UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria Industriale

Corso di Laurea Magistrale in Ingegneria Meccanica

Shiploader per piattaforma offshore - verifiche di durabilità strutturale per mezzo di analisi FEM

Relatore: Correlatore: Prof. Alberto Campagnolo Ing. Andrea Barbato (Bedeschi Spa)

Laureando:Da Re MarcoMatricola n.2086847

Anno Accademico: 2023/2024

Ai miei genitori per non avermi mai limitato nelle scelte della vita e per avermi sempre supportato nelle mie decisioni, al prof. Albero Campagnolo e all'Ing. Andrea Barbato per avermi dato l'opportunità di poter svolgere la tesi di laurea sotto la loro supervisione e per avermi aiutato a portarla a termine. Un sentito grazie anche ai miei colleghi e amici, che mi hanno sempre incoraggiato e fornito utili suggerimenti nei momenti di difficoltà e chiunque mi abbia supportato. La loro vicinanza è stata fondamentale. Infine volevo ringraziare l'Università degli studi di Padova per i servizi offerti durante il mio percorso di studi e la Bedeschi Spa per avermi accolto e fatto sentire a casa.

Ad maiora semper

Abstract

This study develops the structural analysis of a shiploader mounted on an offshore platform. This is an extendable steel arm, up to 41 meters long and 8 meters high, weighing 170 tons, made with welded and bolted metal carpentry, on which a conveyor belt is installed. The conveyor belt has a maximum capacity of 2300 t/h and is used to fill the ship's hold with coal, which will then go to port. The analyses were carried out with the aim of performing static, fatigue, and buckling verifications under the following loading conditions: operational static, operational with 35 km/h wind, operational limit, hopper obstruction, and Bobcat lifting. The following operating conditions were modeled: no inclination, $\pm 5^{\circ}$ of roll, $\pm 2^{\circ}$ of pitch; also two conditions with the arm at rest supported on the platform (boom rest): boom rest and boom rest with limit wind. The accelerations experienced by the arm in the rest position during the platform transfer were also simulated. Preliminary, an initial sizing phase of the electric motors intended to move the belt, extend the arm, and rotate the shiploader was also carried out, and the work was completed through the drafting of the machine's design criteria. The entire design was carried out in accordance with FEM II and DNV standards.

Sommario

Lo studio sviluppa l'analisi strutturale di uno shiploader prototto da Bedeschi Spa per la COSCO Shipping, montato su una piattaforma off-shore a Jakarta, in acque indonesiane. La macchina, parte di un impianto di conveyor belt handlling system è costituita da un braccio estensibile in acciaio, lungo fino a 41 metri e alto 8, del peso 170 tonnellate, realizzato tramite carpenteria metallica saldata e bullonata, su cui é installato un nastro trasportatore, con portata massima di 2300 t/h atto al riempimento di carbone della stiva delle navi.

Nel capitolo 1 è presente un breve riassunto della macchina e delle sue caratteristiche, seguito dalla technical offer che era stata redatta dall'azienda durante la trattativa di vendita, questa contiene una descrizione del progetto ed una descrizione tecnica dell'intero impianto, la verniciatura, i servizi svolti dall'azienda e le opere che invece sono a carico del cliente finale con una matrice delle responsabilità, nonché le condizioni di vendita.

Nel capitolo 2 sono invece presenti i calcoli preliminari, ossia quello relativo alla potenza di azionamento e alle tensioni presenti nel nastro dello shiploader; quello per la potenza necessaria alla traslazione della navetta e quindi alla scelta del relativo motore elettrico; il calcolo degli sforzi agenti sulla ralla in cond,izioni operative (quindi con presente materiale e incrostazioni) e con vento a 72 km/h, ed in condizioni eccezionali (senza materiale sul nastro) con vento di tempesta a 150 km/h, in modo da poter calcolare il numero e la potenza dei motori necessari alla rotazione del braccio; si è infine svolto il dimensionamento dei due pistoni idraulici atti al sollevamento del braccio.

Nel capitolo 3 è presente lo structural and mechanical design criteria, questo non è altro che un insieme di linee guida, regole, requisiti e considerazioni che devono essere seguite e soddisfatte durante il processo di progettazione del prodotto. Esso costituisce una base fondamentale per garantire che il progetto risponda agli obiettivi funzionali, estetici, economici, ambientali e di sicurezza richiesti. In particolare in questo caso sono presenti gli standard e i documenti di riferimento, i dati di progetto, i materiali di carpenteria utilizzati, nonché una lista dei carichi di progetto ordinari e straordinari e le combinazioni di carico di caso I, II, e III previste dalla normativa internazionale FEM II.

Nel capitolo 4 sono riportati i loads data ricavati tramite il software di analisi FEM Straus7. Vi è quindi una verifica ed una correzione dei pesi del modello, dato che si è scelto di partire da uno shiploader precedentemente realizzato, in seguito sono poi presenti la metodologia di lavoro utilizzata per modellare le varie condizioni operative (nessuna inclinazione, $\pm 5^{\circ}$ di rollio, $\pm 2^{\circ}$ di beccheggio) e non operative (boom rest e boom rest con vento estremo); per queste ultime due condizioni si è fatto riferimento alla normativa per la regolamentazione dei trasporti marittimi DNV. In seguito si è proceduto ad inserire in tabella i risultati ottenuti in termini di F_x, F_y, F_z, M_x, M_y, M_z, andando infine a riassumere i valori massimi e minimi in corrispondenza della ralla e degli appoggi (utilizzati solo in caso di boom rest). Chiudendo poi con un grafico per la verifica dei carichi sulla ralla.

Nel capitolo 5 sono sintetizzate le verifiche degli elementi beam e degli elementi plates, realizzate secondo il criterio di Von Mises, andando ad analizzare ciascuna condizione di carico e presentando gli elementi più sollecitati in tabella, nonché tramite via grafica evidenziandoli all'interno del modello sollecitato.

Nel capitolo 6 sono riportate le verifiche a fatica eseguite sui beam e sui plates, ottenute analizzando il caso operativo statico con vento a 35 km/h, verificando il ciclo di carico dato dal rollio della nave tra +5° e -5° di inclinazione. I calcoli sono stati completati apportando una modifica alla formula nel caso dei plates, per includere le tensioni tangenziali fuori piano che altrimenti non verrebbero considerate.

Nel capitolo 7 viene trattato il fenomeno del buckling; nel caso degli elementi beam si applica la norma FEM II anche in questo caso con una lieve modifica per tenere conto dei momenti flettenti su due piani differenti, in favore di sicurezza, ed andando ad utilizzare un estratto della norma UNI 10011 per calcolare il momento flettente in mezzeria di ogni beam; successivamente viene inserita una tabella riassuntiva con i beam più critici evidenziati ed un'immagine con la rappresentazione di questi. Successivamente si è inserito il buckling di elementi bidimensionali andando a confrontare in termini di scostamento percentuale i modi ottenuti con Straus7 e tramite Ansys Workbench.

Nel capitolo 8 si va ad analizzare un cordone di saldatura del mast con lo scopo di stimarne la vita in termini di cicli a fatica; si è utilizzato prima un approccio in tensione nominale, poi l'Hot Spot Approach, utilizzando un sotto modello di elementi shell.

Indice

Introduzione9
Technical offer10
Calcoli preliminari
Calcolo della potenza di azionamento e delle tensioni del nastro dello SHL (2.1)27
Shuttle traversing: motor power calculation (2.2)
Ralla: peso proprio, materiale, incrostazioni e vento a 72 km/h (2.3)
Ralla: peso proprio, incrostazioni e vento a 150 km/h (2.4)41
Dimensionamento pistoni di sollevamento braccio (2.5)44
Design criteria
Introduction (3.1)52
Reference standards and documents (3.2)53 General standards description (3.2.1)53
Standards used for SHL's design (3.2.2)53
Standard's used for belt conveyors' design (3.2.3)53
Standard's for wind load calculations (3.2.4)53
Bedeschi's specifications (3.2.5)53
Project data (3.3)
Material / product information (3.3.2)54
Site conditions (3.3.3)54
Design data (3.3.4)54
Materials of steel parts (3.4)55 Frameworks (3.4.1)55
Mechanical components (3.4.2)55
Machine caracteristics and description (3.5)56 Boom (3.5.1)
Shuttle (3.5.2)
Trimming spout (3.5.3)56
Machine design criteria (3.6)57 Design standards (3.6.1)57
Sections stress fatigue and buckling verifications (3.6.2)
Overall stability (3.6.3)

Mechanism (3.6.4)57
Design loads (3.7)
Additional loads (II case conditions) (3.7.2)60
Special loads (III case conditions) (3.7.3)61
Loads combinations (3.7.4)62
Loads data da Straus7
Metodo di lavoro utilizzato (4.1)73
Legenda (4.2)
Risultati combinazioni di carico (4.3)81
Valori massimi e minimi su ralla e appoggi (4.4)86
Masse struttura (4.5)
Ralla (4.6)88
Verifiche strutturali statiche
96 Beam (5.1)96 Caso senza inclinazione (5.1.1)
Caso +5° di rollio (5.1.2)100
Caso -5° di rollio (5.1.3)101
Caso +2° di beccheggio (5.1.4)102
Caso -2° di beccheggio (5.1.5)103
Boom rest (5.1.6)
Plate (5.2)
Caso +5° di rollio (5.2.2)112
Caso -5° di rollio (5.2.3)113
Caso +2° di beccheggio (5.2.4)115
Caso -2° di beccheggio (5.2.5)116
Boom rest (5.2.6)
Verifiche strutturali a fatica 127
Fatica sui beam (6.1)
Risultati beam (6.1.2)149
Fatica sui plates (6.2)

Verifiche strutturali a buckling	
Buckling di elementi beam (7.1) No inclinazione (7.1.1)	
+5° di rollio (7.1.2)	
-5° di rollio (7.1.3)	
+2° di beccheggio (7.1.4)	
-2° di beccheggio (7.1.5)	
Boom rest (7.1.6)	
Buckling di elementi bidimensionali (7.2) Buckling in Ansys Workbench (7.2.1)	
Risultati, caso no inclinazione (7.2.1.1)	
Risultati caso +5° di rollio (7.2.1.2)	
Risultati caso -5° di rollio (7.2.1.3)	
Risultati caso +2° di beccheggio (7.2.1.4)	210
Risultati caso -2° di beccheggio (7.2.1.5)	212
Buckling in Straus7 (7.2.2)	
Risultati, caso no inclinazione (7.2.2.1)	214
Risultati caso +5° di rollio (7.2.2.2)	
Risultati caso -5° di rollio (7.2.2.3)	
Risultati caso +2° di beccheggio (7.2.2.4)	
Risultati caso -2° di beccheggio (7.2.2.5)	
Risultati (7.2.3)	
Commento finale (7.2.4)	237
Analisi cordone di saldatura	
Approccio in tensione nominale (8.1) Caso no inclinazione (8.1.1)	
Caso +5° di rollio (8.1.2)	241
Caso -5º di rollio (8.1.3)	241
Caso +2° di beccheggio (8.1.4)	242
Caso -2° di beccheggio (8.1.5)	242
Risultati approccio in tensione nominale (8.1.6)	243
Hot Spot Approach (8.2)	

Procedura di analisi (8.2.1)	
Caso in assenza di inclinazione (8.2.2)	259
Caso con +5° di rollio (8.2.3)	
Caso con -5º di rollio (8.2.4)	
Caso con +2° di beccheggio (8.2.5)	
Caso con -2° di beccheggio (8.2.6)	
Risultati (8.2.7)	
Conclusioni	275
Bibliografia	276

CAPITOLO 1: Introduzione

Lo shiploader è parte di un impianto più complesso che è stato realizzato per la COSCO Shipping e costituisce un conveyor belt handling system formato dalle seguenti macchine:

- 2x Receiving hoppers abt. 70 m³ each
- 2x Feeder belts
- 1x Fixed conveyor belt system
- 1x Transfer points between conveyors
- 1x Shiploader, slewing/luffing and telescopic type
- 1x Banana trimming device, for S/L discharging head
- 1x Weighting device
- 1x Metal detectors
- 2x Metal separators
- 1x Wiring/MMC/control system

Ognuna di queste macchine costituenti l'impianto è descritta poi in dettaglio nella technical offer, oltre alla verniciatura, e alla matrice delle responsabilità, che definisce quali servizi e opere di ingegneria sono a carico di Bedeschi Spa e quali sono invece responsabilità del cliente; infine vi sono poi le condizioni di vendita.

Lo shiploader è braccio estensibile in acciaio, lungo fino a 41 metri e alto 8, del peso 170 tonnellate, realizzato tramite carpenteria metallica saldata e bullonata, su cui é installato un nastro trasportatore largo 1,6m, con portata massima di 2300 t/h atto a riempire di carbone la stiva delle navi che poi andranno in porto.

Le analisi sono state svolte con l'obiettivo di compiere delle verifiche statiche, di fatica e di buckling, sotto le seguenti condizioni di carico: operativo statico, operativo con vento a 35km/h e limite di esercizio, intasamento della tramoggia di scarico e sollevamento del Bobcat. Si sono poi simulate anche le accelerazioni subite dal braccio in posizione di riposo durante il trasferimento della piattaforma. Preliminarmente si è anche svolta una fase di dimensionamento dei motori elettrici atti a muovere il nastro, a estendere il braccio e a far ruotare lo shiploader, per poi completare il lavoro tramite la redazione del design criteria della macchina. Tutta la progettazione è avvenuta in accordo con le normativa FEM II e DNV.

Technical offer:

TECHNICAL OFFER FOR PLN FLOATING TRANSHIPMENT

	52	15 Martin
Date	2023	THE
Offer No.	GIS005624-2023 rev 03	
Reference	MIG	Imr.

BEDESCHI S.p.A. - Sede Legale e Operativa: Via Praimbole, 38 - 35010 Limena (PD) ITALY - T. +39 049 7663100 - F. +39 049 8848006 | Unità Locali: Via Provinciale, 25 - 24040 Lallio (BG) ITALY - T. +39 035 691085 - F. +39 035 692382 / Via Luigi Cibrario, 57 A -16154 Genova (GE) ITALY - T. +39 049 7663252 - F. +39 049 8848006 | sales@bedeschi.com - www.bedeschi.com - Cap.Soc.Euro 1.600.000,00 i.v. - Cod. Fiscale e n.iscr. al Registro Imprese di Padova 01008580282 - Partita IVA/VAT IT 01008580282 - R.E.A. PD-170314

REVISIONS

REV.	DESCRIPTION	DATE	
0	First release	2023 MAY 22	
1	Product review	2023 AUG 07	
2	-	-	
3	FINAL CONFIGURATION	2023 OCT 17	

SUMMARY

CORPO	DRATE PRESENTATION	3
1.	PROJECT DESCRIPTION	5
1.1.	PROJECT DATA	6
2.	TECHNICAL DESCRIPTION	7
2.1. 2.2. 2.3.	HOPPERS T1, T2 (TO BE FEED BY DECK CRANES) BELT FEEDERS FB1, FB2 BELT CONVEYORS SYSTEM	
2.4. 2.5.	TELESCOPIC SHIP LOADER SHL 1 – (SHL 40/1600) ELECTRICAL SYSTEM	
3.	SCOPE OF SUPPLY	
3.1.	TRANSHIPPING HANDLING SYSTEM	
4.	PAINTING	
5.	SERVICES	
5.1. 5.2.	ENGINEERING TECHNICAL ASSISTANCE INCLUDED	
6.	MATRIX OF RESPONSIBILITIES	23
6.1.	TRANSHIPPING HANDLING SYSTEM	
7.	EXCLUSIONS	25
7.1.	VENDOR LIST	
8.	SALES CONDITIONS	

BEDESCHI FAR EAST LIMITED - Room 2005, 20/F, CRE Centre, 889 Cheung Sha Wan Road, Lai Chi Kok, Kowloon - Hong Kong SAR - Phone +852 5598 2132 - bedfe@bedeschi.com - **www.bedeschi.com**

直

3 of 33

CORPORATE PRESENTATION

BEDESCHI Spa – FOUNDED IN 1908 – is one of the oldest Companies in Europe supplying machinery and services for bulk handling, crushing, shiploading and transhipment systems. Thanks to its very long experience, Bedeschi has successfully applied its know-how in a wide variety of applications and the Bedeschi technology is now known all over the world.

Bedeschi has a wide knowledge in handling DIFFICULT MATERIALS in any part of the world and in any environment. We offer to the customer problem-solving solutions to work with:

- ✓ sticky material
- ✓ abrasive material
- ✓ extremely hard material
- ✓ dry materials
- ✓ grain and feeding stuffs

In our main facilities in Italy, we have a highly qualified and skilled engineering WORKSHOPS (70,000 m² of factory space), well equipped with modern and up to the state of the art machinery, where we design and manufacture all the key components of the machines we supply. This allows us to control the complete quality plan and to have any spare part available for our customers.

Bedeschi workshop view

Our TARGET INDUSTRIES are:

- ✓ cement factories
- ✓ mining companies
- ✓ power utilities
- ✓ steel industry
- ✓ chemical and fertilizers industry
- ✓ port authorities
- ✓ shipping industry
- ✓ terminal operators
- ✓ ship owners
- ✓ port engineering

We offer a WIDE PRODUCT RANGE including:

- ✓ Stackers
- ✓ Reclaimers
- ✓ Combined Bucket-Wheel Stacker/Reclaimer
- ✓ Apron Feeders
- ✓ Crushers
- ✓ Ship loaders
- ✓ Ship unloaders
- ✓ Belt & Pipe Conveying Systems
- ✓ De-dusting and Gas Cleaning Equipment

Bedeschi designs and manufactures safe and environmentally sensitive solutions

0

We invite you to visit our website www.bedeschi.com

BEDESCHI FAR EAST

1,150 t/h each

AC, 3ph 440V, 60Hz

AC, 220 V, 60Hz

D.C. 24 V

1. PROJECT DESCRIPTION

The design and fabrication proposed machines and equipment are coming from Seller experience of the fourth generation of realized transhipments as well as the 114 years of Seller know-how in bulk material handling.

5 of 33

- The Material Handling System is designed for continuous heavy-duty operations.
- The metric system will be used as measuring unit, standard such as ISO FEM DIN and VDE will be observed for Cargo Handling plant.
- Nominal convey capacity used for design criteria is:
 - Hoppers and feeder belts:
 - Other fixed conveyors, related machinery and ship-loader: 2,300 t/h belt
 - Project is sized for handling the coal material with specific density: 1.1 t/m³
- Voltage and frequency:
 - main electrical supply:
 - lighting circuits:
 - automation, alarm system, other appliances:
- Materials to be considered and their main characteristics:

Material	Repose angle	Grain size	% max size	Max bulk den	Top moist
	(°)	(mm)	(%)	(t/m³)	(%)
Coal	37°-39°	0 to 75 mm	80	1.0 - 1.1	10-30 %

- Coal is the main commodity to be handled with this Material Handling System.
- Reference is made to dwg VP-203.917_2 (rev 02)

±5 deg

± 2 deg

From 0° to 45° C

20 m/sec (72 km/h)

>50,000 working hours

95 %

2.0 m

1.1. PROJECT DATA

1.1.1. PROJECT DATA FOR WORKING CONDITIONS

- Max. heel for the base pontoon
- Max trim for the base pontoon
- Max. admissible humidity
- Admissible temperature
- Max. admissible wind speed
- Max. wave height
- Expected lifetime for the handling system components
- Stress verification at ± 2 deg with 8 sec cycle

1.1.2. PROJECT DATA FOR SEA TRANSFER AND PARKING POSITION

•	Max. admissible acceleration transversal axis (bean direction	1.5 g
•	Max. admissible acceleration longitudinal axis (length direction)	0.5 g
•	Max. admissible acceleration vertical axis	0.7 g
•	Max. wind speed survival condition	41.6 m/sec (150 km/h)

1.1.3. CODES AND STANDARDS

The machines structural, electrical and control components will be designed to support loads and load combinations determined in accordance with International Standard.

The structure and the mechanisms as well as stability calculations of the installation will be designed according to FEM section II: Rules for the Design of Mobile Equipment for Continuous Handling of Bulk Materials and belt conveyors will be designed according to ISO international standard.

1.1.4. MAIN CODES AND STANDARDS

FEM Rules 2.131/2 Rules for the design of mobile equipment for continuous handling of bulk materials (1997)

ISO 5048 Continuous Mechanical Handling equipment - belt conveyors with carrying idlers - calculation of operating power and tensile forces.

ISO 5049/1 Mobile Equipment for Continuous Handling of Bulk Materials-Part 1: Rules for design of steel structures

Corresponding class of:

•	The conveyor mechanism	T7, L4, M8
•	Boom and mast structures	B4, P4, E5
•	Slew bearing, lifting cylinder and tie rods	B4, P4, E5
•	Rotation mechanical components	B2, P4, E3
	notation needed in provide the	

1.1.5. ELECTRICAL STANDARDS

Electrical design and component will be designed according to EN 60204-1 IEC, IEC 61439-1, IEC 61439-2, EC 61439-3

7 of 33

2. TECHNICAL DESCRIPTION

The scope of supply is one CONVEYOR BELT HANDLING SYSTEM, comprehensive of all its components here below briefly described:

- No. 2x Receiving hoppers abt. 70 m³ capacity/each
- No. 2x Feeder belts
- No. 1x Fixed conveyor belt system
- No. 1x Transfer points between conveyors
- No. 1x Shiploader, slewing/luffing and telescopic type
- No. 1x Banana trimming device, for S/L discharging head
- No. 1x Weighing device
- No. 1x Metal detectors
- No. 2x Metal separators
- No. 1x Wiring/MCC/control system

2.1. HOPPERS T1, T2 (TO BE FEED BY DECK CRANES)

- Project data for hoppers T1, T2 as follow:
- Inner volume (considering water level) abt. 70 m3
- Upper nominal opening abt. 9.8m x 7.0 m, to allow the swing discharge or a 25 m3 grab (or alternative to be confirmed) with footprint 5.5x4.2 (tbc by customer) while open with upper shirts is 13m x 9.5m per hopper as max outline opening inlet (tbc by customer).
- Frame made open beams made by Marine Steel approved by Naval Register.
- Chinese marine steel can be used if according to the technical requirements
- Trunk-pyramidal shape, side walls made by standard construction steel plates according to specifications or higher, with minimum thickness 12 mm, and lined with welded shield made by anti-wear steel with min. thickness 8 mm.
- Hoppers shape will be asymmetrical; walls' inclination hoppers and all transfer/discharge points will not less than 55 deg.

- A beam for the deviation of the material to the ground of the hopper has been foreseen in order to avoid as far as possible the direct impact of the coal on the extractor with an empty hopper.
- Under the upper rim of the hoppers a sturdy grid with an aperture of approx. 300 mm has been foreseen. This grid is able to sustain the weight of the empty grab and shall be installed inside the hopper at a sufficient height in order to prevent losses during discharge operations.
- Additional side and end top boarders for dust containment purpose, height (final height to be defined) on the inboard side, triangular shape for the fwd and aft side boards
- Inclinable anti-spillage panel for full length on sea side, hinged upper opening. Same panel will be
 operated by means of hydraulic jacks.
- Lower flange to be designed to match with feeding upper opening on extracting Feeder belt
- There will be a service platform on a end side of each hopper, served by a vertical ladder with backguard. Same ladder will also serve the service platform IWO swinging anti-spillage panel' hinges and cylinders.

2.1.1. SUPPLY OF HOPPERS COMPONENTS

- Devices will be installed on hoppers
- No. 2 sets each consisting of no. 4 vibrators with P=2.2 kW/each 60Hz placed on the four opposite side walls, at lower part of the hoppers.
- No. 2 sets each consisting of hydraulic power pack and components for the operation of antispillage panels.
- No. 2 sets of water sprays nozzles rings one set for each hopper including all required accessories and tank, suitable located to avoid interferences and improve system dedusting reliability.

2.2. BELT FEEDERS FB1, FB2

- To discharge hoppers T1, T2 to longitudinal belt conveyor BC1 Stbd Side.
- In Hoppers/Feeders design will be considered the following characteristics.
- Designed for flow rate up to max. 1,150 t/h referred to the density 1.1 t/m3.
- Belt feeder belt will be variable speed frequency controlled from 0.4 to 1.2 x the design flow rate.
- Rugged constructions for heavy duty operation and continuous impact discharge from the grab.
- Discharge opening will have adjustable height gate, by mean of hydraulic cylinder. Adjustable flow.
 Height from hoppers' outlet will be min 200 mm.
- Inclination, orientation, length between drive ant tail pulley will be shorter as possible, to limit
 machinery height from hoppers and discharge points as much as possible.

Production of the Belt Feeder in Bedeschi Workshop.

2.2.1. DIMENSIONAL FEATURES FB1, FB2

FB 1 Belt width	: mm	2,000
FB1 Interaxis of heads	: m	6
FB1 Inclination	: deg	0
FB1 Installed electric power apron	: kW	45 VFD

FB2 Belt width	: mm	2,000	
FB2 Interaxis of heads	: m	6	
FB2 Inclination	: deg	0	
FB2 Installed electric power apron	: kW	45 VFD	

2.2.2. GENERAL DESCRIPTION

- Structure and frame strong execution by steel section
- Conveyor with casing and cables made of low elongation steel with minimum strength 1400 N/mm; thickness of top rubber cover equal to 7 mm and bottom one 5 mm.
- Upper idlers three rolls type 20 deg troughing angle spaced at 500 mm along all belt conveyor except at loading point where impact rollers at 250 mm are installed. Idlers are made with slotted brackets to allow accurate alignment. Rolls are heavy-duty type minimum overall diameter equal to 152 mm with shaft diameter equal to 40 mm
- Lower idlers spaced at 2,000 mm rolls have overall diameter equal to 133 mm and diameter of shaft equal to 30 mm. Lower rollers are complete of rubber rings.
- Head frame including of drive pulley and relative units, is made of steel sheet and shapes.
- Tail head frame, including housing of pulley made of welded shapes with protection cover of pulley and screw take-up device for hydraulic tensioning of rubber belt.
- Pulleys are made of steel rolled tube or bended and welded steel sheet, with special steel shaft mounted with locking tape units fitted on self-aligning pillow-blocks.
- Ball-bearings are evaluated for a minimum life of 50,000 hours.
- Drive pulley is lagged with vulcanized rubber lining total thickness 10 mm.
- Drive unit consisting of: motor directly coupled at gear box.
- Gear box planetary type directly coupled on drive pulley shaft. Where possible be right angle drive.

2.2.3. ACCESSORIES

- Skirt board along all belt conveyor made by Hardox 500 equipped with rubber sealing at each side.
- No.1 belt cleaner with special insert blade, fitted at the discharge pulley.
- Vee-plow cleaning internal side of belt ring, located before tail pulley
- Sheet pulley wipers for drive and tail pulleys
- Skirting boards will be bolted on hopper, feeder inlet to be free from obstructions on loading area, for maintenance purposes.
- No.3 levelling sensors per hopper shall be installed in the hopper for controlling the speed of the feeder belt.
- Design, characteristics and quantity of the accessories will be defined and confirmed in the engineering phase.

2.3. BELT CONVEYORS SYSTEM

2.3.1. BELT CONVEYORS BC1

- Longitudinal belt conveyor BC1 Std Side (fed by belt FB1 FB2 and discharge on cross conveyor BC2)
- Designed for flow rate up to max. 2,300 t/h referred to the density 1.0 t/m3. The density value of 1.0 tonnes per m3 will be considered for the conveyor belt volumetric design, while the density value of 1.1 ton per m3 will be adopted for the belt structural static and dynamic design and for power requirement calculation.
- Immediately after the hopper T1 and T2 they will be installed no. 1 metal detector device and no.1 weighing device.

Belt speed	: m/sec	3.3	
Belt width	: mm	1,600	
Belt conveyor length	: m	52	
Belt inclination	: •	0-16	
Installed power	: kW	105	

2.3.2. BELT CONVEYOR BC2

- (Transversal) Cross belt conveyor BC2, receiving from BC1 and feeding the longitudinal belt conveyor Port side BC3
- Designed for flow rate up to max. 2300 t/h referred to the density 1,0 t/m3. The density value of 1.0 tonnes per m3 will be considered for the conveyor belt volumetric design, while the density value of 1.1 ton per m3 will be adopted for the belt structural static and dynamic design and for power requirement calculation.

Belt speed	: m/sec	3.3
Belt width	: mm	1,600
Belt conveyor length	: m	21
Belt inclination (no more than)	: •	16
Installed power	: kW	105

2.3.3. BELT CONVEYORS BC3

 Longitudinal belt conveyor BC3 Port Side (fed by Cross belt conveyor BC2 and feed Shiploaders SHL1)

12 of 33

- Designed for flow rate up to max. 2,300 t/h referred to the density 1.0 t/m3. The density value of 1.0 tonnes per m3 will be considered for the conveyor belt volumetric design, while the density value of 1.1 ton per m3 will be adopted for the belt structural static and dynamic design and for power requirement calculation.
- This conveyor belt will be positioned at the extreme port side, direction is from Aft to Forward
- Driving head will be at the intermediate position, discharging chute will be on the centre of rotation of the shiploader.

Belt speed	: m/sec	3.3	
Belt width	: mm	1,600	
Belt conveyor length	: m	74	
Belt inclination (no more than)	: •	16	
Installed power	: kW	2 x 105	

2.3.4. GENERAL DESCRIPTION OF BELT CONVEYORS

Structural steel work

 Supporting structure made of welded and bolted shapes, as much as possible by closed profiles (pipes) in separate section for transport by containers complete of support legs till the supporting structures.

Rubber belt

 Belt class EP textile with 4 plies with minimum top rubber cover equal to 6 mm and bottom one 2 mm. The belt joint has to be made at site during erection works by hot vulcanizing (at Customer's charge).

Carrying and return idlers

- upper idlers three rolls type, 35 deg throughing angle spaced at 1000 mm along conveyor, except in loading zone where are spaced at 300 mm, with slotted brackets to allow accurate alignment.
- Rolls are heavy-duty type, overall diameter equal to 133 mm.
- Rolls at loading points are impact type with rubber rings.
- Lower idlers one roll type are spaced at 2400 mm, with slotted brackets.

Head units

 Head frame, including housing of pulley and drive unit are made of welded steel sheet and shapes, with protection cover of pulley and take-up device. Drive pulley will be designed and manufactured as per Consultant basic indication.

Take-up unit

 It is formed by a couple of tensioning square thread screws which let move the supports of idle drum on duly shaped guides (hydraulic tensioning).

13 of 33

Pulleys

- Pulleys are made of steel rolled tube, with special steel shaft mounted with locking tape units fitted on self-aligning pillow blocks. Ball bearings are evaluated for a minimum life of 50,000 hours.
- Drive pulleys is cambered and lagged with vulcanized chevron grooved rubber.
- Drive pulleys installed in cleaning side of the belt conveyors
- Snub pulley working on return belt is cambered and lagged with smooth rubber too.
- Drive unit in intermediate position, not head of belt frames, drive pulley to work on return side of belt. Drive pulley will be designed and manufactured as per Consultant basic indication.

Belt drive units

- It includes one electric motor, suitable for direct starting, coupled to a gearbox hollow shaft type, directly assembled on drive pulley.
- For unidirectional belt conveyors the gearbox is equipped with back stop device.
- For power exceeding 15 kW it is equipped with soft starter.

Accessories

- Skirt boards at loading point.
- Belt scraper
- Vee-plow on return belt, located before tail pulley.
- Sheet pulley wiper for drive and tail pulleys.
- Emergency pull-rope switches on both walkway side of belt conveyor.
- Belt misalignment switches
- Belt speed detector installed at idle pulley.
- Chutes for loading, unloading and connection made of electro-welded steel plates, duly stiffened, lined with wear sheets (where required) output design straight to center of conveyors.
- Conveyor belt will be covered with round-shape openable covers on the top, to prevent dust emission and spillage in windy conditions as far as applicable.
- Kit of material necessary for belt conveyor splicing (at customer's charge)

14 of 33

2.4. TELESCOPIC SHIP LOADER SHL 1 - (SHL 40/1600)

- Shiploader SHL 1 Port side (receiving from BC3 and used for vessels cargo holds loading)
- Designed for flow rate up to max. 2,300 t/h referred to the density 1.0 t/m3.
- The density value fo 1.0 ton per m3 will be considered for the conveyor belt volumetric design, while the density value of 1.1 ton per m3 will be adopted for the belt structural static and dynamic design and for power requirement calculation.

2.4.1. MECHANICAL DATA

LOADING BOOM		
Outreach from the centre of the column to the centre of loading chute	: m	41 approx.
Luffing working range	: deg	+9/-12
Slewing working range from transversal position	:±°	55
Slewing angle for rest position from transversal position	. °	90 abt
Slewing speed at boom head	: m/min	10
Luffing speed at boom head	: m/min	6
Boom luffing power	: kW	15
Boom slewing power	: kW	6 x 2.2 VFD

SHUTTLING	BELT	CONVEYOR

Belt length extended	: m	33
Belt width	: mm	1,600
Belt speed	: m/sec	3.3
Installed power	: kW	2 x 55
Belt length retracted	: m	21 approx.
Shuttle stroke	: m	11.5
Shuttle drive power	: kW	22

TRIMMING SPOUT

Trimming spout slewing power	: kW	2.2	

BEDESCHI FAR EAST LIMITED - Room 2005, 20/F, CRE Centre, 889 Cheung Sha Wan Road, Lai Chi Kok, Kowloon - Hong Kong SAR - Phone +852 5598 2132 - bedfe@bedeschi.com - **www.bedeschi.com**

BEDESCHI S.p.A. Via Praimbole, 38 35010 Limena (PD) Italy

2.4.2. GENERAL DESCRIPTION

- Machine is executed with following main characteristics:
- Slewing boom installed on fixed column. Column installed on pontoon
- Luffing movement is realized by means of hydraulic pistons heavy duty type installed in the front top end of the SHL supporting structure and driven by hydraulic unit with pump as per picture below and acting from lower to higher side.
- Slewing movement is realized by motor gearboxes with relevant pinions to drive internal toothed slewing ring
- Slewing ring (Liebherr or equivalent brand) external diameter will be approx. 3,500 mm. The
 shiploaders will be supplied with slewing bearing and pedestal adaptor connection to be welded on
 base foundation. Pedestal adaptor diameter will be designed according to calculation; full
 penetration welding procedure will be used to connect this adaptor to the base column that will be
 bevelled of the easy welding process in the shipyard (ref also to the construction drawings). After
 installation, as required flatness check to be done and eventually realignment at Yard scope by
 means of portable tools.
- Variable speed drives are installed to act slewing movement motors (electric motors VVFF drive)
- Automatic centralised lubricating system is included (including main slewing ring)
- Hinged boom installed above a platform machined with slewing ring. Belt conveyor is installed above the boom and transfers the material.
- The shiploader will have a shuttle/telescopic boom design, shuttle length motion is approx. 11.5 m activated by pinion and chain.
- Discharging end to be equipped with adjustable banana chute for trimming purpose, lined in the impact area with special lining, acted by means of heavy duty electric motor to orient and slew in the discharge cone
- Discharging trimming spout, L=approx. 3,000 mm, made by steel with special lining (ceramic or similar as applicable and agreed with the Buyer). Hardox 500 liners are considered.
- Conveyor belt to be supplied on the fixed part covered with openable covers on the top, to prevent dust emission and spillage in windy conditions as far as possible.
- SHL service winch 10 ton capacity (2 controlling methods: by panel or by remote controller).
- The coal handling system is considered as an accessory system of the vessel and therefore it is not subject to the naval certification for the Naval Register.
- In case of a specific need, Bedeschi can support the Customer with the proper documentation for having the customer own certification as for example BV Certification if requested by the final user.

2.4.2.1. ACCESS, WALKWAYS, STAIRS AND LADDERS

- Access will be provided to all parts requiring service and maintenance by walkways, platforms, stairs
 or ladders. Platforms and walkways will be provided with handrails on both sides excepts where
 otherwise protected.
- Walkways will be 600 mm wide except where clearance demands preclude.
- Walkways and platforms will be of expanded metal (galvanized gratings), only for local load 100 kg/m2 will be used.
- Handrail will be 1100 mm height with 1" diameter pipe top rails, ½" intermediate pipe and cat walk

2.4.2.2. WEIGHING CELL

- One high accuracy (0.5%) double bridge type will be installed on conveyor BC1. Position to be clarified during detailed design.

2.4.2.3. METAL DETECTOR

- One metal detector will be installed on conveyor BC1. Accuracy 25 mm ball, double coil type, including RS485 output. Position to be clarified during detailed design.

17 of 33

2.4.2.4. METAL SEPARATOR

Two metal separators will be installed near the transfer towers of the belt conveyors. Accuracy 25 mm ball, double coil type, including RS485 output. Position to be clarified during detailed design.

2.5. ELECTRICAL SYSTEM

- Scope of work includes electrical power control board and cables, cabling on board.
- Main board will be installed inside the main vessel control room
- Control console IP55 in the main control of deck office, at wheelhouse:
- Steel structure type ABB
- Electro-mechanicals chosen by first suppliers as per vendor list
- Internal lighting and heating system
- Operating keyboard type Siemens OP17 -
- Variable speed driver for belt feeders and ship loader slewing and shuttling -
- Soft start for belt conveyors BC1-2-3, SHL conveyor and chute actuators -
- I/O spare for the metal separator and coal sampler.

2.5.1. LIGHTING

- Conveyor belt plant shall be equipped with main and auxiliary lighting, such as lighting by flood lights 1000 W on each transfer tower at elevated points.
- To light shiploaders SHL a minimum number 03/each flood lights 1000 W and suitable number of service lights placed on conveyors in suitable position
- Auxiliary lighting by fluorescent lights will be placed on the walkways IWO drive pulley tensioning pulley and are every 5 meters on both sides.

REMOTE CONTROL RADIO 2.5.2.

Remote control radio system UHF required to operate the shiploader only from the vessel

2.5.3. CABLES AND WAYS

- Marine type/class approved cables
- Pressglang in steel
- Junction boxes and local push-button boxes will be IP 55
- Trays type stainless steel AISI 304
- Emergency stop-push-button close to each drive unit
- Power and signals Cables between the equipment JB and the machine motors or instrumentations are included
- Power and signal cables between the control panels and the equipment JB are not included in the scope of the supply as their length belongs to the ship designer and the cable trays (not defined yet)
- Power cables from power generation and control panels are not included in the scope of the supply as their length belongs to the ship designer and the cable trays (not defined yet).

REMOTE VIDEO CLASS SYSTEM 2.5.4.

Two cameras and control console and two monitors on the bridge control, zoom-tilt-azimuth control

CAPITOLO 2: Calcoli preliminari

2.1 Calcolo della potenza di azionamento e delle tensioni del nastro dello SHL

Microsoft Excel è un software di foglio di calcolo sviluppato da Microsoft, parte della suite di produttività Microsoft Office. È ampiamente utilizzato per l'analisi dei dati, la gestione delle informazioni, la modellazione finanziaria e molte altre applicazioni aziendali e personali. Ecco una descrizione tecnica dettagliata delle principali caratteristiche e funzionalità di Excel:

Caratteristiche Tecniche di Microsoft Excel

1. Interfaccia Utente

- **Ribbon**: Una barra multifunzione che organizza i comandi in schede tematiche come "Home", "Insert", "Page Layout", "Formulas", "Data", "Review" e "View".
- Sheet Tabs: Ogni file di Excel (chiamato workbook) può contenere più fogli di lavoro (sheets), accessibili tramite schede nella parte inferiore della finestra.
- Quick Access Toolbar: Una barra degli strumenti personalizzabile per accesso rapido ai comandi più utilizzati.
- **Contextual Menus**: Menu contestuali che forniscono opzioni pertinenti a seconda dell'elemento selezionato (celle, grafici, tabelle, ecc.).

2. Funzionalità di Foglio di Calcolo

- Celle, Righe e Colonne: Struttura di base dove ogni cella può contenere dati, formule, o funzioni.
- Formule e Funzioni:
 - Supporto per formule semplici e complesse.
 - Ampia libreria di funzioni predefinite suddivise in categorie come matematiche, statistiche, logiche, di testo, di ricerca e riferimento, finanziarie, ecc.
 - Funzioni come SUM, AVERAGE, IF, VLOOKUP, HLOOKUP, INDEX, MATCH, e molte altre.
- **Riferimenti di Cella**: Relativi, assoluti e misti, per facilitare la copia e la propagazione delle formule.

• Formattazione:

- Formattazione numerica (valuta, percentuale, data, ecc.).
- Formattazione condizionale per evidenziare automaticamente le celle in base ai criteri specificati.
- Stili di cella per applicare rapidamente formattazioni predefinite.

3. Analisi dei Dati

- Tabelle Pivot: Strumento potente per riepilogare, analizzare e esplorare grandi volumi di dati.
- Grafici:
 - Varietà di tipi di grafici come grafici a barre, linee, torta, scatter, area, e molti altri.
 - Grafici dinamici e interattivi, incluso supporto per grafici pivot.
- **Power Query**: Strumento per estrarre, trasformare e caricare dati (ETL) da varie fonti.
- Power Pivot: Strumento avanzato per la modellazione dei dati e l'analisi multidimensionale.
- Strumenti di Analisi: Funzionalità come la risoluzione di problemi (Solver), l'analisi di sensibilità (Scenario Manager), e le previsioni (Forecast Sheet).

4. Gestione dei Dati

- Importazione/Esportazione Dati:
 - Supporto per importare ed esportare dati da e verso vari formati, inclusi CSV, TXT, XML, JSON, e database SQL.
 - Connessione diretta a fonti di dati esterne come SQL Server, Access, e servizi web tramite ODBC, OLE DB, e API REST.
- Strumenti di Pulizia Dati:
 - Funzioni per rimuovere duplicati, dividere testo in colonne, trovare e sostituire dati, e validazione dei dati.

5. Automazione e Programmazione

• Macro:

- Registrazione di macro per automatizzare attività ripetitive.
- Modifica e scrittura di macro in VBA (Visual Basic for Applications).
- Add-ins:
 - Supporto per componenti aggiuntivi che estendono le funzionalità di Excel.
 - Accesso al Microsoft Office Store per scaricare e installare componenti aggiuntivi sviluppati da terze parti.

6. Collaborazione e Condivisione

- **Co-Authoring**: Funzionalità di modifica simultanea per collaborare in tempo reale su documenti condivisi.
- Protezione:
 - Protezione di fogli e cartelle di lavoro con password.
 - Controlli di accesso per limitare le modifiche e la visualizzazione.
- **Commenti e Note**: Aggiunta di commenti e note alle celle per la collaborazione e il feedback.

7. Integrazione con Altri Software e Servizi

- Microsoft 365 Integration: Integrazione con altri strumenti Microsoft 365 come Word, PowerPoint, Outlook, OneDrive, e Teams.
- API e Connettori:
 - Utilizzo delle API di Office Script per automazioni avanzate.
 - Connettori per integrazione con servizi cloud e altre applicazioni aziendali.

Esempio Pratico di Utilizzo

Supponiamo di voler analizzare i dati delle vendite mensili di una società:

- 1. Importazione dei Dati:
 - Importare un file CSV con i dati delle vendite utilizzando il menu "Data" e selezionando "From Text/CSV".
- 2. Pulizia dei Dati:
 - Utilizzare "Remove Duplicates" e "Text to Columns" per pulire e strutturare i dati correttamente.
- 3. Analisi dei Dati:
 - Creare una Tabella Pivot per riepilogare le vendite per mese e prodotto.
 - Utilizzare funzioni come SUMIFS e AVERAGEIFS per calcolare le vendite totali e medie.

4. Visualizzazione dei Dati:

- Creare un grafico a barre per visualizzare le vendite mensili.
- Applicare la formattazione condizionale per evidenziare i mesi con vendite superiori a un certo valore.

5. Automazione:

- Registrare una macro per automatizzare l'importazione e l'analisi dei dati.
- Modificare la macro in VBA per aggiungere funzionalità personalizzate.

Conclusione

Microsoft Excel è uno strumento potente e versatile per la gestione e l'analisi dei dati. Le sue ampie funzionalità tecniche lo rendono essenziale per una vasta gamma di applicazioni, dall'analisi finanziaria e la modellazione dei dati alla gestione di progetti e la reportistica. Grazie alla sua capacità di integrazione con altri software e servizi, Excel continua a essere uno dei software di foglio di calcolo più utilizzati al mondo.

DATI DI PROGETTO

Materiale: Carbone Peso specifico secco: $y = 1 \text{ t/m}^3$ Peso specifico umido: $y = 1 \text{ t/m}^3$ Angolo di riposo: 32° Portata nominale: Q' = 2300 tph Portata max: Q = 2300 tph Larghezza nastro: B = 1600 mm Velocità nastro: V = 3,3 m/s Lunghezza orizzontale nastro: L_o = 11 m Lunghezza inclinata nastro: L_i = 29,3 m Lunghezza totale nastro: $L = L_o + L_i = 40 \text{ m}$

Figura 2.1.1: Shiploader in posizione di boom rest con indicate la lunghezza orizzontale e quella inclinata

Angolo di inclinazione del nastro: Beta = 9° Altezza di elevazione: H = 4,6 m Inclinazione rulli stazione: 35° Angolo di sovraccarico: 25° (da tab 1.1)

Rendimento meccanico

Riduttore: 0,94 Tamburo di traino: 0,97 Giunto idraulico: 0,94

Totale: 0,86

CARATTERISTICHE DEI COMPONENTI

Nastro: tipo: EP500 No. di tele: 3 Carico di rottura a trazione: 500 kg/cm Peso di ogni tela: 1,5 kg/m² Carico di lavoro: 18 kg/cm Fattore di sicurezza: 27,2 > 10 Copertura superiore: 10 mm Copertura inferiore: 2 mm

Motore: Quantità: n = 2 Potenza nominale: 45 kW Rpm: 1500

Riduttore: Rapporto di riduzione: 19

Stazione rulli:

		sup.norm	ali	sup.impatto	inferiori	
No.di rulli per stazione		3		3	1	
Passo	mm	1.000	Ic	300	2.400	Ir
diametro esterno rullo	mm	133		133	133	
diametro asse	mm	25		25	25	
Tabella 2.1.1: Dati riassuntivi si	ingola stazio	one di rulli				
Tamburi:						
		traino		contrasto	rinvio	
diametro esterno	mm	800		500	630	
diametro asse sul supporto	mm					
spessore rivestimento	mm	10				
Tabella 2.1.2: Dati riassuntivi ta	amburi					
Accessori:						

Lunghezza tramoggia di scarico: $L_t = 6 m$

PORTATA DEL NASTRO TRASPORTATORE

Angolo di sovraccarico

Angolo di riposo	20°- 29°	30°- 34°	35°- 39°	40°- 45°
Angolo di sovraccarico	10°	20°	25°	30°

Tabella 2.1.3: Angolo di riposo e angolo di sovraccarico

SEZIONE TRASVERSALE DEL MATERIALE SUL NASTRO:

Massima sezione in m^2 del materiale trasportato in funzione dell'angolo di sovraccarico e dell'angolo della stazione

Lunghezza nastro	Angolo di	Angolo della stazione		
[mm]	sovraccarico	30°	35°	45°
500	20	0,0222	0,0236	
	25	0,0244	0,0257	
	30	0,0266	0,0278	
650	20	0,0406	0,0433	0,0469
	25	0,0445	0,0467	0,0502
	30	0,0484	0,0507	0,0534
800	20	0,0638	0,0683	0,0736
	25	0,0701	0,0736	0,0788
	30	0,0763	0,0799	0,0840
1000	20	0,1040	0,1103	0,1200
	25	0,1140	0,1196	0,1280
	30	0,1240	0,1290	0,1360
1200	20	0,1530	0,1620	0,1760
	25	0,1675	0,1727	0,1880
	30	0,1820	0,1900	0,2000
1400	20	0,2130	0,2250	0,2450
	25	0,2330	0,2500	0,2610
	30	0,2530	0,2620	0,2770
1600	20	0,2820	0,267	0,3240
	25	0,3080	0,32	0,3450
	30	0,3340	0,3460	0,3660
1800	20	0,3610	0,3790	0,4140

	25	0,3940	0,4137	0,4410
	30	0,4270	0,4420	0,4680
2000	20	0,4480	0,4710	0,5140
	25	0,4890	0,5134	0,5475
	30	0,5300	0,5500	0,5810

Tabella 2.1.4: Sezione di materiale trasportato, noti angolo di sovraccarico e angolo della stazione

Sezione trasversale per: Larghezza nastro = 1600 mm Angolo di sovraccarico = 25° Angolo della stazione = 35° S = 0.32 m^2

COEFFICIENTE DI RIEMPIMENTO

Beta		K ₁ : Fattore di inclinazione del nastro
0°	=	1,00
10°	=	0,95
15°	=	0,90
20°	=	0,80

Tabella 2.1.5: Fattore di inclinazione del nastro

K₂: fattore di correzione dovuto all'irregolarità di alimentazione

Alimentazione regolare: 0,95

Alimentazione irregolare: 0,80 Alimentazione da reclaimer: 0,60

 $\begin{array}{l} K_1 = 0,95 \\ K_2 = 0,95 \end{array}$

Totale: k = 0,90

Portata effettiva: $Q_{eff} = S \cdot V \cdot y \cdot k \cdot 3600 = 3431 \text{ tph} > 2300 \text{ tph} \text{ (portata max richiesta)}$

POTENZA DEL MOTORE

Lunghezza orizzontale del nastro: $L_o = 11 \text{ m}$ Lunghezza inclinata del nastro: $L_i = 29 \text{ m}$ Altezza di elevazione: $H = L_i \cdot \sin(\text{Beta}) = 4,58 \text{ m}$ Arco di contatto tamburo motore: Alpha = $210^\circ = 3,66 \text{ rad}$ Coefficiente di attrito tamburo motore: f = 0,30Coefficiente di attrito rulli: $f^* = 0,025$

Coefficiente "C": fattore di incremento della lunghezza del nastro per tenere conto delle resistenza secondarie non valutabili

Lunghezza del nastro (m)	Coefficiente C
10	5
15	4,4
20	3,6
25	3,2
30	2,9
40	2,5
50	2,3
60	2.1

Tabella 2.1.6: Coefficiente C, fattore di incremento della lunghezza del nastro che tiene conto delle resistenze secondarie

Lunghezza fittizia: $L_o = C \cdot L = 117 \text{ m}$

PESO DEL NASTRO E DELLE PARTI ROTANTI DEI RULLI

Larghezza del nastro	Nastro P _b (kg/m)	Rulli superiori P _u (kg/m)	Rulli inferiori P ₁ (kg/m)
(mm)			
650	11,9	11,7	3,4
800	14,6	15,0	4,1
1000	52,4	16,2	4,9
1200	22,0	21,8	6,7
1400	25,6	24,3	7,6
1600	29,3	26,8	8,4
1800	32,9	30,0	9,5
2000	36,6	43,5	10,5

Tabella 2.1.7: Peso del nastro e delle parti rotanti dei rulli

$$\begin{split} P_{b} &= 29,3 \ kg/m \\ P_{u} &= 26,8 \ kg/m \\ P_{l} &= 8,4 \ kg/m \end{split}$$

PESO DEL MATERIALE TRASPORTATO

$$\begin{split} P_m &= Q \div (3,6 \cdot V) = 194 \text{ kg/m} \\ P_m &= \frac{Q}{3.6 \cdot V} = 194 \text{ kg/m} \end{split}$$

RESISTENZE AL MOVIMENTO DEL NASTRO

- Tratto di lavoro $P_a = f^* \cdot Lo \cdot (P_b+P_u) = 164 \text{ kg}$

- Tratto di ritorno $P_r = f^* \cdot Lo \cdot (P_b + P_l) = 110 \text{ kg}$

- Spostamento del materiale $P_m = f^* \cdot L_o \cdot P_m = 566 \text{ kg}$
- Sollevamento del materiale $P_h = P_m \cdot H = 887 \text{ kg}$

- Raschietto pulitore $P_p = r_p \cdot l_p = 112 \text{ kg}$

 r_p = resistenza pulitore = 50 kg/m l_p = lunghezza della lama pulente = 2,24 m

- Spondine della tramoggia di carico $P_t = r_t \cdot 2 \cdot l_t = 120 \text{ kg}$

 $r_t = resistenza spondine = 10 \text{ kg/m}$

 $l_t = lunghezza della tramoggia di carico = 6,00 m$

RESISTENZA TOTALE A VUOTO $P_v = P_a + P_r + P_p + P_t = 506 \text{ kg}$

RESISTENZA TOTALE A CARICO $P_c = P_a + P_r + P_m + P_h + P_p + P_t = 1.959 \text{ kg}$

POTENZA RICHIESTA

A carico: $N_r = \frac{Pc \cdot V}{n \cdot 75 \cdot 1.36 \cdot e} = 37 \text{ kW}$ A vuoto: $N_v = \frac{Pv \cdot V}{n \cdot 75 \cdot 1.36 \cdot e} = 10 \text{ kW}$

MOTORE SCELTO

Potenza nominale: $P_m = 45 \text{ kW} - N^\circ 2 \text{ set}$ Velocità nominale: $N_m = 1500 \text{ rpm}$

MARGINE: 21,7%

TENSIONI NEL NASTRO

$$K_{1} = 1 + \frac{1}{e^{f \cdot alpha} - 1} = 1,50$$
$$K_{2} = \frac{1}{e^{f \cdot alpha} - 1} = 0,50$$

Forza di tensione di lavoro del nastro

$$F_1 = T_1 = K_1 \cdot P_c = 2.936 \text{ Kg}$$

Forza di tensione sul tratto lento del nastro

 $F_2 = T_2 = K_2 \cdot P_c = 978 \text{ Kg}$

Forza di tensione dovuta al peso proprio del nastro per l'inclinazione

 $F_3 = P_b x L_i x$ (sen Beta - f* x cos Beta) = 113 Kg

Forza di tensione minima necessaria per mantenere la freccia di inflessione del nastro tra 2 stazioni portanti, inferiore al 2% del passo

$$F_4 = \frac{50 \cdot l_c}{8 \cdot 1000} \cdot (P_m + P_b) = 1393 \text{ kg}$$

MASSIMA FORZA DI TENSIONE NEL NASTRO

Nel tratto portante $F_c = F_1 + F_3 = 3.049 \text{ Kg}$

Nel tratto di ritorno $F_r = II$ valore maggiore tra F_2 e $F_4 = 1.393$ Kg

 $F_{max} = 3.049 \text{ Kg}$

FATTORE DI SICUREZZA

$$S = \frac{T_r \cdot B}{F_{max}} = 26 > 10$$

2.2 Shuttle traversing: motor power calculation

INPUT DATA

Self weight of shuttle: $p_1 = 375,4$ kN Weight of shuttle material: $p_3 = 55,65$ KN Self weight of chute: $p_4 = 49,98$ KN Total weight: P = 480,97 KN Rail slope => 9° => sen Beta = 0,1564 Wheel resistance: r = 10 N/KN Travelling speed: $v_1 = 6$ m/1' Acc. Time: $t_a = 1,50$ s => a = 0,067 m/s² Wind area // to rail: A = 40,26 m² Nom. Operating wind speed: $w_n = 10,00$ m/s => wind pressure $q_n = 61,313$ N/m² Max. Operating wind speed: $w_m = 20,00$ m/s => wind pressure $q_m = 245,250$ N/m² Drive efficiency: e = 0,8N. Of motors: n = 1Wheels diameter: D = 320 mm Rpm: $n_1 = 1780$ rpm

MOTOR POWER CALCULATION

INERTIA:

		q.ty	
motor	J1 = 0,191	1	0,191 Kg*m^2
brake drum	J2 = 0,310	1	0,310 Kg*m^2
reducer	J3 = 0,013	1	0,013 Kg*m^2
wheel	J4 = 0,003	6	0,018 Kg*m^2
idle axis	J5 = 2,067	4	8,268 Kg*m^2
towing axis	J6 = 0,343	2	0,686 Kg*m^2

tot $J = 9,486 \text{ Kg} \text{*m}^2$

GANTRY POWER :

Due to resistance: $N_{1} = \frac{P \cdot v_{1} \cdot r}{1000 \cdot 60 \cdot e} = 0,60 \text{ kW}$ Due to slope: $N_{2} = \frac{P \cdot v_{1} \cdot \text{sen(Beta)}}{1000 \cdot 60 \cdot e} = 9,40 \text{ kW}$ Due to acceleration of rotational part: $I \cdot (2 \cdot \pi \cdot n_{1} \div 60)^{2}$

$$N_3 = \frac{J \cdot (2 \cdot \pi \cdot n_1 \div 60)^2}{1000 \cdot t \cdot e} = 274,67 \text{ kW}$$

Due to acceleration of shuttle:

$$N_4 = \frac{m \cdot v_1^2}{1000 \cdot t_1 \cdot e \cdot 60^2} = 0,41 \text{ kW}$$

Due to nominal wind:

$$N_5 = \frac{A \cdot q_n \cdot v_1}{1000 \cdot 60 \cdot e} = 0.31 \text{ kW}$$

Due to max wind: $N_6 = \frac{A \cdot q_m \cdot v_1}{1000 \cdot 60 \cdot e} = 1,23 \text{ kW}$
Acceleration + nom.wind $NN_1 = N_1+N_2+N_3+N_4+N_5 = 285,39 \text{ kW}$

 $\label{eq:rate} \begin{array}{l} Rate + max.wind \\ NN_2 = N_1 + N_2 + N_6 = 11,24 \ kW \end{array}$

 $\label{eq:rate} \begin{array}{l} Rate + nom.wind \\ NN_3 = N_1 + N_2 + N_5 = 10,31 \ kW \end{array}$

REQUIRED MOTOR POWER

 $K_1 = C_{max} \div C_{nom} = 1,5$

Starting $P_1 = \frac{NN_1}{n \cdot K_1} = 190,26 \text{ kW/each motor}$

Steady state $P_2 = \frac{NN_3}{n} = 10{,}31 \text{ kW/each motor}$

Assumed electric motor: Rated power $P_m = 22,0 \text{ kW} - N^\circ 1 \text{ Set}$ Rated speed $N_m = 1780 \text{ rpm}$

SAFETY MARGIN 53 %

2.3 Ralla: peso proprio, materiale, incrostazioni e vento a 72 km/h

Figura 2.3.1: Schema costruttivo della ralla

Area di spinta del vento rispetto all'asse di rotazione

Figura 2.3.2: Schema per il calcolo della spinta del vento rispetto all'asse di rotazione, aree con segno

$$R = bar(x) = \frac{\sum_{i=1}^{N} A_i \cdot b(x)}{A_{tot}}$$
(2.3.1)

Figura 2.3.3: Schema per il calcolo della spinta del vento rispetto alla base ralla, aree con segno

Figura 2.3.4: Schema con il baricentro della spinta del vento

$$H = bar(y) = \frac{\sum_{i=1}^{M} A_i \cdot b(y)}{A_{tot}}$$
(2.3.2)

POTENZA MOTORI ROTAZIONE BRACCIO

Potenza all'avviamento delle masse

Peso braccio: M = 1745 kNStima: 283000 kg (comprensivo di piattaforma rotante e meccanica rotazione e sollevamento) materiale braccio: Q = 78 kNeccentricità materiale stkr rispetto asse ralla: B = 19,51 m incrostazioni: I = 8 kN (FEMSection II - §2-2.1.3) sezione maestra parte rotante: S = 146,46 m2punto appl.ne centro spinta vento rispetto asse rotazione: R = 22,11 mpunto appl.ne centro spinta vento rispetto piano ralla: H = 3,66 m vento limite exe.: $W_{exe} = 72 \text{ km/h} = 20,0 \text{ m/s}$ pressione cinetica (FEM Section II - $\S2-2.2.1.1$): q = 0,613·w² = 245,2 N/m² coefficiente esposizione: $c_f = 1$ Spinta del vento: $F_w = c_f \cdot q \cdot S = 35912 \text{ N}$ velocità rotazione punta braccio: v = 10 m/min distanza punta braccio - asse ralla: B = 39.02 mvelocità angolare braccio: $\omega_b = v \div (60 \cdot B) = 0,0043 \text{ rad/s}$ numero denti ralla: $z_r = 168$ numero denti pignone: $z_p = 18$ rapporto trasmissione: i = 9 velocità angolare asse lento: $\omega_p = \omega_p \cdot z_r \div z_p = 0,0399 \text{ rad/s}$ Potenza motore: P = 2,2 kWnumero motori: z = 6numero giri motore: n_{mot} = 1780 rpm vel angolare motore: $\omega_{mot} = 2 \pi n / 60 = 186,307 \text{ rad/s}$ numero poli: $n_p = 4$ Tensione: V = 440 VFrequenza: f = 60 Hzcoppia nominale: $C_{nom} = 15,00 \text{ Nm}$ fattore di spunto: $f_{sp} = 2,2$ coppia spunto: $C_{sp} = 33,00 \text{ Nm}$ coppia max: C_{max} = 39,00 Nm Momento inerzia motore: $J_{mot} = 6,90 \cdot 10^3 \text{ kgm}^2$ Momento inerzia riduttore: $J_{rid} = 0,0035 \text{ kgm}^2$ tempo di avviamento: $t_a = 1,5$ sec $J = 44634368 \text{ kgm}^2$ Momento Inerzia braccio + materiale ricavato da modello ST7 Momento inerzia Ridotto $J^* = J \times t_2 + J_{mot} + J_{rid} = 512384,344 \text{ kgm}^2$ $t_2 = (\omega / \omega_{mot})^2 = 0,0000000053 \text{ kgm}^2$ all'asse motore $t_2 = (\omega / \omega_p)^2 = 0.01148 \text{ kgm}^2$ all'asse pignone Momento resistente ralle (rif. Rothe Erde) cuscinetti a rulli $M_r = \frac{\mu}{2}$ (4,1 M_k + $F_a D_L$ +2,05 $F_r D_L$) = 18 kNm (ralla SHL) (a regime) 8 kNm (ralla SHL) (a vuoto) 19 kNm (ralla SHL) (limite di esercizio)

Carico assiale a regime: $F_a = M+Q+I = 1831 \text{ kN}$ Carico assiale a vuoto: $F_a = M+I = 1753 \text{ kN}$ Momento ribaltante: $M_k = (Q+I) \cdot B = 1669 \text{ kNm}$ Momento ribaltante a vuoto: $M_k = I \cdot B = 152 \text{ kNm}$ Carico radiale a regime: $F_r = 0 \text{ kN}$ Carico radiale da vento limite: $F_w = 35,9 \text{ kN}$ Momento ribaltante lim.exe.: $M_{k, \text{ lim.}} = F_w \cdot H = 131,4 \text{ kNm}$ Diametro rotolamento: $D_L = 2,8 \text{ m}$ coeff. Attrito volvente: $\mu = 0,003$

Da norma FEM II:

Per le ruote dentate, la presenza dello stricsciamento influenza il rendimento di trasmissione, che risulta dipendere dal numeto di denti oltre che dal coefficiente di attrito "f":

$$\eta = \frac{1}{1 + f \cdot \pi \cdot \left(\frac{1}{Z_1} \pm \frac{1}{Z_2}\right)}$$
(2.3.3)

dove il segno meno vale per ingranaggi interni. Normalmente, i valori di rendimento per le ruote dentate si attestano tra il 95% e il 98%.

Rendimento cinematismo Rendimento motore: 0,96 Rendimento riduttore: 0,8

Rendimento di ingranamento: 0,95 Rendimento totale: $\eta = 0,73$

Coppia a regime all'asse lento

$$\begin{split} M_{reg} &= M_{r,1} \div (\eta_i) = 2,64 \text{ kNm} \\ Da \text{ cui: } 0,439 \text{ kNm/pignone} \\ P_{reg} &= M_{reg} \cdot \omega_p = 0,11 \text{ kW} \\ Da \text{ cui: } 0,018 \text{ kW/pignone} \\ 99 \% \end{split}$$

Coppia a vuoto all'asse lento

$$\begin{split} M_{reg} &= M_{r,2} \div (\eta_i) = 1,22 \text{ kNm} \\ Da \text{ cui: } 0,203 \text{ kNm/pignone} \\ P_{reg} &= M_{reg} \cdot \omega_p = 0,049 \text{ kW} \\ Da \text{ cui: } 0,008 \text{ kW/pignone} \\ 100 \% \end{split}$$

Coppia limite di esercizio all'asse lento

$$\begin{split} M_{lim} &= (M_{r,3} + F_w \cdot R) \div (\eta_i) = 119,40 \text{ kNm} \\ Da \text{ cui: } 19,90 \text{ kNm/pignone} \\ P_{lim} &= M_{lim} \cdot \omega_p = 4,76 \text{ kW} \\ Da \text{ cui: } 0,793 \text{ kW/pignone} \\ 64 \% \end{split}$$

Coppia in avviamento a regime all'asse lento

$$\begin{split} M_{avv} &= J^* \cdot \omega_p \div (\eta \cdot t_a) + M_{reg} = 21,30 \text{ kNm} \\ Da \text{ cui: } 3,550 \text{ kNm/pignone} \\ P_{avv} &= M_{avv} \cdot \omega_p = 0,85 \text{ kW} \\ Da \text{ cui: } 0,142 \text{ kW/pignone} \\ 96 \% \end{split}$$

Coppia in avviamento limite all'asse lento

$$\begin{split} M_{avv} &= J^* \; \omega_p \div (\eta \cdot t_a) + M_{lim} = 138,07 \; kNm \\ Da \; cui: \; 23,011 \; kNm/pignone \\ P_{avv} &= M_{avv} \cdot \omega_p = 5,50 \; kW \\ Da \; cui: \; 0,917 \; kW/pignone \\ 72 \; \% \end{split}$$

Coppia frenante all'asse lento

$$\begin{split} M_{brake} &= (F_w \; R \div (\eta_i) - M_{r,2} \div i) = 231,43 \; kNm \\ Da \; cui: \; 38,571 \; kNm/pignone \\ Fattore \; di \; sicurezza: \; k = 2 \end{split}$$

Ricalcolo dei tempi di avviamento a 50 Hz

Coppia del carico $M_i = P \cdot 9550 \div n_{mot} = 14,15 \text{ Nm}$ Coppia di avviamento $M_{avv} = z \cdot C_{sp} - M_i = 183,85 \text{ Nm}$ Tempo di avviamento $t_a = (n_{mot} \cdot J^*) \div (9,550 \cdot M_{avv}) = 519444,14 \text{ sec}$

2.4 Ralla: peso proprio, incrostazioni e vento a 150 km/h

Figura 2.4.1: Schema costruttivo della ralla

POTENZA MOTORI ROTAZIONE BRACCIO

Potenza all'avviamento delle masse

Peso braccio: M = 1745 kNStima: 283000 kg (comprensivo di piattaforma rotante e meccanica rotazione e sollevaento) Q = 0 kNmateriale braccio: eccentricità materiale stkr rispetto asse ralla: B = 19,51 mincrostazioni: I = 8 kN (FEMSection II - §2-2.1.3) sezione maestra parte rotante: S = 146,46 m2punto appl.ne centro spinta vento rispetto asse rotazione: R = 22,11 mpunto appl.ne centro spinta vento rispetto piano ralla: H = 3,66 mvento limite exe.: $W_{exe} = 150 \text{ km/h} = 41,7 \text{ m/s}$ pressione cinetica (FEM Section II - $\S2-2.2.1.1$): q = 0,613·w² = 1064,2 N/m² coefficiente esposizione: $c_f = 1$ Spinta del vento: $F_w = c_f \cdot q \cdot S = 155868 \text{ N}$ velocità rotazione punta braccio: v = 10 m/min distanza punta braccio - asse ralla: B = 39,02 m velocità angolare braccio: $\omega_{\rm b} = v \div (60 \cdot B) = 0,0043 \text{ rad/s}$ numero denti ralla: $z_r = 168$ numero denti pignone: $z_p = 18$ rapporto trasmissione: i = 9velocità angolare asse lento: $\omega_p = \omega_p \cdot z_r \div z_p = 0,0399 \text{ rad/s}$ Potenza motore: P = 2,2 kWnumero motori: z = 6numero giri motore: $n_{mot} = 1780$ rpm

vel angolare motore: $\omega_{mot} = 2 \pi n / 60 = 186,307 \text{ rad/s}$ numero poli: $n_p = 4$ Tensione: V = 440 VFrequenza: f = 60 Hzcoppia nominale: $C_{nom} = -15,00 \text{ Nm}$ fattore di spunto: $f_{sp} = 2,2$ coppia spunto: $C_{sp} = 33,00 \text{ Nm}$ coppia max: $C_{max} = 39,00 \text{ Nm}$ Momento inerzia motore: $J_{mot} = 6,90 \cdot 10^3 \text{ kgm}^2$ Momento inerzia riduttore: $J_{rid} = 0,0035 \text{ kgm}^2$ tempo di avviamento: $t_a = 1,5 \text{ sec}$

Momento Inerzia braccio + materiale J = 44634368 kgm²

ricavato da modello ST7

...

. . .

 $\begin{array}{ll} \mbox{Momento inerzia Ridotto} & J^{*} = J \times t_{2} + J_{mot} + J_{rid} = 512384,344 \ \mbox{kgm}^{2} \\ t_{2} = (\omega \ / \ \omega_{mot})^{2} = 0,00000000053 \ \mbox{kgm}^{2} & all'asse \ \mbox{motore} \\ t_{2} = (\omega \ / \ \omega_{p})^{2} = 0,01148 \ \mbox{kgm}^{2} & all'asse \ \mbox{pignone} \end{array}$

Momento resistente ralle (rif. Rothe Erde)

cuscinetti a rulli				
$M_r = \frac{\mu}{2} (4.1 M_k + F_a D_L + 2.05 F_r D_L) =$	8	kNm	(ralla SHL)	(a regime)
2	8	kNm	(ralla SHL)	(a vuoto)
	13	kNm	(ralla SHL)	(limite di esercizio)

Carico assiale a regime: $F_a = M+Q+I = 1753 \text{ kN}$ Carico assiale a vuoto: $F_a = M+I = 1753 \text{ kN}$ Momento ribaltante: $M_k = (Q+I) \cdot B = 156 \text{ kNm}$ Momento ribaltante a vuoto: $M_k = I \cdot B = 156 \text{ kNm}$ Carico radiale a regime: $F_r = 0 \text{ kN}$ Carico radiale da vento limite: $F_w = 155,9 \text{ kN}$ Momento ribaltante lim.exe.: $M_k, \lim = F_w \cdot H = 570,5 \text{ kNm}$ Diametro rotolamento: $D_L = 2,8 \text{ m}$ coeff. Attrito volvente: $\mu = 0,003$

Da norma FEM II:

Per le ruote dentate, la presenza dello stricsciamento influenza il rendimento di trasmissione, che risulta dipendere dal numeto di denti oltre che dal coefficiente di attrito "f":

$$\eta = \frac{1}{1 + \mathbf{f} \cdot \boldsymbol{\pi} \cdot \left(\frac{1}{Z_1} \pm \frac{1}{Z_2}\right)}$$
(2.3.4)

dove il segno meno vale per ingranaggi interni. Normalmente, i valori di rendimento per le ruote dentate si attestano tra il 95% e il 98%.

Rendimento cinematismo

Rendimento motore: 0,96 Rendimento riduttore: 0,8 Rendimento di ingranamento: 0,95 Rendimento totale: $\eta = 0,73$

Coppia a regime all'asse lento $M_{reg} = M_{r,1} \div (\eta_i) = 1,22 \text{ kNm}$ Da cui: 0,204 kNm/pignone $P_{reg} = M_{reg} \cdot \omega_p = 0,05 \text{ kW}$ Da cui: 0,008 kW/pignone 100 %

Coppia a vuoto all'asse lento

$$\begin{split} M_{reg} &= M_{r,2} \div (\eta_i) = 1,22 \text{ kNm} \\ \text{Da cui: } 0,204 \text{ kNm/pignone} \\ P_{reg} &= M_{reg} \cdot \omega_p = 0,049 \text{ kW} \\ \text{Da cui: } 0,008 \text{ kW/pignone} \\ 100 \% \end{split}$$

Coppia in avviamento a regime all'asse lento

$$\begin{split} M_{avv} &= J^* \cdot \omega_p \div (\eta \cdot t_a) + M_{reg} = 19,89 \text{ kNm} \\ Da \text{ cui: } 3,314 \text{ kNm/pignone} \\ P_{avv} &= M_{avv} \cdot \omega_p = 0,79 \text{ kW} \\ Da \text{ cui: } 0,132 \text{ kW/pignone} \\ 96 \% \end{split}$$

Coppia frenante all'asse lento $M_{brake} = (F_w R \div (\eta_i) - M_{r,2} \div i) = 1010,39 \text{ kNm}$ Da cui: 168,698 kNm/pignone Fattore di sicurezza: $\mathbf{k} = \mathbf{2}$

Ricalcolo dei tempi di avviamento a 50 Hz

Coppia del carico $M_i = P \cdot 9550 \div n_{mot} = 6,56 \text{ Nm}$ Coppia di avviamento $M_{avv} = z \cdot C_{sp} - M_i = 191,44 \text{ Nm}$ Tempo di avviamento $t_a = (n_{mot} \cdot J^*) \div (9,550 \cdot M_{avv}) = 498853.85 \text{ sec}$

2.5 Dimensionamento pistoni di sollevamento braccio

Figura 2.5.1: Schema shiploader con vettore indicante il peso del materiale compreso delle incrostazioni e relativo braccio (bx) rispetto alla cerniera di fissaggio del boom

DATI DI CALCOLO

Numero cilindri: z = 2

CARATTERISTICHE CILINDRO:

- Doppio effetto
- Alesaggio: D = 300 mm
- Stelo: d =180 mm
- Corsa: C = 2500 mm
- Corsa richiesta: $C_r = 2186 \text{ mm} \rightarrow \text{CORSA OK}$
- Sezione fondello in spinta: S = $\pi D^2 \div 4 = 70650 \text{ mm}^2$
- Sezione fondello in tiro: $S = \pi (D^2 d^2) \div 4 = 45216 \text{ mm}^2$

lunghezza braccio: l = 31,5 mdistanza tamburo scarico - cerniera braccio: D = 29,2 m $\cos(+\beta) = 0.987688341$ inclinazione massima + braccio: b = 9.0 deginclinazione massima - braccio: g = -12,0 deg $\cos(-\beta) = 0.978147601$ posizione baricentro materiale rispetto asse a 0°: $b_{X,0^\circ} = 15,8 \text{ m}$ $sen(+\gamma) = 0.156434465$ $b_{X, 9^{\circ}} = 15,6 \text{ m}$ posizione baricentro materiale rispetto asse a 9°: $sen(-\gamma) = -0,207911691$ posizione baricentro materiale rispetto asse a -12°: $b_{X,-12^\circ} = 15,2 \text{ m}$ braccio asse cilindro cerniera braccio 0°: $d_{0^\circ} = 6,050 \text{ m}$ $d_{9^\circ} = 6,212 \text{ m}$ braccio asse cilindro cerniera braccio 9°: braccio asse cilindro cerniera a braccio -12°: $d_{-12^\circ} = 5,650 \text{ m}$ materiale braccio: $q_G = 194 \text{ kg/m}$ incrostazioni: 10% $q_G = 19,4 \text{ kg/m}$ (FEM section II) portata nastro: Q = 2300,0 t/haltezza caduta materiale: h = 6,1 mvelocità caduta materiale ingresso tramoggia: $v_i = (2gh) \cdot 0.5 = 10.9 \text{ m/s}$ velocità materiale uscita tramoggia: $v_u = 0.9 \cdot v_i = 9.8 \text{ m/s}$

angolo tra velocità di ingresso e uscita: $\alpha = 70,0$ deg massa materiale in caduta: $m = Q \div 3,6 = 638,9$ kg/s durata impulso materiale in caduta: $\Delta t = 1,000$ s CARATTERISTISCHE TRAMOGGIA: volume: V = 5,072 m³ densità materiale: $\rho = 1,100$ t/m³ massa intasamento tramogia: $m_t = \rho \cdot V = 5,58$ t

SPINTE E PRESSIONI DI ESERCIZIO

 $Spinta \ a \ 0^\circ: \quad S_{0^\circ} = (\ (qG + Incr) \ l \ bX, 0^\circ + mt \ l \ cos(0) \) \ / \ d0^\circ = 457 \ kN \\ Spinta \ a \ 9^\circ: \quad S_{9^\circ} = (\ (qG + Incr) \ l \ bX, 9^\circ + mt \ l \ cos(9) \) \ / \ d9^\circ = 439 \ kN \\ Spinta \ a \ -12^\circ: \quad S_{-12^\circ} = (\ (qG + Incr) \ l \ bX, -12^\circ + mt \ l \ cos(-12) \) \ / \ d-12^\circ = 476 \ kN \\$

spinta oriz caduta materiale: $F_o = -m vu sin(\alpha) / \Delta t = -5.900,7 N$ spinta vert caduta materiale: $F_v = m (vi - vu cos(\alpha)) / \Delta t = 4.829,4 N$ spinta totale dalla caduta del materiale: $F_{tot} = (Fo2 + Fv2) 0,5 = 7.625,0 N$

angolo spinta: $\vartheta = \arctan (F_v / F_o) = 39,30 \text{ deg}$

momento da caduta materiale 0°: M_{cad 0°} = $F_{tot} sin(\alpha) l cos(0) = 152,13 kNm$

momento da materiale su nastro + incrostazioni 0° + intasamento: M $_{mat 0°} = (q+Incr) b_{x,0°} + V \rho l cos(0) = 3392,69 kNm$

Figura 2.5.2: Schema della chute di scarico con vettori indicanti la velocità del materiale in ingresso ed uscita, e risultante spinta

rapporto tra momento caduta mat e mat su nastro 0°: $\eta = M_{cad0^{\circ}} / M_{mat0^{\circ}} = 4,48 \%$ CHECK->OK

momento da caduta materiale 9°: M _{cad 9°} = $F_{tot} sin(\alpha) l cos(9) = 150,25 kNm$

momento da materiale su nastro + incrostazioni 9° + intasamento: M $_{mat 9°} = (q+Incr) b_{x,9}^{\circ} + V \rho l \cos(9) = 3350,92 kNm$

rapporto tra momento caduta materiale e materiale su nastro 9°: $\eta = M_{cad9^{\circ}} \div M_{mat9^{\circ}} = 4,48 \%$ CHECK->OK

momento da caduta materiale -12°: M $_{cad -12^{\circ}} = F_{tot} \sin(\alpha) l \cos(-12) = 148,80 \text{ kNm}$

momento da materiale su nastro + incrostazioni -12° + intasamento: M $_{mat}$ -12° = (q+Incr) b $_{x,-12°}$ + V ρ l cos(-12) = 3318,55 kNm

rapporto tra momento caduta mat e mat su nastro -12°: $\eta = M_{cad-12^{\circ}} / M_{mat-12^{\circ}} = 4,48 \%$ CHECK->OK

Pressione massima in lavoro con due cilindri attivi: $p_{max} = 1,1 \text{ S} / (z \text{ A}) = 3,7 \text{ MPa} \rightarrow 37 \text{ bar}$

(fattore di carico 1,1 per tenere conto di oscillazioni di carico dovute alla dinamica del materiale in movimento e/o dello sbilanciamento del carico sul braccio rispetto all'asse longitudinale)

Pressione massima in lavoro con un cilindro: $p_{lim} = z p_{max} = 7,4 \text{ MPa} \rightarrow 74 \text{ bar}$

POTENZE

Velocità di sollevamento richiesta punta stelo: v = 1 m/min = 0,0167 m/sVelocità sollevamento richiesta punta braccio: v = 5 m/min = 0,0815 m/sRendimento cilindri: $\eta_{cil} = 0,90$ Potenza al netto delle perdite di carico a regime: $P_{lim} = S v / (\eta_{cil} \eta_{vol}) = 10,4 \text{ kW} \rightarrow 31\%$ margine Portata olio ai cilindri: $Q = z v S = 141,3 \text{ dm}^3/\text{min}$ Cilindrata pompa: $V = Q / (\eta_{mot} \eta_{cil}) = 110,8 \text{ cm}^3/\text{giro}$ Rendimento volumetrico pompa: $\eta_{vol} = 0,85$ Numero giri motore: $n_{mot} = 1.500 \text{ rpm}$ Potenza nominale motore pompa: $P_{nom} = 15,0 \text{ kW}$ Frequenza f = 60 Hztensione alimentazione: T = 460 VNo. Poli: p = 4

Figura 2.5.3: Schema costruttivo dei pistoni idraulici per il movimento verticale del braccio

CAPITOLO 3: Design criteria

CONTRACTOR DOC. #: C07915-M10851-ME-MDC-001

Structural and Mechanical Design Criteria

SHIPLOADER

01	05/01/2024	EARTHQUAKE UPDATED	SBE	AST	AST		
00	11/12/2023	ISSUED FOR APPROVAL	SBE	AST	AST		
	_		Initial	Initial	Initial	Initial	
Rev	Rey Date Description		Prep'd by	Chkid by	Apr'd by	Client Approval	
		MEDCEM					
				CONTRACTOR			
	1908	DEDESCHI	BEBEGGH			NO.	
	BEDESCHI		C0	C07960			
PRO	JECT	Shiploader					
DOC TITL	UMENT JE	Structural and Mechanical Design Criteria					
		C07060 V SHI 11005			SHEET	REV	
	C0/900 Y-SHL/11005						

TABLE OF CONTENTS

1	INT	IRODUCTION	3
2	RE.	FERENCE STANDARDS AND DOCUMENTS	4
	2.1	GENERAL STANDARDS DESCRIPTION	4
	2.2	STANDARDS USED FOR SHL'S DESIGN	4
	2.3	STANDARDS USED FOR BELT CONVEYORS' DESIGN	4
	2.4	STANDARDS FOR WIND LOAD CALCULATION	4
	2.5	BEDESCHI'S SPECIFICATIONS	4
3	PR	OJECT DATA	5
	3.1	GENERAL INFORMATION	5
	3.2	MATERIAL/PRODUCT INFORMATION	5
	3.3	SITE CONDITIONS	5
	3.4	DESIGN DATA	5
4	MA	ATERIALS OF STEEL PARTS	6
	4.1	FRAMEWORKS	6
	4.2	MECHANICAL COMPONENTS	6
5	MA	ACHINE CHARACTERISTICS AND DESCRIPTION	7
	5.1	BOOM	7
	5.2	SHUTTLE	7
	5.3	TRIMMING SPOUT	7
б	MA	ACHINE DESIGN CRITERIA	8
	6.1	DESIGN STANDARS	8
	6.2	SECTIONS STRESS FATIGUE AND BUCKLING VERIFICATION	8
	6.3	OVERALL STABILITY	8
	6.4	MECHANISMS	8
7	DE	SIGN LOADS	9
	7.1	MAIN LOADS	9
	7.1	.1 Dead loads	9
	7.1	.2 Material Loads	9
	7.1	.3 Incrustations	10
	7.1	.4 Forces on the conveyors	10
	7.1	.5 Fatigue wave loads	10
	7.1	.6 Permanent dynamic effects	11
	7.1	.7 Loads due to inclination of working level	11
	7.2	ADDITIONAL LOADS (II case condition)	11

7.2.1	Wind action	11
7.2.2	Wave loads for resistance checks	11
7.2.3	Snow and ice loads	12
7.2.4	Temperature	12
7.2.5	Non permanent dynamic effects	12
7.2.6	Hoist load	12
7.3 SP	ECIAL LOADS (III case condition)	
7.3.1	Clogging of discharge chute	12
7.3.2	Blocking of travelling/rotating device	
7.3.3	Collisions	12
7.3.4	Wind load out of service	13
7.3.5	Wave loads (sea transfer)	13
7.3.6	Bumper Effects	13
7.3.7	Loads during erection of the machine	13
7.3.8	Bobcat lifting hoist	14
7.4 LC	DADS COMBINATIONS	14

3.1 INTRODUCTION

The present document concerns the basis and design criteria applied for the design of a new shiploader (SHL) in Jakarta, Indonesia. Here below the layout of the SHL.

Figura 3.1.1: Shiploader in configurazione con shuttle completamente esteso, modello Inventor

Figura 3.1.2: Vista dall'alto della piattaforma su cui è montato lo Shiploader con il resto dell'impianto, nella parte alta della figura è possibile vedere il range operativo della macchina

3.2 REFERENCE STANDARDS AND DOCUMENTS

3.2.1 GENERAL STANDARDS DESCRIPTION

- ISO International Organization for Standardization
- FEM Fédération Européenne de la Manutention
- CEMA Conveyor Equipment Manufacturers Association

3.2.2 STANDARDS USED FOR SHL'S DESIGN

• FEM sect. II Rules for the design of mobile equipment for continuous bulk handling

3.2.3 STANDARDS USED FOR BELT CONVEYORS' DESIGN

• CEMA Belt conveyors for bulk materials (6th edition)

• FEM sect. II Rules for the design of mobile equipment for continuous bulk handling

• ISO 5048 Continuous bulk handling equipment – Belt conveyors with carrying idlers – Calculation of operating power and tensile forces

3.2.4 STANDARDS FOR WIND LOAD CALCULATION

• FEM sect. II Rules for the design of mobile equipment for continuous bulk handling

3.2.5 BEDESCHI'S SPECIFICATIONS

• GIS004686-2022 REV.03

3.3 PROJECT DATA

3.3.1 GENERAL INFORMATION

Project name	SHL 40/1600
Project location	Jakarta, INDONESIA
Client	COSCO Shipping
Job Number	GIS005624-2023
Bedeschi Job Number	C07960

3.3.2 MATERIAL/PRODUCT INFORMATION

Material/product	Coal
Specific Weight	1.1 t/m^3
Grain size	0-75 mm
Operation	24 h – 365 days
Maximum moisture conte	ent 5%
Maximum product temper	rature +110°C

3.3.3 SITE CONDITIONS

Environment	Marine, Dusty
Maximum temperature +45° C	
Minimum temperature	+0° C
Max operative wind speed:	
72 m/h (= 20 m/s)	(FEM Section II, 2-2.2.1.2)
Maximum design not operative wind speed	: 150 km/h (= 41.6 m/s) (FEM Section II, 2-2.2.1.2)

2.3.4 DESIGN DATA

Design capacity	2300 t/h
Ship loader Belts speed:	3.3 m/s

3.4 MATERIALS OF STEEL PARTS

The following materials will be used for structural and mechanical components fabrication.

3.4.1 FRAMEWORKS

S275 JR (EN 10025-2) for minor structures (walkways supports, handrails, gratings, instruments bracket, etc.)
S355 JR (EN 10025-2) for main structures

3.4.2 MECHANICAL COMPONENTS

Pinions 39NiCrMo3 (EN 10083) 42CrMo4 (EN 10083) 34CrNiMo6 (EN 10083)

Shafts C40E (EN 10083) C45E (EN 10083) 42CrMo4 (EN 10083) 34CrNiMo6 (EN 10083)

Wheels 39NiCrMo3 with HB \ge 320 42CrMo4 with HB \ge 320

3.5 MACHINE CHARACTERISTICS AND DESCRIPTION

3.5.1 BOOM

Slewing angle	$\pm 55^{\circ}$
Slewing motor power	6x2.2 kW
Luffing working range	+9° ÷ -12°
Boom luffing motor power	1 x 15 kW
Belt width	1600 mm
Speed of conveyor belts	3.3 m/s
Slewing angle for rest position from transversal position	90°
Slewing speed at boom head	10 m/min
Luffing speed at boom head	6 m/min

3.5.2 SHUTTLE

33 m
1600 mm
3.3 m/s
2x55 kW
21 m
11.5 m
22 kW

3.5.3 TRIMMING SPOUT

Trimming spout slewing power	2.2 kW
------------------------------	--------

3.6 MACHINE DESIGN CRITERIA

3.6.1 DESIGN STANDARS

The shiploader will comply in all respects with the relevant regulation of the FEM Section II "Rules for the design of the mobile equipment for continuous handling of bulk materials" and relevant other design standards noted in this design criteria.

3.6.2 SECTIONS STRESS FATIGUE AND BUCKLING VERIFICATION

Calculations in accordance with chapter 3 of FEM II standard.

3.6.3 OVERALL STABILITY

Calculations in accordance with chapter 3-6 and 3-7 of FEM II standard.

3.6.4 MECHANISMS

Calculations in accordance with chapter 4 of FEM II standard.

3.7 DESIGN LOADS

Loads are defined in chapter 2-2 of FEM II standard with different combinations; these loads will also be applicable to mechanisms, stability and rail/foundation calculations

3.7.1 MAIN LOADS

Dead loads

Dead loads consist of all the structure and equipment weight located permanently on the machine, taking into account the position of the boom when luffing.

Reference raw weights (mechanical and electrical equipment included) used for structure stress analysis and stability calculation are the following.

SHIP LOADER	
Discharge chute	5.3 t
Boom	33 t
Mast	51 t
Shuttle	38 t
Boom lifting system	4.6 t
Slewing system	22 t
Other	27.1 t

TOTAL SHL: 181 t

Material Loads

SHL MAST CONVEYOR Design capacity: Q = 2300 t/h Belt speed: $v_m = 3.3 \text{ m/s}$ $q_m = Q / (3.6 \times v_m) = 2300 / (3.6 \times 3.3) = 193.60 \text{ kg/m}$ Lenght of must conveyor : 11 m Total weight of material on fix conveyor : 193.6x11 = 2130 kg

SHL BOOM CONVEYOR Design capacity: Q = 2300 t/h Belt speed: $v_m = 3.3 \text{ m/s}$ $q_m = Q / (3.6 \times v_m) = 2300 / (3.6 \times 3.3) = 193.60 \text{ kg/m}$ Lenght of boom conveyor : 10.7 m Total weight of material on fix conveyor : 193.6x10.7 = 2072 kg

SHL SHUTTLE CONVEYOR Design capacity: Q = 2300 t/h Belt speed: $v_m = 3.3 \text{ m/s}$ $q_m = Q / (3.6 \times v_m) = 2300 / (3.6 \times 3.3) = 193.60 \text{ kg/m}$ Lenght of shuttle conveyor : 21.5 m Total weight of material on boom conveyor : 193.60x21.5 = 4162.4 kg

DISCHARGE CHUTE Total weight of material on chute in running condition: 2750 kg

PLEASE NOTE: The material load will be increased by 10% for dynamic effects.

Incrustations

Loads due to material incrustations is assumed as 10% of relevant material loads in all conveyors and chute.

Forces on the conveyors

N.A. as they are not acting on the main structures because the conveyor forces (intended as tensioning of the belt) are contained within the conveyor structures.

Fatigue wave loads

Roll aplitude	2°
Period	t = 8 s
Transversal movement	$17.73 * \tan(2^\circ) = 0.62 \text{ m}$
Vertical movement	$10.5 * \tan(2^{\circ}) = 0.37 \text{ m}$
Transversal acceleration amplitude	$A * \omega^2 = 0.382 \text{ m/s}^2$
Vertical acceleration amplitude	$A * \omega^2 = 0.23 \text{ m/s}^2$
Worst operating condition: shuttle at maxim	mum extention, perpendicular to the ship

Permanent dynamic effects

SLEWING							
Max slewing speed extended)	10 m/min	(at	shuttle	tip,	with	shuttle	full
Max angular speed	10/39.02 = 0.2	256 rp	m = 0.004	427 ra	id/s		
Acceleration/deceleration time	5 s	1					
Angular acceleration max	0.00427 / 5 = 0.000854	rad/s ²					
Acceleration max	0.000854 * 39.018 = 0.0	333 n	$1/s^2 < 0.2$	m/s^2			

Since the acceleration and deceleration of moving parts are lower than 0.2 m/s^2 , this effect is neglected as per FEM STDs

LUFFING	
Max luffing speed	6 m/min (at shuttle tip, with shuttle full extended)
Max angular speed	6 / 31.449 = 0.191 rpm = 0.00318 rad/s
Acceleration/deceleration time	5 s
Angular acceleration max	$0.00318 / 5 = 0.000636 \text{ rad/s}^2$
Acceleration max	$0.000636 * 31.449 = 0.02 \text{ m/s}^2 < 0.2 \text{ m/s}^2$

Loads due to inclination of working level

N.A.

3.7.2 ADDITIONAL LOADS (II CASE CONDITION)

Wind action

Wind load calculation will be performed according to FEM Section II.

Design wind speed	$V_{s} = 20 \text{ m/s}$
Velocity pressure	$q = 0.613 * V_s = 245 N/m^2$
Shaped coefficient	$C_{\rm f}$
Exposed gross area	$A[m^2]$

Wind force (load W) $F_W = C_f x A x q$ Considering always the worst position, with wind perpendicular to the boom surface

Wave loads for resistance checks

Transversal acceleration amplitude	A * $\omega^2 = 0.5 \text{ g} = 4.9 \text{ m/s}^2$
Vertical acceleration amplitude	A * $\omega^2 = 0.3 \text{ g} = 2.94 \text{ m/s}^2$
Transversal movement	$17.73 * \tan(5^\circ) = \pm 1.55 \text{ m}$
Vertical movement	$10.5 * \tan(5^\circ) = \pm 0.92 \text{ m}$
Longitudinal acceleration amplitude	A * $\omega^2 = 0.3 \text{ g} = 1.94 \text{ m/s}^2$
Vertical acceleration amplitude	A * $\omega^2 = 0.3 \text{ g} = 2.94 \text{ m/s}^2$
Longitudinal movement	$17.73 * \tan(2^\circ) = \pm 0.62 \text{ m}$
Vertical movement from pitch	$19.77 * \tan(2^\circ) = \pm 0.69 \text{ m}$
Looking at two different machine positions:	

Operating machine with boom perpendicular to the ship and shuttle completely extended Operating machine with boom at 26° angle to the rolling axle and shuttle completely extended

Snow and ice loads

N.A.

Temperature

N.A.

Non permanent dynamic effects

N. A.

Hoist load

N. A.

3.7.3 SPECIAL LOADS (III CASE CONDITION)

Clogging of discharge chute

Total weight of material on chute in blocked condition: 5580 kg

Blocking of travelling/rotating device

N. A.

Collisions

SLEWING

Hypothesis 1, based on braking distance o	f s = 0.1 m at boom tip, with shuttle fully extended (distance
R = 39.02 m from rotation axis):	
Rotating part inertia	$J_b = 44.63 * 10^6 \text{ kgm}^2$
Rotating speed	$\omega = 10 / 39.02 = 0.256$ rpm = 0.00427 rad/s
Angular braking distance	$\vartheta \approx s / R = 0.1 / 39.02 = 0.00256$ rad
Angular deceleration: 0.00356 rad/s ²	$\alpha = \omega^2 / (2 \ \theta) = 0.00427^2 / (2*0.00256) =$
Deceleration torque:	$T = J_b \alpha = 44.63 * 10^6 * 0.00356 = 158.88 \text{ kNm}$
Collision force at boom tip:	$F_{c1} = T / R = 158.88*10^3 / 31 = 4073 N \approx 4.07$
kN	

Hypothesis 2, based on motor power	$P = 6 \ge 2.2 \text{ kW} = 13.2 \text{ kW}$
Speed at boom tip with shuttle fully extended	v = 10 m/min = 0.167 m/s
Overall efficiency	$\eta = 0.8$
Collision force	$\dot{F}_{c2} = \eta P / v = 0.8 * 13.2 / 0.167 = 63.35 \text{ kN}$

Since the machine presents anti-collision radars and limit switches which will shut down the motor power the hypothesis 2 will be neglected.

Max collision force $F_{c2} = 4.07$ kN will be considered.

Wind load out of service

Out of service wind load calculation will be performed according to FEM Section II. Maximum cyclone wind with machine out of service and arm anchored: 150km/h

Design wind speed	$V_s = 41.6 \text{ m/s}$
Velocity pressure	$q = 1100 \text{ N/m}^2$
Shaped coefficient	$\mathrm{C_{f}}$
Exposed gross area	A [m ²]
Wind force (load W)	$F_W = C_f x A x q$

Wave loads (sea transfer)

Transversal acceleration amplitude	$A * \omega^2 = 1.5 g = 14.7 m/s^2$
Vertical acceleration amplitude	A * $\omega^2 = 0.7 \text{ g} = 6.87 \text{ m/s}^2$
Longitudinal acceleration amplitude	A * $\omega^2 = 0.5 \text{ g} = 4.9 \text{ m/s}^2$

Bumper Effects

N.A.

Loads during erection of the machine

N.A.

Bobcat lifting hoist

Exceptionally the shiploader could be used to lift the Bobcat and to lower it into the ship's hold. Electric rope hoist: Scope: 10 t Hook range: 32 m fixed and suspended Constructive execution: Installation: Via suspension brackets with rocker pin ISO Classification: Loading regime: L2 (moderate) 0.25 Nominal load spectrum factor K_m Condition of use of the mechanism T₅ Mechanism class: M5 Theoretical life: 6300 h

3.7.4 LOADS COMBINATIONS

Loads combinations are defined in Table T.2-3.1 of FEM II standard.

Items		Main loads	Main and additional loads			Main, a	additiona ca	l and spe se III	cial load	s		Loads during
		case I	case II	1 1	2	1 3	1	5	6			erection
2-2.1.1	Dead loads	*	*	*	*	+	+ +	- *	1 %	1 4	8	
2-2.1.2	Material loads on conveyors, reclaiming							1	1	Ť	1 *	*
	devices and hoppers	*	*	*	*	*	1 *					
2-2.1.3	Incrustation	*	*	*	*	*	*	*		1		
2-2.1.4	Normal tangential and lateral digging						1	1	1	1 *	*	
	forces	*		*	1	*		1		1		
2-2.1.5	Forces on the conveying elements	*	*	*	*	*	*	1			1.	
2-2.1.6	Permanent dynamic effects	*	* (1)	*	*	*	1	1.	1	1	*	
2-2.1.7	Loads due to inclination of working		(1)				1	-		1	*	
1 1 2	level	*	*	*	*	*	*	*			1	
2-2.2.1	Wind force during service		*	*	*	*	*	*	1	1	1.1	1
2-2.2.2	Snow and ice (possibly)							1		1	*	
2-2.2.3	Temperature (possibly)							1				
2-2.2.4	Abnormal tangential and lateral digging											
	forces		*									
2-2.2.5	Resistances due to friction and travel		*									
2-2.2.6	Reactions perpendicular to the rail		*		1	1	1	1.1	1	1		
2-2.2.7	Non-permanent dynamic effects		*(1)								1	
2-2.3.1	Chute blocking			*	1							
2-2.3.2	Bucket-wheel resting				*							
2-2.3.3	Failure of load limiting devices (see											
	2-2.1.2.1)					l *						
2-2.3.4	Travelling device blocking								1	1		
2-2.3.5	Lateral collision with the slope (bucket-					*	T					
	wheel)							1				
2-2.3.6	Wind force out of service								* (2)			
2-2.3.7	Buffer effects								(2)	*		*
2-2.3.8	Earthquake loads										*	
2-2.3.9	Loads during erection										-	+
												- T

Table T.2-3.1 LOAD COMBINATIONS

the most unfavourable should be considered for design.
 the mechanism must be equipped with a locking device preventing the slewing part from rotating (due to wind force), when out of service, if this rotation is dangerous.

Figura 3.7.4.1: Tabella riassuntiva delle load combinations

CAPITOLO 4: loads data da Straus7

Straus7 è un software avanzato per l'analisi agli elementi finiti (FEM) utilizzato per eseguire simulazioni strutturali complesse. Ecco una descrizione tecnica dettagliata delle sue caratteristiche principali:

Caratteristiche Tecniche di Straus7

1. Tipi di Elementi

- Elementi 1D (Beam, Truss, e Link):
 - Elementi beam per modellare travi e colonne con proprietà di flessione, taglio, torsione e assiali.
 - Elementi truss per strutture reticolari soggette a carichi assiali.
 - Elementi link per collegamenti rigidi o con proprietà elastiche specifiche.
- Elementi 2D (Membrane, Plate, e Shell):
 - **Membrane**: Elementi bidimensionali per modellare superfici sottili soggette a carichi di trazione e compressione.
 - Plate: Elementi piani che resistono a momenti flettenti e forze taglianti nel piano.
 - Shell: Elementi che combinano le caratteristiche di membrane e plate per modellare superfici curve e strutture laminate.
- Elementi 3D (Solid):
 - Elementi solidi tetraedrici e esaedrici per modellare volumi tridimensionali e analizzare sollecitazioni e deformazioni interne.

2. Modellazione Geometrica

- Creazione di Geometrie:
 - Strumenti per creare geometrie da zero o importare geometrie da altri software CAD.
 - Supporto per geometrie complesse attraverso sketch, operazioni booleane e superfici.
- Modifica della Geometria:
 - Strumenti di modifica per pulire, unire e riparare geometrie.
 - Capacità di definire e manipolare nodi, linee, superfici e volumi.

3. Generazione della Mesh

- Mesh Automatica e Manuale:
 - Generazione automatica della mesh con opzioni di refinamento locale per migliorare la qualità della mesh.
 - Possibilità di creare manualmente la mesh per un controllo più preciso.
- Tipi di Mesh:
 - Mesh di elementi beam, truss, plate, shell e solid.
 - Strumenti per verificare la qualità della mesh e ottimizzarla.

4. Proprietà dei Materiali

- Database dei Materiali:
 - Un ampio database di materiali predefiniti con proprietà elastiche, termiche e meccaniche.
 - Possibilità di definire materiali personalizzati con proprietà isotropiche, ortotropiche o anisotropiche.
- Modelli di Materiali:
 - Materiali lineari elastici.
 - Materiali non lineari, inclusi modelli di plasticità e viscoelasticità.

5. Analisi e Risultati

- Tipi di Analisi:
 - Analisi Statica Lineare: Calcolo delle deformazioni e delle sollecitazioni sotto carichi statici.
 - Analisi Dinamica: Inclusi analisi modale, risposta in frequenza e risposta transitoria.
 - Analisi di Buckling: Determinazione dei carichi critici di instabilità e delle modalità di buckling.
 - Analisi Termica: Studio della distribuzione della temperatura e degli effetti termici.
 - Analisi Non Lineare: Considera grandi deformazioni, non linearità del materiale e contatto.

• Visualizzazione dei Risultati:

- Grafici, contorni, e animazioni per visualizzare deformazioni, sollecitazioni, temperature e altre grandezze.
- Opzioni per generare report dettagliati dei risultati.

6. Integrazione e Automazione

• Compatibilità dei File:

- Importazione ed esportazione di vari formati di file CAD e FEM, inclusi IGES, STEP, DXF e altri formati specifici dei software FEM.
- Possibilità di esportare i risultati in formati comuni per ulteriori elaborazioni.

• Scripting e Automazione:

- Supporto per linguaggi di scripting per automatizzare processi ripetitivi e personalizzare le operazioni.
- API per integrazione con altri software e sistemi di progettazione.

Esempio Pratico di Utilizzo

Supponiamo di voler analizzare il buckling di una colonna cilindrica in Straus7:

1. Creazione della Geometria:

- Disegna un cilindro con la lunghezza e il diametro desiderati utilizzando gli strumenti di modellazione.
- 2. Definizione della Mesh:
 - Genera una mesh di elementi shell per il cilindro. Verifica e, se necessario, refina la mesh per garantire una buona discretizzazione.
- 3. Assegnazione delle Proprietà del Materiale:
 - Seleziona un materiale dal database (ad esempio, acciaio) o definisci un materiale personalizzato con le proprietà appropriate (modulo di elasticità, coefficiente di Poisson, densità).
- 4. Applicazione dei Carichi e Vincoli:
 - Applica un carico di compressione uniforme sulla parte superiore del cilindro.
 - Definisci le condizioni al contorno appropriate, come un incastro alla base.
- 5. Esecuzione dell'Analisi di Buckling:
 - Esegui l'analisi di buckling per determinare i carichi critici e visualizzare le modalità di buckling.
- 6. Interpretazione dei Risultati:
 - Visualizza i carichi critici di buckling e le modalità di buckling.
 - Analizza le deformazioni e le sollecitazioni per valutare la stabilità della colonna sotto carico.

Verifica dei pesi in Straus7:

Il modello FEM non è stato ottenuto rimodellando un file realizzato per un precedente shiploader; il primo aspetto da verificare è la correttezza dei pesi della macchina, facendo un check tra Straus7 e la distinta base presente in Vault.

Non è necessario realizzare i modelli con boom tutto alzato e tutto abbassato, perché il braccio della forza peso, rispetto alla cerniera del boom, risulterebbe minore come si può evincere dalla seguente immagine, dunque si è scelto di limitarsi alla verifica della condizione di lavoro più gravosa:

Figura 4.0.1: Diverse configurazioni della macchina

• Si procede quindi ad estrarre il peso dei gruppi shuttle, boom, mast, tiranti e cilindri e virola dal modello straus della macchina di partenza, divisi così in modo da avere beam e plate con la medesima densità (si vedano le immagini successive, da (4.0.2) a (4.0.6) per avere chiaro di cosa consista ogni gruppo).

Figura 4.0.2: Mast

Figura 4.0.3: Boom

Figura 4.0.4: Shuttle

Figura 4.0.5: Tiranti e cilindri idraulici

Figura 4.0.6: Virola

Successivamente per correggere il peso totale si procede in questo modo

- Per ogni gruppo si calcola in percentuale il peso di beam e plates;
- Si estrae poi il peso corretto della macchina che sto analizzando dalla distinta Vault;
- Si moltiplicano questi pesi per le percentuali trovate in precedenza, trovando così i pesi nuovi di beam e plate;
- Si divide ora questi valori per il volume di beam e plates;
- Si ottiene così la nuova densità "fittizia" da inserire nelle property in modo da ottenere i pesi corretti;
- Si verifica la correttezza estraendo i pesi finali dal summary model e comparandoli con quelli presenti in Vault;

Shuttle:

Dal vecchio modello Straus7, grand total:

- Mass: 1,26890E+04 kg
- Volume: 1616000000 mm³

	Mass	Volume
Beam properties:	kg	mm ³
26: QUADRO 250X150X12.5	5,45E+03	694487000
27: QUADRO 140X140X8	4,57E+03	581932000
28: QUARO 140X80X8	2,00E+03	254501000
Total	1,20E+04	1531000000

Tabella 4.0.7: Shuttle beam properties

Percentuale dei beam in volume = 1531000000 ÷ 1616000000 = 0,947 = 94,7%

	Mass	Volume
Plate properties:	kg	mm ³
13: 8 mm (navetta)	294,205	37478000
14: 25 mm (navetta)	376,8	48000000
Total	671,005	85478000

Tabella 4.0.8: Shuttle plate properties

Percentuale dei plate in volume = 85478000 ÷ 1616000000 = 0,0529 = 5,29%

Si estrae dal Vault il peso totale corretto: 17500 kg

Peso beam = $0.947 \cdot 17500 = 16579 \text{ kg}$ Peso plates = $0.0529 \cdot 17500 = 926 \text{ kg}$

Si ricava dunque la densità fittizia di beam e plates:

Densità beam = 16579 ÷ 1531000000 = 1,08292E-05 kg/mm³ Densità plates = 926 ÷ 85478000 = 1,08292E-05 kg/mm³

Boom

Dal vecchio modello Straus7, grand total:

- Mass: 3,24E+04 kg
- Volume: 2,57E+09 mm³

	Mass	Volume
Beam properties:	kg	mm ³
1: TONDO 450 SP 25 (braccio)	177,779	2,20E+07
2: QUADRO 200X200X10 (braccio)	1,18E+04	1,20E+09
3: QUADRO 300X300X12.5 (braccio)	787,12	9,00E+07
4: PIATTO 300 SP 20 (braccio)	99,504	9,58E+06
5: QUADRO 180x120 SP 10 (braccio)	4,88E+03	4,60E+08
7: DOPPIO QUADRO 200 SP 10 (braccio)	4,93E+03	1,06E+08
8: HEB 200 (braccio)	1,10E+03	1,12E+08
9: PIATTO 200 SP 15 (braccio)	214,166	1,62E+07
10: UPN 200 (braccio)	3,25E+03	2,54E+08
14: sostegno g.ppo traslazione (braccio)	3,11E+03	9,28E+07
15: basamento (braccio)	1,15E+03	1,01E+07
Total	3,14E+04	2,37E+09

Tabella 4.0.9: Boom beam properties

Percentuale dei beam in volume = 2,37E+09 ÷ 2,57E+09 = 0,972 = 97,2%

	Mass	Volume
Plate properties:	kg	mm ³
12: 6 mm (tiranti)	7,246	1,58E+06
17: 14.2 mm (tiranti)	216,04	4,71E+07
23: 20 mm (braccio)	371,716	8,11E+07
24: 20 mm (tiranti)	203,188	4,43E+07
25: 50 mm (tiranti)	108,361	2,36E+07
Total	9,07E+02	1,98E+08

Tabella 4.0.10: Boom plate properties

Percentuale dei plate in volume = 1,98E+08 ÷ 2,57E+09= 0,028 = 2,80%

Si estrae dal Vault il peso totale corretto: 23200 kg

Peso beam = 0,972 · 23200 = 22550 kg Peso plates = 0,028 · 23200 = 650 kg

Si ricava dunque la densità fittizia di beam e plates:

Densità beam = 22550 ÷ 2,37E+09 = 9,49857E-06 kg/mm³ Densità plates = 650 ÷ 1,98E+08 = 3,28659E-06 kg/mm³
Mast

Dal vecchio modello Straus7, grand total:

- Mass: 53053 kg
- Volume: 6618000000 mm³

	Mass	Volume
Beam properties:	kg	mm^3
17: UPN 160 (mast)	1493	49606000
29: ralla	4403	560850000
Total	5895	610456000

Tabella 4.0.11: Mast beam properties

Percentuale dei beam in volume = 610456000 ÷ 6618000000 = 0,1111 = 11,11%

	Mass	Volume
Plate properties:	kg	mm^3
1: 15 mm (mast)	16965	2161000000
2: 12 mm (mast)	1178	150099000
3: 10 mm (mast)	11515	1467000000
4: 20 mm (mast)	1838	234108000
5: 35 mm (mast)	9375	1194000000
6: 30 mm (mast)	78,218	9964000
9: 50 mm (mast)	4821	614094000
10: 90 mm (mast)	197,386	25145000
29: 40 mm (mast)	1191	151670000
Total	47158	6007000000

Tabella 4.0.12: Mast plate properties

Percentuale dei plate in volume = 6007000000 ÷ 6618000000 = 0,8889 = 88,89%

Si estrae dal Vault il peso totale corretto: 51350 kg

Peso beam = $0,1111 \cdot 51350 = 5705,77 \text{ kg}$ Peso plates = $0,8889 \cdot 51350 = 45644,23 \text{ kg}$

Si ricava dunque la densità fittizia di beam e plates:

Densità beam = 5705,77 ÷ 610456000 = 9,34674E-06 kg/mm³ Densità plates = 45644,23 ÷ 6007000000 = 7,59851E-06 kg/mm³

Tiranti e cilindri

Dal vecchio modello Straus7, grand total:

- •
- Mass: 11306 kg Volume: 1440000000 mm³ •

	Mass	Volume
Beam properties:	kg	mm ³
11: TONDO 298.5 SP 14.2 (tiranti)	1279	162891000
13: perno 160 mm (tiranti)	159,728	20347000
20: cilindro	8172	1041000000
21: coda cilindro	193,699	24675000
22: stelo	835,532	106437000
23: anello cilindro	666,847	84949000
Total	11306	1440000000

Tabella 4.0.12: Tiranti e cilindri beam properties

Si estrae dal Vault il peso totale corretto: 7780 kg

Si ricava dunque la densità fittizia dei beam:

Densità beam = $7780 \div 144000000 = 5,4E-06 \text{ kg/mm}^3$

Virola

Dal vecchio modello Straus7, grand total:

- Mass: 1338 kg
- Volume: 1158000000 mm³

	Mass	Volume
Beam properties:	kg	mm^3
25: piatti costole virola	181,462	23116000
Total	181,462	23116000

Tabella 4.0.13: Virola beam properties

Percentuale dei beam in volume = 23116000 ÷ 1158000000 = 0,1356 = 13,56%

	Mass	Volume
Plate properties:	kg	mm^3
27: 75 mm (virola)	1157	147393000
Total	1157	147393000

Tabella 4.0.14: Virola plate properties

Percentuale dei plate in volume = 147393000 ÷ 1158000000 = 0,8644 = 86,44%

Si estrae dal Vault il peso totale corretto: 4950 kg

Peso beam = $0,1356 \cdot 4950 = 671$ kg Peso plates = $0,8644 \cdot 4950 = 4279$ kg

Si ricava dunque la densità fittizia di beam e plates:

Densità beam = 671 ÷ 23116000 = 2,90317E-05 kg/mm³ Densità plates = 4279 ÷ 147393000 = 2,90306E-05 kg/mm³

4.1 Metodo di lavoro utilizzato

Working conditions:

- No inclinazione, gravità lungo y
 +5° in rollio
 -5° in rollio
 +2° in beccheggio
 -2° in beccheggio

Figura 4.1.1: Shiploader ruotato in posizione operativa

No inclinazione:

- $a_x = 0 m/s^2$ •
- $a_y = -9,806 \text{ m/s}^2$ •
- $a_z = 0 m/s^2$ •

$+5^{\circ}$ in rollio:

- $a_x = -g \cdot \sin(5^\circ) \text{ m/s}^2$ •
- $a_y = -g \cdot \cos(5^\circ) m/s^2$ •
- $a_z = 0 \text{ m/s}^2$ •

-5° in rollio:

- $a_x = g \cdot \sin(5^\circ) m/s^2$
- $a_y = -g \cdot \cos(5^\circ) \text{ m/s}^2$ $a_z = 0 \text{ m/s}^2$
- $+2^{\circ}$ in beccheggio:
 - $a_x = 0 \text{ m/s}^2$
 - $a_y = -g \cdot \cos(2^\circ) m/s^2$
 - $a_z = g \cdot \sin(2^\circ) m/s^2$

-2° in beccheggio:

- $a_x = 0 m/s^2$
- $a_y = -g \cdot \cos(2^\circ) m/s^2$
- $a_z = -g \cdot \sin(2^\circ) m/s^2$

Dalle combinazioni di carico si ottiene l'ampiezza di variazione delle tensioni, utilizzando questa sarebbe possibile ricavare il ciclo di fatica ed applicare la norma FEM II.

Condizione ulteriore da verificare, non operativa: boom rest (braccio a riposo, appoggiato alla nave su due punti)

Figura 4.1.2: Shiploader ruotato in posizione di boom rest

- 1. Boom rest: tutto attivo tranne materiale, incrostazioni, Bobcat, vento, ostruzione chute di scarico
- 2. Boom rest con vento estremo (150 km/h): tutto attivo tranne materiale, incrostazioni, Bobcat, ostruzione chute di scarico

Dalla norma DNV si ottengono le accelerazioni da applicare per simulare il movimento della nave durante la regolare navigazione:

sia $g = 9,807 \text{ m/s}^2$

e le accelerazioni verticali (lungo y), trasversali (lungo z), e longitudinali (lungo x): $a_V = 0,6 \cdot g$ $a_T = 0,7 \cdot g$ $a_L = 0,3 \cdot g$

Dalla norma DNV si prevedono i seguenti casi:

- Vertical force alone: $P_V = (g \pm 0.5 \cdot a_V) \cdot M$
- Vertical and trasverse force: $P_V = g \cdot M$

 $P_T = \pm (0,67 \cdot a_T) \cdot M$

- Vertical and longitudinal force: $P_V = (g \pm 0.5 \cdot a_V) \cdot M$ $P_L = \pm (0.67 \cdot a_L) \cdot M$
- Vertical, trasverse and longitudinal force:
 $$\begin{split} P_V &= (g \pm 0,5 \cdot a_V) \cdot M \\ P_T &= \pm (0,27 \cdot a_T) \cdot M \\ P_L &= \pm (0,67 \cdot a_L) \cdot M \end{split}$$

In Straus7 si utilizza il seguente procedimento per realizzare le diverse combinazioni di carico nella configurazione di boom rest:

- 1. Si crea un file con lo shiploader modellato in posizione di boom rest
- 2. Si risolve e si procede a salvare la soluzione di 3 file differenti: Gravità $g = 9,807 \text{ m/s}^2$ verticale (lungo y) Gravità $g = 9,807 \text{ m/s}^2$ longitudinale (lungo x) Gravità $g = 9,807 \text{ m/s}^2$ orizzontale (lungo z) si ottengono 3 file differenti .lsa
- 3. Dal menù "Results" utilizzo la funzione "Combine results file"
 Si deve ora generare le 16 combinazioni di carico richieste dalla norma DNV per le verifiche Di seguito, a titolo di esempio il caso 6:
 P_V = (g + 0,5 · a_V) · M
 P_L = - (0,67 · a_L) · M

File 1: +g vericale

File 2: +g longitudinale

New Case	File case	File 1 factor	File 2 factor
1	Dead loads	1,3	-0,201
2	Discharge chute	1,3	-0,201
3	Feeding hopper	1,3	-0,201
4	Pulley and cleaners	1,3	-0,201
5	Belt arrangement	1,3	-0,201
6	Shuttle travel devices	1,3	-0,201
7	Belt motor and hydraulic unit	1,3	-0,201
8	Winch	1,3	-0,201
9	Walkways	1,3	-0,201
10	Material	1,3	-0,201
11	Encrustations	1,3	-0,201
12	Bobcat	1,3	-0,201
13	Wind	1	0
14	Discharge hopper obstruction	1,3	-0,201

Tabella 4.1.3: Esempio di combinazioni dei risultati e relativi fattori moltiplicativi applicati

Come file target si pone SHL_boom_rest_comb6.lsa

Precisazione riguardo al vento: nel modello era posto a 1, la velocità corretta viene data successivamente all'interno della linear load case combination, andando a inserire w² (con w velocità del vento in m/s)

- 4. Si apre il file target generato (.lsa)
- 5. Linear load case combination \rightarrow Add \rightarrow

File case	File factor
Dead loads	1
Discharge chute	1

Feeding hopper	1
Pulley and cleaners	1
Belt arrangement	1
Shuttle travel devices	1
Belt motor and hydraulic unit	1
Winch	1
Walkways	1
Material	1
Encrustations	1
Bobcat	1
Wind	1731
Discharge hopper obstruction	1

 Discharge hopper obstruction
 1

 Tabella 4.1.4: Esempio di linear load case combination e relativi fattori moltiplicativi applicati

Dove $1731 = (41,6 \text{ m/s})^2$

6. Si procede infine a salvare poi la linear load case combination generando un file .lsc In totale si ottengono 16 file differenti

Figura 4.1.3: Modello realizzato in Straus7

Loads data on shiploader column support

Title:

4.2 Legenda

Il sistema di riferimento cartesiano assoluto è sempre solidale alla struttura navale per cui con "X" si fa sempre riferimento alla direzione dell'asse di rollio, "Z" indica sempre la direzione dell'asse di beccheggio e "Y" la direzione dell'asse di imbardata.

Legenda per combinazione di carico I

strutture: si intende il peso di tutta la struttura il quale viene conteggiato in automatico dal programma sulla base delle proprietà del modello

operativo statico: si intende una combinazione lineare tra le masse strutturali ed il peso del materiale trasportato per un fattore di servizio (1,1) a tener conto degli effetti dinamici, come previsto in FEM Section II

operativo statico con vento a 35 km/h: si intende una combinazione lineare tra le masse strutturali ed il peso del materiale trasportato per un fattore di servizio (1,1) a tener conto degli effetti dinamici, aggiungendo inoltre la pressione del vento che impatta ortogonalmente alla struttura (in modo da verificare il caso con mometo massimo, come previsto in FEM Section II

Condizioni operative (applicate a strutture, operativo statico, operativo statico con vento a 35 km/h, operativo statico con vento L.E., sollevamento Bobcat, intasamento tramoggia di scarico

gravità standard: accelerazione di gravità ay = -g (-y = -9,8067 m/s2)

rollio di +5°: accelerazione $a_y = -g \cos(5^\circ) a_x = -g \sin(5^\circ) (-y = -9,769 \text{ m/s2} - x = -0,855 \text{ m/s2})$

rollio di -5°: accelerazione $a_y = -g \cos(5^\circ) a_x = g \sin(5^\circ) (-y = -9,769 \text{ m/s}2 \text{ x} = 0,855 \text{ m/s}2)$

beccheggio di +2°: accelerazione $a_y = -g \cos(2^\circ) az = g \sin(2^\circ) (-y = -9,801 \text{ m/s}2 z = 0,342 \text{ m/s}2)$

beccheggio di -2°: accelerazione $a_y = -g \cos(2^\circ) az = -g \sin(2^\circ) (-y = -9,801 \text{ m/s}2 z = -0,342 \text{ m/s}2)$

Tabella 4.2.1: Legenda per la combinazione di carico di Caso I

Legenda per combinazione di carico II

operativo statico con vento Limite di Esercizio: si intende una combinazione lineare tra le masse strutturali ed il peso del materiale trasportato per un fattore di servizio (1,1) a tener conto degli effetti dinamici, aggiungendo inoltre la pressione del vento (in questo caso a 72 km/h) che impatta ortogonalmente alla struttura (in modo da verificare il caso con mometo massimo, come previsto in FEM Section II

sollevamento escavatore: effetti prodotti dal sollevamento dell'escavatore. Sono considerati assumento che la navetta si trovi in posizione arretrata e senza materiale sul nastro. la maonvra avviene in codizioni di mare "calmo". Come indicato dalla norma UNI 9309 per gli apparecchi di sollevamento, al fine di considerare gli effetti dinamici che si manifestano nel trasferimento di carico da suolo all'apparecchio, si moltiplicano le forze di gravità dovute alla massa da sollevare per un fattore di servizio funzione della classe di sollevamento (assunto pari 1.05).

Legenda per combinazione di carico III

ralla statico: razione vincolare sulla ralla dovuta al peso di tutta la struttura in condizioni di boom rest

intasamento tramoggia scarico: si intende una condizione eccezionale che potrebbe verificarsi durante la fase di lavoro. In quanto eccezionale non viene combinata con altri effetti quali vento limite di esercizio o carico d'onda limite di esercizio

1) reazione boom rest statico: reazione vincolare sull'appoggio 1 di boom rest dovuta al peso di tutta la struttura in condzioni di boom rest

2) reazione boom rest statico: reazione vincolare sull'appoggio 2 di boom rest dovuta al peso di tutta la struttura in condizioni di boom rest

ralla dinamico vertical force (>) : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale prese con i versi $a_y = -(1 + 0.5*0.6)g$ (-y = -12,75 m/s2)

ralla dinamico vertical force (<) : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale prese con i versi ay = -(1 - 0.5*0.6)g (-y = -6.86 m/s2)

ralla dinamico vertical and transverse force (>) : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale e trasversale prese con i versi $a_y = -(1)g$ $a_z = +(0.67*0.7)g$ (-y = -9.8067 m/s2 z = 4.599 m/s2)

ralla dinamico vertical and transverse force (<) : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale e trasversale prese con i versi $a_y = -(1)g$ $a_z = -(0,67*0,7)g$ (-y = -9,8067 m/s2, -z = -4,599 m/s2)

ralla dinamico vertical (>) and longitudinal (>) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale e longitudinale prese con i versi $a_y = -(1 + 0.5*0.6)g$ $a_x = +(0.67*0.3)g$ (-y = -12.75 m/s2, x = 1.971 m/s2)

ralla dinamico vertical (>) and longitudinal (<) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale e longitudinale prese con i versi $a_y = -(1 + 0.5*0.6)g$ $a_x = -(0.67*0.3)g$ (-y = -12.75 m/s2, -x = -1.971 m/s2)

ralla dinamico vertical (<) and longitudinal (>) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale e longitudinale prese con i versi $a_y = -(1 - 0.5*0.6)g$ $a_x = +(0.67*0.3)g$ (-y = -6.86 m/s2, x = 1.971 m/s2)

ralla dinamico vertical (<) and longitudinal (<) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale e longitudinale prese con i versi $a_y = -(1 - 0.5*0.6)g$ $a_x = -(0.67*0.3)g$ (-y = -6.86 m/s2, -x = -1.971 m/s2)

ralla dinamico vertical (>), transverse (>) and longitudinal (>) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 + 0.5*0.6)g a_z =$ $+(0.27*0.7)g a_x = +(0.67*0.3)g (-y = -12.75 m/s2, z = 1.853 m/s2, x = 1.971 m/s2)$

ralla dinamico vertical (>), transverse (>) and longitudinal (<) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 + 0.5*0.6)g a_z = +(0.27*0.7)g a_x = -(0.67*0.3)g$ (-y = -12.75 m/s2, z = 1.853 m/s2, -x = -1.971 m/s2)

ralla dinamico vertical (>), transverse (<) and longitudinal (>) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 + 0.5*0.6)g a_z = -(0.27*0.7)g a_x = +(0.67*0.3)g$ (-y = -12.75 m/s2, -z = -1.853 m/s2, x = 1.971 m/s2)

ralla dinamico vertical (>), transverse (<) and longitudinal (<) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 + 0.5*0.6)g a_z = -(0.27*0.7)g a_x = -(0.67*0.3)g$ (-y = -12.75 m/s2, -z = -1.853 m/s2, -x = -1.971 m/s2)

ralla dinamico vertical (<), transverse (>) and longitudinal (>) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 - 0.5*0.6)g$ $a_z = +(0.27*0.7)g$ $a_x = +(0.67*0.3)g$ (-y = -6.86 m/s2, z = 1.853 m/s2, x = 1.971 m/s2)

ralla dinamico vertical (<), transverse (>) and longitudinal (<) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 - 0.5*0.6)g a_z =$ $+(0.27*0.7)g a_x = -(0.67*0.3)g$ (-y = -6.86 m/s2, z = 1.853 m/s2, -x = -1.971 m/s2)

ralla dinamico vertical (<), transverse (<) and longitudinal (>) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 - 0.5*0.6)g$ $a_z = -(0.27*0.7)g$ $a_x = +(0.67*0.3)g$ (-y = -6.86 m/s2, -z = -1.853 m/s2, x = 1.971 m/s2)

ralla dinamico vertical (<), transverse (<) and longitudinal (<) force : si intende una combinazione lineare tra le condizioni ralla statico e le accelerazioni prodotte dal carico d'onda di sea transfer in verticale, trasversale e longitudinale prese con i versi $a_y = -(1 - 0.5*0.6)g a_z =$ $-(0.27*0.7)g a_x = -(0.67*0.3)g$ (-y = -6.86 m/s2, -z = -1.853 m/s2, -x = -1.971 m/s2)

Ripeto le stesse condizioni sull'appoggio (1) Ripeto le stesse condizioni sull'appoggio (2)

Ripeto le stesse condizioni sull'appoggio (2)

Tabella 4.2.3: Legenda per la combinazione di carico di Caso III

4.3 Risultati combinazioni di carico

-		Fx	Fy	Fz	Mx	My	Mz	
Combinazione di carico Caso I		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	navetta out
	gravità standard	0	1647	0	-57	-1	19252	_
	rollio (>)	144	1641	0	-57	-1	18582	
strutture	rollio (<)	-144	1641	0	-57	-1	19775	
	beccheggio (>)	0	1646	-57	-296	674	19240	ve
	beccheggio (<)	0	1646	57	181	-677	19240	se na
operativo statico	gravità standard	0	1758	0	-62	-1	20828	ll'ass
	rollio (>)	153	1752	0	-62	-1	20111	rre a
	rollio (<)	-153	1752	0	-62	-1	21388	icola
	beccheggio (>)	0	1757	-61	-318	730	20816	pend
	beccheggio (<)	0	1757	61	194	-732	20816	perl
operativo statico con	gravità standard	0	195	0	-6	-1	2149	ccio
	rollio (>)	153	1752	0	-60	-10	20111	bra
	rollio (<)	-153	1752	0	-60	-10	21388	
	beccheggio (>)	0	1757	-61	-316	721	20816	
	beccheggio (<)	0	1757	62	196	-741	20816	

.

In grassetto nero sono evidenziati i valori max negativi; in grassetto rosso sono evidenziati i valori massimi positivi

Tabella 4.3.1: Risultati ai nodi vincolati per la combinazione di carico di Caso I

Combinazione di carico Caso II								navetta out
operativo statico con vento limite di esercizio (72km/h)	gravità standard	0	1758	2	-54	-39	20828	
	rollio (>)	153	1752	2	-54	-39	20111	
	rollio (<)	-153	1752	2	-54	-39	21388	
	beccheggio (>)	0	1757	-60	-310	692	20816	e nave
	beccheggio (>)	0	1757	63	202	-769	20816	all'asse
Sollevamento Bobcat	gravità standard	0	1706	0	-61	-1	20519	licolare
	rollio (>)	149	1699	0	-61	-1	19832	perpend
	rollio (<)	-149	1699	0	-61	-1	21050	braccio
	beccheggio (>)	0	1705	-60	-305	719	20507	
	beccheggio (<)	0	1705	60	183	-721	20507	

Tabella 4.3.2: Risultati ai nodi vincolati per la combinazione di carico di Caso II

Caso III								
	gravità standard	0	1807	2	-60	-39	22638	e
• • • • • • •	rollio (>)	158	1801	2	-60	-39	21896	io olar nave out)
intasamento chute di	rollio (<)	-158	1801	2	-60	-39	23208	racci ndic sse 1 etta
scarreo	beccheggio (>)	0	1806	-61	-323	755	22624	bı erpe all'a (nav
	beccheggio (>)	0	1806	65	203	-833	22625	ď
boom rest statico ralla	gravità standard	0	1280	22	24	-343	5333	
	vertical (>)	0	1280	24	40	-361	5334	
vertical force afone falla	vertical (<)	0	689	14	29	-203	2872	
Vertical and transverse	vertical, transverse (>)	0	981	-422	-2066	1291	4055	
force ralla	vertical, transverse (<)	0	988	461	2135	-1854	4151	in)
Vertical and longitudinal	vertical (>), longitudinal (>)	-332	1285	23	38	-345	6446	etta
	vertical (>), longitudinal (<)	332	1275	25	42	-377	4221	est (nave
force ralla	vertical (<), longitudinal (>)	-332	694	13	27	-187	3985	
	vertical (<), longitudinal (<)	332	684	17	47	-236	1761	m r
	vertical (>), transverse (>), longitudinal (>)	-332	1284	-155	-808	289	6427	in boo
	vertical (>), transverse (>), longitudinal (<)	332	1273	-152	-805	257	4202	ader
Vertical, transverse and longitudinal force ralla	vertical (>), transverse (<), longitudinal (>)	332	1276	203	889	-1010	4240	shiple
	vertical (>), transverse (<), longitudinal (<)	332	1276	203	889	-1010	4240	
	vertical (<), transverse (>), longitudinal (>)	-332	693	-165	-820	447	3966	
	vertical (<), transverse (>), longitudinal (<)	332	683	-163	-816	415	1741	

Combinazione di carico

	vertical (<), transverse (<), longitudinal (>)	-332	696	191	874	-821	4004	
	vertical (<), transverse (<), longitudinal (<)	332	685	193	877	-852	1779	
boom rest statico (1)	gravità standard	0	446	-22	0	0	0	
Vertical force alone (1)	vertical (>)	0	445	-16	0	0	0	
	vertical (<)	0	239	-6	0	0	0	
Vertical and transverse	vertical, transverse (>)	0	464	-345	0	0	0	
force (1)	vertical, transverse (<)	0	219	322	0	0	0	
Vertical and longitudinal force (1)	vertical (>), longitudinal (>)	0	441	-15	0	0	0	a
	vertical (>), longitudinal (<)	0	448	-18	0	0	0	ta in
	vertical (<), longitudinal (>)	0	235	-5	0	0	0	avet
	vertical (<), longitudinal (<)	0	240	-1	0	0	0	t (ni
	vertical (>), transverse (>), longitudinal (>)	0	491	-150	0	0	0	om res
	vertical (>), transverse (>), longitudinal (<)	0	497	-152	0	0	0	in boo
	vertical (>), transverse (<), longitudinal (>)	0	399	117	0	0	0	ader
Vertical, transverse and	vertical (>), transverse (<), longitudinal (<)	0	399	117	0	0	0	shiple
longitudinal force (1)	vertical (<), transverse (>), longitudinal (>)	0	285	-139	0	0	0	
	vertical (<), transverse (>), longitudinal (<)	0	291	-142	0	0	0	
	vertical (<), transverse (<), longitudinal (>)	0	186	129	0	0	0	
	vertical (<), transverse (<), longitudinal (<)	0	193	127	0	0	0	

boom rest statico (2)	gravità standard	0	422	0	0	0	0	
Vertical force alone (2)	vertical (>)	0	424	0	0	0	0	
	vertical (<)	0	229	0	0	0	0	
Vertical and transverse	vertical, transverse (>)	0	207	0	0	0	0	
force (2)	vertical, transverse (<)	0	446	0	0	0	0	
	vertical (>), longitudinal (>)	0	422	0	0	0	0	
Vertical and longitudinal	vertical (>), longitudinal (<)	0	426	0	0	0	0	in)
force (2)	vertical (<), longitudinal (>)	0	227	0	0	0	0	etta
	vertical (<), longitudinal (<)	0	232	0	0	0	0	lav
	vertical (>), transverse (>), longitudinal (>)	0	374	0	0	0	0	rest (1
	vertical (>), transverse (>), longitudinal (<)	0	378	0	0	0	0	mood
	vertical (>), transverse (<), longitudinal (>)	0	474	0	0	0	0	er in l
Vertical, transverse and longitudinal force (2)	vertical (>), transverse (<), longitudinal (<)	0	474	0	0	0	0	pload
	vertical (<), transverse (>), longitudinal (>)	0	179	0	0	0	0	shi
	vertical (<), transverse (>), longitudinal (<)	0	183	0	0	0	0	
	vertical (<), transverse (<), longitudinal (>)	0	275	0	0	0	0	
	vertical (<), transverse (<), longitudinal (<)	0	279	0	0	0	0	

Tabella 4.3.3: Risultati ai nodi vincolati per la combinazione di carico di Caso III

4.4 Valori massimi e minimi su ralla e appoggi

Risultati dei carichi sulla ralla (ottenuti selezionando tutti i nodi della ralla e andando a vedere il totale delle reazioni) e sugli appoggi (ottenuti selezionando i due nodi corrispondenti) del boom da Straus7:

Forze e momenti sulla ralla:

Fx massimo assoluto su ralla =	332	kN	
Fy massimo assoluto su ralla =	1807	kN	
Fz massimo assoluto su ralla =	461	kN	
Mx massimo assoluto su ralla =	2135	kNm	
My massimo assoluto su ralla =	1854	kNm	
Mz massimo assoluto su ralla =	23208	kNm	
Forze e momenti sull'appoggio 1:			
Fx massimo assoluto su boom res	st(1) =	0	kN
Fy massimo assoluto su boom res	t(1) =	497	kN
Fz massimo assoluto su boom res	t(1) =	345	kN
Mx massimo assoluto su boom res	0	kNm	
My massimo assoluto su boom res	0	kNm	
Mz massimo assoluto su boom res	0	kNm	
Forze e momenti sull'appoggio 2:			
Fx massimo assoluto su boom res	st(2) =	0	kN
Fy massimo assoluto su boom res	t(2) =	474	kN
Fz massimo assoluto su boom res	t(2) =	0	kN
Mx massimo assoluto su boom res	st(2) =	0	kNm
My massimo assoluto su boom res	st(2) =	0	kNm
Mz massimo assoluto su boom res	st(2) =	0	kNm

Title: Loads data on shiploader column support					
Project: COSCO Shipping - Y-SHL	11005				
Author: eng. Marco Da Re	Reference: C07960				

Figura 4.4.1: Shiploader in posizione di boom rest con indicati ralla e i due appoggi

4.5 Masse struttura

Mast	
Struttura	
G.ppo di comando per traino nastro	
Tramoggia di carico	
Tamburi di contrasto e rinvio	
Terne e nastro	
Passerelle	
	-
Boom	

Struttura	23,2 ton
Tamburi di contrasto e rinvio	1551 kg
Terne e nastro	4710 kg
G.ppo di comando traslazione navetta	6450 kg
Capofissi per catene	380 kg
Carelloni + ruote	2452 kg
Passerelle	3777 kg
Argano	

Shuttle

Struttura	17,5 ton
Tamburi di contrasto e rinvio	1525 kg
Terne e nastro	1830 kg
Capofissi per catene	380 kg
Tramoggia di scarico girevole completa con passerelle	6079 kg

Tiranteria e sollevamento braccio

Stutture	4600 kg
Cilindri di sollevamento	
Materiale	
Materiale mast	
Materiale braccio Materiale navetta	

Tabella 4.5.1: Riassunto dei pesi dello Shiploader divisi per gruppi

4.6 Ralla

Figura 4.6.1: Shiploader modellato in Straus7 con indicato il sistema di riferimento

Partendo dai dati ricavati da Straus7 per le varie combinazioni di carico e rielaborandoli si ottiene la tabella (4.6.1):

In cui:

•
$$S = \sqrt{F_x^2 + F_z^2}$$
 (3.6.1)

•
$$M = \sqrt{M_x^2 + M_z^2}$$
 (3.6.2)

•
$$A = F_y$$
 (3.6.3)

$$T = M_y \tag{3.6.4}$$

		S	Μ	Α	Т
Combinazione di carico Caso I		[kgf]	[kgmm]	[kgf]	[kgmm]
	gravità standard	1,45E-05	1,96E+09	1,68E+05	-1,11E+05
	rollio (>)	1,46E+04	1,89E+09	1,67E+05	-1,09E+05
strutture	rollio (<)	1,46E+04	2,02E+09	1,67E+05	-1,11E+05
	beccheggio (>)	5,86E+03	1,96E+09	1,68E+05	6,88E+07
	beccheggio (<)	5,86E+03	1,96E+09	1,68E+05	-6,90E+07
	gravità standard	1,57E-05	2,12E+09	1,79E+05	-1,27E+05
operativo statico	rollio (>)	1,56E+04	2,05E+09	1,79E+05	-1,26E+05
	rollio (<)	1,56E+04	2,18E+09	1,79E+05	-1,27E+05

	beccheggio (>)	6,26E+03	2,12E+09	1,79E+05	7,44E+07
	beccheggio (<)	6,26E+03	2,12E+09	1,79E+05	-7,47E+07
operativo statico con vento a 35 km/h	gravità standard	4,43E+00	2,19E+08	1,99E+04	-1,05E+05
	rollio (>)	1,56E+04	2,05E+09	1,79E+05	-1,03E+06
	rollio (<)	1,56E+04	2,18E+09	1,79E+05	-1,03E+06
	beccheggio (>)	6,21E+03	2,12E+09	1,79E+05	7,35E+07
	beccheggio (<)	6,30E+03	2,12E+09	1,79E+05	-7,56E+07

Combinazione di carico Caso II

ui cui ico Cuso II					
operativo statico	gravità standard	1,83E+02	2,12E+09	1,79E+05	-3,94E+06
	rollio (>)	1,56E+04	2,05E+09	1,79E+05	-3,94E+06
di esercizio	rollio (<)	1,56E+04	2,18E+09	1,79E+05	-3,94E+06
(72km/h)	beccheggio (>)	6,07E+03	2,12E+09	1,79E+05	7,06E+07
	beccheggio (>)	6,44E+03	2,12E+09	1,79E+05	-7,85E+07
Sollevamento Bobcat	gravità standard	1,55E-05	2,09E+09	1,74E+05	-1,24E+05
	rollio (>)	1,52E+04	2,02E+09	1,73E+05	-1,23E+05
	rollio (<)	1,52E+04	2,15E+09	1,73E+05	-1,24E+05
	beccheggio (>)	6,07E+03	2,09E+09	1,74E+05	7,33E+07
	beccheggio (<)	6,07E+03	2,09E+09	1,74E+05	-7,35E+07

Combinazione

di carico Caso III

	gravità standard	1,83E+02	2,31E+09	1,84E+05	-3,97E+06
	rollio (>)	1,61E+04	2,23E+09	1,84E+05	-3,97E+06
intasamento	rollio (<)	1,61E+04	2,37E+09	1,84E+05	-3,97E+06
chute di scarico	beccheggio (>)	6,25E+03	2,31E+09	1,84E+05	7,70E+07
	beccheggio (>)	6,62E+03	2,31E+09	1,84E+05	-8,50E+07
boom rest statico ralla	gravità standard	2,29E+03	5,44E+08	1,30E+05	-3,50E+07
Vertical force	vertical (>)	2,48E+03	5,44E+08	1,30E+05	-3,68E+07
alone ralla	vertical (<)	1,42E+03	2,93E+08	7,03E+04	-2,07E+07
Vertical and transverse force ralla	vertical, transverse (>)	4,31E+04	4,64E+08	1,00E+05	1,32E+08
	vertical, transverse (<)	4,70E+04	4,76E+08	1,01E+05	-1,89E+08
	vertical (>), longitudinal (>)	3,40E+04	6,57E+08	1,31E+05	-3,52E+07
Vertical and longitudinal force ralla	vertical (>), longitudinal (<)	3,40E+04	4,30E+08	1,30E+05	-3,84E+07
	vertical (<), longitudinal (>)	3,39E+04	4,06E+08	7,08E+04	-1,91E+07
	vertical (<), longitudinal (<)	3,39E+04	1,80E+08	6,97E+04	-2,41E+07
Vertical, transverse and	vertical (>), transverse (>), longitudinal (>)	3,74E+04	6,61E+08	1,31E+05	2,94E+07

longitudinal force ralla	vertical (>), transverse (>), longitudinal (<)	3,73E+04	4,36E+08	1,30E+05	2,62E+07
	vertical (>), transverse (<), longitudinal (>)	3,97E+04	4,42E+08	1,30E+05	-1,03E+08
	vertical (>), transverse (<), longitudinal (<)	3,97E+04	4,42E+08	1,30E+05	-1,03E+08
	vertical (<), transverse (>), longitudinal (>)	3,78E+04	4,13E+08	7,07E+04	4,56E+07
	vertical (<), transverse (>), longitudinal (<)	3,77E+04	1,96E+08	6,96E+04	4,24E+07
	vertical (<), transverse (<), longitudinal (>)	3,91E+04	4,18E+08	7,09E+04	-8,37E+07
	vertical (<), transverse (<), longitudinal (<)	3,92E+04	2,02E+08	6,99E+04	-8,69E+07

Tabella 4.6.1: Riassunto risultati in termini di S, M, A, T, in [kgf] e [kgmm]

Portando i risultati in N si ottiene:

S	Α	Μ	Τ
[kN]	[kN]	[kNm]	[kNm]
1,42E-07	1,65E+03	1,93E+04	-1,08E+03
1,44E+02	1,64E+03	1,86E+04	-1,07E+03
1,44E+02	1,64E+03	1,98E+04	-1,09E+03
5,75E+01	1,65E+03	1,92E+04	6,74E+05
5,75E+01	1,65E+03	1,92E+04	-6,77E+05
1,54E-07	1,76E+03	2,08E+04	-1,24E+03
1,53E+02	1,75E+03	2,01E+04	-1,23E+03
1,53E+02	1,75E+03	2,14E+04	-1,24E+03
6,14E+01	1,76E+03	2,08E+04	7,30E+05
6,14E+01	1,76E+03	2,08E+04	-7,32E+05
4,35E-02	1,95E+02	2,15E+03	-1,03E+03
1,53E+02	1,75E+03	2,01E+04	-1,01E+04
1,53E+02	1,75E+03	2,14E+04	-1,01E+04
6,09E+01	1,76E+03	2,08E+04	7,21E+05
6,18E+01	1,76E+03	2,08E+04	-7,41E+05

1,79E+00	1,76E+03	2,08E+04	-3,87E+04
1,53E+02	1,75E+03	2,01E+04	-3,87E+04
1,53E+02	1,75E+03	2,14E+04	-3,87E+04
5,96E+01	1,76E+03	2,08E+04	6,92E+05
6,32E+01	1,76E+03	2,08E+04	-7,70E+05
1,52E-07	1,71E+03	2,05E+04	-1,22E+03
1,49E+02	1,70E+03	1,98E+04	-1,21E+03
1,49E+02	1,70E+03	2,11E+04	-1,22E+03
5,95E+01	1,70E+03	2,05E+04	7,19E+05
5,95E+01	1,70E+03	2,05E+04	-7,21E+05

1,79E+00	1,81E+03	2,26E+04	-3,89E+04
1,58E+02	1,80E+03	2,19E+04	-3,89E+04
1,58E+02	1,80E+03	2,32E+04	-3,89E+04
6,13E+01	1,81E+03	2,26E+04	7,56E+05
6,49E+01	1,81E+03	2,26E+04	-8,33E+05
2,25E+01	1,28E+03	5,33E+03	-3,43E+05
2,43E+01	1,28E+03	5,33E+03	-3,61E+05
1,40E+01	6,89E+02	2,87E+03	-2,03E+05
4,22E+02	9,81E+02	4,55E+03	1,29E+06
4,61E+02	9,88E+02	4,67E+03	-1,85E+06
3,33E+02	1,28E+03	6,45E+03	-3,45E+05
3,33E+02	1,27E+03	4,22E+03	-3,77E+05
3,32E+02	6,94E+02	3,99E+03	-1,87E+05

3,33E+02	6,84E+02	1,76E+03	-2,36E+05
3,66E+02	1,28E+03	6,48E+03	2,89E+05
3,65E+02	1,27E+03	4,28E+03	2,57E+05
3,89E+02	1,28E+03	4,33E+03	-1,01E+06
3,89E+02	1,28E+03	4,33E+03	-1,01E+06
3,71E+02	6,93E+02	4,05E+03	4,47E+05
3,70E+02	6,83E+02	1,92E+03	4,15E+05
3,83E+02	6,96E+02	4,10E+03	-8,21E+05
3,84E+02	6,85E+02	1,98E+03	-8,52E+05

Tabella 4.6.2: Risultanti di forze e momenti in y e nel piano x,z, espresse in N

Inserendo poi dati in un grafico insieme ad un'approssimazione delle seguenti curve limite:

Figura 4.6.1: Curve limite della ralla

Osservando il grafico si nota che tutti i punti ricavati per le varie combinazioni di carico giacciono sotto la curva limite, non solo a quella statica (che sarebbe sufficiente per verificare la sicurezza nel caso in esame), ma anche di quella dinamica, dimostrando che mi trovo ampiamente in sicurezza.

Slewing Ring Load Data

Grazfico 4.6.2: Risultato delle combinazioni di carico di caso I, II, III, si nota che tutti i punti ricavati giacciono al di sotto della curva di limite dinamico (linea rossa)

CAPITOLO 5: Verifiche strutturali statiche

Figura 5.0.1: Disegno costruttivo AutoCAD del mast

Figura 5.0.2: Disegno costruttivo AutoCAD del boom

Figura 5.0.3: Disegno costruttivo AutoCAD dello shuttle

Il criterio di von Mises, noto anche come criterio di snervamento di von Mises o criterio dell'energia di distorsione, è utilizzato per determinare quando un materiale duttile cede o snerva sotto un carico multiaxiale. Questo criterio è ampiamente applicato nell'analisi strutturale e nella progettazione meccanica per valutare la resistenza dei materiali sotto diverse condizioni di carico.

Principio del Criterio di von Mises

Il criterio di von Mises afferma che il materiale cede quando l'energia di distorsione (energia associata alla deformazione di forma) raggiunge un valore critico. Questa condizione è espressa dalla seguente equazione:

$$\sigma_{VM} = \sqrt{\frac{1}{2} \cdot \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]}$$
(5.0.1)

dove:

- σ_{VM} è lo sforzo equivalente di von Mises.
- $\sigma_1, \sigma_2, \sigma_3$ sono gli sforzi principali.

Il materiale cede quando lo sforzo equivalente di von Mises supera lo sforzo di snervamento del materiale σ_y :

$$\sigma_{VM} \ge \sigma_y \tag{5.0.2}$$

Applicazione negli Elementi Finiti

Nel contesto dell'analisi agli elementi finiti (FEA), il criterio di von Mises viene utilizzato per verificare se i punti del modello soddisfano la condizione di snervamento sotto le condizioni di carico applicate. La procedura include i seguenti passaggi:

- 1. **Calcolo degli Sforzi:** Gli sforzi vengono calcolati in ogni punto del modello usando la FEA. Questi possono includere sforzi normali (σ_x , σ_y , σ_z) e sforzi di taglio (τ_{xy} , τ_{yz} , τ_{zx}).
- 2. Determinazione degli Sforzi Principali: Gli sforzi principali (σ_1 , σ_2 , σ_3) vengono determinati dai tensori di sforzo.
- 3. Calcolo dello Sforzo di von Mises: Utilizzando l'equazione di von Mises, si calcola lo sforzo equivalente per ciascun punto del modello.
- 4. **Confronto con lo Sforzo di Snervamento:** Lo sforzo equivalente di von Mises viene confrontato con lo sforzo di snervamento del materiale per determinare se il materiale cederà.

Importanza

L'utilizzo del criterio di von Mises è cruciale per la progettazione sicura ed efficiente di componenti meccanici, specialmente per materiali duttili come l'acciaio e l'alluminio, che subiscono deformazioni plastiche significative prima della rottura. Questo criterio aiuta a prevenire cedimenti strutturali, garantendo che i componenti possano sopportare le condizioni di carico previste durante la loro vita utile.

Esempio Pratico

Supponiamo di avere una piastra metallica soggetta a carichi di compressione e taglio. Nell'analisi agli elementi finiti, gli sforzi calcolati nei vari punti della piastra vengono convertiti in sforzi equivalenti di von Mises. Se in qualche punto della piastra lo sforzo equivalente supera lo sforzo di snervamento del materiale, quel punto è considerato a rischio di cedimento.

Conclusione

Le verifiche con il criterio di von Mises sono essenziali per valutare la resistenza e l'integrità strutturale dei componenti meccanici soggetti a carichi complessi. Questa metodologia fornisce una valutazione accurata della capacità di un materiale di sopportare carichi multiassiali senza snervare, assicurando che i progetti siano sicuri e affidabili.

5.1 Beam:

5.1.1 Caso senza inclinazione

OPERATIVO STATICO		OPERATIVO WIND 35 KM/H	
CASO I : $\sigma_a = 236,67$ Mpa		CASO I : $\sigma_a = 236,67$ Mpa	
	Von Mises apice sez	Von Mises apice sez	
	(MPa)		(MPa)
Beam 345: End 1	330,49	Beam 345: End 1	330,00
Beam 376: End 1	319,37	Beam 376: End 1	318,91
Beam 391: End 2	305,78	Beam 391: End 2	306,27
Beam 373: End 1	300,90	Beam 373: End 1	300,44
Beam 347: End 1	279,74	Beam 347: End 1	279,32
Beam 422: End 2	274,52	Beam 422: End 2	274,99
Beam 468: End 2	261,58	Beam 468: End 2	261,36
Beam 419: End 2	255,74	Beam 419: End 2	256,21
Beam 393: End 2	251,08	Beam 393: End 2	251,53
Beam 506: End 1	245,33	Beam 506: End 1	245,57
Beam 421: End 2	236,98	Beam 421: End 2	237,37
Beam 552: End 1	232,42	Beam 552: End 1	232,42

Tabella 5.1.1.1: Caso no inclinazione, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.

INTASAMENTO TRAMOGGIA

CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa	
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 345: End 1	328,42	Beam 345: End 1	390,03
Beam 376: End 1	317,43	Beam 376: End 1	378,92
Beam 391: End 2	307,88	Beam 391: End 2	367,36
Beam 373: End 1	298,97	Beam 373: End 1	356,74
Beam 347: End 1	277,98	Beam 422: End 2	330,57
Beam 422: End 2	276,51	Beam 347: End 1	326,86
Beam 468: End 2	260,66	Beam 419: End 2	308,32
Beam 419: End 2	257,74	Beam 393: End 2	298,55
Beam 393: End 2	252,94	Beam 468: End 2	297,87
Beam 506: End 1	246,33	Beam 506: End 1	282,48
Beam 421: End 2	238,62	Beam 421: End 2	281,47
Beam 550: End 1	232,46	Beam 375: End 1	257,86

Tabella 5.1.1.2: Caso no inclinazione, condizione operativa con vento limite di esercizio e intasamento tramoggia

BOBCAT

CASO II : $\sigma_a = 266,92$ Mpa	
	Von Mises apice sez
	(MPa)
Beam 345: End 1	317,56

Beam 376: End 1	305,49
Beam 391: End 2	293,08
Beam 373: End 1	287,96
Beam 347: End 1	273,57
Beam 422: End 2	262,58
Beam 468: End 2	256,82
Beam 393: End 2	245,33
Beam 419: End 2	244,58
Beam 506: End 1	240,57
Beam 552: End 1	231,91
Beam 550: End 1	231,36
Tabella 5.1.1.3: Caso no inclinazio	one, condizione di sollevamento Bobcat

5.1.2 Caso +5° di rollio

OPERATIVO STATICO OPERATIVO WIND 35 KM/H CASO I : $\sigma_a = 236,67$ Mpa CASO I : $\sigma_a = 236,67$ Mpa Von Mises apice sez Von Mises apice sez (MPa) (MPa) Beam 345: End 1 333,52 Beam 345: End 1 333,03 Beam 376: End 1 323,64 Beam 376: End 1 323,18 Beam 391: End 2 308,52 Beam 391: End 2 309,02 Beam 373: End 1 **306,20** Beam 373: End 1 305,74 Beam 347: End 1 283,00 Beam 347: End 1 282,58 Beam 422: End 2 277,75 Beam 422: End 2 278,22 Beam 468: End 2 272,42 Beam 468: End 2 272,20 259,98 Beam 419: End 2 Beam 419: End 2 260,46 Beam 506: End 1 256,06 Beam 506: End 1 256,30 Beam 393: End 2 253,62 Beam 393: End 2 254,06 Beam 421: End 2 239,08 Beam 421: End 2 239,47 235,52 Beam 552: End 1 Beam 552: End 1 235,52 Beam 554: End 1 234,91 Beam 554: End 1 234,91

Tabella 5.1.2.1: Caso con +5° di rollio, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.		INTASAMENTO TRAMOGGIA		
CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa		
	Von Mises apice sez	Von Mises apice sez		
	(MPa)		(MPa)	
Beam 345: End 1	331,45	Beam 345: End 1	393,53	
Beam 376: End 1	321,70	Beam 376: End 1	383,79	
Beam 391: End 2	310,62	Beam 391: End 2	370,55	
Beam 373: End 1	304,27	Beam 373: End 1	362,74	
Beam 347: End 1	281,24	Beam 422: End 2	334,32	
Beam 422: End 2	279,74	Beam 347: End 1	330,70	
Beam 468: End 2	271,50	Beam 419: End 2	313,17	
Beam 419: End 2	261,98	Beam 468: End 2	309,05	
Beam 506: End 1	257,05	Beam 393: End 2	301,63	
Beam 393: End 2	255,48	Beam 506: End 1	293,55	

Beam 421: End 2	240,72	Beam 421: End 2	284,01
Beam 552: End 1	235,53	Beam 465: End 2	260,20
Beam 554: End 1	234,92	Beam 375: End 1	259,56
Tabella 5.1.2.2: Caso con +5° di rollio, c	ondizione operati	va con vento limite di esercizi	o e intasamento della tramoggia

BOBCAT

CASO II : $\sigma_a = 266,92$ Mpa

Von Mises apice sez	
	(MPa)
Beam 345: End 1	321,35
Beam 376: End 1	310,75
Beam 391: End 2	296,56
Beam 373: End 1	294,35
Beam 347: End 1	275,32
Beam 468: End 2	268,01
Beam 422: End 2	266,79
Beam 506: End 1	251,63
Beam 419: End 2	249,92
Beam 393: End 2	246,47
Beam 552: End 1	235,05
Beam 554: End 1	234,48
Beam 550: End 1	233,54

Tabella 5.1.2.3: Caso con +5° di rollio, condizione di sollevamento Bobcat

5.1.3 Caso -5° di rollio

OPERATIVO STATICO	OPERATIVO WIND 35 KM/H		
CASO I : σ _a = 236,67 Mpa		CASO I : $\sigma_a = 236, e$	57 Mpa
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 345: End 1	324,9456699	Beam 345: End 1	324,4552251
Beam 376: End 1	312,6714442	Beam 376: End 1	312,2116304
Beam 391: End 2	300,7103614	Beam 391: End 2	301,2098544
Beam 373: End 1	293,3058747	Beam 373: End 1	292,848259
Beam 347: End 1	274,349679	Beam 347: End 1	273,9323061
Beam 422: End 2	269,2056799	Beam 422: End 2	269,6795474
Beam 419: End 2	249,552052	Beam 419: End 2	250,0267563
Beam 468: End 2	248,7498415	Beam 468: End 2	248,5296078
Beam 393: End 2	246,6377506	Beam 393: End 2	247,0792149
Beam 421: End 2	233,074237	Beam 421: End 2	233,4647124

Tabella 5.1.3.1: Caso con -5° di rollio, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.		INTASAMENTO T	RAMOGGIA
CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 295$,83 Mpa
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 345: End 1	322,8805672	Beam 345: End 1	383,5589004
Beam 376: End 1	310,7348705	Beam 376: End 1	371,1623506

Beam 391: End 2	302,8126371	Beam 391: End 2	361,3913496
Beam 373: End 1	291,3800444	Beam 373: End 1	348,0137981
Beam 347: End 1	272,5898954	Beam 422: End 2	324,3293163
Beam 422: End 2	271,2015845	Beam 347: End 1	320,5192732
Beam 419: End 2	251,5502548	Beam 419: End 2	301,131852
Beam 393: End 2	248,4949366	Beam 393: End 2	293,2243338
Beam 468: End 2	247,8236461	Beam 468: End 2	284,4173298
Beam 421: End 2	234,7194269	Beam 421: End 2	276,8083948

Tabella 5.1.3.2: Caso con -5° di rollio, condizione operativa con vento limite di esercizio e intasamento della tramoggia

BOBCAT

CASO II : $\sigma_a = 266,92 \text{ M}$		
	Von Mises apice sez	
	(MPa)	
Beam 345: End 1	311,352971	
Beam 376: End 1	297,9063527	
Beam 391: End 2	287,3608724	
Beam 373: End 1	279,3730453	
Beam 347: End 1	269,7458121	
Beam 422: End 2	256,3801115	
Beam 468: End 2	243,6696676	
Beam 393: End 2	242,3271769	
Beam 419: End 2	237,3890725	
Beam 506: End 1	227,6726292	
Tabella 5.1.3.3: Caso con -5° d	li rollio, condizione di sollev	amento Bobco

5.1.4 Caso +2° di beccheggio

OPERATIVO STA	TICO	OPERATIVO WIN	ND 35 KM/H
CASO I : $\sigma_a = 236$,	67 Mpa	CASO I : $\sigma_a = 236$,	67 Mpa
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 345: End 1	359,264733	Beam 345: End 1	358,7732703
Beam 376: End 1	346,560367	Beam 376: End 1	346,100569
Beam 373: End 1	328,2784334	Beam 373: End 1	327,8217958
Beam 347: End 1	305,3803287	Beam 347: End 1	304,9619583
Beam 391: End 2	276,0006605	Beam 391: End 2	276,5001564
Beam 468: End 2	273,1998374	Beam 468: End 2	272,9805981
Beam 375: End 1	249,1637288	Beam 375: End 1	248,780303
Beam 422: End 2	245,7871538	Beam 422: End 2	246,2610369
Beam 439: End 2	235,0755791	Beam 439: End 2	234,8041755
Beam 465: End 2	233,573318	Beam 465: End 2	233,3563911
Tabella 5.1.4.1: Caso con	n +2° di beccheggio, condizio	one operativa statica e op	perativa con vento a 35km/h
OPERATIVO WIN	DL.E.	INTASAMENTO 7	FRAMOGGIA
CASO II : $\sigma_a = 266$,92 Mpa	CASO III : $\sigma_a = 292$	5,83 Mpa

	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 345: End 1	357,1986056	Beam 345: End 1	424,1428646
Beam 376: End 1	344,624787	Beam 376: End 1	411,0408909

Beam 373: End 1	326,3535724	Beam 373: End 1	388,9248737
Beam 347: End 1	303,6205437	Beam 347: End 1	356,782286
Beam 391: End 2	278,1029489	Beam 391: End 2	332,0706085
Beam 468: End 2	272,2746363	Beam 468: End 2	311,9802237
Beam 422: End 2	247,7830591	Beam 422: End 2	296,7392668
Beam 375: End 1	247,5517483	Beam 375: End 1	286,2654959
Beam 439: End 2	233,9307505	Beam 419: End 2	273,9256716
Beam 506: End 1	233,2752719	Beam 439: End 2	267,1231192

Tabella 5.1.4.2: Caso con $+2^{\circ}$ di beccheggio, condizione operativa con vento limite di esercizio e intasamento della tramoggia

BOBCAT

CASO II : $\sigma_a = 266,9$	2 Mpa	
	Von Mises apice sez	
	(MPa)	
Beam 345: End 1	344,8820083	
Beam 376: End 1	331,3582638	
Beam 373: End 1	314,1493643	
Beam 347: End 1	298,3206411	
Beam 468: End 2	268,169848	
Beam 391: End 2	264,4976915	
Beam 375: End 1	244,5880508	
Beam 422: End 2	234,9902648	
Beam 552: End 1	231,3929977	
Beam 554: End 1	231,1830197	
Tabella 5.1.4.3: Caso con	+2° di beccheggio, condizio	ne di sollevamento Bobcat

5.1.5 Caso -2° di beccheggio:

OPERATIVO STATI	CO	OPERATIVO WI	ND 35 KM/H
CASO I : $\sigma_a = 236,67$	Mpa	CASO I : $\sigma_a = 236$,67 Mpa
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 391: End 2	335,1832872	Beam 391: End 2	335,6827851
Beam 422: End 2	302,9227209	Beam 422: End 2	303,3966038
Beam 345: End 1	301,3177098	Beam 345: End 1	300,8272618
Beam 376: End 1	291,7902886	Beam 376: End 1	291,3304909
Beam 419: End 2	284,822506	Beam 419: End 2	285,2972293
Beam 393: End 2	278,9140001	Beam 393: End 2	279,3544713
Beam 373: End 1	273,1526257	Beam 373: End 1	272,6950096
Beam 421: End 2	262,4285111	Beam 421: End 2	262,8199676
Beam 506: End 1	258,0884513	Beam 506: End 1	258,3237822
Beam 347: End 1	253,7608495	Beam 347: End 1	253,3424793
Beam 468: End 2	249,6473336	Beam 468: End 2	249,4270999
Beam 552: End 1	232,6886239	Beam 552: End 1	232,6907965
Beam 550: End 1	232,2893117	Beam 550: End 1	232,3018763
Tabella 5.1.5.1: Caso con -2	2° di beccheggio, condizion	e operativa statica e op	erativa con vento a 35km/h

OPERATIVO WIND L. E. CASO II : $\sigma_a = 266,92$ Mpa

INTASAMENTO TRAMOGGIA CASO III : $\sigma_a = 295,83$ Mpa

	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 391: End 2	337,2855833	Beam 391: End 2	402,2052927
Beam 422: End 2	304,9176301	Beam 422: End 2	364,0079069
Beam 345: End 1	299,2516125	Beam 345: End 1	355,4524362
Beam 376: End 1	289,8547091	Beam 376: End 1	346,3478487
Beam 419: End 2	286,8207242	Beam 419: End 2	342,3409273
Beam 393: End 2	280,7702028	Beam 393: End 2	330,8383964
Beam 373: End 1	271,2267894	Beam 373: End 1	324,121038
Beam 421: End 2	264,0746794	Beam 421: End 2	310,672875
Beam 506: End 1	259,0820366	Beam 506: End 1	297,8087439
Beam 347: End 1	252,0000681	Beam 347: End 1	296,5445729
Beam 468: End 2	248,7211382	Beam 468: End 2	283,4018066
Beam 418: End 2	233,1569693	Beam 418: End 2	271,6172971
Beam 552: End 1	232,6972495	Beam 394: End 2	264,1610967

Tabella 5.1.5.2: Caso con -2° di beccheggio, condizione operativa con vento limite di esercizio e intasamento della tramoggia

BOBCAT

CASO II : $\sigma_a = 266,9$	2 Mpa
	Von Mises apice sez
	(MPa)
Beam 391: End 2	321,301468
Beam 422: End 2	289,8608494
Beam 345: End 1	289,849672
Beam 376: End 1	279,2494872
Beam 419: End 2	272,6220428
Beam 393: End 2	272,3628935
Beam 373: End 1	261,4182221
Beam 421: End 2	255,379599
Beam 506: End 1	253,1040096
Beam 347: End 1	248,4986968
Beam 468: End 2	245,1526044
Beam 552: End 1	232,1585709
Beam 550: End 1	231,3231753

Tabella 5.1.5.3: Caso con -2° di beccheggio, condizione di sollevamento Bobcat

Figura 5.1.6: Results del caso senza inclinazione con vento limite di esercizio, con contouring della beam fibre stress

Figura 5.1.7: Andando ad evidenziare solo gli elementi più critici si nota che questi sono parte solamente delle passerelle

Andando ad evidenziare i beam più stressati si nota che quelli che sforano il limite dato dalla tensione di Von Mises sono solo elementi non strutturali, visto che costituiscono le passerelle laterali; ciò è dovuto al fatto che nella modellazione utilizzata i beam delle passerelle sono saldati al resto della struttura, mentre nella realtà presentano giunzioni bullonate, che consentono di far calare molto la tensione, dovuta alla flessione, trasferita dalla struttura alle passerelle.

5.1.2 Boom rest

Beam 552: End 1

Combinazione 1	Vertical force alone +	Combinazione 2	Vertical force alone -
CASO III : $\sigma_{a} = 295$.83 Mpa	CASO III : $\sigma_{2} = 295.83$ M	Ina
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 1	528,6859034	Beam 35: End 1	284,2448268
Beam 177: End 2	477,7492961	Beam 177: End 2	257,3408094
Beam 35: End 2	418,5127334	Beam 35: End 2	224,2920899
Beam 177: End 1	412,3002895	Beam 177: End 1	222,7863808
Beam 316: End 2	352,5434562	Beam 316: End 2	190,614687
Beam 126: End 1	351,4531555	Beam 126: End 2	189,0052177
Beam 126: End 2	351,0010318	Beam 316: End 1	189,0052177
Beam 316: End 1	351,0010318	Beam 126: End 1	188,4680102
Beam 552: End 1	284,1373005	Beam 552: End 1	153,003623
Beam 549: End 2	273.0147675	Beam 549: End 2	147.0024732
Tabella 5.1.2.1: Vertical f	force alone \pm		,
	Vertical and transverse		Vertical and transverse
Combinazione 3	force +	Combinazione 4	force -
CASO III : $\sigma_a = 295$.83 Mpa	CASO III : $\sigma_{a} = 295.83$ M	Лра
u u	Von Mises apice sez	· ,	Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 2	482,2456618	Beam 177: End 1	446,4291544
Beam 35: End 1	464,4213196	Beam 316: End 2	402,7696832
Beam 126: End 1	393,2520631	Beam 177: End 2	384,5136268
Beam 177: End 2	352,5790321	Beam 35: End 1	348,7118941
Beam 126: End 2	268,0008442	Beam 126: End 2	275,8924873
Beam 316: End 1	268,0008442	Beam 316: End 1	275,8924873
Beam 546: End 1	223,4061794	Beam 552: End 1	217,3269022
Beam 552: End 1	219,8272847	Beam 549: End 2	207,1777959
Beam 549: End 2	212,9392485	Beam 546: End 1	205,8771576
Beam 551: End 2	201,6948435	Beam 551: End 2	200,4567946
Tabella 5.1.2.2: Vertical a	and transverse force \pm		,
	Vertical and		Vertical and longitudinal
Combinazione 5	longitudinal force ++	Combinazione 6	force +-
CASO III : $\sigma_a = 295$.83 Mpa	CASO III : $\sigma_{a} = 295.83$ M	Лра
	Von Mises apice sez	a	Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 1	525,0316731	Beam 35: End 1	532,3392207
Beam 177: End 2	474,9971733	Beam 177: End 2	480,5015081
Beam 35: End 2	415,3171999	Beam 35: End 2	421,7075322
Beam 177: End 1	410,5968026	Beam 177: End 1	414,0038611
Beam 316: End 2	351,2187367	Beam 126: End 1	354,0952863
Beam 126: End 2	348,9211436	Beam 316: End 2	353,8682463
Beam 316: End 1	348,9211436	Beam 126: End 2	353,0820004
Beam 126: End 1	348,8110654	Beam 316: End 1	353,0820004

263,6389294 Beam 552: End 1

304,6358109

292	40558	16
L9 L.	+0330	10

Beam 549: End 2	253,6241923	Beam 549: End 2
Tabella 5.1.2.3: Vertical and longitudin	al force $++ e +-$	

Combinazione 7	Vertical and longitudinal force -+	Combinazione 8	Vertical and longitudinal force
CASO III : $\sigma_a = 295$.83 Mpa	CASO III : $\sigma_a = 295.83$ M	Лра
u u	Von Mises apice sez	u)	Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 1	532,3392207	Beam 35: End 1	286,9628174
Beam 177: End 2	480,5015081	Beam 177: End 2	260,2894875
Beam 35: End 2	421,7075322	Beam 177: End 1	226,1784854
Beam 177: End 1	414,0038611	Beam 35: End 2	225,1904819
Beam 126: End 1	354,0952863	Beam 316: End 2	193,6386802
Beam 316: End 2	353,8682463	Beam 126: End 2	191,0938407
Beam 126: End 2	353,0820004	Beam 316: End 1	191,0938407
Beam 316: End 1	353,0820004	Beam 126: End 1	189,4292823
Beam 552: End 1	304,6358109	Beam 552: End 1	173,5163581
Beam 549: End 2	292,4055816	Beam 549: End 2	166,3828735
Tabella 5.1.2.4: Vertical a	nd longitudinal force -+ e		
	Vertical, transverse and		Vertical, transverse and
Combinazione 9	longitudinal force +++	Combinazione 10	longitudinal force ++-
CASO III : $\sigma_a = 295$,83 Mpa	CASO III : $\sigma_a = 295,83$ M	Ира
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 1	548,3646484	Beam 35: End 1	555,6712712
Beam 35: End 2	479,2907007	Beam 35: End 2	485,6961011
Beam 177: End 2	468,670011	Beam 177: End 2	474,182437
Beam 126: End 1	200 1 (0 (00		
	398,169698	Beam 126: End 1	403,4628921
Beam 177: End 1	398,169698 359,6014725	Beam 126: End 1 Beam 177: End 1	403,4628921 363,0220828
Beam 177: End 1 Beam 126: End 2	398,169698 359,6014725 347,5643837	Beam 126: End 1 Beam 177: End 1 Beam 126: End 2	403,4628921 363,0220828 351,7348989
Beam 177: End 1 Beam 126: End 2 Beam 316: End 1	398,169698 359,6014725 347,5643837 347,5643837	Beam 126: End 1 Beam 177: End 1 Beam 126: End 2 Beam 316: End 1	403,4628921 363,0220828 351,7348989 351,7348989
Beam 177: End 1 Beam 126: End 2 Beam 316: End 1 Beam 316: End 2	398,169698 359,6014725 347,5643837 347,5643837 299,1504216	Beam 126: End 1 Beam 177: End 1 Beam 126: End 2 Beam 316: End 1 Beam 552: End 1	403,4628921 363,0220828 351,7348989 351,7348989 305,1406885
Beam 177: End 1 Beam 126: End 2 Beam 316: End 1 Beam 316: End 2 Beam 552: End 1	398,169698 359,6014725 347,5643837 347,5643837 299,1504216 264,1430418	Beam 126: End 1 Beam 177: End 1 Beam 126: End 2 Beam 316: End 1 Beam 552: End 1 Beam 316: End 2	403,4628921 363,0220828 351,7348989 351,7348989 305,1406885 301,811801

Tabella 5.1.2.5: Vertical, transverse and longitudinal force +++ e ++-

Combinazione 11	Vertical, transverse and longitudinal force +-+	Combinazione 12	Vertical, transverse and longitudinal force +
CASO III : $\sigma_a = 295$,83 Mpa	CASO III : $\sigma_a = 295,83$ M	Ира
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 1	501,7245309	Beam 35: End 1	509,031815
Beam 177: End 2	481,5757766	Beam 177: End 2	487,0685005
Beam 177: End 1	462,152111	Beam 177: End 1	465,5443465
Beam 316: End 2	403,7758273	Beam 316: End 2	406,415066
Beam 35: End 2	352,6950259	Beam 35: End 2	359,0409123
Beam 126: End 2	350,7678677	Beam 126: End 2	354,9134082
Beam 316: End 1	350,7678677	Beam 316: End 1	354,9134082
Beam 126: End 1	299,9525217	Beam 126: End 1	305,2163661

 Beam 552: End 1
 263,1368011
 Beam 552: End 1

 Beam 549: End 2
 252,4679892
 Beam 549: End 2

 Tabella 5.1.2.6: Vertical, transverse and longitudinal force +-+ e +-

304,1325633

291,2520512

Combinazione 13	Vertical, transverse and longitudinal force -++	Combinazione 14	Vertical, transverse and longitudinal force -+-
CASO III : $\sigma_a = 295$,83 Mpa	CASO III : $\sigma_a = 295,83$ M	Ира
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 35: End 1	303,9339767	Beam 35: End 1	311,2389625
Beam 35: End 2	285,4179491	Beam 35: End 2	291,8251564
Beam 177: End 2	248,3630025	Beam 177: End 2	253,8801065
Beam 126: End 1	235,3172772	Beam 126: End 1	240,613283
Beam 126: End 2	185,7624947	Beam 126: End 2	189,9366007
Beam 316: End 1	185,7624947	Beam 316: End 1	189,9366007
Beam 177: End 1	170,4112304	Beam 552: End 1	174,0082474
Beam 316: End 2	137,5274918	Beam 177: End 1	173,8379222
Beam 552: End 1	133,0099401	Beam 546: End 1	169,3744977
Beam 546: End 1	131,1422897	Beam 549: End 2	167,5619024

Tabella 5.1.2.7: Vertical, transverse and longitudinal force -++ e -+-

	Vertical, transverse and		Vertical, transverse and
Combinazione 15	longitudinal force+	Combinazione 16	longitudinal force
CASO III : $\sigma_a = 295$,83 Mpa	CASO III : $\sigma_a = 295,83$ M	Лра
	Von Mises apice sez		Von Mises apice sez
	(MPa)		(MPa)
Beam 177: End 1	272,8263039	Beam 177: End 1	276,2073117
Beam 177: End 2	261,2832119	Beam 177: End 2	266,7646035
Beam 35: End 1	257,2957311	Beam 35: End 1	264,6043413
Beam 316: End 2	242,0015237	Beam 316: End 2	244,6313775
Beam 126: End 2	189,0001051	Beam 126: End 2	193,1275218
Beam 316: End 1	189,0001051	Beam 316: End 1	193,1275218
Beam 35: End 2	159,5047379	Beam 552: End 1	172,9991312
Beam 126: End 1	137,3327517	Beam 35: End 2	165,7580492
Beam 552: End 1	132,0044916	Beam 549: End 2	165,245374
Beam 549: End 2	126,460654	Beam 546: End 1	162,7343006
Tabella 5 1 2 8. Vertical 1	ransvarse and longitudinal for	$r_{\rho} = + \rho =$	

Tabella 5.1.2.8: Vertical, transverse and longitudinal force --+ e --

🗜 SHL_boom rest solo gravità : Linear Static Analysis "\\fileshare\UserProfile\$\darmar16239\Desktop\TESI\SHL_boom rest comb11.LSA"

– 🗆 X

19057[0] Nodes 830[4] Beams 20349[0] Plates 0[0] Bricks 480[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C J (18,-30,-1) DS:5% TIRANTI

Figura 5.1.2.9: Shiploader in posizione di boom rest, visualizzazione risultati combinazione 11, vertical,, transverse and longitudinal force

/

/
/

I

⊞ 瞈 Ħ Ø 岱

19057[0] Nodes 830[4] Beams 20349[0] Plates 0[0] Bridts 480[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C J (16,-38,1) DS:5% TIRANTI

Figura 5.1.2.9: Shiploader in posizione di boom rest, visualizzazione risultati combinazione 11, vertical,, transverse and longitudinal force, evidenziando solamente i beam più stressati

5.2 Plate:

OPERATIVO STATICO		OPERATIVO WIND 35	
		KM/H	
CASO I : $\sigma_a =$	236,67 Mpa	CASO I : $\sigma_a =$	236,67 Mpa
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	187,474	Plate 10718	187,471
Plate 19303	186,301	Plate 19303	186,305
Plate 19675	180,859	Plate 19675	180,87
Plate 19865	178,986	Plate 19865	178,975
Plate 13417	177,929	Plate 13417	177,904
Plate 2349	164,357	Plate 2349	164,396
Plate 19246	164,028	Plate 19246	164,046
Plate 10341	162,761	Plate 10341	162,752
Plate 10659	161,561	Plate 10659	161,543
Plate 18928	161,34	Plate 18928	161,349
Plate 8221	158,847	Plate 8221	158,84
Plate 11921	156,772	Plate 11921	156,783
Plate 18268	156,771	Plate 18268	156,758
Plate 9544	156,428	Plate 9544	156,437

5.2.1 Caso senza inclinazione

Tabella 5.2.1.1: Caso no inclinazione, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.		INTASAMENTO TRAMOGGIA	
CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	187,459	Plate 10718	187,459
Plate 19303	186,317	Plate 19303	186,317
Plate 19675	180,904	Plate 19675	180,904
Plate 19865	178,941	Plate 19865	178,941
Plate 13417	177,824	Plate 13417	177,824
Plate 2349	164,52	Plate 2349	164,52
Plate 19246	164,104	Plate 19246	164,104
Plate 10341	162,724	Plate 10341	162,724
Plate 10659	161,487	Plate 10659	161,487
Plate 18928	161,378	Plate 18928	161,378
Plate 8221	158,817	Plate 8221	158,817
Plate 11921	156,819	Plate 11921	156,819
Plate 18268	156,717	Plate 18268	156,717
Plate 9544	156,468	Plate 9544	156,468

Tabella 5.2.1.2: Caso no inclinazione, condizione operativa con vento limite di esercizio e intasamento tramoggia

BOBCAT	
CASO II : σ_a =	= 266,92 Mpa

	Stress (VM)
	(MPa)
Plate 10718	184,729
Plate 19303	183,514
Plate 19675	178,579
Plate 19865	176,681
Plate 13417	175,361
Plate 2349	162,188
Plate 19246	161,724
Plate 10341	160,436
Plate 10659	159,285
Plate 18928	158,987
Plate 8221	158,705
Plate 11921	154,821
Plate 7762	154,363
Plate 18268	154 322

 Plate 18268
 154,322

 Tabella 5.2.1.3: Caso no inclinazione, condizione di sollevamento Bobcat

5.2.2 Caso con +5° di rollio

OPERATIVO STATICO		OPERATIVO WIND 35 KM/H	
CASO I : σa = 236,67 Mpa		CASO I : σa = 236,67 Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	184,257	Plate 10718	184,254
Plate 19303	182,993	Plate 19303	182,997
Plate 19675	179,049	Plate 19675	179,06
Plate 19865	177,163	Plate 19865	177,153
Plate 13417	176,616	Plate 13417	176,591
Plate 2349	163,542	Plate 2349	163,58
Plate 19246	161,63	Plate 19246	161,649
Plate 10341	159,985	Plate 10341	159,976
Plate 8221	159,64	Plate 8221	159,633
Plate 10659	159,117	Plate 10659	159,1
Plate 18928	158,479	Plate 18928	158,488
Plate 7762	157,034	Plate 7762	157,026
Plate 11921	155,168	Plate 11921	155,179
Plate 18268	153,754	Plate 18268	153,741
Plate 862	153,751	Plate 862	153,74
Plate 4714	153,702	Plate 4714	153,677

 Tabella 5.2.2.1: Caso con +5° di rollio, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.		INTASAMENTO TRAMOGGIA	
CASO II : σa = 266,92 Mpa		CASO III : $\sigma a = 295,83$ Mpa	
	Stress (VM)	Stress (VI	
	(MPa)		(MPa)
Plate 10718	184,242	Plate 10718	200,296
Plate 19303	183,01	Plate 19303	199,371

Plate 19675	179,094	Plate 19675	197,133
Plate 19865	177,118	Plate 19865	195,031
Plate 13417	176,511	Plate 13417	193,255
Plate 2349	163,705	Plate 2349	180,399
Plate 19246	161,706	Plate 19246	175,971
Plate 10341	159,948	Plate 10341	173,982
Plate 8221	159,61	Plate 10659	173,141
Plate 10659	159,044	Plate 18928	172,788
Plate 18928	158,516	Plate 11921	170,982
Plate 7762	157,001	Plate 862	169,304
Plate 11921	155,215	Plate 8221	168,442
Plate 862	153,704	Plate 18268	166,981
Plate 18268	153,7	Plate 9544	166,602
Plate 4714	153,598	Plate 10810	166,047

 Tabella 5.2.2.2: Caso con +5° di rollio, condizione operativa con vento limite di esercizio e intasamento della tramoggia

BOBCAT		
CASO II : σa = 266,92 Mpa		
	Stress (VM)	
	(MPa)	
Plate 10718	181,68	
Plate 19303	180,377	
Plate 19675	176,907	
Plate 19865	174,995	
Plate 13417	174,186	
Plate 2349	161,512	
Plate 8221	159,584	
Plate 19246	159,454	
Plate 10341	157,806	
Plate 10659	156,969	
Plate 18928	156,274	
Plate 7762	155,309	
Plate 11921	153,338	
Plate 4714	153,137	
Plate 862	151,903	
Plate 18268	151,454	

Tabella 5.2.2.3: Caso con +5° di rollio, condizione di sollevamento Bobcat

5.2.3 Caso con -5° di rollio

OPERATIVO STATICO		OPERATIVO WIND 35 KM/H	
CASO I : $\sigma_a = 236,67$ Mpa		CASO I : $\sigma_a = 236,67$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	189,272	Plate 10718	189,268
Plate 19303	188,198	Plate 19303	188,202
Plate 19675	181,296	Plate 19675	181,307

Plate 19865	179,45	Plate 19865	179,439
Plate 13417	177,894	Plate 13417	177,869
Plate 19246	165,182	Plate 19246	165,2
Plate 10341	164,304	Plate 10341	164,295
Plate 2349	163,927	Plate 2349	163,966
Plate 18928	162,98	Plate 18928	162,989
Plate 10659	162,78	Plate 10659	162,762
Plate 18268	158,606	Plate 18268	158,594
Plate 9544	158,276	Plate 9544	158,286
Plate 10810	157,285	Plate 10810	157,283
Plate 11921	157,186	Plate 11921	157,197
Plate 8221	156,848	Plate 8221	156,84

Tabella 5.2.3.1: Caso con -5° di rollio, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.		INTASAMENTO	
		TRAMOGGIA	
CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	189,256	Plate 10718	205,424
Plate 19303	188,214	Plate 19303	204,688
Plate 19675	181,341	Plate 19675	199,381
Plate 19865	179,404	Plate 19865	197,321
Plate 13417	177,79	Plate 13417	194,469
Plate 19246	165,258	Plate 2349	180,678
Plate 10341	164,268	Plate 19246	179,595
Plate 2349	164,089	Plate 10341	178,398
Plate 18928	163,017	Plate 18928	177,386
Plate 10659	162,706	Plate 10659	176,878
Plate 18268	158,553	Plate 11921	173,003
Plate 9544	158,316	Plate 18268	171,948
Plate 10810	157,276	Plate 9544	171,593
Plate 11921	157,233	Plate 862	171,32
Plate 8221	156,818	Plate 10810	171,149

Tabella 5.2.3.2: Caso con -5° di rollio, condizione operativa con vento limite di esercizio e intasamento della tramoggia

BOBCAT		
CASO II : $\sigma_a = 266,92$ Mpa		
	Stress (VM)	
	(MPa)	
Plate 10718	186,374	
Plate 19303	185,257	
Plate 19675	178,893	
Plate 19865	177,025	
Plate 13417	175,205	
Plate 19246	162,765	
Plate 10341	161,847	

Plate 2349	161,634
Plate 18928	160,492
Plate 10659	160,391
Plate 8221	156,62
Plate 18268	156,021
Plate 9544	155,71
Plate 11921	155,127
Plate 10810	155,002

Tabella 5.2.3.3: Caso con -5° di rollio, condizione di sollevamento Bobcat

5.2.4 Caso +2° di beccheggio

OPERATIVO STATICO		OPERATIVO WIND 35 KM/H	
CASO I : $\sigma_a = 236,67$ Mpa		CASO I : $\sigma_a = 236,67$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	187,325	Plate 10718	187,321
Plate 19303	186,243	Plate 19303	186,246
Plate 19865	179,918	Plate 19865	179,907
Plate 19675	179,732	Plate 19675	179,742
Plate 13417	179,239	Plate 13417	179,213
Plate 10341	163,089	Plate 10341	163,08
Plate 10659	162,802	Plate 10659	162,785
Plate 19246	162,59	Plate 19246	162,608
Plate 2349	161,604	Plate 2349	161,642
Plate 18928	160,813	Plate 18928	160,822
Plate 8221	159,086	Plate 8221	159,079
Plate 18268	157,91	Plate 18268	157,897
Plate 7762	157,056	Plate 7762	157,048
Plate 862	156,243	Plate 862	156,232
Plate 11921	155,692	Plate 11921	155,703

Tabella 5.2.4.1: Caso con +2° di beccheggio, condizione operativa statica e operativa con vento a 35km/h

OPERATIVO WIND L. E.		INTASAMENTO TRAMOGGIA	
CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	187,309	Plate 10718	203,542
Plate 19303	186,258	Plate 19303	202,661
Plate 19865	179,872	Plate 19865	197,893
Plate 19675	179,776	Plate 19675	197,825
Plate 13417	179,132	Plate 13417	196,171
Plate 10341	163,052	Plate 2349	178,086
Plate 10659	162,729	Plate 10341	177,278
Plate 19246	162,666	Plate 10659	177,053
Plate 2349	161,764	Plate 19246	176,868
Plate 18928	160,85	Plate 18928	175,119

Plate 8221	159,056	Plate 862	171,91
Plate 18268	157,853	Plate 11921	171,497
Plate 7762	157,022	Plate 18268	171,31
Plate 862	156,197	Plate 10810	169,096
Plate 11921	155,739	Plate 9544	168,705

 Tabella 5.2.4.2: Caso con +2° di beccheggio, condizione operativa con vento limite di esercizio e intasamento della tramoggia

BOBCAT	
CASO II : $\sigma_a = 2$	266,92 Mpa
	Stress (VM)
	(MPa)
Plate 10718	184,632
Plate 19303	183,401
Plate 19865	177,652
Plate 19675	177,413
Plate 13417	176,513
Plate 10341	160,804
Plate 10659	160,509
Plate 19246	160,303
Plate 2349	159,595
Plate 8221	158,888
Plate 18928	158,419
Plate 18268	155,437
Plate 7762	155,264
Plate 862	154,32
Plate 11921	153,697

 Tabella 5.2.4.3: Caso con +2° di beccheggio, condizione di sollevamento Bobcat

5.2.5 Caso -2° di beccheggio

OPERATIVO STATICO		OPERATIVO WIND 35 KM/H	
CASO I : $\sigma_a = 236,67$ Mpa		CASO I : $\sigma_a = 236,67$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	187,419	Plate 10718	187,416
Plate 19303	186,156	Plate 19303	186,16
Plate 19675	181,777	Plate 19675	181,787
Plate 19865	177,846	Plate 19865	177,835
Plate 13417	176,454	Plate 13417	176,43
Plate 2349	166,964	Plate 2349	167,003
Plate 19246	165,276	Plate 19246	165,294
Plate 10341	162,251	Plate 10341	162,242
Plate 18928	161,687	Plate 18928	161,696
Plate 10659	160,132	Plate 10659	160,114
Plate 8221	158,418	Plate 8221	158,411
Plate 11921	157,666	Plate 11921	157,677
Plate 9544	157,279	Plate 9544	157,289

Plate 18268	155,518	Plate 18268	155,506	
Tabella 5.2.5.1: Caso con -2° di beccheggio, condizione operativa statica e operativa con vento a 35km/h				

OPERATIVO WIND L. E.		INTASAMENTO TRAMOGGIA	
CASO II : $\sigma_a = 266,92$ Mpa		CASO III : $\sigma_a = 2$	295,83 Mpa
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10718	187,404	Plate 10718	203,498
Plate 19303	186,173	Plate 19303	202,711
Plate 19675	181,822	Plate 19675	199,968
Plate 19865	177,801	Plate 19865	195,724
Plate 13417	176,352	Plate 13417	192,848
Plate 2349	167,129	Plate 2349	184,201
Plate 19246	165,352	Plate 19246	179,843
Plate 10341	162,215	Plate 10341	176,244
Plate 18928	161,725	Plate 18928	176,19
Plate 10659	160,058	Plate 10659	174,094
Plate 8221	158,388	Plate 11921	173,592
Plate 11921	157,713	Plate 9544	170,653
Plate 9544	157,323	Plate 862	169,809
Plate 18268	155 467	Plate 10810	169 195

 Tabella 5.2.5.2: Caso con -2° di beccheggio, condizione operativa con vento limite di esercizio e intasamento della

 tramoggia

BOBCAT			
CASO II : $\sigma_a = 266,92$ Mpa			
	Stress (VM)		
	(MPa)		
Plate 10718	184,619		
Plate 19303	183,423		
Plate 19675	179,536		
Plate 19865	175,504		
Plate 13417	174,046		
Plate 2349	164,637		
Plate 19246	162,954		
Plate 10341	159,885		
Plate 18928	159,374		
Plate 8221	158,333		
Plate 10659	157,874		
Plate 11921	155,759		
Plate 9544	154,825		
Plate 7762	153,277		

Tabella 5.2.5.3: Caso con -2° di beccheggio, condizione di sollevamento Bobcat

Non è evidenziata alcuna cella perché nessun plate raggiunge la tensione limite di Von Mises.

19053[0] Nodes 828[6] Beams 20349[0] Plates 0[0] Brids 480[0] Links 0[0] Vertices 0[0] Facts 0[0] Paths mm N kg MPa C 1 (23,-29,1) DS:10% CARICATORE

Figura 5.2.5.4: Si nota come nessun plate raggiunga la tensione limite di Von Mises

5.2.6 Boom rest

1	Vertical force alone +	2	Vertical force alone
CASO III : $\sigma_a = 295,83$ Mpa		CASO III : $\sigma_a = 295$	5,83 Mpa
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 4323	251,877	Plate 4323	135,68
Plate 4449	199,242	Plate 4449	107,363
Plate 4330	186,641	Plate 4330	100,527
Plate 4450	182,05	Plate 4450	98,1055
Plate 4336	167,114	Plate 4336	90,023
Plate 17356	146,031	Plate 17356	78,4099
Plate 17355	144,705	Plate 17355	77,6008
Plate 4440	136,701	Plate 4440	73,6821
Plate 4488	126,354	Plate 4488	68,0837
Plate 4782	125,321	Plate 4782	67,8186
Plate 4486	122,246	Plate 4486	65,868
Plate 4489	121,627	Plate 4489	65,5353
Plate 4532	118,878	Plate 4532	64,0506
Plate 7762	115,48	Plate 7762	62,2433

Tabella 5.2.6.1: Vertical force alone \pm

3	Vertical and	4	Vertical and
	transverse force +		transverse force -
CASO III : $\sigma_a = 295,83$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 10094	219,39	Plate 4295	229,754
Plate 4291	210,26	Plate 10090	218,249
Plate 4323	202,691	Plate 10094	193,402
Plate 4295	184,793	Plate 4323	184,867
Plate 10104	175,356	Plate 4305	183,486
Plate 4301	167,333	Plate 10100	173,438
Plate 10090	162,622	Plate 4291	169,573
Plate 4330	152,745	Plate 4449	154,357
Plate 4449	152,381	Plate 10104	151,789
Plate 4305	145,003	Plate 4450	143,402
Plate 4450	136,849	Plate 4261	136,787
Plate 4336	133,851	Plate 4330	134,423
Plate 10060	130,805	Plate 4301	132,243
Plate 10100	126,63	Plate 10056	130,135

Tabella 5.2.6.2: Vertical and transverse force \pm

5	Vertical and	6	Vertical and
	longitudinal force		longitudinal force
	++		+-

CASO III : $\sigma_a = 295,83$ Mpa		CASO III : $\sigma_a = 295,83$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 4323	263,415	Plate 4323	268,73
Plate 4330	207,326	Plate 4449	214,5
Plate 4336	172,011	Plate 4330	198,501
Plate 4449	171,583	Plate 4450	196,382
Plate 4450	149,184	Plate 4336	178,439
Plate 4782	137,343	Plate 17356	156,609
Plate 17356	136,91	Plate 17355	155,148
Plate 17355	134,09	Plate 4440	148,31
Plate 4317	116,64	Plate 4488	135,842
Plate 4488	112,379	Plate 4782	134,11
Plate 4486	111,026	Plate 4486	131,31
Plate 4532	110,578	Plate 4489	130,694
Plate 4489	109,567	Plate 4532	127,543
Plate 4321	108,278	Plate 7762	124,36

Tabella 5.2.6.3: Vertical and longitudinal force ++ e +-

7	Vertical and	8	Vertical and
	longitudinal force -		longitudinal
	+		
CASO III : $\sigma_a = 295$,	83 Mpa	CASO III : $\sigma_a = 295,83$ Mpa	
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 4323	118,828	Plate 4323	152,65
Plate 4449	92,1085	Plate 4449	122,794
Plate 4330	88,6657	Plate 4450	112,61
Plate 4450	83,7762	Plate 4330	112,448
Plate 4336	78,6978	Plate 4336	101,432
Plate 17356	67,8314	Plate 17356	88,5075
Plate 17355	67,1577	Plate 17355	87,3571
Plate 4440	62,0824	Plate 4440	85,4534
Plate 4782	59,0306	Plate 4488	77,6739
Plate 4488	58,5985	Plate 4782	77,3403
Plate 4486	56,8069	Plate 4486	75,0275
Plate 4489	56,4716	Plate 4489	74,6988
Plate 4532	55,3864	Plate 4532	72,8007
Plate 7762	53,363	Plate 7762	71,258

Tabella 5.2.6.4: Vertical and longitudinal force -+ e -

9	Vertical, transverse	10	Vertical, transverse
	and longitudinal		and longitudinal
	force +++		force ++-
CASO III : $\sigma_a = 295,83$ Mpa		CASO III : $\sigma_a = 295$	5,83 Mpa
	Stress (VM)		Stress (VM)

	(MPa)		(MPa)
Plate 4323	238,616	Plate 4323	272,321
Plate 4449	183,604	Plate 4449	214,104
Plate 4330	178,472	Plate 4330	202,193
Plate 4450	166,41	Plate 4450	195,062
Plate 4336	157,917	Plate 4336	180,567
Plate 17355	139,679	Plate 17355	160,564
Plate 17356	138,321	Plate 17356	159,477
Plate 4440	122,049	Plate 4440	145,227
Plate 4488	117,094	Plate 4488	136,059
Plate 4782	114,459	Plate 4782	132,039
Plate 4486	113,675	Plate 4486	131,79
Plate 4489	112,933	Plate 4489	131,053
Plate 4532	110,843	Plate 4532	128,171
Plate 10094	108,071	Plate 7762	125,371

Tabella 5.2.6.5: Vertical, transverse and longitudinal force +++ e ++-

11	Vertical, transverse	12	Vertical, transverse					
	and longitudinal		and longitudinal					
	force +-+		force +					
CASO III : $\sigma_a = 295, \sigma_a = 295$	83 Mpa	CASO III : $\sigma_a = 295,83$ Mpa						
	Stress (VM)		Stress (VM)					
	(MPa)		(MPa)					
Plate 4323	231,434	Plate 4323	265,138					
Plate 4449	184,386	Plate 4449	214,913					
Plate 4330	171,088	Plate 4450	197,713					
Plate 4450	169,041	Plate 4330	194,81					
Plate 4336	153,66	Plate 4336	176,312					
Plate 17356	132,589	Plate 17356	153,745					
Plate 17355	128,866	Plate 4440	151,427					
Plate 4440	128,189	Plate 17355	149,75					
Plate 4782	118,608	Plate 4782	136,183					
Plate 4295	118,243	Plate 4488	135,635					
Plate 4488	116,653	Plate 4486	130,842					
Plate 10090	115,424	Plate 4489	130,349					
Plate 4486	112,706	Plate 4532	126,914					
Plate 4489	112,206	Plate 7762	123,349					

Tabella 5.2.6.6: Vertical, transverse and longitudinal force +-+ e +--

13	Vertical, transverse	14	Vertical, transverse
	and longitudinal		and longitudinal
	force -++		force -+-
CASO III : $\sigma_a = 295$,	83 Mpa	CASO III : $\sigma_a = 295$	5,83 Mpa
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 4323	122,42	Plate 4323	156,124

Plate 10094	95,6242	Plate 4449	122,227
Plate 4291	95,4908	Plate 4330	116,079
Plate 4330	92,3579	Plate 4450	111,12
Plate 4449	91,7428	Plate 4336	103,476
Plate 4450	82,4794	Plate 17355	93,4652
Plate 4336	80,8269	Plate 17356	91,8578
Plate 10104	77,3744	Plate 4291	85,9436
Plate 4301	76,6919	Plate 10094	84,2676
Plate 17355	72,5825	Plate 4440	82,2118
Plate 17356	70,7018	Plate 4488	77,7895
Plate 8427	65,0715	Plate 4486	75,4137
Plate 4295	62,1649	Plate 4489	74,9626
Plate 4440	59,0726	Plate 4782	74,5387

Tabella 5.2.6.7: Vertical, transverse and longitudinal force -++ e -+-

15	Vertical, transverse	16	Vertical, transverse
	and longitudinal		and longitudinal
	force+		torce+
CASO III : $\sigma_a = 295,8$	83 Mpa	CASO III : $\sigma_a = 295$,83 Mpa
	Stress (VM)		Stress (VM)
	(MPa)		(MPa)
Plate 4323	115,237	Plate 4323	148,942
Plate 4295	104,892	Plate 4449	123,045
Plate 10090	103,4	Plate 4450	113,777
Plate 4449	92,5103	Plate 4330	108,696
Plate 4450	85,0994	Plate 4336	99,2212
Plate 4330	84,9738	Plate 4295	93,7743
Plate 4305	84,6264	Plate 10090	93,6894
Plate 10100	82,8207	Plate 4440	88,4322
Plate 4336	76,5697	Plate 17356	86,1273
Plate 10094	70,7252	Plate 17355	82,6562
Plate 4440	65,1769	Plate 10094	82,0813
Plate 17356	64,9723	Plate 4782	78,6811
Plate 8415	64,41	Plate 4488	77,3718
Plate 4261	63,7047	Plate 4305	74,7695

Tabella 5.2.6.8: Vertical, transverse and longitudinal force --+ e ---

Anche in questo caso nessun elemento raggiunge la tensione limite di von mises.

19057[0] Nodes || 830[4] Beams || 20349[0] Plates || 0[0] Brids || 480[0] Links || 0[0] Vertices || 0[0] Faces || 0[0] Paths || mm || N || ka || MPa || C || J || (18,-30,-1) || D5:5% || TIRANTI || Figura 5.2.5.4: Nella configurazione di boom rest la macchina risulta ancora più in sicurezza

CAPITOLO 6: Verifiche strutturali a fatica

La fatica è un fenomeno che si verifica nei materiali sottoposti a carichi ciclici o variabili nel tempo, che può portare alla formazione di cricche e, infine, alla rottura del materiale stesso, anche a carichi inferiori rispetto al carico di rottura statico. Questo fenomeno è di grande importanza nell'ingegneria, poiché molti componenti strutturali e meccanici sono soggetti a carichi ripetuti durante il loro ciclo di vita.

Descrizione Tecnica della Fatica in Ingegneria

1. Definizione di Fatica

La fatica è il progressivo e localizzato danneggiamento di un materiale sotto l'azione di carichi ciclici o variabili. La vita a fatica di un componente è il numero di cicli di carico che può sopportare prima della formazione di una crepa macroscopica o della rottura.

2. Meccanismo di Fatica

Il meccanismo di fatica può essere suddiviso in tre fasi principali:

- 1. **Iniziazione della Cricca**: Piccole imperfezioni superficiali o difetti interni agiscono come concentratori di tensione, dove si formano inizialmente le microcrack.
- 2. **Propagazione della Cricca**: Le microcrack crescono progressivamente sotto l'azione dei carichi ciclici, con ogni ciclo di carico che provoca un'ulteriore avanzamento della cracca.
- 3. **Rottura Finale**: La cracca raggiunge una dimensione critica tale da non poter più sostenere il carico applicato, portando alla rottura catastrofica del componente.

3. Parametri e Curve di Fatica

- S-N Curve (Curva di Wöhler): Rappresenta la relazione tra il carico applicato (stress, S) e il numero di cicli fino alla rottura (N). Le S-N curve sono ottenute mediante prove sperimentali su campioni di materiale e mostrano una diminuzione del numero di cicli a rottura con l'aumento dello stress applicato.
- Limite di Fatica: Il valore dello stress al di sotto del quale un materiale può teoricamente sopportare un numero infinito di cicli di carico senza rompersi. Alcuni materiali, come gli acciai, possiedono un limite di fatica, mentre altri materiali, come l'alluminio, non lo hanno.

4. Fattori che Influenzano la Fatica

- Ampiezza del Carico: Maggiore è l'ampiezza del carico ciclico, minore è la vita a fatica.
- Media dello Stress (R-Ratio): Il rapporto tra il carico minimo e il carico massimo applicato influisce sulla vita a fatica. L'R-Ratio è definito come *R=σminσmaxR=σmaxσmin*.
- **Concentrazioni di Tensione**: Geometrie complesse, fori, filetti, e cambiamenti di sezione possono agire come concentratori di tensione, riducendo la vita a fatica.
- **Condizioni Ambientali**: Temperature elevate, corrosione e altri fattori ambientali possono accelerare i processi di fatica.
- **Superficie del Materiale**: La rugosità superficiale e i trattamenti superficiali influenzano la resistenza a fatica. Superfici lisce e trattate tendono ad avere una maggiore resistenza a fatica.

5. Prove di Fatica

Le prove di fatica sono essenziali per determinare la resistenza a fatica di un materiale e prevedere la vita a fatica dei componenti. Le principali tipologie di prove includono:

- **Prova di Rotazione Alternata (Rotating Beam Test)**: Un campione cilindrico è sottoposto a flessione rotante per generare un carico ciclico.
- Prova di Trazione-Compressione: Il campione è soggetto a cicli alternati di trazione e compressione.
- Prova di Flessione Alternata: Il campione è soggetto a flessioni cicliche.

6. Analisi della Fatica

- Approccio Stress-Life (S-N): Utilizzato per materiali soggetti a carichi alti e cicli bassi, basato sulle curve S-N.
- Approccio Strain-Life (ɛ-N): Utilizzato per materiali duttili soggetti a grandi deformazioni plastiche, considera sia la deformazione elastica che quella plastica.
- **Propagazione della Cracca (Paris' Law)**: Modello che descrive la velocità di crescita delle cracche in funzione dell'ampiezza dello stress e delle proprietà del materiale.

7. Progettazione contro la Fatica

- **Design for Infinite Life**: Progettazione per garantire che il componente non fallisca per fatica durante la sua vita operativa prevista.
- **Design for Finite Life**: Accettazione che il componente avrà una vita a fatica limitata e progettazione per resistere a un certo numero di cicli.
- Uso di Fattori di Sicurezza: Applicazione di fattori di sicurezza per tenere conto delle incertezze nei carichi applicati, nelle proprietà del materiale e nelle condizioni operative.

Conclusione

La fatica è un fenomeno critico da considerare nella progettazione e nell'analisi dei componenti strutturali e meccanici. Comprendere i meccanismi della fatica, i fattori che la influenzano e le metodologie di analisi è essenziale per garantire la sicurezza e la durata dei componenti ingegneristici. Utilizzando prove sperimentali, modelli matematici e approcci di progettazione adeguati, gli ingegneri possono prevedere e mitigare i rischi associati alla fatica.

6.1 Fatica sui beam

La fatica viene analizzata andando a trattare casi frequenti, quindi casi I, si è scelto in particolare il caso operativo statico con vento a 35 km/h, verificando il ciclo di carico dato dal rollio della nave tra $+5^{\circ}$ e -5° .

Shuttle:

19053101 Nodes || 828101 Beams || 20349101 Plates || 0101 Brids: || 480101 Links || 0101 Vertices || 0101 Paces || 0101 Paces || 0101 Pates || mm || N || ka || MPa || C || 3 || (30.-34.3) || DS:5% || CARICATORE || Figura 6.1.1: L'immagine rappresenta i gruppi boom e shuttle, nel caso operativo con vento a 35 km/h e rollio di +5°

Dato che l'ampiezza di variazione delle tensioni è molto ridotta si procede ad analizzare alcuni dei Beam più sollecitati.

Dalla norma FEM Section II:

Siano allora definiti k_{σ} , k_{τ} come di seguito:

$$k_{\sigma} = \frac{\sigma_{\min}}{\sigma_{\max}}$$
(6.1.2) $k_{\tau} = \frac{\tau_{\min}}{\tau_{\max}}$ (6.1.3)

Siano note la tensione di rottura (σ_R), la tensione di snervamento (σ_E), σ_W ottenuto dalla seguente tabella, materiale: Acciaio S355 JR EN 10025 (Fe510).

Notch effect k4, $\sigma_W = 177,2$ MPa

compo- nent		unweld	ed compor	nents - not	welded components - notch effect (steels Fe 360 to Fe 510)						
group	ΓV	V ₀		v ₁	V	V2				,	
	Fe 360 Fe 430	Fe 510	Fe 360 Fe 430	Fe 510	Fe 360 Fe 430	Fe 510	к _о	K ₁	К2	K ₃	К4
E1 E2 E3 E4	249.1 224.4 202.2 182.1	298.0 261.7 229.8 201.8	211.7 190.7 171.8 154.8	253.3 222.4 195.3 171.5	174.4 157.1 141.5 127.5	208.6 183.2 160.8 141.2	361.9 293.8 238.4 193.5	323.1 262.3 212.9 172.8	271.4 220.3 178.8 145.1	193.9 157.4 127.7 103.7	116.3 94.4 76.6 62.2
E5 E6 E7 E8	164.1 147.8 133.2 120.0	177.2 155.6 136.6 120.0	139.5 125.7 113.2 102.0	150.6 132.3 116.2 102.0	114.9 103.5 93.2 84.0	124.9 108.9 95.7 84.0	157.1 127.5 103.5 84.0	140.3 113.8 92.4 75.0	117.8 95.6 77.6 63.0	84.2 68.3 55.4 45.0	50.5 41.0 33.3 27.0

<u>VALUES OF</u> σ_{W} (N/mm²) DEPENDING ON THE COMPONENT GROUP AND CASE OF NOTCH EFFECT

Figura 6.1.4: Tabella atta a ricavare il valore di σ_W noto il gruppo del componente e l'effetto di intaglio

Si ottengono quindi: $\begin{aligned} \sigma_0 &= 1,66 \cdot \sigma_W = 83,83 \text{ MPa} \\ \sigma_{+1} &= 0,75 \cdot \sigma_E = 270 \text{ MPa} \end{aligned}$

Si importano da Straus7 i valori delle tensioni agli estremi del Beam che si vuole analizzare, ponendosi in sistema di riferimento locale, ottenendo i valori di Min Axial Stress, Max Axial Stress, Min Bending Stress 1, Max Bending Stress 2, Max Bending Stress 2, Min Fibre Stress, Max Fibre Stress, Mean Transverse Shear Stress 1, Mean Transverse Shear Stress 2, Max Transverse Shear Stress 1, Max Transverse Shear Stress 2, Max Transverse Shear Stress 2, Max Transverse Shear Stress 1, Max Transverse Shear Stress 2, Max Transverse Shear Stress 1, Max Transverse Shear Stress 2, Max Transverse Shear Stress 2, Max Transverse Shear Stress 2, Max Transverse Shear Stress 1, Max Transverse Shear Stress 2, Max Trans

Da cui si ottengono poi σ_0 e τ_{xy} nei punti 1, 2, 3, 4, 5, 6 evidenziati in figura (6.1.5).

Siano le tensioni ammissibili σ_a in trazione e compressione secondo norma FEM:

1. $K \leq 0$:

Trazione:
$$\sigma_t = \sigma_W \cdot \frac{5}{3-2k}$$
 (6.1.5)

Compressione:
$$\sigma_c = \sigma_W \cdot \frac{2}{1-k}$$
 (6.1.6)

2. K > 0:

Trazione:
$$\sigma_{t} = \sigma_{0} \cdot \frac{1}{1 - \left[1 - \frac{\sigma_{0}}{\sigma_{+1}}\right] k}$$
(6.1.7)

Compressione:
$$\sigma_c = 1, 2 \cdot \sigma_W$$
 (6.1.8)

Sia inoltre:
$$\tau_a = \frac{\sigma_{W0}}{\sqrt{3}}$$
 (6.1.9)

Si ottengono poi i rapporti:

$$l_{R\sigma} = \frac{\sigma_z}{\sigma_a} \tag{6.1.10}$$

$$l_{R\tau} = \frac{\tau_{xy MAX}}{\tau_a} \tag{6.1.11}$$

In ogni punto della sezione 1, 2, 3, 4.

Si estrae poi il massimo dei rapporti $l_{R\sigma}$, $l_{R\tau}$ tra i punti calcolati, e si verifica che sia minore o uguale a 1. Si procede infine con il check finale:

$$l_{R\sigma}^{2} + l_{R\sigma}^{2} \le 1 \tag{6.1.11}$$

Se la disuguaglianza è vera la sezione risulta verificata.

6.1.1 RISULTATI SHUTTLE:

19053[0] Nodes || 828[0] Beams || 20349[0] Plates || 0[0] Bridss || 480[0] Links || 0[0] Vertices || 0[0] Faces || 0[0] Paths || mm || N || kg || MPa || C || J || (31,-35,4) || DS:5% || CARICATORE || DS:5% || DS:5% || CARICATORE || DS:5% || CARICATORE

Figura 6.1.1.1: L'immagine rappresenta il solo gruppo navetta isolato, nel caso operativo con vento a 35 km/h e rollio di +5°

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 688:End 1	32,7515	32,7515	-0,30541	0,30541	-6,93481	6,93481	25,5112	39,9917	0,031702	0,388601	0,071155	0,872219	-0,25637
Beam 688:End 2	32,8401	32,8401	-0,65061	0,65061	-3,24746	3,24746	28,942	36,7381	0,031989	0,289752	0,0718	0,650351	-0,25637
Beam 688:End 1	33,0491	33,0491	-0,44768	0,447684	-6,99642	6,99642	25,605	40,4932	0,037939	0,385765	0,085155	0,865853	-0,18067
Beam 688:End 2	33,1192	33,1192	-0,69559	0,695585	-2,89221	2,89221	29,5314	36,707	0,038226	0,273025	0,085799	0,612807	-0,18067

Tabella 6.1.1.2

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σ _z	σ _z	σ_{z}	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σ_{z}	σ_{z}	τ_{xy}	τ_{xy}
25,5113	26,1221	39,9917	39,3809	0,16394	0,16394	0,16394	0,163935	32,5988	32,90421	0,132233	0,132233
28,942	30,24325	36,7382	35,437	0,06537	0,06537	0,06537	0,065373	32,5148	33,16541	0,033384	0,033384
25,605	26,50036	40,4932	39,5978	0,24303	0,24303	0,24303	0,243033	32,82526	33,27294	0,205094	0,205094
29,5314	30,92258	36,707	35,3158	0,13058	0,13058	0,13058	0,13058	32,77141	33,46699	0,092354	0,092354

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ_{a}	τ _a	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	25,604996	25,51128	0,996	237,60	285,12	102,31	0,11	0,24303	0,16394	0,675	0,00
2	29,531405	28,94203	0,980	237,60	285,12	102,31	0,12	0,13058	0,06537	0,501	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	26,500364	26,1221	0,986	237,60	285,12	102,31	0,11	0,24303	0,16394	0,675	0,00
2	30,922575	30,24325	0,978	237,60	285,12	102,31	0,13	0,13058	0,06537	0,501	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ _a	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	40,493204	39,99172	0,988	237,60	285,12	102,31	0,17	0,24303	0,16394	0,675	0,00
2	36,73817	36,706995	0,999	237,60	285,12	102,31	0,15	0,13058	0,06537	0,501	0,00
point 4				Tension	Compression						
End	$\sigma_{z MAX}$	$\sigma_{z MIN}$	k	σ _a	σ _a	τ _a	l _{Rσ}	txymax	txymin	k	l _{Rτ}
1	39,597836	39,3809	0,995	237,60	285,12	102,31	0,17	0,24303	0,16394	0,675	0,00

Tabella 6.1.1.4

$l_{R\sigma}$	for beam 688	0,17	$l_{R\tau}$	for beam 688	0,00
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,03	verified		
	Fatigue Check	verified			

Beam 607:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 607:End 1	42,0757	42,0757	-0,34093	0,340927	-8,9447	8,9447	32,79	51,3613	0,016339	0,325441	0,047952	0,606316	0,31781
Beam 607:End 2	42,0481	42,0481	-0,34106	0,341062	-3,80324	3,80324	37,9038	46,1924	0,016339	0,010895	0,047952	0,020299	0,31781
Beam 607:End 1	43,7924	43,7924	-0,50716	0,50716	-9,24355	9,24355	34,0417	53,5431	0,021258	0,338567	0,062388	0,63077	0,36115
Beam 607:End 2	43,82	43,82	-0,38014	0,380137	-3,7008	3,7008	39,739	47,9009	0,021258	0,024021	0,062388	0,044753	0,36115

Tabella 6.1.1.6

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σ_{z}	σ _z	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	$\tau_{\rm xy}$	σz	σ_{z}	τ_{xy}	τ_{xy}
32,7901	33,47193	51,3613	50,6795	0,65959	0,65959	0,65959	0,65959	41,90524	42,24616	0,643251	0,643251
37,9038	38,58592	46,1924	45,5103	0,34504	0,34504	0,34504	0,345044	41,87757	42,21863	0,328705	0,328705
34,0417	35,05601	53,5431	52,5288	0,72098	0,72098	0,72098	0,720979	43,53882	44,04598	0,699721	0,699721
39,7391	40,49934	47,9009	47,1407	0,40643	0,40643	0,40643	0,406433	43,62993	44,01007	0,385175	0,385175

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	34,04169	32,790073	0,963	237,60	285,12	102,31	0,14	0,72098	0,65959	0,915	0,01
2	39,739063	37,903798	0,954	237,60	285,12	102,31	0,17	0,40643	0,34504	0,849	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	35,05601	33,471927	0,955	237,60	285,12	102,31	0,15	0,72098	0,65959	0,915	0,01
2	40,499337	38,585922	0,953	237,60	285,12	102,31	0,17	0,40643	0,34504	0,849	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	53,54311	51,361327	0,959	237,60	285,12	102,31	0,23	0,72098	0,65959	0,915	0,01
2	47,900937	46,192402	0,964	237,60	285,12	102,31	0,20	0,40643	0,34504	0,849	0,00
point 4				Tension	Compression						
End	$\sigma_{z MAX}$	$\sigma_{z MIN}$	k	σ _a	σ _a	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	52,52879	50,679473	0,965	237,60	285,12	102,31	0,22	0,72098	0,65959	0,915	0,01
2	47,140663	45,510278	0,965	237,60	285,12	102,31	0,20	0,40643	0,34504	0,849	0,00

Tabella 6.1.1.8

l _{Rσ}		for beam 607	0,23	$l_{R\tau}$	for beam 607	0,01
			verified			verified
	Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,05	verified		
		Fatigue Check	verified			

Beam 661:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 661:End 1	42,2168	42,2168	-0,23486	0,234864	-3,56904	3,56904	38,4129	46,0207	0,018393	0,29303	0,053979	0,545932	-0,04551
Beam 661:End 2	42,2444	42,2444	-0,53715	0,537153	-17,3363	17,3363	24,3709	60,1178	0,0186	0,607576	0,054586	1,13195	-0,04551
Beam 661:End 1	43,9154	43,9154	-0,16079	0,160792	-3,93495	3,93495	39,8197	48,0112	0,01386	0,296619	0,040676	0,552619	-0,05651
Beam 661:End 2	43,8879	43,8879	-0,42203	0,422026	-17,8119	17,8119	25,6539	62,1218	0,014067	0,611165	0,041283	1,13864	-0,05651

Tabella 6.1.1.10

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σ _z	σ_{z}	σ _z	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σ_{z}	τ_{xy}	τ_{xy}
38,4129	38,88262	46,0207	45,551	0,26592	0,26592	0,26592	0,265917	42,09937	42,33423	0,247524	0,247524
24,3709	25,44525	60,1179	59,0435	0,58067	0,58067	0,58067	0,58067	41,97582	42,51298	0,56207	0,56207
39,8197	40,14124	48,0111	47,6896	0,25397	0,25397	0,25397	0,253968	43,835	43,9958	0,240108	0,240108
25,654	26,49803	62,1218	61,2778	0,56872	0,56872	0,56872	0,568721	43,67689	44,09891	0,554654	0,554654

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ _a	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	39,819658	38,412896	0,965	237,60	285,12	102,31	0,17	0,26592	0,25397	0,955	0,00
2	25,653974	24,370947	0,950	237,60	285,12	102,31	0,11	0,58067	0,56872	0,979	0,01
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	40,141242	38,882624	0,969	237,60	285,12	102,31	0,17	0,26592	0,25397	0,955	0,00
2	26,498026	25,445253	0,960	237,60	285,12	102,31	0,11	0,58067	0,56872	0,979	0,01
point 3				Tension	Compression						
End	σ_{zMAX}	(L) m	k	_							
	2 1011 111	^o z MIN	K	o _a	σ_{a}	τ_{a}	$I_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	48,011142	46,020704	0,959	237,60	σ _a 285,12	τ _a 102,31	l _{Rσ} 0,20	0,26592	0,25397	k 0,955	l _{Rτ} 0,00
1 2	48,011142 62,121826	46,020704 60,117853	0,959 0,968	237,60 237,60	σ _a 285,12 285,12	τ _a 102,31 102,31	l _{Rσ} 0,20 0,26	txymax 0,26592 0,58067	txymin 0,25397 0,56872	k 0,955 0,979	l _{Rτ} 0,00 0,01
1 2 point 4	48,011142 62,121826	46,020704 60,117853	0,959 0,968	0a 237,60 237,60 Tension	σ _a 285,12 285,12 Compression	τ _a 102,31 102,31	l _{Rσ} 0,20 0,26	txymax 0,26592 0,58067	txymin 0,25397 0,56872	k 0,955 0,979	l _{Rτ} 0,00 0,01
1 2 point 4 End	48,011142 62,121826 σ _{z MAX}	σ _{z MIN} 46,020704 60,117853 σ _{z MIN}	k	0a 237,60 237,60 Tension σa		τ _a 102,31 102,31 τ _a	l _{Rσ} 0,20 0,26 l _{Rσ}	txymax 0,26592 0,58067 txymax	txymin 0,25397 0,56872 txymin	k 0,955 0,979 k	l _{Rτ} 0,00 0,01 l _{Rτ}
1 2 point 4 End 1	48,011142 62,121826 σ _{z MAX} 47,689558	σ _{z MIN} 46,020704 60,117853 σ _{z MIN} 45,550976	k 0,955 k 0,955	σ _a 237,60 237,60 Tension σ _a 237,60		$ $	l _{Rσ} 0,20 0,26 l _{Rσ} 0,20	txymax 0,26592 0,58067 txymax 0,26592	txymin 0,25397 0,56872 txymin 0,25397	k 0,955 0,979 k 0,955	l _{Rτ} 0,00 0,01 l _{Rτ} 0,00

Tabella 6.1.1.12

$l_{R\sigma}$	for beam 661	0,26	$l_{R\tau}$	for beam 661	0,01
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,07	verified		
	Fatigue Check	verified			

Beam 603:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 603:End 1	50,2217	50,2217	-0,12234	0,122338	-8,39155	8,39155	41,7078	58,7355	0,010421	0,243513	0,030583	0,453679	0,14117
Beam 603:End 2	50,1941	50,1941	-0,5573	0,557297	-20,6449	20,6449	28,992	71,3963	0,010421	0,558059	0,030583	1,0397	0,14117
Beam 603:End 1	51,0352	51,0352	-0,23821	0,238209	-7,92512	7,92512	42,8719	59,1985	0,002813	0,284066	0,008255	0,529232	0,13872
Beam 603:End 2	51,0627	51,0627	-0,35561	0,355612	-21,4183	21,4183	29,2888	72,8367	0,002813	0,598612	0,008255	1,11525	0,13872

Tabella 6.1.1.14

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σ_{z}	σ _z	σz	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σ_{z}	τ_{xy}	τ_{xy}
41,7078	41,95249	58,7356	58,4909	0,3951	0,3951	0,3951	0,395099	50,16053	50,28287	0,384678	0,384678
28,9919	30,1065	71,3963	70,2817	0,70965	0,70965	0,70965	0,709645	49,91545	50,47275	0,699224	0,699224
42,8719	43,34829	59,1985	58,7221	0,4256	0,4256	0,4256	0,425598	50,9161	51,1543	0,422785	0,422785
29,2888	30,00001	72,8366	72,1254	0,74014	0,74014	0,74014	0,740144	50,88489	51,24051	0,737331	0,737331

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	42,871871	41,707812	0,973	237,60	285,12	102,31	0,18	0,4256	0,3951	0,928	0,00
2	29,288788	28,991903	0,990	237,60	285,12	102,31	0,12	0,74014	0,70965	0,959	0,01
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	43,348289	41,952488	0,968	237,60	285,12	102,31	0,18	0,4256	0,3951	0,928	0,00
2	30,106497	30,000012	0,996	237,60	285,12	102,31	0,13	0,74014	0,70965	0,959	0,01
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	59,198529	58,735588	0,992	237,60	285.12	102 31	0.25	0.4256	0 3951	0.928	0.00
2				-)	102,51	0,25	0,7230	0,5751	0,720	0,00
2	72,836612	71,396297	0,980	237,60	285,12	102,31	0,23	0,74014	0,70965	0,920	0,01
point 4	72,836612	71,396297	0,980	237,60 Tension	285,12 Compression	102,31	0,23	0,74014	0,70965	0,959	0,01
point 4	72,836612 σ _{z MAX}	71,396297 σ _{z MIN}	0,980 k	237,60 Tension σ _a	285,12 Compression σ _a	102,31 102,31 τ _a	0,23 0,31	0,74014 txymax	0,70965 txymin	0,928 0,959 k	0,01
point 4 End	72,836612 σ _{z MAX} 58,722111	71,396297 σ _{z MIN} 58,490912	0,980 k 0,996	237,60 Tension σ _a 237,60	285,12 Compression σ _a 285,12	102,31 102,31 τ _a 102,31	0,23 0,31 1 _{Rσ} 0,25	0,74014 txymax 0,4256	0,70965 txymin 0,3951	0,928 0,959 k 0,928	0,01 1 _{Rτ} 0,00

Tabella 6.1.1.16

l _{Rσ}	for beam 603	0,31	$l_{R\tau}$	for beam 603	0,01
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,09	verified		
	Fatigue Check	verified			
Beam 657:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 657:End 1	49,5772	49,5772	-0,4798	0,479797	-14,897	14,897	34,2004	64,9539	0,033433	0,642907	0,098118	1,19777	0,05156
Beam 657:End 2	49,6047	49,6047	-0,91999	0,919986	-0,04954	0,049543	48,6352	50,5742	0,03364	0,328362	0,098726	0,611756	0,05156
Beam 657:End 1	50,3044	50,3044	-0,40261	0,402608	-14,8906	14,8906	35,0112	65,5975	0,029147	0,652706	0,085539	1,21603	0,05622
Beam 657:End 2	50,2768	50,2768	-0,81827	0,818269	-0,25641	0,256408	49,2021	51,3515	0,029354	0,33816	0,086147	0,630011	0,05622

Tabella 6.1.1.18

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σz	σ _z	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σ_{z}	τ_{xy}	τ_{xy}
34,2004	35,16	64,954	63,9944	0,7279	0,7279	0,7279	0,727902	49,3373	49,8171	0,694469	0,694469
48,6352	50,47514	50,5742	48,7343	0,41356	0,41356	0,41356	0,413564	49,14471	50,06469	0,379924	0,379924
35,0112	35,81641	65,5976	64,7924	0,73808	0,73808	0,73808	0,738077	50,1031	50,5057	0,70893	0,70893
49,2021	50,83866	51,3515	49,7149	0,42374	0,42374	0,42374	0,423738	49,86767	50,68593	0,394384	0,394384

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	35,011192	34,200403	0,977	237,60	285,12	102,31	0,15	0,73808	0,7279	0,986	0,01
2	49,202123	48,635171	0,988	237,60	285,12	102,31	0,21	0,42374	0,41356	0,976	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	35,816408	35,159997	0,982	237,60	285,12	102,31	0,15	0,73808	0,7279	0,986	0,01
2	50,838661	50,475143	0,993	237,60	285,12	102,31	0,21	0,42374	0,41356	0,976	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	65,597608	64,953997	0,990	237,60	285,12	102,31	0,28	0,73808	0,7279	0,986	0,01
2											
	51,351477	50,574229	0,985	237,60	285,12	102,31	0,22	0,42374	0,41356	0,976	0,00
point 4	51,351477	50,574229	0,985	237,60 Tension	285,12 Compression	102,31	0,22	0,42374	0,41356	0,976	0,00
point 4 End	51,351477 σ _{z MAX}	50,574229 σ _{z MIN}	0,985 k	237,60 Tension σ _a	285,12 Compression σ _a	102,31 τ _a	0,22 Ι _{Rσ}	0,42374 txymax	0,41356 txymin	0,976 k	0,00 Ι _{Rτ}
point 4 End 1	51,351477 σ _{z MAX} 64,792392	50,574229 σ _{z MIN} 63,994403	0,985 k 0,988	237,60 Tension σ _a 237,60	285,12 Compression σ _a 285,12	102,31 τ _a 102,31	0,22 l _{Rσ} 0,27	0,42374 txymax 0,73808	0,41356 txymin 0,7279	0,976 k 0,986	0,00 l _{Rτ} 0,01

Tabella 6.1.1.20

$l_{R\sigma}$	for beam 657	0,28	$l_{R\tau}$	for beam 657	0,01
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,08	verified		
	Fatigue Check	verified			

Beam 623:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 623:End 1	31,856	31,856	-0,57935	0,579351	-5,64626	5,64626	25,6304	38,0816	0,008319	0,20135	0,018673	0,451933	-0,24951
Beam 623:End 2	31,9962	31,9962	-0,07985	0,079847	-0,326	0,325998	31,5903	32,402	0,008319	0,02413	0,018673	0,054159	-0,24951
Beam 623:End 1	31,9541	31,9541	-0,50289	0,502891	-5,67298	5,67298	25,7782	38,13	0,006075	0,191514	0,013635	0,429856	-0,24859
Beam 623:End 2	32,1313	32,1313	-0,13814	0,138143	-0,10927	0,109268	31,8839	32,3787	0,006075	0,006184	0,013635	0,013881	-0,24859

Tabella 6.1.1.22

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σz	σ_{z}	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σ_{z}	τ_{xy}	τ_{xy}
25,6304	26,78909	38,0816	36,9229	-0,0398	-0,0398	-0,0398	-0,039838	31,56632	32,14568	-0,048157	-0,04816
31,5904	31,75005	32,402	32,2424	-0,2171	-0,2171	-0,2171	-0,217058	31,95628	32,03612	-0,225377	-0,22538
25,7782	26,78401	38,13	37,1242	-0,051	-0,051	-0,051	-0,050997	31,70265	32,20555	-0,057072	-0,05707
31,8839	32,16018	32,3787	32,1024	-0,2363	-0,2363	-0,2363	-0,236327	32,06223	32,20037	-0,242402	-0,2424

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	25,778229	25,630389	0,994	237,60	285,12	102,31	0,11	-0,051	-0,0398	0,781	0,00
2	31,883889	31,590355	0,991	237,60	285,12	102,31	0,13	-0,2363	-0,2171	0,918	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	26,789091	26,784011	1,000	237,60	285,12	102,31	0,11	-0,051	-0,0398	0,781	0,00
2	32,160175	31,750049	0,987	237,60	285,12	102,31	0,14	-0,2363	-0,2171	0,918	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	38,129971	38,081611	0,999	237,60	285,12	102,31	0,16	-0,051	-0,0398	0,781	0,00
2	32,402045	32,378711	0,999	237,60	285,12	102,31	0,14	-0,2363	-0,2171	0,918	0,00
point 4				Tension	Compression						
								1			
End	$\sigma_{z MAX}$	$\sigma_{z MIN}$	k	σ_{a}	σ_{a}	τ _a	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
End 1	σ _{z MAX} 37,124189	σ _{z MIN} 36,922909	k 0,995	σ _a 237,60	σ _a 285,12	τ _a 102,31	l _{Rσ} 0,16	txymax -0,051	txymin -0,0398	k 0,781	l _{Rτ} 0,00

Tabella 6.1.1.24

$l_{R\sigma}$	for beam 623	0,16	$l_{R\tau}$	for beam 623	0,00
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,03	verified		
	Fatigue Check	verified			

Beam 643:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 643:End 1	16,3812	16,3812	-0,19503	0,195032	-6,61004	6,61004	9,57612	23,1863	0,09256	0,605273	0,271645	1,12766	-0,58173
Beam 643:End 2	16,3104	16,3104	-3,08878	3,08878	-11,2576	11,2576	1,96401	30,6568	0,092736	0,771175	0,272161	1,43674	-0,58173
Beam 643:End 1	16,8745	16,8745	-0,12647	0,126468	-7,74843	7,74843	8,99957	24,7494	0,08958	0,714984	0,262898	1,33206	-0,59597
Beam 643:End 2	16,776	16,776	-3,05171	3,05171	-12,7752	12,7752	0,949017	32,6029	0,089756	0,866069	0,263414	1,61354	-0,59597

Tabella 6.1.1.26

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σz	σ _z	σz	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σ_{z}	τ_{xy}	τ_{xy}
9,57613	9,966192	23,1863	22,7962	0,1161	0,1161	0,1161	0,1161	16,28368	16,47872	0,02354	0,02354
1,96402	8,14158	30,6568	24,4792	0,28218	0,28218	0,28218	0,282178	14,76601	17,85479	0,189442	0,189442
8,9996	9,252538	24,7494	24,4965	0,2086	0,2086	0,2086	0,208596	16,81127	16,93773	0,119016	0,119016
0,94909	7,05251	32,6029	26,4995	0,35986	0,35986	0,35986	0,359857	15,25015	18,30186	0,270101	0,270101

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	9,576128	8,999602	0,940	237,60	285,12	102,31	0,04	0,2086	0,1161	0,557	0,00
2	1,96402	0,94909	0,483	125,72	150,86	102,31	0,02	0,35986	0,28218	0,784	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	9,966192	9,252538	0,928	232,95	279,55	102,31	0,04	0,2086	0,1161	0,557	0,00
2	8,14158	7,05251	0,866	208,16	249,79	102,31	0,04	0,35986	0,28218	0,784	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	24,749398	23,186272	0,937	236,79	284,15	102,31	0,10	0,2086	0,1161	0,557	0,00
2	32,60291	30,65678	0,940	237,60	285,12	102,31	0,14	0,35986	0,28218	0,784	0,00
point 4				Tension	Compression						
End	$\sigma_{z MAX}$	$\sigma_{z MIN}$	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	24 496462	22 796208	0.931	233.94	280.73	102.31	0,10	0,2086	0,1161	0,557	0,00
	21,190102	22,790200	0,751		,	-)-	,		-	,	-

Tabella 6.1.1.28

$l_{R\sigma}$	for beam 643	0,14	$l_{R\tau}$	for beam 643	0,00
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,02	verified		
	Fatigue Check	verified			

Beam 704:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 704: End 1	15,9357	15,9357	-1,48175	1,48175	-0,15247	0,15247	14,3015	17,5699	0,038869	0,127132	0,087242	0,285349	0,01031
Beam 704: End 2	15,9357	15,9357	-0,19645	0,196447	-0,52551	0,525509	15,2138	16,6577	0,014718	0,14878	0,033034	0,333939	0,01031
Beam 704: End 1	16,1996	16,1996	-1,21614	1,21614	-0,18708	0,187075	14,7964	17,6029	0,015256	0,126737	0,034242	0,284462	0,01109
Beam 704: End 2	16,1996	16,1996	-0,49577	0,495767	-0,51565	0,515651	15,1882	17,2111	0,039407	0,149176	0,08845	0,334826	0,01109

Tabella 6.1.1.30

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σz	σ _z	σz	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σ _z	σ _z	τ_{xy}	τ_{xy}
14,3015	17,26498	17,5699	14,6064	0,17631	0,17631	0,17631	0,176309	15,19483	16,67658	0,13744	0,13744
15,2137	15,60664	16,6577	16,2648	0,17381	0,17381	0,17381	0,173806	15,83748	16,03392	0,159088	0,159088
14,7964	17,22867	17,6028	15,1705	0,15308	0,15308	0,15308	0,153082	15,59153	16,80767	0,137826	0,137826
15,1882	16,17972	17,211	16,2195	0,19967	0,19967	0,19967	0,199672	15,95172	16,44748	0,160265	0,160265

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ _a	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	14,796385	14,30148	0,967	237,60	285,12	102,31	0,06	0,17631	0,15308	0,868	0,00
2	15,213744	15,188182	0,998	237,60	285,12	102,31	0,06	0,19967	0,17381	0,870	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	17,26498	17,228665	0,998	237,60	285,12	102,31	0,07	0,17631	0,15308	0,868	0,00
2	16,179716	15,606638	0,965	237,60	285,12	102,31	0,07	0,19967	0,17381	0,870	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	17,602815	17,56992	0,998	237,60	285,12	102,31	0,07	0,17631	0,15308	0,868	0,00
2	17,211018	16,657656	0,968	237,60	285,12	102,31	0,07	0,19967	0,17381	0,870	0,00
point 4				Tension	Compression						
End	σ _{z MAX}	$\sigma_{z MIN}$	k	σ _a	σ _a	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	15 170535	14 60642	0.963	237.60	285.12	102.31	0.06	0.17631	0.15308	0.868	0,00
	15,170555	14,00042	0,705	237,00	200,12	102,01	0,00	-)		-)	,

Tabella 6.1.1.32

l _{Rσ}	for beam 704	0,07	$l_{R\tau}$	for beam 704	0,00
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,01	verified		
	Fatigue Check	verified			

6.1.2 RISULTATI BOOM

- 🗆 X

Figura 6.1.2.1: L'immagine rappresenta il solo gruppo boom isolato, nel caso operativo con vento a 35 km/h e rollio di +5°

Beam	32:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 32: End 1	43,1212	43,1212	-21,3623	21,3623	-16,8902	16,8902	4,8687	81,3738	0,598243	0,441213	1,34357	0,990901	-3,7508
Beam 32: End 2	42,7931	42,7931	-32,0054	32,0054	-5,55896	5,55896	5,22872	80,3575	0,597654	0,061842	1,34225	0,138888	-3,7508
Beam 32: End 1	43,8824	43,8824	-22,3669	22,3669	-16,1847	16,1847	5,33075	82,434	0,628641	0,392212	1,41184	0,880852	-3,73738
Beam 32: End 2	43,4933	43,4933	-33,7139	33,7139	-4,69258	4,69258	5,08685	81,8998	0,628051	0,07562	1,41051	0,169831	-3,73738

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σ _z	σz	σz	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σ _z	τ_{xy}	τ_{xy}
4,8687	47,5933	81,3737	38,6491	-2,7113	-2,7113	-2,7113	-2,711344	32,44005	53,80235	-3,309587	-3,30959
5,22874	69,23954	80,3575	16,3467	-3,0913	-3,0913	-3,0913	-3,091304	26,7904	58,7958	-3,688958	-3,68896
5,3308	50,0646	82,434	37,7002	-2,7165	-2,7165	-2,7165	-2,716527	32,69895	55,06585	-3,345168	-3,34517
5,08682	72,51462	81,8998	14,472	-3,0337	-3,0337	-3,0337	-3,033709	26,63635	60,35025	-3,66176	-3,66176

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ _a	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	5,3308	4,8687	0,913	226,41	271,70	102,31	0,02	-2,7165	-2,7113	0,998	-0,03
2	5,22874	5,08682	0,973	237,60	285,12	102,31	0,02	-3,0913	-3,0337	0,981	-0,03
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	50,0646	47,5933	0,951	237,60	285,12	102,31	0,21	-2,7165	-2,7113	0,998	-0,03
2	72,51462	69,23954	0,955	237,60	285,12	102,31	0,31	-3,0913	-3,0337	0,981	-0,03
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
End 1	σ _{z MAX} 82,434	σ _{z MIN} 81,3737	k 0,987	σ _a 237,60	σ _a 285,12	τ _a 102,31	l _{Rσ} 0,35	txymax -2,7165	txymin -2,7113	k 0,998	l _{Rτ} -0,03
End 1 2	σ _{z MAX} 82,434 81,89978	σ _{z MIN} 81,3737 80,35746	k 0,987 0,981	σ _a 237,60 237,60	σ _a 285,12 285,12	τ _a 102,31 102,31	l _{Rσ} 0,35 0,34	txymax -2,7165 -3,0913	txymin -2,7113 -3,0337	k 0,998 0,981	l _{Rτ} -0,03 -0,03
End 1 2 point 4	σ _{z MAX} 82,434 81,89978	σ _{z MIN} 81,3737 80,35746	k 0,987 0,981	σ _a 237,60 237,60 Tension	σ _a 285,12 285,12 Compression	τ _a 102,31 102,31	l _{Rσ} 0,35 0,34	txymax -2,7165 -3,0913	txymin -2,7113 -3,0337	k 0,998 0,981	l _{Rτ} -0,03 -0,03
End 1 2 point 4 End	σ _{z MAX} 82,434 81,89978 σ _{z MAX}	σ _{z MIN} 81,3737 80,35746 σ _{z MIN}	k 0,987 0,981 k	σ _a 237,60 237,60 Tension σ _a	σ _a 285,12 285,12 Compression σ _a	τ _a 102,31 102,31 τ _a	l _{Rσ} 0,35 0,34 l _{Rσ}	txymax -2,7165 -3,0913 txymax	txymin -2,7113 -3,0337 txymin	k 0,998 0,981 k	l _{Rτ} -0,03 -0,03 l _{Rτ}
End 1 2 point 4 End 1	σ _{z MAX} 82,434 81,89978 σ _{z MAX} 38,6491	σ _{z MIN} 81,3737 80,35746 σ _{z MIN} 37,7002	k 0,987 0,981 k 0,975	σ _a 237,60 237,60 Tension σ _a 237,60	σ _a 285,12 285,12 Compression σ _a 285,12	τ _a 102,31 102,31 τ _a 102,31	l _{Rσ} 0,35 0,34 l _{Rσ} 0,16	txymax -2,7165 -3,0913 txymax -2,7165	txymin -2,7113 -3,0337 txymin -2,7113	k 0,998 0,981 k 0,998	l _{Rτ} -0,03 -0,03 l _{Rτ} -0,03

$l_{R\sigma}$	for beam 32	0,35	$l_{R\tau}$	for beam 32	-0,03
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,12	verified		
	Fatigue Check	verified			

Beam 171:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 171: End 1	30,4234	30,4234	-2,47801	2,47801	-0,76431	0,764308	27,1811	33,6657	0,066995	0,137907	0,128746	0,380413	-0,74542
Beam 171:End 2	30,7515	30,7515	-5,03942	5,03942	-8,20739	8,20739	17,5047	43,9983	0,066995	0,241464	0,128746	0,666073	-0,74542
Beam 171:End 1	29,7242	29,7242	-1,6817	1,6817	-0,12839	0,12839	27,9141	31,5342	0,048889	0,106087	0,093951	0,292639	-0,71297
Beam 171:End 2	30,1132	30,1132	-3,80409	3,80409	-7,6333	7,6333	18,6758	41,5506	0,048889	0,210505	0,093951	0,580673	-0,71297

Tabella 6.1.2.6

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σz	σz	σz	σz	τ_{xy}	τ_{xy}	τ_{xy}	τ_{xy}	σz	σz	τ_{xy}	τ _{xy}
27,1811	32,1371	33,6657	28,7097	-0,5405	-0,5405	-0,5405	-0,540516	29,1844	31,66241	-0,607511	-0,60751
17,5047	27,58353	43,9983	33,9195	-0,437	-0,437	-0,437	-0,436959	28,23179	33,27121	-0,503954	-0,50395
27,9141	31,27751	31,5343	28,1709	-0,558	-0,558	-0,558	-0,557994	28,88335	30,56505	-0,606883	-0,60688
18,6758	26,28399	41,5506	33,9424	-0,4536	-0,4536	-0,4536	-0,453576	28,21116	32,01525	-0,502465	-0,50247

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ _a	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	27,91411	27,181082	0,974	237,60	285,12	102,31	0,12	-0,558	-0,5405	0,969	-0,01
2	18,67581	17,50469	0,937	237,00	284,39	102,31	0,08	-0,4536	-0,437	0,963	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	32,137102	31,27751	0,973	237,60	285,12	102,31	0,14	-0,558	-0,5405	0,969	-0,01
2	27,58353	26,28399	0,953	237,60	285,12	102,31	0,12	-0,4536	-0,437	0,963	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ	τ	15	txymax	txymin	1.	1
1				-	a	°a	rKα	uryman	exymm	K	IRτ
1	33,665718	31,53429	0,937	236,72	284,06	102,31	0,14	-0,558	-0,5405	к 0,969	-0,01
2	33,665718 43,99831	31,53429 41,55059	0,937 0,944	236,72 237,60	284,06 285,12	102,31 102,31	0,14 0,19	-0,558 -0,4536	-0,5405 -0,437	0,969 0,963	$1_{R\tau}$ -0,01 0,00
2 point 4	33,665718 43,99831	31,53429 41,55059	0,937 0,944	236,72 237,60 Tension	284,06 285,12 Compression	102,31 102,31	0,14 0,19	-0,558 -0,4536	-0,5405 -0,437	к 0,969 0,963	-0,01 0,00
2 point 4 End	33,665718 43,99831 σ _{z MAX}	31,53429 41,55059 σ _{z MIN}	0,937 0,944 k	236,72 237,60 Tension σ _a	284,06 285,12 Compression σ _a	τ _a τ _a	0,14 0,19	-0,558 -0,4536	-0,5405 -0,437 txymin	k	-0,01 0,00 l _{Rτ}
2 point 4 End 1	33,665718 43,99831 σ _{z MAX} 28,709698	31,53429 41,55059 σ _{z MIN} 28,17089	0,937 0,944 k 0,981	236,72 237,60 Tension σ _a 237,60	284,06 285,12 Compression σ _a 285,12	τ _a 102,31 102,31 τ _a 102,31	0,14 0,19 1 _{Rσ} 0,12	-0,558 -0,4536 txymax -0,558	-0,5405 -0,437 txymin -0,5405	k 0,969 0,963 k 0,969	¹ Rτ -0,01 0,00 1 _{Rτ} -0,01

$l_{R\sigma}$	for beam 171	0,19	$l_{R\tau}$	for beam 171	0,00
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,03	verified		
	Fatigue Check	verified			

Beam 16:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 16: End 1	33,9589	33,9589	-0,06052	0,06052	-6,30753	6,30753	27,5908	40,327	0,110478	0,228726	0,248118	0,513685	1,5409
Beam 16:End 2	34,2674	34,2674	-6,037	6,037	-5,5516	5,5516	22,6788	45,856	0,110842	0,201722	0,248935	0,45304	1,5409
Beam 16:End 1	31,7569	31,7569	-0,43077	0,43077	-5,41721	5,41721	25,9089	37,6049	0,129878	0,163531	0,291688	0,367268	1,21696
Beam 16:End 2	32,0654	32,0654	-6,73573	6,73573	-4,33755	4,33755	20,9921	43,1387	0,130242	0,190535	0,292505	0,427913	1,21696

Tabella 6.1.2.10

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σ _z	σz	σ _z	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	$\tau_{\rm xy}$	σz	σ_{z}	τ_{xy}	τ_{xy}
27,5909	27,71189	40,327	40,2059	1,8801	1,8801	1,8801	1,880104	33,92864	33,98916	1,769626	1,769626
22,6788	34,7528	45,856	33,782	1,85346	1,85346	1,85346	1,853464	31,2489	37,2859	1,742622	1,742622
25,9089	26,77046	37,6049	36,7433	1,51037	1,51037	1,51037	1,510369	31,54152	31,97229	1,380491	1,380491
20,9921	34,46358	43,1387	29,6672	1,53774	1,53774	1,53774	1,537737	28,69754	35,43327	1,407495	1,407495

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ _a	$ au_{a}$	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	27,59085	25,90892	0,939	237,60	285,12	102,31	0,12	1,8801	1,51037	0,803	0,02
2	22,6788	20,99212	0,926	231,73	278,07	102,31	0,10	1,85346	1,53774	0,830	0,02
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	27,71189	26,77046	0,966	237,60	285,12	102,31	0,12	1,8801	1,51037	0,803	0,02
2	34,7528	34,46358	0,992	237,60	285,12	102,31	0,15	1,85346	1,53774	0,830	0,02
point 3				Tension	Compression						
End	σ _{2 ΜΑΧ}	G a max	k	-			1				
	ZIWIAA	^o z MIN	к	0 _a	σ_{a}	τ_{a}	$I_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	40,32695	37,60488	0,932	234,80	σ _a 281,76	τ _a 102,31	ι _{Rσ} 0,17	1,8801	txymin 1,51037	k 0,803	l _{Rτ} 0,02
1 2	40,32695 45,856	37,60488 43,13868	0,932 0,941	234,80 237,60	σ _a 281,76 285,12	τ_{a} 102,31 102,31	l _{Rσ} 0,17 0,19	1,8801 1,85346	txymin 1,51037 1,53774	k 0,803 0,830	l _{Rτ} 0,02 0,02
1 2 point 4	40,32695 45,856	37,60488 43,13868	0,932 0,941	234,80 237,60 Tension	σ _a 281,76 285,12 Compression	τ _a 102,31 102,31	l _{Rσ} 0,17 0,19	txymax 1,8801 1,85346	txymin 1,51037 1,53774	k 0,803 0,830	l _{Rτ} 0,02 0,02
1 2 point 4 End	40,32695 45,856 σ _{z MAX}	37,60488 43,13868 σ _{z MIN}	k	0a 234,80 237,60 Tension σa		τ _a 102,31 102,31 τ _a	l _{Rσ} 0,17 0,19 l _{Rσ}	txymax 1,8801 1,85346 txymax	txymin 1,51037 1,53774 txymin	k 0,803 0,830 k	l _{Rτ} 0,02 0,02
1 2 point 4 End 1	40,32695 45,856 σ _{z MAX} 40,20591	σ _{z MIN} 37,60488 43,13868 σ _{z MIN} 36,74334	k 0,914	0a 234,80 237,60 Tension σa 226,65	σ_{a} 281,76 285,12 Compression σ_{a} 271,98	τ _a 102,31 102,31 τ _a 102,31	l _{Rσ} 0,17 0,19 l _{Rσ} 0,18	txymax 1,8801 1,85346 txymax 1,8801	txymin 1,51037 1,53774 txymin 1,51037	k 0,803 0,830 k 0,803	l _{Rτ} 0,02 0,02 l _{Rτ} 0,02

$l_{R\sigma}$	for beam 16	0,19	$l_{R\tau}$	for beam 16	0,02
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,04	verified		
	Fatigue Check	verified			

Beam 320:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 320:End 1	-5,46528	-5,46528	-1,66972	1,66972	-2,84417	2,84417	-9,97917	-0,95138	0,038403	0,060429	0,0738	0,166691	0,04349
Beam 320:End 2	-5,45005	-5,45005	-3,34231	3,34231	-1,16601	1,16601	-9,95837	-0,94172	0,024188	0,177571	0,046483	0,489826	0,04349
Beam 320:End 1	-5,12617	-5,12617	-1,20103	1,20103	-2,83247	2,83247	-9,15967	-1,09267	0,033963	0,056842	0,065268	0,156798	0,02559
Beam 320:End 2	-5,1414	-5,1414	-3,39605	3,39605	-1,42326	1,42326	-9,96071	-0,32209	0,048178	0,181158	0,092585	0,499718	0,02559

Tabella 6.1.2.14

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σ _z	σz	σ _z	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	$\tau_{\rm xy}$	σz	σ_{z}	τ_{xy}	τ_{xy}
-9,9792	-6,63973	-0,9514	-4,2908	0,14232	0,14232	0,14232	0,14232	-6,30014	-4,63042	0,103917	0,103917
-9,9584	-3,27375	-0,9417	-7,6264	0,24525	0,24525	0,24525	0,245247	-7,12121	-3,7789	0,221059	0,221059
-9,1597	-6,75761	-1,0927	-3,4947	0,1164	0,1164	0,1164	0,116397	-5,72669	-4,52566	0,082434	0,082434
-9,9607	-3,16861	-0,3221	-7,1142	0,25493	0,25493	0,25493	0,254928	-6,83943	-3,44338	0,20675	0,20675

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ _a	σ _a	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	-9,97917	-9,15967	0,918	228,35	274,02	102,31	0,04	0,14232	0,1164	0,818	0,00
2	-9,96071	-9,95837	1,000	237,60	285,12	102,31	0,03	0,25493	0,24525	0,962	0,00
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	-6,75761	-6,63973	0,983	237,60	285,12	102,31	0,02	0,14232	0,1164	0,818	0,00
2	-3,27375	-3,16861	0,968	237,60	285,12	102,31	0,01	0,25493	0,24525	0,962	0,00
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	-1,09267	-0,95139	0,871	209,77	251,72	102,31	0,00	0,14232	0,1164	0,818	0,00
2	-0,94173	-0,32209	0,342	109,70	131,64	102,31	0,01	0,25493	0,24525	0,962	0,00
point 4				Tension	Compression						
End	$\sigma_{z MAX}$	$\sigma_{z MIN}$	k	σ _a	σ _a	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	l _{Rτ}
1	-4,29083	-3,49473	0,814	191,21	229,46	102,31	0,02	0,14232	0,1164	0,818	0,00

$l_{R\sigma}$	for beam 320	0,04	4	$l_{R\tau}$	for beam 320	0,00
		verifi	ied			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2}$	= 0,0	0	verified		
	Fatigue Chec	k verifi	ied			

Beam 168:

	Min Axial Stress	Max Axial Stress	Min Bending Stress 1	Max Bending Stress 1	Min Bending Stress 2	Max Bending Stress 2	Min Fibre Stress	Max Fibre Stress	Mean Transverse Shear Stress 1	Mean Transverse Shear Stress 2	Max Transverse Shear Stress 1	Max Transverse Shear Stress 2	Max Torsional Stress
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Beam 168:End 1	-62,6377	-62,6377	-8,64418	8,64418	-0,23939	0,239393	-71,5213	-53,7541	0,272262	0,351982	0,611462	0,790502	-1,66064
Beam 168:End 2	-62,6935	-62,6935	-8,27819	8,27819	-1,81595	1,81595	-72,7877	-52,5994	0,272262	0,285846	0,611462	0,641969	-1,66064
Beam 168:End 1	-61,0188	-61,0188	-6,81912	6,81912	-2,75206	2,75206	-70,5899	-51,4476	0,213811	0,272341	0,48019	0,61164	-1,63335
Beam 168:End 2	-60,9629	-60,9629	-6,47027	6,47027	-0,14264	0,142643	-67,5758	-54,35	0,213811	0,365487	0,48019	0,820831	-1,63335

Tabella 6.1.2.18

point 1	point 2	point 3	point4	point1	point2	point3	point4	point5	point6	point5	point6
σ _z	σz	σ _z	σ _z	τ_{xy}	τ_{xy}	τ_{xy}	$\tau_{\rm xy}$	σz	σ _z	τ_{xy}	τ_{xy}
-71,521	-54,2329	-53,754	-71,042	-1,0364	-1,0364	-1,0364	-1,036396	-66,9598	-58,3156	-1,308658	-1,30866
-72,788	-56,2313	-52,599	-69,156	-1,1025	-1,1025	-1,1025	-1,102532	-66,8326	-58,5544	-1,374794	-1,37479
-70,59	-56,9517	-51,448	-65,086	-1,1472	-1,1472	-1,1472	-1,147198	-64,4284	-57,6092	-1,361009	-1,36101
-67,576	-54,6353	-54,35	-67,291	-1,0541	-1,0541	-1,0541	-1,054052	-64,198	-57,7278	-1,267863	-1,26786

point 1				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ _a	τ _a	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	-71,52127	-70,58998	0,987	237,60	285,12	102,31	0,25	-1,1472	-1,0364	0,903	-0,01
2	-72,78764	-67,57581	0,928	232,96	279,55	102,31	0,26	-1,1025	-1,0541	0,956	-0,01
point 2				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ_{a}	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	-56,95174	-54,23291	0,952	237,60	285,12	102,31	0,20	-1,1472	-1,0364	0,903	-0,01
2	-56,23126	-54,63527	0,972	237,60	285,12	102,31	0,20	-1,1025	-1,0541	0,956	-0,01
point 3				Tension	Compression						
End	σ_{zMAX}	σ_{zMIN}	k	σ_{a}	σ_{a}	τ _a	$l_{R\sigma}$	txymax	txymin	k	$l_{R\tau}$
1	-53,75413	-51,44762	0,957	237,60	285,12	102,31	0,19	-1,1472	-1,0364	0,903	-0,01
2	-54,34999	-52,59936	0,968	237,60	285,12	102,31	0,19	-1,1025	-1,0541	0,956	-0,01
point 4				Tension	Compression						
End	$\sigma_{z MAX}$	$\sigma_{z MIN}$	k	σ _a	σ _a	τ _a	l _{Rσ}	txymax	txymin	k	l _{Rτ}
1	-71,04249	-65,08586	0,916	227,62	273,14	102,31	0,26	-1,1472	-1,0364	0,903	-0,01
2	-69,15574	-67,29053	0,973	237,60	285,12	102,31	0,24	-1,1025	-1,0541	0,956	-0,01

$l_{R\sigma}$	for beam 168	0,26	$l_{R\tau}$	for beam 168	-0,01
		verified			verified
Combined check	$l_{R\sigma}^{2} + l_{R\tau}^{2} =$	0,07	verified		
	Fatigue Check	verified			

6.2 Fatica sui plates

Figura 6.2.1: L'immagine rappresenta il solo gruppo mast isolato, nel caso operativo con vento a 35 km/h e rollio di +5°

Anche in questo caso si va ad analizzare il caso di operativo statico con vento a 35 km/h.

Per tenere conto anche delle tensioni fuori piano τ_{xz} , τ_{yz} si apporta una modifica alla formula presente nella norma FEM, in quanto queste tensioni tangenziali non erano contemplate, se risulta verificata si è a maggior ragione in sicurezza.

Modifica:

$$\left(\frac{\sigma_{x,MAX}}{\sigma_{x,a}}\right)^{2} + \left(\frac{\sigma_{y,MAX}}{\sigma_{y,a}}\right)^{2} - \frac{\sigma_{x,MAX} \cdot \sigma_{y,MAX}}{\left|\sigma_{x,a}\right| \cdot \left|\sigma_{y,a}\right|} + \left(\frac{\tau_{xy,MAX}}{\tau_{xy,a}}\right)^{2} + \left(\frac{\tau_{yz,MAX}}{\tau_{xz,a}}\right)^{2} + \left(\frac{\tau_{yz,MAX}}{\tau_{yz,a}}\right)^{2} \le 1$$

$$(6.2.2)$$

Dato che l'ampiezza di variazione delle tensioni è molto ridotta procedo ad analizzare alcuni dei Plates più sollecitati.

Plate 28:

ROLLIO +5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 28: Node 654	38,0879	-11,4735	-1,59032	0,429299	-9,55309	0	8,87149	29,2164	-20,345
Plate 28: Node 655	38,4361	-10,0807	1,63793	0,429299	-9,55309	0	9,45181	28,9843	-19,5325
Plate 28: Node 528	133,537	13,6945	0,784164	0,429299	-9,55309	0	49,0771	84,4597	-35,3826
Plate 28: Node 527	133,189	12,3017	-2,44409	0,429299	-9,55309	0	48,4968	84,6919	-36,1951

Tabella 6.2.3

ROLLIO -5°	Stress (xx) (MPa)	Stress (yy) (MPa)	Stress (xy) (MPa)	Stress (xz) (MPa)	Stress (yz) (MPa)	Stress (zz) (MPa)	Stress (Mean) (MPa)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 28: Node 654	39,0082	-11,7388	-1,69651	0,449387	-9,79109	0	9,08983	29,9184	-20,8286
Plate 28: Node 655	39,3638	-10,3164	1,6185	0,449387	-9,79109	0	9,68248	29,6814	-19,9989
Plate 28: Node 528	136,717	14,022	0,741478	0,449387	-9,79109	0	50,2464	86,4709	-36,2245
Plate 28: Node 527	136,362	12,5996	-2,57354	0,449387	-9,79109	0	49,6538	86,7079	-37,0542

	σ _{xx}	σ _{yy}	$ au_{\mathrm{xy}}$	$ au_{ m xz}$	$ au_{yz}$
Plate 28: Node 654	38,0879	-11,4735	-1,59032	0,429299	-9,55309
Plate 28: Node 655	38,4361	-10,0807	1,63793	0,429299	-9,55309
Plate 28: Node 528	133,537	13,6945	0,784164	0,429299	-9,55309
Plate 28: Node 527	133,189	12,3017	-2,44409	0,429299	-9,55309
Plate 28: Node 654	39,0082	-11,7388	-1,69651	0,449387	-9,79109
Plate 28: Node 655	39,3638	-10,3164	1,6185	0,449387	-9,79109
Plate 28: Node 528	136,717	14,022	0,741478	0,449387	-9,79109
Plate 28: Node 527	136,362	12,5996	-2,57354	0,449387	-9,79109

Node	σ _{xxmax}	σ _{xxmin}	k	σ_{a}	σ_{a}	Iroxx	σ_{yymax}	σ_{yymin}	І _{гбуу}
1	39,008	38,088	0,976	237,600	285,120	0,164	-11,739	-11,474	0,041
2	39,364	38,436	0,976	237,600	285,120	0,166	-10,316	-10,081	0,036
3	136,717	133,537	0,977	237,600	285,120	0,575	14,022	13,695	0,059
4	136,362	133,189	0,977	237,600	285,120	0,574	12,600	12,302	0,053

Tabella 6.2.6

$ au_{a}$	$ au_{xymax}$	$ au_{xymin}$	k	I _{rtxy}	τ_{xzmax}	$ au_{xzmin}$	k	I _{rtxz}	τ_{yzmax}	$ au_{yzmin}$	k	І _{гтуz}
102,306	-1,697	-1,590	0,937	-0,017	0,449	-9,791	-21,788	0,004	-9,791	-9,553	0,976	-0,096
102,306	1,638	1,619	0,988	0,016	0,449	-9,791	-21,788	0,004	-9,791	-9,553	0,976	-0,096
102,306	0,784	0,741	0,946	0,008	0,449	-9,791	-21,788	0,004	-9,791	-9,553	0,976	-0,096
102,306	-2,574	-2,444	0,950	-0,025	0,449	-9,791	-21,788	0,004	-9,791	-9,553	0,976	-0,096

Tabella 6.2.7

$l_{R\sigma xx}$ for plate 28	0,575408	l _{Rσyy} for plate 28	0,05902
	verified		verified

Tabella 6.2.8

$l_{R\tau xy}$ for plate 28	0,01601	$l_{R\tau xz}$ for plate 28	0,00439	$l_{R\tau yz}$ for plate 28	-0,0957

Tabella 6.2.9

Combined check $l_{R\sigma xx}^2 + l_{R\sigma yy}^2 - l_{R\sigma xx} \cdot l_{R\sigma yy} + l_{R\tau xy}^2 + l_{R\tau xz}^2 + l_{R\tau yz}^2 =$	0,300876	Verified
Fatigue check	verified	

Pl	ate	15:

ROLLIO +5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx])	Stress (Dev[vv])
	(MPa)	(MPa)	(MPa)						
Plate 15: Node 563	19,7153	0,50808	3,48973	-0,867148	-0,573727	0	6,74111	12,9741	-6,23303
Plate 15: Node 624	21,9566	9,47332	1,60667	-0,867148	-0,573727	0	10,4766	11,4799	-1,00331
Plate 15: Node 625	44,2411	15,0445	0,847757	-0,867148	-0,573727	0	19,7619	24,4793	-4,71741
Plate 15: Node 655	41,9998	6,07922	2,73081	-0,867148	-0,573727	0	16,0264	25,9735	-9,94713

ROLLIO -5°	Stress (xx) (MPa)	Stress (yy) (MPa)	Stress (xy) (MPa)	Stress (xz) (MPa)	Stress (yz) (MPa)	Stress (zz) (MPa)	Stress (Mean) (MPa)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 15: Node 563	20,2866	0,544772	3,56202	-0,887831	-0,595933	0	6,9438	13,3428	-6,39903
Plate 15: Node 624	22,5913	9,76321	1,64137	-0,887831	-0,595933	0	10,7848	11,8064	-1,02161
Plate 15: Node 625	45,343	15,4512	0,855529	-0,887831	-0,595933	0	20,2647	25,0783	-4,81357
Plate 15: Node 655	43,0384	6,23271	2,77617	-0,887831	-0,595933	0	16,4237	26,6147	-10,191

	σ _{xx}	σ _{yy}	$ au_{\mathrm{xy}}$	$ au_{ m xz}$	$ au_{yz}$
Plate 15: Node 563	19,7153	0,50808	3,48973	-0,867148	-0,573727
Plate 15: Node 624	21,9566	9,47332	1,60667	-0,867148	-0,573727
Plate 15: Node 625	44,2411	15,0445	0,847757	-0,867148	-0,573727
Plate 15: Node 655	41,9998	6,07922	2,73081	-0,867148	-0,573727
Plate 15: Node 563	20,2866	0,544772	3,56202	-0,887831	-0,595933
Plate 15: Node 624	22,5913	9,76321	1,64137	-0,887831	-0,595933
Plate 15: Node 625	45,343	15,4512	0,855529	-0,887831	-0,595933
Plate 15: Node 655	43,0384	6,23271	2,77617	-0,887831	-0,595933

Node	σ_{xxmax}	σ_{xxmin}	k	σ_{a}	σ_{a}	Iroxx	σ_{yymax}	σ_{yymin}	I _{rσyy}
1	20,287	19,715	0,972	237,600	285,120	0,085	0,545	0,508	0,002
2	22,591	21,957	0,972	237,600	285,120	0,095	9,763	9,473	0,041
3	45,343	44,241	0,976	237,600	285,120	0,191	15,451	15,045	0,065
4	43,038	42,000	0,976	237,600	285,120	0,181	6,233	6,079	0,026

Tabella 6.2.13

$ au_{a}$	$ au_{xymax}$	$ au_{xymin}$	k	I _{rtxy}	τ_{xzmax}	$ au_{xzmin}$	k	I _{rtxz}	τ_{yzmax}	$ au_{yzmin}$	k	I _{rtyz}
102,306	3,562	3,490	0,980	0,035	-0,888	-0,596	0,671	-0,009	-0,596	-0,574	0,963	-0,006
102,306	1,641	1,607	0,979	0,016	-0,888	-0,596	0,671	-0,009	-0,596	-0,574	0,963	-0,006
102,306	0,856	0,848	0,991	0,008	-0,888	-0,596	0,671	-0,009	-0,596	-0,574	0,963	-0,006
102,306	2,776	2,731	0,984	0,027	-0,888	-0,596	0,671	-0,009	-0,596	-0,574	0,963	-0,006

Tabella 6.2.14

$l_{R\sigma xx}$ for plate 15	0,190838	$l_{R\sigma yy}$ for plate 15	0,06503
	verified		verified
T 1 11 () 15			

Tabella 6.2.15

$l_{R\tau xy}$ for plate 15	0,034817	$l_{R\tau xz}$ for plate 15	-0,008678	$l_{R\tau yz}$ for plate 15	-0,00582

Tabella 6.2.16

Combined check $l_{R\sigma xx}^2 + l_{R\sigma yy}^2 - l_{R\sigma xx} \cdot l_{R\sigma yy} + l_{R\tau xy}^2 + l_{R\tau xz}^2 + l_{R\tau yz}^2 =$	0,02945	Verified
Fatigue check	verified	

Plate 41:

ROLLIO +5°	Stress (xx) (MPa)	Stress (yy) (MPa)	Stress (xy) (MPa)	Stress (xz) (MPa)	Stress (yz) (MPa)	Stress (zz) (MPa)	Stress (Mean) (MPa)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 41: Node 175	119,895	4,82032	4,85791	0,139036	14,0721	0	41,5717	78,3231	-36,7514
Plate 41: Node 238	119,747	4,22774	4,07299	0,139036	14,0721	0	41,3248	78,4218	-37,097
Plate 41: Node 274	84,2345	-4,65027	4,18678	0,139036	14,0721	0	26,5281	57,7065	-31,1784
Plate 41: Node 272	84,3827	-4,05769	4,9717	0,139036	14,0721	0	26,775	57,6077	-30,8327

Tabella 6.2.18

ROLLIO -5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx])	Stress (Dev[yy])
	(MPa)	(MPa)	(MPa)						
Plate 41: Node 175	123,067	4,96482	5,04905	0,152485	14,4317	0	42,6773	80,3897	-37,7124
Plate 41: Node 238	122,907	4,32528	4,23894	0,152485	14,4317	0	42,4108	80,4963	-38,0855
Plate 41: Node 274	86,4664	-4,78489	4,35577	0,152485	14,4317	0	27,2272	59,2392	-32,0121
Plate 41: Node 272	86,6263	-4,14534	5,16588	0,152485	14,4317	0	27,4936	59,1326	-31,639

			σ_{xx}		σ _{yy}		τ_{xy}		τ,	z	$ au_{yz}$	
Plate 41	: Node 17:	5	119,895		4,82032		4,85791		0,139	9036	14,	0721
Plate 41	: Node 238	3	119,747		4,22774		4,07299		0,139	9036	14,	0721
Plate 41	: Node 274	1	84,2345		-4,65027		4,18678		0,139036		14,0721	
Plate 41	: Node 272	2	84,3827		-4,05769		4,9717		0,139036		14,0721	
Plate 41	: Node 175	5	123,067		4,96482		5,04905		0,152	2485	14,	4317
Plate 41	: Node 238	3	122,907		4,32528		4,23894		0,152	2485	14,	4317
Plate 41	: Node 274	1	86,4664		-4,78489		4,35577		0,152	2485	14,	4317
Plate 41	: Node 272	2	86,6263		-4,14534		5,16588		0,152	2485	14,	4317
Tabella 6.2.2	0											
Node		σ_{xxmax}	σ _{xxmin}	k		σ_{a}	σ_{a}	I _{rσxx}	σ _{yy}	max	σ _{yymin}	$I_{r\sigma yy}$
1		123,067	119,895	0,9	74	237,600	285,120	0,518	4,9	65	4,820	0,021
2		122,907	2,907 119,747 0,974 237,600					0,517	4,3	25	4,228	0,018
3		86,466	,466 84,235 0,974 237,600					0,364	-4,7	- 185	4,650	0,017
4		86,626	84,383	0,9	0,974 237,600		285,120	0,365	65 -4,145		4,058	0,015
Tabella 6.2.2	Tabella 6.2.21											
$ au_{\mathrm{a}}$	$ au_{xymax}$	$ au_{xymin}$	k	Irtxy	τ_{xzmax}	$ au_{xzmin}$	k	Irtxz	τ _{yzm}	_{ax} $ au_{yzmi}$	n k	I _{rtyz}
102,306	5,049	4,858	0,962	0,049	0,152	14,432	94,643	0,001	14,4	32 14,07	0,975	0,141
102,306	4,239	4,073	0,961	0,041	0,152	14,432	94,643	0,001	14,4	32 14,07	0,975	0,141
102,306	4,356	4,187	0,961	0,043	0,152	14,432	94,643	0,001	14,4	32 14,07	0,975	0,141
102,306	5,166	4,972	0,962	0,050	0,152	14,432	94,643	0,001	14,4	32 14,07	0,975	0,141
Tabella 6.2.2	2											
	$l_{R\sigma xx}$ for p	late 41		0,517	959		l _{Rσyy} fo	or plate 41			0,020896	
				verif	ied						verified	
Tabella 6.2.2	3											
$l_{R_{TXY}}$ for plate 41 0,050494 $l_{R_{TXZ}}$ for plate 41						0,00149		$l_{R\tau yz}$ for	plate 41	0,1	4106	
Tabella 6.2.2	24											
С	ample and a	$hack 1 = \frac{2}{2}$	L 1 ² 1 .	1 1 2	2 + 1 + 2 + 1	2	0,260444 Verified					
	ombined c	THECK IROXX 7	$\Gamma I_{R\sigma yy} - I_{R\sigma xx}$	$I_{R\sigma yy} + I_{R\tau xy}$	$+ I_{R\tau xz} + I_{T}$	Rτyz =	0,200)444		ven	neu	

Plate 471:

ROLLIO +5°	Stress (xx) (MPa)	Stress (yy) (MPa)	Stress (xy) (MPa)	Stress (xz) (MPa)	Stress (yz) (MPa)	Stress (zz) (MPa)	Stress (Mean) (MPa)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 471: Node 392	1,01194	40,2375	-1,45071	2,9193	0,041439	0	13,7498	-12,7379	26,4877
Plate 471: Node 558	-3,97725	20,2808	-1,38097	2,9193	0,041439	0	5,4345	-9,41175	14,8463
Plate 471: Node 559	-6,32001	19,6951	-0,49189	2,9193	0,041439	0	4,45835	-10,7784	15,2367
Plate 471: Node 395	-1,33083	39,6518	-0,561631	2,9193	0,041439	0	12,7737	-14,1045	26,8781

Tabella 6.2.26

ROLLIO -5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx])	Stress (Dev[yy])
	(MPa)	(MPa)	(MPa)						
Plate 471: Node 392	1,0401	41,233	-1,48634	2,98139	0,035481	0	14,091	-13,0509	27,142
Plate 471: Node 558	-4,0758	20,7694	-1,41286	2,98139	0,035481	0	5,56454	-9,64034	15,2049
Plate 471: Node 559	-6,4625	20,1728	-0,496225	2,98139	0,035481	0	4,57009	-11,0326	15,6027
Plate 471: Node 395	-1,34659	40,6364	-0,569704	2,98139	0,035481	0	13,0966	-14,4432	27,5398

			σ _{xx}		σ_{yy}		τ _{xy}		$ au_{\rm XZ}$			$ au_{yz}$		
Plate 471	: Node 392		1,01194		40,2375			-1,45071		2,9	193		0,041	1439
Plate 471	: Node 558		-3,97725		20,2808			-1,38097		2,9193			0,041439	
Plate 471	: Node 559		-6,32001		19,6951		-0,49189			2,9193			0,041439	
Plate 471	: Node 395		-1,33083		39,6518			-0,561631		2,9	193		0,041	1439
Plate 471	: Node 392		1,0401		41,233			-1,48634		2,9	8139		0,035	5481
Plate 471	: Node 558	e 558 -4,0758			20,7694	-		-1,41286		2,9	8139		0,035	5481
Plate 471	: Node 559	-6,4625			20,1728			-0,496225		2,9	8139		0,035	5481
Plate 471	: Node 395		-1,34659		40,6364			-0,569704		2,9	8139		0,035	5481
Tabella 6.2.2	8													
Node	σ	xmax	σ_{xxmin}	k	I III	σ_{a}		σ_{a}	Irσx	α σ _y	ymax	σ_{yym}	iin	I _{rσyy}
1	1,	040	1,012	0,9	73	237,600	2	285,120	0,00	4 41,	233	40,23	38	0,174
2	-4	,076	-3,977		76	237,600	2	285,120	0,01	4 20,	769	20,28	81	0,087
3	-6	,463	-6,320	0,9	0,978 237,60		2	285,120	0,02	23 20,173		19,69	95	0,085
4	-1	,347	-1,331	0,9	88	237,600	2	285,120	0,00	5 40,	636	39,65	52	0,171
Tabella 6.2.2	9													
$ au_{a}$	τ_{xymax}	τ_{xymin}	k	Ι _{rτxy}	τ_{xzmax}	τ _{xzi}	min	k	I _{rtxz}	τ _{yzi}	nax 1	yzmin	k	I _{rtyz}
102,306	-1,486	-1,451	0,976	-0,015	2,981	0,0	41	0,014	0,02	9 0,0	41 0	,035	0,856	0,000
102,306	-1,413	-1,381	0,977	-0,014	2,981	0,0	41	0,014	0,02	9 0,0	41 0	,035	0,856	0,000
102,306	-0,496	-0,492	0,991	-0,005	2,981	0,0	41	0,014	0,02	9 0,0	41 0	,035	0,856	0,000
102,306	-0,570	-0,562	0,986	-0,006	2,981	0,0	41	0,014	0,02	9 0,0	41 0	,035	0,856	0,000
Tabella 6.2.3	0													
1	Roxx for plate	471		0,022	666			l _{Rσyy} for	r plate 47	1		C),17354	
verified												I	verified	
<i>Tabella</i> 6.2.31	Fabella 6.2.31													
$l_{R_{TXY}}$ for plate 471 -0,00485 $l_{R_{TXZ}}$ for plate 471					e 471	0,02914 l _{Rtvz}		l _{Rτyz} for	$l_{R\tau yz}$ for plate 471		0,00	041		
Tabella 6.2.3.	2													

Jena 0.2.52

Combined check $l_{R\sigma xx}^2 + l_{R\sigma yy}^2 - l_{R\sigma xx} \cdot l_{R\sigma yy} + l_{R\tau xy}^2 + l_{R\tau xz}^2 + l_{R\tau yz}^2 =$	0,02672	Verified
Fatigue check	verified	

Plate 13:

ROLLIO +5°	Stress (xx) (MPa)	Stress (yy) (MPa)	Stress (xy) (MPa)	Stress (xz) (MPa)	Stress (yz) (MPa)	Stress (zz) (MPa)	Stress (Mean) (MPa)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 13: Node 528	131,917	-3,00122	1,06678	-0,17087	3,45593	0	42,9718	88,9448	-45,973
Plate 13: Node 536	131,673	-3,97749	-2,76968	-0,17087	3,45593	0	42,565	89,1075	-46,5425
Plate 13: Node 630	158,688	2,7763	-1,12028	-0,17087	3,45593	0	53,8213	104,866	-51,045
Plate 13: Node 652	158,932	3,75257	2,71618	-0,17087	3,45593	0	54,2281	104,704	-50,4755

Tabella 6.2.34

ROLLIO -5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx])	Stress (Dev[yy])
	(MPa)	(MPa)	(MPa)						
Plate 13: Node 528	135,162	-3,05242	1,11463	-0,170189	3,5375	0	44,0367	91,1257	-47,0891
Plate 13: Node 536	134,898	-4,10804	-2,82251	-0,170189	3,5375	0	43,5968	91,3017	-47,7049
Plate 13: Node 630	162,577	2,81151	-1,12073	-0,170189	3,5375	0	55,1294	107,447	-52,3179
Plate 13: Node 652	162,841	3,86713	2,81642	-0,170189	3,5375	0	55,5692	107,271	-51,7021

				σ	x		σ_{yy}				τ_{xy}			τ_{xx}	<u>s</u>			$ au_{yz}$	
Plate 13	: Node 52	8		131,	917		-3,001	22			1,06678			-0,17	087		3,4	5593	,
Plate 13:	: Node 53	6		131,	673		-3,977	49		-	-2,76968			-0,17	087		3,4	5593	1
Plate 13	: Node 63	0		158,	688		2,776	53		-	-1,12028			-0,17	087		3,4	5593	1
Plate 13:	: Node 65	2		158,	932		3,752	57			2,71618			-0,17	087		3,45593		1
Plate 13	: Node 52	8		135,	162		-3,052	42			1,11463			-0,170)189		3,	5375	
Plate 13	: Node 53	6		134,	898		-4,108	04		-	-2,82251			-0,170)189		3,	5375	
Plate 13	: Node 63	0		162,	577		2,811:	51		-	-1,12073			-0,170)189		3,	5375	
Plate 13:	: Node 65	2		162,	841		3,867	13			2,81642			-0,170)189		3,	5375	
Tabella 6.2.3	6																-		
Node		σ_{xx}	max		σ_{xxmin}		k	σ	5 _a		σ_{a}	Irox	κ.	σ _{yym}	ax	σ_{yy}	min		I _{rσyy}
1		135,	,162		131,917	0,	976	237,	,600	28	85,120	0,56	9	-3,0	52	-3,0	001	0	,011
2		134,	,898		131,673	0,	976	237,	,600	28	85,120	0,56	8	-4,1	08	-3,9	977	C	,014
3		162,	,577		158,688	0,	976	237,	,600	28	85,120	0,68	4	2,81	2	2,7	76	C	,012
4		162,	,841		158,932	0,	976	237,	,600	28	85,120	0,68	5	3,86	67 3,753 0,0		,016		
Tabella 6.2.3	7																		
$ au_{a}$	τ_{xymax}		τ_{xymin}		k	I _{rtxy}	τ _{xzm}	nax	τ_{xzmin}		k	I _{rtxz}		τ _{yzma}	x	τ_{yzmin}	k		I _{rtyz}
102,306	1,115		1,067	0	,957	0,011	-0,1	71	3,538	-	20,703	-0,00	2	3,53	8	3,456	0,977		0,035
102,306	-2,823		-2,770	0	,981	-0,028	-0,1	71	3,538	-	20,703	-0,00	2	3,53	8	3,456	0,977		0,035
102,306	-1,121		-1,120	1	,000	-0,011	-0,1	71	3,538	-	20,703	-0,00	2	3,53	8	3,456	0,977		0,035
102,306	2,816		2,716	0	,964	0,028	-0,1	71	3,538	-	20,703	-0,00	2	3,53	8	3,456	0,977		0,035
Tabella 6.2.3	8																		
	l _{Rσxx} for p	late 1	3			0,68	536				l _{Rσyy} fo	or plate 1.	3				0,01628		
						veri	fied										verified		
Tabella 6.2.3	9																		
l _{Rτxy} fo	r plate 13	ate 13 0,02753 $l_{R\tau xz}$ for plate 13 -0,0017 $l_{R\tau yz}$ for plate 13 0,03458					•												
Tabella 6 ? A	0																		
100010 0.2.4			. 2				2	2	2										
C	ombined o	check	$l_{R\sigma xx}^2 +$	l _{Rσyy} ²	$-l_{R\sigma xx}$.	$l_{R\sigma yy} + l_{R\tau xy}$	$l_{R\tau xz}^{2} + l_{R\tau xz}^{2}$	$l^2 + l_{R\tau yz}^2$	- =	0,45958 Verified									
	Fatigue check										verif	ied							

Plate 16:

ROLLIO +5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 16:	(IVII d)	(IVII a)	(IVII a)	(1011 a)	(ivii a)	(IVII d)	(1011 a)	(1011 a)	(1011 a)
Node 347	148,522	3,51594	-1,44219	0,272777	-3,04202	0	50,6792	97,8424	-47,1632
Plate 16: Node 348	148,294	2,60457	1,17163	0,272777	-3,04202	0	50,2994	97,9943	-47,6949
Plate 16: Node 345	122,065	-3,95263	1,74558	0,272777	-3,04202	0	39,3708	82,6942	-43,3234
Plate 16: Node 236	122,293	-3,04127	-0,868242	0,272777	-3,04202	0	39,7505	82,5423	-42,7918

Tabella 6.2.42

ROLLIO -5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx])	Stress (Dev[yy])
	(MPa)	(MPa)	(MPa)						
Plate 16: Node 347	152,716	3,63296	-1,5151	0,282035	-3,12889	0	52,1163	100,6	-48,4834
Plate 16: Node 348	152,472	2,6569	1,17922	0,282035	-3,12889	0	51,7096	100,762	-49,0527
Plate 16: Node 345	125,499	-4,08645	1,79072	0,282035	-3,12889	0	40,4707	85,0279	-44,5572
Plate 16: Node 236	125,743	-3,11039	-0,903602	0,282035	-3,12889	0	40,8774	84,8652	-43,9878

	σ _{xx}	σ _{yy}	$ au_{\mathrm{xy}}$	$ au_{ m xz}$	$ au_{yz}$
Plate 16: Node 347	148,522	3,51594	-1,44219	0,272777	-3,04202
Plate 16: Node 348	148,294	2,60457	1,17163	0,272777	-3,04202
Plate 16: Node 345	122,065	-3,95263	1,74558	0,272777	-3,04202
Plate 16: Node 236	122,293	-3,04127	-0,868242	0,272777	-3,04202
Plate 16: Node 347	152,716	3,63296	-1,5151	0,282035	-3,12889
Plate 16: Node 348	152,472	2,6569	1,17922	0,282035	-3,12889
Plate 16: Node 345	125,499	-4,08645	1,79072	0,282035	-3,12889
Plate 16: Node 236	125,743	-3,11039	-0,903602	0,282035	-3,12889

Node		σ_{xxmax}	σ_{xxmin}	k		σ_{a}	σa	I _{rσxx}	σ _{yymax}	σ _{yym}	in	$I_{r\sigma yy}$
1		152,716	148,522	0,97	73	237,600	285,120	0,643	3,633	3,51	6	0,015
2		152,472	148,294	0,97	73	237,600	285,120	0,642	2,657	2,60	5	0,011
3		125,499	122,065	0,97	73	237,600	285,120	0,528	-4,086	-3,95	53	0,014
4		125,743	122,293	0,97	73	237,600	285,120	0,529	-3,110	-3,04	41	0,011
Tabella 6.2.4	5											
$ au_{\mathrm{a}}$	τ_{xymax}	$ au_{ ext{xymin}}$	k	I _{rtxy}	τ _{xzma}	x τ_{xzmin}	k	I _{rtxz}	τ_{yzmax}	$ au_{yzmin}$	k	I _{rτyz}
102,306	-1,515	-1,442	0,952	-0,015	0,28	2 -3,129	-11,094	0,003	-3,129	-3,042	0,972	-0,031
102,306	1,179	1,172	0,994	0,012	0,28	2 -3,129	-11,094	0,003	-3,129	-3,042	0,972	-0,031
102,306	1,791	1,746	0,975	0,018	0,28	2 -3,129	-11,094	0,003	-3,129	-3,042	0,972	-0,031
102,306	-0,904	-0,868	0,961	-0,009	0,28	2 -3,129	-11,094	0,003	-3,129	-3,042	0,972	-0,031
Tabella 6.2.4	6											

$l_{R\sigma xx}$ for plate 16	0,642744	$l_{R\sigma yy}$ for plate 16	0,01529
	verified		verified

Tabella 6.2.47

$l_{R\tau xy}$ for plate 16	0,017503	$l_{R\tau xz}$ for plate 16	0,00276	$l_{R\tau yz}$ for plate 16	-0,03058

Tabella 6.2.48

Combined check $l_{R\sigma xx}^2 + l_{R\sigma yy}^2 - l_{R\sigma xx} \cdot l_{R\sigma yy} + l_{R\tau xy}^2 + l_{R\tau xz}^2 + l_{R\tau yz}^2 =$	0,403832	Verified
Fatigue check	verified	

Plate 3:

ROLLIO +5°	Stress (xx) (MPa)	Stress (yy) (MPa)	Stress (xy) (MPa)	Stress (xz) (MPa)	Stress (yz) (MPa)	Stress (zz) (MPa)	Stress (Mean) (MPa)	Stress (Dev[xx]) (MPa)	Stress (Dev[yy]) (MPa)
Plate 3: Node 629	148,522	3,51594	-1,44219	0,272777	-3,04202	0	50,6792	97,8424	-47,1632
Plate 3: Node 630	148,294	2,60457	1,17163	0,272777	-3,04202	0	50,2994	97,9943	-47,6949
Plate 3: Node 536	122,065	-3,95263	1,74558	0,272777	-3,04202	0	39,3708	82,6942	-43,3234
Plate 3: Node 503	122,293	-3,04127	-0,868242	0,272777	-3,04202	0	39,7505	82,5423	-42,7918

Tabella 6.2.50

ROLLIO -5°	Stress (xx)	Stress (yy)	Stress (xy)	Stress (xz)	Stress (yz)	Stress (zz)	Stress (Mean)	Stress (Dev[xx])	Stress (Dev[yy])
	(MPa)	(MPa)	(MPa)						
Plate 3: Node 629	168,792	5,46455	-0,294841	-0,154706	-5,86156	0	58,0854	110,706	-52,6209
Plate 3: Node 630	168,499	4,29198	0,019513	-0,154706	-5,86156	0	57,5969	110,902	-53,3049
Plate 3: Node 536	132,311	-4,75486	1,99284	-0,154706	-5,86156	0	42,5188	89,7924	-47,2736
Plate 3: Node 503	132,604	-3,58229	1,67849	-0,154706	-5,86156	0	43,0074	89,597	-46,5896

			σ _{xx}		σ _{yy}		$ au_{\mathrm{xy}}$			$ au_{xz}$		τ _{yz}	
Plate 3: Node 629			148,522		3,51594		-1,44219			0,272777		-3,04202	
Plate 3:	Plate 3: Node 630		148,294		2,60457			1,17163		0,272777		-3,04202	
Plate 3:	Node 536		122,065		-3,95263			1,74558		0,272777		-3,04202	
Plate 3:	Plate 3: Node 503		122,293		-3,04127			-0,868242		0,272777		-3,04202	
Plate 3:	Plate 3: Node 629		168,792		5,46455			-0,294841		-0,154706		-5,86156	
Plate 3: Node 630			168,499		4,29198			0,019513		-0,154706		-5,86156	
Plate 3: Node 536			132,311		-4,75486			1,99284		-0,154706		-5,86156	
Plate 3:	Plate 3: Node 503		132,604		-3,58229		1,67849		-0,154706		-5,86156		
Tabella 6.2.52													
Node	Node σ_{xxmax}		σ_{xxmin}	k	k			σ_{a}	I _{roxx}	σ_{yymax}		σ_{yymin}	I _{rσyy}
1	1 168,792		148,522	0,8	0,880		3	255,784	0,792	5,465		3,516	0,026
2 168,499		68,499	148,294	0,8	0,880)	255,863	0,790	4,292		2,605	0,020
3	3 132,311		122,065	0,92	23	230,380		276,456	0,574	-4,755		-3,953	0,017
4 132,604		32,604	122,293	0,9	0,922		l	276,289	0,576	-3,582		-3,041 0,013	
Tabella 6.2.53	Tabella 6.2.53												
$ au_{a}$	$ au_{xymax}$	$ au_{xymin}$	k	$I_{r\tau xy}$	τ _{xzma}	τ_x	zmin	k	I _{rtxz}	τ_{yzmax}	τ _{yzm}	_{in} k	I _{rtyz}
102,306	-1,442	-0,295	0,204	-0,014	0,27	3 -5	,862	-21,488	0,003	-5,862	-3,04	12 0,51	9 -0,057
102,306	1,172	0,020	0,017	0,011	0,27	3 -5	,862	-21,488	0,003	-5,862	-3,04	12 0,51	9 -0,057
102,306	1,993	1,746	0,876	0,019	0,27	3 -5	,862	-21,488	0,003	-5,862	-3,04	42 0,51	9 -0,057
102,306	1,678	-0,868	-0,517	0,016	0,27	3 -5	,862	-21,488	0,003	-5,862	-3,04	12 0,51	9 -0,057
Tabella 6.2.5	4												
l _{Roxx} for plate 3			0,791	0,79188			$l_{R\sigma yy}$ for plate 3		0,025637				
				verif	verified					verified			
Tabella 6.2.55													
l _{Rτxy} fo	or plate 3		0,019479 l _{Rtxz} for pla			ate 3	0,00267			$l_{R\tau yz}$ for plate 3		-0,05729	
Combined check $l_{R\sigma xx}^2 + l_{R\sigma yy}^2 - l_{R\sigma xx} \cdot l_{R\sigma yy} + l_{R\tau xy}^2 + l_{R\tau xz}^2 + l_{R\tau yz}^2 =$								0,607	0,60781 Verif			ified	
Fatigue check									ied				

Come si può notare osservando le caselle verdi tutti i beam e i plates sono verificati, come d'altronde era lecito aspettarsi visto che il ciclo di fatica a cui sono soggette queste macchine ha un range di variazione di tensione estremamente ridotto, infatti nelle pratiche interne dell'azienda solitamente non è prevista verifica a fatica per gli shiploader, questa viene eseguita solamente per le gru.
CAPITOLO 7: Verifiche strutturali a buckling

Il buckling, o instabilità elastica, è un fenomeno meccanico che si verifica quando una struttura sottile e compressa subisce una deformazione laterale significativa sotto l'azione di carichi critici, causando un improvviso cambiamento di forma. Questo fenomeno è particolarmente rilevante in strutture soggette a carichi di compressione, come colonne, travi, e piastre. Quando il carico di compressione supera un valore critico, la struttura perde la sua stabilità e si deforma lateralmente, anche se il materiale della struttura non ha raggiunto il limite di snervamento.

Caratteristiche del Buckling:

- Carico Critico:

Il carico critico è il carico massimo di compressione che una struttura può sopportare prima di perdere la stabilità. Questo carico è spesso calcolato utilizzando la teoria dell'elasticità e dipende dalla geometria della struttura, dalle condizioni al contorno e dalle proprietà del materiale.

- Modalità di Buckling:

Il modo in cui una struttura si deforma durante il buckling è chiamato modalità di buckling. Le modalità di buckling possono essere diverse a seconda della geometria e delle condizioni al contorno della struttura.

- Elasticità e Plasticità:

Il buckling può essere elastico o plastico. Il buckling elastico si verifica quando il materiale si comporta in modo lineare-elastico fino al carico critico. Il buckling plastico si verifica quando il materiale supera il limite di snervamento durante la deformazione.

Tipi di Buckling

- Buckling Eulero:

Questo è il tipo classico di buckling che si verifica nelle colonne lunghe e sottili. Il carico critico di buckling di Eulero è dato dalla formula:

$$P_{\rm cr} = \frac{\pi^2 E I}{(KL)^2}$$
(7.0.1)

dove Pcr è il carico critico, E è il modulo di elasticità, I è il momento d'inerzia della sezione trasversale, L è la lunghezza della colonna, e K è il fattore di lunghezza efficace che dipende dalle condizioni di vincolo alle estremità.

- Buckling Laterale:

Si verifica principalmente nelle travi sotto carichi di flessione. Il buckling laterale-torsionale può essere critico in travi lunghe e snelle.

Buckling Locale:

Questo tipo di buckling si verifica in parti locali della struttura, come le flange sottili di una sezione a I o le pareti sottili di una sezione scatolare.

- Buckling di Pannelli:

Questo fenomeno è comune in pannelli sottili, come le piastre e le lamiere, spesso utilizzati nelle strutture aerospaziali e navali.

Analisi del Buckling

L'analisi del buckling può essere eseguita utilizzando metodi analitici, numerici o sperimentali. In ingegneria moderna, l'analisi numerica con il metodo degli elementi finiti (FEM) è uno strumento comune per prevedere il comportamento di buckling.

Analisi Lineare di Buckling (Buckling Lineare):

Questa analisi determina i carichi critici e le modalità di buckling lineare-elastico. Utilizza una soluzione di autovalori per trovare i carichi critici e le forme modali associate.

Analisi di Buckling Non Lineare:

Considera gli effetti delle non linearità geometriche e del materiale. Questa analisi è più complessa e richiede una simulazione passo-passo del comportamento della struttura sotto carichi crescenti.

- Analisi Post-Buckling:

Studia il comportamento della struttura dopo che il carico critico è stato superato. Può fornire informazioni su quanto carico la struttura può sostenere dopo il buckling iniziale e sulla stabilità della struttura deformata

7.1 Buckling di elementi beam

La norma FEM II prevede l'utilizzo della seguente formula:

$$\frac{\omega F}{S} + 0.9 \cdot \frac{M_{fx}\nu}{I} \le \sigma_a \tag{7.1.0.1}$$

Tuttavia questa non comprende il caso il cui vi siano momenti flettenti su due assi differenti, di conseguenza si è scelto di applicare la seguente formula, che è comunque in vantaggio di sicurezza:

$$\frac{\omega F}{S} + 0.9 \cdot \frac{M_{fx}v_x}{I_{xx}} + 0.9 \cdot \frac{M_{fy}v_y}{I_{yy}} \le \sigma_a$$
(7.1.0.2)

In cui z è l'asse lungo il beam, mentre x e y sono gli assi ortogonali ad esso.

- F: carico assiale di compressione
- S: sezione della barra
- M_f: momento flettente in mezzeria
- v: distanza della fibra estrema dall'asse neutro
- I: momento d'inerzia
- σ_a : tensione ammissibile, dove in questo caso $\sigma_a = \frac{\sigma_s}{v} = 240$ MPa (per acciaio S355 JR EN 10025)

Ulteriore problema è capire come calcolare il momento flettente in mezzeria del Beam, in quanto esso è soggetto a momenti flettenti differenti ai due nodi di estremità.

Dato che il problema non viene menzionato nella norma FEM II si è scelto di indagare la norma UNI 10011:

Figura 7.1.0.3: Immagine esplicativa dalla norma UNI 10011 rappresentante un beam con sollecitazioni diverse ai due estremi

In mezzeria si ottiene:

$$M_{eq} = 0.6 \cdot M_a - 0.4 \cdot M_b$$
 con $|M_a| \ge |M_b|$, purchè sia $M_{eq} \ge 0.4 \cdot M_a$ (7.1.0.4)

Procedimento utilizzato per la realizzazione del foglio excel:Si importano le properties dei Beam da Straus7:

	Mass	Volume	Length	Count	Туре	Ixx	Іуу	Section
Beam properties:	kg	mm^3	mm			mm^4	mm^4	
1: TONDO 450 SP 25 (braccio)	209,257	2,20E+07	660	4	Beam	7,56E+08	7,56E+08	Hollow Round
2: QUADRO 200X200X10 (braccio)	1,14E+04	1,20E+09	1,58E+05	128	Beam	4,59E+07	4,59E+07	Hollow Rectangle
3: QUADRO 300X300X12.5 (braccio)	855,23	9,00E+07	6,26E+03	14	Beam	1,98E+08	1,98E+08	Hollow Rectangle
4: PIATTO 300 SP 20 (braccio)	90,962	9,58E+06	1,60E+03	6	Beam	2,00E+05	4,50E+07	Solid Rectangle
5: QUADRO 180x120 SP 10 (braccio)	4,37E+03	4,60E+08	8,22E+04	26	Beam	1,26E+07	2,42E+07	Hollow Rectangle
7: DOPPIO QUADRO 200 SP 10 (braccio)	1,01E+03	1,06E+08	7,00E+03	22	Beam	9,17E+07	2,44E+08	Hollow Rectangle Mirrored Left
8: HEB 200 (braccio)	1,07E+03	1,12E+08	1,44E+04	47	Beam	5,70E+07	2,00E+07	I-Section
9: PIATTO 200 SP 15 (braccio)	153,877	1,62E+07	5,40E+03	20	Beam	5,63E+04	1,00E+07	Solid Rectangle
10: UPN 200 (braccio)	2,41E+03	2,54E+08	7,87E+04	100	Beam	1,91E+07	1,48E+06	C-Channel
11: TONDO 298.5 SP 14.2 (tiranti)	880,064	1,63E+08	1,28E+04	2	Beam	1,28E+08	1,28E+08	Hollow Round
13: perno 160 mm (tiranti)	109,933	2,03E+07	1,01E+03	12	Beam	3,22E+07	3,22E+07	Solid Round
14: sostegno g.ppo traslazione (braccio)	880,992	9,28E+07	3,50E+03	4	Beam	2,06E+08	1,63E+09	Hollow Rectangle
15: basamento (braccio)	95,708	1,01E+07	1,56E+03	2	Beam	3,85E+07	9,96E+07	C-Channel Mirrored Left
17: UPN 160 (mast)	463,654	4,96E+07	2,07E+04	14	Beam	9,25E+06	8,53E+05	C-Channel
18: L 195X80X5	0,00E+00	1,75E+08	6,46E+04	52	Beam	2,30E+08	1,11E+07	Angle Mirrored Right
19: L 120X60X8	0,00E+00	5,02E+07	3,65E+04	104	Beam	2,19E+06	2,30E+05	Angle
20: cilindro	5,62E+03	1,04E+09	6,00E+03	2	Beam	2,40E+09	2,40E+09	Solid Round
21: coda cilindro	133,314	2,47E+07	500	2	Beam	9,08E+08	4,53E+07	Solid Rectangle
22: stelo	575,057	1,06E+08	2,80E+03	2	Beam	1,15E+08	1,15E+08	Solid Round
23: anello cilindro	458,959	8,49E+07	400	2	Beam	3,59E+09	3,59E+09	Solid Round
25: piatti costole virola	671,102	2,31E+07	7,71E+03	20	Beam	5,63E+04	1,00E+07	Solid Rectangle
26: QUADRO 250X150X12.5	7,52E+03	6,94E+08	7,41E+04	64	Beam	7,67E+07	3,37E+07	Hollow Rectangle
27: QUADRO 140X140X8	6,30E+03	5,82E+08	1,38E+05	126	Beam	1,23E+07	1,23E+07	Hollow Rectangle
28: QUARO 140X80X8	2,76E+03	2,55E+08	7,80E+04	52	Beam	8,12E+06	3,26E+06	Hollow Rectangle
29: ralla	5,24E+03	5,61E+08	270	1	Beam	3,15E+12	3,15E+12	Hollow Round
Total	5,33E+04	6,20E+09	8,02E+05	828				

Tabella 7.1.0.5: Lista beam properties estratta da Straus7

Da qui si procede a ricavando:

- Raggio d'inerzia: $\rho = \sqrt{\frac{I}{A}}$ (7.1.0.6)
- Lunghezza libera di inflessione: $l_0 = \frac{1}{\sqrt{2}}$
- Rapporto di snellezza: $\lambda = \frac{l_0}{\rho}$
- Con il rapporto di snellezza appena ricavato si entra nelle tabelle (una o l'altra a seconda del tipo di sezione, rolled o tube section) presenti nella norma FEM II per ricavare il coefficiente ω:

λ	0	1	2	3	4	5	6	7	8	9
20 30 40	1.02 1.05 1.11	1.02 1.06 1.11	1.02 1.06 1.12	1.03 1.07 1.13	1.03 1.07 1.13	1.03 1.08 1.14	1.04 1.08 1.15	1.04 1.09 1.16	1.05 1.10 1.16	1.05 1.10 1.17
50 60 70 80 90	1.18 1.28 1.42 1.62 2.05	1.19 1.30 1.44 1.66	1.20 1.31 1.46 1.71	1.21 1.32 1.47 1.75	1.22 1.33 1.49 1.79	1.23 1.35 1.51 1.83	1.24 1.36 1.53 1.88	1.25 1.38 1.55 1.92	1.26 1.39 1.57 1.97	1.27 1.41 1.59 2.01
	for $\lambda > 90$, take the values of ω from table T.3-3.1.2									

VALUE OF THE COEFFICIENT ω IN TERMS OF SLENDERNESS RATIO λ FOR TUBES IN Fe 510 STEEL

(7.1.0.7)

(7.1.0.8)

Note :

The values of ω in tables T.3-3.1.3 and T.3-3.1.4 are valid for an axially loaded bar consisting of a single tube whose diameter is equal to at least six times its thickness.

Tabella 7.1.0.9: Valore del coefficiente ω in base al rapporto di snellezza, per sezioni tubolari in acciaio Fe 510

λ	0	1	2	3	4	5	6	7	8	9
20	1.06	1.06	1.07	1.07	1.08	1.08	1.09	1.09	1.10	1.10
30	1.11	1.12	1.12	1.13	1.14	1.15	1.15	1.16	1.17	1.18
40	1.19	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27
50	1.28	1.30	1.31	1.32	1.33	1.35	1.36	1.37	1.39	1.40
60	1.41	1.43	1.44	1.46	1.48	1.49	1.51	1.53	1.54	1.56
70	1.58	1.60	1.62	1.64	1.66	1.68	1.70	1.72	1.74	1.77
80	1.79	1.81	1.83	1.86	1.88	1.91	1.93	1.95	1.98	2.01
90	2.05	2.10	2.14	2.19	2.24	2.29	2.33	2.38	2.43	2.48
100	2.53	2.58	2.64	2.69	2.74	2.79	2.85	2.90	2.95	3.01
110	3.06	3.12	3.18	3.23	3.29	3.35	3.41	3.47	3.53	3.59
120	3.65	3.71	3.77	3.83	3.89	3.96	4.02	4.09	4.15	4.22
130	4.28	4.35	4.41	4.48	4.55	4.62	4.69	4.75	4.82	4.89
140	4.96	5.04	5.11	5.18	5.25	5.33	5.40	5.47	5.55	5.62
150	5.70	5.78	5.85	5.93	6.01	6.09	6.16	6.24	6.32	6.40
160	6.48	6.57	6.65	6.73	6.81	6.90	6.98	7.06	7.15	7.23
170	7.32	7.41	7.49	7.58	7.67	7.76	7.85	7.94	8.03	8.12
180	8.21	8.30	8.39	8.48	8.58	8.67	8.76	8.86	8.95	9.05
190	9.14	9.24	9.34	9.44	9.53	9.63	9.73	9.83	9.93	10.03
200	10.13	10.23	10.34	10.44	10.54	10.65	10.75	10.85	10.96	11.06
210	11.17	11.28	11.38	11.49	11.60	11.71	11.82	11.93	12.04	12.15
220	12.26	12.37	12.48	12.60	12.71	12.82	12.94	13.05	13.17	13.28
230	13.40	13.52	13.63	13.75	13.87	13.99	14.11	14.23	14.35	14.47
240	14.59	14.71	14.83	14.96	15.08	15.20	15.33	15.45	15.58	15.71
250	15.83									,

VALUE OF THE COEFFICIENT ω IN TERMS OF THE SLENDERNESS RATIO λ FOR ROLLED SECTIONS IN Fc 510 STEEL

Tabella 7.1.0.10: Valore del coefficiente ω in base al rapporto di snellezza, per sezioni rolled in acciaio Fe 510

- Successivamente si inserisce lo sforzo normale N e i momenti flettenti M_{xx}, M_{yy} da Straus7, andando ad attivare il local coordinate system, e ordinando il tutto in base alle properties, si ottengono i due valori estremi, ai nodi
- Si calcola il momento al centro dell'elemento Beam: M_{xx,eq} ed M_{yy,eq} (li si calcola negativi, in modo da poter poi calcolare la compressione maggiore possibile, che è quella che interessa per il buckling, sommando la tensione dai momenti flettenti con la tensione derivante dallo sforzo normale) con la seguente formula:

$$= (-MAX(|M_{xx1}|;|M_{xx2}|))*0,6 - MIN(|M_{xx1}|;|M_{xx2}|)*0,4)$$
(7.1.0.11)

• Risulta quindi possibile calcolare le tensioni con la formula

$$\sigma = \frac{\omega F}{S} + 0.9 \cdot \frac{M_{fx} v_x}{I_{xx}} + 0.9 \cdot \frac{M_{fy} v_y}{I_{yy}}$$
(7.1.0.12)

• Si fa infine un check con la tensione ammissibile:

$$Check = \frac{\sigma}{\sigma_a} < 1 \tag{7.1.0.13}$$

• Poi si riordina il tutto in base al valore decrescente di check in modo da avere in cima i Beam più critici, con formattazione condizionale: in rosso gli elementi critici, in giallo se il check è tra 0,5 e 1, in verde se sotto 1

7.1.1 No inclinazione

Operativo statico	Check	Operativo wind 35 km/h	Check	Operativo wind L.E.	Check	Intasamento chute	Check	Bobcat	Check
Beam 214	1,92	Beam 214	1,92	Beam 214	1,91	Beam 214	2,41	Beam 214	1,81
Beam 585	1,66	Beam 585	1,65	Beam 585	1,65	Beam 77	2,09	Beam 585	1,63
Beam 582	1,63	Beam 582	1,63	Beam 582	1,63	Beam 585	1,79	Beam 582	1,60
Beam 77	1,61	Beam 77	1,61	Beam 77	1,62	Beam 582	1,77	Beam 77	1,50
Beam 578	1,37	Beam 578	1,37	Beam 578	1,37	Beam 578	1,48	Beam 578	1,35
Beam 580	1,31	Beam 580	1,31	Beam 580	1,31	Beam 580	1,42	Beam 580	1,29
Beam 575	1,22	Beam 575	1,22	Beam 575	1,23	Beam 575	1,34	Beam 575	1,21
Beam 579	1,22	Beam 579	1,22	Beam 579	1,22	Beam 579	1,32	Beam 579	1,20
Beam 576	1,14	Beam 576	1,14	Beam 576	1,14	Beam 202	1,24	Beam 576	1,12
Beam 437	1,10	Beam 437	1,10	Beam 437	1,09	Beam 576	1,24	Beam 583	1,01
Beam 583	1,03	Beam 583	1,03	Beam 583	1,03	Beam 78	1,13	Beam 78	0,91
Beam 350	1,02	Beam 350	1,02	Beam 350	1,01	Beam 583	1,11	Beam 154	0,89
Beam 475	1,00	Beam 475	1,01	Beam 475	1,01	Beam 65	1,08	Beam 566	0,87
Beam 202	0,95	Beam 202	0,95	Beam 202	0,94	Beam 215	1,04	Beam 202	0,85
Beam 396	0,93	Beam 396	0,93	Beam 396	0,94	Beam 154	1,00	Beam 215	0,82
Beam 78	0,90	Beam 78	0,90	Beam 78	0,90	Beam 566	0,97	Beam 584	0,73
Beam 154	0,89	Beam 154	0,89	Beam 154	0,90	Beam 584	0,80	Beam 65	0,70
Beam 566	0,89	Beam 566	0,89	Beam 566	0,88	Beam 337	0,75	Beam 581	0,66
Beam 552	0,83	Beam 552	0,83	Beam 552	0,83	Beam 336	0,75	Beam 547	0,64
Beam 554	0,83	Beam 554	0,83	Beam 554	0,83	Beam 581	0,73	Beam 546	0,64
Beam 550	0,83	Beam 550	0,83	Beam 550	0,83	Beam 547	0,69	Beam 553	0,61
Beam 551	0,82	Beam 551	0,82	Beam 551	0,82	Beam 546	0,68	Beam 555	0,60
Beam 65	0,81	Beam 65	0,81	Beam 65	0,82	Beam 553	0,65	Beam 302	0,55
Beam 215	0,81	Beam 215	0,81	Beam 215	0,81	Beam 555	0,63	Beam 577	0,51
Beam 337	0,74	Beam 337	0,74	Beam 337	0,74	Beam 825	0,60	Beam 169	0,51
Beam 336	0,74	Beam 336	0,74	Beam 584	0,74	Beam 302	0,59	Beam 569	0,49
Beam 584	0,74	Beam 584	0,74	Beam 336	0,74	Beam 604	0,58	Beam 301	0,49
Beam 581	0,67	Beam 581	0,68	Beam 581	0,68	Beam 577	0,57	Beam 47	0,47
Beam 547	0,65	Beam 547	0,65	Beam 547	0,65	Beam 660	0,57	Beam 552	0,44
Beam 546	0,64	Beam 546	0,64	Beam 546	0,64	Beam 169	0,56	Beam 396	0,44
Beam 553	0,62	Beam 553	0,62	Beam 553	0,62	Beam 569	0,55	Beam 554	0,44
Beam 302	0,62	Beam 302	0,62	Beam 302	0,62	Beam 824	0,54	Beam 27	0,43
Beam 555	0,61	Beam 555	0,61	Beam 555	0,61	Beam 301	0,53	Beam 825	0,42
Beam 169	0,58	Beam 169	0,58	Beam 169	0,58	Beam 396	0,50	Beam 337	0,42
Beam 825	0,57	Beam 825	0,57	Beam 825	0,57	Beam 552	0,47	Beam 336	0,41
Beam 301	0,57	Beam 301	0,57	Beam 301	0,57	Beam 554	0,47	Beam 604	0,41
Beam 604	0,55	Beam 604	0,55	Beam 604	0,56	Beam 677	0,46	Beam 660	0,40
Beam 577	0,52	Beam 577	0,52	Beam 577	0,52	Beam 429	0,46	Beam 12	0,40
Beam 516	0.51	Beam 516	0.51	Beam 515	0.51	Beam 15	0.46	Beam 429	0.40

Beam 515	0,51	Beam 515	0,51	Beam 516	0,51	Beam 621	0,45	Beam 15	0,40
Beam 569	0,50	Beam 569	0,50	Beam 569	0,50	Beam 514	0,45		
Beam 27	0,48	Beam 27	0,48	Beam 145	0,48	Beam 66	0,45		
Beam 334	0,48	Beam 334	0,48	Beam 334	0,48	Beam 27	0,45		
Beam 335	0,48	Beam 335	0,48	Beam 27	0,48	Beam 12	0,45		
Beam 3	0,48	Beam 145	0,48	Beam 335	0,48	Beam 145	0,43		
Beam 145	0,48	Beam 3	0,48	Beam 3	0,48	Beam 3	0,43		
Beam 660	0,47	Beam 660	0,47	Beam 660	0,46	Beam 513	0,42		
Beam 89	0,46	Beam 89	0,46	Beam 89	0,46	Beam 405	0,41		
Beam 341	0,45	Beam 341	0,45	Beam 341	0,45	Beam 80	0,41		
Beam 342	0,45	Beam 342	0,45	Beam 824	0,45	Beam 217	0,41		
Beam 824	0,44	Beam 824	0,44	Beam 342	0,45	Beam 25	0,40		
Beam 226	0,43	Beam 226	0,43	Beam 226	0,43	Beam 203	0,40		
Beam 80	0,42	Beam 80	0,42	Beam 80	0,42	Beam 7	0,40		
Beam 15	0,42	Beam 15	0,42	Beam 25	0,41	Beam 468	0,40		
Beam 25	0,42	Beam 25	0,42	Beam 90	0,41	Beam 437	0,40		
Beam 90	0,41	Beam 90	0,41	Beam 15	0,41				
Beam 217	0,41	Beam 217	0,41	Beam 217	0,41				
Beam 514	0,41	Beam 514	0,41	Beam 514	0,41				
Beam 429	0,40	Beam 429	0,41	Beam 429	0,41				
Beam 413	0,40	Beam 413	0,40	Beam 413	0,40				

Tabella 7.1.1.1: Riassunto del check di buckling dei beam, nel caso senza inclinazione

7.1.2 +5° rollio

Operativo statico	Check	Operativo wind 35 km/h	Check	Operativo wind L.E.	Check	Intasamento chute	Check	Bobcat	Check
Beam 214	1,78	Beam 214	1,78	Beam 214	1,77	Beam 214	2,26	Beam 214	1,69
Beam 582	1,58	Beam 582	1,58	Beam 582	1,59	Beam 77	1,93	Beam 582	1,56
Beam 585	1,58	Beam 585	1,58	Beam 585	1,58	Beam 582	1,72	Beam 585	1,56
Beam 77	1,47	Beam 77	1,47	Beam 77	1,48	Beam 585	1,71	Beam 77	1,38
Beam 578	1,35	Beam 578	1,34	Beam 578	1,34	Beam 578	1,45	Beam 578	1,32
Beam 580	1,28	Beam 580	1,27	Beam 580	1,27	Beam 580	1,38	Beam 580	1,26
Beam 579	1,18	Beam 579	1,18	Beam 579	1,18	Beam 579	1,28	Beam 579	1,16
Beam 575	1,16	Beam 575	1,16	Beam 575	1,16	Beam 575	1,27	Beam 575	1,14
Beam 437	1,14	Beam 437	1,13	Beam 437	1,13	Beam 202	1,18	Beam 576	1,07
Beam 576	1,08	Beam 576	1,09	Beam 576	1,09	Beam 576	1,18	Beam 583	0,98
Beam 350	1,04	Beam 350	1,04	Beam 475	1,04	Beam 583	1,08	Beam 154	0,89
Beam 475	1,04	Beam 475	1,04	Beam 350	1,03	Beam 78	1,08	Beam 78	0,87
Beam 583	0,99	Beam 583	0,99	Beam 583	0,99	Beam 65	1,03	Beam 566	0,82
Beam 396	0,95	Beam 396	0,95	Beam 396	0,95	Beam 154	1,01	Beam 202	0,78
Beam 202	0,91	Beam 202	0,91	Beam 154	0,90	Beam 215	0,98	Beam 215	0,78
Beam 154	0,89	Beam 154	0,90	Beam 202	0,89	Beam 566	0,91	Beam 584	0,71
Beam 78	0,85	Beam 78	0,85	Beam 78	0,85	Beam 584	0,78	Beam 581	0,64
Beam 552	0,84	Beam 552	0,84	Beam 552	0,84	Beam 336	0,77	Beam 65	0,64
Beam 554	0,84	Beam 554	0,84	Beam 554	0,84	Beam 337	0,76	Beam 547	0,64
Beam 550	0,83	Beam 550	0,83	Beam 550	0,83	Beam 581	0,71	Beam 546	0,64
Beam 566	0,83	Beam 566	0,83	Beam 566	0,83	Beam 547	0,69	Beam 553	0,62
Beam 551	0,83	Beam 551	0,83	Beam 551	0,83	Beam 546	0,68	Beam 555	0,61
Beam 65	0,77	Beam 65	0,77	Beam 65	0,78	Beam 553	0,65	Beam 302	0,55
Beam 336	0,76	Beam 336	0,76	Beam 336	0,76	Beam 555	0,64	Beam 47	0,51
Beam 215	0,75	Beam 215	0,75	Beam 215	0,75	Beam 825	0,61	Beam 577	0,50
Beam 337	0,75	Beam 337	0,75	Beam 337	0,75	Beam 604	0,60	Beam 169	0,50
Beam 584	0,72	Beam 584	0,72	Beam 584	0,72	Beam 302	0,58	Beam 301	0,49
Beam 581	0,65	Beam 581	0,66	Beam 581	0,66	Beam 660	0,57	Beam 569	0,48
Beam 547	0,65	Beam 547	0,65	Beam 547	0,65	Beam 577	0,55	Beam 396	0,45
Beam 546	0,64	Beam 546	0,64	Beam 546	0,64	Beam 169	0,55	Beam 552	0,44
Beam 553	0,62	Beam 553	0,62	Beam 553	0,62	Beam 824	0,55	Beam 554	0,44
Beam 302	0,61	Beam 302	0,61	Beam 302	0,61	Beam 301	0,53	Beam 825	0,43
Beam 555	0,61	Beam 555	0,61	Beam 555	0,61	Beam 569	0,53	Beam 27	0,43
Beam 825	0,58	Beam 825	0,58	Beam 825	0,58	Beam 396	0,51	Beam 336	0,42
Beam 169	0,57	Beam 169	0,57	Beam 169	0,57	Beam 552	0,47	Beam 604	0,42
Beam 301	0,57	Beam 301	0,57	Beam 604	0,57	Beam 429	0,47	Beam 337	0,42
Beam 604	0,57	Beam 604	0,57	Beam 301	0,57	Beam 554	0,47	Beam 12	0,41
Beam 516	0,52	Beam 515	0,52	Beam 515	0,53	Beam 15	0,47	Beam 429	0,41
Beam 515	0,52	Beam 516	0,52	Beam 516	0,52	Beam 677	0,47	Beam 660	0,41
Beam 577	0.51	Beam 577	0.51	Beam 577	0.51	Beam 514	0.46	Beam 15	0.41

Beam 3	0,49	Beam 145	0,49	Beam 145	0,50	Beam 621	0,46	Beam 3	0,40
Beam 145	0,49	Beam 3	0,49	Beam 3	0,49	Beam 12	0,46	Beam 145	0,40
Beam 27	0,48	Beam 27	0,48	Beam 27	0,48	Beam 27	0,45	Beam 514	0,40
Beam 569	0,48	Beam 569	0,48	Beam 569	0,48	Beam 145	0,44	Beam 25	0,40
Beam 660	0,48	Beam 660	0,48	Beam 660	0,48	Beam 3	0,44		
Beam 341	0,47	Beam 341	0,47	Beam 341	0,47	Beam 513	0,43		
Beam 342	0,47	Beam 342	0,47	Beam 342	0,47	Beam 66	0,43		
Beam 334	0,46	Beam 334	0,46	Beam 334	0,46	Beam 405	0,42		
Beam 824	0,46	Beam 824	0,46	Beam 824	0,46	Beam 47	0,42		
Beam 335	0,45	Beam 335	0,45	Beam 335	0,45	Beam 7	0,41		
Beam 47	0,45	Beam 47	0,44	Beam 89	0,44	Beam 25	0,41		
Beam 89	0,44	Beam 89	0,44	Beam 47	0,44	Beam 437	0,41		
Beam 15	0,43	Beam 15	0,43	Beam 15	0,43	Beam 468	0,41		
Beam 25	0,42	Beam 25	0,42	Beam 25	0,42	Beam 80	0,40		
Beam 514	0,42	Beam 514	0,42	Beam 514	0,42	Beam 217	0,40		
Beam 429	0,42	Beam 429	0,42	Beam 429	0,42	Beam 149	0,40		
Beam 226	0,41	Beam 226	0,41	Beam 226	0,41	Beam 475	0,40		
Beam 80	0,41	Beam 80	0,41	Beam 80	0,41	Beam 517	0,40		
Beam 413	0,41	Beam 413	0,41	Beam 413	0,41	Beam 157	0,40		
Beam 12	0,41	Beam 12	0,41	Beam 90	0,40	Beam 387	0,40		
Beam 90	0,40	Beam 90	0,40	Beam 12	0,40				
Beam 217	0,40	Beam 217	0,40	Beam 217	0,40				
Beam 677	0,40	Beam 677	0,40	Beam 677	0,40				

Tabella 7.1.2.1: Riassunto del check di buckling dei beam, nel caso con +5° di rollio

7.1.3	-5° rol	lio
-------	---------	-----

Operativo statico	Check	Operativo wind 35 km/h	Check	Operativo wind L.E.	Check	Intasamento chute	Check	Bobcat	Check
Beam 214	2,04	Beam 214	2,04	Beam 214	2,03	Beam 214	2,55	Beam 214	1,91
Beam 77	1,74	Beam 77	1,74	Beam 77	1,75	Beam 77	2,23	Beam 585	1,69
Beam 585	1,71	Beam 585	1,71	Beam 585	1,71	Beam 585	1,85	Beam 582	1,63
Beam 582	1,66	Beam 582	1,66	Beam 582	1,67	Beam 582	1,80	Beam 77	1,61
Beam 578	1,39	Beam 578	1,39	Beam 578	1,39	Beam 578	1,50	Beam 578	1,37
Beam 580	1,34	Beam 580	1,34	Beam 580	1,34	Beam 580	1,45	Beam 580	1,32
Beam 575	1,28	Beam 575	1,28	Beam 575	1,28	Beam 575	1,39	Beam 575	1,26
Beam 579	1,25	Beam 579	1,25	Beam 579	1,25	Beam 579	1,35	Beam 579	1,23
Beam 576	1,19	Beam 576	1,19	Beam 576	1,19	Beam 202	1,29	Beam 576	1,17
Beam 437	1,06	Beam 437	1,06	Beam 437	1,05	Beam 576	1,29	Beam 583	1,03
Beam 583	1,05	Beam 583	1,05	Beam 583	1,05	Beam 78	1,18	Beam 78	0,94
Beam 202	0,99	Beam 202	0,99	Beam 350	0,99	Beam 583	1,14	Beam 566	0,92
Beam 350	0,99	Beam 350	0,99	Beam 202	0,98	Beam 65	1,13	Beam 202	0,91
Beam 475	0,97	Beam 475	0,97	Beam 475	0,97	Beam 215	1,10	Beam 154	0,88
Beam 78	0,94	Beam 78	0,94	Beam 78	0,94	Beam 566	1,01	Beam 215	0,86
Beam 566	0,93	Beam 566	0,93	Beam 566	0,93	Beam 154	0,99	Beam 65	0,76
Beam 396	0,90	Beam 396	0,91	Beam 396	0,91	Beam 584	0,82	Beam 584	0,74
Beam 154	0,88	Beam 154	0,88	Beam 154	0,88	Beam 581	0,75	Beam 581	0,68
Beam 215	0,86	Beam 215	0,86	Beam 215	0,86	Beam 337	0,74	Beam 547	0,63
Beam 65	0,84	Beam 65	0,85	Beam 65	0,85	Beam 336	0,73	Beam 546	0,63
Beam 552	0,81	Beam 552	0,81	Beam 552	0,81	Beam 547	0,68	Beam 553	0,60
Beam 550	0,81	Beam 550	0,81	Beam 550	0,81	Beam 546	0,67	Beam 555	0,60
Beam 554	0,81	Beam 554	0,81	Beam 554	0,81	Beam 553	0,64	Beam 302	0,56
Beam 551	0,81	Beam 551	0,81	Beam 551	0,81	Beam 555	0,63	Beam 577	0,52
Beam 584	0,75	Beam 584	0,75	Beam 584	0,75	Beam 302	0,59	Beam 169	0,51
Beam 337	0,73	Beam 337	0,73	Beam 337	0,73	Beam 825	0,58	Beam 569	0,51
Beam 336	0,72	Beam 336	0,72	Beam 336	0,72	Beam 577	0,58	Beam 301	0,48
Beam 581	0,69	Beam 581	0,69	Beam 581	0,69	Beam 604	0,57	Beam 552	0,44
Beam 547	0,64	Beam 547	0,64	Beam 547	0,64	Beam 569	0,56	Beam 27	0,43
Beam 546	0,63	Beam 546	0,63	Beam 546	0,63	Beam 169	0,56	Beam 554	0,43
Beam 302	0,62	Beam 302	0,62	Beam 302	0,62	Beam 660	0,55	Beam 396	0,43
Beam 553	0,61	Beam 553	0,61	Beam 553	0,61	Beam 824	0,53	Beam 47	0,42
Beam 555	0,60	Beam 555	0,60	Beam 555	0,60	Beam 301	0,52	Beam 337	0,41
Beam 169	0,58	Beam 169	0,58	Beam 169	0,58	Beam 76	0,50	Beam 825	0,41
Beam 301	0,56	Beam 301	0,56	Beam 301	0,56	Beam 396	0,48	Beam 336	0,40
Beam 825	0,55	Beam 825	0,55	Beam 825	0,55	Beam 552	0,47	Beam 660	0,40
Beam 604	0,54	Beam 604	0,54	Beam 604	0,54	Beam 66	0,47	Beam 604	0,40
Beam 577	0,53	Beam 577	0,53	Beam 577	0,53	Beam 554	0,46		
Beam 569	0,52	Beam 569	0,52	Beam 569	0,52	Beam 677	0,45		
Beam 335	0,51	Beam 335	0,51	Beam 335	0,51	Beam 27	0,45		

Beam 334	0,50	Beam 334	0,50	Beam 334	0,50	Beam 621	0,45
Beam 516	0,50	Beam 516	0,49	Beam 515	0,49	Beam 429	0,44
Beam 515	0,49	Beam 515	0,49	Beam 516	0,49	Beam 15	0,44
Beam 27	0,48	Beam 27	0,48	Beam 27	0,48	Beam 514	0,44
Beam 89	0,47	Beam 89	0,47	Beam 89	0,47	Beam 12	0,44
Beam 3	0,46	Beam 145	0,46	Beam 145	0,47	Beam 203	0,42
Beam 145	0,46	Beam 3	0,46	Beam 3	0,46	Beam 145	0,42
Beam 660	0,45	Beam 660	0,45	Beam 660	0,45	Beam 3	0,42
Beam 226	0,45	Beam 226	0,45	Beam 226	0,45	Beam 80	0,41
Beam 80	0,43	Beam 80	0,43	Beam 824	0,43	Beam 217	0,41
Beam 824	0,43	Beam 824	0,43	Beam 80	0,43	Beam 513	0,40
Beam 341	0,42	Beam 341	0,42	Beam 341	0,42	Beam 90	0,40
Beam 90	0,42	Beam 90	0,42	Beam 90	0,42	Beam 405	0,40
Beam 217	0,42	Beam 217	0,42	Beam 217	0,42	Beam 213	0,40
Beam 342	0,42	Beam 342	0,42	Beam 342	0,42		
Beam 25	0,41	Beam 25	0,41	Beam 25	0,40		
Beam 227	0,40	Beam 227	0,40	Beam 227	0,40		
Beam 15	0,40	Beam 15	0,40	Beam 15	0,40		

Tabella 7.1.3.1: Riassunto del check di buckling dei beam, nel caso con -5° di rollio

7.1.4 +2° beccheggio

Operativo statico	Check	Operativo wind 35 km/h	Check	Operativo wind L.E.	Check	Intasamento chute	Check	Bobcat	Check
Beam 214	2,01	Beam 214	2,01	Beam 214	2,00	Beam 214	2,53	Beam 214	1,89
Beam 585	1,68	Beam 585	1,68	Beam 585	1,68	Beam 77	1,97	Beam 585	1,66
Beam 582	1,58	Beam 582	1,58	Beam 582	1,58	Beam 585	1,82	Beam 582	1,55
Beam 77	1,52	Beam 77	1,52	Beam 77	1,53	Beam 582	1,71	Beam 578	1,42
Beam 578	1,44	Beam 578	1,44	Beam 578	1,44	Beam 578	1,56	Beam 77	1,41
Beam 580	1,36	Beam 580	1,36	Beam 580	1,36	Beam 580	1,47	Beam 580	1,34
Beam 437	1,22	Beam 437	1,22	Beam 579	1,21	Beam 202	1,44	Beam 579	1,19
Beam 579	1,21	Beam 579	1,21	Beam 437	1,21	Beam 579	1,32	Beam 575	1,15
Beam 575	1,16	Beam 575	1,16	Beam 575	1,17	Beam 575	1,27	Beam 576	1,10
Beam 202	1,11	Beam 576	1,11	Beam 576	1,12	Beam 576	1,21	Beam 583	1,02
Beam 576	1,11	Beam 202	1,11	Beam 350	1,10	Beam 583	1,12	Beam 202	1,00
Beam 350	1,11	Beam 350	1,11	Beam 202	1,10	Beam 78	1,11	Beam 566	0,92
Beam 583	1,03	Beam 583	1,03	Beam 583	1,03	Beam 215	1,07	Beam 78	0,90
Beam 566	0,93	Beam 566	0,93	Beam 566	0,93	Beam 566	1,02	Beam 215	0,84
Beam 78	0,88	Beam 475	0,88	Beam 475	0,89	Beam 154	0,94	Beam 154	0,83
Beam 475	0,88	Beam 78	0,88	Beam 78	0,88	Beam 65	0,92	Beam 584	0,71
Beam 396	0,84	Beam 396	0,84	Beam 396	0,85	Beam 584	0,79	Beam 547	0,65
Beam 154	0,83	Beam 154	0,83	Beam 154	0,84	Beam 336	0,76	Beam 546	0,65
Beam 215	0,83	Beam 215	0,83	Beam 215	0,83	Beam 337	0,75	Beam 581	0,62
Beam 552	0,83	Beam 552	0,83	Beam 552	0,83	Beam 547	0,70	Beam 47	0,61
Beam 550	0,83	Beam 550	0,83	Beam 550	0,83	Beam 546	0,69	Beam 553	0,60
Beam 554	0,83	Beam 554	0,83	Beam 554	0,83	Beam 581	0,69	Beam 555	0,59
Beam 551	0,82	Beam 551	0,82	Beam 551	0,82	Beam 825	0,64	Beam 65	0,58
Beam 336	0,75	Beam 336	0,75	Beam 336	0,75	Beam 553	0,63	Beam 302	0,55
Beam 337	0,74	Beam 337	0,74	Beam 337	0,74	Beam 555	0,62	Beam 577	0,52
Beam 584	0,72	Beam 584	0,72	Beam 584	0,72	Beam 660	0,60	Beam 169	0,51
Beam 65	0,68	Beam 65	0,68	Beam 65	0,69	Beam 302	0,59	Beam 569	0,50
Beam 547	0,66	Beam 547	0,66	Beam 547	0,66	Beam 577	0,58	Beam 301	0,49
Beam 546	0,65	Beam 546	0,65	Beam 546	0,65	Beam 169	0,56	Beam 12	0,46
Beam 581	0,63	Beam 581	0,63	Beam 581	0,63	Beam 569	0,55	Beam 825	0,45
Beam 302	0,61	Beam 302	0,61	Beam 302	0,61	Beam 604	0,54	Beam 3	0,45
Beam 825	0,61	Beam 825	0,61	Beam 553	0,61	Beam 301	0,53	Beam 15	0,44
Beam 553	0,61	Beam 553	0,61	Beam 825	0,60	Beam 47	0,53	Beam 552	0,44
Beam 555	0,60	Beam 555	0,60	Beam 555	0,60	Beam 12	0,51	Beam 27	0,44
Beam 516	0,58	Beam 516	0,58	Beam 169	0,58	Beam 824	0,51	Beam 554	0,44
Beam 169	0,58	Beam 169	0,58	Beam 516	0,58	Beam 15	0,51	Beam 396	0,43
Beam 301	0,57	Beam 301	0,57	Beam 301	0,57	Beam 3	0,50	Beam 660	0,43
Beam 3	0,55	Beam 3	0,55	Beam 3	0,55	Beam 677	0,48	Beam 337	0,42
Beam 47	0,54	Beam 47	0,54	Beam 577	0,53	Beam 396	0,48	Beam 336	0,42
Beam 577	0.53	Beam 577	0.53	Beam 47	0.53	Beam 552	0.47	Beam 513	0.41

Beam 604	0,52	Beam 604	0,52	Beam 604	0,52	Beam 513	0,47	Beam 25	0,41
Beam 569	0,51	Beam 569	0,51	Beam 569	0,51	Beam 554	0,47		
Beam 660	0,50	Beam 660	0,50	Beam 660	0,50	Beam 27	0,46		
Beam 27	0,49	Beam 27	0,49	Beam 27	0,49	Beam 437	0,45		
Beam 335	0,49	Beam 335	0,49	Beam 335	0,49	Beam 66	0,44		
Beam 334	0,48	Beam 334	0,48	Beam 334	0,48	Beam 517	0,44		
Beam 15	0,47	Beam 15	0,47	Beam 15	0,46	Beam 7	0,43		
Beam 89	0,46	Beam 89	0,46	Beam 89	0,46	Beam 621	0,43		
Beam 342	0,45	Beam 342	0,45	Beam 342	0,45	Beam 25	0,43		
Beam 12	0,45	Beam 12	0,45	Beam 12	0,45	Beam 468	0,42		
Beam 341	0,44	Beam 341	0,44	Beam 341	0,44	Beam 359	0,42		
Beam 25	0,44	Beam 25	0,44	Beam 515	0,44	Beam 429	0,42		
Beam 515	0,44	Beam 515	0,44	Beam 25	0,44	Beam 203	0,41		
Beam 226	0,43	Beam 226	0,43	Beam 226	0,43	Beam 387	0,41		
Beam 513	0,42	Beam 513	0,42	Beam 80	0,42	Beam 80	0,41		
Beam 80	0,42	Beam 80	0,42	Beam 145	0,42	Beam 217	0,41		
Beam 145	0,42	Beam 145	0,42	Beam 513	0,42	Beam 383	0,40		
Beam 468	0,42	Beam 468	0,42	Beam 468	0,42				
Beam 677	0,42	Beam 677	0,42	Beam 90	0,42				
Beam 90	0,42	Beam 90	0,42	Beam 677	0,41				
Beam 217	0,41	Beam 217	0,41	Beam 217	0,41				
Daam 924	0.41	D 924	0.41	Daam 924	0.41				

 Beam 824
 0,41
 Beam 824
 0,41
 Beam 824
 0,41

 Tabella 7.1.4.1: Riassunto del check di buckling dei beam, nel caso con +2° di beccheggio

7.1.5 -2° beccheggio:

Operativo statico	Check	Operativo wind 35 km/h	Check	Operativo wind L.E.	Check	Intasamento chute	Check	Bobcat	Check
Beam 214	1,83	Beam 214	1,83	Beam 214	1,82	Beam 214	2,29	Beam 214	1,72
Beam 77	1,70	Beam 77	1,70	Beam 77	1,71	Beam 77	2,21	Beam 582	1,65
Beam 582	1,68	Beam 582	1,68	Beam 582	1,68	Beam 582	1,82	Beam 585	1,60
Beam 585	1,62	Beam 585	1,62	Beam 585	1,62	Beam 585	1,75	Beam 77	1,58
Beam 578	1,31	Beam 578	1,30	Beam 578	1,30	Beam 578	1,41	Beam 578	1,28
Beam 575	1,28	Beam 575	1,28	Beam 575	1,28	Beam 575	1,40	Beam 575	1,26
Beam 580	1,26	Beam 580	1,26	Beam 580	1,26	Beam 580	1,37	Beam 580	1,24
Beam 579	1,22	Beam 579	1,22	Beam 579	1,22	Beam 579	1,33	Beam 579	1,20
Beam 576	1,17	Beam 576	1,17	Beam 576	1,17	Beam 576	1,27	Beam 576	1,15
Beam 475	1,13	Beam 475	1,13	Beam 475	1,13	Beam 65	1,25	Beam 583	1,00
Beam 583	1,02	Beam 396	1,02	Beam 396	1,03	Beam 78	1,16	Beam 154	0,95
Beam 396	1,02	Beam 583	1,02	Beam 583	1,02	Beam 583	1,11	Beam 78	0,92
Beam 437	0,99	Beam 437	0,98	Beam 437	0,98	Beam 154	1,07	Beam 65	0,83
Beam 154	0,95	Beam 154	0,95	Beam 65	0,95	Beam 202	1,04	Beam 566	0,83
Beam 65	0,94	Beam 65	0,95	Beam 154	0,95	Beam 215	1,01	Beam 215	0,80
Beam 350	0,93	Beam 350	0,93	Beam 350	0,93	Beam 566	0,91	Beam 584	0,74
Beam 78	0,92	Beam 78	0,92	Beam 78	0,92	Beam 584	0,82	Beam 581	0,71
Beam 566	0,84	Beam 566	0,84	Beam 566	0,83	Beam 581	0,78	Beam 202	0,70
Beam 552	0,83	Beam 552	0,83	Beam 552	0,83	Beam 337	0,76	Beam 547	0,63
Beam 554	0,83	Beam 554	0,83	Beam 554	0,83	Beam 336	0,75	Beam 546	0,63
Beam 550	0,83	Beam 550	0,83	Beam 550	0,83	Beam 547	0,67	Beam 553	0,62
Beam 551	0,82	Beam 551	0,82	Beam 551	0,82	Beam 546	0,67	Beam 555	0,61
Beam 202	0,79	Beam 202	0,79	Beam 215	0,78	Beam 553	0,66	Beam 302	0,56
Beam 215	0,79	Beam 215	0,78	Beam 202	0,78	Beam 555	0,64	Beam 577	0,52
Beam 584	0,75	Beam 584	0,75	Beam 584	0,75	Beam 604	0,63	Beam 169	0,50
Beam 337	0,75	Beam 337	0,75	Beam 337	0,75	Beam 302	0,59	Beam 569	0,49
Beam 336	0,74	Beam 336	0,74	Beam 336	0,74	Beam 577	0,57	Beam 301	0,48
Beam 581	0,72	Beam 581	0,72	Beam 581	0,72	Beam 824	0,57	Beam 145	0,47
Beam 547	0,63	Beam 547	0,63	Beam 547	0,63	Beam 825	0,55	Beam 187	0,46
Beam 546	0,63	Beam 553	0,63	Beam 553	0,63	Beam 169	0,55	Beam 396	0,45
Beam 553	0,63	Beam 546	0,63	Beam 546	0,63	Beam 569	0,54	Beam 552	0,44
Beam 302	0,62	Beam 302	0,62	Beam 302	0,62	Beam 660	0,53	Beam 604	0,44
Beam 555	0,62	Beam 555	0,62	Beam 555	0,62	Beam 145	0,53	Beam 554	0,44
Beam 604	0,59	Beam 604	0,59	Beam 604	0,59	Beam 301	0,52	Beam 429	0,43
Beam 515	0,58	Beam 515	0,58	Beam 515	0,58	Beam 396	0,51	Beam 514	0,43
Beam 169	0,57	Beam 169	0,57	Beam 145	0,58	Beam 514	0,51	Beam 27	0,43
Beam 145	0,57	Beam 145	0,57	Beam 169	0,57	Beam 429	0,50	Beam 337	0,42
Beam 301	0,56	Beam 301	0,56	Beam 301	0,56	Beam 621	0,48	Beam 336	0,41
Beam 825	0,53	Beam 825	0,53	Beam 825	0,53	Beam 552	0,48	Beam 824	0,40
Beam 577	0.53	Beam 577	0,53	Beam 577	0,53	Beam 554	0,47		

Beam 569	0,50	Beam 569	0,50	Beam 569	0,50	Beam 405	0,47
Beam 334	0,49	Beam 334	0,49	Beam 334	0,49	Beam 66	0,46
Beam 335	0,48	Beam 335	0,48	Beam 335	0,48	Beam 475	0,45
Beam 824	0,48	Beam 824	0,48	Beam 824	0,48	Beam 27	0,44
Beam 27	0,48	Beam 27	0,48	Beam 27	0,48	Beam 677	0,44
Beam 3	0,46	Beam 3	0,46	Beam 3	0,46	Beam 157	0,44
Beam 514	0,46	Beam 514	0,46	Beam 514	0,46	Beam 3	0,43
Beam 341	0,46	Beam 341	0,46	Beam 341	0,46	Beam 149	0,43
Beam 89	0,45	Beam 89	0,45	Beam 89	0,45	Beam 152	0,42
Beam 516	0,44	Beam 429	0,44	Beam 429	0,44	Beam 488	0,42
Beam 429	0,44	Beam 516	0,44	Beam 342	0,44	Beam 430	0,42
Beam 342	0,44	Beam 342	0,44	Beam 413	0,44	Beam 80	0,41
Beam 413	0,44	Beam 413	0,44	Beam 516	0,44	Beam 217	0,41
Beam 226	0,43	Beam 226	0,43	Beam 226	0,43	Beam 15	0,40
Beam 660	0,43	Beam 660	0,43	Beam 660	0,43	Beam 413	0,40
Beam 80	0,42	Beam 80	0,42	Beam 80	0,42		
Beam 90	0,41	Beam 90	0,41	Beam 90	0,41		
Beam 217	0,41	Beam 217	0,41	Beam 217	0,41		
Beam 621	0,41	Beam 621	0,41	Beam 621	0,41		
Beam 405	0,40	Beam 405	0,40	Beam 405	0,40		
				Beam 187	0,40		

Tabella 7.1.5.1: Riassunto del check di buckling dei beam, nel caso con -2° di beccheggio

7.1.6 Boom rest

CheckCheckCheckCheckCheckCheckBeam 1011,01Beam 2720,54Beam 2870,86Beam 2720,900Beam 2720,900Beam 1021,00Beam 2870,54Beam 1390,71Beam 350,82Beam 2890,990Beam 6650,80Beam 2890,43Beam 1290,67Beam 2890,72Beam 1390,71Beam 270,61Beam 180,62Beam 180,62Beam 1390,71Beam 230,77Beam 1600,42Beam 1770,61Beam 180,60Beam 280,60Beam 240,77Beam 1600,42Beam 1770,61Beam 1300,59Beam 130,71Beam 250,71Beam 310,57Beam 540,59Beam 130,51Beam 13Beam 260,71Beam 310,57Beam 510,59Beam 310,71Beam 280,71Beam 170,51Beam 530,55Beam 130,57Beam 240,61Feam 280,51Beam 130,56Beam 310,67Beam 350,67Beam 140,60Beam 170,51Beam 530,55Beam 510,64Beam 320,67Beam 340,50Beam 530,55Beam 530,56Beam 530,57Beam 420,62Feam 540,48Beam 170,52Beam 530,57Beam 450,59Beam 450,48Beam 17	1		2		3		4		5		
Beam 1011,01Beam 2720,54Beam 2870,86Beam 2720,90Beam 2721,00Beam 1021,00Beam 2870,54Beam 1390,71Beam 350,82Beam 2870,99Beam 650,80Beam 2890,43Beam 1000,67Beam 2890,72Beam 2890,70Beam 3780,79Beam 1390,43Beam 2770,61Beam 2870,67Beam 1390,70Beam 230,72Beam 1600,42Beam 1770,61Beam 280,67Beam 1300,72Beam 3280,72Beam 1600,42Beam 1260,60Beam 280,60Beam 1300,72Beam 3280,72Beam 1600,42Beam 1260,60Beam 280,67Beam 280,71Beam 3980,71Beam 310,57Beam 510,59Beam 130,71Beam 400,71Beam 140,51Beam 510,56Beam 510,67Beam 240,60Beam 150,67Beam 140,50Beam 510,61Beam 380,67Beam 450,51Beam 1600,53Beam 510,64Beam 150,57Beam 160,51Beam 510,51Beam 510,51Beam 150,57Beam 460,48Beam 170,51Beam 510,51Beam 150,57Beam 510,47Beam 510,51Beam 510,51Beam 300,57Beam 510,	Check		Check		Check	Check			Check		
Beam 102 1,00 Beam 287 0,54 Beam 139 0,71 Beam 35 0,82 Beam 287 0,99 Beam 665 0,80 Beam 289 0,43 Beam 160 0,67 Beam 289 0,72 Beam 289 0,80 Beam 378 0,79 Beam 139 0,43 Beam 27 0,65 Beam 287 0,67 Beam 139 0,79 Beam 123 0,77 Beam 160 0,42 Beam 177 0,61 Beam 18 0,62 Beam 160 0,71 Beam 123 0,72 Beam 160 0,42 Beam 177 0,61 Beam 18 0,62 Beam 173 0,72 Beam 328 0,71 Beam 160 0,47 Beam 174 0,55 Beam 173 0,59 Beam 123 0,71 Beam 31 0,57 Beam 51 0,59 Beam 31 0,71 Beam 31 0,51 Beam 316 0,56 Beam 31 0,67 Beam 53 0,55 Beam 51 0,64 Beam 742 0,62 Eam 173 0,51 B	Beam 101	1,01	Beam 272	0,54	Beam 287	0,86	Beam 272	0,90	Beam 272	1,00	
Beam 6650,80Beam 2890,43Beam 1600,67Beam 2890,72Beam 2890,80Beam 3780,79Beam 1390,43Beam 2720,65Beam 2870,67Beam 1390,79Beam 220,77Beam 1600,42Beam 1770,61Beam 180,62Beam 1000,77Beam 1230,72Beam 1600,42Beam 1770,61Beam 180,62Beam 1030,72Beam 3280,72Beam 1600,42Beam 1270,58Beam 1730,59Beam 2620,71Beam 3980,71Feam 310,57Beam 540,59Beam 1270,71Beam 6620,71Feam 770,54Beam 5510,59Beam 310,71Beam 240,61Feam 780,51Beam 3160,55Beam 180,67Beam 240,66Feam 1280,51Beam 530,55Beam 510,64Beam 380,67Feam 1840,50Beam 530,55Beam 510,64Beam 140,61Beam 1520,57Beam 140,49Beam 5160,53Beam 530,57Beam 1520,57Beam 540,48Beam 310,51Beam 1770,52Beam 510,57Beam 3030,52Feam 310,41Beam 510,47Beam 510,47Beam 510,57Beam 2330,51Beam 510,47Beam 510,47Beam 510,41Beam 510,51 </td <td>Beam 102</td> <td>1,00</td> <td>Beam 287</td> <td>0,54</td> <td>Beam 139</td> <td>0,71</td> <td>Beam 35</td> <td>0,82</td> <td>Beam 287</td> <td>0,99</td>	Beam 102	1,00	Beam 287	0,54	Beam 139	0,71	Beam 35	0,82	Beam 287	0,99	
Beam 378 0,79 Beam 139 0,43 Beam 272 0,65 Beam 287 0,67 Beam 139 0,79 Beam 22 0,77 Beam 160 0,42 Beam 177 0,61 Beam 18 0,62 Beam 160 0,77 Beam 123 0,72 Beam 160 0,42 Beam 127 0,58 Beam 173 0,59 Beam 262 0,60 Beam 262 0,71 Beam 328 0,72 Beam 173 0,57 Beam 173 0,59 Beam 262 0,71 Beam 398 0,71 Beam 17 0,58 Beam 173 0,59 Beam 127 0,71 Beam 662 0,71 Beam 574 0,56 Beam 551 0,59 Beam 18 0,70 Beam 24 0,68 Beam 173 0,51 Beam 513 0,55 Beam 316 0,56 Beam 351 0,64 Beam 424 0,62 Beam 173 0,51 Beam 513 0,51 Beam 514 0,51 Beam 514 0,51 Beam 513 0,51 Beam	Beam 665	0,80	Beam 289	0,43	Beam 160	0,67	Beam 289	0,72	Beam 289	0,80	
Beam 22 0,77 Beam 160 0,42 Beam 177 0,61 Beam 18 0,62 Beam 160 0,77 Beam 123 0,72 Beam 160 0,42 Beam 126 0,60 Beam 262 0,60 Beam 173 0,72 Beam 328 0,72 Beam 17 0,58 Beam 173 0,59 Beam 262 0,71 Beam 398 0,71 Beam 173 0,57 Beam 546 0,59 Beam 127 0,71 Beam 662 0,71 Beam 77 0,54 Beam 214 0,56 Beam 18 0,70 Beam 244 0,68 Beam 173 0,51 Beam 316 0,56 Beam 38 0,67 Beam 742 0,62 Beam 183 0,67 Beam 184 0,49 Beam 160 0,53 Beam 51 0,64 Beam 152 0,57 Beam 154 0,49 Beam 177 0,52 Beam 578 0,53 Beam 571 0,61 Beam 152 0,57 Beam 574 0,48 Beam 177 0,52 Beam 573 0,51 Beam 233 0,51 Beam 57 0,48 Beam	Beam 378	0,79	Beam 139	0,43	Beam 272	0,65	Beam 287	0,67	Beam 139	0,79	
Beam 123 0,72 Beam 126 0,60 Beam 262 0,60 Beam 173 0,72 Beam 328 0,72 Beam 127 0,58 Beam 173 0,59 Beam 262 0,71 Beam 398 0,71 Beam 31 0,57 Beam 546 0,59 Beam 127 0,71 Beam 662 0,71 Beam 574 0,56 Beam 551 0,59 Beam 31 0,71 Beam 244 0,71 Beam 77 0,54 Beam 214 0,56 Beam 18 0,70 Beam 244 0,68 Beam 173 0,51 Beam 316 0,56 Beam 35 0,67 Beam 388 0,67 Beam 173 0,51 Beam 53 0,55 Beam 51 0,64 Beam 249 0,62 Beam 173 0,50 Beam 160 0,53 Beam 51 0,67 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 51 0,61 Beam 152 0,57 Beam 516 0,47 Beam 51 0,51 Beam 51 0,51 Beam 74 0,52 Beam 51 0,47	Beam 22	0,77	Beam 160	0,42	Beam 177	0,61	Beam 18	0,62	Beam 160	0,77	
Beam 328 0,72 Beam 127 0,58 Beam 173 0,59 Beam 262 0,71 Beam 398 0,71 Beam 31 0,57 Beam 546 0,59 Beam 127 0,71 Beam 662 0,71 Beam 574 0,56 Beam 551 0,59 Beam 31 0,71 Beam 244 0,71 Beam 77 0,54 Beam 214 0,56 Beam 18 0,70 Beam 244 0,68 Beam 173 0,51 Beam 316 0,55 Beam 35 0,67 Beam 388 0,67 Beam 289 0,51 Beam 533 0,55 Beam 551 0,64 Beam 742 0,62 Beam 18 0,50 Beam 160 0,53 Beam 581 0,61 Beam 152 0,57 Beam 47 0,48 Beam 177 0,52 Beam 533 0,57 Beam 303 0,52 Beam 316 0,47 Beam 31 0,51 Beam 177 0,57 Beam 47 0,48 Beam 31 0,51 Beam 547 0,52 Beam 53 0,57 Beam 303 0,52 Beam 31 0,41	Beam 123	0,72			Beam 126	0,60	Beam 262	0,60	Beam 173	0,72	
Beam 398 0,71 Beam 31 0,57 Beam 546 0,59 Beam 127 0,71 Beam 662 0,71 Beam 574 0,56 Beam 551 0,59 Beam 31 0,71 Beam 214 0,71 Beam 574 0,54 Beam 214 0,56 Beam 31 0,71 Beam 24 0,68 Beam 77 0,54 Beam 214 0,56 Beam 35 0,67 Beam 38 0,67 Beam 173 0,51 Beam 316 0,55 Beam 35 0,67 Beam 398 0,67 Beam 173 0,51 Beam 316 0,55 Beam 35 0,67 Beam 38 0,67 Beam 173 0,51 Beam 553 0,55 Beam 551 0,64 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 152 0,57 Beam 47 0,48 Beam 17 0,52 Beam 57 0,51 Beam 303 0,52 Beam 31 0,51 Beam 214 0,57 Beam 321 0,47 Beam 139 0,51 Beam 57 0,53	Beam 328	0,72			Beam 127	0,58	Beam 173	0,59	Beam 262	0,71	
Beam 662 0,71 Beam 574 0,56 Beam 551 0,59 Beam 31 0,71 Beam 214 0,71 Beam 77 0,54 Beam 214 0,56 Beam 18 0,70 Beam 24 0,68 Beam 173 0,51 Beam 316 0,56 Beam 35 0,67 Beam 388 0,67 Beam 289 0,51 Beam 553 0,55 Beam 551 0,64 Beam 239 0,67 Beam 18 0,50 Beam 160 0,53 Beam 546 0,62 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 155 0,57 Beam 47 0,48 Beam 177 0,52 Beam 77 0,61 Beam 152 0,57 Beam 546 0,48 Beam 31 0,51 Beam 177 0,52 Beam 303 0,52 Beam 316 0,47 Beam 31 0,51 Beam 578 0,57 Beam 690 0,49 Beam 51 0,47 Beam 571 0,45 Beam 572 0,43 Beam 223 0,47 Beam 552 0,43 <td>Beam 398</td> <td>0,71</td> <td></td> <td></td> <td>Beam 31</td> <td>0,57</td> <td>Beam 546</td> <td>0,59</td> <td>Beam 127</td> <td>0,71</td>	Beam 398	0,71			Beam 31	0,57	Beam 546	0,59	Beam 127	0,71	
Beam 214 0,71 Beam 77 0,54 Beam 214 0,56 Beam 18 0,70 Beam 24 0,68 Beam 173 0,51 Beam 316 0,56 Beam 35 0,67 Beam 388 0,67 Beam 289 0,51 Beam 553 0,55 Beam 551 0,64 Beam 239 0,67 Beam 18 0,50 Beam 160 0,53 Beam 546 0,62 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 115 0,59 Beam 47 0,48 Beam 177 0,52 Beam 77 0,61 Beam 152 0,57 Beam 546 0,48 Beam 31 0,51 Beam 214 0,57 Beam 748 0,57 Beam 262 0,48 Beam 31 0,51 Beam 177 0,57 Beam 303 0,52 Beam 316 0,47 Beam 319 0,51 Beam 517 0,57 Beam 233 0,51 Beam 51 0,47 Beam 52 0,43 Beam 52 0,43 Beam 235 0,49 Beam 552 0,43	Beam 662	0,71			Beam 574	0,56	Beam 551	0,59	Beam 31	0,71	
Beam 24 0,68 Beam 173 0,51 Beam 316 0,56 Beam 35 0,67 Beam 388 0,67 Beam 289 0,51 Beam 553 0,55 Beam 551 0,64 Beam 239 0,67 Beam 18 0,50 Beam 160 0,53 Beam 546 0,62 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 115 0,59 Beam 47 0,48 Beam 177 0,52 Beam 573 0,61 Beam 152 0,57 Beam 546 0,48 Beam 317 0,52 Beam 553 0,57 Beam 748 0,57 Beam 262 0,48 Beam 31 0,51 Beam 214 0,57 Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 573 0,57 Beam 690 0,49 Beam 551 0,47 Beam 571 0,45 Beam 572 0,43 Beam 253 0,44 Beam 552 0,43 Beam 581 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,	Beam 214	0,71			Beam 77	0,54	Beam 214	0,56	Beam 18	0,70	
Beam 388 0,67 Beam 289 0,51 Beam 553 0,55 Beam 551 0,64 Beam 239 0,67 Beam 18 0,50 Beam 160 0,53 Beam 546 0,62 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 115 0,59 Beam 47 0,48 Beam 577 0,52 Beam 77 0,61 Beam 152 0,57 Beam 546 0,48 Beam 547 0,52 Beam 533 0,57 Beam 748 0,57 Beam 262 0,48 Beam 139 0,51 Beam 214 0,57 Beam 303 0,52 Beam 316 0,47 Beam 139 0,51 Beam 177 0,52 Beam 233 0,51 Beam 316 0,47 Beam 139 0,51 Beam 578 0,57 Beam 233 0,51 Beam 511 0,47 Beam 580 0,47 Beam 578 0,53 Beam 235 0,49 Beam 552 0,43 Beam 571 0,44 Beam 572 0,43 Beam 253 0,44 Beam 571	Beam 24	0,68			Beam 173	0,51	Beam 316	0,56	Beam 35	0,67	
Beam 239 0,67 Beam 18 0,50 Beam 160 0,53 Beam 546 0,62 Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 115 0,59 Beam 47 0,48 Beam 177 0,52 Beam 77 0,61 Beam 152 0,57 Beam 47 0,48 Beam 547 0,52 Beam 553 0,57 Beam 748 0,57 Beam 262 0,48 Beam 139 0,51 Beam 147 0,57 Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 177 0,57 Beam 233 0,51 Beam 316 0,47 Beam 127 0,50 Beam 578 0,55 Beam 690 0,49 Beam 551 0,47 Beam 571 0,45 Beam 552 0,43 Beam 229 0,47 Beam 552 0,43 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0	Beam 388	0,67			Beam 289	0,51	Beam 553	0,55	Beam 551	0,64	
Beam 742 0,62 Beam 154 0,49 Beam 578 0,53 Beam 581 0,61 Beam 115 0,59 Beam 47 0,48 Beam 177 0,52 Beam 77 0,61 Beam 152 0,57 Beam 546 0,48 Beam 547 0,52 Beam 553 0,57 Beam 748 0,57 Beam 262 0,48 Beam 31 0,51 Beam 214 0,57 Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 177 0,57 Beam 233 0,51 Beam 316 0,47 Beam 127 0,50 Beam 578 0,54 Beam 235 0,49 Beam 551 0,47 Beam 571 0,455 Beam 552 0,53 Beam 229 0,47 Beam 552 0,43 Beam 47 0,44 Beam 549 0,47 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553	Beam 239	0,67			Beam 18	0,50	Beam 160	0,53	Beam 546	0,62	
Beam 115 0,59 Beam 47 0,48 Beam 177 0,52 Beam 77 0,61 Beam 152 0,57 Beam 546 0,48 Beam 547 0,52 Beam 553 0,57 Beam 748 0,57 Beam 262 0,48 Beam 31 0,51 Beam 214 0,57 Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 177 0,55 Beam 233 0,51 Beam 316 0,47 Beam 127 0,50 Beam 547 0,55 Beam 690 0,49 Beam 551 0,47 Beam 580 0,47 Beam 578 0,54 Beam 235 0,49 Beam 552 0,43 Beam 47 0,44 Beam 552 0,43 Beam 253 0,44 Beam 553 0,40 Beam 551 0,42 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0	Beam 742	0,62			Beam 154	0,49	Beam 578	0,53	Beam 581	0,61	
Beam 152 0,57 Beam 546 0,48 Beam 547 0,52 Beam 553 0,57 Beam 748 0,57 Beam 262 0,48 Beam 31 0,51 Beam 214 0,57 Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 214 0,57 Beam 233 0,51 Beam 321 0,47 Beam 139 0,51 Beam 547 0,55 Beam 690 0,49 Beam 551 0,47 Beam 580 0,47 Beam 572 0,53 Beam 229 0,47 Beam 12 0,45 Beam 571 0,45 Beam 552 0,53 Beam 253 0,44 Beam 552 0,43 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 273 0,41 Beam 609 0,43 Beam 571 <td< td=""><td>Beam 115</td><td>0,59</td><td></td><td></td><td>Beam 47</td><td>0,48</td><td>Beam 177</td><td>0,52</td><td>Beam 77</td><td>0,61</td></td<>	Beam 115	0,59			Beam 47	0,48	Beam 177	0,52	Beam 77	0,61	
Beam 748 0,57 Beam 262 0,48 Beam 31 0,51 Beam 214 0,57 Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 177 0,57 Beam 233 0,51 Beam 177 0,50 Beam 177 0,55 Beam 690 0,49 Beam 551 0,47 Beam 580 0,47 Beam 578 0,54 Beam 235 0,49 Beam 12 0,45 Beam 571 0,45 Beam 552 0,53 Beam 229 0,47 Beam 552 0,43 Beam 47 0,44 Beam 549 0,47 Beam 253 0,44 Beam 552 0,43 Beam 552 0,43 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 573 0,40 Beam 273 0,41 Beam 273 0,41 Beam 609 0,43 Beam 571	Beam 152	0,57			Beam 546	0,48	Beam 547	0,52	Beam 553	0,57	
Beam 303 0,52 Beam 321 0,47 Beam 139 0,51 Beam 177 0,57 Beam 233 0,51 Beam 316 0,47 Beam 127 0,50 Beam 547 0,55 Beam 690 0,49 Beam 551 0,47 Beam 580 0,47 Beam 578 0,54 Beam 235 0,49 Beam 12 0,45 Beam 571 0,45 Beam 552 0,53 Beam 235 0,47 Beam 552 0,43 Beam 477 0,44 Beam 549 0,47 Beam 235 0,44 Beam 552 0,43 Beam 552 0,43 Beam 552 0,43 Beam 552 0,43 Beam 235 0,44 Beam 553 0,40 Beam 551 0,40 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 273 0,41 Beam 609 0,43 Beam 571 0,41 Beam 273 0,41 Beam 273 0,41 Beam 77 <td< td=""><td>Beam 748</td><td>0,57</td><td></td><td></td><td>Beam 262</td><td>0,48</td><td>Beam 31</td><td>0,51</td><td>Beam 214</td><td>0,57</td></td<>	Beam 748	0,57			Beam 262	0,48	Beam 31	0,51	Beam 214	0,57	
Beam 233 0,51 Beam 316 0,47 Beam 127 0,50 Beam 547 0,55 Beam 690 0,49 Beam 551 0,47 Beam 580 0,47 Beam 578 0,54 Beam 235 0,49 Beam 12 0,45 Beam 571 0,45 Beam 552 0,53 Beam 229 0,47 Beam 552 0,43 Beam 47 0,44 Beam 549 0,47 Beam 253 0,44 Beam 187 0,42 Beam 552 0,43 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 126 0,42 Beam 273 0,41 Beam 51 0,41 Beam 273 0,412 Beam 273 0,41 Beam 273 0,41 Image: Seam 549 0,40 Image: Seam 549 0,40 Image: Seam 549 0,40 Image: Seam 549 0,40 <td>Beam 303</td> <td>0,52</td> <td></td> <td></td> <td>Beam 321</td> <td>0,47</td> <td>Beam 139</td> <td>0,51</td> <td>Beam 177</td> <td>0,57</td>	Beam 303	0,52			Beam 321	0,47	Beam 139	0,51	Beam 177	0,57	
Beam 690 0,49 Beam 551 0,47 Beam 580 0,47 Beam 578 0,54 Beam 235 0,49 Beam 12 0,45 Beam 571 0,45 Beam 552 0,53 Beam 229 0,47 Beam 552 0,43 Beam 47 0,44 Beam 549 0,47 Beam 253 0,44 Beam 552 0,43 Beam 552 0,43 Beam 552 0,44 Beam 572 0,43 Beam 253 0,44 Beam 187 0,42 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Image: Sign 592 0,43 Beam 573 0,40 Beam 573 0,41 Beam 573 0,41 Image: Sign 593 0,40 Beam 593 0,40 Beam 593 0,40 Image: Sign 593 0,40	Beam 233	0,51			Beam 316	0,47	Beam 127	0,50	Beam 547	0,55	
Beam 235 0,49 Beam 12 0,45 Beam 571 0,45 Beam 552 0,53 Beam 229 0,47 Beam 552 0,43 Beam 47 0,44 Beam 549 0,47 Beam 253 0,44 Beam 187 0,42 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 572 0,40 Beam 572 0,41 0,43 Beam 571 0,41 Beam 609 0,43 Beam 573 0,40 Beam 273 0,41 Beam 273 0,41 Beam 512 0,40 Beam 572 0,40 Beam 572 0,41 Beam 572 0,41	Beam 690	0,49			Beam 551	0,47	Beam 580	0,47	Beam 578	0,54	
Beam 229 0,47 Beam 552 0,43 Beam 47 0,44 Beam 549 0,47 Beam 253 0,44 Beam 187 0,42 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Image: Comparison of the co	Beam 235	0,49			Beam 12	0,45	Beam 571	0,45	Beam 552	0,53	
Beam 253 0,44 Beam 187 0,42 Beam 552 0,44 Beam 572 0,43 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 572 0,40 Beam 120 0,43 Beam 273 0,41 Beam 126 0,42 Beam 273 0,412245 Beam 549 0,40 Image: Color of the second s	Beam 229	0,47			Beam 552	0,43	Beam 47	0,44	Beam 549	0,47	
Beam 609 0,43 Beam 553 0,40 Beam 581 0,43 Beam 571 0,41 Beam 609 0,43 Beam 553 0,40 Beam 126 0,43 Beam 273 0,41 Beam 126 0,42 0,41 Beam 273 0,412 0,41 0,41 Beam 571 0,41 Beam 126 0,42 0,42 0,41 0,41 Beam 571 0,41 Beam 273 0,412 0,41 0,41 0,41 Beam 571 0,41 Beam 571 0,41 0,41 0,41 0,41	Beam 253	0,44			Beam 187	0,42	Beam 552	0,44	Beam 572	0,43	
Beam 12 0,43 Beam 273 0,41 Beam 126 0,42 0,42 0,412245 Beam 549 0,40 0,40	Beam 609	0,43			Beam 553	0,40	Beam 581	0,43	Beam 571	0,41	
Beam 126 0,42 Beam 273 0,412245 Beam 549 0,40							Beam 12	0,43	Beam 273	0,41	
Beam 2730,412245Beam 5490,40							Beam 126	0,42			
Beam 549 0,40							Beam 273	0,412245			
							Beam 549	0,40			

Tabella 7.1.6.1: Riassunto del check di buckling dei beam, nel caso di boom rest, combinazioni dalla 1 alla 5

6		7		8		9		10		
Check		Check		Check		Check		Check		
Beam 272	1,02	Beam 272	0,53	Beam 362	0,49	Beam 287	1,02	Beam 287	1,05	
Beam 287	1,01	Beam 287	0,53	Beam 363	0,41	Beam 272	0,95	Beam 272	0,97	
Beam 289	0,81	Beam 289	0,43			Beam 139	0,83	Beam 139	0,84	
Beam 139	0,80	Beam 139	0,42			Beam 160	0,80	Beam 160	0,80	
Beam 160	0,77	Beam 160	0,41			Beam 289	0,75	Beam 289	0,76	
Beam 551	0,73					Beam 127	0,72	Beam 127	0,73	
Beam 262	0,73					Beam 31	0,72	Beam 31	0,72	
Beam 127	0,72					Beam 262	0,70	Beam 262	0,71	
Beam 173	0,72					Beam 173	0,70	Beam 551	0,71	
Beam 546	0,72					Beam 18	0,67	Beam 173	0,70	
Beam 18	0,71					Beam 77	0,67	Beam 546	0,69	
Beam 31	0,71					Beam 177	0,64	Beam 18	0,68	
Beam 35	0,67				Beam 551			Beam 177	0,64	
Beam 553	0,66					Beam 581	0,59	Beam 553	0,63	
Beam 547	0,63			Beam 546			0,59	Beam 547	0,61	
Beam 552	0,61			Beam 553			0,55	Beam 552	0,60	
Beam 177	0,57					Beam 35	0,55	Beam 35	0,55	
Beam 549	0,55					Beam 552	0,52	Beam 549	0,54	
Beam 273	0,48					Beam 547	0,52	Beam 126	0,51	
Beam 288	0,47					Beam 126	0,51	Beam 288	0,49	
Beam 290	0,44					Beam 574	0,51	Beam 77	0,48	
Beam 77	0,42					Beam 214	0,50	Beam 273	0,46	
Beam 140	0,42					Beam 578	0,48	Beam 316	0,46	
Beam 214	0,41					Beam 549	0,47	Beam 140	0,44	
Beam 578	0,41					Beam 316	0,45	Beam 336	0,43	
Beam 336	0,40					Beam 576	0,44	Beam 574	0,43	
						Beam 572	0,44	Beam 290	0,41	
						Beam 288	0,41			

Tabella 7.1.6.2: Riassunto del check di buckling dei beam, nel caso di boom rest, combinazioni dalla 6 alla 10

11		12		13		14		15		16	
	Check										
Beam 272	1,05	Beam 272	1,07	Beam 287	0,56	Beam 287	0,59	Beam 272	0,58	Beam 272	0,61
Beam 287	0,95	Beam 287	0,97	Beam 272	0,48	Beam 272	0,50	Beam 287	0,49	Beam 287	0,51
Beam 289	0,84	Beam 289	0,85	Beam 139	0,46	Beam 139	0,47	Beam 35	0,48	Beam 35	0,49
Beam 35	0,79	Beam 35	0,79	Beam 160	0,44	Beam 160	0,45	Beam 289	0,47	Beam 289	0,48
Beam 139	0,75	Beam 551	0,76	Beam 77	0,43	Beam 127	0,40	Beam 214	0,42	Beam 551	0,44
Beam 160	0,74	Beam 139	0,76					Beam 18	0,41	Beam 546	0,44
Beam 18	0,73	Beam 546	0,75					Beam 581	0,41	Beam 18	0,41
Beam 262	0,73	Beam 160	0,74					Beam 173	0,40	Beam 262	0,41
Beam 173	0,73	Beam 262	0,74					Beam 262	0,40	Beam 173	0,41
Beam 127	0,70	Beam 18	0,74							Beam 553	0,41
Beam 31	0,69	Beam 173	0,74								
Beam 551	0,66	Beam 127	0,71								
Beam 546	0,65	Beam 31	0,70								
Beam 214	0,64	Beam 553	0,69								
Beam 581	0,63	Beam 547	0,66								
Beam 578	0,61	Beam 552	0,61								
Beam 553	0,60	Beam 549	0,55								
Beam 547	0,57	Beam 273	0,51								
Beam 77	0,55	Beam 177	0,50								
Beam 552	0,53	Beam 316	0,49								
Beam 571	0,50	Beam 214	0,49								
Beam 177	0,50	Beam 578	0,47								
Beam 316	0,49	Beam 290	0,46								
Beam 549	0,48	Beam 288	0,45								
Beam	0,43	Beam	0,44								

 126
 126

 Tabella 7.1.6.3: Riassunto del check di buckling dei beam, nel caso di boom rest, combinazioni dalla 11 alla 16

Shiploader in posizione operativa, esempio di visualizzazione dei beam critici nel caso senza inclinazione, operativo statico con vento limite di esercizio:

Figura 7.1.7: Caso senza inclinazione, operativo statico con vento limite di esercizio, beam fibre stress

Figura 7.1.8: Caso senza inclinazione, operativo statico con vento limite di esercizio, visualizzando solo i beam che risultano critici per il carico di punta

Dal confronto tra le due immagini si può notare come i beam che risultano critici siano solamente quelli non strutturali, infatti collegando rigidamente elementi che nella realtà sono uniti ad esempio da giunzioni bullonate si va ad incrementare di molto la rigidezza con un conseguente aumento delle tensioni negli elementi coinvolti.

Shiploader in posizione di boom rest, esempio di visualizzazione dei beam critici in una delle combinazioni con vertical, transverse and longitudinal force:

Figura 7.1.8: Posizione di boom rest, combinazioni con vertical, transverse and longitudinal force, beam fibre stress

Figura 7.1.9: Posizione di boom rest, combinazioni con vertical, transverse and longitudinal force, beam fibre stress, visualizzando solo i beam che risultano critici per il carico di punta

Anche in questo caso dal confronto tra le due immagini si può notare come i beam che risultano critici siano solamente quelli non strutturali, infatti collegando rigidamente elementi che nella realtà sono uniti ad esempio da giunzioni bullonate si va ad incrementare di molto la rigidezza con un conseguente aumento delle tensioni negli elementi coinvolti.

7.2 Buckling di elementi bidimensionali

Il buckling (o instabilità elastica) è un fenomeno critico per elementi strutturali compressi, in cui la struttura subisce una deformazione laterale improvvisa sotto un carico di compressione critico. Mentre il buckling è spesso associato agli elementi 1D come colonne o travi, è anche un problema significativo per gli elementi 2D come piastre e gusci.

1. Definizione

Il buckling di elementi 2D riguarda piastre (plates) e gusci (shells) sottili sottoposti a carichi compressivi. La deformazione fuori piano avviene quando il carico applicato supera un valore critico, portando a un cambiamento nella configurazione della struttura.

2. Tipi di Elementi 2D

- **Piastre (Plates)**: Elementi bidimensionali con spessore molto inferiore rispetto alle altre dimensioni. Sono soggetti a carichi normali alla loro superficie media.
- **Gusci (Shells)**: Strutture bidimensionali che possono avere curvature in una o entrambe le direzioni. Sono soggette a carichi normali e tangenziali alla superficie.

3. Teoria del Buckling per Elementi 2D

Buckling delle Piastre

Le piastre possono sperimentare instabilità sotto carichi di compressione. La teoria del buckling delle piastre considera:

- **Condizioni al Contorno**: Le modalità di vincolo (vincoli su tutti i lati, bordi liberi, incastrati o semplicemente appoggiati) influenzano il carico critico di buckling.
- **Dimensioni della Piastra**: La lunghezza, larghezza e spessore della piastra determinano la sua rigidezza e resistenza al buckling.
- Modulo di Elasticità (E) e Coefficiente di Poisson (v): Le proprietà del materiale influenzano il comportamento della piastra sotto carico.

L'espressione generale per il carico critico di buckling per una piastra rettangolare sottile semplicemente appoggiata e caricata uniformemente lungo i bordi è data da:

$$\sigma_{\rm cr} = \frac{k\pi^2 E}{12(1-v^2)} \cdot \left(\frac{t}{b}\right)^2 \tag{7.2.1}$$

Dove:

- σcr = stress critico di buckling
- k = coefficiente che dipende dalle condizioni al contorno
- E =modulo di elasticità del materiale
- v = coefficiente di Poisson
- t = spessore della piastra
- b = larghezza della piastra

Buckling dei Gusci

I gusci possono essere soggetti a buckling sia sotto carichi di compressione che di torsione. Le modalità di buckling nei gusci sono più complesse rispetto alle piastre a causa delle curvature. Alcuni fattori chiave includono:

- Geometria del Guscio: La curvatura del guscio (cilindrica, sferica, etc.) influenza le modalità di instabilità.
- Carichi Applicati: Tipologia e distribuzione dei carichi (compressione assiale, pressione esterna, torsione, etc.).
- **Proprietà del Materiale**: Analogamente alle piastre, le proprietà elastiche del materiale giocano un ruolo cruciale.

L'espressione per il carico critico di buckling per un guscio cilindrico sottile sotto carico di compressione assiale è approssimativamente data da:

$$\sigma_{\rm cr}^{}=\frac{2\mathrm{E}}{\sqrt{3(1-v^2)}}\cdot \left(\frac{\mathrm{t}}{\mathrm{r}}\right) \tag{7.2.2}$$

Dove:

• r = raggio del guscio

4. Analisi del Buckling di Elementi 2D

L'analisi del buckling può essere eseguita utilizzando metodi analitici e numerici:

- **Metodi Analitici**: Utilizzati per geometrie e condizioni di carico semplici. Forniscono espressioni chiuse per il calcolo dei carichi critici.
- **Metodi Numerici**: Utilizzano il metodo degli elementi finiti (FEM) per analizzare geometrie complesse e condizioni di carico realistiche. Software FEM come ANSYS, Abaqus e Straus7 sono comunemente utilizzati per queste analisi.

Passi dell'Analisi Numerica

- 1. **Modellazione Geometrica**: Creare il modello 2D del componente (piastra o guscio) con le dimensioni e la forma corrette.
- 2. Definizione delle Proprietà del Materiale: Assegnare le proprietà elastiche al materiale.
- 3. Applicazione dei Carichi e Vincoli: Definire le condizioni di carico e vincolo realistiche.
- 4. Generazione della Mesh: Creare una mesh adeguata per discretizzare il modello.
- 5. Analisi del Buckling: Eseguire l'analisi del buckling per trovare i carichi critici e le modalità di deformazione.

5. Interpretazione dei Risultati

- Carico Critico di Buckling: Il carico al quale si verifica la prima modalità di buckling.
- Modi di Buckling: Forme di deformazione laterale associate ai carichi critici. Le prime modalità sono generalmente quelle più rilevanti per la progettazione.
- Fattori di Sicurezza: L'uso di fattori di sicurezza per garantire che le strutture siano sicure anche sotto carichi superiori a quelli previsti.

Conclusione

Il buckling di elementi 2D è un fenomeno complesso che richiede un'attenta considerazione nella progettazione ingegneristica. Utilizzando analisi sia analitiche che numeriche, è possibile prevedere e mitigare i rischi associati all'instabilità strutturale, garantendo la sicurezza e l'integrità delle strutture soggette a carichi compressivi.

Problematiche Tecniche del Buckling di Elementi 2D

Il buckling di elementi 2D, come piastre e gusci, presenta una serie di problematiche tecniche che devono essere affrontate per garantire la sicurezza e l'integrità strutturale. Queste problematiche includono la determinazione del carico critico di buckling, l'influenza delle condizioni al contorno, la modellazione accurata dei materiali e delle geometrie, e l'analisi delle modalità di deformazione.

1. Determinazione del Carico Critico di Buckling

Il carico critico di buckling è il carico al quale un elemento 2D diventa instabile e subisce una deformazione significativa. La determinazione accurata di questo carico è cruciale e può essere influenzata da vari fattori:

- **Condizioni al Contorno**: Le modalità di vincolo (incastro, cerniera, bordo libero, ecc.) influiscono sul carico critico di buckling. Per esempio, una piastra completamente incastrata avrà un carico critico di buckling maggiore rispetto a una con bordi liberi.
- Distribuzione del Carico: La modalità di applicazione del carico (uniforme, puntuale, distribuito) può alterare il carico critico.
- **Proprietà del Materiale**: Il modulo di elasticità e il coefficiente di Poisson del materiale giocano un ruolo significativo nella determinazione del carico critico.

2. Influenza delle Condizioni al Contorno

Le condizioni al contorno determinano come i bordi dell'elemento 2D sono vincolati e possono influenzare notevolmente il comportamento di buckling:

• **Piastre**: Le piastre incastrate lungo i bordi oppongono una maggiore resistenza al buckling rispetto a quelle con bordi liberi o semplicemente appoggiati.

• **Gusci**: Nei gusci, le condizioni al contorno diventano ancora più complesse a causa delle curvature. Ad esempio, un guscio cilindrico con bordi vincolati può sopportare carichi di compressione assiale più elevati senza subire buckling rispetto a un guscio con bordi liberi.

3. Modellazione Accurata dei Materiali e delle Geometrie

Una modellazione accurata è essenziale per prevedere correttamente il comportamento di buckling:

- Geometria: Imperfezioni geometriche, come deviazioni dalla forma ideale, possono ridurre significativamente il carico critico di buckling. Anche le tolleranze di fabbricazione devono essere considerate.
- **Materiali**: Le proprietà non lineari dei materiali, come l'anisotropia, devono essere incluse nella modellazione. Materiali compositi o con gradienti di proprietà possono comportarsi in modo molto diverso rispetto ai materiali isotropi.
- **Spessore Variabile**: Piastre e gusci con spessore variabile lungo la superficie presentano una complessità aggiuntiva nella modellazione del buckling.

4. Analisi delle Modalità di Deformazione

Identificare e comprendere le modalità di deformazione è fondamentale per prevenire il buckling:

- **Modi di Buckling**: Le prime modalità di buckling (mode shapes) sono quelle a cui prestare maggiore attenzione, poiché rappresentano le deformazioni più probabili sotto carichi critici.
- Instabilità Post-Critica: Dopo il buckling, gli elementi 2D possono mostrare comportamenti non lineari complessi. La capacità di prevedere e gestire questi comportamenti è cruciale per evitare cedimenti catastrofici.

5. Influenza delle Imperfezioni

Le imperfezioni geometriche e materiali influiscono notevolmente sulla resistenza al buckling:

- Imperfezioni Geometriche: Anche piccole deviazioni dalla geometria ideale possono ridurre il carico critico. Queste imperfezioni devono essere considerate nei modelli di analisi.
- Non Linearità Materiale: La plasticità o altre non linearità materiali possono alterare il comportamento di buckling. Nei casi di materiali con comportamento non lineare, l'analisi deve includere questi effetti.

6. Analisi e Simulazione Numerica

L'uso di software di simulazione come ANSYS, Abaqus o Straus7 per analizzare il buckling è comune, ma presenta alcune problematiche tecniche:

- Mesh Adeguata: La qualità e la densità della mesh influenzano la precisione dell'analisi del buckling. Una mesh troppo grossolana può non catturare adeguatamente le modalità di buckling, mentre una mesh troppo fine può aumentare significativamente il tempo di calcolo.
- **Metodi di Soluzione**: I metodi di soluzione numerica, come il metodo degli elementi finiti (FEM), devono essere scelti con attenzione. Alcuni metodi possono essere più efficaci per particolari tipi di problemi di buckling.
- **Convergenza**: Problemi di convergenza possono sorgere durante l'analisi, specialmente quando si trattano geometrie complesse o materiali non lineari. È importante impostare correttamente i criteri di convergenza e verificare i risultati.

Conclusione

Il buckling di elementi 2D presenta diverse problematiche tecniche che devono essere affrontate per garantire una progettazione sicura e affidabile. La determinazione accurata del carico critico, la considerazione delle condizioni al contorno, la modellazione precisa delle proprietà del materiale e delle geometrie, e la gestione delle imperfezioni sono tutti fattori cruciali. Utilizzare strumenti di analisi e simulazione avanzati può aiutare a prevedere e mitigare i rischi associati al buckling, ma richiede una comprensione approfondita dei fenomeni coinvolti e delle tecniche di analisi appropriate.

7.2.1 Buckling in Ansys workbench:

ANSYS Workbench è una piattaforma software integrata progettata per simulazioni ingegneristiche multidisciplinari, sviluppata da ANSYS Inc. È uno strumento potente utilizzato per l'analisi strutturale, termica, fluida e multifisica, con un'interfaccia utente intuitiva che consente agli ingegneri di configurare, gestire e analizzare i modelli di simulazione in un ambiente unificato.

Architettura e Componenti Principali

1. **Progetto Workbench**: L'ambiente Workbench organizza e gestisce l'intero flusso di lavoro di simulazione in un progetto, che può includere varie analisi collegate tra loro.

2. Geometria:

- **ANSYS DesignModeler**: Strumento di modellazione geometrica per creare e modificare geometrie 3D.
- **SpaceClaim**: Strumento di modellazione diretta che facilita l'importazione, la modifica e la preparazione della geometria per la simulazione.

3. Mesh:

- ANSYS Meshing: Strumento per generare una mesh di alta qualità per diversi tipi di analisi. Supporta elementi tetraedrici, esaedrici, prismati e piramidali.
- Mesh Connections: Permette di definire connessioni tra parti diverse del modello per una mesh coerente e continua.

4. Fisica:

- Mechanical: Modulo per l'analisi strutturale lineare e non lineare, dinamica e di fatica.
- Fluent: Modulo per l'analisi CFD (Computational Fluid Dynamics) per simulazioni di fluidi.
- CFX: Altro modulo CFD utilizzato principalmente per simulazioni di fluidi compressibili e incomprimibili.
- **Thermal**: Modulo per l'analisi termica, inclusi i trasferimenti di calore conduttivi, convettivi e radiativi.
- Explicit Dynamics: Modulo per simulazioni ad alta velocità e impatti.
- **Electromagnetics**: Moduli per analisi elettromagnetiche come HFSS per alte frequenze e Maxwell per basse frequenze.

5. Post-Processing:

- ANSYS Mechanical: Per visualizzare e analizzare i risultati di simulazione strutturale e termica.
- ANSYS CFD-Post: Per visualizzare e analizzare i risultati CFD.

Funzionalità Principali

1. Interfaccia Grafica Intuitiva:

- Drag-and-drop per la gestione dei moduli di simulazione.
- Workflow integrato per facilitare la connessione tra diversi tipi di analisi.

2. Interoperabilità:

- Supporto per l'importazione e l'esportazione di geometrie in vari formati CAD (IGES, STEP, Parasolid, ecc.).
- Integrazione con software di terze parti per l'ottimizzazione e la gestione dei dati.

3. Gestione dei Progetti:

- Sistema di gestione dei file per organizzare modelli, dati di input e risultati di simulazione.
- Possibilità di collegare varie analisi (es. analisi termica seguita da analisi strutturale) per studi multifisici.

4. Automazione e Personalizzazione:

- Utilizzo di linguaggi di scripting come APDL (ANSYS Parametric Design Language) e Python per automatizzare processi di simulazione.
- Creazione di parametri e utilizzo di tool di ottimizzazione per eseguire studi parametrici.

5. Solutori Avanzati:

- Utilizzo di solutori efficienti per analisi strutturali, termiche, fluide ed elettromagnetiche.
- Capacità di eseguire analisi non lineari, come grandi deformazioni, contatti non lineari e plasticità.

6. Visualizzazione e Reporting:

- Strumenti avanzati per visualizzare deformazioni, stress, flussi di fluidi, campi di temperatura e campi elettromagnetici.
- Creazione di report personalizzati contenenti grafici, immagini e dati tabellari.

Applicazioni Tipiche

1. Industria Aerospaziale:

- Simulazioni strutturali di componenti aeronautici.
- Analisi aerodinamiche e di flussi di fluidi.

2. Automotive:

- Analisi di crash test e impatti.
- Simulazioni termiche di motori e sistemi di raffreddamento.

3. Energia e Power Generation:

- Analisi strutturale e termica di turbine.
- Simulazioni CFD per flussi di gas e liquidi in sistemi energetici.

4. Elettronica:

- Simulazioni termiche per gestione del calore in dispositivi elettronici.
- Analisi elettromagnetiche per antenne e circuiti.

5. Biomedico:

- Simulazioni strutturali di impianti medici.
- Analisi fluido-dinamica di flussi sanguigni.

Conclusione

ANSYS Workbench è una piattaforma di simulazione versatile e potente che integra vari strumenti di analisi per affrontare problemi ingegneristici complessi. La sua capacità di gestire workflow complessi, l'interoperabilità con altri software, e la vasta gamma di moduli disponibili lo rendono uno strumento essenziale per ingegneri e progettisti in molteplici settori industriali.

Metodologia utilizzata:

1. Si procede ad aprire il submodel del mast in Straus7

Figura 7.2.1.1: Mast in Straus7, come si può notare dall'immagine il gruppo è caricato e vincolato opportunamente

- 2. Si va ad esportare il file con l'estensione .nas
- 3. Si va ad avviare Ansys Workbench
- 4. Si procede ad inserire un modulo "external model"
- 5. Vi si importa il file .nas
- 6. Si inserisce un modulo "static structural"
- 7. Si collega la sezione "setup" dell'external model con la sezione "model" del modulo static structural
- 8. Si apre "Mechanical"
- 9. Si va a risolvere il modello, questo viene importato già meshato, caricato e vincolato
- 10. Si inserisce un modulo "eigenvalue buckling" trascinandolo sopra static structural e verificando poi che le due analisi siano opportunamente unite; rilasciando risulta tutto collegato come in figura 7.2.1.2

•	А			•	В			•	С	
1	External Model			1	😇 Static Structural			1	Eigenvalue Buckling	
2	🍓 Setup	$\overline{}$		2	🥏 Engineering Data	× .		2	🥏 Engineering Data	× 🔒
	External Model		\searrow	3	i Model	× .		3	i Model	× 🛓
				4	🍓 Setup	× 🖌		4	🍓 Setup	× 🖌
				5	Solution	× .		5	G Solution	× .
				6	🤪 Results	× ,	4	6	🔗 Results	× 🔒
					Static Structural				Eigenvalue Buckling	

Figura 7.2.1.2: Struttura dell'analisi in Workbench

- 11. Nell'ambiente Mechanical sarà ora comparsa una sezione eigenvalue buckling, si procede ora a risolvere dopo aver impostato 4 modi di buckling in "analysis settings"
- 12. Si inserisce una "total deformation" e si lancia l'animazione per vedere l'imbozzamento della struttura

Si eseguono inoltre alcune sezioni per valutare la correttezza dell'importazione e verificare che la struttura sia opportunamente modellata anche nella parte interna:

Figura 7.2.1.3: Sezione 1 del mast in cui si evidenzia la struttura interna di plates

Figura 7.2.1.4: Sezione 2 del mast in cui si evidenzia la struttura interna di plates

7.2.1.1 Risultati, caso no inclinazione:

Figura 7.2.1.1.1: Primo modo di buckling per il caso in assenza di inclinazione

Figura 7.2.1.1.2: Secondo modo di buckling per il caso in assenza di inclinazione

Figura 7.2.1.1.3: Terzo modo di buckling per il caso in assenza di inclinazione

Figura 7.2.1.1.4: Quarto modo di buckling per il caso in assenza di inclinazione

7.2.1.2 Risultati caso +5° rollio

Figura 7.2.1.2.1: Primo modo di buckling per il caso con +5° di rollio

Figura 7.2.1.2.2: Secondo modo di buckling per il caso con +5° di rollio

Figura 7.2.1.2.3: Terzo modo di buckling per il caso con +5° di rollio

Figura 7.2.1.2.4: Quarto modo di buckling per il caso con +5° di rollio

7.2.1.3 Risultati caso -5° rollio

Figura 7.2.1.3.1: Primo modo di buckling per il caso con -5° di rollio

Figura 7.2.1.3.2: Secondo modo di buckling per il caso con -5° di rollio

Figura 7.2.1.3.3: Terzo modo di buckling per il caso con -5° di rollio

Figura 7.2.1.3.4: Quarto modo di buckling per il caso con -5° di rollio

Figura 7.2.1.4.1: Primo modo di buckling per il caso con +2° di beccheggio

Figura 7.2.1.4.2: Secondo modo di buckling per il caso con +2° di beccheggio

Figura 7.2.1.4.3: Terzo modo di buckling per il caso con +2° di beccheggio

Figura 7.2.1.4.4: Quarto modo di buckling per il caso con +2° di beccheggio

7.2.1.5 Risultati caso -2° beccheggio

Figura 7.2.1.5.1: Primo modo di buckling per il caso con -2° di beccheggio

Figura 7.2.1.5.2: Secondo modo di buckling per il caso con -2° di beccheggio

Figura 7.2.1.5.3: Terzo modo di buckling per il caso con -2° di beccheggio

Figura 7.2.1.5.4: Quarto modo di buckling per il caso con -2° di beccheggio

7.2.2 Buckling in Straus7

7.2.2.1 Risultati caso no inclinazione

165110] Nodes || 0[0] Beams || 18625[0] Plates || 0[0] Brids || 0[0] Units || 0[0] Vertices || 0[0] Paths || mm || N || kg || MPa || C || J || (27,64,14) || D5:5% || CARLCATORE || Figura 7.2.2.1.1: Primo modo di buckling per il caso in assenza di inclinazione

MAST_sub_SHL_no_incl: Linear Buckling Analysis "\\fileshare\UserProfile\$\darmar16239\Desktop\TESI\MAST_sub_SHL_no_incl.LBA"

-

 \Box \times

16511(0) Nodes 0(0) Beams 18625(0) Plates 0(0) Bricks 0(0) Links 0(0) Vertices 0(0) Faces 0(0) Paths mm N kg MPa C J (-139,-45,-177) DS:5% CARICATORE

16511[0] Nodes | 0[0] Beams | 18625[0] Plates | 0[0] Bricks | 0[0] Links | 0[0] Vertices | 0[0] Faces | 0[0] Paths | mm | N | kg | MPa | C | J | (44, 43, -3) | DS:7% | CARICATORE

Figura 7.2.2.1.3: Terzo modo di buckling per il caso in assenza di inclinazione

16511[0] Nodes 0[0] Beams 18625[0] Plates 0[0] Bricks 0[0] Links 0[0] Vertices 0[0] Faces 0[0] Patrs mm N kg MPa (C] 3 (-128,-16,-179) DS:7% CARICATORE

7.2.2.2 Risultati caso +5° rollio

16511[0] Nodes 0[0] Beams 18625[0] Plates 0[0] Bricks 0[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C J (38,60,2) DS:5% CARICATORE

Figura 7.2.2.2.1: Primo modo di buckling per il caso con +5° di rollio

Figura 7.2.2.2.2: Secondo modo di buckling per il caso con +5° *di rollio*

16511[0] Nodes 0[0] Beams 18625[0] Plates 0[0] Brids 0[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C J (44,22,2) DS:5% CARICATORE

Figura 7.2.2.2.3: Terzo modo di buckling per il caso con +5° di rollio

Figura 7.2.2.2.4: Quarto modo di buckling per il caso con +5° di rollio

7.2.2.3 Risultati caso -5° rollio

16511[0] Nodes || 0[0] Beams || 18625[0] Plates || 0[0] Bricks || 0[0] Links || 0[0] Vertices || 0[0] Faces || 0[0] Paths || mm || N || kg || MPa || C || J || (46,33,3) || DS:5% || CARICATORE ||

Figura 7.2.2.3.1: Primo modo di buckling per il caso con -5° di rollio

Figura 7.2.2.3.2: Secondo modo di buckling per il caso con -5° di rollio

Figura 7.2.2.3.3: Terzo modo di buckling per il caso con -5° di rollio

16511[0] Nodes 0[0] Beams | 18625[0] Plates 0[0] Brids 0[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C 0 1 (-142,-38,178) DS:5% CARICATORE

Figura 7.2.2.3.4: Quarto modo di buckling per il caso con -5° di rollio

7.2.2.4 Risultati caso +2° beccheggio

HAST_sub_SHL_+2becch: Linear Buckling Analysis "\\fileshare\UserProfile\$\darmar16239\Desktop\TESI\MAST_sub_SHL_+2becch:LBA"

Figura 7.2.2.4.1: Primo modo di buckling per il caso con $+2^{\circ}$ *di beccheggio*

16511[0] Nodes || 0[0] Beams || 18625[0] Plates || 0[0] Bridds || 0[0] Links || 0[0] Vertices || 0[0] Faces || 0[0] Paths || mm || N || kg || MPa || C || J || (-138,-27,179) || DS:5% || CARLCATORE ||

Figura 7.2.2.4.2: Primo modo di buckling per il caso con +2° di beccheggio

7.2.2.5 Risultati caso -2° beccheggio

16511[0] Nodes | 0[0] Beams | 18625[0] Plates | 0[0] Bricks | 0[0] Links | 0[0] Vertices | 0[0] Faces | 0[0] Paths | mm | N | kg | MPa | C | J | (-142,42,176) | DS:5% | CARICATORE

Figura 7.2.2.5.1: Primo modo di buckling per il caso con -2° di beccheggio

16511[0] Nodes 0[0] Beams 18625[0] Plates 0[0] Bricks 0[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C J (39,42,1) DS:5% CARICATORE Figura 7.2.2.5.2: Secondo modo di buckling per il caso con -2° di beccheggio

16511[0] Nodes 0[0] Beams 18625[0] Plates 0[0] Bricks 0[0] Links 0[0] Vertices 0[0] Faces 0[0] Paths mm N kg MPa C J (-138,-35,178) DS:5% CARICATORE Figura 7.2.2.5.3: Terzo modo di buckling per il caso con -2° di beccheggio

15511101 Nodes || Info Baanse || 18625101 Plates || Info Brides || Info I Brides || Info I Barres || Info Barre

7.2.3 Risultati

Si procede ora ad inserire alcune immagini in sezione dei plate che sono soggetti al buckling

Figura 7.2.3.2: Sezione che evidenzia l'imbozzamento nel caso di secondo modo di buckling

Figura 7.2.3.4: Sezione che evidenzia l'imbozzamento nel caso di quarto modo di buckling

Riassunto buckling in Ansys Workbench

no incl	+5 roll	-5 roll	+2 becch	-2 becch
2,1146	2,1472	2,0986	2,0739	2,0934
2,1354	2,1703	2,1174	2,1813	2,159
2,4109	2,4478	2,3931	2,3643	2,3826
2,4308	2,4699	2,4109	2,4835	2,462

Tabella 7.2.3.5: Fattori moltiplicativi necessari per il buckling in Ansys Workbench

Risultato buckling in Straus7:

no incl	+5 roll	-5 roll	+2 becch	-2 becch
1,4217	1,444	1,4107	1,4008	1,4176
1,4392	1,4631	1,4267	1,4629	1,4447
1,5597	1,5841	1,5477	1,5374	1,5543
1,5773	1,6033	1,5638	1,6027	1,5844

Tabella 7.2.3.6: Fattori moltiplicativi necessari per il buckling in Straus7

Scostamento percentuale tra i due metodi:

no incl	+5 roll	-5 roll	+2 becch	-2 becch
32,76	32,74	32,77	32,45	32,28
32,60	32,58	32,62	32,93	33,08
35,30	35,28	35,32	34,97	34,76
35,11	35,08	35,13	35,46	35,64

Tabella 7.2.3.7: Scarto percentuale tra i risultati ottenuti in Ansys Workbench e quelli ottenuti in Straus7

7.2.4 Commento finale

Analizzando i dati degli scarti percentuali tra i modi di buckling riassunti nella tabella (7.2.3.7) si nota che è presente una divergenza di circa il 30%, questa è stata ulteriormente indagata e verificata anche riproducendo su entrambi i software un componente semplice, in particolare una trave incastrata, e ottenendo gli stessi risultati in termini di scarto percentuale.

La differenza ottenuta per la geometria più complessa è probabilmente da rimandare alle diverse formulazioni degli elementi finiti usati dai due software di calcolo, la quale non è stata investigata ulteriormente, andando al di là degli obiettivi di questa tesi.

Capitolo 8: analisi cordone di saldatura

8.1 Approccio in tensione nominale

L'analisi della vita a fatica di un giunto saldato utilizzando l'approccio nominale è una metodologia ampiamente utilizzata per prevedere la durata di componenti saldati sotto carichi ciclici. Questo metodo si basa sull'utilizzo di curve S-N (Stress-Number of cycles) che correlano lo sforzo nominale applicato al numero di cicli di vita fino al cedimento. Ecco una descrizione tecnica dettagliata del processo:

1. Definizione dello Sforzo Nominale

- Sforzo Nominale: Lo sforzo nominale è lo sforzo calcolato sulla sezione trasversale nominale del componente, senza considerare gli effetti locali dovuti alla geometria del giunto o ai dettagli della saldatura.
- Tipi di Carico: Può includere carichi di trazione/compressione, flessione o torsione, applicati ciclicamente.

2. Determinazione della Configurazione del Giunto

- **Tipologia di Giunto:** Identifica il tipo di giunto saldato (ad esempio, giunto a T, giunto a L, giunto a sovrapposizione).
- Geometria della Saldatura: Specifica dettagli come la dimensione della saldatura, l'angolo di preparazione e la penetrazione.

3. Selezione delle Curve S-N

- **Curva S-N:** Le curve S-N sono ottenute sperimentalmente e rappresentano il comportamento a fatica del materiale. Le curve sono specifiche per il tipo di materiale e la configurazione del giunto saldato.
- **Fattori di Correzione:** Potrebbe essere necessario applicare fattori di correzione per tener conto di effetti quali la presenza di difetti, trattamenti superficiali e condizioni ambientali.

4. Calcolo del Numero di Cicli di Vita

- Ampiezza dello Sforzo: Determina l'ampiezza dello sforzo ciclico applicato al giunto.
- Utilizzo della Curva S-N: Usa la curva S-N appropriata per il materiale e la configurazione del giunto per trovare il numero di cicli di vita corrispondente all'ampiezza dello sforzo calcolato.

5. Effetti delle Imperfezioni della Saldatura

- **Imperfezioni Locali:** Considera l'influenza di imperfezioni come porosità, cricche e inclusioni. Queste possono ridurre significativamente la vita a fatica e devono essere prese in considerazione nell'analisi.
- Controlli di Qualità: Implementa controlli di qualità per minimizzare le imperfezioni durante il processo di saldatura.

6. Analisi e Interpretazione dei Risultati

- Confronto con i Limiti di Progetto: Confronta il numero di cicli di vita previsto con i requisiti del progetto.
- **Fattori di Sicurezza:** Applica i fattori di sicurezza appropriati per garantire la sicurezza e l'affidabilità del componente.

7. Considerazioni sulla Manutenzione

- Manutenzione Preventiva: Pianifica interventi di manutenzione preventiva basati sull'analisi della vita a fatica per evitare guasti imprevisti.
- Ispezioni Periodiche: Esegui ispezioni periodiche per monitorare lo stato dei giunti saldati e rilevare eventuali segni di cedimento precoce.

Conclusione

L'approccio nominale per l'analisi della vita a fatica di un giunto saldato è un metodo sistematico che combina la conoscenza dei carichi ciclici, le proprietà dei materiali e la geometria del giunto per prevedere la durata di vita del componente. Questo approccio è fondamentale per garantire la sicurezza, l'affidabilità e la longevità delle strutture saldate.

Risulta possibile stimare la vita del componente, una volta noto il range di variazione delle tensioni, utilizzando la curva di Wöehler:

Figura 8.1.1: Curva di Wöehler esemplificativa

8.1.1 No inclinazione

Figura 8.1.1.1: Mast nel caso di assenza di inclinazione della nave, con indicata la tensione nominale

8.1.2 +5° roll

Figura 8.1.2.1: Mast nel caso di +5° di rollio della nave, con indicata la tensione nominale

8.1.3 -5° roll

Figura 8.1.3.1: Mast nel caso di -5° di rollio della nave, con indicata la tensione nominale

8.1.4 +2° beccheggio

Figura 8.1.4.1: Mast nel caso di +2° di beccheggio della nave, con indicata la tensione nominale

8.1.5 -2° beccheggio

Figura 8.1.5.1: Mast nel caso di -2° di beccheggio della nave, con indicata la tensione nominale

8.1.6 Risultati approccio in tensione nominale

No inclin	+5° rollio	-5° rollio	+2° becch	-2° becch
[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
81,09	79,79	81,78	78,98	83,12

Tabella 8.1.6.1: Riassunto tensioni nominali per ogni configurazione possibile dello shiploader

Da questi valori si estraggono i range di variazione delle tensioni nei casi di rollio e beccheggio:

 $\begin{array}{l} \Delta \sigma_{roll} = 81,78 \text{ - } 79,79 = 1,99 \text{ MPa} \\ \Delta \sigma_{becch} = 83,12 \text{ - } 78,98 = 4,15 \text{ MPa} \end{array}$

Con questi valori è possibile ricavare la vita a fatica tramite la curva di Wöehler:

- Caso $\pm 5^{\circ}$ di rollio: 1,99248E+39 cicli
- Caso ±2° di beccheggio: 1,92315E+32 cicli

Valori per cui si può considerare vita infinita.

8.2 Hot Spot Approach

Il metodo Hot Spot è una tecnica utilizzata per valutare la resistenza a fatica delle saldature nelle strutture soggette a carichi dinamici o ciclici. Questo metodo si concentra sull'identificazione delle regioni critiche all'interno di una saldatura dove si verificano elevati gradienti di tensione o concentrazioni di stress, noti come "hot spots". Ecco una descrizione tecnica dettagliata del processo:

1. Analisi della Tensione e dello Stress

- Utilizzo di tecniche analitiche o analisi agli elementi finiti (FEA) per calcolare le distribuzioni di tensione e stress nelle saldature.
- Identificazione delle regioni con elevati gradienti di tensione o concentrazioni di stress che possono causare il cedimento o la propagazione di cricche.

2. Valutazione della Vita a Fatica

- Utilizzo delle curve S-N (Stress-Number of cycles) per correlare lo sforzo applicato al numero di cicli di vita fino al cedimento per il materiale della saldatura.
- Applicazione di metodi di calcolo della vita a fatica, come il metodo di Palmgren-Miner, per determinare la durata prevista della saldatura in base al carico ciclico.

3. Identificazione dei Punti Caldi

- Localizzazione delle regioni critiche all'interno della saldatura dove si verificano elevati gradienti di tensione o concentrazioni di stress.
- Considerazione della geometria della saldatura e dei dettagli costruttivi che possono influenzare la distribuzione dello stress.

4. Verifica della Resistenza a Fatica

- Applicazione di fattori di sicurezza per garantire che le saldature soddisfino i requisiti di resistenza a fatica e di durata previsti.
- Valutazione della conformità delle regioni critiche identificate rispetto ai criteri di progettazione e agli standard di sicurezza.

5. Monitoraggio e Manutenzione

- Ispezioni periodiche per monitorare lo sviluppo di cricche o altri segni di degrado nelle saldature.
- Pianificazione di interventi di manutenzione preventiva per prolungare la vita utile della saldatura e prevenire guasti imprevisti.

Applicazioni Pratiche

Il metodo Hot Spot è ampiamente utilizzato nell'industria petrolifera, navale, aerospaziale e automobilistica per valutare la resistenza a fatica delle saldature in strutture soggette a carichi dinamici o ciclici. È fondamentale per garantire la sicurezza e l'affidabilità delle strutture in ambienti operativi ad alta intensità di carico.

Conclusione

Il metodo Hot Spot rappresenta una componente cruciale dell'ingegneria delle saldature, consentendo agli ingegneri di identificare e valutare attentamente le regioni critiche all'interno delle saldature e garantire la loro resistenza a fatica. La sua applicazione è essenziale per garantire la sicurezza e l'affidabilità delle strutture in ambienti operativi soggetti a sollecitazioni cicliche.

8.2.1 Procedura di analisi

Si è scelto di analizzare lo stress sulla saldatura nella condizione più gravosa possibile in termini di tensioni, ossia quella di intasamento della tramoggia di scarico.

Si parte con un'analisi static structural, si procede con l'importazione della geometria completa del mast, aprendola in Spaceclaim si inseriscono poi dei piani di taglio; tramite la funzione "split by plane" si procede poi a tagliare la geometria andando ad isolare il submodel desiderato.

Figura 8.2.1.1: Geometria del mast importata in spaceclaim, costituita da facets, impossibile da meshare, non sono presenti superfici.

Si è scelto di analizzare in particolare quest'area del mast perché è soggetta a forti tensioni, come si può notare dalla seguente immagine, ottenuta graficando le tensioni di von mises:

Figura 8.2.1.2: Analisi static structural del caso con rollio di +5° realizzatata in Straus7

Ansy:

la geometria del mast costituita da facets tramite la funzione split by plane

Al momento questo risulta costituito da "facets", il che rende impossibile stendervi una mesh; si procede quindi con l'estrazione delle superfici tramite il tool "skin surface".

Figura 8.2.1.4: Geometria del dettaglio oggetto di analisi, costituita da geometrie di tipo "surface", superfici su cui è possibile stendere una mesh.

Tornando in Workbench si collega la soluzione dell'analisi static structural del modello completo con la sezione setup della analisi static structural del submodel.

Figura 8.2.1.5: Da sinistra: external model in cui inserisco il mast caricato in formato .nas, estratto da Straus; analisi static structural del mast caricato, seguita dall'analisi a buckling; per ultima l'analisi del submodel, i carichi da applicare al cut boundary vengono inseriti collegando la soluzione del mast caricato alla sezione setup.

Si apre poi mechanical e si selezionano i bordi di interesse che costituiscono i cut boundaries e si crea una named selection.

Figura 8.2.1.6: Submodel con evidenziati in rosso i bordi che costituiscono il cut boundary

Si va poi ad inserire un "mesh connection group", in modo da unire le superfici che altrimenti risulterebbero separate, con tutti i conseguenti errori di meshatura e di tensione risultanti.

Figura 8.2.1.7: Prima mesh connection, ottenuta selezionando le due facce come primary geometry e la linea che ne costituisce l'intersezione come secondary geometry.

Figura 8.2.1.8: Seconda mesh connection, ottenuta anche in questo caso selezionando le due facce come primary geometry e la linea che ne costituisce l'intersezione come secondary geometry.

Figura 8.2.1.9: Terza mesh connection, ottenuta selezionando le tre facce come primary geometry e le due linee che ne costituiscono l'intersezione come secondary geometry.

Successivamente si procede con la stesura della mesh:

Figura 8.2.1.10: Esempio di coarse mesh quadratica da 15mm

Dall'albero laterale presente in Mechanical si inserisce una "imported cut boundary constraint", qui si procede poi a selezionare la name selection appena creata "cut boundary". E, per andare a verificare la corrispondenza con il modello principale, si attiva dal menù a sinistra "display source point".

Figura 8.2.1.11: Visualizzazione del submodel all'interno della struttura del mast, tramite visualizzazione dell'imported cut boundary constraint e dei source points.

Nell'immagine qui sotto riportata sono rappresentate le condizioni al contorno in termini di spostamenti lungo il bordo di taglio, queste sono state importate dal modello principale che è stato precedentemente risolto.

Figura 8.2.1.12: Submodel caricato tramite gli imported cut boundary constraint; le frecce colorate rappresentano gli spostamenti provenienti dal modello principale.

Come previsto dal metodo Hot Spot si vanno a fare le analisi tensionali utilizzando quattro tipologie di mesh differenti:

- Una mesh rada, costituita da elementi quadratici con lato da 15mm
- Una mesh fine, costituita da elementi lineari con lato da 6mm
- Una mesh fine, costituita da elementi lineari con lato da 3mm
- Una mesh fine, costituita da elementi lineari con lato da 1mm

Types of model and weld toe:		Relatively coarse models		Relatively fine models	
	Type a	Type b	Туре а	Type b	
Shells:	$\leq t \times t$ and $t \times w/2^a$	$10 \text{ mm} \times 10 \text{ mm}$	$\leq 0.4t \times t$ and $0.4t \times w/2^{\mathrm{a}}$	\leq 4 mm \times 4 mm	
Solids:	$\leq t \times t$ and $t \times w^{a}$	$10 \text{ mm} \times 10 \text{ mm}$	$\leq 0.4t \times t$ and $0.4t \times w/2^{\mathrm{a}}$	\leq 4 mm \times 4 mm	
Shells:	0.5t/1.5t (mid-side pts.) ^b	5 mm/15 mm (mid-side points)	0.4t/1.0t (nodal points)	4 mm/8 mm/12 mm (nodal points)	
Solids:	0.5t/1.5t (surface centre)	5 mm/15 mm (surface centre)	0.4t/1.0t (nodal points)	4 mm/8 mm/12 mm (nodal points)	
	: Shells: Solids: Shells: Solids:	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	Relatively coarse models Type a Type b Shells: $\leq t \times t$ and $t \times wl$ 10 mm \times 10 mm Solids: $\leq t \times t$ and $t \times w^a$ 10 mm \times 10 mm Solids: $\leq t \times t$ and $t \times w^a$ 10 mm \times 10 mm Solids: $0.5t/1.5t$ (mid-side points) 5 mm/15 mm (mid-side points) Solids: $0.5t/1.5t$ (surface centre) 5 mm/15 mm (surface centre)	Relatively coarse models Relatively fine models Type a Type b Type a Shells: $\leq t \times t$ and $t \times w'$ 10 mm × 10 mm $\leq 0.4t \times t$ and $0.4t \times w/2^4$ Solids: $\leq t \times t$ and $t \times w^a$ 10 mm × 10 mm $\leq 0.4t \times t$ and $0.4t \times w/2^4$ Solids: $\leq t \times t$ and $t \times w^a$ 10 mm × 10 mm $\leq 0.4t \times t$ and $0.4t \times w/2^a$ Shells: $0.5t/1.5t$ (mid-side points) $points$) $0.4t/1.0t$ (nodal points) Solids: $0.5t/1.5t$ (surface centre) 5 mm/15 mm (surface centre) $0.4t/1.0t$ (nodal points)	

 Table 4.1 Guideline on meshing and stress evaluation using surface stress extrapolation (further details are described in Sects. 4.4 and 4.5)

 $a^{a}w =$ attachment width (attachment thickness +2 weld leg lengths), see also 4.4 b^{b} surface centre at transverse welds, if the weld below the plate is not modelled, see Fig. 4.4c, d

Figura 8.2.1.13: Linee guida per la stesura della mesh e analisi delle tensioni, con suggerimenti per la dimensione e tipologia di elemento.

A seconda poi della tipologia di mesh impiegata il metodo prevede dei differenti punti di estrazione dei valori di tensione, dipendenti dallo spessore della lamina analizzata:

Figura 8.2.1.14: Rappresentazione delle mesh di tipo "A" e di tipo "B".

Come si evince dalle due immagini qui sopra, estrapolate dalle IIW Reccomendations:

- nel caso di coarse mesh i punti di estrazione sono a 0,5t e 1,5t;
- nel caso di fine mesh i punti di estrazione sono a 0,4t e 1t;

Coi punti ottenuti poi, interpolandoli, si va a tracciare la retta che permette, andando ad intersecarla con l'asse delle ordinate, di trovare la tensione di Hot Spot; in questo modo si va ad aggirare il problema della singolarità di tensione che sarebbe altrimenti presente in prossimità della saldatura, come ci si aspetta dalla teoria dei V-Notch.

Note, dunque, le tensioni nei nodi definiti sopra è possibile ricavare la tensione di Hot Spot con le seguenti formule:

- Nel caso di coarse $\sigma_{hs} = 1.5 \cdot \sigma_{0.5t} 0.5 \cdot \sigma_{1.5t}$ (8.2.1.15) mesh:
- Nel caso di fine mesh: $\sigma_{hs} = 1,67 \cdot \sigma_{0,4t} 0,67 \cdot \sigma_{1,0t}$ (8.2.1.16)

Si va poi ad analizzare l'ampiezza di variazione di tensione tra il caso con rollio di $+5^{\circ}$ e quello con rollio di -5° e nel caso con beccheggio di $+2^{\circ}$ e -2° ; una volta noti questi valori si procede ad entrare con nella curva di fatica:

Figura 8.2.1.17: Rappresentazione di una curva di fatica S-N esemplificativa: entrando dall'asse y con il range di tensione applicata, si va ad intersecare la curva tramite un segmento parallelo all'asse x e si ricava la vita stimata.

In questo caso si è prima andati a graficare le tensioni principali tramite un vector plot andando ad ottenere il seguente risultato:

Figura 8.2.1.18: Vector plot tramite cui si evince che la tensione massima principale non è rivolta ortogonalmente al cordone.

Dato che la tensione massima principale non è diretta ortogonalmente al cordone di saldatura non è possibile utilizzarla per calcolare la vita a fatica, ma risulta invece necessario definire un sistema di riferimento locale, tramite il seguente metodo:

- Si crea un nuovo sistema di riferimento con origine in un nodo della mesh in corrispondenza del piede cordone;
- Successivamente si orienta l'asse z facendo un geometry selection ed andando a selezionare la superficie della piastra, in questo modo l'asse si orienterà parallelo a questa normale;
- Tramite la rotazione attorno all'asse z si porta ora l'asse y della terna parallelo al cordone di saldatura; si avrà di conseguenza il restante asse x ortogonale al cordone di saldatura;
- Si passa ora alla parte "solution" del menù e si inserisce un grafico Normal Stress, avendo cura di selezionare il nuovo sistema di riferimento creato e di avere la lettura delle tensioni lungo l'asse x (il sistema di riferimento risulta spostato perché il risultato rappresenta la struttura deformata);

Si ottiene dunque il seguente risultato in cui si può notare il nuovo:

Figura 8.2.1.19: Normal stress con evidenziato il nuovo sistema di riferimento locale, la lettura della tensione avviene lungo l'asse x, di colore rosso in figura, utilizzando la normal stress.

Figura 8.2.1.20: Disegno Autocad del mast con evidenziato il dettaglio analizzato

Figura 8.2.1.21: Sezione del mast con evidenziato il dettaglio analizzato

Figura 8.2.1.22: Dettaglio della saldatura oggetto di analisi

La curva S-N ha equazione:

In cui:

$$\Delta \sigma_{hs}^m \cdot N = C \tag{8.2.1.23}$$

- $\Delta \sigma_{hs}$ è il range di tensione di hot spot
- *N* è il numero di cicli per arrivare a rottura
- $\Delta \sigma_{R.L}$ è il limite di fatica ad ampiezza costante, assumendo rottura ad $N = 10^7$ cicli
- *m* è la pendenza della retta, di solito pari a 3 per le saldature
- C è il valore di progetto della "fatigue capacity" (= $2 \times 10^6 \cdot FAT^m$)
- *FAT* ampiezza di tensione a 2.000.000 di cicli si ricava dalla seguente tabella:

Table 6.1 Hot spot S-N curves for plates made of steel and aluminium alloys up to 25 mm thick

No	Joint	Description	Quality	FAT _{St}	FAT _{Al}	n
1		Butt joint	As-welded, proved free from significant flaws by NDT	100	40	0.2
2		Cruciform or T-joint with full penetration K-butt welds	K-butt welds, no lamellar tearing	100	40	0.3
3		Non-load carrying fillet welds	Trans. non-load carrying attachment, not thicker than the main plate, as-welded			
4		Bracket or stiffener ends, welds either welded around or not	Fillet weld(s) as-welded			
5		Cover plate ends and similar joints				
6		Cruciform joint with load-carrying fillet welds	Fillet weld(s) as-welded	90	36	0.3
7		Lap joint with load-carrying fillet welds				
8	L ≤ 100 mm	Type "b" joint with short edge attachment	Fillet or full penetration weld, as-welded	100	40	0.1
9	L > 100 mm	Type "b" joint with long edge attachment	Fillet or full penetration weld, as-welded	90	36	0.1

Note 1 These curves are valid for perfectly aligned joints. Misalignment effects of more than 5% must be considered in the applied stress range

Note 2 The nominally non- or partially load-carrying fillet welds shown under no. 3 and 5 may actually be load-carrying in certain cases, e.g. for very large attachments or if the bending of the base plate is restrained. In these cases load-carrying fillet welds should be assumed with FAT class 90 for steel and 36 for aluminium. This may also apply to no. 4 without soft bracket end *Note* 3 A further reduction by one FAT class is recommended for fillet welds having throat thicknesses of less than one third of the thickness of the base plate

Figura 8.2.1.24: Range di variazione di tensione per garantire una vita a fatica di due milioni di cicli, in base alla geometria della giunzione e al materiale utilizzato (acciaio o alluminio), fino ai 25mm di spessore della lamiera, sopra entra in gioco la riduzione di vita dovuta all'effetto scala

8.2.2 Caso in assenza di inclinazione

Figura 8.2.2.1: Caso in assenza di inclinazione, coarse mesh con lato da 15mm

Figura 8.2.2.2: Caso in assenza di inclinazione, fine mesh con lato da 6mm

Figura 8.2.2.3: Caso in assenza di inclinazione, fine mesh con lato da 3mm

Figura 8.2.2.4: Caso in assenza di inclinazione, fine mesh con lato da 1mm

8.2.3 Caso con +5° di rollio

Figura 8.2.3.1: Caso con +5° di rollio, coarse mesh con lato da 15mm

Figura 8.2.3.2: Caso con +5° di rollio, fine mesh con lato da 6mm

Figura 8.2.3.3: Caso con +5° di rollio, fine mesh con lato da 3mm

Figura 8.2.3.4: Caso con +5° di rollio, fine mesh con lato da 1mm

8.2.4 Caso con -5° di rollio

Figura 8.2.4.1: Caso con -5° di rollio, coarse mesh con lato da 15mm

Figura 8.2.4.2: Caso con -5° di rollio, fine mesh con lato da 6mm

Figura 8.2.4.3: Caso con -5° di rollio, fine mesh con lato da 3mm

Figura 8.2.4.4: Caso con -5° di rollio, fine mesh con lato da 1mm

8.2.5 Caso +2° di beccheggio

Figura 8.2.5.1: Caso con $+2^{\circ}$ di beccheggio, coarse mesh con lato da 15mm

Figura 8.2.5.2: Caso con $+2^{\circ}$ di beccheggio, fine mesh con lato da 6mm

Figura 8.2.5.3: Caso con $+2^{\circ}$ di beccheggio, fine mesh con lato da 3mm

Figura 8.2.5.4: Caso con +2° di beccheggio, fine mesh con lato da 1mm

8.2.6 Caso con -2° di beccheggio

Figura 8.2.6.1: Caso con -2° di beccheggio, coarse mesh con lato da 15mm

Figura 8.2.6.2: Caso con -2° di beccheggio, fine mesh con lato da 6mm

Figura 8.2.6.3: Caso con -2° di beccheggio, fine mesh con lato da 3mm

Figura 8.2.6.4: Caso con -2° di beccheggio, fine mesh con lato da 1mm

8.2.7 Risultati

Nell'immagine qui a lato è presente una legenda per la lettura dei risultati: con "alto" si intendono le tensioni nella parte superiore del submodel, con "medio" quelle in mezzeria e con "basso" quelle nella parte inferiore.

Le prime due tabelle contengono i risultati estratti da Ansys Workbench, successivamente ve ne sono altre due contenenti la variazione di tensione, nel caso di $\pm 5^{\circ}$ di rollio e $\pm 2^{\circ}$ di beccheggio, valori fondamentali poi per ricavare la vita stimata.

Figura 8.2.7.1: Legenda utile alla lettura dei risultati

Alto [MPa]	NO INCL	+5° ROLL	-5° ROLL	+2° BECCH	-2° BECCH
Coarse mesh 15mm	148,38	146,43	149,30	146,34	150,61
Fine mesh 6mm	157,40	154,91	158,12	154,77	159,35
Fine mesh 3mm	157,11	154,43	157,87	154,54	159,10
Fine mesh 1mm	156,08	155,32	157,03	153,73	156,42

Tabella 8.2.7.2: Tensioni nella parte superiore del submodel, raggruppate in base alle diverse tipologie di mesh

Medio [MPa]	NO INCL	+5° ROLL	-5° ROLL	+2° BECCH	-2° BECCH
Coarse mesh 15mm	116,68	117,32	119,70	116,53	119,97
Fine mesh 6mm	119,12	120,65	120,30	117,68	121,23
Fine mesh 3mm	120,66	119,62	121,81	119,18	122,77
Fine mesh 1mm	120,92	121,10	121,67	119,04	122,16

Tabella 8.2.7.3: Tensioni nella parte di mezzeria del submodel, raggruppate in base alle diverse tipologie di mesh

Basso [MPa]	NO INCL	+5° ROLL	-5° ROLL	+2° BECCH	-2° BECCH
Coarse mesh 15mm	93,34	95,17	97,12	94,12	96,90
Fine mesh 6mm	95,16	97,27	96,57	94,45	97,32
Fine mesh 3mm	97,95	97,86	99,31	97,13	100,09
Fine mesh 1mm	98,59	101,50	99,22	98,15	99,46

Tabella 8.2.7.4: Tensioni nella parte inferiore del submodel, raggruppate in base alle diverse tipologie di mesh

[MPa]	Alto				
Range di tensione $\Delta \sigma$	Coarse mesh 15mm	Fine mesh 6mm	Fine mesh 3mm	Fine mesh 1mm	
±5° ROLLIO	2,88	3,21	3,44	1,71	
±2° BECCHEGGIO	4,27	4,57	4,56	2,69	

Tabella 8.2.7.5: Range di tensione nella parte superiore del submodel, raggruppate in base alle diverse tipologie di mesh

[MPa]	Medio				
Range di tensione $\Delta \sigma$	Coarse mesh 15mm	Fine mesh 6mm	Fine mesh 3mm	Fine mesh 1mm	
±5° ROLLIO	3,02	1,53	2,19	0,75	
±2° BECCHEGGIO	3,44	3,55	3,60	3,12	

Tabella 8.2.7.6: Range di tensione nella parte di mezzeria del submodel, raggruppate in base alle diverse tipologie di mesh

[MPa]	Basso				
Range di tensione $\Delta \sigma$	Coarse mesh 15mm	Fine mesh 6mm	Fine mesh 3mm	Fine mesh 1mm	
±5° ROLLIO	3,78	2,11	1,44	2,91	
±2° BECCHEGGIO	3,56	2,87	2,95	1,32	

Tabella 8.2.7.7: Range di tensione nella parte inferiore del submodel, raggruppate in base alle diverse tipologie di mesh

Ora è quindi possibile stimare la vita del componente, una volta noto il range di variazione delle tensioni, utilizzando la curva di Wöehler:

La curva in figura ha equazione: $\Delta \sigma_{hs}^m \cdot N = C$. Nel caso in esame, in particolare, FAT = 100 MPa, range di tensione necessario per avere una vita di due milioni di cicli, si scende quindi con una pendenza m = 3 fino ai dieci milioni di cicli, e successivamente con una pendenza m = 22.

	Alto				
Numero di cicli	Coarse mesh 15mm	Fine mesh 6mm	Fine mesh 3mm	Fine mesh 1mm	
±5° ROLLIO	5,96794E+35	5,43599E+34	1,18437E+34	5,71731E+40	
±2° BECCHEGGIO	1,0136E+32	2,25476E+31	2,38197E+31	2,56845E+36	

Tabella 8.2.7.9: Vita della saldatura stimata, in numero di cicli, nella parte superiore del submodel

	Medio				
Numero di cicli	Coarse mesh 15mm	Fine mesh 6mm	Fine mesh 3mm	Fine mesh 1mm	
±5° ROLLIO	2,06819E+35	6,19954E+41	2,41398E+38	3,84527E+48	
±2° BECCHEGGIO	1,1821E+34	5,90707E+33	4,4126E+33	1,00383E+35	

Tabella 8.2.7.10: Vita della saldatura stimata, in numero di cicli, nella parte di mezzeria del submodel

	Basso				
Numero di cicli	Coarse mesh 15mm	Fine mesh 6mm	Fine mesh 3mm	Fine mesh 1mm	
±5° ROLLIO	1,51167E+33	5,70629E+38	2,30441E+42	4,67198E+35	
±2° BECCHEGGIO	5,57556E+33	6,15388E+35	3,34767E+35	1,76682E+43	

Tabella 8.2.7.11: Vita della saldatura stimata, in numero di cicli, nella parte inferiore del submodel

Si è scelto di scendere con la dimensione di elemento delle mesh fine per cercare di arrivare quanto più possibile alla convergenza del metodo, cercando di raggiungere un plateau.

Dalle tabelle (8.2.7.9), (8.2.7.10) e (8.2.7.11) si può notare come la vita stimata dalla saldatura sia considerabile infinita, visto che supera abbondantemente i miliardi di cicli, questo a riprova della correttezza del metodo di lavoro assunto dall'azienda Bedeschi Spa, la quale non prevede verifiche a fatica sugli shiploader, consapevoli del ridottissimo range di variazione delle tensioni e del conseguente trascurabile danneggiamento della struttura.

Si inserisce inoltre il seguente grafico raffigurante il picco di tensione in corrispondenze del piede cordone, si nota come all'aumentare della fittezza della mesh si riesca a cogliere il picco di tensione in prossimità della saldatura, inoltre è importante evidenziare la concordanza dei risultati con la mesh fine, infatti le tracce grafiche si sovrappongono quasi perfettamente; la mesh più rada quadratica, con elementi da 15mm risulta invece più imprecisa nei risultati, come era lecito aspettarsi.

Grafico 8.2.7.8: Distribuzione di tensione in prossimità del piede cordone, normalizzata con una tensione nominale di 65MPa (tensione non influenzata dall'effetto di intaglio); caso con +5° di rollio

Se si osservano le immagini con i valori di tensione ricavati da Ansys si nota come le tensioni siano negative, ciò significa che la piastra in quell'area si trova in uno stato di compressione, di conseguenza, si avrebbe dovuto plottare la tensione "signed Von Mises" in Workbench per andare a vedere le zone di trazione e ripetere tutto il procedimento in quella zona.

Conclusioni

Nel presente documento è contenuta l'analisi strutturale statica, a fatica e a buckling dello shiploader prodotto da Bedeschi Spa per il cliente COSCO Shipping di Jakarta (Indonesia); la macchina è parte di un conveyor belt handling system realizzato su una chiatta.

Per prima cosa si sono realizzati i calcoli preliminari di dimensionamento degli azionamenti, ossia la scelta dei motori per la movimentazione del nastro trasportatore su cui giace il carbone, per cui si è optato per due motori da 45 kW con un margine di sicurezza del 21%; successivamente si è proceduto con la scelta del motore atto all'estensione della navetta (shuttle), selezionando un motore con una potenza di 21 kW, mantenendo un margine di sicurezza del 53%; per quanto riguarda invece la rotazione del braccio, in corrispondenza della ralla si sono andati a installare sei motori con una potenza di 2,2 kW ciascuno a 440 V. Infine si sono andati a dimensionare i due pistoni idraulici atti al sollevamento del braccio, optando per uno stelo da 180 mm, con una corsa di 2500 mm, alimentati da una pompa da 15 kW, a 460 V di alimentazione.

Successivamente è stato redatto il Design Criteria della macchina, partendo da un template classico esistente, che viene utilizzato per tutti gli shiploader e poi modificato; questo contiene tutti i dettagli tecnici in termini di normative utilizzate per la costruzione, situazioni di utilizzo per cui è stata concepita la macchina, dati di progetto generali, materiali utilizzati per la realizzazione delle carpenterie, design standards, verifiche a fatica e buckling, verifiche di stabilità, carichi di progetto.

In seguito è stata implementata l'analisi agli elementi finiti tramite Straus7; partendo da un modello di uno shiploader precedentemente realizzato si è proceduto per prima cosa con una verifica della correttezza dei pesi, facendo un confronto tra quello che si aveva nel software per ogni gruppo e ciò che vi era nella distinta base, e andando a modificare opportunamente le tipologie di beam e plate di interesse, fino ad ottenere perfetta concordanza. Si è poi passato a modellare le varie condizioni operative: assenza di inclinazione, $+5^{\circ}$ di rollio, -5° di rollio, $+2^{\circ}$ di beccheggio e -2° di beccheggio (range previsti dal design criteria), andando ad agire sulle accelerazioni lungo gli assi fondamentali e proiettando opportunamente per ciascun caso l'accelerazione di gravità lungo gli assi. Successivamente si sono modellate anche le condizioni di boom rest standard e con vento estremo, ed applicando quanto previsto dalla normativa DNV.

Si sono dunque estratti i valori in termini di forze e momenti in corrispondenza dei nodi di vincolo sulla ralla; riportando poi i valori di Caso I, II e III in un grafico si è verificato il rispetto del limite dinamico e quindi la sicurezza dell'installazione.

Si è poi proceduto con le verifiche tramite il criterio di Von Mises, riportando le tensioni degli elementi più sollecitati e verificando di stare al di sotto della tensione ammissibile prevista per ciascuna combinazione, a seconda dei casi I, II o II; è emerso che alcuni elementi del modello non rispettavano i limiti previsti, ma, andando ad osservare il modello si nota che questi sono solamente beam non strutturali, in particolare in corrispondenza delle passerelle laterali. Si ritiene che questo sia dovuto al fatto che tutti i beam nel modello sono uniti tramite quelle che sono giunzioni saldate, molto più rigide delle giunzioni bullonate che sono presenti nella macchina reale, di conseguenza, a parità di deformazione, ciò fa confluire tensioni molto più elevate nelle travi in questione. Al contrario, gli elementi plate risultano tutti verificati.

Successivamente sono state realizzate delle verifiche a fatica, secondo la normativa FEM Section II, riportando alcuni esempi di calcolo su circa cinque elementi per ogni gruppo della macchina; dal confronto è emerso che i beam risultano tutti ampiamente verificati, ottenendo al peggio un coefficiente di danneggiamento di 0,12 su un massimo di 1, mentre per i plate si è visto che erano decisamente più soggetti a fatica, ottenendo fino allo 0,6. I risultati ottenuti confermano la validità della pratica aziendale che non prevede verifiche a fatica per gli shiploader.

Lo studio è poi proceduto con la realizzazione di una analisi a buckling per verificare l'eventuale imbozzamento di beam e plate; per la verifica dei beam si è utilizzata la formula presente nella normativa FEM II per poi ritoccarla in favore di sicurezza per tenere conto di momenti flettenti su entrambi gli assi radiali e utilizzando la norma UNI 10011 per calcolare il momento flettente in mezzeria di una trave sollecitata ad entrambi gli estremi da due momenti flettenti di diversa entità. Si è poi fatto il rapporto tra la tensione ricavata e quella ammissibile e si sono riportati i dati dei beam più sollecitati, evidenziando in rosso quelli più critici, i quali costituivano anche qui solo elementi non strutturali.

Per quanto riguarda invece il buckling di elementi bidimensionali (plate) va verificato solamente utilizzando software, di conseguenza è stata innanzitutto fatta un'analisi a buckling in Straus, in cui vi era già il modello, successivamente lo si è andati ad esportare in formato opportuno e poi utilizzato come external model in Ansys

Workbench. Per confronto sono poi stati riassunti in tabella i primi quattro modi di buckling per ciascuna condizione operativa - assenza di inclinazione, +5° di rollio, -5° di rollio, +2° di beccheggio e -2° di beccheggio – e si è poi tabellata la divergenza, la quale è risultata essere tra il 32% e il 35%, questa è stata ulteriormente indagata e verificata anche riproducendo su entrambi i software un componente semplice, in particolare una trave incastrata, e ottenendo gli stessi risultati in termini di scarto percentuale.

La differenza ottenuta per la geometria più complessa è probabilmente da rimandare alle diverse formulazioni degli elementi finiti usati dai due software di calcolo, la quale non è stata investigata ulteriormente, andando al di là degli obiettivi di questa tesi.

Infine è stata svolta una analisi a fatica tramite il metodo Hot Spot in corrispondenza di un dettaglio del mast soggetto a tensioni molto elevate, andando a realizzare un submodel e creando un nuovo sistema di riferimento locale per analizzare le tensioni in direzione ortogonale al cordone di saldatura, per poi estrarre una tensione di hot spot in corrispondenza di quattro mesh differenti: coarse mesh quadratica da 15mm e tre fine mesh di elementi lineari di lato 6mm, 3mm e 1mm. Una volta ricavata la tensione si è entrati nella curva di fatica e ricava la vita stimata: dai dati è emersa una vita molto superiore al miliardo di cicli, dimostrando che la saldatura ha vita infinita, si dovrebbe andare poi a ripetere l'analisi su altri dettagli in punti diversi della struttura.

Bibliografia

[1] Hobbacher AF. «Recommendations for Fatigue Design of Welded Joints and Components» IIW Collection. Springer International Publishing, 2016.

[2] Erkki Niemi, Wolfgang Fricke, Stephen J. Maddox «Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Component» IIW Collection. Springer International Publishing, 2016.

[3] CNR UNI10011 «Costruzioni in acciaio – Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione», Giugno 1998

[4] F.E.M. Section II; «Rules for the design of mobile equipment for continuous handling of bulk materials», 39/41, rue Louis Blanc – 92400 Courbevole 92038 Paris La Dèfense cedex, France, 1997

[5] Rulmeca «Bulk handling – rulli e componenti per il trasporto a nastro di materiali sfusi»

[6] Meneghetti G., Lazzarin P., «Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components» Fatigue & Fracture of Engineering Materials & Structures, n. 30, pp. 95-106, 2006.

[7] Meneghetti G., Campagnolo A., «Progettazione a fatica di componenti meccanici indeboliti da intaglio a V a spigolo vivo-applicazione ai giunti saldati» Università degli studi di Padova, Corso di costruzione di macchine 2, 2017

[8] DNV Rules for Ships, Pt. 3 Ch. 1 Sec. 4: Design Loads (Edition: 2016-01)