
2
(1 +X1X2X3X4) and 1

2
(1−

X1X2X3X4). So, similarly to previous cases, we can choose: {M1,M2} =
{Π′

+1,Π
′
−1} and {U1, U2} = {I, Z4}.

An alternative quantum circuit implementation

The measurement steps for the first three maps, described by the set of
projective operators {Π+1,ij,Π−1,ij}, for ij = 12, 23, 34, can be engineered
through MS gates acting on the system qubit i, j and on an ancilla qubit12

and a few more unitary gates. More specifically MS gate UY 2,0ij(π/2)
13

can be decomposed as:

UY 2,0ij(π/2) = U ′
0ij · (I ⊗ Π+1,ij +X ⊗ Π−1,ij), (4.50)

equivalent, in term of experimental implementation times, to a unitary gate acting on
the ancilla.

12MS gate acting on 3 of 5 ions can be realized through different ways : (i) by focusing
the driving laser of the MS gate operation only onto the relevant subset of ions, or (ii)
by hiding the electronic population of these ions in uncoupled electronic states for the
duration of the gate sequence, or (iii) by means of refocusing techniques. For more
details see [18].

13Subscripts 0, i, j stands for qubits (0 is the ancilla) on which the MS operator acts.
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unitary operator U ′
0ij can be written as a sequence of gates:

U ′
0ij = U ′′

0ij · UX2,0ij(−π/2)UY 2,0ij(−π/4)UZ,0(π)UY 2,0ij(π/4)

UX2,0ij(π/4)UZ,0(π)UX2,0ij(π/4)
(4.51)

where U ′′
0ij written in matrix form is:

U ′′
0ij =

1

2
e−iπ/8















0 0 0 0 −1 i i 1
0 0 0 0 i −1 1 i
0 0 0 0 i 1 −1 i
0 0 0 0 1 i i −1

−1 i i 1 0 0 0 0
i −1 1 i 0 0 0 0
i 1 −1 i 0 0 0 0
1 i i −1 0 0 0 0















= X ⊗ U ′′′
ij ,

(4.52)
Finally decomposition of operator U ′′′

ij gives:

U ′′′
ij =

1

2
e−iπ/8







−1 i i 1
i −1 1 i
i 1 −1 i
1 i i −1






=

= e−iπ/8 · UX2,ij(π/2)UX,ij(π/2)UX2,ij(−π/2).

(4.53)

In conclusion, after some rearrangements of equations (4.50), (4.51) and
(4.53), the projective operator I⊗Π+1,ij +X⊗Π−1,ij = U ′

0ij
† ·UY 2,0ij(π/2)

can be replaced, for example, by the sequence14 (see also Fig. 4.22):

UX2,0ij(−π/4)UZ,0(−π)UX2,0ij(−π/4)UY 2,0ij(−π/4)
UZ,0(−π)UY 2,0ij(π/4)UX2,0ij(π/2)UX,0(π)

UX2,ij(π/2)UX,ij(−π/2)UX2,ij(−π/2)UY 2,0ij(π/2)

(4.54)

The measurement step of the fourth map X1X2X3X4 can be engineered
through a MS gate UX2,01234(π/2). In fact it has a decomposition:

UX2,01234(π/2) = U ′
01234 · (I ⊗Π′

+1 +X ⊗Π′
−1), (4.55)

where the operator U ′
01234 = I ⊗ U ′′

1234 and it can be demonstrated that
U ′′
1234 does not affect +1 and -1 eigenstates of stabilizer X1X2X3X4.

A scheme of the final circuit is shown in Fig. 4.23.

14In writing the final sequence we use matrix properties: (i) (AB)† = B†A†, (ii)
U(θ)† = U(−θ).
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Figure 4.23: Quantum circuit for GHZ-state generation using feedback control
strategy (gate UZiZj

stands for gate sequence (4.54))
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Assuming that unitary operations used in sequence (4.54) are experi-
mentally available15, in this new formulation of the circuit we use 41 gates
with a saving of 39 (29 after simplifications) gates in comparison to the
circuit engineered by Barreiro et al. (Fig. 4.17).

4.3 Experimental implementation times: a brief

analysis

In this section we focus on the implementation times required for the ex-
perimental realization of the previously described operations in a 40Ca+-ion
traps architecture (see also Appendix B). This analysis does not pretend
to be accurate or rigorous, but it must be viewed as an attempt to com-
pare the two control strategies described in the work and, consequently,
to provide some reasons regarding why the solution we study can be of
potential interest in practice. In particular in the rest of the analysis we
refer to the two strategies concerning Bell state preparation.

First of all we list the experimental times for the operations used in the
two strategies, most of these informations can be found in the scientific
works of the Quantum Optics and Spectroscopy Group directed by Rainer
Blatt of the Innsbruck University:

• 3-qubit Mølmer-Sørensen gate UX2(π/2) and UY 2(π/2) (fidelity16 99%):
tMS ≃ 100 µs ([15]);

• Single qubit gates (Rabi flops, fidelity >99%): tS ≃ 1− 10 µs ([11]);

• State inizialization:

– optical pumping (fidelity 99%): tinit ≃ 70 µs ([15]);

– frequency resolved optical pumping (fidelity >99.8%): addi-
tional 500 µs ([15]);

15Probably this hypothesis fails because some gates used in the sequence, e.g. UX2,ij ,
could not be available in practice or may require additional operations. Nevertheless it
is also possible that exist a better experimental implementation of operators UZiZj

. In
any case our aim here is not to exactly calculate the number of required gates but to
show a possible (maybe better) alternative implementation of the circuit.

16Fidelity can be seen as a measure of the agreement between the actual outcome of
a quantum operation and the desired state, and it will in general depend on the initial
state on which the operation is applied. Since the operation may generally be applied
to any arbitrary state, it is natural to average the fidelity over all pure initial states,
chosen uniformly in the system Hilbert space.
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Figure 4.24: Schematic view of quantum operations implementation times in
ion-traps architecture (operations in blue are going to be used in the following
analysis)

• Single qubit measurement (fluorescence detection):

– accurate measurements (used in final steps, fidelity ∼ 100%):
tm1 ≃ 3.5 ms ([23]);

– fast measurements (if the result has to be used for immediately
following operations, as in our case; fidelity 99%): tm2 ≃ 300 µs
([23]);

– in June 2008 the Ion Trap Quantum Computing Group of the
University of Oxford developed a technique for fast high-fidelity
readout of trapped ion qubits (fidelity 99.991%): tm3 = 145 µs
([11, 19]).
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In Fig. 4.24 it is shown a schematic summary of currently achieved
implementation times for these and other operations in trapped 40Ca+-ion
quantum computing settings.

The experimental quantum circuit described in the supplementary in-
formations section of [2] consists of: 4 MS gate UX2(π/2), 2 collective
single-qubit gates UY (π/2), 3 single-qubit Z gates and 1 ancilla qubit reset-
ting operation to cool the system. Using the informations listed above and
considering, in first approximation, negligible the times required for single-
qubit gates, we obtain a total process time: ttot,1 ≃ 4 · tMS + tinit ≃ 470 µs.

In the elementary feedback control strategy we use: 1 MS gate UX2(π/2),
1 ancilla qubit measurement, 2 single-qubit conditioned X gates. Neglect-
ing, as previously, times of single-qubit rotations and assuming a measure-
ment time tm2 = 300 µs, we achieve a process time: ttot,2 ≃ tMS + tm2 ≃
400 µs.

In conclusion we can state that the total process times, ttot,1 and ttot,2,
are approximately the same in both cases. Furthermore if fast measure-
ments are employed the feedback control strategy requires even less time.

4.4 Conclusions

In this chapter we have analyzed and compared two control strategies for
quantum state preparation: the first one used in [2] can be called “coherent”
control, the second one feedback control.

The first strategy involves the following steps: (i) “coherent” manipu-
lation of the system using unitary gates, (ii) final dissipative step to “cool”
the system qubits and obtain the desired discrete-time evolution. The sec-
ond one instead has as a first step the measurement of the system realized
through a set of Kraus operators {Mk}, then accordingly to the outcome of
this measurement it’s applied to the system the appropriate unitary gate
in the set {Uk}. These two strategies are summarized in Fig. 4.25.

In the cases analyzed (Bell-state and GHZ-state generation) we have
found two alternative quantum circuits implementing a feedback control
strategy. The great advantage of our implementation is in the number
of operations (unitary gates, measurements and state reinitializations) re-
quired: 8 instead of 20 for Bell-state generation and 45 instead of 84 (74
after circuit simplifications) for GHZ-state generation. Nevertheless, even
though implementation times of required operations for Bell-state prepa-
ration seem to confirm the positive result, this advantage must be verified
in term of current experimental capabilities.
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Figure 4.25: Schematic representation of the two control strategy analyzed in
this work: (a) “coherent” control strategy, (b) feedback control strategy.
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Matlab Codes

We list here the Matlab codes realized to simulate quantum circuits de-
scribed in chapter 4.

It is worth noticing that in builiding the programs we used the auxiliary
functions1:

1. TrX() that calculates the partial trace of a matrix;

2. randRho() that returns a random density matrix of dimension spec-
ified in the arguments;

3. killtiny() that sets a scalar or a matrix that have very small mag-
nitude to exactly zero;

4. tensor() that returns tensor product of two or more arguments ( a
generalization of built-in Matlab function kron());

5. MSGate(pauli,alpha) that calculates the 5-qubits Mølmer- Sørensen
gate Upauli2(alpha/4);

6. UGate(pauli,alpha) that calculates the 5-qubits collective single-
qubit rotation gate Upauli(alpha/2);

7. UOneGate(pauli,i,alpha) that calculates the single-qubit rotation
gate Upaulii(alpha/2);

1Functions 1,2,3,4 can be found in the Matlab package: QuantInf package

(version 0.4) (link http://www.dr-qubit.org/matlab.php#quantinf). We imple-
ment functions 5,6,7: their codes are listed in the end of the appendix.

http://www.dr-qubit.org/matlab.php#quantinf
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Bell State |Ψ−〉 Generation

clear all;

2 clc;

4 % Probability of pumping

p = input (’Insert a probability of pumping: ’);

6

% Phase gate angles

8 theta = pi/2;

alpha = asin (sqrt (p));

10

% Pauli gates

12 I = eye (2);

X = [0 1;1 0];

14 Y = [0 -i;i 0];

Z = [1 0;0 -1];

16 X1 = kron (X,kron (I,I));

X2 = kron (I,kron (X,I));

18 X3 = kron (I,kron (I,X));

Y1 = kron (Y,kron (I,I));

20 Y2 = kron (I,kron (Y,I));

Y3 = kron (I,kron (I,Y));

22

24 % Bell States density matrices

PHIp = ([1 0 0 1]/ sqrt (2)) ’*([1 0 0 1]/ sqrt (2));

26 PHIm = ([1 0 0 -1]/sqrt (2)) ’*([1 0 0 -1]/sqrt (2));

PSIp = ([0 1 1 0]/ sqrt (2)) ’*([0 1 1 0]/ sqrt (2));

28 PSIm = ([0 1 -1 0]/ sqrt (2)) ’*([0 1 -1 0]/ sqrt (2));

30

% MS X gate

32 MS_X = expm (-i*theta /4*( X1 + X2 + X3)^2);

34 % U_Z gate

U_Z = expm (i*alpha *kron (Z,I));

36

% Controlled gate

38 C = kron ([1 0;0 0], U_Z) + kron ([0 0;0 1], eye (4));

40 % Initial random system density matrix

psi = randRho (4);

42

% MS_Y gate

44 MS_Y = expm (-i*theta /4*( Y1 + Y2 + Y3)^2);

46

color = summer (4);

48

% Number of iterations

50 k = 0;

% Plot of probability of finding the initial system in one of the Bell

52 % States

figure(1)

54 plot (k,killtiny (trace (PSIm *psi*PSIm ’)),’ow’,’MarkerFaceColor ’,color (4,:),...

’MarkerEdgeColor ’,color (4,:), ’MarkerSize ’ ,7.5);

56 hold on;

58 plot (k,killtiny (trace (PHIp *psi*PHIp ’)),’ow’,’MarkerFaceColor ’,color (1 ,:)...

,’MarkerEdgeColor ’,color (1,:), ’MarkerSize ’ ,7.5);

60 hold on;

62 plot (k,killtiny (trace (PHIm *psi*PHIm ’)),’ow’,’MarkerFaceColor ’,color (2 ,:)...

,’MarkerEdgeColor ’,color (2,:), ’MarkerSize ’ ,7.5);

64 hold on;

66 plot (k,killtiny (trace (PSIp *psi*PSIp ’)),’ow’,’MarkerFaceColor ’,color (3,:),...

’MarkerEdgeColor ’,color (3,:), ’MarkerSize ’ ,7.5);

68 hold on;

70 y0 = [killtiny (trace (PHIp *psi*PHIp ’)) killtiny (trace (PHIm *psi*PHIm ’))...

killtiny (trace (PSIp *psi*PSIp ’)) killtiny(trace (PSIm *psi*PSIm ’))];

72

74 % --- First iteration ---

% First Map:

76 % density matrix system+environment

phi = kron ([0 0;0 1], psi);

78 % step (i)

phi = MS_X *phi*MS_X ’;

80 % step (ii)

phi = C*phi*C’;
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82 % step (iii)

phi = MS_X *phi*MS_X ’;

84 % step (iv)

phi = TrX(phi ,1,[2,2,2]);

86 y1 = [killtiny (trace (PHIp *phi*PHIp ’)) killtiny (trace (PHIm *phi*PHIm ’))...

killtiny (trace (PSIp *phi*PSIp ’)) killtiny (trace (PSIm *phi*PSIm ’))];

88 % Second Map:

% ancilla qubit reset to 1

90 phi = kron ([0 0; 0 1], phi );

% step (i)

92 phi = MS_Y *phi*MS_Y ’;

% step (ii)

94 phi = C*phi*C’;

% step (iii)

96 phi = MS_Y *phi*MS_Y ’;

% step (iv)

98 phi = TrX(phi ,1,[2,2,2]);

y2 = [killtiny (trace (PHIp *phi*PHIp ’)) killtiny (trace (PHIm *phi*PHIm ’))...

100 killtiny (trace (PSIp *phi*PSIp ’)) killtiny (trace (PSIm *phi*PSIm ’))];

102 % Display results after 1 iteration

disp (’Initial density matrix: ’);

104 psi

disp (’Final density matrix desired: ’);

106 PSIm

disp (’System density matrix after 1 iteration : ’);

108 phi

110

% 20 iterations system simulation

112 for(k=1:20)

114 % Plot of probability of finding the system in one of the Bell States

% after k iterations

116 plot (k,killtiny (trace (PSIm *phi*PSIm ’)),’o’,’MarkerFaceColor ’,color (4,:),...

’MarkerEdgeColor ’,color (4,:), ’MarkerSize ’ ,7.5);

118 hold on;

120 plot (k,killtiny (trace (PHIp *phi*PHIp ’)),’o’,’MarkerFaceColor ’,color (1,:),...

’MarkerEdgeColor ’,color (1,:), ’MarkerSize ’ ,7.5);

122 hold on;

124 plot (k,killtiny (trace (PHIm *phi*PHIm ’)),’o’,’MarkerFaceColor ’,color (2,:),...

’MarkerEdgeColor ’,color (2,:), ’MarkerSize ’ ,7.5);

126 hold on;

128 plot (k,killtiny (trace (PSIp *phi*PSIp ’)),’o’,’MarkerFaceColor ’,color (3,:),...

’MarkerEdgeColor ’,color (3,:), ’MarkerSize ’ ,7.5);

130 hold on;

132

134 % Iteration process

phi = kron ([0 0;0 1], phi );

136 phi = MS_X *phi*MS_X ’;

phi = C*phi*C’;

138 phi = MS_X *phi*MS_X ’;

phi = TrX(phi ,1,[2,2,2]);

140 phi = kron ([0 0; 0 1], phi );

phi = MS_Y *phi*MS_Y ’;

142 phi = C*phi*C’;

phi = MS_Y *phi*MS_Y ’;

144 phi = TrX(phi ,1,[2,2,2]);

146 end

148 % Display results after 20 iterations

disp (’System density matrix after 20 iterations : ’);

150 phi

152 % Plot configuration

154 title (’Probability of finding the system in one of the Bell States’);

xlabel(’Number of iterations ’);

156 ylabel(’Probability ’);

legend(’\Psi^- state ’,’\Phi ^+ state ’,’\Phi^- state ’,’\Psi ^+ state ’);

158 grid on;

160

figure(2)

162 y = [y0

y1

164 y2];
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bar3 (y);

166 colormap summer;

grid on;

168 text (’Interpreter ’,’latex ’);

title (’Action of the map X_1X_2 and Y_1Y_2’);

170 xlabel(’Bell States projectors ’);

ylabel(’First iteration map steps ’);

172 zlabel(’Probability ’);

[hx ,hy] = format_ticks (gca ,{},{ ’Initial state ’, ’X_1X_2’,’Y_1Y_2 ’});

174 set(gca ,’Xtick ’ ,1:4, ’XTickLabel ’,{’PHIp ’, ’PHIm ’, ’PSIp ’, ’PSIm ’});

GHZ State Generation

clear all;

2 clc;

4

% Pauli gates

6 I = eye (2);

X = [0 1;1 0];

8 Y = [0 -i;i 0];

Z = [1 0;0 -1];

10

12 % GHZ state basis

GHZ = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[1;0] ,[1;0]) + tensor ([0;1] ,[0;1] ,[0;1] ,[0;1]));%0000

14 b1 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[1;0] ,[1;0]) - tensor ([0;1] ,[0;1] ,[0;1] ,[0;1]));

b2 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[1;0] ,[0;1]) + tensor ([0;1] ,[0;1] ,[0;1] ,[1;0]));%0001

16 b3 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[1;0] ,[0;1]) - tensor ([0;1] ,[0;1] ,[0;1] ,[1;0]));

b4 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[0;1] ,[1;0]) + tensor ([0;1] ,[0;1] ,[1;0] ,[0;1]));%0010

18 b5 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[0;1] ,[1;0]) - tensor ([0;1] ,[0;1] ,[1;0] ,[0;1]));

b6 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[0;1] ,[0;1]) + tensor ([0;1] ,[0;1] ,[1;0] ,[1;0]));%0011

20 b7 = (1/ sqrt (2))*( tensor ([1;0] ,[1;0] ,[0;1] ,[0;1]) - tensor ([0;1] ,[0;1] ,[1;0] ,[1;0]));

b8 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[1;0] ,[1;0]) + tensor ([0;1] ,[1;0] ,[0;1] ,[0;1]));%0100

22 b9 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[1;0] ,[1;0]) - tensor ([0;1] ,[1;0] ,[0;1] ,[0;1]));

b10 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[1;0] ,[0;1]) + tensor ([0;1] ,[1;0] ,[0;1] ,[1;0]));%0101

24 b11 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[1;0] ,[0;1]) - tensor ([0;1] ,[1;0] ,[0;1] ,[1;0]));

b12 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[0;1] ,[1;0]) + tensor ([0;1] ,[1;0] ,[1;0] ,[0;1]));%0110

26 b13 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[0;1] ,[1;0]) - tensor ([0;1] ,[1;0] ,[1;0] ,[0;1]));

b14 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[0;1] ,[0;1]) + tensor ([0;1] ,[1;0] ,[1;0] ,[1;0]));%0111

28 b15 = (1/ sqrt (2))*( tensor ([1;0] ,[0;1] ,[0;1] ,[0;1]) - tensor ([0;1] ,[1;0] ,[1;0] ,[1;0]));

30

% projectors

32 p0 = GHZ*GHZ ’;

p1 = b1*b1 ’;

34 p2 = b2*b2 ’;

p3 = b3*b3 ’;

36 p4 = b4*b4 ’;

p5 = b5*b5 ’;

38 p6 = b6*b6 ’;

p7 = b7*b7 ’;

40 p8 = b8*b8 ’;

p9 = b9*b9 ’;

42 p10 = b10*b10 ’;

p11 = b11*b11 ’;

44 p12 = b12*b12 ’;

p13 = b13*b13 ’;

46 p14 = b14*b14 ’;

p15 = b15*b15 ’;

48

50 % Completely mixed system density matrix

psi = ones (16); psi = normalise (psi );

52 psi0 = psi;

y0 = [killtiny (trace (p15*psi*p15 ’)) killtiny(trace (p14*psi*p14 ’))...

54 killtiny (trace (p13*psi*p13 ’)) killtiny (trace (p12*psi*p12 ’))...

killtiny (trace (p11*psi*p11 ’)) killtiny (trace (p10*psi*p10 ’))...

56 killtiny (trace (p9*psi*p9 ’)) killtiny(trace (p8*psi*p8 ’)) killtiny (trace (p7*psi*p7 ’))...

killtiny (trace (p6*psi*p6 ’)) killtiny(trace (p5*psi*p5 ’)) killtiny (trace (p4*psi*p4 ’))...

58 killtiny (trace (p3*psi*p3 ’)) killtiny(trace (p2*psi*p2 ’)) killtiny (trace (p1*psi*p1 ’))...

killtiny (trace (p0*psi*p0 ’))];

60

62 % Z1Z2 Map:

% density matrix system+environment

64 phi = kron ([0 0;0 1], psi);

66 phi = UGate (Y,pi/2)* UGate (X,-pi/2)* UOneGate (Z,0,-pi/2)* UGate (X,pi/2)* phi*UGate (X,pi/2) ’*...

UOneGate (Z,0,- pi/2)’* UGate (X,-pi/2)’* UGate (Y,pi/2)’;

68 phi = MSGate(X,pi/4)* UOneGate (Z,4, pi)* UOneGate (Z,3, pi)* MSGate(X,pi /4)* phi *...
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MSGate(X,pi/4)’* UOneGate (Z,3,pi)’* UOneGate (Z,4, pi)’* MSGate(X,pi/4)’;

70 phi = UGate (X,-pi/2)* UOneGate (Z,2,- pi/2)* UOneGate (Z,0,- pi/2)* UGate (X,pi/2)* phi *...

UGate (X,pi/2)’* UOneGate (Z,0,-pi/2)’* UOneGate (Z,2,- pi/2)’* UGate (X,-pi/2)’;

72 phi = UOneGate (Z,1, pi)* MSGate(X,pi/4)* UOneGate (Z,2, pi)* UOneGate (Z,0,pi )*...

MSGate(X,pi/4)* phi*MSGate(X,pi/4)’* UOneGate (Z,0,pi)’* UOneGate (Z,2, pi)’* MSGate(X,pi /4) ’*...

74 UOneGate (Z,1,pi)’;

phi = UGate (X,pi/2)* UOneGate (Z,2,-pi/2)* UGate (X,-pi/2)* phi*UGate (X,-pi /2) ’*...

76 UOneGate (Z,2,-pi/2)’* UGate (X,pi/2)’;

phi = UGate (Y,-pi/2)* UOneGate (Z,2,- pi/2)* phi*UOneGate (Z,2,- pi/2)’* UGate (Y,-pi/2)’;

78

80 psi = killtiny (TrX(phi ,1,[2,2,2,2,2]));

82 psi1 =psi;

84 y1 = [killtiny (trace (p15*psi*p15 ’)) killtiny (trace (p14*psi*p14 ’)) killtiny (trace (p13*psi*p13 ’))...

killtiny (trace (p12*psi*p12 ’)) killtiny (trace (p11*psi*p11 ’)) killtiny (trace (p10*psi*p10 ’))...

86 killtiny (trace (p9*psi*p9 ’)) killtiny (trace (p8*psi*p8 ’)) killtiny (trace (p7*psi*p7 ’))...

killtiny (trace (p6*psi*p6 ’)) killtiny (trace (p5*psi*p5 ’)) killtiny (trace (p4*psi*p4 ’))...

88 killtiny (trace (p3*psi*p3 ’)) killtiny (trace (p2*psi*p2 ’)) killtiny (trace (p1*psi*p1 ’))...

killtiny (trace (p0*psi*p0 ’))];

90

92 %Z2Z3 Map:

phi = kron ([0 0;0 1], psi );

94

phi = UGate (Y,pi/2)* UGate (X,-pi/2)* UOneGate (Z,0,-pi/2)* UGate (X,pi/2)* phi*UGate (X,pi/2) ’*...

96 UOneGate (Z,0,-pi/2)’* UGate (X,-pi/2)’* UGate (Y,pi/2)’;

phi = MSGate(X,pi/4)* UOneGate (Z,4, pi)* UOneGate (Z,1, pi)* MSGate(X,pi /4)* phi *...

98 MSGate(X,pi/4)’* UOneGate (Z,1,pi)’* UOneGate (Z,4, pi)’* MSGate(X,pi/4)’;

phi = UGate (X,-pi/2)* UOneGate (Z,3,- pi/2)* UOneGate (Z,0,- pi/2)* UGate (X,pi/2)* phi *...

100 UGate (X,pi/2)’* UOneGate (Z,0,-pi/2)’* UOneGate (Z,3,- pi/2)’* UGate (X,-pi/2)’;

phi = UOneGate (Z,2, pi)* MSGate(X,pi/4)* UOneGate (Z,3, pi)* UOneGate (Z,0,pi )*...

102 MSGate(X,pi/4)* phi*MSGate(X,pi/4)’* UOneGate (Z,0,pi)’* UOneGate (Z,3, pi)’* MSGate(X,pi /4) ’*...

UOneGate (Z,2,pi)’;

104 phi = UGate (X,pi/2)* UOneGate (Z,3,-pi/2)* UGate (X,-pi/2)* phi*UGate (X,-pi /2) ’*...

UOneGate (Z,3,-pi/2)’* UGate (X,pi/2)’;

106 phi = UGate (Y,-pi/2)* UOneGate (Z,3,- pi/2)* phi*UOneGate (Z,3,- pi/2)’* UGate (Y,-pi/2)’;

108

psi = killtiny (TrX(phi ,1,[2,2,2,2,2]));

110

psi2 =psi;

112

y2 = [killtiny (trace (p15*psi*p15 ’)) killtiny (trace (p14*psi*p14 ’)) killtiny (trace (p13*psi*p13 ’))...

114 killtiny (trace (p12*psi*p12 ’)) killtiny (trace (p11*psi*p11 ’)) killtiny (trace (p10*psi*p10 ’))...

killtiny (trace (p9*psi*p9 ’)) killtiny (trace (p8*psi*p8 ’)) killtiny (trace (p7*psi*p7 ’))...

116 killtiny (trace (p6*psi*p6 ’)) killtiny (trace (p5*psi*p5 ’)) killtiny (trace (p4*psi*p4 ’))...

killtiny (trace (p3*psi*p3 ’)) killtiny (trace (p2*psi*p2 ’)) killtiny (trace (p1*psi*p1 ’))...

118 killtiny (trace (p0*psi*p0 ’))];

120

%Z3Z4 Map:

122 phi = kron ([0 0;0 1], psi );

124 phi = UGate (Y,pi/2)* UGate (X,-pi/2)* UOneGate (Z,0,-pi/2)* UGate (X,pi/2)* phi*UGate (X,pi/2)’...

*UOneGate (Z,0,- pi/2)’* UGate (X,-pi/2)’* UGate (Y,pi/2)’;

126 phi = MSGate(X,pi/4)* UOneGate (Z,2, pi)* UOneGate (Z,1, pi)* MSGate(X,pi /4)* phi*MSGate(X,pi/4)’...

*UOneGate (Z,1, pi)’* UOneGate (Z,2, pi)’* MSGate(X,pi/4)’;

128 phi = UGate (X,-pi/2)* UOneGate (Z,4,- pi/2)* UOneGate (Z,0,- pi/2)* UGate (X,pi /2)...

*phi*UGate (X,pi/2)’* UOneGate (Z,0,-pi/2)’* UOneGate (Z,4,- pi/2)’* UGate (X,-pi/2)’;

130 phi = UOneGate (Z,3, pi)* MSGate(X,pi/4)* UOneGate (Z,4, pi)* UOneGate (Z,0,pi)*MSGate(X,pi /4)...

*phi*MSGate(X,pi/4)’* UOneGate (Z,0, pi)’* UOneGate (Z,4,pi)’* MSGate(X,pi/4)’* UOneGate (Z,3, pi)’;

132 phi = UGate (X,pi/2)* UOneGate (Z,4,-pi/2)* UGate (X,-pi/2)* phi*UGate (X,-pi/2)’* UOneGate (Z,4,-pi/2)’...

*UGate (X,pi/2)’;

134 phi = UGate (Y,-pi/2)* UOneGate (Z,4,- pi/2)* phi*UOneGate (Z,4,- pi/2)’* UGate (Y,-pi/2)’;

136

psi = killtiny (TrX(phi ,1,[2,2,2,2,2]));

138

psi3 =psi;

140

y3 = [killtiny (trace (p15*psi*p15 ’)) killtiny (trace (p14*psi*p14 ’)) killtiny (trace (p13*psi*p13 ’))...

142 killtiny (trace (p12*psi*p12 ’)) killtiny (trace (p11*psi*p11 ’)) killtiny (trace (p10*psi*p10 ’))...

killtiny (trace (p9*psi*p9 ’)) killtiny (trace (p8*psi*p8 ’)) killtiny (trace (p7*psi*p7 ’))...

144 killtiny (trace (p6*psi*p6 ’)) killtiny (trace (p5*psi*p5 ’)) killtiny (trace (p4*psi*p4 ’))...

killtiny (trace (p3*psi*p3 ’)) killtiny (trace (p2*psi*p2 ’)) killtiny (trace (p1*psi*p1 ’))...

146 killtiny (trace (p0*psi*p0 ’))];

148

%X1X2X3X4 Map:

150 phi = kron ([0 0;0 1], psi );
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152 phi = MSGate(X,pi/4)* MSGate(X,pi/4)* phi*MSGate(X,pi/4)’* MSGate(X,pi/4)’;

phi = UOneGate (Z,4,-pi /2)* UGate (X,-pi/2)* UOneGate (Z,0,- pi/2)* UGate (X,pi /2)*...

154 phi*UGate (X,pi/2)’* UOneGate (Z,0,-pi/2)’* UGate (X,-pi/2)’* UOneGate (Z,4,- pi/2)’;

phi = MSGate(X,pi/4)* UOneGate (Z,4, pi)* UOneGate (Z,0, pi)* MSGate(X,pi /4)* phi*MSGate(X,pi/4)’...

156 *UOneGate (Z,0, pi)’* UOneGate (Z,4,pi)’* MSGate(X,pi/4)’;

phi = UOneGate (Z,4,-pi /2)* UGate (X,pi/2)* UOneGate(Z,4,- pi/2)* phi*UOneGate (Z,4,- pi/2)’...

158 *UGate (X,pi/2)’* UOneGate(Z,4,- pi/2)’;

phi = UGate (X,-pi/2)* phi*UGate (X,-pi/2)’;

160

162 psi = killtiny (TrX(phi ,1,[2,2,2,2,2]));

164 psi4 =psi;

166 y4 = [killtiny (trace (p15*psi*p15 ’)) killtiny(trace (p14*psi*p14 ’)) killtiny (trace (p13*psi*p13 ’))...

killtiny (trace (p12*psi*p12 ’)) killtiny (trace (p11*psi*p11 ’)) killtiny (trace (p10*psi*p10 ’))...

168 killtiny (trace (p9*psi*p9 ’)) killtiny(trace (p8*psi*p8 ’)) killtiny (trace (p7*psi*p7 ’))...

killtiny (trace (p6*psi*p6 ’)) killtiny(trace (p5*psi*p5 ’)) killtiny (trace (p4*psi*p4 ’))...

170 killtiny (trace (p3*psi*p3 ’)) killtiny(trace (p2*psi*p2 ’)) killtiny (trace (p1*psi*p1 ’))...

killtiny (trace (p0*psi*p0 ’))];

172

174 disp (’Initial density matrix: ’);

psi0

176 disp (’Final density matrix: ’);

psi4

178

180

figure (1);

182 y = [y0 y1 y2 y3 y4];

bar3 (y);

184 colormap summer;

grid on;

186 text (’Interpreter ’,’latex ’);

title (’GHZ cooling using stabilizers pumping ’);

188 xlabel(’Not normalized GHZ state basis ’);

ylabel(’Map steps ’);

190 zlabel(’Probability ’);

set(gca ,’Xtick ’ ,1:16, ’XTickLabel ’,{’|0111> - |1000> ’,’|0111> + |1000> ’,’|0110> -...

192 |1001> ’, ’|0110> + |1001> ’,’|0101> -| 1010> ’,’|0101> + |1010> ’,’|0100> - |1011> ’ ,...

’|0100> + |1011> ’,’|0011> - |1100> ’,’|0011> + |1100> ’,’|0010> - |1101> ’,’|0010> +...

194 |1101> ’,’|0001> - |1110> ’,’|0001> + |1110> ’, ’|0000> - |1111> ’,’GHZ = |0000> +...

|1111> ’},’FontSize ’ ,8);

196 set(gca ,’Ytick ’ ,1:5, ’YTickLabel ’,{’Initial state ’, ’Step 1’,’Step 2’,’Step 3’ ,...

’Step 4’});

198

200 figure (2);

subplot (1,2,1),

202 y = real (psi0 );

bar3 (y);

204 colormap winter;

grid on;

206 title (’Re(\rho_S )’,’FontSize ’ ,14);

208 set(gca ,’Xtick ’ ,1:16, ’XTickLabel ’,{’b0’’’,’b1’’’,’b2’’’, ’b3’’’,’b4’’’,’b5’’’,’b6’’’ ,...

’b7’’’,’b8’’’,’b9’’’,’b10 ’’’,’b11 ’’’,’b12 ’’’,’b13 ’’’, ’b14 ’’’,’b15 ’’’},’FontSize ’ ,8);

210 set(gca ,’Ytick ’ ,1:16, ’YTickLabel ’,{’b0’,’b1’,’b2’, ’b3’,’b4’,’b5’,’b6’,...

’b7’,’b8’,’b9’,’b10 ’,’b11 ’,’b12 ’,’b13 ’, ’b14 ’,’b15 ’},’FontSize ’ ,8);

212

subplot (1,2,2),

214 y = imag (psi0 );

bar3 (y);

216 colormap winter;

grid on;

218 title (’Im(\rho_S )’,’FontSize ’ ,14);

220 set(gca ,’Xtick ’ ,1:16, ’XTickLabel ’,{’b0’’’,’b1’’’,’b2’’’, ’b3’’’,’b4’’’,’b5’’’,’b6’’’ ,...

’b7’’’,’b8’’’,’b9’’’,’b10 ’’’,’b11 ’’’,’b12 ’’’,’b13 ’’’, ’b14 ’’’,’b15 ’’’},’FontSize ’ ,8);

222 set(gca ,’Ytick ’ ,1:16, ’YTickLabel ’,{’b0’,’b1’,’b2’, ’b3’,’b4’,’b5’,’b6’,...

’b7’,’b8’,’b9’,’b10 ’,’b11 ’,’b12 ’,’b13 ’, ’b14 ’,’b15 ’},’FontSize ’ ,8);

224

226 figure (3);

subplot (1,2,1),

228 y = real (psi1 );

bar3 (y);

230 colormap winter;

grid on;

232 title (’Re(\rho_S )’,’FontSize ’ ,14);

234 subplot (1,2,2),
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y = imag (psi1 );

236 bar3 (y);

colormap winter;

238 grid on;

title (’Im(\rho_S )’,’FontSize ’ ,14);

240

242 figure (4);

subplot (1,2,1),

244 y = real (psi2 );

bar3 (y);

246 colormap winter;

grid on;

248 title (’Re(\rho_S )’,’FontSize ’ ,14);

250 subplot (1,2,2),

y = imag (psi2 );

252 bar3 (y);

colormap winter;

254 grid on;

title (’Im(\rho_S )’,’FontSize ’ ,14);

256

258 figure (5);

subplot (1,2,1),

260 y = real (psi3 );

bar3 (y);

262 colormap winter;

grid on;

264 title (’Re(\rho_S )’,’FontSize ’ ,14);

266 subplot (1,2,2),

y = imag (psi3 );

268 bar3 (y);

colormap winter;

270 grid on;

title (’Im(\rho_S )’,’FontSize ’ ,14);

272

274 figure (6);

subplot (1,2,1),

276 y = real (psi4 );

bar3 (y);

278 colormap winter;

grid on;

280 title (’Re(\rho_S )’,’FontSize ’ ,14);

282 subplot (1,2,2),

y = imag (psi4 );

284 bar3 (y);

colormap winter;

286 grid on;

title (’Im(\rho_S )’,’FontSize ’ ,14);

Auxiliary functions:

Mølmer-Sørensen gate

function U = MSGate(pauli ,alpha )

2

I = eye (2);

4

U = expm (-i*alpha /4*( tensor(pauli ,I,I,I,I)+ tensor(I,pauli ,I,I,I)...

6 +tensor(I,I,pauli ,I,I)+ tensor(I,I,I,pauli ,I)+tensor(I,I,I,I,pauli ))^2);

8 end

Collective single-qubit rotation gate

function U = UGate (pauli ,alpha )

2

I = eye (2);

4

U = expm (-i*alpha /2*( tensor(pauli ,I,I,I,I)+ tensor(I,pauli ,I,I,I)...

6 +tensor(I,I,pauli ,I,I)+ tensor(I,I,I,pauli ,I)+tensor(I,I,I,I,pauli )));
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8 end

Single-qubit rotation gate

1 function U = UOneGate (pauli ,i,alpha )

3 I = eye (2);

5 if(i == 0)

U = expm (-i*alpha /2*( tensor(pauli ,I,I,I,I)));

7 elseif(i == 1)

U = expm (-i*alpha /2*( tensor(I,pauli ,I,I,I)));

9 elseif(i == 2)

U = expm (-i*alpha /2*( tensor(I,I,pauli ,I,I)));

11 elseif(i == 3)

U = expm (-i*alpha /2*( tensor(I,I,I,pauli ,I)));

13 elseif(i == 4)

U = expm (-i*alpha /2*( tensor(I,I,I,I,pauli )));

15 else

end

17

end



B
Quantum Information Process-

ing with Ion Traps

Trapped ion quantum computer system is one of the most promising archi-
tectures for a scalable, universal quantum computer. The ion trap quantum
information processor consists of a number N of controlled ions which are
confined in a region by an appropriate potential. Typically, the ions are
placed along a line (linear Paul trap) as shown in Fig. B.1. Without going
into technical details about the physical realization we can say that each
ion is used to implement a qubit (two of the energy levels of each ion are
used to represent states 0 and 1) and can be controlled by laser fields and
pulses.

Figure B.1: Levitated string of eight Calcium ions are confined in a vacuum
chamber and laser-cooled to be nearly at rest: such a string can perform quantum
calculations

The first proposal of such an architecture was given by P. Zoller and I.
Cirac in 1995 ([5]). The key idea of the proposal is to use laser pulses to
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mediate an effective interaction between the electronic states of individual
ions. Currently, experimental ion trap quantum information processing is
pursued by about 20 research groups worldwide and recently, in the Inns-
bruck group, coherent manipulation of up to 14 qubits has been achieved
([17]).

The ion-traps system satisfies in principle all DiVincenzo criteria ([8]),
which are the requirements that have to be met to actually build a quan-
tum computer. These criteria are listed below along with the current
achievements in trapped ions implementation ([11]):

I. A scalable physical system with well characterized qubits:
there are two ways to form a qubit using the electronic states of an
ion:

i. two ground state hyperfine levels (these are called hyperfine qubits),

ii. a ground state level and an excited level (these are called optical
qubits).

Hyperfine qubits are extremely long-lived (decay time of the order
of thousands to millions of years). Optical qubits are also relatively
long-lived, compared to the logic gate operation time. Scalability can
be obtained in principle using a qubit register formed by strings of
ions in a Paul trap.

II. The ability to initialize the state of the qubits: ions can be pre-
pared in a specific qubit state using a process called optical pumping,
which can be performed with extremely high fidelity.

III. A coherence time much longer than the operational time: in
current quantum computing experiments, typically coherence times
of a few milliseconds are achieved which are about one to two orders
of magnitude longer than the time scale for quantum operations.

IV. A universal set of quantum gates:

i. Single qubit gates are implemented by driving Rabi oscillations1

between the two qubit levels with resonant laser pulses.

1If an electromagnetic wave is resonant with an atom’s transition frequency, it excites
the atom (e.g. from the ground state to the first excited state). This means the
probability amplitude of finding the atom in the excited state increases over time.
However, at some point when the atom is completely in its excited state, the wave
actually goes on to de-excite the atom again. This cycle of absorption-emission is called
Rabi oscillations, and it proceeds at a frequency that is proportional to the strength of
the electric field.
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Figure B.2: Example of images acquired by CCD for state detection on a three
ions system

ii. High-fidelity experimental two-qubit entangling gates have been
realized, such as: the Cirac-Zoller CNOT gate, the Mølmer-
Sørensen gate and the so-called geometric phase gate.

V. A qubit-specific measurement: measuring the state of a qubit
stored in a ion proceeds as follows:

• a laser is applied to the ion that couples only one of the qubit
state and two cases may occur:

i. the ion collapsed into this state during the measurement
process, the laser will excite it, resulting in a photon being
released when the ion decays from the excited state;

ii. the ion collapsed into the other qubit state, then it does not
interact with the laser and no photon will be emitted.

• In case (i), after decay, the ion is continually excited by the laser
and repeatedly emitting photons.

• These photons can be collected by a photomultiplier tube (PMT)
or a charge-coupled device (CCD) camera.
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• By counting the collected photons, it is easy to determine which
state the ion is in with very high fidelity (as illustrated in Fig.
B.2).

Additional DiVincenzo requirements are:

VI. The ability to interconvert stationary and flying qubits: for
converting stationary (ion) qubits into flying (photon) qubits, the
techniques of cavity quantum electrodynamics (CQED) are used and
several experiments are currently under way.

VII. The ability to faithfully transmit flying qubits between speci-
fied locations: faithful transmission of photonic qubits between two
quantum computer nodes was theoretically shown to be feasible; a
transfer protocol is available, however, at this time no experimental
work is carried out yet.

In conclusion it can be inferred that, at present, quantum information
processing with ion traps provides most of the requirements for quantum
computation experiments and maybe in the near future further improve-
ments can lead to the ultimate target: the physical realization of the first
quantum computer.
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