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Abstract
In 2017, following manipulation episodes and post-crisis issues, the Financial Conduct Authority has
announced that markets will be transitioning away from LIBOR starting 2021. This has led jurisdictions
to the selection of alternative new risk-free rates (RFRs), which should be more reliable since they are
anchored to effective market transactions and do not derive from the quotes of a panel of banks (as
their predecessor). This thesis analyses the characteristics of these new rates and proposes some possible
solutions for modeling them. It also suggests a way to use one of this models (Hull-White model) to
obtain pricing formulas for a particular type of derivatives, namely options on RFRs futures. Moreover,
it provides a numerical sensitivity analysis studying how option prices vary with respect to some
Hull-White model’s parameters.
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Introduction

For decades, Interbank Offered Rates (commonly known as IBOR rates) have served
as widely accepted reference rates for numerous financial instruments. Of these, the
most widespread is the USD London Interbank Offered Rate (LIBOR), which is
estimated to be used as a reference rate for USD 350 trillion of outstanding contracts,
in maturities ranging from overnight to more than 30 years, in both financial markets
and commercial fields (see [21]).
For many years, LIBOR has been treated as a proxy for the risk-free interest rate. In
fact, it referred to AA-rated banks, therefore to transactions that were perceived to have
credit risk almost equal to zero. This is why financial markets considered it suitable to
reference financial instruments.
Nonetheless, after the 2008 global financial crisis, LIBOR started to face some issues.
Firstly, since LIBOR is constructed from a survey of a small panel of banks reporting
non-binding quotes rather than actual transactions, some banks started to manipulate
their quotes, by understating the borrowing costs they reported for LIBOR. At the
same time, post-crisis interbank trading dropped, especially in the unsecured segment.
In fact, banks suffered substantial losses and higher balance sheet costs, which made
them overall reluctant to lend. Moreover, Central Banks undertook unconventional
policies, that created a copious supply of reserve balances, making banks less in need
to trade with each other.
As LIBOR faced all these issues, it became clearer and clearer that it was no longer
suitable as a reference rate in financial markets. This is why in 2017, the Financial
Conduct Authority, the institution supervising LIBOR production, announced that,
starting 2021, banks will no longer be asked to communicate their quotes for LIBOR
computation.
LIBOR termination brought to the identification of alternative risk-free rates (RFRs),
to serve as its adequate substitutes in financial markets. Particularly, jurisdictions have
focused on selecting rates that are anchored to effective market transactions, in order
to fix LIBOR’s manipulation problems. All these rates are overnight, that is based on
one-day transactions, while LIBOR was produced for 7 different maturities.

1



INTRODUCTION

LIBOR transition and the introduction of new RFRs brings into markets two challenges.
The first one is how to address changes in evaluation and discounting of already
existing derivatives. In fact, all instruments anchored to LIBOR which have not expired
yet would face an abrupt shift of benchmark, were additional measures not be taken.
Additionally, markets are already trading innovative instruments anchored to the new
RFRs, raising the issue of their evaluation.
The main objective of this thesis is to find a way to price these new RFR derivatives,
assuming that the interest rate follows a stochastic model. To accomplish this, first
we will illustrate some stochastic models that can be found in the literature to model
interest rates. Afterwards, supposing that the interest rate follows one of these models,
we will focus on the evaluation of a particular type of RFR derivative.
Specifically, the structure of the thesis is as follows:

• In Chapter 1, we present a brief overview of the main LIBOR characteristics and we
study in detail the reasons that brought to the reform. Consequently, we analyse
the main features of the new RFRs, focusing specifically on the Secured overnight
financing rate (SOFR), the Euro short-term rate (ESTR) and the Sterling overnight
index average (SONIA). We also discuss some drawbacks and challenges that the
introduction of these new rates brings into markets.

• In Chapter 2, since the new reference rates are all overnight rates, we study the
associated term structure stochastic models, in order for them to be used in the
evaluation of financial instruments. We identify two main approaches for the
term structure evaluation: either build a backward-looking rate, based on past
realisation of overnight rates and known at the end of the application period, or
a forward-looking rate, which reflects the expectations of future realisations of
the former and is known at the beginning of the application period. Afterwards,
we list some solutions for modelling RFRs proposed by different authors. In
particular, first we present the Hull-White model as in [7], which seems to be
the standard choice for RFRs evaluation in current markets. Next, we introduce
the Forward Market Model as in [28], which is an extension to the less complete
LIBOR Market Model.

• In Chapter 3, we try to obtain an evaluation formula for a particular type of
derivatives referencing RFRs, namely options on RFRs futures. We decided to
analyse this type of derivatives because of the increasing popularity they are
gaining in capital markets. These instruments are composed by a future contract
(that is, a derivative according to which two counterparties agree to exchange a
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RFR interest-bearing instrument at a pre-specified price some time in the future),
that constitutes the underlying of an option (which gives the right, but not the
obligation, to buy or sell it at a strike price at a certain date). In current financial
markets, there exist two types of futures depending on their maturity, namely
1-month (1M) and 3-months (3M) futures. Firstly, we derive two pricing formulas
for these futures. Afterwards, we use our results to price the options. We obtain
two different evaluation equations, one for options on 3M future and one for
options on 1M futures. Notice that the option on 1M future’s evaluation equation
constitutes an original result. In fact, in the current literature, we cannot find a
comparable explicit evaluation formula to price this kind of instruments.
Observe that, since it represents one of the most popular models in use in
the financial industry, we assume that our interest rate follows the Hull-White
dynamics.

• In Chapter 4, we perform a numerical analysis using the platform Matlab. Particu-
larly, we perform a sensitivity analysis, studying how changes in the Hull-White
model’s parameters affect the options on RFRs future’ prices. We also analyse
how our results behave in relation to changes in the strike price and maturity of
the option.

3



Chapter 1

LIBOR reform: towards new reference
rates

1.1. LIBOR: an overview

Interbank rates (commonly labelled as IBOR, short for Interbank Offered Rates) represent
the cost at which primary financial institutions can borrow money from each other
and they serve as widely accepted reference rates for numerous transactions. In
financial markets, the most widespread interbank rate is LIBOR (short for London
Interbank Offered Rate), even if there exist other similar rates, such as EURIBOR.1

LIBOR started to be used in the 1970s as a benchmark rate for offshore Eurodollar
transactions. Particularly, LIBOR origin is sometimes credited to Minos Zombanakis of
Manufacturers Hanover Trust, who seemingly arranged an USD 80 million loan for
the Shah of Iran with a rate based on a set of reported interbank funding ask. The
loan’s rate was made of a spread over the said interbank funding rate, hence it could
be syndicated or readjusted over time depending on the interbank lending conditions.
In the following years, it became clear that an increasing number of banks were actively
trading in a variety of relatively new market instruments, such as interest rate swaps,
foreign currency options and forward rate agreements.2 While recognizing that such
instruments increased the business and brought greater depth to the London Interbank

1The Euro Interbank Offered Rate (Euribor) is a daily reference rate, published by the European
Money Markets Institute, based on the averaged interest rates at which Eurozone banks offer to lend
unsecured funds to other banks in the euro wholesale money market (or interbank market).

2Interest rate swaps are forward contracts where one stream of future interest payments is exchanged
for another based on a specified principal amount. A foreign currency option is a contract giving the
option purchaser (the buyer) the right, but not the obligation, to buy or sell a fixed amount of foreign
exchange at a fixed price per unit for a specified time period. A forward rate agreement (FRA) is an
agreement between two parties who agree on a fixed rate of interest to be paid/received at a fixed date
in the future.

4



1.1. LIBOR: AN OVERVIEW

market, the BBA (British Banker’s Association)3 felt the need to provide some measures of
uniformity. In October 1984, the Association — together with other bodies, such as the
Bank of England — established various working parties, which eventually produced
the BBA standard for interest rate swaps, or "BBA IRS" terms: BBA IRS was the precursor
of LIBOR, hence these standards constitute the first form of regulation of the rate. In
January 1986, the British Bankers’ Association published LIBOR - initially in US Dollars,
Japanese Yen and Sterling (and later in 10 currencies with fifteen maturities calculated
for each) – as the average of each submitting bank’s estimate of the rate at which panel
banks could borrow from each other (see [22]).
In 1998, the BBA published the LIBOR’s definition, which reads “the rate at which an
individual contributor panel bank could borrow funds, were it to do so, by asking for and
then accepting interbank offers in reasonable market size just prior to 11:00 London time”.
This definition in still in force today. Specifically, every day the BBA asks a panel
of AA-rated banks the question "At what rate could you borrow funds, were you to do
so, by asking for and then accepting interbank offers in a reasonable market size just prior to
11 am?". It then eliminates the highest and lowest 25% of the quotes reported and
computes the trimmed average of the remaining. LIBOR continued to be prefixed
and administrated by BBA (and therefore known as BBA LIBOR) until February 2014,
when the Intercontinental Exchange Group (ICE) took over its administration, changing
it to the ICE LIBOR (see [22]).
Today, LIBOR is produced for 5 currencies (USD, EUR, GBP, JPY, CHF) and for 7
maturities, denoted as tenors (1 day, 1 week, 1, 2, 3, 6 and 12 months).
LIBOR is an unsecured rate, that is based on unsecured loans and, since it is derived
from the quotes of a panel of banks, it is not anchored to actual transactions in active
and liquid markets.
Among the LIBOR rates produced for the five currencies, the most popular and active
in financial markets is currently USD LIBOR. In fact, it is broadly used as a reference
rate for USD 350 trillion of outstanding contracts in maturities ranging from overnight
to more than 30 years, in both financial markets and commercial fields (see [21]).
The most important ones are summarised in Table 1.1. The panel for USD LIBOR is
composed by 15 major banks, including Bank of America, Barclays, Citibank, Deutsche
Bank, JPMorgan Chase, and UBS. These banks are selected according to the USD
LIBOR Contributor Bank Criteria (see [24]), which are designed so that the contributed
input data is able to produce a rate that is representative of the economic reality.
In order to correctly price derivatives, it is crucial that the applied interbank interest

3The British Banker’s Association (BBA) was a trade association for the UK banking and financial
services sector. From 1 July 2017, it was merged into UK Finance.
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Interbank derivative products Commercial field products Hybrid products
Forward rate agreements

Interest rate futures

Interest rate swaps

Swaptions

Overnight indexed swaps

Interest rates options, caps and floors

Floating rate notes

Floating rate certificates of deposit

Syndicated loans

Variable rate mortgages

Term loans

Range accrual notes

Step up callable notes

Target redemption notes

Hybrid perpetual notes

Collateralized mortgage obligations

Collateralized debt obligations

Table 1.1: A summary of the financial contracts in which LIBOR is adopted.

rate is risk-free. For many years, LIBOR has been considered a proxy for the risk-free
interest rate. In fact, it referred to AA-rated banks, therefore to transactions that were
perceived to have credit risk almost equal to zero. This is why, mathematically, LIBOR
has been determined as a forward simply compounded rate assuming absence of risk,
as follows (from [7]).
Suppose that we are standing at time t, and we fix two points in time S and T, with
t < S < T. We set up the following construction:

1. At time t we sell one S-bond. This will earn us P(t, S) dollars.

2. We use this income to buy P(t,S)
P(t,T) T-bonds. Therefore, our net investment at time

t is worth P(t, S)− P(t,S)
P(t,T) · P(t, T) = 0.

3. At time S the S-bond matures, so we need to pay one dollar.

4. At time T the T-bonds mature at one dollar each, so we will receive the amount
P(t,S)
P(t,T) dollars.

5. Thus, net effect overall obtained is that, based on a contract at t, an investment of
one dollar at time S has brought P(t,S)

P(t,T) dollars at time T.

6. This means that, at time t, we have set up a contract guaranteeing a riskless rate
of interest over the future interval [S, T]. Such an interest rate is called forward
rate, or LIBOR rate.

Now, we compute the relevant interest rate implied by the construction above.

Definition 1.1.1. The simple forward rate L, is the solution to the equation

1 + (T − S)L =
P(t, S)
P(t, T)

6
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Therefore,

L(t, S, T) = −P(t, T)− P(t, S)
(T − S)P(t, T)

.

Nonetheless, after the global financial crisis, it is no longer reasonable to assume that
LIBOR is a risk-free rate. To investigate the phenomenon, we compare LIBOR with
some commonly accepted proxy for the risk-free rate. Figure 1.1 shows the spread of
three-months USD LIBOR (and other relevant rates) over the three-month USD OIS
rate, which can be considered free of risk since it refers to a short time horizon (24
hours). As noticeable, LIBOR performed well solely until the global financial crisis, as
the LIBOR-OIS spread was always close to 0. However, after 2008, the spread became
large and positive, meaning that some risk components were embedded in LIBOR.
This is why the mathematical construction above can no longer be applied. Indeed, the
pre-crisis LIBOR rates associated to different tenors could simply be determined by the
no-arbitrage condition, resulting in an interest rate market characterised by a single
yield curve. On the contrary, after 2008 the market became segmented, in the sense
that different yield curves arose from market instruments that depended on a specific
tenor, thus leading to multiple yield curves. One of the most general approaches to
model these multiple curves is based on affine processes, as carried out in [10].

Figure 1.1: USD three-months LIBOR spread over three-months USD OIS rate. Notice that the
peak in 2007-2009 was related to the global financial crisis. Source: [34]
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1.1.1 LIBOR issues: what brought to the reform

After the 2008 financial crisis, it became clear that LIBOR could no longer be used
as a benchmark rate, as it was not an appropriate proxy for the risk-free rate. This
paragraph summarises some bank practises and crisis fallbacks which brought to this
outcome.
Firstly, since LIBOR is constructed from a survey of a small set of banks reporting
non-binding quotes rather than actual transactions, said banks could easily manipulate
their quotes, by understating the borrowing costs they reported for LIBOR. For example,
if among the panel banks’ assets is a derivative whose payoff is positively related to
LIBOR, it is tempting for them to report a higher quote and encourage the others to do
the same. This practise generates the impression that banks could borrow from other
banks more cheaply than they can in reality. Moreover, it makes the banking system
seem healthier than it actually is.
On 29 May 2008, The Wall Street Journal (WSJ) published a study suggesting that
banks might have been manipulating their submissions during the 2008 credit crunch
(see [31]). In order to assess the borrowing rates reported by the US panel of banks,
the Journal gathered numbers from the default-insurance market, which helped in
assessing the financial health of the banks. In fact, before the global financial crisis, the
cost of insuring against banks defaulting on their debts moved together with LIBOR
in the same direction: both rose when the market thought banks were in difficulty.
However, after the crisis outburst, as investors worried about possible bank failures,
the two measures began to diverge, with reported LIBOR rates failing to reflect rising
default-insurance costs. Figure 1.2 reports the spread between the cost of default
insurance and the borrowing rates reported by the panel banks. As noticeable, the gap
between the two measures was wider for Citigroup, Germany’s WestLB, the United
Kingdom’s HBOS, J.P. Morgan Chase & Co. and Switzerland’s UBS.
In response to the study released by the WSJ, some authorities stated that LIBOR
continued to be reliable even during the financial crisis. For example, in its March
2008 Quarterly Review, the Bank for International Settlements declared that "available
data do not support the hypothesis that contributor banks manipulated their quotes to profit
from positions based on fixings (source: [5])". Furthermore, the International Monetary
Fund, in its October 2008 Global Financial Stability Review, affirmed that "although the
integrity of the USD LIBOR-fixing process has been questioned by some market participants
and the financial press, it appears that USD LIBOR remains an accurate measure of a typical
creditworthy bank’s marginal cost of unsecured U.S. dollar term funding (source: [25])".

8
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Figure 1.2: Spread between the cost of default insurance and the borrowing rates reported by
the 2008 panel banks. Source: [31]

Nonetheless, in March 2011, the WSJ published another article reporting that regulators
were focusing on Bank of America Corp., Citigroup Inc. and UBS about LIBOR rate
manipulation, thus strengthening their first study’s hypothesis (see [32]).
In 2012, the US Department of Justice initiated a criminal investigation concerning
LIBOR abuse and manipulation. Barclays Bank was the first bank to be fined on 27
June 2012, for an amount of USD 200 million by the Commodity Futures Trading
Commission4, USD 160 million by the United States Department of Justice5, and £59.5
million by the Financial Services Authority6, for attempted manipulation of the LIBOR

4Commodity Future Trading Commission, Press Release, 2012. URL: https://www.cftc.gov/
PressRoom/PressReleases/6289-12

5United States Department of Justice, Justice News, 2012. URL: https://www.justice.gov/opa/
pr/barclays-bank-plc-admits-misconduct-related-submissions-london-interbank-offered-
rate-and

6Financial Services Authority, Press Release, 2012. URL: http://www.fsa.gov.uk/library/
communication/pr/2012/070.shtml
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rate. Later, in December 2013, the European Commission announced fines for other six
banks, which had taken part to one or more bilateral cartels for LIBOR submission of
Japanese yen from 2007 to 2010. Of these, the Royal Bank of Scotland was fined €260
million, Deutsche Bank €259 million and JPMorgan €80 million. Citigroup received a
smaller fine for about €70 million, thanks to an immunity for one of the infringements
to which it took part.7

Already by mid-2012, the issue started to be discussed by the news and financial
programs, and made the front page of several newspapers. The media defined the
manipulation-practise as LIBOR scandal.
Although the scandal came into light only after the financial crisis, there is evidence
that it had been on-going for a long time: in an article of July 2012, the Financial Times
stated that LIBOR manipulation had been in use since at least 1991 (see [26]).
Consequently LIBOR manipulation, some reforms were taken. On July 2013, the ad-
ministration of the rate started to be regulated and supervised by the UK’s Financial
Conduct Authority (FCA). Moreover, as mentioned in section 1.1, in early 2014 LIBOR’s
administration passed from BBA to ICE (see [21]). Furthermore, knowingly or deliber-
ately making false or misleading statements in relation to benchmark-setting became a
criminal offence in the UK law, under the Financial Services Act of 2012. The Danish,
Swedish, Canadian, Australian and New Zealand LIBOR rates were terminated: only
the five rates still produced today remained.8 In addition, on July 2013, the BBA
established the Interim LIBOR Oversight Committee (ILOC), which must follow an
interim code, concerning how banks must behave in relation to LIBOR. For example,
each bank must indicate a named person responsible for LIBOR, chargeable in case
of wrongdoings. The banks must also keep records to be audited by the regulators if
necessary.9

Apart from manipulation practises, LIBOR faced other important drawbacks as a
consequence of the global financial crisis.
For starters, post-crisis interbank trading dropped, especially in the unsecured seg-
ment. This was driven by the Central Banks (CBs) doings, which characterised the
years after 2008. In particular, CBs lowered interest rates, keeping them close or below
zero, in order to increase money supply and boost economic activity. However, they
kept them low for a long time. Therefore, to manage the resulting decrease of inflation

7European Commission, Press Release, 2013. URL: https://ec.europa.eu/commission/
presscorner/detail/en/IP_13_1208

8The British Bankers’ Association, LIBOR becomes a regulated activity, Press Release, 2013. URL:
http://www.bbalibor.com/news/libor-becomes-a-regulated-activity

9The British Bankers’ Association, BBA Libor Limited has established the Interim LIBOR Oversight
Committee (ILOC), Press Release, 2013. URL: http://www.bbalibor.com/news/bba-libor-limited-
has-established-the-interim-libor-oversight-committee-ilo
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– which negatively impacts economies and their ability to grow in a healthy way - they
were forced to use unconventional policies, such as asset purchase programs (APPs).
AAPs are monetary policy instruments through which CBs purchase certain amounts
of government bonds or other financial assets, to inject money into the economy and
expand economic activity. In the US, the Federal Reserve conducted large-scale asset
purchases between 2008 and 2014.10 The European Central Bank implemented the
“quantitative easing” starting 2015.11 This copious supply of reserve balances created
by APPs made banks less in need to trade with each other.
Moreover, consequently the Great Financial Crisis, banks suffered substantial losses.
At the same time, they faced higher balance sheet costs due to tighter risk management
and new regulatory standards – typically, they established minimum capital require-
ments, caps for the risk-weighted assets, ranges for the leverage ratio and supervision
by institutional bodies, to ensure the soundness of the bank. The general instability
in their bank accounts increased adverse selection among banks. As banks began to
fear that their counterparty was not trustworthy, they became reluctant to lend to one
another and started to hoard liquidity. For these reasons, the interbank market was no
longer sufficiently liquid to produce a reasonable reference rate.
Furthermore, in order to reduce the counterparty credit risk in interbank exposures,
banks started to gather funds from non-banks sources. Nevertheless, when they did
trade with other banks, they used only less risky wholesale instruments (such as
repurchase agreements or repos, instruments used to raise short-term capital by selling
and then repurchasing government securities at a slightly higher price). This resulted
in the interbank market shrinking, contributing to making LIBOR no more appropriate
as a benchmark rate. In fact, banks became hesitant themselves in providing sub-
missions: indeed, when interbank lending and borrowing activity is so scarce, there
is no adequate way to validate the judgements upon which the banks’ quotes are based.

As LIBOR faced all these issues, it became clearer and clearer that it was no longer
suitable as a reference rate in financial markets. In 2017, the FCA and the Bank of Eng-
land’s Financial Policy Committee (FPC) noticed that the absence of active underlying
markets and the scarcity of term unsecured deposit transactions had raised serious
questions about the future of LIBOR benchmarks. In fact, while the precise volume
of transactions in markets underlying LIBOR is unknown, estimates show that, on
a typical day, the volume of three-month wholesale funding transactions by major

10Federal Reserve Bank of New York, Large-Scale Asset Purchases, 2008. URL: https://
www.newyorkfed.org/markets/programs-archive/large-scale-asset-purchases

11European Central Bank, ECB announces expanded asset purchase program, 2015. URL: https:
//www.ecb.europa.eu/press/pr/date/2015/html/pr150122_1.en.html
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global banks was about USD 500 million. This is a very low number compared to the
trillions of financial contracts referencing USD LIBOR. Eventually, they reached the
conclusion that LIBOR had become unsustainable and unsuitable for the widespread
reliance that had been placed upon it. In particular, in a speech delivered on 27 July
2017, FCA Chief Executive Andrew Bailey stated that “data from IBA and from central
banks indicate that there are relatively few eligible term borrowing transactions by any large
banks – i.e. these banks receive few loans or deposits of a twelve, six or even three month term
from other banks or eligible corporate depositors. [. . . ] On the basis of what we can currently
observe, activity in these markets is limited, and there seems little prospect of these markets
becoming substantially more active in the near future. The absence of active underlying markets
raises a serious question about the sustainability of the LIBOR benchmarks that are based upon
these markets. If an active market does not exist, how can even the best run benchmark measure
it? Moreover, panel banks feel understandable discomfort about providing submissions based on
judgements with so little actual borrowing activity against which to validate those judgements.
[. . . ] In our view it is not only potentially unsustainable, but also undesirable, for market
participants to rely indefinitely on reference rates that do not have active underlying markets to
support them. As well as an inherently greater vulnerability to manipulation when rates are
based on judgements rather than the real price of term funding, there are a host of questions
about whether and how such reference rates can respond to stressed market conditions.”. For
these reasons, he anticipated that from 2021 banks will be no longer obliged to report
rates for LIBOR computation. The early announcement was made to ensure enough
time for the market to move away from LIBOR, in order to have a planned and orderly
transition, thus less risky and less expensive.12

In March 2021, the FCA and ICE Benchmark Administration announced that sterling,
euro, Swiss franc and Japanese yen LIBOR panels, as well as panels for 1-week and
2-month US dollar LIBOR, would cease at the end of 2021. Only 1-month, 3-month,
6-month and 12-month US dollar LIBOR were extended to June 2023, given their
importance in terms of volume of derivatives referencing to them in financial mar-
kets.13 Based on the undertakings received from the panel banks, the FCA does not
anticipate that any LIBOR settings will become unrepresentative before these relevant
dates. However, representative LIBOR rates will not be available past these dates:
the publication of most of the LIBOR settings will stop immediately after this time.
Accordingly, both FCA and the Bank of England’s FPC have worked together with

12A. Bailey, The future of LIBOR, Bloomberg London event, UK, 2017. URL: https://
www.fca.org.uk/news/speeches/the-future-of-libor

13Financial Conduct Authority, Further arrangements for the orderly wind-down of LIBOR
at end-2021, Press Release, 2021. URL: https://www.fca.org.uk/news/press-releases/further-
arrangements-orderly-wind-down-libor-end-2021
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market participants and the other regulatory authorities from all over the world, to
ensure that robust alternatives to LIBOR are available and that existing contracts can
be transitioned onto these alternatives to ensure financial stability and market integrity.

1.2. New Risk-Free Rates (RFRs)

LIBOR termination raised the need for the identification of one or more interest rates to
serve as its adequate substitutes in financial markets. Ideally, in order to appropriately
work as reference rates, the new interest rates should:

• Accurately represent interest rates in core money markets, in a way that is not
open to manipulation. Benchmarks anchored to actual transactions in active and
liquid markets and not derived from a poll of selected banks fulfil this feature;

• Provide a reference rate for discounting and pricing financial instruments such
as derivatives without difficulty;

• Function as a benchmark for term lending and funding. In fact, financial in-
termediaries are simultaneously lenders and borrowers, hence they require a
lending benchmark that behaves not so differently from the borrowing one.

Given its issues (discussed in section 1.1.1), it is evident that LIBOR fails to meet the
first criterion out of the three. This explains why the reforms have mostly focused
in selecting rates linked with actual transactions in the most liquid market segments.
These rates are commonly identified as RFRs (that is, risk-free rates) and should
present the following attributes, in order to try fixing LIBOR’s main problems:

• They should have a shorter tenor than LIBOR. In fact, they generally refer to
overnight (O/N) markets, where traded volumes are larger than longer-dated
tenors;

• They should reflect borrowing costs from wholesale non-bank counterparties,
and not exclusively of the interbank market;

• They should be based on collateralised (secured) transactions, which include
banks’ repurchase agreements (repos) with non-bank counterparties.

Taking this into account, the authorities of each jurisdiction have selected alternative
RFRs benchmarks. Although pursuing similar schemes, each country took different
steps in identifying a new rate. This resulted in different currency areas identifying
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Currency area United States United King-
dom Euro area Switzerland Japan

Alternative
rate

SOFR
(Secured
overnight fi-
nancing rate)

SONIA
(Sterling
overnight in-
dex average)

ESTR
(Euro
short-
term rate)

SARON
(Swiss
average
overnight
rate)

TONA
(Tokyo
overnight
average rate)

Administrator

Federal Re-
serve
Bank of New
York

Bank of Eng-
land

European
Central
Bank

SIX Swiss Ex-
change

Bank of
Japan

Wholesale non-
bank counter-
parties

Yes Yes Yes No Yes

Secured Yes No No Yes No
Overnight rate Yes Yes Yes Yes Yes

Table 1.2: Identified alternative RFRs in different currency areas. Source: https: //
www.fca.org.uk/ markets/ libor-transition

different benchmark rates for their financial instruments and no longer in a uniformly-
calculated widespread one. The most important ones and their characteristics are
summarised in Table 1.2. As noticeable, the alternative benchmark rates in the US,
UK, Europe, Switzerland and Japan are all O/N rates. In the US and Switzerland, the
underlying transactions are collateralised (with US and Swiss Treasuries), while they
are not in the UK, Japan and Euro area.

In the next paragraphs, SOFR, ESTR and SONIA’s main characteristics will be pre-
sented. The reason behind this choice of selection is related to the relevance these
three rates have in current financial markets, both in terms of volume of underlying
transactions and types of referencing derivatives.

1.2.1 SOFR

The Secured overnight financing rate (SOFR) is a reference rate based on the US Treasury
repurchase agreement (repo) market, specifically on tri-party repo, General Collateral
Finance (GCF) repo and bilateral repo transactions cleared through the Fixed Income
Clearing Corporation (FICC). 14 The New York Fed is its administrator and produces
the rate in cooperation with the Treasury Department’s Office of Financial Research

14In broad repos, also called tri-party repos (because they are cleared through a third party which is
either Bank of New York Mellon or JP Morgan Chase), the typical lenders are MMFs and other non-
banks. General collateral financing (GCF) repos are inter-dealer repos. Bilateral repo transactions are
typically between dealers and non-banks.
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(OFR). The New York Fed publishes SOFR on a daily basis at approximately 8:00
AM. It also publishes 30, 90 and 180-day SOFR Averages and a SOFR Index, to
better support a successful transition away from USD LIBOR. The rate production
is periodically reviewed by an internal New York Fed Oversight Committee – which
consists of members from across the New York Fed’s organizational structure who are
not involved in the daily production of SOFR.
In 2014, the Federal Reserve Board and the New York Fed jointly convened the
Alternative Reference Rates Committee (ARRC), to identify risk-free alternative reference
rates for USD LIBOR.15 ARRC is composed of a diverse set of private-sector entities,
each with an important presence in markets affected by USD LIBOR, and a wide
array of official-sector entities, including banking and financial sector regulators. The
ARRC identified a first set of criteria that the new RFRs must respect, which contains
benchmark quality, methodological quality, accountability (that is satisfaction of the four
IOSCO principles) and ease of interpretation. At the same time, the Bank of International
Settlements (BIS) - an international financial institution owned by central banks that
fosters international monetary and financial cooperation and serves as a bank for
central banks - selected another set of standards, namely reliability, robustness, frequency,
ready availability and representativeness. As noticeable, these standards overlap for certain
aspects but disagree for others, creating some confusion. The issue is studied deeply
in [4], and a solution proposed.
In 2017, the ARRC identified SOFR as the most appropriate reference rate for USD
derivatives and other financial contracts (see [2]). The ARRC considered a list of
potential alternatives, including term unsecured rates, overnight unsecured rates like
the Overnight Bank Funding Rate (OBFR), term secured rates, overnight secured rates
like SOFR and treasury bill and bond rates. Eventually, the ARRC selected SOFR
because it is a fully transaction-based, overnight nearly risk-free reference rate and
a good representation of the general funding conditions in the US money markets.
Additionally, it is suitable to be used across a broad range of financial products,
including derivatives and many variable-rate cash products that have historically
referenced USD LIBOR. Moreover, it is based on transactions that take place in the
Treasury repo market, which is characterised by considerable depth and breadth.
Indeed, the transaction volume underlying SOFR is far larger than volumes in other
US money markets: since SOFR was first published in April 2018, the daily transaction
volume underlying SOFR has been on average more than USD 980 billion (Figure 1.3).
At the same time, SOFR reflects activity undertaken by different types of institutions,
including asset managers, banks, corporate treasurers, insurance companies, money

15From URL: https://www.newyorkfed.org/arrc/about
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market funds, pension funds, and more.
Already in 2017, the ARRC had published a Paced Transition Plan, with specific
steps and timelines designed to encourage adoption of SOFR (see [1]). In 2020, the
commission issued the Recommended Best Practices, which provide timelines and
interim milestones for transitioning away from USD LIBOR in a way that will minimize
market disruption and support a smooth transition (see [3]).

Figure 1.3: Daily transaction volume underlying SOFR. Data retrieved from source: https:
// www.newyorkfed.org/ markets/ reference-rates/ sofr

1.2.2 ESTR

The Euro short-term rate (ESTR) reflects the wholesale euro unsecured overnight bor-
rowing costs of banks located in the euro area. ESTR is published at 08:00 AM on each
TARGET2 business day.16 It is based on transactions conducted and settled on the
previous TARGET2 business day (the reporting date t) with a maturity date of t + 1,
which are considered to have been executed at arm’s length and thus reflect market
rates in an unbiased way.
ESTR is based entirely on daily confidential statistical information relating to money
market transactions, collected with the assistance of Deutsche Bundesbank, Banco
de España, Banque de France and Banca d’Italia. ESTR is administered and overseen
by the ECB, with the ESTR Oversight Committee reviewing all aspects of the rate
determination process.
In 2017, the European Central Bank (ECB), the European Securities and Markets Au-
thority, the European Commission and the Belgian Financial Services and Markets

16TARGET2 is open every day, with the exception of: Saturdays, Sundays, New Year’s Day, Good
Friday and Easter Monday, 1 May (Labour Day), Christmas Day and 26 December.
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Authority established the working group on euro risk-free rates - a private sector group
which the public institutions attended as observers - to identify and recommend risk-
free rates that could serve as an alternative to current benchmarks used in a variety
of financial instruments and contracts in the euro area (see [11]). The working group
selected a set of macro criteria that the new rates should respect, namely benchmark
quality, methodological quality, governance and accountability. In 2018, the group chose
ESTR to be used as the risk-free rate for the euro area.17 ESTR was published for the
first time by the ECB in October 2019.18

The working group identified ESTR as the substitute for LIBOR because of the full
transaction-based, overnight risk-free nature of the rate. Moreover, as noticeable in
figure 1.4, the transactions underlying ESTR stand on average 45 billions EUR, evidence
of the considerable depth of the market.
In 2019, the ECB published a preliminary rate, called pre-ESTR, which follows the
same calculation methodology as ESTR, but was based on final data. Pre-ESTR was
only intended as a set of indicators for ESTR: its publication was solely for information
purposes, to help market participants in understanding its nature, but the data were
not meant to be used as a reference rate in any market transaction (see [12]).

Figure 1.4: Daily transaction volume underlying ESTR. Data retrieved from source: https: //
sdw.ecb.europa.eu/ browse.do ?node=9698150

17European working group, Private sector working group on euro risk-free rates recommends ESTER
as euro risk-free rate, Press Release, 2018. URL: https://www.ecb.europa.eu/press/pr/date/2018/
html/ecb.pr180913.en.html

18European Central Bank, ECB announces start date for euro short-term rate (ESTR),
Press Release, 2019. URL: https://www.ecb.europa.eu/press/pr/date/2019/html/
ecb.pr190314~28790a71ef.en.html
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1.2.3 SONIA

The Sterling overnight index average (SONIA) is the rate at which interests are paid
on sterling short-term wholesale funds when credit, liquidity and other risks are
minimal. The Bank of England administrates the rate and takes responsibility for
its governance and publication every London business day at 9:00 AM. SONIA is
measured as the trimmed mean, rounded to four decimal places, of interest rates
paid on eligible sterling denominated deposit transactions. The SONIA Oversight
Committee reviews all aspects of the benchmark determination process and provides
scrutiny of the administration of the rate.
SONIA was first introduced in March 1997.19 In 2015, the Bank of England set up a
working group to choose risk-free rates (RFRs) to provide an alternative to LIBOR.20

In 2016, the Bank of England took responsibility for SONIA.21 The following year,
the working group published a paper in which SONIA was identified as the preferred
alternative rate for sterling markets (see [6]). In fact, it is based on actual transactions
and reflects the average of the interest rates that banks pay to borrow sterling overnight
from other financial institutions and other institutional investors. Moreover, its market
depth is considerable, as the daily transaction volume underlying SONIA is on average
£40 billion. (Figure 1.5).

Figure 1.5: Daily transaction volume underlying SONIA. Data retrieved from source:
https: // www.bankofengland.co.uk/ boeapps/ database/ fromshowcolumns.asp ?ShowData.x=
51&ShowData.y=30&Travel=NIx&ShadowPage=1&SearchText=sonia&SearchExclude=
&SearchTextFields=TC&Thes=&SearchType=&Cats=&ActualResNumPerPage=
&TotalNumResults=12&XNotes2=Y&C=5JK&C=UH6

19From URL: https://www.bankofengland.co.uk/markets/sonia-benchmark
20From URL: https://www.bankofengland.co.uk/markets/transition-to-sterling-risk-free-

rates-from-libor/working-group-on-sterling-risk-free-reference-rates
21From URL: https://www.bankofengland.co.uk/markets/sonia-benchmark
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Generally speaking, the underlying transactions of these reference rates can be grouped
into three different types: non-bank to bank lending (Type 1), bank to bank lending
(Type 2) and bank to non-bank lending (Type 3). Type 1 transactions are typically made
by cash-rich companies or money market mutual funds (MMFs). In Type 2 transactions,
banks gather funds from each other; while in Type 3 they raise cash from hedge funds
or investment managers. SOFR incorporates transactions of all three types, as it is
based on broad repos (similar to Type 1), inter-dealer repos (similar to Type 2) and
bilateral repos (similar to Type 3). On the contrary, both SONIA and ESTR comprise
only Type 1 and 2 transactions (Table 1.3).

RFR Type 1 transactions Type 2 transactions Type 3 transactions
SOFR Yes Yes Yes
ESTR Yes Yes No
SONIA Yes Yes No

Table 1.3: Main RFRs underlying transaction types.

1.2.4 RFRs drawbacks and challenges

Although successfully fixing some LIBOR issues, new RFRs are not immune to some
drawbacks.
Firstly, since the new reference rates are overnight rates, they theoretically should be
virtually risk-free. However, in practise, they present some disadvantages, as RFRs are
generally more volatile than LIBOR. In fact, as empirically demonstrated in [27], they:

• are prone to upward or downward spikes due to regulatory constraints. Specif-
ically, it is proved that tighter regulatory constraints (such as minimum risk-
weighted capital and leverage ratio requirements) slightly decrease SONIA and
ESTR but increase SOFR. In fact, more binding regulations reduce the banks’
ability to lend to other banks and borrow from non-banks, increasing interbank
rates and decreasing Type 1 rates. Given that Type 1 transactions dominate Type 2
in terms of volume for the European and British rate, the increase in interbank
rates is offset by a higher decrease in non-bank to bank lending rates. On the
contrary, SOFR is mainly based on repo rates. Since these are instruments that
rely on large banks intermediation, if said banks are subject to stricter constraints,
bank to non-bank lending rates will increase;

• increase as the Treasury debt outstanding becomes larger. This happens because
an increase in the supply of safe assets increases Type 1 transaction rates, because
non-bank lenders can invest more in government debt. The impact is even greater

19



1.2. NEW RISK-FREE RATES (RFRS)

for SOFR, as an increase in the Treasury supply increases the demand for repos
and thus the repo-rate;

• increase if the amount of central bank’s reserves decreases. In fact, more central
bank reserves lower banks’ demand for overnight borrowing, reducing interest
rates.

Nonetheless, the main concern for financial markets is another. In fact, the reform
brings into markets two challenges. The first one is how to address changes in eval-
uation and discounting of already existent derivatives. As a matter of a fact, all
instruments anchored to LIBOR which have not expired yet would face an abrupt shift
of benchmark, were additional measures not be taken. This would possibly result in a
part of the contract favoured by the sudden change of value and the other experiencing
a potential loss. Ideally, the problem should be solved by giving a compensation to
the disadvantaged part, that should account for both the value change and the new
sensitivity (delta) to the new discounting rate. The first one is likely to be addressed
via a cash payment, while the second with an exchange of basis swap. A basis swap is
an interest rate swap - a type of a derivative contract through which two counterparties
agree to exchange one stream of future interest payments for another, referenced
against an interest rate index - which involves the exchange of two floating rate finan-
cial instruments.
On the other hand, the second issue is related to the evaluation and pricing of the new
kinds of derivatives that will be born after the adoption of the new benchmark rates.
In fact, we can imagine several innovative instruments anchored to the new RFRs. An
example is given by options on SOFR futures, a type of derivative launched by CME in
2020. The option gives the right, but not the obligation, to exercise sometime before
maturity the SOFR future contract, in order to protect the holder from unfavourable
variations of its price. These derivative instruments are gaining increasing popularity
in the last weeks, hence it is crucial to understand how they work and the interest rate
they reference to.
In order to address these issues, in October 2020, the Financial Stability Board22

published a Global Transition Roadmap for LIBOR, to inform those with exposure
to LIBOR benchmarks of some of the steps they should have been taking over the
remaining period until end-2021 to successfully mitigate these risks (see [14]). Par-
ticularly, firms should identify and assess all existing LIBOR exposures and other
dependencies, to implement a plan for potential fallbacks with end-users of LIBOR

22The Financial Stability Board (FSB) is an international body that monitors and makes recommen-
dations about the global financial system.
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referencing products maturing beyond end-2021. In doing this, firms should adhere to
the 2020 ISDA Fallbacks Protocol, according to which counterparties are encouraged to
agree to contractual fallback provisions that would provide for adjusted versions of the
RFRs as replacement rates.23 At the same time, by the end of 2020, lenders should be
in a position to offer non-LIBOR linked loan products to their customers. This could
be done by giving borrowers a choice in terms of the reference rate underlying their
loans.

Finding a way to correctly price and evaluate existing and new derivatives instruments
will be the main focus of the following chapters. Particularly, some interest rates
models will be presented and then applied to RFRs derivatives (specifically to options
on futures).

23See URL: https://www.isda.org/protocol/isda-2020-ibor-fallbacks-protocol/
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Chapter 2

An overview of the primary RFRs
models

Since all selected RFRs are overnight rates, in order for them to be used as a re-
placement of LIBOR in both new and already existing contracts, they first need to
be converted into term rates. The term structure of interest rates is the relationship
between interest rates or bond yields and different terms or maturities. If plotted, the
term structure of interest rates is called yield curve, and it useful to identify the current
state of an economy. The term structure of interest rates reflects the expectations of
market participants about future changes in interest rates and their assessment of
monetary policy conditions.
In this chapter, after some generalities, we will present different solutions to model
interest rates, that can be found in the literature, and we will obtain different term
structures, depending on the RFRs model presented. Particularly, first we will present
the Hull-White (extended-Vasicek) model, basing our analysis on [7]. This model
seems to be the standard choice for interest rate modeling in current markets. In fact,
in [30], which is one of the first papers about SOFR modeling, a Gaussian Hull-White
short rate model is adopted. The Hull-White model remains dominant also in other
recent short rate approaches to RFRs modeling, such as [17], [18], [36] and [37].
Given that the Hull-White model constitutes one of its extensions, we will first intro-
duce also the Vasicek model as done in [7], for pedagogical purposes.
Lastly, we will present the Forward Market Model as done in [28], which constitutes
another solution for modeling risk-free rates.
The main difference between these models is that the Hull-White model (together with
the Vasicek model) models short rates of interest, while the Forward Market Model
models forward rates. A forward rate is the yield of a security that will not be traded
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until a predetermined date in the future. On the contrary, the short rate is the interest
rate at which an entity can borrow money for an infinitesimally short period of time.

2.1. RFRs models’ generalities

In this section, we will introduce some generalities, that later will be useful to present
and understand RFRs models.
Assume the existence of a continuous-time financial market with an arbitrage-free
family of zero-coupon bonds, whose price process is {P(·, T); T ≥ 0}. Therefore, P(t, T)
denotes the price at time t of a risk-free zero-coupon bond with maturity T. Intuitively,
the price P(t, T) should depend upon the behaviour of the short rate of interest over
the interval [t, T]. A short rate is an interest rate at which someone can borrow money
for an infinitesimally short period of time from time t. Let us denote the time-t value
of this instantaneous rate by r(t). Assume that r(t) is the overnight interest associated
with funding/remunerating cash collateral posted as variation margin. At the same
time, r(t) should represent the discounting rate. 1 This is consistent with the overall
direction of the LIBOR reform and transition to the new rate benchmarks. In fact, as
explained in chapter 1, both rates should have been moved to the new RFRs by the
second quarter of 2021. If the same RFRs are used for discounting and for deriving
term rates, this implies a return to the classic single-curve modelling environment,
rather than a multiple-curves one.
A natural starting point for modeling interest rates is to give an a priori specification of
the dynamics of the short rate of interest. Suppose that, under the objective probability
P, the short rate r(t) is the solution to the following SDE

dr(t) = µ(t, r(t))dt + σ(t, r(t))dW̄(t) (2.1)

where µ and σ are functions representing respectively the drift and volatility of the
process and W̄ is a Brownian motion under the objective probability P. The short rate
of interest is the only object given a priori, thus the only exogenously given asset is the
money account, with price process B defined by the dynamics⎧⎨⎩dB(t) = r(t)B(t)dt

B(0) = 1

1An interest rate that is both the overnight interest associated with funding/remunerating cash
collateral posted as variation margin and the discounting rate is known as Price Alignement Interest
(PAI).
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whose solution is given by
B(t) = e

∫︁ t
0 r(u) du.

This is to be interpreted as the model of a bank with a stochastic short rate of interest
r, hence the dynamics of B can be interpreted as the ones of a bank account.
Assume also the existence of a risk-neutral measure Q, whose associated numeraire is
B(t). A numeraire, or base value, is an economic term that represents a unit of measure.
Having a numeraire allows for the comparison of values against one another. Recall
also that a risk-neutral measure is a probability measure such that the discounted price
of every traded asset (or portfolio) is a martingale under the risk-neutral measure Q.
Notice that our market contains all possible types of bonds, among which the only
exogenously given one is the risk-free asset. Nonetheless, the price of a particular bond
will not be completely determined by the specification of the (2.1) r-dynamics and the
assumption that the bond market is arbitrage-free. In fact, arbitrage pricing is always a
case of pricing a derivative in terms of the price of some underlying assets, however
we do not have a sufficient number in our market. Even so, if we take the price of
one particular "benchmark" bond, then the prices of all other bonds can be uniquely
determined in terms of the price of the benchmark. This is true because bonds of
different maturities satisfy certain internal relations to ensure absence of arbitrage.
This fact will be demonstrated in the next section.
Before that, however, for later use, we show that it is possible to obtain an expression for
the zero-coupon bond price for both the times before and after maturity T. Moreover,
we will also introduce two other concepts that will be of great importance both for the
Forward Market Model and for derivative pricing: backward-looking and forward-
looking rates. In fact, ISDA and other regulators identified two main approaches
that can be used for the computation of the rates’ term structure. The first one is
“in-arrears”, that is the calculation of interest using daily rates published during the
relevant application period (and not over a period of time prior to the start of the
application period). In the SOFR “In Arrears” Conventions for Syndicated Business
Loans (see [13]), the Federal Reserve recommends two structures for this kind of rates:

• daily simple in arrears rate: the rate is sourced daily and multiplied by the
outstanding principal of the loan;

• daily compounded in arrears rate: the rate is obtained through a methodology
that compounds daily values of the overnight rate, throughout the relevant term
period.

Although the compounded interest rate more accurately reflects the time value of
money, implementing the simple interest rate is more straightforward. Nonetheless,
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the rates resulting from the two methods differ by a few basis points. In the case of
either compounded or simple interest in arrears, the rate for the entire application
period would not be known at the beginning of this period. Instead, the overnight rate
would be pulled daily (and compounded based on a previous day’s rate in the case of
daily compounded rate). This means that these structures allow for interest accruals to
be calculated daily and they are not set in advance but fixed during each application
period. For this reason, “in arrears” rates are backward-looking and known at the end
of the corresponding application period.
The second approach for the identification of RFRs’ term structures is through a market
implied prediction of the compounded setting-in-arrears rate. In this case, the rate
is calculated over a period of time prior to the start of the application periods (and
not using daily rates published during this time). In fact, it represents the market’s
predictions for the interest rate rather than the prior day’s overnight performance.
For this reason, it is forward-looking in nature and known at the beginning of the
application period.
Notice that, according to its definition (see 1.1), LIBOR is a forward-looking rate, since
it is calculated over a period of time prior to the start of the application period and not
using daily rates published during this time.

2.1.1 The extended zero-coupon bond price formula

Define as Ft the “information” available in the market at time t, that is the sigma-
algebra generated by the model risk factors up to time t.
Because of risk-neutral methodology, we have that

P(t, T)
B(t)

= EQ
[︃

P(T, T)
B(T)

⃓⃓⃓⃓
Ft

]︃
where EQ stands for the expected value under the risk-neutral measure Q. From this,
we obtain:

P(t, T) = EQ
[︃

B(t)
B(T)

⃓⃓⃓⃓
Ft

]︃
= EQ

[︂
e−
∫︁ T

t r(u) du
⃓⃓⃓
Ft

]︂
.

Since it constitutes the value of a contract expiring at time T, the previous equation is
valid for every t ≤ T.
Nonetheless, we show that it is possible to extend the definition of the zero-coupon
bond also for the times after maturity, as carried out in [28]. To do so, we use the
previous equation and the definition of B(t), hence for t > T we have:
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P(t, T) = EQ
[︂
e
∫︁ t

T r(u) du
⃓⃓⃓
Ft

]︂
= e

∫︁ t
T r(u) du =

B(t)
B(T)

(2.2)

where the second equality derives from the fact that e
∫︁ t

T r(u) du is Ft-measurable.
We can consider a self-financing strategy YT, that consists of buying the zero-coupon
bond with maturity T and reinvesting the bond’s unit notional received at T at the
risk-free rate r(t) fom T onwards. If we denote YT(t) as the time t value of the strategy,
we have:

YT(t) =

⎧⎨⎩P(t, T) for t ≤ T

e
∫︁ t

T r(u) du for t > T.

Notice that for t > T, YT(t) is exactly the value of the extended bond price defined by
(2.2). Because of this, we can conclude that for each given T, YT(t) = P(t, T) for all
times t. Therefore, the strategy YT(t) is the extended zero-coupon bond with maturity
T.

2.1.2 Backward-looking in arrears rates

Let us consider M + 1 dates T0, T1, . . . , TM and denote with τj the year fraction for
the time interval [Tj−1, Tj]. Assume that from now on bond prices P(t, T) are meant
in the extended sense. The daily compounded setting-in-arrears rate for the interval
[Tj−1, Tj), which we denote by R(Tj−1, Tj), is

R(Tj−1, Tj) =
1
τj

[︄
n

∏
i=1

(1 + riδi)− 1

]︄

where the product is over the business days in [Tj−1, Tj) and ri is the RFR fixing on
date i with associated day-count fraction δi. For each j = 1, . . . , M, we apply the same
approximation used in [28] of the rate for the interval [Tj−1, Tj)

2 and use the extended
definition of zero-coupon bond

R(Tj−1, Tj) =
1
τj

[︄
e
∫︁ Tj

Tj−1
r(u) du

− 1

]︄
=

1
τj

[︄
B(Tj)

B(Tj−1)
− 1

]︄
=

1
τj

[︁
P(Tj−1, Tj)− 1

]︁
. (2.3)

Now, we can define the backward-looking forward rate Rj(t) at time t as the expected
value of R(Tj−1, Tj) conditioned to the extended Tj-forward measure. A Tj-forward
measure is a pricing measure with respect to a risk-neutral measure QTj , which, rather

2The approximation is obtained taking the limit for the mesh of {δ1, ..., δn} for the daily compounded
setting-in-arrears rate, going to zero in the daily-compounded setting-in-arrears rate formula.
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than using the money market as numeraire, uses a bond with maturity Tj

Rj(t) = ETj
[︁
R(Tj−1, Tj)

⃓⃓
Ft
]︁

(2.4)

where ETj is the expected value with respect to the risk-neutral probability measure
QTj . In other terms, we can see Rj(t) as the value of the fixed rate K in the swaplet
paying τj[R(Tj−1, Tj)− K] at time Tj such that the swaplet has zero value at time t.
Recall that a swaplet is an interest rate swap that has a single payment. From (2.3) and
(2.4), and changing the measure from QTj to Q - and therefore returning to use the
bank account as a numeraire rather than the bond - we obtain

1 + τjRj(t) = ETj

[︄
e
∫︁ Tj

Tj−1
r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
=

1
P(t, Tj)

E

[︄
e−
∫︁ Tj

t r(u) due
∫︁ Tj

Tj−1
r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
=

=
1

P(t, Tj)
E

[︃
e−
∫︁ Tj−1

t r(u) du
⃓⃓⃓⃓
Ft

]︃
=

P(t, Tj−1)

P(t, Tj)
.

Hence,

Rj(t) =
1
τj

[︄
P(t, Tj−1)

P(t, Tj)
− 1

]︄
. (2.5)

Notice that this is the classic, simply-compunded, forward-rate formula (see Definition
1.1.1) which, thanks to the extended definition of the bond price, is true for every t,
even those after maturity Tj.

2.1.3 Forward-looking rates

By definition, the forward-looking spot rate is the market-implied prediction of the
daily compounded setting-in arrears rate. In other words, it is the expected value con-
ditioned to the extended Tj-forward measure of R(Tj−1, Tj), taking into consideration
all the information available in the previous period (that is the sigma-algebra FTj−1)

F(Tj−1, Tj) = E
Tj
[︂

R(Tj−1, Tj)
⃓⃓⃓
FTj−1

]︂
.

The forward-looking forward rate Fj(t) at time t is defined as as the expected value of
F(Tj−1, Tj) conditioned to the extended Tj-forward measure. In other terms, it is the
value of the fixed rate K in the swaplet that pays τj[F(Tj−1, Tj)− K] at time Tj, such
that the swaplet has zero value at time t, hence
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Fj(t) = ETj
[︁
F(Tj−1, Tj)

⃓⃓
Ft
]︁

Thus, by no arbitrage, for t ≤ Tj−1:

Fj(t) = ETj
[︂
ETj

[︂
R(Tj−1, Tj)

⃓⃓⃓
FTj−1

]︂⃓⃓⃓
Ft

]︂
=

= ETj
[︁
R(Tj−1, Tj)

⃓⃓
Ft
]︁
= Rj(t)

On the contrary, for t > Tj−1, since F(Tj−1, Tj) is known at Tj−1,

Fj(t) = F(Tj−1, Tj)

hence the value is fixed and constant.

2.2. The general term structure equation

As anticipated in the previous section, now we will demonstrate that if we take the
price of one particular bond as a benchmark, then it is possible to uniquely determine
the prices of all other bonds in terms of the price of the benchmark.
To show this, we assume that the price of a T-bond has the form

P(t, T) = F(t, r(t), T)

where F is a smooth function of three real variables. At the time of maturity T, the
bond is worth 1 dollar

F(T, r, T) = 1

for all r.3 Let us build a portfolio with bonds of two different maturities T and S. From
(2.1) and the Ito’s formula, we get the following dynamics for the T-bond

dFT = FTαTdt + FTσTdW̄ (2.6)

where

αT =
FT

t + µFT
r + 1

2 σ2FT
rr

FT (2.7)

3Notice that in the equation r denotes a real variable, but at the same time it is used for the stochastic
process for the short rate. For a better understanding, the stochastic process should henceforth be
denoted differently. However, with some abuse of notation, r will continue to be used for both.
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σT =
σFT

r
FT (2.8)

with subindices r and t denoting partial derivatives. The S-bond has analogous corre-
sponding equations.
Denoting the relative portfolio by (us, uT) we have the following value dynamics for
our portfolio

dV = V
[︃

uT
dFT

FT + uS
dFs

FS

]︃
.

Using (2.6) and the corresponding equation for the S-bond, we obtain

dV = V [uTαT + uSαS] dt + V [uTσT + uSσS] dW̄. (2.9)

Since the sum of portfolio weights must be 1 and assuming that the portfolio is well
diversified, we have that ⎧⎨⎩uT + uS = 1

uTσT + uSσS = 0.
(2.10)

Given this, the dW̄-term of (2.9) disappears and the value reduces to

dV = V [uTαT + uSαS] dt. (2.11)

The system (2.10) has solutions

uT = − σS
σT−σS

uS =
σT

σT − σS
.

Substituting this into (2.11), we obtain

dV = V
[︃

αSσT − αTσS

σT − σS

]︃
dt.

Given the no-arbitrage assumption, if the portfolio is self-financed, its rate of return
must be equal to the short rate of interest (from [7]). Hence, the following condition
must hold

αSσT − αTσS

σT − σS
= r(t) (2.12)

for all t. Written differently, this is
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αS(t)− r(t)
σS(t)

=
αT(t)− r(t)

σT(t)
.

Notice that the left-hand side stochastic process is independent of the choice of T,
and the right-hand side process is independent of S. Thus, we can define an universal
process λ, such that

αT(t)− r(t)
σT(t)

= λ(t) (2.13)

for all t and T. αT(t) is the local rate of return on the T-bond, r is the rate of return on
the risk-free asset and σT(t) is the local volatility of the T-bond. The term αT(t)− r(t)
is the risk premium of the T-bond and measures the excess rate of return for the
risky T-bond over the riskless rate of return which is required by the market to avoid
arbitrage possibilities. Therefore, the process λ represents the risk premium per unit
of volatility, that is the market price of risk. By substituting previous formulas (2.7)
and (2.8) into (2.13), we can obtain the term structure equation for FT.

Definition 2.2.1. The general term structure equation for FT is⎧⎨⎩FT
t + {µ − λσ}FT

r + 1
2 σ2FT

rr − rFT = 0

FT(T, r) = 1.
(2.14)

Using the Feyman-Kac theorem (see [7]), we can obtain the following explicit formula
for F(t, r, T)

F(t, r, T) = EQt,r
[︂
e−
∫︁ T

t r(s) ds
]︂

. (2.15)

The risk-neutral probability measure Q and the subscrits t and r inside equation (2.15)
denote that the expectation shall be taken given the following dynamics of the short
rate

dr(s) = {µ − λσ}ds + σdW(s)

r(t) = r

where W is the Brownian motion under the risk neutral measure Q.
The term structure will be determined as soon as the drift term µ, the diffusion term
(volatility) σ and the market price of risk λ will be specified. Suppose for a moment
that σ is given a priori. Then, it is irrelevant exactly how µ and λ are specified per se.
In fact, the object that, apart from σ, really determines the term structure is the term
µ − λσ. From (2.12), we notice that this is exactly the drift term of the short rate of
interest under the martingale measure Q. Hence, instead of specifying µ and λ under
the objective probability measure P, we will specify the dynamics of the short rate
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r directly under the risk-neutral measure Q. This procedure is known as martingale
modeling and the typical assumption will thus be that r under Q has dynamics given
by

dr(t) = µ(t, r(t))dt + σ(t, r(t))dW(t) (2.16)

where µ and σ are given functions and W is a Brownian motion under the measure Q.4

In the literature, there are a large number of proposals on how to specify the Q-
dynamics for r. Some of the most popular models are:

1. Vasicek:
dr = (b − ar)dt + σdW

with a > 0;

2. Cox-Ingersoll-Ross (CIR):

dr = a(b − r)dt + σ
√

rdW;

3. Dothan:
dr = ardt + σrdW;

4. Black-Derman-Toy:
dr = Θ(t)rdt + σ(t)rdW;

5. Ho-Lee:
dr = Θ(t)dt + σdW;

6. Hull-White (extended-Vasicek):

dr = (Θ(t)− a(t)r)dt + σ(t)dW

with a(t) > 0;5

Remark 1 (models’ parameters estimation). The main concern about these specifi-
cations is how to estimate the various parameters in the models above. In fact, all
processes follow Q-dynamics, hence all parameters hold under the martingale measure

4Notice that from now on the letter µ will always denote the drift term of the short rate under the
martingale measure Q.

5Notice that there exists another short rate dynamics specification derived by J. Hull and A. White,
which is an extension of the Cox-Ingersoll-Ross model, that however will not be analysed in this
dissertation. Specifically, under this model, r has Q-dynamics dr = (Θ(t) − a(t)r)dt + σ(t)

√
rdW,

a(t) > 0. For more details, see [19].
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Q. However, when we make observations in the real world, we are observing r under
the objective probability P and not Q. This is why standard statistical procedures
cannot be applied. Nonetheless, it is possible to show that the diffusion term is the
same under P and under Q (from [7]). Specifically, parameters can be estimated by
inverting the yield curve. Suppose that we want to estimate a parameter vector α

that specifies both µ and σ. To do that, first we need to solve the term structure
equation (2.14) and compute the theoretical term structure P(t, T, α) = FT(t, r, α). Af-
terwards, we have to collect prices from the market and obtain the empirical structure
{P∗(0, T), T ≥ 0}. At this point, we can estimate the parameter α∗ by fitting the theo-
retical curve {P(0, T, α), T ≥ 0} into the empirical curve {P∗(0, T), T ≥ 0}. For a more
detailed explanation, see [7].
This process involves some PDEs, which are sometimes difficult to resolve. Neverthe-
less, there exists an easy way to overcome the problem, which is by using affine term
structures.

Definition 2.2.2. The model is said to possess an affine term structure (ATS) if the term
structure {P(t, T); 0 ≤ t ≤ T, T > 0} has the form P(t, T) = F(t, r(t), T), with

F(t, r, T) = eA(t,T)−B(t,T)r (2.17)

where A and B are deterministic functions.

Now, suppose that we have a family of T-bonds, whose price is P(t, T) = F(t, r(t), T)
and that are worth 1 dollar at maturity F(T, r, T) = 1. Assume the usual Q-dynamics
for the short rate (2.16) and that our model possesses an ATS. Using (2.17), we can
easily compute the partial derivatives of F and substitute them into the term structure
equation (2.14), and we obtain

At(t, T)− {1 + Bt(t, T)}r − µ(t, r)B(t, T) +
1
2

σ2(t, r)B2(t, T) = 0. (2.18)

The boundary value F(T, r, T) = 1 implies⎧⎨⎩A(T, T) = 0

B(T, T) = 0.

Equation (2.18) gives us the relations which must hold between A, B, µ and σ in
order for the ATS to exist. Notice that for certain choices of µ and σ there may or may
not exist functions A and B that satisfies (2.18). Henceforth, we must give conditions
on µ and σ that fulfill this requirement. We observe that if µ and σ are both affine
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(i.e. linear plus a constant) functions of r, with possibly time-dependent coefficients,
(2.18) becomes a separable differential equation for the unknown functions A and B.
Particularly, suppose that µ and σ have the form⎧⎨⎩µ(t, r) = α(t)r + β(t)

σ(t, r) =
√︁

γ(t)r + δ(t).
(2.19)

Then, after collecting terms, (2.18) becomes

At(t, T)− β(t)B(t, T)+
1
2

δ(t)B2(t, T)−{1+ Bt(t, T)+ α(t)B(t, T)− 1
2

γ(t)B2(t, T)}r = 0.
(2.20)

This equation holds for all t, T and r, so let us consider it for a fixed choice of T and t.
Since the equation holds for all values of r, its coefficient must be equal to zero. Thus
we have the equation

Bt(t, T) + α(t)B(t, T)− 1
2

γ(t)B2(t, T) = −1. (2.21)

Also, given (2.21), equation (2.20) becomes

At(t, T) = β(t)B(t, T)− 1
2

δ(t)B2(t, T). (2.22)

Hence, the model admits an ATS of the form (2.17) when A and B satisfy both (2.21)
and (2.22) taking into account the boundary conditions, that is⎧⎨⎩Bt(t, T) + α(t)B(t, T)− 1

2 γ(t)B2(t, T) = −1

B(T, T) = 0
(2.23)

and ⎧⎨⎩At(t, T) = β(t)B(t, T)− 1
2 δ(t)B2(t, T)

A(T, T) = 0.
(2.24)

In the next section, we will derive the term structure equation for the Hull-White
model’s specification of the short rate, which seems to be the standard choice for
interest rate modeling in current markets. However, since the Hull-White model
constitutes its extension, we will first present the Vasicek model, for pedagogical
purposes.
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2.3. The Hull-White Model

This section will present the Hull-White model (extended-Vasicek) as done in [7]. The
Hull-White model is a short rate model, therefore it models instantaneous short rates
of interest. Since the Hull-White model constitutes its extension, first we will introduce
the Vasicek model as in [7], for a better understanding.

2.3.1 The Vasicek Model

Suppose that the model possesses an affine term structure of the same form as the one
presented in the previous section. Recall that, under the Vasicek model, theQ-dynamics
of the short rate r are

dr(t) = (b − ar(t))dt + σdW

with a > 0. Given this specification, we can conclude that in (2.19), α(t) = −a, β(t) = b,
γ(t) = 0 and δ(t) = σ. The two equations systems (2.23) and (2.24) then become⎧⎨⎩Bt(t, T)− aB(t, T) = −1

B(T, T) = 0
(2.25)

and ⎧⎨⎩At(t, T) = bB(t, T)− 1
2 σ2B2(t, T)

A(T, T) = 0.
(2.26)

Equation (2.25) is a simple ODE in the t-variable for each fixed T and can be solved as

B(t, T) =
1
a

[︂
1 − e−a(T−t)

]︂
.

Contrarily, integrating (2.26) we obtain

A(t, T) =
σ2

2

∫︂ T

t
B2(s, T) ds − b

∫︂ T

t
B(s, T) ds.

Substituting the expression for B above, we obtain that, in the Vasicek model, the bond
prices are given by the usual ATS formula (2.17), that is

P(t, T) = eA(t,T)−B(t,T)r(t)

where
B(t, T) =

1
a

[︂
1 − e−a(T−t)

]︂
34
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and

A(t, T) =
(B(t, T)− T + t)(ab − 1

2 σ2)

a2 − σ2B2(t, T)
4a

.

2.3.2 The Hull-White Model (extended-Vasicek)

J. Hull and A. White (see [19]) extended the Vasicek model by adding a time-dependent
drift Θ(t) to the process for r and allowing both the coefficient a and the volatility
factor σ to be functions of the time t. This leads to the following Q-dynamics of the
short rate r

dr = (Θ(t)− a(t)r)dt + σ(t)dW

with a(t) > 0. Notice that, by using an appropriate time-dependent function Θ(t), the
Hull-White model is able to perfectly fit the initially observed term structure of interest
rates. This feature will be crucial for the determination of the term structure equation.
In this section, we will present a simplified version of the Hull-White extension, where
the coefficient a and the volatility σ are constants while Θ is a deterministic function
of time (see [7]). The Q-dynamics of the short rate becomes

dr(t) = (Θ(t)− ar(t))dt + σdW(t) (2.27)

where a and σ are typically chosen to obtain a nice volatility structure, whereas Θ is
chosen in order to fit the theoretical bond prices {P(0, T), T > 0} to the observed curve
{P∗(0, T), T > 0}.
Suppose that we have an affine term structure so bond prices are given by equation
(2.17). Given the short rate dynamics, we can conclude that in (2.19) a(t) = −a,
β(t) = Θ(t), γ(t) = 0 and δ(t) = σ. Hence, the two equation systems (2.23) and (2.24)
become ⎧⎨⎩Bt(t, T) = aB(t, T)− 1

B(T, T) = 0
(2.28)

and ⎧⎨⎩At(t, T) = Θ(t)B(t, T)− 1
2 σ2B2(t, T)

A(T, T) = 0.
(2.29)

Equation (2.28) is a simple ODE in the t-variable for each fixed T and can be solved as

B(t, T) =
1
a

[︂
1 − e−a(T−t)

]︂
. (2.30)

On the contrary, integrating (2.29), we obtain
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A(t, T) =
∫︂ T

t

[︃
1
2

σ2B2(s, T)− Θ(s)B(s, T)
]︃

ds. (2.31)

Now, we want to fit the theoretical prices above to the observed prices and it is conve-
nient to do so by using the forward rates. Since there is a one-to-one correspondence
between forward rates and bond prices6, we may as well fit the theoretical forward
curve { f (0, T), T > 0} to the observed curve { f ∗(0, T), T > 0}, where f stands for the
forward rate, with f (t, T) = − d ln p(t,T)

dT and f ∗(t, T) = − d ln p∗(t,T)
dT .7 Since the model is

assumed to possess an affine term structure, the forward rate at time t = 0 is given by
(from [7])

f (0, T) = BT(0, T)r(0)− AT(0, T)

which, after inserting the expressions for A(t, T) and B(t, T) becomes

f (0, T) = e−aTr(0) +
∫︂ T

0
e−a(T−s)Θ(s) ds − σ2

2a2 (1 − e−aT)2.

Given an observed forward rate structure f ∗, our problem is to find a function Θ that
solves the equation

f ∗(0, T) = e−aTr(0) +
∫︂ T

0
e−a(T−s)Θ(s) ds − σ2

2a2 (1 − e−aT)2 (2.32)

for every T > 0. One way to solve it is by writing

f ∗(0, T) = x(T)− g(T)

where the two functions x and g are defined as⎧⎨⎩ẋ = −ax(t) + Θ(t)

x(0) = r(0)

and

g(t) =
σ2

2a2 (1 − e−at)2 =
σ2

2
B2(0, t).

The solution to equation (2.32) then is

6For t ≤ s ≤ T we have that p(t, T) = p(t, s)e−
∫︁ T

s f (t,u) du and in particular p(t, T) = e−
∫︁ T

t f (t,s) ds,
where f stands for the forward rate (see [7]).

7Notice that this is the usual definition of an instantaneous forward rate with maturity T contracted
at T. For a more specific definition and derivation, see [7].
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Θ(T) = ẋ(T) + ax(T) = f ∗T(0, T) + ġ(T) + ax(T) =

= f ∗T(0, T) + ġ(T) + a [ f ∗(0, T) + g(T)] .

(2.33)

By choosing Θ according to (2.33), we have determined our martingale measure for
a fixed choice of a and σ. Substituting this expression for Θ into (2.31), performing
the integration and inserting the result, as well as (2.30), into (2.17), we obtain the
Hull-White term structure, that is

P(t, T) =
P∗(0, T)
P∗(0, t)

eB(t,T) f ∗(0,t)− σ2
4a B2(t,T)(1−e−2at)−B(t,T)r(t)

where B is given by (2.30).

2.3.3 The pricing formula for a European call option

As reported in [7], both the Hull-White model and the Vasicek model have the same
pricing formula for a European call option.8 Particularly, assume the existence of a
European call option on an S-bond with maturity T and strike price K, where T < S.
Its pricing formula is

c(t, T, K, S) = P(t, S)N(d)− P(t, T)KN(d − σp)

with
d =

1
σp

ln
[︃

P(t, S)
P(t, T)K

]︃
+

1
2

σp

σp =
1
a

[︂
1 − e−a(S−T)

]︂√︃σ2

2a
[︁
1 − e−2a(T−t)

]︁
and where P(t, T) and P(t, S) do not have to be computed since they can directly be
observed on the market.9

2.4. The Forward Market Model

The Forward Market Model (FMM), developed by A. Lyashenko and F. Mercurio
(see [28]), models both backward-looking daily-compounded in arrears and forward-
looking term rates, using a single stochastic process. It constitutes a natural extension
of the classic single-curve LIBOR Market Model (LMM), which models LIBOR forward

8Recall that an European call option is a call option that can be exercised only at maturity.
9For complete derivation of the formula, see [7].
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rates - thus exclusively forward-looking rates. As the LMM, the FMM models a set of
forward rates, and not short rates. Recall that a forward rate is the yield of a security
that will not be traded until a predetermined date in the future. Nonetheless, the FMM
constitutes a more complete model than LMM because, while preserving the dynamics
of the forward-looking (LIBOR-like) rates, it also provides a model for interests that
use daily rates published during the relevant application periods (and therefore not
exclusively over a period of time prior to the their start).

2.4.1 The generalised FMM

As demonstrated in sections 2.1.2 and 2.1.3, we can conclude that, for each j = 1, ..., M,
the backward-looking forward rate Rj(t) and the forward-looking forward rate Fj(t)
can be expressed by a single rate. We will use the same notation of [28], and denote
these rates as Rj(t). In fact, both are described by a single common value, Rj(t), when
t ≤ Tj−1. At time t = Tj−1, the forward-looking forward rate fixes at Rj(Tj−1) =

F(Tj−1, Tj) and stops evolving. On the contrary, the backward-looking forward rate
continues its journey until it fixes at time Tj: for t ≥ Tj, Rj(t) = Rj(Tj).
Because of its own definition (2.4), the forward rate Rj(t) is a martingale under the
corresponding Tj-forward measure. The QTj-dynamics of Rj(t) can be defined for every
t, including t ≥ Tj. As in [28], we assume that Rj(t) has the following QTj-dynamics:

dRj(t) = σj(t)1{t≤Tj}dWj(t)

where, for each j = 1, ..., M, σj(t) is an adapted process representing the volatility of the
forward rate and Wj(t) is a standard Brownian motion such that dWi(t)dWj(t) = ρi,jdt,
with ρi,j being the correlation between the two processes. The indicator function 1{t≤Tj}
is introduced to ensure that the process is well defined and constant for times greater
than (or equal to) Tj.
In order to properly define the forward rate dynamics, it is crucial to model the
behaviour of its volatility in the accrual period

[︁
Tj−1, Tj

]︁
. In [28], the authors choose

a differentiable function gj such that: gj(t) = 1 for t ≤ Tj−1, gj(t) is monotonically
decreasing in

[︁
Tj−1, Tj

]︁
and gj(t) = 0 for t ≥ Tj. An example for the function gj(t),

assuming a linear decay, is

gj(t) = min

[︄
(Tj − t)+

(Tj − Tj−1)
, 1

]︄
.

The dynamics of Rj(t) then becomes:
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dRj(t) = σj(t)gj(t)dWj(t). (2.34)

Equation (2.34) defines the dynamics of each forward rate Rj(t) under the correspond-
ing Tj-forward measure. By deriving the dynamics of each forward under a common
probability measure, we can define a market model where all forward rates are mod-
eled jointly, for j = 1, ..., M. To do this, we apply the change-of-numeraire formula
relating the drifts of a given process under two measures with known numeraires.
Specifically, we know the dynamics of Rj(t) under the Tj-forward measure and we
want to derive its dynamics under the measure QN, that is associated to the generic
numeraire N(t). To compute the drift, we use the same solution adopted in [28]10:
assuming continuous dynamics, the drift of Rj under QN, as a function of time t is

Drift(Rj;QN)(t) =
dRj(t)d ln

[︂
N(t)

P(t,Tj)

]︂
dt

. (2.35)

Let us consider a specific case for the value of the generic numeraire N(t), that is
N(t) = B(t). If this is true, the probability measure QN is the risk-neutral probability
measure Q.
Equation (2.35) becomes

Drift(Rj;Q)(t) =
dRj(t)d ln

[︂
B(t)

P(t,Tj)

]︂
dt

.

Let us focus first on the logarithmic part of the drift equation. Using the definition of
extended bond prices (see (2.2)), we can write

ln

[︄
B(t)

P(t, Tj)

]︄
= ln

[︄
P(t, 0)
P(t, Tj)

]︄

if we take T = 0.11

Expanding the formula by filling all the intermediate points between 0 and t, we can
write

ln

[︄
P(t, 0)
P(t, Tj)

]︄
= ln

[︄
j

∏
i=1

(︃
P(t, Ti−1)

P(t, Ti)

)︃]︄
.

10Specifically, Lyashenko and Mercurio use Brigo and Mercurio’s change-of-numeraire formula
(2006).

11Notice that P(t, 0) = B(t)
B(0) , where B(0) = 1 by definition.
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Using (2.5),

ln

[︄
j

∏
i=1

(︃
P(t, Ti−1)

P(t, Ti)

)︃]︄
= ln

[︄
j

∏
i=1

(1 + τiRi(t))

]︄
=

j

∑
i=1

ln [1 + τiRi(t)].

Therefore,

Drift(Rj;Q)(t) =
dRj(t)d ∑

j
i=1 ln [1 + τiRi(t)]

dt
=

=
j

∑
i=1

[︃
dRj(t)d ln [1 + τiRi(t)]

dt

]︃
=

=
j

∑
i=1

[︃
τi

1 + τiRi(t)
dRj(t)dRi(t)

dt

]︃
=

= σj(t)gj(t)
j

∑
i=1

[︃
ρi,j

τiσi(t)gi(t)
1 + τiRi(t)

]︃
(2.36)

where the last equality is obtained substituting (2.34) and dWi(t)dWj(t) = ρi,jdt.
The Q-dynamics of Rj then becomes:

dRj(t) = σj(t)gj(t)
j

∑
i=1

[︃
ρi,j

τiσi(t)gi(t)
1 + τiRi(t)

]︃
+ σj(t)gj(t)dWQ

j (t)

where WQ
j (t) is a Q-Brownian motion.

A. Lyashenko and F. Mercurio consider also two additional cases for the value of
the generic numeraire N(t) that will not be presented here. Specifically, they study the
drift nature when N(t) = Bd(t), where Bd(t) is the time-t value of a particular discrete
bank account (hence, the probability measure QN becomes the classic spot-LIBOR prob-
ability measure Qd, which corresponds to using the discretely-compounded money
market account as numeraire within the LIBOR market model). Moreover, they analyse
the case in which N(t) = P(t, Tk), where k is a generic scalar (hence, the probability
measure QN becomes the Tk-forward measure, that is a pricing measure that uses a
bond with maturity Tk as a numeraire). For the complete mathematical derivation of
the Q-dynamics in these two cases, see [28].
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2.4.2 Model characteristics

As already stressed, the FMM is an extension of the classic single-curve LMM, that
models jointly the dynamics of both forward-looking forward rates Fj(t) and backward-
looking forward rates Rj(t), since Fj(t) = Rj(t) for all times t before the expiry time
Tj−1 of Fj(t). Additionally, the FMM has other properties:

• The generalised forward rates Rj(t) are more complete than the than forward-
looking LIBOR rates in terms of spanning the periods defined by the time grid
T0, ..., TM. In fact, for any index j = 1, ..., M and for any time t, we can express
the price of a zero-coupon bond with maturity Tj in terms of the bank account
B(t) and forward rates Ri(t) as follows

P(t, Tj) = B(t)
j

∏
i=1

1
1 + τiRi(t)

with the equality holding for all t, including t > Tj. This means that

dP(t, Tj)

P(t, Tj)
= r(t)dt −

j

∑
i=1

τi

1 + τiRi(t)
σi(t)gi(t)dWQ

i (t)

so the volatility of all bonds P(t, Tj) and their instantaneous covariance structure
are known and a function of rates Ri(t).
An analogous representation cannot be found under the LMM.

• Under the FMM, it is possible to price future contracts more precisely than under
the LMM. In fact, generally the time-t future price of a contract that pays out HT

at time T > t can be computed as done by Hunt and Kennedy (cited in [28]):

f (t) = E [HT|Ft] .

In the classic LMM model, Q-dynamics are not directly available, hence Q is
typically approximated with Qd to explicitely compute the future price f (t):

f (t) ≈ Ed [HT|Ft]

where Ed denotes expectation under Qd. Such an approximation is no longer
needed in the FMM, as the forward rate dynamics are perfectly known under Q,
hence the first formula can be used without issues.

• The FMM also provides an easier extension to a cross-currency interest-rate
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model than the LMM. In a two-currency economy, where domestic and foreign
rates are driven by the corresponding FMMs, the dynamics of the foreign FMM
under the domestic measure Q and the dynamics of the domestic FMM under the
foreign money-market risk-neutral measure Q f can be easily derived. Contrarily,
this is not possible under the classic LMM. For more details on the derivation of
these dynamics, see [28].
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Chapter 3

Derivative pricing using the Hull-White
model

As previously stressed in section 1.2.4, LIBOR transition and the introduction of new
RFRs rose the issue of how to price new kinds of derivatives, that were born after the
adoption of the new benchmark rates. An example of these new instruments is given
by options on three months SOFR futures, a type of derivative launched by CME on
January 2020. These derivative instruments are gaining increasing popularity in the last
weeks: in July 2022, the daily traded volume has been on average around 600 millions,
with peaks even reaching 800 millions.1 Following the successful launches of options
on three months SOFR futures, CME Group launched also options on one month SOFR
futures in May 2020. Indeed, recall that a SOFR future contract is a derivative whose
underlying is an interest-bearing instrument referencing SOFR and that in financial
markets there exists two types of future contracts depending on their maturity (three
months or one month). Also, remember that the option gives the right, but not the
obligation, to exercise sometime before maturity the SOFR future contract, in order to
protect the holder from unfavourable variations of its price.
At the same time, the ICE has launched options on three months SONIA index futures
in December 2020. These are derivatives very similar to options on SOFR future, that
deliver into the nearest three month SONIA index future contract, and that are also
experiencing a considerable diffusion in financial markets.2

The increasing spread and market popularity of these instruments attest why it is
crucial to understand how they work and can be priced.

1See URL: https://www.cmegroup.com/markets/interest-rates/stirs/three-month-
sofr.volume.options.html#optionProductId=8849

2See URL: https://www.theice.com/products/79341513/Options-on-Three-Month-SONIA-
Index-Future

43

https://www.cmegroup.com/markets/interest-rates/stirs/three-month-sofr.volume.options.html##optionProductId=8849
https://www.cmegroup.com/markets/interest-rates/stirs/three-month-sofr.volume.options.html##optionProductId=8849
https://www.theice.com/products/79341513/Options-on-Three-Month-SONIA-Index-Future
https://www.theice.com/products/79341513/Options-on-Three-Month-SONIA-Index-Future


3.1. OPTIONS ON RFRS FUTURES

In this chapter, we will focus on the evaluation of the general category of options on
RFRs future, with the future having a generic RFR as an underlying, considering both
three months and one month future contracts. Notice that we will assume that the
RFRs dynamics are described by the Hull-White model, since it is currently the most
popular for interest rate modeling.

3.1. Options on RFRs futures

Options on RFRs futures are particular derivative instruments composed of two parts.
The first one is a future contract on a RFR, that is a derivative according to which two
counterparties agree to exchange a RFR interest-bearing instrument at a pre-specified
price some time in the future. Notice that, in current financial markets, there exist
two types of future contracts depending on their maturity, namely 1-month (1M) and
3-months (3M) future contracts. As explained in [30], [28] and [15], 1M and 3M future
contracts are characterized by different settlement specifications:

• a 3M future contract settles at Tj at the backward-looking rate R(Tj−1, Tj) (repre-
senting the geometric average of overnight rates over the period [Tj−1, Tj], with
τj = Tj − Tj−1 being equal to three months);

• a 1M future contract settles at the rate representing the arithmetic average of
overnight rates over the period [Tj−1, Tj], with τj = Tj − Tj−1 being equal to one
month.

Let us suppose that the interest rate underlying the future contract has the Hull-White
Q-dynamics specified in chapter 2, with parameters a and σ constant and positive, that
is

dr(t) = (Θ(t)− ar(t))dt + σdW(t) (3.1)

where W(t) indicates the Brownian motion with respect to the risk neutral measure.
The reason behind this assumption is the popularity of the Hull-White model for
interest rate modeling in current financial markets.
The second derivative composing the option on RFR future is an option contract.
Specifically, the future contract constitutes the underlying instrument of the option,
which gives the holder the right, but not the obligation, to buy or sell it at a strike price
on or before the option’s expiration date.
Since there exists two types of future contracts, we can imagine two types of options
that have each of them as an underlying instrument, namely an option on a 3M future
and an option on a 1M future.
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3.2. PRICING OF THE FUTURE CONTRACT

In the next sections, we will try to obtain a mathematical formula that describes
the price of options on RFRs futures. In particular, first we will start by evaluating the
future contracts (both 3M and 1M) and then we will use the results to price the options
(on both 3M and 1M futures).

3.2. Pricing of the future contract

Let us first consider a 3M future contract, which we know settles at Tj at the backward-
looking rate R(Tj−1, Tj). Denoting as f 3M

j (t) the 3M future rate at time t, it holds
that

f 3M
j (t) = EQ

[︁
R(Tj−1, Tj)

⃓⃓
Ft
]︁

= EQ
[︄

1
τj
(e
∫︁ Tj

Tj−1
r(u) du

− 1)

⃓⃓⃓⃓
⃓Ft

]︄

=
1
τj

[︄
EQ

[︄
e
∫︁ Tj

Tj−1
r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
− 1

]︄
(3.2)

where the second equality derives from equation (2.3). Assume that r(t) satisfies the
Hull-White stochastic differential equation (3.1).
From equation (3.2), we notice that the future price determination can be traced back

to the computation of the expected value EQ
[︄

e
∫︁ Tj

Tj−1
r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
. The starting point for

the resolution of this expected value is the computation of the integral
∫︁ Tj

Tj−1
r(u) du.

Integrating equation (3.1), we obtain

r(u) = r(t)e−a(u−t) +
∫︂ u

t
e−a(u−s)Θ(s) ds + σ

∫︂ u

t
e−a(u−s) dW(s). (3.3)

For t ≤ Tj−1, by substituting (3.3) into the integral we want to compute, we obtain

∫︂ Tj

Tj−1

r(u) du =
∫︂ Tj

Tj−1

r(t)e−a(u−t) du +
∫︂ Tj

Tj−1

(︃∫︂ u

t
e−a(u−s)Θ(s) ds

)︃
du

+
∫︂ Tj

Tj−1

σ
∫︂ u

t
e−a(u−s) dW(s) du. (3.4)

Using Fubini’s theorem (see Theorem A.48 of [7]), the previous equation becomes
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∫︂ Tj

Tj−1

r(u) du =
∫︂ Tj

Tj−1

r(t)e−a(u−t) du +
∫︂ Tj−1

t

(︄∫︂ Tj

Tj−1

e−a(u−s)Θ(s) du

)︄
ds

+
∫︂ Tj

Tj−1

(︃∫︂ Tj

s
e−a(u−s)Θ(s) du

)︃
ds + σ

∫︂ Tj−1

t

(︄∫︂ Tj

Tj−1

e−a(u−s) du

)︄
dW(s)

+σ
∫︂ Tj

Tj−1

(︃∫︂ Tj

s
e−a(u−s) du

)︃
dW(s).

Solving the integrals

∫︂ Tj

Tj−1

r(u) du =

[︃
−r(t)

a
e−a(u−t)

]︃u=Tj

u=Tj−1

+
∫︂ Tj−1

t

[︃
−1

a
e−a(u−s)Θ(s)

]︃u=Tj

u=Tj−1

ds

+
∫︂ Tj

Tj−1

[︃
−1

a
e−a(u−s)Θ(s)

]︃u=Tj

u=s
ds − σ

a

∫︂ Tj−1

t

[︂
e−a(u−s)

]︂u=Tj

u=Tj−1
dW(s)

−σ

a

∫︂ Tj

Tj−1

[︂
e−a(u−s)

]︂u=Tj

u=s
dW(s) =

=
r(t)

a
e−a(Tj−1−t) − r(t)

a
e−a(Tj−t) +

1
a

∫︂ Tj−1

t
(e−a(Tj−1−s) − e−a(Tj−s))Θ(s) ds

+
1
a

∫︂ Tj

Tj−1

(1 − e−a(Tj−s))Θ(s) ds − σ

a

∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s)) dW(s)

−σ

a

∫︂ Tj

Tj−1

(e−a(Tj−s) − 1) dW(s). (3.5)

For notation simplicity, let us denote

ηt,j =
1
a

∫︂ Tj−1

t
(e−a(Tj−1−s) − e−a(Tj−s))Θ(s) ds +

1
a

∫︂ Tj

Tj−1

(1 − e−a(Tj−s))Θ(s) ds. (3.6)

We can now notice that
∫︁ Tj

Tj−1
r(u) du, conditioned to Ft, is distributed with respect to

the risk neutral measure as a normal. We can compute the mean and variance using
their general definitions as

µt,j = E
Q

[︄∫︂ Tj

Tj−1

r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
=

r(t)
a

(e−a(Tj−1−t) − e−a(Tj−t)) + ηt,j (3.7)

and

Σ2
t,j = VarQ

[︄∫︂ Tj

Tj−1

r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
=
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=
σ2

a2E
Q

⎡⎣(︄∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s)) dW(s) +

∫︂ Tj

Tj−1

(e−a(Tj−s) − 1) dW(s)

)︄2
⃓⃓⃓⃓
⃓⃓Ft

⎤⎦ =

=
σ2

a2E
Q

⎡⎣(︃∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s)) dW(s)

)︃2

+

(︄∫︂ Tj

Tj−1

(e−a(Tj−s) − 1) dW(s)

)︄2

+2
(︃∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s)) dW(s)

)︃
·
(︄∫︂ Tj

Tj−1

(e−a(Tj−s) − 1) dW(s)

)︄⃓⃓⃓⃓
⃓Ft

]︄
.

Using the expected value linearity property and the law of iterated expectations, we
have

Σ2
t,j =

σ2

a2

[︄
EQ

[︄(︃∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s)) dW(s)

)︃2
⃓⃓⃓⃓
⃓Ft

]︄

+EQ

⎡⎣(︄∫︂ Tj

Tj−1

(e−a(Tj−s) − 1) dW(s)

)︄2
⃓⃓⃓⃓
⃓⃓Ft

⎤⎦
+2EQ

[︃
EQ

[︃(︃∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s)) dW(s)

)︃
·(︄∫︂ Tj

Tj−1

(e−a(Tj−s) − 1) dW(s)

)︄⃓⃓⃓⃓
⃓FTj−1

]︄⃓⃓⃓⃓
⃓Ft

]︄]︄
.

Notice that the third addend of the previous equation disappears, since its second
factor turns equal to 0 when solving the integral. Therefore, by using Ito isometry
and taking into account that our integrals become Ft-measurable, we can rewrite our
equation as

Σ2
t,j =

σ2

a2

[︄∫︂ Tj−1

t
(e−a(Tj−s) − e−a(Tj−1−s))2 ds +

∫︂ Tj

Tj−1

(e−a(Tj−s) − 1)2 ds

]︄
.

Solving the integrals, we obtain

Σ2
t,j =

σ2

a2

[︃∫︂ Tj−1

t
(e−2a(Tj−s) + e−2a(Tj−1−s) − 2e−a(Tj−1+Tj−2s) ds

+
∫︂ Tj

Tj−1

(e−2a(Tj−s) + 1 − 2e−a(Tj−s)) ds

]︄
=

σ2

a2

[︄[︃
1
2a

e−2a(Tj−s)
]︃s=Tj−1

s=t

+

[︃
1
2a

e−2a(Tj−1−s)
]︃s=Tj−1

s=t
−
[︃

1
a

e−a(Tj+Tj−1−2s)
]︃s=Tj−1

s=t
+

[︃
1
2a

e−2a(Tj−s)
]︃s=Tj

s=Tj−1
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+(Tj−1 − Tj)−
[︃

2
a

e−a(Tj−s)
]︃s=Tj

s=Tj−1

]︄
=

σ2

a2

[︃
1
2a

e−2a(Tj−Tj−1) − 1
2a

e−2a(Tj−t)

+
1
2a

− 1
2a

e−2a(Tj−1−t) − 1
a

e−a(Tj−Tj−1) +
1
a

e−a(Tj+Tj−1−2t) +
1
2a

− 1
2a

e−2a(Tj−Tj−1) + (Tj−1 − Tj)−
2
a
+

2
a

e−a(Tj−Tj−1)

]︃
.

Hence, the variance is

Σ2
t,j =

σ2

a2

[︃
1
a
(e−a(Tj−Tj−1) + e−a(Tj+Tj−1−2t) − 1)− 1

2a
(e−2a(Tj−t) + e−2a(Tj−1−t))

+(Tj − Tj−1)
]︁

. (3.8)

We can now find the 3M future price. Starting from (3.2), given the normal distribution
of the integral, we can write

f 3M
j (t) =

1
τj

[︄
EQ

[︄
e
∫︁ Tj

Tj−1
r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
− 1

]︄
=

1
τj
(eµt,j+

1
2 Σ2

t,j − 1)

and get the following result, taking into account that ηt,j and Σ2
t,j are given by equations

(3.6) and (3.8).

Proposition 1. Given the hypothesis made, the 3M future price f 3M
j (t) at time t ≤ Tj−1 is

given by

f 3M
j (t) =

1
τj
(e

r(t)
a (e−a(Tj−1−t)−e−a(Tj−t)

)+ηt,j+
1
2 Σ2

t,j − 1)

where

ηt,j =
1
a

∫︂ Tj−1

t
(e−a(Tj−1−s) − e−a(Tj−s))Θ(s) ds +

1
a

∫︂ Tj

Tj−1

(1 − e−a(Tj−s))Θ(s) ds

and

Σ2
t,j =

σ2

a2

[︃
1
a
(e−a(Tj−Tj−1) + e−a(Tj+Tj−1−2t) − 1)− 1

2a
(e−2a(Tj−t) + e−2a(Tj−1−t))

+(Tj − Tj−1)
]︁

.

Let us now consider the 1M future, that we know settles at the rate representing the
arithmetic average of overnight rates over the period [Tj−1, Tj], with τj being equal to
one month. The 1M future rate f 1M

j (t) is
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f 1M
j (t) = EQ

[︄
1
τj

∫︂ Tj

Tj−1

r(u) du

⃓⃓⃓⃓
⃓Ft

]︄
.

Using equations (3.6) and (3.7), we obtain the following result for t ≤ Tj−1.

Proposition 2. Given the hypothesis made, the 1M future price f 1M
j (t) at time t ≤ Tj−1 is

given by

f 1M
j (t) =

1
τj

(︃
r(t)

a
(e−a(Tj−1−t) − e−a(Tj−t)) + ηt,j

)︃
where

ηt,j =
1
a

∫︂ Tj−1

t
(e−a(Tj−1−s) − e−a(Tj−s))Θ(s) ds +

1
a

∫︂ Tj

Tj−1

(1 − e−a(Tj−s))Θ(s) ds.

3.3. Pricing of the option contract

Let us now focus on the option part of our derivative. For simplicity, we will consider
an European call option. Our assumption is consistent with the options on futures that
we find in current financial markets, which are usually of European type. Therefore,
our results can be applied to both options on SONIA index futures and options on
SOFR futures. Moreover, remember that by the call-put parity, once we have computed
the European call prices for some expiry dates and strikes, we can easily obtain the
European put prices for those expiry dates and strikes.
Let us consider a European call option on f iM

j (t), with i = 3 in the case of a 3M future
contract and i = 1 in the case of a 1M future contract. Assume that the option has date
of maturity T ≤ Tj

3 and strike price K. The payoff at time T associated with this claim
is

X = max[ f iM
j (T)− K, 0].

We now want to compute the option price at the time when we decide whether to buy
the option, which we assume happens at a certain time t. We can write the option as

X = [ f iM
j (T)− K] · I{ f iM

j (T) ≥ K}

where I is an indicator function of the form

3Notice that when the option expires at the same date of the future contract, that is at Tj, it expires
into cash. However, this is not always the case: in fact, the two dates may not always coincide and the
derivative would expire into the future contract. This is why we leave T as generic.
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I{ f iM
j (T) ≥ K} =

⎧⎨⎩1 if f iM
j (T) ≥ K

0 if f iM
j (T) < K.

Denoting the price of the option at time t as ΠiM(t, T), we have that

ΠiM(t, T) = EQ[B−1(T)[ f iM
j (T)− K]I{ f iM

j (T) ≥ K}|Ft] =

= EQ[e−
∫︁ T

t r(s) ds f iM
j (T) · I{ f iM

j (T) ≥ K}|Ft]− KEQ[e−
∫︁ T

t r(s) ds · I{ f iM
j (T) ≥ K}|Ft]

where Q is the usual risk neutral martingale measure. The price can be rewritten as

ΠiM(t, T) = P(t, T)ET
[︂

f iM
j (T) · I{ f iM

j (T) ≥ K}
⃓⃓⃓
Ft

]︂
−KP(t, T)ET

[︂
I{ f iM

j (T) ≥ K}
⃓⃓⃓
Ft

]︂
(3.9)

where ET denotes the expectation under the T-forward measure QT and P(t, T) is
the price of a zero-coupon bond at time t.4 In order to solve the two expectations
in the previous equation, we first need to derive the r(t) dynamics with respect to
the T-forward measure. Let us suppose that this dynamics depends on the same
parameters of the Hull-White model a and σ, as we defined them in chapter 2. Then,
the following result is true.

Proposition 3. The dynamics of the short rate r(t) with respect to the T-forward measure is
given by the following stochastic differential equation

dr(t) = (Θ(t)− ar(t)− σ2B(t, T))dt + σdWT(t) (3.10)

where B(t, T) is given by equation (2.25) and WT is a Brownian motion with respect to the
T-forward measure.

Proof. As demonstrated in section 2.3.2, the Hull-White model is characterised by an
affine term structure, that is

P(t, T) = eA(t,T)−B(t,T)r(t) (3.11)

where A(t, T) and B(t, T) are given respectively by equations (2.26) and (2.25).
Using Ito’s formula, from equation (3.11) we obtain that

dP(t, T) = r(t)P(t, T)dt − σB(t, T)P(t, T)dW(t).

4The result derives from the fact that, for a general T-claim X, we have that Π(t, X) =
P(t, T)ET [X|Ft]. For more details, see [7].

50
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Recalling that the bank account has dynamics

dB(t) = r(t)B(t)dt

and that the Girsanov kernel φT(t) for the transition from the risk neutral measure to
the T-forward measure QT is given by the difference between the volatilities of the two
numeraires (as demonstrated in [7]); since the bank account B(t) has volatility equal to
zero, we have that

φT(t) = −σB(t, T).

Therefore,
dWT(t) = dW(t) + σB(t, T)dt

from which we obtain the following stochastic differential equation for the dynamics
of r(t) with respect to the T-forward measure

dr(t) = (Θ(t)− ar(t)− σ2B(t, T))dt + σdWT(t)

where WT is a Brownian motion with respect to the T-forward measure.

Now, we are ready to solve the two expectations in equation (3.9). Particularly, in
the next two paragraphs, we will derive the option price first when the underlying
is a 3M future (i = 3) and then when it is a 1M future (i = 1). The reason why we
need to distinguish between the two cases is related to the different nature of the two
future prices f 3M

j (t) and f 1M
j (t), as we derived them respectively in Proposition 1 and

Proposition 2. In fact, f 3M
j (t) is described by an exponential function of r(t), allowing

us to follow a procedure similar to the one used for the Black and Scholes formula
derivation. On the contrary, in f 1M

j (t), we do not find a comparable exponential
function of r(t). This is why we need to follow a different procedure.

3.3.1 Option on 3M future

In this paragraph, we will study the case in which the underlying of the option contract
is a 3M future contract, that is when i = 3. Specifically, let us focus first on the expected
value of the second term of equation (3.9), which can be rewritten as

ET
[︂

I{ f 3M
j (T) ≥ K}

⃓⃓⃓
Ft

]︂
= QT( f 3M

j (T) ≥ K |Ft) =
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= QT

(︄
1
τj
(e

r(T)
a (e−a(Tj−1−T)−e−a(Tj−T)

)+ηT,j+
1
2 Σ2

T,j − 1) ≥ K

⃓⃓⃓⃓
⃓Ft

)︄
(3.12)

where QT stands for the probability under the T-forward measure, the third equality
is obtained substituting the result of Proposition 1, and

ηT,j =
1
a

∫︂ Tj−1

T
(e−a(Tj−1−s) − e−a(Tj−s))Θ(s) ds +

1
a

∫︂ Tj

Tj−1

(1 − e−a(Tj−s))Θ(s) ds, (3.13)

Σ2
T,j =

σ2

a2

[︃
1
a
(e−a(Tj−Tj−1) + e−a(Tj+Tj−1−2T) − 1)− 1

2a
(e−2a(Tj−T) + e−2a(Tj−1−T))

+(Tj − Tj−1)
]︁

.

In order to compute this probability measure, we first need to find the distribution of
r(T) with respect to the T-forward measure conditional to Ft. To do so, we integrate
equation (3.10) and obtain the solution

r(T) = r(t)e−a(T−t) +
∫︂ T

t
e−a(T−s)

[︂
Θ(s)− σ2B(s, T)

]︂
ds + σ

∫︂ T

t
e−a(T−s) dWT(s) =

= r(t)e−a(T−t) +
∫︂ T

t
e−a(T−s)Θ(s) ds − σ2

a

∫︂ T

t
e−a(T−s) ds +

σ2

a

∫︂ T

t
e−a(2T−2s) ds

+σ
∫︂ T

t
e−a(T−s) dWT(s)

= r(t)e−a(T−t) +
∫︂ T

t
e−a(T−s)Θ(s) ds − σ2

a2

[︂
e−a(T−s)

]︂s=T

s=t
+

σ2

2a2

[︂
e−a(2T−2s)

]︂s=T

s=t

+σ
∫︂ T

t
e−a(T−s) dWT(s)

= r(t)e−a(T−t) +
∫︂ T

t
e−a(T−s)Θ(s) ds − σ2

a2 +
σ2

a2 e−a(T−t) +
σ2

2a2

− σ2

2a2 e−a(2T−2t) + σ
∫︂ T

t
e−a(T−s) dWT(s) (3.14)

where the second equality is obtained substituting the expression for B(t, T) (see
equation (2.25)). Thus, we notice that r(T) is distributed as a normal with respect to
the T-forward measure. The mean can be computed as

α(t, T) = ET [r(T)|Ft] = r(t)e−a(T−t) +
∫︂ T

t
e−a(T−s)Θ(s) ds − σ2

a2
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+
σ2

a2 e−a(T−t) +
σ2

2a2 − σ2

2a2 e−a(2T−2t). (3.15)

The variance of r(T) is

β2(t, T) = VarT [r(T)|Ft] = σ2ET

[︄(︃∫︂ T

t
e−a(T−s) dWT(s)

)︃2
⃓⃓⃓⃓
⃓Ft

]︄
.

Using Ito’s isometry, the variance becomes

β2(t, T) = σ2
[︃∫︂ T

t
(e−a(T−s))2 ds

]︃
= σ2

[︃∫︂ T

t
e−2a(T−s) ds

]︃
= σ2

[︃
1
2a

e−2a(T−s)
]︃s=T

s=t
=

=
σ2

2a
− σ2

2a
e−2a(T−t). (3.16)

Now, for simplicity, let us rewrite equation (3.12) as

QT

(︄
1
τj
(eγ(T)r(T)+δ(T) − 1) ≥ K

⃓⃓⃓⃓
⃓Ft

)︄
(3.17)

where

γ(T) =
e−a(Tj−1−T) − e−a(Tj−T)

a
and

δ(T) = ηT,j +
1
2

Σ2
T,j.

We notice that the exponent inside equation (3.17) is a linear transformation of r(T),
which is therefore distributed as a normal

(γ(T)r(T) + δ(T)) ∼ N (γ(T)α(t, T) + δ(T); γ2(T)β2(t, T)).

For better comprehensibility purposes, let us now define

Y(T) = eγ(T)r(T)+δ(T) = eγ(T)
(︂

α(t,T)+σ
∫︁ T

t e−a(T−s) dWT(s)
)︂
+δ(T)

and
Y(t) = ET

[︂
eγ(T)r(T)+δ(T)

⃓⃓⃓
Ft

]︂
= eδ(T)+γ(T)α(t,T)+ 1

2 γ2(T)β2(t,T).

From these two equations we observe that

Y(T) = Y(t)e−γ2(T) β2(t,T)
2 +γ(T)σ

∫︁ T
t e−a(T−s) dWT(s).
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We notice that the term γ(T)σ
∫︁ T

t e−a(T−s) dWT(s) is distributed as a normal with zero
mean and variance γ2(T)β2(t, T), under the T-forward measure conditional on Ft.
Therefore, by means of standardisation, we can rewrite term as

σ
∫︂ T

t
e−a(T−s) dWT(s) = γ(T)β(t, T)y

where y is a standardised variable ∼ N (0, 1).
We now move back to equation (3.17) and make use of these results.

QT

(︄
1
τj
(eγ(T)r(T)+δ(T) − 1) ≥ K

⃓⃓⃓⃓
⃓Ft

)︄
= QT

(︄
1
τj
(Y(T)− 1) ≥ K

⃓⃓⃓⃓
⃓Ft

)︄
=

= QT (︁Y(T) ≥ τjK + 1
⃓⃓
Ft
)︁
= QT

(︃
Y(t)e−γ2(T) β2(t,T)

2 +γ(T)β(t,T)y ≥ τjK + 1
⃓⃓⃓⃓
Ft

)︃
=

= QT
(︃

e−γ2(T) β2(t,T)
2 +γ(T)β(t,T)y ≥

τjK + 1
Y(t)

⃓⃓⃓⃓
Ft

)︃
=

= QT
(︃
−γ2(T)

β2(t, T)
2

+ γ(T)β(t, T)y ≥ ln
[︃

τjK + 1
Y(t)

]︃ ⃓⃓⃓⃓
Ft

)︃
=

= QT

⎛⎝y ≥
ln
[︂

τjK+1
Y(t)

]︂
+ γ2(T) β2(t,T)

2

β(t, T)γ(T)

⃓⃓⃓⃓
⃓⃓Ft

⎞⎠ =

= QT
(︂

y ≥ −d3M
2

⃓⃓⃓
Ft

)︂
= QT

(︂
y ≤ d3M

2

⃓⃓⃓
Ft

)︂
= N[d3M

2 ]

where

N[d3M
2 ] =

1√
2π

∫︂ d3M
2

−∞
e−

y2
2 dy.

Let us now focus on the expected value of the first term of equation (3.9), which can
be rewritten as

ET
[︂

f 3M
j (T) · I{ f 3M

j (T) ≥ K}
⃓⃓⃓
Ft

]︂
= ET

[︄(︄
1
τj

(︂
eγ(T)r(T)+δ(t) − 1

)︂)︄
· 1{y≥−d3M

2 }

⃓⃓⃓⃓
⃓Ft

]︄
=

=
1
τj

[︂
ET
[︂
eγ(T)+r(T)δ(T)

⃓⃓⃓
Ft

]︂
· 1{y≥−d3M

2 } − 1{y≥−d3M
2 }

]︂
=

=
1
τj

[︃∫︂ +∞

−d3M
2

Y(t)e−γ2(T) β2(t,T)
2 +γ(T)β(t,T)y− y2

2
1√
2π

dy − N[d3M
2 ]

]︃
=

=
1
τj

[︃
Y(t)

∫︂ +∞

−d3M
2

e−
1
2 (y−γ(T)β(t,T))2 1√

2π
dy − N[d3M

2 ]

]︃
.
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Denoting x = y − γ(T)β(t, T), the integral in the previous equation becomes

∫︂ +∞

−d3M
2 −γ(T)β(t,T)

e−
x2
2

1√
2π

dx =
∫︂ +∞

−∞
e−

x2
2

1√
2π

dx −
∫︂ −d3M

2 −γ(T)β(t,T)

−∞
e−

x2
2

1√
2π

dx =

= 1 − N[−d3M
2 − γ(T)β(t, T)] = N[d3M

2 + γ(T)β(t, T)] = N[d3M
1 ]

where

N[d3M
1 ] =

1
2π

∫︂ d3M
1

−∞
e−

y2
2 dy.

Thus, the expected value of the first addend of equation (3.9) is

1
τj

[︂
Y(t)N[d3M

1 ]− N[d3M
2 ]
]︂

.

By substituting the expressions of the two expected values that we just obtained above
into equation (3.9), we get that

Π3M(t, T) =
P(t, T)

τj

(︂
Y(t)N[d3M

1 ]− N[d3M
2 ]
)︂
− KP(t, T)N[d3M

2 ].

By multiplying and dividing the previous equation by τj, we get

(︂
P(t, T)Y(t)N[d3M

1 ]− P(t, T)N[d3M
2 ]− τjKP(t, T)N[d3M

2 ]
)︂ 1

τj
=

=
P(t, T)

τj

(︂
Y(t)N[d3M

1 ]− (1 + τjK)N[d3M
2 ]
)︂

.

Therefore, we obtain the following result.

Proposition 4. Under the given assumptions, the price of an European call option at time 0
having as an underling a 3M future contract with future price f 3M

j (T) is

Π3M(t, T) =
P(t, T)

τj

(︂
Y(t)N[d3M

1 ]− (1 + τjK)N[d3M
2 ]
)︂

where

d3M
2 =

ln Y(t)
τjK+1 − γ2(T) β2(t,T)

2

γ(T)β(t, T)

and
d3M

1 = d3M
2 + γ(T)β(t, T).
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3.3.2 Option on 1M future

In this paragraph, we will study the case in which the underlying of the option is a
1M future contract, that is when i = 1. As before, we need to solve the two expected
values that we find inside equation (3.9), which depend on f 1M

j (T). From proposition
2, we know that

f 1M
j (T) =

1
τj

(︃
r(T)

a
(e−a(Tj−1−T) − e−a(Tj−T)) + ηT,j

)︃
(3.18)

where ηT,j is equal to equation (3.13). For simplicity, let us rewrite equation (3.18) as

f 1M
j (T) = ϵ(T)r(T) + ω(T) (3.19)

with

ϵ(T) =
e−a(Tj−1−T) − e−a(Tj−T)

aτj

and
ω(T) =

ηT,j

τj
.

From the previous paragraph, we know that r(T) is described by equation (3.14) and it
is therefore distributed as a normal with respect to the T-forward measure conditional
to Ft

r(T) ∼ N (α(t, T); β2(t, T))

with α(t, T) and β2(t, T) defined by equations (3.15) and (3.16) respectively.
Looking at equation (3.19), we notice that f 1M

j (T) is a linear transformation of r(T) and
thus it is distributed as a normal with respect to the T-forward measure conditional to
Ft

f 1M
j (T) ∼ N (ϵ(T)α(t, T) + ω(T); ϵ2(T)β2(t, T)). (3.20)

Now, we move back to the determination of the two expected values in the option
price. Specifically, let us start considering the expected value that we find in the second
term of equation (3.9), which we can rewrite as

ET
[︂

I{ f 1M
j (T) ≥ K}

⃓⃓⃓
Ft

]︂
= QT

(︂
f 1M
j (T) ≥ K

⃓⃓⃓
Ft

)︂
where QT indicates the probability under the T-forward measure. Since we know that
f 1M
j (T) is distributed as a normal, it can be standardised by writing

56



3.3. PRICING OF THE OPTION CONTRACT

QT

(︄
f 1M
j (T)− ϵ(T)α(t, T)− ω(T)

ϵ(T)β(t, T)
≥ K − ϵ(T)α(t, T)− ω(T)

ϵ(T)β(t, T)

⃓⃓⃓⃓
⃓Ft

)︄
.

Let us call the standardised variable Z ∼ N (0; 1). Thus, the previous equation becomes

QT
(︂

Z ≥ −d1M
⃓⃓⃓
Ft

)︂
= QT

(︂
Z ≤ d1M

⃓⃓⃓
Ft

)︂
= N[d1M]

where

N[d1M] =
1√
2π

∫︂ d1M

−∞
e−

z2
2 dz.

Let us now focus instead on the expected value of the first term of equation (3.9). Since
we know that f 1M

j (T) is distributed as a normal (from equation (3.20)), the expected
value of the first addend of equation (3.9) becomes

ET
[︂

f 1M
j (T) · I{ f 1M

j (T) ≥ K}
⃓⃓⃓
Ft

]︂
= (ϵ(T)α(t, T) + ω(T))QT

(︂
f 1M
j (T) ≥ K

⃓⃓⃓
Ft

)︂
+ϵ(T)β(t, T)ET

[︃
Y · 1{︂

Y≥ K−ϵ(T)α(T)−ω(T)
ϵ(T)β(t,T)

}︂ ⃓⃓⃓⃓Ft

]︃
.

Consider the expected value of the second addend in the previous equation. This is
equal to

ET
[︂
Y · 1{Y≥−d1M}

⃓⃓⃓
Ft

]︂
=

1√
2π

∫︂ +∞

−d1M
ye−

y2
2 dy =

=
1√
2π

[︃
−e−

y2
2

]︃y=+∞

y=−d1M
=

1√
2π

e−
(−d1M)2

2 = φ(d1M)

where φ(·) is the density function of the standard variable Y.
The expected value of the first addend of equation (3.9) becomes

ET
[︂

f 1M
j (T) · I{ f 1M

j (T) ≥ K}
⃓⃓⃓
Ft

]︂
= (ϵ(T)α(T) + ω(T)) N[d1M] + ϵ(T)β(t, T)φ(d1M).

By substituting the expressions of the two expected values that we just obtained above
into equation (3.9), we get that

Π1M(t, T) = P(t, T)
[︂
(ϵ(T)α(t, T) + ω(T)) N[d1M] + ϵ(T)β(t, T)φ(d1M)

]︂
−KP(t, T)N[d1M] = P(t, T)

[︂
(ϵ(T)α(t, T) + ω(T)− K) N[d1M] + ϵ(T)β(t, T)φ(d1M)

]︂
.

Therefore, we obtain the following result.

Proposition 5. Under the given assumptions, the price of an European call option at time 0
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having as an underling a 1M future contract with future price f 1M
j (T) is

Π1M(t, T) = P(t, T)
[︂
(ϵ(T)α(t, T) + ω(T)− K) N[d1M] + ϵ(T)β(t, T)φ(d1M)

]︂
with

d1M =
ϵ(T)α(t, T) + ω(T)− K

ϵ(T)β(t, T)
.
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Chapter 4

Numerical study of options on RFRs
futures

In this chapter, we will perform a numerical study on options on 3M and 1M fu-
tures’ prices, using the mathematical results that we obtained in the previous chapter,
specifically Proposition 4 and 5. Particularly, using the programming and computing
platform Matlab, we will perform a sensitivity analysis, studying how option prices
vary across a reasonable range of values of the Hull-White model’s parameters a and
σ. Additionally, we will show how changes of the strike price K and the maturity T of
the option affect our results.

4.1. Generalities

4.1.1 Hull-White model parameters

From equation (2.27), we know that the Q-dynamics of the short rate r(t) depends on
two parameters, namely the drift term a and the volatility σ, and a time-dependent
function Θ(t). We want to perform a sensitivity analysis using the software Matlab, to
assess how changes in both a and σ impact on options on 3M and 1M futures’ prices.
To this effect, we first need to obtain an explicit form for the function Θ(t) and set
reasonable ranges of values for a and σ, across which the price will vary.
The function Θ(t) was determined in chapter 2 by fitting the initially observed term
structure of interest rates to the market prices, a procedure that resulted in equation
(2.33). For more clarity, we can rewrite this equation as

Θ(T) =
d f ∗(0, T)

dT
+ a f ∗(0, T) +

σ2

2a
(1 − e−2aT) (4.1)
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which is obtained by substituting the relative expressions for g(t) and ġ(t) into equation
(2.33) and where we wrote the derivative f ∗T(0, T) explicitly. As we can notice, this
formula is determined by the forward rates f ∗(0, T) observed on the market at the
initial time t = 0. From chapter 2, we know that the forward rates f ∗(0, T) are related
to the zero coupon bond prices P∗(0, T) observed on the market at time t = 0 through
the formula

f ∗(0, T) = −d ln P∗(0, T)
dT

.

Therefore, the function Θ(t) could be traced back to the yield curve, which we recall is
the relationship between the zero-coupon bond yields and their maturity T.
In the previous chapter, we stressed that the most widespread options on RFR futures
in current financial markets are the ones launched by the CME, whose reference rate is
SOFR. Hence, it would be natural to use the SOFR yield curve to derive our function
Θ(t). Unfortunately, this curve is not publicly available. In fact, since SOFR has been
introduced recently, the SOFR yield curve is currently being constructed with different
ad hoc methodologies (which generally involve observable market data, including
futures contracts, market swap rates and outstanding government debt instruments)
and there is no unique referenceable procedure. This is why, for simplicity, we decided
to make use of the ECB yield curve in our analysis, that is published daily at the
URL: https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/
euro_area_yield_curves/html/index.en.html, and thus is uniquely determined for
the market. We are aware of the limitations of this choice, given the options on SOFR
futures significant diffusion in current financial markets.
The ECB estimates a parametric functional form for the forward curve using the
Svensson model1, that is

f ∗(0, T) = β0 + β1e−
T
τ1 + β2

T
τ1

e−
T
τ1 + β3

T
τ2

e−
T
τ2

where β0, β1, β2, β3, τ1 and τ2 are parameters estimated daily by the ECB. Taking the
derivative with respect to T of the previous equation, we get

d f ∗(0, T)
dT

= −β1

τ1
e−

T
τ1 + β2

(︄
1
τ1

− T
τ2

1

)︄
e−

T
τ1 + β3

(︄
1
τ2

− T
τ2

2

)︄
e−

T
τ2 .

We now have all the elements of equation (4.1), which becomes

1Svensson, L. E., Estimating and Interpreting Forward Interest Rates: Sweden 1992-
1994, Centre for Economic Policy Research, 1994; cited in European Central Bank, Tech-
nical Notes, URL: https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/
euro_area_yield_curves/html/technical_notes.pdf.
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Θ(T) = −β1

τ1
e−

T
τ1 + β2

(︄
1
τ1

− T
τ2

1

)︄
e−

T
τ1 + β3

(︄
1
τ2

− T
τ2

2

)︄
e−

T
τ2

+a
(︃

β0 + β1e−
T
τ1 + β2

T
τ1

e−
T
τ1 + β3

T
τ2

e−
T
τ2

)︃
+

σ2

2a
(1 − e−2aT). (4.2)

On the day we performed our analysis, that is on the 24th August 2022, the ECB
estimated the following values for the forward rate equation’s parameters2

• β0 = 1.641204;

• β1 = −1.766233;

• β2 = 25.191842;

• β3 = −25.607108;

• τ1 = 1.344229;

• τ2 = 1.421672.

Contrarily to the function Θ(t), it is not possible to deduce the parameters a and σ

directly from the market prices of zero-coupon bonds. This is why we decided to
assume they vary across a range of plausible values. Specifically, we supposed that the
parameter a varies across the interval

5% ≤ a ≤ 15%

while σ varies across the range

3% ≤ σ ≤ 10%.

In Matlab, these parameters were made vary within these ranges with the function
linspace, through which we generated linearly spaced vectors of 100 points.

4.1.2 Additional inputs

Let us now define some other additional inputs that we need for our analysis. First of
all, we assume that the starting time t, that is the time at which we compute the prices,

2The parameters were found at the same website of the ECB yield curve, URL: https:
//www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/
html/index.en.html
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is equal to t = 0.
Moreover, for the value of r(0), which is the value of the short rate at t = 0, we use the
value of ESTR on the 24th August 2022, that is r(0) = −0.082%. This choice is made to
be as coherent as possible with the other parameters’s assumptions, since we adopted
the ECB’s Svensson function for the yield curve.
Afterwards, we decide the characteristics of the future contracts that will constitute the
underlying of the options in our analysis. We consider the following futures

3M FUTURE (τj = 0.25)
Tj−1 Tj

1. 1 Year and 9 Months 2 Years

2. 2 Years and 9 Months 3 Years

1M FUTURE (τj = 0.091)
Tj−1 Tj

3. 1 Year and 11 Months 2 Years

4. 2 Years and 11 Months 3 Years

Initially, we decide to set the maturities of the options on each of the underlying futures
equal to Tj. Recall that, from the previous chapter, we know that the maturity T of the
option cannot be greater than Tj. Thus, we have that

• Option on future 1 has maturity 2 years;

• Option on future 2 has maturity 3 years;

• Option on future 3 has maturity 2 years;

• Option on future 4 has maturity 3 years.

Remark 2 (maturity of the option). Notice that, when choosing a maturity T = Tj, the
underlying of the option simply becomes the RFR (which is computed in a geometric
or arithmetic way for a 3M or 1M future respectively, as explained in section 3.1). On
the contrary, when T < Tj, the option expires at maturity into the 3M or 1M future
contract (described respectively by Proposition 4 and Proposition 5). This latter case
will be studied in sections 4.2.2 and 4.3.2, where we analyse how our results vary when
the maturity of the 3M or 1M option is reduced.

Additionally, we observe that, in both Proposition 4 and 5, the price of options on 3M
and 1M futures depends on P(t, T), which is the market price of zero-coupon bonds at
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time t. To compute these prices at time t = 0 we use the formula

P(0, T) = e−yT

where y is the yield from the yield curve, as usual retrieved from the ECB website3.
For our analysis, we obtain

T P(0, T)
2 Years 0.9837

3 Years 0.9723

Lastly, we need to set the strike price K. We will start by assuming that the investor
opts for a call option whose strike price is at the money (which means equal to the price
of the underlying instrument). Thus, we compute the future prices at time t = 0 of the
contracts set before, making use of Proposition 1 for the 3M futures and Proposition 2
for the 1M future. Notice that, for simplicity, we set a and σ equal to their medium
values for our computation, that is 10% and 6, 5% respectively. We obtain that

• Option on future 1 should have a strike price K = 1.1248;

• Option on future 2 should have a strike price K = 1.1798;

• Option on future 3 should have a strike price K = 0.9923;

• Option on future 4 should have a strike price K = 1.0392.

The detailed computations for these strike prices can be found in Appendix C.

4.2. Option on 3M future’s numerical analysis

We start by performing the analysis on options on 3M futures, specifically on future 1
and 2. Particularly, making use of the assumptions made in the previous section, we
implement our pricing formula (Proposition 4) in Matlab and see how it varies across
the two ranges of values for the parameters a and σ. In this section we summarise and
comment the results of our analysis. The detailed code can be found in Appendix A.
In Figure 4.1, we plotted in blue the price of the option on future 1 and in red the price
of the option on future 2, with respect to both a and σ. As we can notice, both prices

3As before, the curve is found at URL: https://www.ecb.europa.eu/stats/
financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html.
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display an increasing pattern. To better investigate their relationship, in Figure 4.2 we
represented the option prices with respect to the two parameters separately.

Figure 4.1: Option on 3M future’s prices with respect to a and σ simultaneously.

As we can see, the price of the options increases as the parameter a increases. As
shown in chapter 3, a influences various measures relevant for the price determination.
For example, it affects the variance of r(t), reducing it when the parameter increases.
At the same time, it influences the expected value of the integral of r(t). The positive
or negative correlation of a with the latter is however relatively difficult to assess,
as a appears also inside the explicit function of Θ(T) (see (4.2)). Thus, there exists a
trade-off between various effects to take into account when studying the relationship
of the option price with the parameter a. From our analysis, we can conclude that its
net balance is positive.
At the same time, we witness that the price increases as the volatility (risk) of the short
rate σ increases. An option is an instrument used by investors to protect themselves
from fluctuations in the price, thus they will be prone to pay more for a financial tool
that is granting them insurance against risk as the volatility increases.
The last thing that we can notice from these graphs is that for higher Tj−1 and Tj (recall
that option on future 2 has both Tj−1 and Tj greater than option on future 1) the price
is higher. This results from the fact that the more the investment is further in time, the
more it is uncertain. For this reason, investors will want to pay more today to get a
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form of protection in the future.

Figure 4.2: Option on 3M future’s prices with respect to a and σ separately.

Remark 3 (option price curve). In the graphs above (as well as in the following ones), it
seems that the price curve is equal to zero until a and σ reach relatively high values, in
correspondence of which the curve becomes exponential. In truth, this phenomenon is
solely related to the scale of the graphs. In fact, even for small values of the parameters,
the price is never equal to zero and follows an exponential trend. The issue derives
from the fact that, for the lowest values of a and σ, the 3M option price has an order
of magnitude of 10-60. Contrarily, for the highest values of the parameters, the price’s
magnitude increases up to 10-10. The relatively small orders of magnitude derive
from the implicit assumption of a notional value of 1, while in reality it is usually a
significant number. The consistent difference between the highest and lowest values of
the price makes the price curve appear flattened toward the horizontal axis and the
exponential trend not noticeable for low values of a and σ.

4.2.1 Change in the strike price

We now want to study how a change in the strike price K affects our results. Particularly,
we analyse how the price curve moves in response to an increase or a decrease of 0.05
points of K, that is the following cases:
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• Option on future 1 has strike K = 1.0748;

• Option on future 1 has strike K = 1.1748;

• Option on future 2 has strike K = 1.1298;

• Option on future 2 has strike K = 1.2298.

Notice that, when the the strike price is reduced by 0.05, the option becomes in the
money (which means that the strike price is below the underlying price). On the
contrary, when the strike price is increased by 0.05, the option becomes out of the
money (that is, the strike price is above the underlying price).

Figure 4.3: Option on 3M future’s prices with different strike prices K with respect to a and σ
simultaneously.

Figures 4.3 and 4.4 summarise our results. As before, the first figure shows how option
prices with different strikes simultaneously move with respect to a and σ, while the
latter investigates the relationships separately.
As we can notice, even if the strike price changes, the price curve remains increasing
with respect to the parameters a and σ.
Nonetheless, we witness that as the strike price increases, the option price decreases.
Indeed, for the option on future 1, the orange line (that is, when K is decreased by
0.05) sits above the blue line (which corresponds to the initial K), which is in turn over
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the yellow line (that is, the case in which K is increased by 0.05). Similarly, for the
option on future 2, the pink line (that is, when K is decreased by 0.05) stands above
the red line (which corresponds to the initially set K), which is in turn over the green
line (that is, the case in which K is increased by 0.05).
These findings are related to the intrinsic nature of a call option. Recall that a call option
gives the right (but not the obligation) to buy at maturity the underlying instrument
at the strike price K. Thus, the higher is the price that the investor might potentially
want to pay in the future if faced by averse changes in the price of the underlying, the
lower will be the one that they are willing to pay today.

Figure 4.4: Option on 3M future’s prices with different strike prices K with respect to a and σ
separately.

4.2.2 Change in the maturity

Lastly, we also want to study how a change in the maturity T affects our results.
Particularly, we analyse how the price curve changes in response to a decrease of 3
and 4 months of T, that is the following cases:

• Option on future 1 has maturity 1 year and 9 months;

• Option on future 1 has maturity 1 year and 8 months;
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• Option on future 2 has maturity 2 years and 9 months;

• Option on future 2 has maturity 2 years and 8 months.

Notice that, by reducing the maturity to a certain T < Tj, the underlying at maturity is
no longer the RFR (as in the case of T = Tj), but the option expires into a 3M future
contract.
As before, knowing that the price formula depends on P(t, T), we need to compute
the market prices of the zero-coupon bonds at time t = 0 for the new maturities, using
the usual formula and retrieving the yields from the ECB website. We obtain

T P(0, T)
1 Year and 9 Months 0.9864

1 Year and 8 Months 0.9873

2 Years and 9 Months 0.9753

2 Years and 8 Months 0.9762

Figures 4.5 and 4.6 summarise our results. As before, the first figure shows how option
prices with different maturities simultaneously move with respect to a and σ, while
the latter investigates the relationships separately.

Figure 4.5: Option on 3M future’s prices with different maturities T with respect to a and σ
simultaneously.
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As noticeable, even if the maturity changes, the price curve remains increasing with
respect to the parameters a and σ.
Nonetheless, we witness that as the maturity decreases, the option price decreases as
well. Indeed, for the option on future 1, the yellow line (that is, the case in which T is
decreased by 4 months) sits below the orange line (that is, when T is decreased by 3
months) which is in turn under the blue line (which corresponds to the initial T).
Similarly, for the option on future 2, the green line (that is, the case in which T is
reduced by 4 months) stands below the pink line (that is, when T is decreased by 3
months) which is in turn under the red line (which corresponds to the initially set T).
These findings are related to the intrinsic nature of an option. In fact, the lower the
maturity, the lower will be the time span across which the price of the underlying can
fluctuate adversely. For this reason, as T decreases, investors will need less protection
against prices’ risky movements, hence they will be willing to pay less for the option.

Figure 4.6: Option on 3M future’s prices with different maturities T with respect to a and σ
separately.

4.3. Option on 1M future’s numerical analysis

We now perform the analysis on options on 1M futures, specifically on future 3 and 4.
Particularly, making use of the assumptions made in the first section, we implement
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the pricing formula of Proposition 5 in Matlab and see how it varies across the two
decided ranges of values for the parameters a and σ. In this section we summarise and
comment the results of our analysis. The detailed code can be found in Appendix B.
In Figure 4.7, we plotted in blue the price of the option on future 3 and in red the price
of the option on future 4, with respect to both a and σ. As in the case of an option on
3M future, we notice that the prices display an increasing pattern. Moreover, as before,
to better investigate their relationship, in Figure 4.8 we represented the option prices
with respect to the two parameters separately.

Figure 4.7: Option on 1M future’s prices with respect to a and σ simultaneously.

As before, we witness that the net effect of the parameter a on the option price is
positive.
The price still has a positive relationship with the volatility of the short rate σ, since
an option is an instrument granting investors a form of insurance against the risk
associated to fluctuations in the price.
Lastly, as in the previous case, for higher Tj−1 and Tj (recall that option on future 4
has both Tj−1 and Tj greater than option on future 3) the price is greater, a result of
the larger uncertainty of further in time investments.
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Figure 4.8: Option on 1M future’s prices with respect to a and σ separately.

Remark 4 (option price curve). Similar considerations regarding the price curve can be
made for the option on 1M future. In fact, it seems equal to zero until a and σ reach
relatively high values, in correspondence of which the curve becomes exponential.
However this phenomenon is only related to the scale of the graphs. In fact, the 1M
price’s highest value is in the order of 10-10 and lowest of 10-70. Thus, given the scale
chosen, the price curve appears flattened toward the horizontal axis, but in reality
there is still an exponential trend even when a and σ are low.

4.3.1 Change in the strike price

Now, we study how a change in the strike price K affects our findings. Particularly, as
in the case of an option on 3M future, we analyse how the price curve moves when K
increases or decreases by 0.05 points, that is the following cases:

• Option on future 3 has strike K = 0.9423;

• Option on future 3 has strike K = 1.0423;

• Option on future 4 has strike K = 0.9892;

• Option on future 4 has strike K = 1.0892.
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Figures 4.9 and 4.10 summarise our results. As always, the first figure shows how
option prices with different strikes simultaneously move with respect to a and σ, while
the latter investigates the relationships separately.

Figure 4.9: Option on 1M future’s prices with different strike prices K with respect to a and σ
simultaneously.

As before, even if the strike price changes, the price curve stays increasing with respect
to the parameters a and σ.
Also, as the strike price increases, the call option price decreases, a result coming from
the reluctance of investors to pay more today if they might have to pay a high strike
price in the future. In fact, for the option on future 3, the orange line (that is, when K
is decreased by 0.05) is above the blue line (which corresponds to the initial K), which
in turn stands over the yellow line (that is, the case in which K is increased by 0.05).
Similarly, for the option on future 4, the pink line (that is, when K is decreased by 0.05)
sits above the red line (which corresponds to the initially set K), which is in turn over
the green line (that is, the case in which K is increased by 0.05).

72



4.3. OPTION ON 1M FUTURE’S NUMERICAL ANALYSIS

Figure 4.10: Option on 1M future’s prices with different strike prices K with respect to a and σ
separately.

4.3.2 Change in the maturity

Finally, as in the case of an option on 3M future, we study how a change in the maturity
T affects our results. Particularly, we analyse how the price curve moves in response
to a decrease of 1 and 2 months of T, that is the following cases:

• Option on future 3 has maturity 1 year 11 months;

• Option on future 3 has maturity 1 year 10 months;

• Option on future 4 has maturity 2 years 11 months;

• Option on future 4 has maturity 2 years 10 months.

Notice that, by reducing the maturity to a certain T < Tj, the underlying is no longer
the RFR (as in the case of T = Tj), but the option expires into a 1M future contract.
Since the price formula depends on P(t, T), we need to compute the market price of
the zero-coupon bonds at time t = 0 for the new maturities, using the usual formula
and retrieving the yields from the ECB website. We get
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T P(0, T)
1 Year and 11 Months 0.9846

1 Year and 10 Months 0.9855

2 Years and 11 Months 0.9733

2 Years and 10 Months 0.9743

Figures 4.11 and 4.12 summarise our findings. Again, recall that the first figure shows
how option prices with different maturities simultaneously move with respect to a and
σ, while the latter investigates the relationships separately.

Figure 4.11: Option on 1M future’s prices with different maturities T with respect to a and σ
simultaneously.

As in the case of an option on 3M future, even if the maturity changes, the price curve
stays increasing with respect to the parameters a and σ.
Also, as the maturity decreases, the option price decreases as well, since the time span
across which the investors can encounter averse price movements decreases, thus they
will be reluctant to pay high prices today. Indeed, for the option on future 3, the yellow
line (that is, the case in which T is decreased by 2 months) is below the orange line
(that is, when T is decreased by 1 months), which in turn sits under the blue line
(which corresponds to the initial T). Similarly, for the option on future 4, the green line
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4.3. OPTION ON 1M FUTURE’S NUMERICAL ANALYSIS

(that is, the case in which T is reduced by 2 months) stays below the pink line (that
is, when T is decreased by 1 months), which in turn stands under the red line (which
corresponds to the initially set T).

Figure 4.12: Option on 1M future’s prices with different maturities T with respect to a and σ
separately.
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Conclusion

After the 2008 Financial Crisis, during which the rate experienced manipulation
practises and interbank-market related issues, it became clear that LIBOR could no
longer be used as a reference rate for market transactions. This is why, in 2017, the
Financial Conduct Authority announced that markets will be transitioning away from
LIBOR starting 2021. For this reason, jurisdictions have focused on selecting alternative
new risk-free rates. These should be more reliable since they are anchored to effective
market transactions and do not derive from the quotes of a panel of banks (as their
predecessor). The main focus of this thesis has been analysing the characteristics of
these new rates, studying possible solutions for modeling them and for pricing new
kinds of derivatives. Particularly:

• In Chapter 1, we presented an overview of the characteristics of LIBOR. After that,
we identified as the main reasons that brought to the reform:

➣ The manipulation practices of the rate, carried out by the panel of banks in
charge of submitting the quotes of its estimation;

➣ The Great Financial Crisis, that made banks suffer substantial losses and gen-
eral instability, which resulted into adverse selection in interbank lending;

➣ The unconventional policies enforced by Central Banks, which injected supply
of reserve balances into markets and made banks less in need to trade with
each other.

Consequently, we analysed the main features of the new RFRs, which should
be anchored to actual market transactions in active and liquid markets, in order
to avoid the risk of manipulation. Afterwards, we presented specifically the
characteristics of the Secured overnight financing rate (SOFR), the Euro short-
term rate (ESTR) and the Sterling overnight index average (SONIA). Lastly, we
discussed some drawbacks and challenges that the introduction of these new
rates brings into markets. Particularly, the primary concern for financial markets
is how to evaluate already existent and new kinds of derivatives.
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CONCLUSION

• In Chapter 2, since the new reference rates are all overnight rates, we derived their
term structure, so that they can be used in the evaluation of financial instruments.
We identified two main approaches to obtain the term structure: either construct
a backward-looking rate, based on past realisation of overnight rates and known
at the end of the application period, or a forward-looking rate, which reflects the
expectations of future realisations of the backward-looking rate and is known at
the beginning of the application period.
Afterwards, we presented some solutions for modelling RFRs proposed by differ-
ent authors. In particular,

➣ The Hull-White model as done in [7], in which the Q-dynamics of the short
rate of interest are characterised by a drift term, that depends on a time-
dependent function Θ(t) and a constant a, and by a constant volatility term
σ. This model seems to be the most popular choice for RFRs evaluation in
current markets;

➣ The Forward Market Model as in [28], which models both forward-looking
(LIBOR-like) forward rates and backward-looking forward rates, providing
a more complete extension to the LIBOR Market Model.

• In Chapter 3, we obtained an evaluation formula for a particular type of derivative
referencing RFRs, called option on RFRs future. These are instruments composed
by a future contract, which in turn constitutes the underlying of an option. Since
it is currently the most popular in financial markets, we assumed that our interest
rate follows the Hull-White dynamics.
In current financial markets, there exist two types of futures depending on their
maturity, namely 1-month (1M) and 3-months (3M) futures. Firstly, we derived
two pricing formulas for these futures. Afterwards, we used our results to price
the options. Notice that we obtained two different evaluation equations, one for
options on 3M future and one for options on 1M futures. The option on 1M
future’s evaluation equation constitutes an original result. In fact, in the literature,
there does not exist a comparable explicit evaluation formula to price this kind
of instruments.

• In Chapter 4, we performed a numerical sensitivity analysis using the platform
Matlab. Particularly, we studied how changes in the Hull-White model parame-
ters a and σ across reasonable ranges of values affect the options on RFRs futures’
prices. We also analysed how our results adjust in relation to changes in the
strike price K and the maturity T of the option. We observed that
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CONCLUSION

➣ Both options on 3M and 1M futures’ prices follow an increasing pattern.
They increase both with respect to the parameter a and the volatility σ (in
fact, as risk increases, investors will be prone to pay more for a form of
insurance);

➣ Both call options on 3M and 1M futures’ prices reduce as the strike price K
increases. In fact, investors will be reluctant to pay more today if they might
pay a high strike price tomorrow;

➣ Both options on 3M and 1M futures’ prices decrease if the maturity T is
reduced. In fact, the lower the maturity, the lower is the time span across
which the underlying can fluctuate adversely.

Concluding, in this thesis we were able to better understand the characteristics of the
new RFRs and what are the possible solutions to model them that can be found in
the literature. Also, we were able to obtain evaluation formulas for options on RFRs
futures, that could be used after LIBOR’s reform. Of course, our study was limited
to a particular type of derivative referencing the new RFRs, that we chose since they
are gaining a considerable popularity in current financial markets. Certainly, it would
be interesting to find possible solutions to price other kinds of derivatives in future
studies.
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Appendix A

3M option code

Here is reported the code used for the analysis of the option on 3M future.

1 %HW MODEL PARAMETERS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 a=linspace(0.05,0.15,100); %a varies from 5% to 15%

3 sigma=linspace(0.03,0.10,100); %sigma varies from 3% to 10%

4
5 %Find the function Theta(t) − function parameters at 23/08/2022

6 beta_0=1.641204;

7 beta_1=−1.766233;

8 beta_2=25.191842;

9 beta_3=−25.607108;

10 tau_1=1.344229;

11 tau_2=1.421672;

12 %Theta=@(a,x,sigma) a.*(beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1)
13 % .*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*%

exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3
.%*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−
exp(%−2.*a.*x);

14
15 %Find prices of zero−coupon bonds for different maturities (euro−area

yield

16 %curve at 23/08/2022)

17 AllBond=[−0.00113136 0.00195457 0.00408054 0.00554793 0.00767 0.00783

0.00823246 0.00902 0.00910 0.00934709 0.01027293 0.01115277 0.01194251

0.01261471 0.01317121 0.01362780 0.01400331 0.01431471 0.01457576

0.01479712 0.01498690 0.01515127 0.01529493 0.01542154 0.01553392
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0.01563434 0.01572458 0.01580612 0.01588014 0.01594762 0.01600938

0.01606612 0.01611841 0.01616675 0.01621157 0.01625322 0.01629204];

18 T = [0.25 0.5 0.75 1 5/3 1.75 2 8/3 2.75 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30];

19 pT=zeros(1,37);

20 for i=1:37

21 pT(1,i)=exp(−(T(i)*AllBond(i)));
22 end

23
24 %OPTION ON 3M FUTURE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25
26 %1st case: [1Year+9months 2 Years] future contract, option has maturity 2

years, strike 1.124.

27 tau_j=0.25;

28 T_j=2;

29 T_j1=1.75;

30 T=2;

31 t=0;

32 r_0=−0.00082; %ESTR value on 23/08/2022

33 K=1.124;

34 p2Y=pT(1,7);

35
36 %find delta

37 fun = @(x,a,sigma) (1−exp(−a.*(T_j−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1
)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2)
)−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp
(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma
.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

38 int1=@(a,sigma)integral(@(x)fun(x,a,sigma),T_j1,T_j);

39
40 int_v=zeros(1,100);

41 for i=1:100

42 int_v(1,i)=int1(a(i),sigma(i));

43 end

44
45 fun2 = @(x,a,sigma) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+

beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
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tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./
tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*
exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

46 int2=@(a,sigma)integral(@(x)fun2(x,a,sigma),T,T_j1);

47
48 int_v2=zeros(1,100);

49 for i=1:100

50 int_v2(1,i)=int2(a(i),sigma(i));

51 end

52
53 delta1=zeros(1,100);

54 for i=1:100

55 delta1(1,i)=(1/a(i))*int_v2(i)+(1/a(i))*int_v(i);

56 end

57
58 delta2=zeros(1,100);

59 for i=1:100

60 delta2(1,i)=(1/2)*((sigma(i)^2)/(a(i)^2))*((1/a(i))*(exp(−a(i)*(T_j−T_j1))
+exp(−a(i)*(T_j+T_j1−2*T))−1)−(1/(2*a(i)))*(exp(−2*a(i)*(T_j−T))+exp
(−2*a(i)*(T_j1−T)))+(T_j−T_j1));

61 end

62
63 delta=zeros(1,100);

64 for i=1:100

65 delta(1,i)=delta1(i)+delta2(i);

66 end

67
68 %find gamma

69 gamma=zeros(1,100);

70 for i=1:100

71 gamma(1,i)=(exp(−a(i)*(T_j1−T))−exp(−a(i)*(T_j−T)))/(a(i));
72 end

73
74 %find alpha

75 fun3 = @(x,a,sigma) (exp(−a.*(T−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1)+
beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2))
−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp(−
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x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma.^2)
./(2.*a)).*(1−exp(−2.*a.*x)));

76 int3=@(a,sigma)integral(@(x)fun3(x,a,sigma),t,T);

77
78 int_v3=zeros(1,100);

79 for i=1:100

80 int_v3(1,i)=int3(a(i),sigma(i));

81 end

82
83 alpha1=zeros(1,100);

84 for i=1:100

85 alpha1(1,i)=r_0*exp(−a(i)*(T−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)/(a(
i)^2))*exp(−a(i)*(T−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)/(2*a(i)
^2))*exp(−a(i)*(2*T−2*t));

86 end

87
88 alpha=zeros(1,100);

89 for i=1:100

90 alpha(1,i)=alpha1(i)+int_v3(i);

91 end

92
93 %find beta

94 beta=zeros(1,100);

95 for i=1:100

96 beta(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(T−t
));

97 end

98
99 %find Y_t, N(d_1), N(d_2)

100 Y_t=zeros(1,100);

101 for i=1:100

102 Y_t(1,i)=exp(delta(i)+gamma(i)*alpha(i)+(1/2)*(gamma(i).^2)*beta(i));

103 end

104
105 d2_3=zeros(1,100);

106 for i=1:100
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107 d2_3(1,i)=(log(Y_t(i)/(tau_j*K+1))−(gamma(i)^2)*(beta(i)/2))/(gamma(i)*
sqrt(beta(i)));

108 end

109
110 N_d2_3=zeros(1,100);

111 for i=1:100

112 N_d2_3(1,i)=normcdf(d2_3(i));

113 end

114
115 d1_3=zeros(1,100);

116 for i=1:100

117 d1_3(1,i)=d2_3(i)+gamma(i)*sqrt(beta(i));

118 end

119
120 N_d1_3=zeros(1,100);

121 for i=1:100

122 N_d1_3(1,i)=normcdf(d1_3(i));

123 end

124
125 Price3M=zeros(1,100);

126 for i=1:100

127 Price3M(1,i)=(p2Y/tau_j)*(Y_t(i)*N_d1_3(i)−(1+tau_j*K)*N_d2_3(i));
128 end

129
130 %2nd case: [2Years+9Months 3Years] future contract, option has maturity

131 % 3 years, strike 1.1798.

132 K2=1.1798;

133 T_j_2=3;

134 T_j1_2=2.75;

135 T_2=3;

136 p3Y=pT(1,10);

137
138 %find delta

139 fun_2 = @(x,a,sigma) (1−exp(−a.*(T_j_2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
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sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

140 int1_2=@(a,sigma)integral(@(x)fun_2(x,a,sigma),T_j1_2,T_j_2);

141
142 int_v_2=zeros(1,100);

143 for i=1:100

144 int_v_2(1,i)=int1_2(a(i),sigma(i));

145 end

146
147 fun2_2 = @(x,a,sigma) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(

beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2
.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

148 int2_2=@(a,sigma)integral(@(x)fun2_2(x,a,sigma),T_2,T_j1_2);

149
150 int_v2_2=zeros(1,100);

151 for i=1:100

152 int_v2_2(1,i)=int2_2(a(i),sigma(i));

153 end

154
155 delta1_2=zeros(1,100);

156 for i=1:100

157 delta1_2(1,i)=(1/a(i))*int_v2_2(i)+(1/a(i))*int_v_2(i);

158 end

159
160 delta2_2=zeros(1,100);

161 for i=1:100

162 delta2_2(1,i)=(1/2)*((sigma(i)^2)/(a(i)^2))*((1/a(i))*(exp(−a(i)*(T_j_2−
T_j1_2))+exp(−a(i)*(T_j_2+T_j1_2−2*T_2))−1)−(1/(2*a(i)))*(exp(−2*a(i)*(
T_j_2−T_2))+exp(−2*a(i)*(T_j1_2−T_2)))+(T_j_2−T_j1_2));

163 end

164
165 delta_2=zeros(1,100);

166 for i=1:100

167 delta_2(1,i)=delta1_2(i)+delta2_2(i);

168 end

169
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170 %find gamma

171 gamma_2=zeros(1,100);

172 for i=1:100

173 gamma_2(1,i)=(exp(−a(i)*(T_j1_2−T_2))−exp(−a(i)*(T_j_2−T_2)))/(a(i));
174 end

175
176 %find alpha

177 fun3_2 = @(x,a,sigma) (exp(−a.*(T_2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

178 int3_2=@(a,sigma)integral(@(x)fun3_2(x,a,sigma),t,T_2);

179
180 int_v3_2=zeros(1,100);

181 for i=1:100

182 int_v3_2(1,i)=int3_2(a(i),sigma(i));

183 end

184
185 alpha1_2=zeros(1,100);

186 for i=1:100

187 alpha1_2(1,i)=r_0*exp(−a(i)*(T_2−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)
/(a(i)^2))*exp(−a(i)*(T_2−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)
/(2*a(i)^2))*exp(−a(i)*(2*T_2−2*t));

188 end

189
190 alpha_2=zeros(1,100);

191 for i=1:100

192 alpha_2(1,i)=alpha1_2(i)+int_v3_2(i);

193 end

194
195 %find beta

196 beta2=zeros(1,100);

197 for i=1:100

198 beta2(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(
T_2−t));

199 end
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200
201 %find Y_t, N(d_1), N(d_2)

202 Y_t_2=zeros(1,100);

203 for i=1:100

204 Y_t_2(1,i)=exp(delta_2(i)+gamma_2(i)*alpha_2(i)+(1/2)*(gamma_2(i).^2)*

beta2(i));

205 end

206
207 d2_3_2=zeros(1,100);

208 for i=1:100

209 d2_3_2(1,i)=(log(Y_t_2(i)/(tau_j*K2+1))−(gamma_2(i)^2)*(beta2(i)/2))/(
gamma_2(i)*sqrt(beta2(i)));

210 end

211
212 N_d2_3_2=zeros(1,100);

213 for i=1:100

214 N_d2_3_2(1,i)=normcdf(d2_3_2(i));

215 end

216
217 d1_3_2=zeros(1,100);

218 for i=1:100

219 d1_3_2(1,i)=d2_3_2(i)+gamma_2(i)*sqrt(beta2(i));

220 end

221
222 N_d1_3_2=zeros(1,100);

223 for i=1:100

224 N_d1_3_2(1,i)=normcdf(d1_3_2(i));

225 end

226
227 Price3M_2=zeros(1,100);

228 for i=1:100

229 Price3M_2(1,i)=(p3Y/tau_j)*(Y_t_2(i)*N_d1_3_2(i)−(1+tau_j*K2)*N_d2_3_2(i))
;

230 end

231
232 figure

233 subplot(1,2,1)
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234 plot3(a, sigma, Price3M)

235 xlabel('a')

236 ylabel('sigma')

237 zlabel('Price3M [1Y9M−2Y]')
238 grid on

239 subplot(1,2,2)

240 plot3( a, sigma, Price3M_2, 'r')

241 xlabel('a')

242 ylabel('sigma')

243 zlabel('Price3M [2Y9M−3Y]')
244 grid on

245
246 figure

247 subplot(2,2,1)

248 plot(a, Price3M)

249 xlabel('a')

250 ylabel('Price3M [1Y9M−2Y]')
251 axis tight

252 grid on

253 subplot(2,2,2)

254 plot(sigma, Price3M)

255 xlabel('sigma')

256 ylabel('Price3M [1Y9M−2Y]')
257 axis tight

258 grid on

259 subplot(2,2,3)

260 plot( a, Price3M_2, 'r')

261 xlabel('a')

262 ylabel('Price3M [2Y9M−3Y]')
263 axis tight

264 grid on

265 subplot(2,2,4)

266 plot(sigma, Price3M_2, 'r')

267 xlabel('sigma')

268 ylabel('Price3M [2Y9M−3Y]')
269 grid on

270 axis tight

87



271
272 %reduce the strike by 0.05

273
274 %1st case: [1Year+9months 2 Years] future contract, option has maturity 2

years, strike 1.074.

275 K_2=1.074;

276
277 d2_3_K2=zeros(1,100);

278 for i=1:100

279 d2_3_K2(1,i)=(log(Y_t(i)/(tau_j*K_2+1))−(gamma(i)^2)*(beta(i)/2))/(gamma(i
)*sqrt(beta(i)));

280 end

281
282 N_d2_3_K2=zeros(1,100);

283 for i=1:100

284 N_d2_3_K2(1,i)=normcdf(d2_3_K2(i));

285 end

286
287 d1_3_K2=zeros(1,100);

288 for i=1:100

289 d1_3_K2(1,i)=d2_3_K2(i)+gamma(i)*sqrt(beta(i));

290 end

291
292 N_d1_3_K2=zeros(1,100);

293 for i=1:100

294 N_d1_3_K2(1,i)=normcdf(d1_3_K2(i));

295 end

296
297 Price3M_K2=zeros(1,100);

298 for i=1:100

299 Price3M_K2(1,i)=(p2Y/tau_j)*(Y_t(i)*N_d1_3_K2(i)−(1+tau_j*K_2)*N_d2_3_K2(i
));

300 end

301
302 %2nd case: [2Years+9Months 3Years] future contract, option has maturity

303 % 3 years, strike 1.1298.

304 K2_2=1.1298;
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305 d2_3_2_K2=zeros(1,100);

306 for i=1:100

307 d2_3_2_K2(1,i)=(log(Y_t_2(i)/(tau_j*K2_2+1))−(gamma_2(i)^2)*(beta2(i)/2))
/(gamma_2(i)*sqrt(beta2(i)));

308 end

309
310 N_d2_3_2_K2=zeros(1,100);

311 for i=1:100

312 N_d2_3_2_K2(1,i)=normcdf(d2_3_2_K2(i));

313 end

314
315 d1_3_2_K2=zeros(1,100);

316 for i=1:100

317 d1_3_2_K2(1,i)=d2_3_2_K2(i)+gamma_2(i)*sqrt(beta2(i));

318 end

319
320 N_d1_3_2_K2=zeros(1,100);

321 for i=1:100

322 N_d1_3_2_K2(1,i)=normcdf(d1_3_2_K2(i));

323 end

324
325 Price3M_2_K2=zeros(1,100);

326 for i=1:100

327 Price3M_2_K2(1,i)=(p3Y/tau_j)*(Y_t_2(i)*N_d1_3_2_K2(i)−(1+tau_j*K2_2)*
N_d2_3_2_K2(i));

328 end

329
330 %increase the strike by 0.05

331
332 %1st case: [1Year+9months 2 Years] future contract, option has maturity 2

years, strike 1.174.

333 K_3=1.174;

334
335 d2_3_K3=zeros(1,100);

336 for i=1:100

337 d2_3_K3(1,i)=(log(Y_t(i)/(tau_j*K_3+1))−(gamma(i)^2)*(beta(i)/2))/(gamma(i
)*sqrt(beta(i)));
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338 end

339
340 N_d2_3_K3=zeros(1,100);

341 for i=1:100

342 N_d2_3_K3(1,i)=normcdf(d2_3_K3(i));

343 end

344
345 d1_3_K3=zeros(1,100);

346 for i=1:100

347 d1_3_K3(1,i)=d2_3_K3(i)+gamma(i)*sqrt(beta(i));

348 end

349
350 N_d1_3_K3=zeros(1,100);

351 for i=1:100

352 N_d1_3_K3(1,i)=normcdf(d1_3_K3(i));

353 end

354
355 Price3M_K3=zeros(1,100);

356 for i=1:100

357 Price3M_K3(1,i)=(p2Y/tau_j)*(Y_t(i)*N_d1_3_K3(i)−(1+tau_j*K_3)*N_d2_3_K3(i
));

358 end

359
360 %2nd case: [2Years+9Months 3Years] future contract, option has maturity

361 % 3 years, strike 1.2298.

362 K2_3=1.2298;

363
364 d2_3_2_K3=zeros(1,100);

365 for i=1:100

366 d2_3_2_K3(1,i)=(log(Y_t_2(i)/(tau_j*K2_3+1))−(gamma_2(i)^2)*(beta2(i)/2))
/(gamma_2(i)*sqrt(beta2(i)));

367 end

368
369 N_d2_3_2_K3=zeros(1,100);

370 for i=1:100

371 N_d2_3_2_K3(1,i)=normcdf(d2_3_2_K3(i));

372 end
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373
374 d1_3_2_K3=zeros(1,100);

375 for i=1:100

376 d1_3_2_K3(1,i)=d2_3_2_K3(i)+gamma_2(i)*sqrt(beta2(i));

377 end

378
379 N_d1_3_2_K3=zeros(1,100);

380 for i=1:100

381 N_d1_3_2_K3(1,i)=normcdf(d1_3_2_K3(i));

382 end

383
384 Price3M_2_K3=zeros(1,100);

385 for i=1:100

386 Price3M_2_K3(1,i)=(p3Y/tau_j)*(Y_t_2(i)*N_d1_3_2_K3(i)−(1+tau_j*K2_3)*
N_d2_3_2_K3(i));

387 end

388
389 figure

390 subplot(1,2,1)

391 plot3(a, sigma, Price3M, a, sigma, Price3M_K2, a, sigma, Price3M_K3)

392 xlabel('a')

393 ylabel('sigma')

394 zlabel('Price3M [1Y9M−2Y]')
395 grid on

396 legend('K=1.1248','K=1.0748','K=1.1748', 'Orientation','vertical')

397 subplot(1,2,2)

398 plot3( a, sigma, Price3M_2, 'r', a, sigma, Price3M_2_K2, 'm', a, sigma,

Price3M_2_K3, 'g')

399 xlabel('a')

400 ylabel('sigma')

401 zlabel('Price3M [2Y9M−3Y]')
402 grid on

403 legend('K=1.1798','K=1.1298','K=1.2298', 'Orientation','vertical')

404
405 figure

406 subplot(2,2,1)

407 plot(a, Price3M, a, Price3M_K2, a, Price3M_K3)
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408 xlabel('a')

409 ylabel('Price3M [1Y9M−2Y]')
410 axis tight

411 grid on

412 legend('K=1.1248','K=1.0748','K=1.1748', 'Orientation','vertical')

413 subplot(2,2,2)

414 plot(sigma, Price3M, sigma, Price3M_K2, sigma, Price3M_K3)

415 xlabel('sigma')

416 ylabel('Price3M [1Y9M−2Y]')
417 axis tight

418 grid on

419 legend('K=1.1248','K=1.0748','K=1.1748', 'Orientation','vertical')

420 subplot(2,2,3)

421 plot( a, Price3M_2, 'r', a, Price3M_2_K2, 'm', a, Price3M_2_K3, 'g')

422 xlabel('a')

423 ylabel('Price3M [2Y9M−3Y]')
424 axis tight

425 grid on

426 legend('K=1.1798','K=1.1298','K=1.2298', 'Orientation','vertical')

427 subplot(2,2,4)

428 plot(sigma, Price3M_2, 'r', sigma, Price3M_2_K2, 'm', sigma, Price3M_2_K3,

'g')

429 xlabel('sigma')

430 ylabel('Price3M [2Y9M−3Y]')
431 grid on

432 axis tight

433 legend('K=1.1798','K=1.1298','K=1.2298', 'Orientation','vertical')

434
435 %reduce the maturity by 3 months

436
437 %1st case: [1Year+9months 2 Years] future contract, option has maturity 1

year 9 months, strike 1.1248.

438 T2=1.75;

439 p1Y9M=pT(1,6);

440
441 %find delta
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442 fun2_T2 = @(x,a,sigma) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+
beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./
tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*
exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

443 int2_T2=@(a,sigma)integral(@(x)fun2_T2(x,a,sigma),T2,T_j1);

444
445 int_v2_T2=zeros(1,100);

446 for i=1:100

447 int_v2_T2(1,i)=int2_T2(a(i),sigma(i));

448 end

449
450 delta1_T2=zeros(1,100);

451 for i=1:100

452 delta1_T2(1,i)=(1/a(i))*int_v2_T2(i)+(1/a(i))*int_v(i);

453 end

454
455 delta2_T2=zeros(1,100);

456 for i=1:100

457 delta2_T2(1,i)=(1/2)*((sigma(i)^2)/(a(i)^2))*((1/a(i))*(exp(−a(i)*(T_j−
T_j1))+exp(−a(i)*(T_j+T_j1−2*T2))−1)−(1/(2*a(i)))*(exp(−2*a(i)*(T_j−T2)
)+exp(−2*a(i)*(T_j1−T2)))+(T_j−T_j1));

458 end

459
460 delta_T2=zeros(1,100);

461 for i=1:100

462 delta_T2(1,i)=delta1_T2(i)+delta2_T2(i);

463 end

464
465 %find gamma

466 gamma_T2=zeros(1,100);

467 for i=1:100

468 gamma_T2(1,i)=(exp(−a(i)*(T_j1−T2))−exp(−a(i)*(T_j−T2)))/(a(i));
469 end

470
471 %find alpha

93



472 fun3_T2 = @(x,a,sigma) (exp(−a.*(T2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

473 int3_T2=@(a,sigma)integral(@(x)fun3_T2(x,a,sigma),t,T2);

474
475 int_v3_T2=zeros(1,100);

476 for i=1:100

477 int_v3_T2(1,i)=int3_T2(a(i),sigma(i));

478 end

479
480 alpha1_T2=zeros(1,100);

481 for i=1:100

482 alpha1_T2(1,i)=r_0*exp(−a(i)*(T2−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)
/(a(i)^2))*exp(−a(i)*(T2−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)
/(2*a(i)^2))*exp(−a(i)*(2*T2−2*t));

483 end

484
485 alpha_T2=zeros(1,100);

486 for i=1:100

487 alpha_T2(1,i)=alpha1_T2(i)+int_v3_T2(i);

488 end

489
490 %find beta

491 beta_T2=zeros(1,100);

492 for i=1:100

493 beta_T2(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(
T2−t));

494 end

495
496 %find Y_t, N(d_1), N(d_2)

497 Y_t_T2=zeros(1,100);

498 for i=1:100

499 Y_t_T2(1,i)=exp(delta_T2(i)+gamma_T2(i)*alpha_T2(i)+(1/2)*(gamma_T2(i).^2)

*beta_T2(i));

500 end
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501
502 d2_3_T2=zeros(1,100);

503 for i=1:100

504 d2_3_T2(1,i)=(log(Y_t_T2(i)/(tau_j*K+1))−(gamma_T2(i)^2)*(beta_T2(i)/2))/(
gamma_T2(i)*sqrt(beta_T2(i)));

505 end

506
507 N_d2_3_T2=zeros(1,100);

508 for i=1:100

509 N_d2_3_T2(1,i)=normcdf(d2_3_T2(i));

510 end

511
512 d1_3_T2=zeros(1,100);

513 for i=1:100

514 d1_3_T2(1,i)=d2_3_T2(i)+gamma_T2(i)*sqrt(beta_T2(i));

515 end

516
517 N_d1_3_T2=zeros(1,100);

518 for i=1:100

519 N_d1_3_T2(1,i)=normcdf(d1_3_T2(i));

520 end

521
522 Price3M_T2=zeros(1,100);

523 for i=1:100

524 Price3M_T2(1,i)=(p1Y9M/tau_j)*(Y_t_T2(i)*N_d1_3_T2(i)−(1+tau_j*K)*
N_d2_3_T2(i));

525 end

526
527 %2nd case: [2Years+9Months 3Years] future contract, option has maturity

528 % 2Yers 9 Months, strike 1.1798.

529 T_2_2=2.75;

530 p2Y9M=pT(1,9);

531
532 %find delta

533 fun2_2_T2 = @(x,a,sigma) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(
beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
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.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2

.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

534 int2_2_T2=@(a,sigma)integral(@(x)fun2_2_T2(x,a,sigma),T_2_2,T_j1_2);

535
536 int_v2_2_T2=zeros(1,100);

537 for i=1:100

538 int_v2_2_T2(1,i)=int2_2_T2(a(i),sigma(i));

539 end

540
541 delta1_2_T2=zeros(1,100);

542 for i=1:100

543 delta1_2_T2(1,i)=(1/a(i))*int_v2_2_T2(i)+(1/a(i))*int_v_2(i);

544 end

545
546 delta2_2_T2=zeros(1,100);

547 for i=1:100

548 delta2_2_T2(1,i)=(1/2)*((sigma(i)^2)/(a(i)^2))*((1/a(i))*(exp(−a(i)*(T_j_2
−T_j1_2))+exp(−a(i)*(T_j_2+T_j1_2−2*T_2_2))−1)−(1/(2*a(i)))*(exp(−2*a(i
)*(T_j_2−T_2_2))+exp(−2*a(i)*(T_j1_2−T_2_2)))+(T_j_2−T_j1_2));

549 end

550
551 delta_2_T2=zeros(1,100);

552 for i=1:100

553 delta_2_T2(1,i)=delta1_2_T2(i)+delta2_2_T2(i);

554 end

555
556 %find gamma

557 gamma_2_T2=zeros(1,100);

558 for i=1:100

559 gamma_2_T2(1,i)=(exp(−a(i)*(T_j1_2−T_2_2))−exp(−a(i)*(T_j_2−T_2_2)))/(a(i)
);

560 end

561
562 %find alpha

563 fun3_2_T2 = @(x,a,sigma)(exp(−a.*(T_2_2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
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.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

564 int3_2_T2=@(a,sigma)integral(@(x)fun3_2_T2(x,a,sigma),t,T_2_2);

565
566 int_v3_2_T2=zeros(1,100);

567 for i=1:100

568 int_v3_2_T2(1,i)=int3_2_T2(a(i),sigma(i));

569 end

570
571 alpha1_2_T2=zeros(1,100);

572 for i=1:100

573 alpha1_2_T2(1,i)=r_0*exp(−a(i)*(T_2_2−t))−((sigma(i)^2)/(a(i)^2))−((sigma(
i)^2)/(a(i)^2))*exp(−a(i)*(T_2_2−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(
i)^2)/(2*a(i)^2))*exp(−a(i)*(2*T_2_2−2*t));

574 end

575
576 alpha_2_T2=zeros(1,100);

577 for i=1:100

578 alpha_2_T2(1,i)=alpha1_2_T2(i)+int_v3_2_T2(i);

579 end

580
581 %find beta

582 beta2_T2=zeros(1,100);

583 for i=1:100

584 beta2_T2(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)

*(T_2_2−t));
585 end

586
587 %find Y_t, N(d_1), N(d_2)

588 Y_t_2_T2=zeros(1,100);

589 for i=1:100

590 Y_t_2_T2(1,i)=exp(delta_2_T2(i)+gamma_2_T2(i)*alpha_2_T2(i)+(1/2)*(

gamma_2_T2(i).^2)*beta2_T2(i));

591 end

592
593 d2_3_2_T2=zeros(1,100);

594 for i=1:100
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595 d2_3_2_T2(1,i)=(log(Y_t_2_T2(i)/(tau_j*K2+1))−(gamma_2_T2(i)^2)*(beta2_T2(
i)/2))/(gamma_2_T2(i)*sqrt(beta2_T2(i)));

596 end

597
598 N_d2_3_2_T2=zeros(1,100);

599 for i=1:100

600 N_d2_3_2_T2(1,i)=normcdf(d2_3_2_T2(i));

601 end

602
603 d1_3_2_T2=zeros(1,100);

604 for i=1:100

605 d1_3_2_T2(1,i)=d2_3_2_T2(i)+gamma_2_T2(i)*sqrt(beta2_T2(i));

606 end

607
608 N_d1_3_2_T2=zeros(1,100);

609 for i=1:100

610 N_d1_3_2_T2(1,i)=normcdf(d1_3_2_T2(i));

611 end

612
613 Price3M_2_T2=zeros(1,100);

614 for i=1:100

615 Price3M_2_T2(1,i)=(p2Y9M/tau_j)*(Y_t_2_T2(i)*N_d1_3_2_T2(i)−(1+tau_j*K2)*
N_d2_3_2_T2(i));

616 end

617
618 %reduce the maturity by 4 months

619
620 %1st case: [1Year+9months 2 Years] future contract, option has maturity 1

year 8 months, strike 1.1248.

621 T3=5/3;

622 p1Y8M=pT(1,5);

623
624 %find delta

625 fun2_T3 = @(x,a,sigma) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+
beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./
tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*
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exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

626 int2_T3=@(a,sigma)integral(@(x)fun2_T3(x,a,sigma),T3,T_j1);

627
628 int_v2_T3=zeros(1,100);

629 for i=1:100

630 int_v2_T3(1,i)=int2_T3(a(i),sigma(i));

631 end

632
633 delta1_T3=zeros(1,100);

634 for i=1:100

635 delta1_T3(1,i)=(1/a(i))*int_v2_T3(i)+(1/a(i))*int_v(i);

636 end

637
638 delta2_T3=zeros(1,100);

639 for i=1:100

640 delta2_T3(1,i)=(1/2)*((sigma(i)^2)/(a(i)^2))*((1/a(i))*(exp(−a(i)*(T_j−
T_j1))+exp(−a(i)*(T_j+T_j1−2*T3))−1)−(1/(2*a(i)))*(exp(−2*a(i)*(T_j−T3)
)+exp(−2*a(i)*(T_j1−T3)))+(T_j−T_j1));

641 end

642
643 delta_T3=zeros(1,100);

644 for i=1:100

645 delta_T3(1,i)=delta1_T3(i)+delta2_T3(i);

646 end

647
648 %find gamma

649 gamma_T3=zeros(1,100);

650 for i=1:100

651 gamma_T3(1,i)=(exp(−a(i)*(T_j1−T3))−exp(−a(i)*(T_j−T3)))/(a(i));
652 end

653
654 %find alpha

655 fun3_T3 = @(x,a,sigma) (exp(−a.*(T3−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));
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656 int3_T3=@(a,sigma)integral(@(x)fun3_T3(x,a,sigma),t,T3);

657
658 int_v3_T3=zeros(1,100);

659 for i=1:100

660 int_v3_T3(1,i)=int3_T3(a(i),sigma(i));

661 end

662
663 alpha1_T3=zeros(1,100);

664 for i=1:100

665 alpha1_T3(1,i)=r_0*exp(−a(i)*(T3−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)
/(a(i)^2))*exp(−a(i)*(T3−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)
/(2*a(i)^2))*exp(−a(i)*(2*T3−2*t));

666 end

667
668 alpha_T3=zeros(1,100);

669 for i=1:100

670 alpha_T3(1,i)=alpha1_T3(i)+int_v3_T3(i);

671 end

672
673 %find beta

674 beta_T3=zeros(1,100);

675 for i=1:100

676 beta_T3(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(
T3−t));

677 end

678
679 %find Y_t, N(d_1), N(d_2)

680 Y_t_T3=zeros(1,100);

681 for i=1:100

682 Y_t_T3(1,i)=exp(delta_T3(i)+gamma_T3(i)*alpha_T3(i)+(1/2)*(gamma_T3(i).^2)

*beta_T3(i));

683 end

684
685 d2_3_T3=zeros(1,100);

686 for i=1:100

687 d2_3_T3(1,i)=(log(Y_t_T3(i)/(tau_j*K+1))−(gamma_T3(i)^2)*(beta_T3(i)/2))/(
gamma_T3(i)*sqrt(beta_T3(i)));
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688 end

689
690 N_d2_3_T3=zeros(1,100);

691 for i=1:100

692 N_d2_3_T3(1,i)=normcdf(d2_3_T3(i));

693 end

694
695 d1_3_T3=zeros(1,100);

696 for i=1:100

697 d1_3_T3(1,i)=d2_3_T3(i)+gamma_T3(i)*sqrt(beta_T3(i));

698 end

699
700
701 N_d1_3_T3=zeros(1,100);

702 for i=1:100

703 N_d1_3_T3(1,i)=normcdf(d1_3_T3(i));

704 end

705
706
707 Price3M_T3=zeros(1,100);

708 for i=1:100

709 Price3M_T3(1,i)=(p1Y8M/tau_j)*(Y_t_T3(i)*N_d1_3_T3(i)−(1+tau_j*K)*
N_d2_3_T3(i));

710 end

711
712
713 %2nd case: [2Years+9Months 3Years] future contract, option has maturity

714 % 2Yers 8 Months, strike 1.1798.

715 T_2_3=8/3;

716 p2Y8M=pT(1,8);

717
718 %find delta

719 fun2_2_T3 = @(x,a,sigma) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(
beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2
.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));
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720 int2_2_T3=@(a,sigma)integral(@(x)fun2_2_T3(x,a,sigma),T_2_3,T_j1_2);

721
722 int_v2_2_T3=zeros(1,100);

723 for i=1:100

724 int_v2_2_T3(1,i)=int2_2_T3(a(i),sigma(i));

725 end

726
727 delta1_2_T3=zeros(1,100);

728 for i=1:100

729 delta1_2_T3(1,i)=(1/a(i))*int_v2_2_T3(i)+(1/a(i))*int_v_2(i);

730 end

731
732 delta2_2_T3=zeros(1,100);

733 for i=1:100

734 delta2_2_T3(1,i)=(1/2)*((sigma(i)^2)/(a(i)^2))*((1/a(i))*(exp(−a(i)*(T_j_2
−T_j1_2))+exp(−a(i)*(T_j_2+T_j1_2−2*T_2_3))−1)−(1/(2*a(i)))*(exp(−2*a(i
)*(T_j_2−T_2_3))+exp(−2*a(i)*(T_j1_2−T_2_3)))+(T_j_2−T_j1_2));

735 end

736
737 delta_2_T3=zeros(1,100);

738 for i=1:100

739 delta_2_T3(1,i)=delta1_2_T3(i)+delta2_2_T3(i);

740 end

741
742 %find gamma

743 gamma_2_T3=zeros(1,100);

744 for i=1:100

745 gamma_2_T3(1,i)=(exp(−a(i)*(T_j1_2−T_2_3))−exp(−a(i)*(T_j_2−T_2_3)))/(a(i)
);

746 end

747
748 %find alpha

749 fun3_2_T3 = @(x,a,sigma) (exp(−a.*(T_2_3−x))).*(a.*(beta_0+beta_1.*exp(−x
./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x
./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1
.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))
+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));
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750 int3_2_T3=@(a,sigma)integral(@(x)fun3_2_T3(x,a,sigma),t,T_2_3);

751
752 int_v3_2_T3=zeros(1,100);

753 for i=1:100

754 int_v3_2_T3(1,i)=int3_2_T3(a(i),sigma(i));

755 end

756
757 alpha1_2_T3=zeros(1,100);

758 for i=1:100

759 alpha1_2_T3(1,i)=r_0*exp(−a(i)*(T_2_3−t))−((sigma(i)^2)/(a(i)^2))−((sigma(
i)^2)/(a(i)^2))*exp(−a(i)*(T_2_3−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(
i)^2)/(2*a(i)^2))*exp(−a(i)*(2*T_2_3−2*t));

760 end

761
762 alpha_2_T3=zeros(1,100);

763 for i=1:100

764 alpha_2_T3(1,i)=alpha1_2_T3(i)+int_v3_2_T3(i);

765 end

766
767 %find beta

768 beta2_T3=zeros(1,100);

769 for i=1:100

770 beta2_T3(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)

*(T_2_3−t));
771 end

772
773 %find Y_t, N(d_1), N(d_2)

774 Y_t_2_T3=zeros(1,100);

775 for i=1:100

776 Y_t_2_T3(1,i)=exp(delta_2_T3(i)+gamma_2_T3(i)*alpha_2_T3(i)+(1/2)*(

gamma_2_T3(i).^2)*beta2_T3(i));

777 end

778
779 d2_3_2_T3=zeros(1,100);

780 for i=1:100

781 d2_3_2_T3(1,i)=(log(Y_t_2_T3(i)/(tau_j*K2+1))−(gamma_2_T3(i)^2)*(beta2_T3(
i)/2))/(gamma_2_T3(i)*sqrt(beta2_T3(i)));
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782 end

783
784 N_d2_3_2_T3=zeros(1,100);

785 for i=1:100

786 N_d2_3_2_T3(1,i)=normcdf(d2_3_2_T3(i));

787 end

788
789 d1_3_2_T3=zeros(1,100);

790 for i=1:100

791 d1_3_2_T3(1,i)=d2_3_2_T3(i)+gamma_2_T3(i)*sqrt(beta2_T3(i));

792 end

793
794 N_d1_3_2_T2=zeros(1,100);

795 for i=1:100

796 N_d1_3_2_T3(1,i)=normcdf(d1_3_2_T3(i));

797 end

798
799 Price3M_2_T3=zeros(1,100);

800 for i=1:100

801 Price3M_2_T3(1,i)=(p2Y8M/tau_j)*(Y_t_2_T3(i)*N_d1_3_2_T3(i)−(1+tau_j*K2)*
N_d2_3_2_T3(i));

802 end

803
804 figure

805 subplot(1,2,1)

806 plot3(a, sigma, Price3M, a, sigma, Price3M_T2, a, sigma, Price3M_T3)

807 xlabel('a')

808 ylabel('sigma')

809 zlabel('Price3M [1Y9M−2Y]')
810 grid on

811 legend('T=2Y','T=1Y9M','T=1Y8M', 'Orientation','vertical')

812 subplot(1,2,2)

813 plot3( a, sigma, Price3M_2, 'r', a, sigma, Price3M_2_T2, 'm', a, sigma,

Price3M_2_T3, 'g')

814 xlabel('a')

815 ylabel('sigma')

816 zlabel('Price3M [2Y9M−3Y]')
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817 grid on

818 legend('T=3Y','T=2Y9M','T=2Y8M', 'Orientation','vertical')

819
820 figure

821 subplot(2,2,1)

822 plot(a, Price3M, a, Price3M_T2, a, Price3M_T3)

823 xlabel('a')

824 ylabel('Price3M [1Y9M−2Y]')
825 axis tight

826 grid on

827 legend('T=2Y','T=1Y9M','T=1Y8M', 'Orientation','vertical')

828 subplot(2,2,2)

829 plot(sigma, Price3M, sigma, Price3M_T2, sigma, Price3M_T3)

830 xlabel('sigma')

831 ylabel('Price3M [1Y9M−2Y]')
832 axis tight

833 grid on

834 legend('T=2Y','T=1Y9M','T=1Y8M', 'Orientation','vertical')

835 subplot(2,2,3)

836 plot( a, Price3M_2, 'r', a, Price3M_2_T2, 'm', a, Price3M_2_T3, 'g')

837 xlabel('a')

838 ylabel('Price3M [2Y9M−3Y]')
839 axis tight

840 grid on

841 legend('T=3Y','T=2Y9M','T=2Y8M', 'Orientation','vertical')

842 subplot(2,2,4)

843 plot(sigma, Price3M_2, 'r', sigma, Price3M_2_T2, 'm', sigma, Price3M_2_T3,

'g')

844 xlabel('sigma')

845 ylabel('Price3M [2Y9M−3Y]')
846 grid on

847 axis tight

848 legend('T=3Y','T=2Y9M','T=2Y8M', 'Orientation','vertical')
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Appendix B

1M option code

Here is reported the code used for the analysis of the option on 1M future.

1 %HW MODEL PARAMETERS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 a=linspace(0.05,0.15,100); %a varies from 5% to 15%

3 sigma=linspace(0.03,0.10,100); %sigma varies from 3% to 10%

4
5 %Find the function Theta(t) − function parameters at 23/08/2022

6 beta_0=1.641204;

7 beta_1=−1.766233;

8 beta_2=25.191842;

9 beta_3=−25.607108;

10 tau_1=1.344229;

11 tau_2=1.421672;

12 %Theta=@(a,x,sigma) a.*(beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1)
13 % .*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1)
14 % .*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta%

_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−e

%xp(−2.*a.*x);

15
16 %Find prices of zero−coupon bonds for different maturities(euro−area yield

curve at 23/08/2022)

17 AllBond=[−0.00113136 0.00195457 0.00408054 0.00554793 0.00797 0.00811

0.00823246 0.00919 0.00927 0.00934709 0.01027293 0.01115277 0.01194251

0.01261471 0.01317121 0.01362780 0.01400331 0.01431471 0.01457576

0.01479712 0.01498690 0.01515127 0.01529493 0.01542154 0.01553392

0.01563434 0.01572458 0.01580612 0.01588014 0.01594762 0.01600938
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0.01606612 0.01611841 0.01616675 0.01621157 0.01625322 0.01629204];

18 T = [0.25 0.5 0.75 1 11/6 23/12 2 17/6 35/12 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30];

19 pT=zeros(1,37);

20 for i=1:37

21 pT(1,i)=exp(−(T(i)*AllBond(i)));
22 end

23
24 %OPTION ON 1M FUTURE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 %1st case: [1Year+11Months 2Years] future contract, option has maturity 2

Years, strike 0.9923.

26 tau_j=1/12;

27 T_j1=2−1/12;

28 T_j=2;

29 T=2;

30 t=0;

31 r_0=−0.082; %ESTR value on 23/08/2022

32 K=0.9923;

33 p2Y=pT(1,7);

34
35 %find omega

36 fun = @(x,a,sigma) (1−exp(−a.*(T_j−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1
)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2)
)−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp
(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma
.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

37 int1=@(a,sigma)integral(@(x)fun(x,a,sigma),T_j1,T_j);

38
39 int_v=zeros(1,100);

40 for i=1:100

41 int_v(1,i)=int1(a(i),sigma(i));

42 end

43
44 fun2 = @(x,a,sigma) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+

beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./
tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*
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exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

45 int2=@(a,sigma)integral(@(x)fun2(x,a,sigma),T,T_j1);

46
47 int_v2=zeros(1,100);

48 for i=1:100

49 int_v2(1,i)=int2(a(i),sigma(i));

50 end

51
52 delta1=zeros(1,100);

53 for i=1:100

54 delta1(1,i)=1/a(i)*int_v2(i)+1/a(i)*int_v(i);

55 end

56
57 omega=zeros(1,100);

58 for i=1:100

59 omega(1,i)=(1/tau_j)*delta1(i);

60 end

61
62 %find alpha

63 fun3 = @(x,a,sigma)(exp(−a.*(T−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1)+
beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2))
−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp(−
x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma.^2)
./(2.*a)).*(1−exp(−2.*a.*x)));

64 int3=@(a,sigma)integral(@(x)fun3(x,a,sigma),t,T);

65
66 int_v3=zeros(1,100);

67 for i=1:100

68 int_v3(1,i)=int3(a(i),sigma(i));

69 end

70
71 alpha1=zeros(1,100);

72 for i=1:100

73 alpha1(1,i)=r_0*exp(−a(i)*(T−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)/(a(
i)^2))*exp(−a(i)*(T−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)/(2*a(i)
^2))*exp(−a(i)*(2*T−2*t));

74 end

108



75
76 alpha=zeros(1,100);

77 for i=1:100

78 alpha(1,i)=alpha1(i)+int_v3(i);

79 end

80
81 %find beta

82 beta=zeros(1,100);

83 for i=1:100

84 beta(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(T−t
));

85 end

86
87 %find epsilon

88 epsilon=zeros(1,100);

89 for i=1:100

90 epsilon(1,i)=(1/(a(i)*tau_j))*(exp(−a(i)*(T_j1−T))−exp(−a(i)*(T_j−T)));
91 end

92
93 %find N(d_1) and phi(d_1)

94 d_1=zeros(1,100);

95 for i=1:100

96 d_1(1,i)=(−K+epsilon(i)*alpha(i)+omega(i))/(epsilon(i)*sqrt(beta(i)));
97 end

98
99 N_d_1=zeros(1,100);

100 for i=1:100

101 N_d_1(1,i)=normcdf(d_1(i));

102 end

103
104 D_d_1=zeros(1,100);

105 for i=1:100

106 D_d_1(1,i)=normpdf(d_1(i));

107 end

108
109 Price1M=zeros(1,100);

110 for i=1:100
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111 Price1M(1,i)=p2Y*((epsilon(i)*alpha(i)+omega(i)−K)*N_d_1(i)+epsilon(i)*
sqrt(beta(i))*D_d_1(i));

112 end

113
114 %2nd case: [2Years+11Months 3 years] future contract, option has maturity

3 years, strike 1.0392.

115 T_j_2=3;

116 T_j1_2=3−1/12;

117 T_2=3;

118 K2=1.0392;

119 p3Y=pT(1,10);

120
121 %find omega

122 fun_2 = @(x,a,sigma) (1−exp(−a.*(T_j_2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

123 int1_2=@(a,sigma)integral(@(x)fun_2(x,a,sigma),T_j1_2,T_j_2);

124
125 int_v_2=zeros(1,100);

126 for i=1:100

127 int_v_2(1,i)=int1_2(a(i),sigma(i));

128 end

129
130 fun2_2 = @(x,a,sigma) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(

beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2
.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

131 int2_2=@(a,sigma)integral(@(x)fun2_2(x,a,sigma),T_2,T_j1_2);

132
133 int_v2_2=zeros(1,100);

134 for i=1:100

135 int_v2_2(1,i)=int2_2(a(i),sigma(i));

136 end

137
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138 delta1_2=zeros(1,100);

139 for i=1:100

140 delta1_2(1,i)=1/a(i)*int_v2_2(i)+1/a(i)*int_v_2(i);

141 end

142
143 omega_2=zeros(1,100);

144 for i=1:100

145 omega_2(1,i)=(1/tau_j)*delta1_2(i);

146 end

147
148 %find alpha

149 fun3_2 = @(x,a,sigma) (exp(−a.*(T_2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

150 int3_2=@(a,sigma)integral(@(x)fun3_2(x,a,sigma),t,T_2);

151
152 int_v3_2=zeros(1,100);

153 for i=1:100

154 int_v3_2(1,i)=int3_2(a(i),sigma(i));

155 end

156
157 alpha1_2=zeros(1,100);

158 for i=1:100

159 alpha1_2(1,i)=r_0*exp(−a(i)*(T_2−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)
/(a(i)^2))*exp(−a(i)*(T_2−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)
/(2*a(i)^2))*exp(−a(i)*(2*T_2−2*t));

160 end

161
162 alpha_2=zeros(1,100);

163 for i=1:100

164 alpha_2(1,i)=alpha1_2(i)+int_v3_2(i);

165 end

166
167 %find beta

168 beta2=zeros(1,100);
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169 for i=1:100

170 beta2(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(
T_2−t));

171 end

172
173 %find epsilon

174 epsilon_2=zeros(1,100);

175 for i=1:100

176 epsilon_2(1,i)=(1/(a(i)*tau_j))*(exp(−a(i)*(T_j1_2−T_2))−exp(−a(i)*(T_j_2−
T_2)));

177 end

178
179 %find N(d_1) and phi(d_1)

180 d_1_2=zeros(1,100);

181 for i=1:100

182 d_1_2(1,i)=(−K2+epsilon_2(i)*alpha_2(i)+omega_2(i))/(epsilon_2(i)*sqrt(
beta2(i)));

183 end

184
185 N_d_1_2=zeros(1,100);

186 for i=1:100

187 N_d_1_2(1,i)=normcdf(d_1_2(i));

188 end

189
190 D_d_1_2=zeros(1,100);

191 for i=1:100

192 D_d_1_2(1,i)=normpdf(d_1_2(i));

193 end

194
195 Price1M_2=zeros(1,100);

196 for i=1:100

197 Price1M_2(1,i)=p3Y*((epsilon_2(i)*alpha_2(i)+omega_2(i)−K2)*N_d_1_2(i)+
epsilon_2(i)*sqrt(beta2(i))*D_d_1_2(i));

198 end

199
200 figure

201 subplot(1,2,1)
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202 plot3(a, sigma, Price1M)

203 xlabel('a')

204 ylabel('sigma')

205 zlabel('Price1M [1Y11M−2Y]')
206 grid on

207 subplot(1,2,2)

208 plot3(a, sigma, Price1M_2, 'r')

209 xlabel('a')

210 ylabel('sigma')

211 zlabel('Price1M [2Y11M−3Y]')
212 grid on

213
214 figure

215 subplot(2,2,1)

216 plot(a, Price1M)

217 xlabel('a')

218 ylabel('Price1M [1Y11M−2Y]')
219 grid on

220 subplot(2,2,2)

221 plot(sigma, Price1M)

222 xlabel('sigma')

223 ylabel('Price1M [1Y11M−2Y]')
224 grid on

225 subplot(2,2,3)

226 plot( a, Price1M_2, 'r')

227 xlabel('a')

228 ylabel('Price1M [2Y11M−3Y]')
229 grid on

230 subplot(2,2,4)

231 plot(sigma, Price1M_2, 'r')

232 xlabel('sigma')

233 ylabel('Price1M [2Y11M−3Y]')
234 grid on

235
236 %reduce the strike by 0.05

237
238 %1st case: %1st case: [1Year+11Months 2Years] future contract, option
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239 % has maturity 2 Years, strike 0.9423.

240 K_2=0.9423;

241
242 d_1_K2=zeros(1,100);

243 for i=1:100

244 d_1_K2(1,i)=(−K_2+epsilon(i)*alpha(i)+omega(i))/(epsilon(i)*sqrt(beta(i)))
;

245 end

246
247 N_d_1_K2=zeros(1,100);

248 for i=1:100

249 N_d_1_K2(1,i)=normcdf(d_1_K2(i));

250 end

251
252 D_d_1_K2=zeros(1,100);

253 for i=1:100

254 D_d_1_K2(1,i)=normpdf(d_1_K2(i));

255 end

256
257 Price1M_K2=zeros(1,100);

258 for i=1:100

259 Price1M_K2(1,i)=p2Y*((epsilon(i)*alpha(i)+omega(i)−K_2)*N_d_1_K2(i)+
epsilon(i)*sqrt(beta(i))*D_d_1_K2(i));

260 end

261
262 %2nd case: [2Years+11Months 3 years] future contract, option has maturity

3 years, strike 0.600.

263 K2_2=0.9892;

264
265 d_1_2_K2=zeros(1,100);

266 for i=1:100

267 d_1_2_K2(1,i)=(−K2_2+epsilon_2(i)*alpha_2(i)+omega_2(i))/(epsilon_2(i)*
sqrt(beta2(i)));

268 end

269
270 N_d_1_2_K2=zeros(1,100);

271 for i=1:100
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272 N_d_1_2_K2(1,i)=normcdf(d_1_2_K2(i));

273 end

274
275 D_d_1_2_K2=zeros(1,100);

276 for i=1:100

277 D_d_1_2_K2(1,i)=normpdf(d_1_2_K2(i));

278 end

279
280 Price1M_2_K2=zeros(1,100);

281 for i=1:100

282 Price1M_2_K2(1,i)=p3Y*((epsilon_2(i)*alpha_2(i)+omega_2(i)−K2_2)*
N_d_1_2_K2(i)+epsilon_2(i)*sqrt(beta2(i))*D_d_1_2_K2(i));

283 end

284
285 %increase the strike by 0.05

286
287 %1st case: [1Year+11Months 2Years] future contract, option has maturity 2

Years, strike 1.0423.

288 K_3=1.0423;

289
290 d_1_K3=zeros(1,100);

291 for i=1:100

292 d_1_K3(1,i)=(−K_3+epsilon(i)*alpha(i)+omega(i))/(epsilon(i)*sqrt(beta(i)))
;

293 end

294
295 N_d_1_K3=zeros(1,100);

296 for i=1:100

297 N_d_1_K3(1,i)=normcdf(d_1_K3(i));

298 end

299
300 D_d_1_K3=zeros(1,100);

301 for i=1:100

302 D_d_1_K3(1,i)=normpdf(d_1_K3(i));

303 end

304
305 Price1M_K3=zeros(1,100);
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306 for i=1:100

307 Price1M_K3(1,i)=p2Y*((epsilon(i)*alpha(i)+omega(i)−K_3)*N_d_1_K3(i)+
epsilon(i)*sqrt(beta(i))*D_d_1_K3(i));

308 end

309
310 %2nd case: [2Years+11Months 3 years] future contract, option has maturity

3 years, strike 1.0892.

311 K2_3=1.0892;

312
313 d_1_2_K3=zeros(1,100);

314 for i=1:100

315 d_1_2_K3(1,i)=(−K2_3+epsilon_2(i)*alpha_2(i)+omega_2(i))/(epsilon_2(i)*
sqrt(beta2(i)));

316 end

317
318 N_d_1_2_K3=zeros(1,100);

319 for i=1:100

320 N_d_1_2_K3(1,i)=normcdf(d_1_2_K3(i));

321 end

322
323 D_d_1_2_K3=zeros(1,100);

324 for i=1:100

325 D_d_1_2_K3(1,i)=normpdf(d_1_2_K3(i));

326 end

327
328 Price1M_2_K3=zeros(1,100);

329 for i=1:100

330 Price1M_2_K3(1,i)=p3Y*((epsilon_2(i)*alpha_2(i)+omega_2(i)−K2_3)*
N_d_1_2_K3(i)+epsilon_2(i)*sqrt(beta2(i))*D_d_1_2_K3(i));

331 end

332
333 figure

334 subplot(1,2,1)

335 plot3(a, sigma, Price1M, a, sigma, Price1M_K2, a, sigma, Price1M_K3)

336 xlabel('a')

337 ylabel('sigma')

338 zlabel('Price1M [1Y11M−2Y]')
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339 grid on

340 legend('K=0.9923','K=0.9423','K=1.0423', 'Orientation', 'vertical')

341 subplot(1,2,2)

342 plot3( a, sigma, Price1M_2, 'r', a, sigma, Price1M_2_K2, 'm', a, sigma,

Price1M_2_K3, 'g')

343 xlabel('a')

344 ylabel('sigma')

345 zlabel('Price1M [2Y11M−3Y]')
346 grid on

347 legend('K=1.0392','K=0.9892','K=1.0892', 'Orientation', 'vertical')

348
349 figure

350 subplot(2,2,1)

351 plot(a, Price1M, a, Price1M_K2, a, Price1M_K3)

352 xlabel('a')

353 ylabel('Price1M [1Y11M−2Y]')
354 grid on

355 legend('K=0.9923','K=0.9423','K=1.0423', 'Orientation', 'vertical')

356 subplot(2,2,2)

357 plot(sigma, Price1M, sigma, Price1M_K2, sigma, Price1M_K3)

358 xlabel('sigma')

359 ylabel('Price1M [1Y11M−2Y]')
360 grid on

361 legend('K=0.9923','K=0.9423','K=1.0423', 'Orientation', 'vertical')

362 subplot(2,2,3)

363 plot( a, Price1M_2, 'r', a, Price1M_2_K2, 'm', a, Price1M_2_K3,'g')

364 xlabel('a')

365 ylabel('Price1M [2Y11M−3Y]')
366 grid on

367 legend('K=1.0392','K=0.9892','K=1.0892', 'Orientation', 'vertical')

368 subplot(2,2,4)

369 plot(sigma, Price1M_2, 'r', sigma, Price1M_2_K2, 'm', sigma, Price1M_2_K3,

'g')

370 xlabel('sigma')

371 ylabel('Price1M [2Y11M−3Y]')
372 grid on

373 legend('K=1.0392','K=0.9892','K=1.0892', 'Orientation', 'vertical')
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374
375 %reduce the maturity by 1 month

376
377 %1st case: [1Year+11Months 2Years] future contract, option has maturity 1

year 11 months, strike 0.9923.

378 T2=2−1/12;

379 p1Y11M=pT(1,6);

380
381 %find omega

382 fun2_T2 = @(x,a,sigma) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+
beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./
tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*
exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

383 int2_T2=@(a,sigma)integral(@(x)fun2_T2(x,a,sigma),T2,T_j1);

384
385 int_v2_T2=zeros(1,100);

386 for i=1:100

387 int_v2_T2(1,i)=int2_T2(a(i),sigma(i));

388 end

389
390 delta1_T2=zeros(1,100);

391 for i=1:100

392 delta1_T2(1,i)=1/a(i)*int_v2_T2(i)+1/a(i)*int_v(i);

393 end

394
395 omega_T2=zeros(1,100);

396 for i=1:100

397 omega_T2(1,i)=(1/tau_j)*delta1_T2(i);

398 end

399
400 %find alpha

401 fun3_T2 = @(x,a,sigma) (exp(−a.*(T2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2)
.*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((
sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));
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402 int3_T2=@(a,sigma)integral(@(x)fun3_T2(x,a,sigma),t,T2);

403
404 int_v3_T2=zeros(1,100);

405 for i=1:100

406 int_v3_T2(1,i)=int3_T2(a(i),sigma(i));

407 end

408
409 alpha1_T2=zeros(1,100);

410 for i=1:100

411 alpha1_T2(1,i)=r_0*exp(−a(i)*(T2−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)
/(a(i)^2))*exp(−a(i)*(T2−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)
/(2*a(i)^2))*exp(−a(i)*(2*T2−2*t));

412 end

413
414 alpha_T2=zeros(1,100);

415 for i=1:100

416 alpha_T2(1,i)=alpha1_T2(i)+int_v3_T2(i);

417 end

418
419 %find beta

420 beta_T2=zeros(1,100);

421 for i=1:100

422 beta_T2(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(
T2−t));

423 end

424
425 %find epsilon

426 epsilon_T2=zeros(1,100);

427 for i=1:100

428 epsilon_T2(1,i)=(1/(a(i)*tau_j))*(exp(−a(i)*(T_j1−T2))−exp(−a(i)*(T_j−T2))
);

429 end

430
431 %find N(d_1) and phi(d_1)

432 d_1_T2=zeros(1,100);

433 for i=1:100
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434 d_1_T2(1,i)=(−K+epsilon_T2(i)*alpha_T2(i)+omega_T2(i))/(epsilon_T2(i)*sqrt
(beta_T2(i)));

435 end

436
437 N_d_1_T2=zeros(1,100);

438 for i=1:100

439 N_d_1_T2(1,i)=normcdf(d_1_T2(i));

440 end

441
442 D_d_1_T2=zeros(1,100);

443 for i=1:100

444 D_d_1_T2(1,i)=normpdf(d_1_T2(i));

445 end

446
447 Price1M_T2=zeros(1,100);

448 for i=1:100

449 Price1M_T2(1,i)=p1Y11M*((epsilon_T2(i)*alpha_T2(i)+omega_T2(i)−K)*N_d_1_T2
(i)+epsilon_T2(i)*sqrt(beta_T2(i))*D_d_1_T2(i));

450 end

451
452 %2nd case: [2Years+11Months 3 years] future contract, option has maturity

2 years 11 months years, strike 1.0392.

453 T_2_2=3−1/12;

454 p2Y11M=pT(1,9);

455
456 %find omega

457 fun2_2_T2 = @(x,a,sigma) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(
beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2
.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

458 int2_2_T2=@(a,sigma)integral(@(x)fun2_2_T2(x,a,sigma),T_2_2,T_j1_2);

459
460 int_v2_2_T2=zeros(1,100);

461 for i=1:100

462 int_v2_2_T2(1,i)=int2_2_T2(a(i),sigma(i));

463 end
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464
465 delta1_2_T2=zeros(1,100);

466 for i=1:100

467 delta1_2_T2(1,i)=1/a(i)*int_v2_2_T2(i)+1/a(i)*int_v_2(i);

468 end

469
470 omega_2_T2=zeros(1,100);

471 for i=1:100

472 omega_2_T2(1,i)=(1/tau_j)*delta1_2_T2(i);

473 end

474
475 %find alpha

476 fun3_2_T2 = @(x,a,sigma) (exp(−a.*(T_2_2−x))).*(a.*(beta_0+beta_1.*exp(−x
./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x
./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1
.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))
+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

477 int3_2_T2=@(a,sigma)integral(@(x)fun3_2_T2(x,a,sigma),t,T_2_2);

478
479 int_v3_2_T2=zeros(1,100);

480 for i=1:100

481 int_v3_2_T2(1,i)=int3_2_T2(a(i),sigma(i));

482 end

483
484 alpha1_2_T2=zeros(1,100);

485 for i=1:100

486 alpha1_2_T2(1,i)=r_0*exp(−a(i)*(T_2_2−t))−((sigma(i)^2)/(a(i)^2))−((sigma(
i)^2)/(a(i)^2))*exp(−a(i)*(T_2_2−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(
i)^2)/(2*a(i)^2))*exp(−a(i)*(2*T_2_2−2*t));

487 end

488
489 alpha_2_T2=zeros(1,100);

490 for i=1:100

491 alpha_2_T2(1,i)=alpha1_2_T2(i)+int_v3_2_T2(i);

492 end

493
494 %find beta
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495 beta2_T2=zeros(1,100);

496 for i=1:100

497 beta2_T2(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)

*(T_2_2−t));
498 end

499
500 %find epsilon

501 epsilon_2_T2=zeros(1,100);

502 for i=1:100

503 epsilon_2_T2(1,i)=(1/(a(i)*tau_j))*(exp(−a(i)*(T_j1_2−T_2_2))−exp(−a(i)*(
T_j_2−T_2_2)));

504 end

505
506 %find N(d_1) and phi(d_1)

507 d_1_2_T2=zeros(1,100);

508 for i=1:100

509 d_1_2_T2(1,i)=(−K2+epsilon_2_T2(i)*alpha_2_T2(i)+omega_2_T2(i))/(
epsilon_2_T2(i)*sqrt(beta2_T2(i)));

510 end

511
512 N_d_1_2_T2=zeros(1,100);

513 for i=1:100

514 N_d_1_2_T2(1,i)=normcdf(d_1_2_T2(i));

515 end

516
517 D_d_1_2_T2=zeros(1,100);

518 for i=1:100

519 D_d_1_2_T2(1,i)=normpdf(d_1_2_T2(i));

520 end

521
522 Price1M_2_T2=zeros(1,100);

523 for i=1:100

524 Price1M_2_T2(1,i)=p2Y11M*((epsilon_2_T2(i)*alpha_2_T2(i)+omega_2_T2(i)−K2)

*N_d_1_2_T2(i)+epsilon_2_T2(i)*sqrt(beta2_T2(i))*D_d_1_2_T2(i));

525 end

526
527 %reduce the maturity by 2 months
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528
529 %1st case: [1Year+11Months 2Years] future contract, option has maturity 1

Year 10 months, strike 0.9923.

530 T3=2−2/12;

531 p1Y10M=pT(1,5);

532
533 %find omega

534 fun2_T3 = @(x,a,sigma)(exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+
beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./
tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*
exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

535 int2_T3=@(a,sigma)integral(@(x)fun2_T3(x,a,sigma),T3,T_j1);

536
537 int_v2_T3=zeros(1,100);

538 for i=1:100

539 int_v2_T3(1,i)=int2_T3(a(i),sigma(i));

540 end

541
542 delta1_T3=zeros(1,100);

543 for i=1:100

544 delta1_T3(1,i)=1/a(i)*int_v2_T3(i)+1/a(i)*int_v(i);

545 end

546
547 omega_T3=zeros(1,100);

548 for i=1:100

549 omega_T3(1,i)=(1/tau_j)*delta1_T3(i);

550 end

551
552 %find alpha

553 fun3_T3 = @(x,a,sigma)(exp(−a.*(T3−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1
)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./tau_2)
)−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1.^2).*exp
(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma
.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

554 int3_T3=@(a,sigma)integral(@(x)fun3_T3(x,a,sigma),t,T3);

555
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556 int_v3_T3=zeros(1,100);

557 for i=1:100

558 int_v3_T3(1,i)=int3_T3(a(i),sigma(i));

559 end

560
561 alpha1_T3=zeros(1,100);

562 for i=1:100

563 alpha1_T3(1,i)=r_0*exp(−a(i)*(T3−t))−((sigma(i)^2)/(a(i)^2))−((sigma(i)^2)
/(a(i)^2))*exp(−a(i)*(T3−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(i)^2)
/(2*a(i)^2))*exp(−a(i)*(2*T3−2*t));

564 end

565
566 alpha_T3=zeros(1,100);

567 for i=1:100

568 alpha_T3(1,i)=alpha1_T3(i)+int_v3_T3(i);

569 end

570
571 %find beta

572 beta_T3=zeros(1,100);

573 for i=1:100

574 beta_T3(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)*(
T3−t));

575 end

576
577 %find epsilon

578 epsilon_T3=zeros(1,100);

579 for i=1:100

580 epsilon_T3(1,i)=(1/(a(i)*tau_j))*(exp(−a(i)*(T_j1−T3))−exp(−a(i)*(T_j−T3))
);

581 end

582
583 %find N(d_1) and phi(d_1)

584 d_1_T3=zeros(1,100);

585 for i=1:100

586 d_1_T3(1,i)=(−K+epsilon_T3(i)*alpha_T3(i)+omega_T3(i))/(epsilon_T3(i)*sqrt
(beta_T3(i)));

587 end
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588
589 N_d_1_T3=zeros(1,100);

590 for i=1:100

591 N_d_1_T3(1,i)=normcdf(d_1_T3(i));

592 end

593
594 D_d_1_T3=zeros(1,100);

595 for i=1:100

596 D_d_1_T3(1,i)=normpdf(d_1_T3(i));

597 end

598
599 Price1M_T3=zeros(1,100);

600 for i=1:100

601 Price1M_T3(1,i)=p1Y10M*((epsilon_T3(i)*alpha_T3(i)+omega_T3(i)−K)*N_d_1_T3
(i)+epsilon_T3(i)*sqrt(beta_T3(i))*D_d_1_T3(i));

602 end

603
604 %2nd case: [2Years+11Months 3 years] future contract, option has maturity

2 years 10 months, strike 1.0392.

605 T_2_3=3−2/12;

606 p2Y10M=pT(1,8);

607
608 %find omega

609 fun2_2_T3 = @(x,a,sigma) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(
beta_0+beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2
.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

610 int2_2_T3=@(a,sigma)integral(@(x)fun2_2_T3(x,a,sigma),T_2_3,T_j1_2);

611
612 int_v2_2_T2=zeros(1,100);

613 for i=1:100

614 int_v2_2_T3(1,i)=int2_2_T3(a(i),sigma(i));

615 end

616
617 delta1_2_T3=zeros(1,100);

618 for i=1:100
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619 delta1_2_T3(1,i)=1/a(i)*int_v2_2_T3(i)+1/a(i)*int_v_2(i);

620 end

621
622 omega_2_T3=zeros(1,100);

623 for i=1:100

624 omega_2_T3(1,i)=(1/tau_j)*delta1_2_T3(i);

625 end

626
627 %find alpha

628 fun3_2_T3 = @(x,a,sigma) (exp(−a.*(T_2_3−x))).*(a.*(beta_0+beta_1.*exp(−x
./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x
./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./tau_1
.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x./tau_2))
+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

629 int3_2_T3=@(a,sigma)integral(@(x)fun3_2_T3(x,a,sigma),t,T_2_3);

630
631 int_v3_2_T3=zeros(1,100);

632 for i=1:100

633 int_v3_2_T3(1,i)=int3_2_T3(a(i),sigma(i));

634 end

635
636 alpha1_2_T3=zeros(1,100);

637 for i=1:100

638 alpha1_2_T3(1,i)=r_0*exp(−a(i)*(T_2_3−t))−((sigma(i)^2)/(a(i)^2))−((sigma(
i)^2)/(a(i)^2))*exp(−a(i)*(T_2_3−t))+((sigma(i)^2)/(2*a(i)^2))−((sigma(
i)^2)/(2*a(i)^2))*exp(−a(i)*(2*T_2_3−2*t));

639 end

640
641 alpha_2_T3=zeros(1,100);

642 for i=1:100

643 alpha_2_T3(1,i)=alpha1_2_T3(i)+int_v3_2_T3(i);

644 end

645
646 %find beta

647 beta2_T3=zeros(1,100);

648 for i=1:100
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649 beta2_T3(1,i)=((sigma(i)^2)/(2*a(i)))−((sigma(i)^2)/(2*a(i)))*exp(−2*a(i)

*(T_2_3−t));
650 end

651
652 %find epsilon

653 epsilon_2_T3=zeros(1,100);

654 for i=1:100

655 epsilon_2_T3(1,i)=(1/(a(i)*tau_j))*(exp(−a(i)*(T_j1_2−T_2_3))−exp(−a(i)*(
T_j_2−T_2_3)));

656 end

657
658 %find N(d_1) and phi(d_1)

659 d_1_2_T3=zeros(1,100);

660 for i=1:100

661 d_1_2_T3(1,i)=(−K2+epsilon_2_T3(i)*alpha_2_T3(i)+omega_2_T3(i))/(
epsilon_2_T3(i)*sqrt(beta2_T3(i)));

662 end

663
664 N_d_1_2_T3=zeros(1,100);

665 for i=1:100

666 N_d_1_2_T3(1,i)=normcdf(d_1_2_T3(i));

667 end

668
669 D_d_1_2_T3=zeros(1,100);

670 for i=1:100

671 D_d_1_2_T3(1,i)=normpdf(d_1_2_T3(i));

672 end

673
674 Price1M_2_T3=zeros(1,100);

675 for i=1:100

676 Price1M_2_T3(1,i)=p2Y10M*((epsilon_2_T3(i)*alpha_2_T3(i)+omega_2_T3(i)−K2)

*N_d_1_2_T3(i)+epsilon_2_T3(i)*sqrt(beta2_T3(i))*D_d_1_2_T3(i));

677 end

678
679 figure

680 subplot(1,2,1)

681 plot3(a, sigma, Price1M, a, sigma, Price1M_T2, a, sigma, Price1M_T3)

127



682 xlabel('a')

683 ylabel('sigma')

684 zlabel('Price1M [1Y11M−2Y]')
685 grid on

686 legend('T=2Y','T=1Y11M','T=1Y10M', 'Orientation', 'vertical')

687 subplot(1,2,2)

688 plot3( a, sigma, Price1M_2, 'r', a, sigma, Price1M_2_T2, 'm', a, sigma,

Price1M_2_T3, 'g')

689 xlabel('a')

690 ylabel('sigma')

691 zlabel('Price1M [2Y11M−3Y]')
692 grid on

693 legend('T=3Y','T=2Y11M','T=2Y10M', 'Orientation', 'vertical')

694
695 figure

696 subplot(2,2,1)

697 plot(a, Price1M, a, Price1M_T2, a, Price1M_T3)

698 xlabel('a')

699 ylabel('Price1M [1Y11M−2Y]')
700 grid on

701 legend('T=2Y','T=1Y11M','T=1Y10M', 'Orientation', 'vertical')

702 subplot(2,2,2)

703 plot(sigma, Price1M, sigma, Price1M_T2, sigma, Price1M_T3)

704 xlabel('sigma')

705 ylabel('Price1M [1Y11M−2Y]')
706 grid on

707 legend('T=2Y','T=1Y11M','T=1Y10M', 'Orientation', 'vertical')

708 subplot(2,2,3)

709 plot( a, Price1M_2, 'r', a, Price1M_2_T2, 'm', a, Price1M_2_T3, 'g')

710 xlabel('a')

711 ylabel('Price1M [2Y11M−3Y]')
712 grid on

713 legend('T=3Y','T=2Y11M','T=2Y10M', 'Orientation', 'vertical')

714 subplot(2,2,4)

715 plot(sigma, Price1M_2, 'r', sigma, Price1M_2_T2, 'm', sigma, Price1M_2_T3,

'g')

716 xlabel('sigma')
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717 ylabel('Price1M [2Y11M−3Y]')
718 grid on

719 legend('T=3Y','T=2Y11M','T=2Y10M', 'Orientation', 'vertical')
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Appendix C

Strike price code

Here we report the code used to obtain reasonable values for the strike prices.

• Option on 3M future

1 %1st case: [1Year+9months 2 Years] future contract.

2 a=0.1;

3 sigma=0.065;

4 tau_j=0.25;

5 T_j=2;

6 T_j1=1.75;

7 t=0;

8 beta_0=1.641204;

9 beta_1=−1.766233;

10 beta_2=25.191842;

11 beta_3=−25.607108;

12 tau_1=1.344229;

13 tau_2=1.421672;

14 r_0=−0.00082;

15
16 %find eta

17 funk = @(x)(1−exp(−a.*(T_j−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1)+
beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./
tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x
./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

18 intk1=integral(funk,T_j1,T_j);

19
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20 funk2 = @(x) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+beta_1
.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./
tau_2.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x))

);

21 intk2=integral(funk2,t,T_j1);

22
23 eta=(1/a)*intk1+(1/a)*intk2;

24
25 %find Sigma

26 Sigma=(1/2)*((sigma^2)/(a^2))*((1/a)*(exp(−a*(T_j−T_j1))+exp(−a*(T_j+
T_j1−2*t))−1)−(1/(2*a))*(exp(−2*a*(T_j−t))+exp(−2*a*(T_j1−t)))+(
T_j−T_j1));

27
28 %future price

29 f_0=(1/tau_j)*(exp((r_0/a)*(exp(−a*T_j1)−exp(−a*T_j))+eta+Sigma)−1);
30
31 %2nd case: [2Years+9Months 3Years] future contract.

32 T_j_2=3;

33 T_j1_2=2.75;

34
35 %find eta

36 funk_2 = @(x)(1−exp(−a.*(T_j_2−x))).*(a.*(beta_0+beta_1.*exp(−x./
tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp
(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x
./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp
(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

37 intk1_2=integral(funk_2,T_j1_2,T_j_2);

38
39 funk2_2 = @(x) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(beta_0+

beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+
beta_2.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./
tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp

(−2.*a.*x)));

40 intk2_2=integral(funk2_2,t,T_j1_2);
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41
42 eta_2=(1/a)*intk1_2+(1/a)*intk2_2;

43
44 %find Sigma

45 Sigma_2=(1/2)*((sigma^2)/(a^2))*((1/a)*(exp(−a*(T_j_2−T_j1_2))+exp(−a

*(T_j_2+T_j1_2−2*t))−1)−(1/(2*a))*(exp(−2*a*(T_j_2−t))+exp(−2*a*(
T_j1_2−t)))+(T_j_2−T_j1_2));

46
47 %future price

48 f_0_2=(1/tau_j)*(exp((r_0/a)*(exp(−a*T_j1_2)−exp(−a*T_j_2))+eta_2+
Sigma_2)−1);

• Option on 1M future

1 %1st case: [1Year+11months 2 Years] future contract.

2 a=0.1;

3 sigma=0.065;

4 tau_j=1/12;

5 T_j=2;

6 T_j1=2−1/12;

7 t=0;

8 beta_0=1.641204;

9 beta_1=−1.766233;

10 beta_2=25.191842;

11 beta_3=−25.607108;

12 tau_1=1.344229;

13 tau_2=1.421672;

14 r_0=−0.00082;

15
16 %find eta

17 funk = @(x)(1−exp(−a.*(T_j−x))).*(a.*(beta_0+beta_1.*exp(−x./tau_1)+
beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp(−x./
tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x./
tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp(−x
./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

18 intk1=integral(funk,T_j1,T_j);

19
20 funk2 = @(x) (exp(−a.*(T_j1−x))−exp(−a.*(T_j−x))).*(a.*(beta_0+beta_1
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.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./
tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2
.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./
tau_2.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x))

);

21 intk2=integral(funk2,t,T_j1);

22
23 eta=(1/a)*intk1+(1/a)*intk2;

24
25 %future price

26 f_0=(1/tau_j)*((r_0/a)*(exp(−a*(T_j1−t))−exp(−a*(T_j−t)))+eta);
27
28 %2nd case: [2Years+11Months 3Years] future contract.

29 T_j_2=3;

30 T_j1_2=3−1/12;

31
32 funk_2 = @(x)(1−exp(−a.*(T_j_2−x))).*(a.*(beta_0+beta_1.*exp(−x./

tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3.*(x./tau_2).*exp
(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+beta_2.*((1./tau_1−x
./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./tau_2−x./tau_2.^2).*exp
(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp(−2.*a.*x)));

33 intk1_2=integral(funk_2,T_j1_2,T_j_2);

34
35 funk2_2 = @(x) (exp(−a.*(T_j1_2−x))−exp(−a.*(T_j_2−x))).*(a.*(beta_0+

beta_1.*exp(−x./tau_1)+beta_2.*(x./tau_1).*exp(−x./tau_1)+beta_3
.*(x./tau_2).*exp(−x./tau_2))−(beta_1./tau_1).*exp(−x./tau_1)+
beta_2.*((1./tau_1−x./tau_1.^2).*exp(−x./tau_1))+beta_3.*((1./
tau_2−x./tau_2.^2).*exp(−x./tau_2))+((sigma.^2)./(2.*a)).*(1−exp

(−2.*a.*x)));

36 intk2_2=integral(funk2_2,t,T_j1_2);

37
38 eta_2=(1/a)*intk1_2+(1/a)*intk2_2;

39
40 %future price

41 f_0_2=(1/tau_j)*((r_0/a)*(exp(−a*(T_j1_2−t))−exp(−a*(T_j_2−t)))+eta_2
);
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