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Introduction

Systems that can be referred as complex are systems with dense and vari-
ous networks of interactions among their components with the presence of
collective behaviours. In this sense we can say complex systems are de-
scribed by Aristotle's quote "the whole is more than the sum of its parts":
the presence of non-trivial properties in these systems, such as non-linear
behaviours in the response to external inputs, self organization, adaptation
and feedback loops, is di�cult, sometimes even impossible, to infer from
the details of the constituent parts and their interactions.
In the science of complex systems the emergence of patterns showing the
same statistical regularities is very interesting because it may indicate that
despite of di�erent details the key features of the dynamics are in common
and are responsible for the emergence of shared recurrent motifs.
This is the case of the so called Taylor's Law (TL), also known as �uctuation
scaling. It relates the variance of a certain quantity of interest X to its mean
via power-law, i.e.

Var[X] = aE[X]b.

According to the considered system X is di�erent, in the sense that the
quantities of interest change from system to system because each one de-
scribes a speci�c phenomenon with its proper dynamics and interaction
network. Nevertheless data coming from a large class of heterogeneous sys-
tems suggest that the �uctuation scaling behaviour is quite an universal
feature of the complexity.
In fact evidences of Taylor's Law validity can be found across �elds and
disciplines studying complex systems that seems to have nothing in com-
mon. For example this power-law relation appeared in life sciences studies.
Researchers of the �eld computed the cell counts for several individuals of
the same species and they found that the average value and the variance are
related via power-law [4]. A similar work was carried out for the number
of tumor cells in pulmonary metastasis in a group of mice �nding the same
scaling property [5].
Taylor's power-law was detected also in sequences of DNA. Data shown that
the average and the variance of the numbers of Single Nucleotide Polymor-
phisms, which are caused by the contributions of several factors during the
mechanisms of transcription and duplication, scale with the length of the
DNA sequence, hence the variance scales via power-law with the mean [6].
In epidemiology TL turns out to describe quantitatively the spread of a
disease: some epidemiologists analyzed the data sets of the numbers of
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registered cases of measles in di�erent communities of England and Wales
from 1944 to 1997. They found a power law relationship between the aver-
age number of cases and its variance. They also divided the time window
in three di�erent eras (depending on the di�usion of vaccinations) and dis-
covered how the exponent decreased with the di�usion of vaccinations [7].
Hence they could quantify the impact of vaccinations against the spread of
the virulent agent causing this illness. Similar works were conducted for
the investigations of other disease di�usions (for example HIV [8]) or for
describing the spacial clustering of cancers across the population (studies
regarding the distribution of children a�ected by leukemia in a restricted
urban area [9]).
Other deeply studied complex systems are stock markets. From the large
set of available data for di�erent markets it was possible to see that the
average and the variance over time of the activity of a certain stock, de�ned
as the number of transactions performed within a certain time window, are
related again by a power-law [10].
A similar behaviour has emerged also in the Information Technology: com-
puting the average and the variance of data �ow into the nodes of an Internet
network once again a power-law scaling was found [11]. Moreover this rela-
tionship holds also for other similar systems where the quantity of interest
is the �ow of di�erent objects between the di�erent nodes of the network
composing the system, such as web page visits, river �ow, microchip logical
gates, highway tra�c [12] or blood �ow heterogeneity in the cardio-vascular
system [13].
Additionally this power-law scaling property was found in other interesting
human dynamics: data sets covering a year of the emails sent by di�erent
users shown how the average and the variance of the number of emails sent
in the certain time interval interval are related by a power-law [18].
Many other several examples can be provided ([14]-[17]). The point is that
every system considered can be regarded as a complex system because the
huge quantity of factors that have to be accounted in the description of its
dynamics and the interactions among its parts. Although these examples
refer to completely di�erent phenomena, it seems to hold an universal orga-
nization of their dynamics in the same common way making Taylor's power
law to emerge across all these �elds.
Ecological systems are among the most investigated real world complex phe-
nomena and they will be the topic analyzed in this thesis. Their complexity
is due to the huge number of individuals interacting among themselves,
within the same species or in competition with other species, and with the
environment they are living in. Moreover the environmental conditions, be-
cause of external agents, may change over time a�ecting the growth of a
population and sometime causing a deep reorganization of the ecosystem to
a new set of species (i.e. some species got extinct or new species migrate
into the system) and thus to a di�erent interaction network. In spite of such
a complexity the analysis of empirical data con�rm that recurrent patterns
emerge from the dynamics of di�erent ecosystems.
In this scienti�c area Taylor's Law is a very corroborated empirical law
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which applies to populations. It relates the variance of the population size
to its mean via power-law, i.e.

Var[N ] = aE[N ]b,

where N denotes the population of a species.
Since deterministic predictions on the evolution of the population size are
not always feasible it is sometimes useful, in order to perform theoretical
studies, to model the time evolution of the population as a stochastic pro-
cess.
One of the reasons why, since its formulation by the biologist R.L. Taylor
in 1961 [1], Taylor's Law continues to be object of great interest is the
evidence of only a restricted interval of values of the exponent b is assumed.
In particular, for most of the data sets analyzed, the scaling exponent falls
between 1 and 2 with a clustering around the value b = 2, independently of
the ecosystem.
So Taylor's Law seems to be an ecosystem-independent feature and this have
led researchers to believe that an underlying common mechanism exists for
its emergence. Various models has been proposed but at the moment there
is no agreement on which such a mechanism could be. In particular it has
been recently claimed that the restricted range of values observed for the
scaling exponent may be a statistical artifact, not related to the ecosystem
dynamics. To the best of our knowledge none of these models accounted for
evolutionary strategies.
The aim of this thesis is to explore through mathematical modeling the role
of evolutionary strategies and optimizations in shaping the Taylor's expo-
nent for population evolving in a stochastic environment. Indeed species
adapt and Taylor's Law features may be the result of optimization through
evolutionary strategies.
The plan of the thesis is as follows.
In Chapter 1 we will discuss Taylor's Law and its generalized form for the
moments of the random variable in ecology. We will brie�y highlight their
importance, the empirical evidences supporting them together with some
open questions. Then we will introduce our main modeling framework for
the population growth: a multiplicative model in a Markovian environment.
This model has been �rst proposed in [22] and resumed in [41], where using
a Large Deviations argument it is argued that Taylor's exponent clustering
around 2 may be a statistical artifact due to under sampling. This model
does not account for evolutionary strategies.
Di�erent simple strategies will be introduced in Chapters 2, 3 and 4. There
we will consider di�erent evolutionary lines adopted by the population and
optimal investment strategies with the purpose of investigating their ef-
fects on the emergence of the Taylor's Law. When possible, we will search
analytical results, otherwise numerical calculations will be implemented.
Our analysis show that for each strategy analyzed and for each optimization
performed there is the possibility for the exponent to assume any real value,
in contrast with the empirical observation and so con�rming the conclusions
in [41].
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Chapter 1

Taylor's Law in ecology

When we study ecological dynamics it is interesting to look for some statis-
tical regularities shared among di�erent ecosystems.
One of the most investigated patterns in the ecological dynamics is the
so called Taylor's Law (TL), named after the British ecologist Lionel Roy
Taylor (1924 − 2007), who formulated the law in 1961 [1]. TL was �rstly
found in ecological studies but early it started to pop up evidences of its
validity across di�erent �elds and disciplines.
In this chapter we will follow closely the review of TL in [2].

1.1 Formulation and empirical evidences

Due to its di�usion across di�erent disciplines, starting with an abstract
point of view may be more useful. TL states that for a non-negative random
variable X we have

Var [X] = aE [X]b , (1.1)

with a > 0 and b ∈ R, i.e. the variance scales as a power-law of the mean
with exponent b. For this reason TL is also known as �uctuation scaling
law.
TL can be also extended to the moments of the random variable and it is
referred as generalized Taylor's Law. It establishes the relationship between
the kth moment with jth one to be a power law with exponent bjk, i.e.

E
[
Xk
]

= ajkE
[
Xj
]bjk (1.2)

In the following, we will look at the case k = 2 and j = 1, i.e the power
law binding E [X2] and E [X] because also in this case the exponent b21 is a
measure of the spread from the expectation value.
When Taylor formulated the law he was studying ecosystems and so the
variable he was analyzing was the population size or density in a speci�c
area. In ecology, TL states that the variance of a species population size
or density (in the sense of population per unit of area) N behaves like a
power-law of its mean, i.e.

Var [N ] = aE [N ]b , (1.3)
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with a > 0 and b ∈ R.
Now N can be regarded as a random variable since it is an evolving quan-
tity because of the interactions between the individuals, with other species
and because of the �uctuations of the environment which is not static in
time or homogeneous in the space. Since the complexity of this network of
interactions and the di�culties to taking into account all the features of the
environment it is not possible to evaluate N in a deterministic way, but we
have to look at it as a stochastic object.
It is not possible to know from empirical observations the distribution of
this variable, for this reason empirical studies have to introduce estimators
of its expectation value and variance in a di�erent way. So to compute them
empirically we have to perform l independent measurements Nj of N and
in this way we can obtain

m = ml =
1

l

l∑
j=1

Nj

σ2 = σ2
l =

1

l

l∑
j=1

(
m2 −Nj

)2

Taking a large number l of measurements these estimators become more
and more accurate and close to the real expectation values and variance.
Depending on how this statistics is computed, TL can emerge in two di�er-
ent ways:

• over time, in the sense that the variance and the mean are computed
over the time and on the same site, so TL tells us how big the �uctu-
ations in time are starting from the expectation value;

• over the space, i.e. the variance and the mean are computed over the
space and so in this case TL quanti�es the dispersion of the individuals
and how much they are spread.

So with the former case we can study the evolution in time the populations
and most importantly we can compute the �uctuations which are dangerous
for the survival of the population since with large �uctuations extinction be-
comes more probable. Instead in the latter way to generate TL we quantify
how the individuals are displaced in their habitat and so in this case we can
have a measure of the aggregation among the individuals.
Taylor in 1961 published a paper entitled "Aggregation, variance and the
mean" [1] in which he analyzed 24 data sets of population density, dated
from 1936 to 1960, of di�erent species living in heterogeneous type of en-
vironments (for example worms, birds or shell�sh). He noticed that it was
possible to relate the empirical variance σ2 to the empirical mean m of each
data set using a power law in the form

σ2 = amb
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In other words, Taylor from those data extrapolated the TL generating via
space. He named originally this behaviour law of the mean, but soon it
became known as Taylor's Law.

He looked at the factor a as a parameter which depends on the size of the
population which the data come from, thus having no physical meaning. He
thought that only the exponent b was worth to be studied since it can be
regarded as the index of aggregation of the species due to its independence
of the size of the sampling unit. In fact, thanks to the power law fort of
TL, b displays a scale invariance property.

Let us call m and σ2 the mean and variance of a certain population density
N . Multiplying the population by a factor c, we have that N goes in cN
and thanks to the linearity of the expectation value and the properties of
the variance it holds for the mean and variance of scaled sampling unit:

mc = E[cN ] = cE[N ] = cm

σ2
c = E[(cN −mc)

2] = c2E[(N −m)2] = c2σ2.

From this scaling relationship we obtain

σ2
c = c2σ2 = ac2mb = acm

b
c

with ac = ac2−b. As we demonstrated, b is invariant under scaling while
a change with the size of the sampling. For this reason b can be regarded
as index of aggregation since quanti�es the spread of the individuals in the
space independently of the size of the sampling unit.

After the publishing of the paper by Taylor, this law have started to be
investigated more and more [19]-[24]. More data and in a more precise way
have been collected and TL has always emerged becoming a very corrobo-
rated ecological pattern. For this statistical robustness TL has started to
be considered like an universal regularity. In fact the data analyzed came
from a large class of ecosystems with several di�erence and various interac-
tion networks among the individuals (for example shell�sh in the seashore
[1],carabid beetles, birds and tree abundance in tropical forests or [22]).

TL is veri�ed also to be stable for di�erent interactions among the individu-
als. Researchers showed how TL exponent does not change when in bacteria
culture, displaying TL when the individuals do not compete among them-
selves for the resources, a competition mechanisms is introduced [23].

Moreover TL with respect to time have started to be noted in some data
sets collecting measurements of populations in time ([18], [28]). Evidences
of TL also via time reinforced its universality and led researchers to claim
the existence of an underlying common mechanisms that ruled ecological
dynamics spatially and temporally.

So far we discussed TL universality but also evidences of generalized TL
di�usion in a lot of di�erent data sets can be found in nature [22].
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1.2 Open questions

Due to its universality many theoretical e�orts have started to be under-
taken to explain TL. Models and methods exploiting di�erent theoretical
tools, from statistical mechanics to probability theory and statistics tech-
niques, have started to be built and analyzed with the aim to understand
the originating features of this recurrent pattern ([31]-[36]). In particular
these works have tried to uncover the existence of the possible underly-
ing common mechanisms that allows TL emerges across so many di�erent
scenarios and gives it its universal behaviour.
To answer this question researchers divided into two opposite lines of think-
ing:

• the �rst states the universality of TL to be a direct consequence of
the similarity of the dynamics of the di�erent ecosystems displaying
the power law behaviour ([3], [18]);

• the second in contrast assert the power law relationship between vari-
ance and mean to be a pure statistical feature, hence without any
physical meaning ([26], [27]).

Another puzzle about TL is the range of possible values for the exponent
b. Since its importance (index of aggregation when TL generates via space
or scale of the �uctuations with respect to the mean in time) trying to
predict the possible values of the exponent of the power law is fundamental
to understand the law.
From empirical studies and ecological measurements we see that the expo-
nent falls into a restricted range of values. In particular b is seen to belong
to the interval [1, 2], clustering around b ' 2 [1], while the exponent of
generalized TL is nearly the ratio of the order of the two moments, i.e.
bjk ' k/j. Evidences of this are shown in Figure 1.1 or Table 1.1.
In order to study theoretically the exponents population growth models
and in particular multiplicative growth models, i.e. theoretical models de-
scribing population dynamics and its evolution, have been implemented
([37]-[40]). These predict that the exponents of TL and generalized TL can
assume any real value.
So, to predict theoretically the range of values for the exponents, models
are built up, but when their results are compared with the outcomes of the
analysis of the measurements we do not see any agreement.

1.3 Large Deviation Theory for TL and the

role of rare events

A possible explanation can be found in the work "Sample and population

exponents of generalized Taylor's law" [41]. There the authors implemented
a multiplicative growth model in a Markovian environment to explore the
possible range of values for the generalized TL exponent b12 relating via
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Figure 1.1: Generalized TL manifestation in data referring to carabid beetles [41].
The plot is obtained using log scale in both axes and 〈Nk〉 is plotted
as a function of 〈N〉 for di�erent value of k.
The color and symbol code identi�es data relative to the same year:
1961 (black open circles), 1962 (purple solid circles), 1963 (blue open
squares), 1964 (green solid squares), 1965 (orange solid diamonds),
and 1966 (red open diamonds).
The dashed black lines have slope b1k = k. This is an example of how
the generalized TL exponent bjk ' k/j.

j, k k/j bjk ± SE R2

1, 2 2 2.14± 0.12 0.991
1, 3 3 3.33± 0.32 0.973
1, 4 4 4.54± 0.58 0.954
2, 4 2 2.15± 0.16 0.984
2, 3 1.5 1.57± 0.07 0.995
3, 4 1.333 1.37± 0.04 0.997

1, 1/2 0.5 0.48± 0.02 0.997
1, 1/4 0.25 0.23± 0.01 0.993
1, 2/3 0.667 0.65± 0.01 0.999

Table 1.1: Generalized TL exponents coming from dataset of Black Rock Forest
[22]. We can see again that bjk ' k/j.
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power-law the �rst and the second moment. Then they tried to explain why
only b12 ' 2/1 is observed in nature, in contrast with the model predictions.

1.3.1 The model of the paper

The model aims to reproduce the dynamics of a population in a stochastic
�uctuating environment. This and its time-evolution are described by a
Markov chain {At,t≥1} with state-space Γ = {0, 1} and a symmetric transi-
tion matrix

P =

(
1− λ λ
λ 1− λ

)
(1.4)

with 0 < λ < 1.

So the environment can assume two possible states and at each time it has
a probability λ of changing its state, while with probability 1−λ it remains
in the same.

Now the population is modeled to be adapted only to one environmental
state. Without loss of generality let us suppose that this state is the 0 state.
This corresponds to a scenario in which the individuals can display only a
phenotype, suited to one state but not adapt to survive in the other. So
the population grows by a factor r when the chain is in the state 0, while
it will be multiplied by a factor s when the state 1 is assumed (in a natural
situation r > 1 since in the well-suited state the population can grow, while
0 < s < 1 because in the state 1 the individuals are not able to survive and
so their number has to shrink).

With this model we write the population size N(t) up to time t as

N(t) = N0

t∏
n=1

Ãn, (1.5)

where N0 is the initial value and Ãn ∈ {r, s} are the multiplicative factors.
Thanks to the model dynamics

Ãn = r · δAn,0 + s · (1− δAn,0) =

{
r if An = 0

s if An 6= 0
(1.6)

In this way the population is obtained as a multiplication of several factors
r or s whose numbers depends on the speci�c realization of the chain. This
dependence to N(t) the character of a random variable. Hence we have

N(t) = N0

t∏
n=1

[r · δAn,0 + s · (1− δAn,0)] . (1.7)
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This equation becomes

N(t) = N0 · r
∑t

n=1 δAn,0 · s
∑t

n=1(1−δAn,0) =

= N0 · rt·
1
t

∑t
n=1 δAn,0 · st·

1
t

∑t
n=1(1−δAn,0) =

= N0 · rtx · st(1−x) =

= N0e
tx log r+t(1−x) log s = N0e

tG(x) (1.8)

where it is introduced

x =
1

t

t∑
n=1

δAn,0 (1.9)

as the fraction of times the state 0 appears in a realization of the Markov
chain up to time t and

G(x) = x log r + (1− x) log s (1.10)

has the meaning of growth rate of the population.
Now let us introduce the empirical random measure

Lt(·) : Γ→ [0, 1]

Lt(z) =
1

t

t∑
n=1

δAn,z.

that counts the fraction of times in a realization up to time t the chain goes
in the state z ∈ Γ. In the case of the model z = 0 is considered. It is
possible to demonstrate the family Pt(x) = P (Lt(0) ∈ [x, x+ dx]) satis�es

a Large Deviation Principle (LDP) on M̃1 (Γ) with rate t and rate function

IP (x) = sup
u>0

[
x log

(
u1

(Pu)1

)
+ (1− x) log

(
u2

(Pu)2

)]
(1.11)

where u ∈ R2 is a positive two dimensional vector, i.e u1, u2 > 0.
Satisfying a LDP means that

lim
t→+∞

1

t
logP (Lt(0) ∈ [x, x+ dx]) = −IP (x) (1.12)

for x ∈ [0, 1] and dx is an in�nitesimal interval.
Carrying on the calculation needed in Equation (1.11) it is possible to �nd

IP (x) = (x−1) log

{
1− λ

[
2(λ− 1)x

Sλ(x)− 2λx
+ 1

]}
−x log

[
1− λ(Sλ(x)− 2x)

2(λ− 1)x

]
(1.13)

with
Sλ(x) = λ+

√
λ2 + 8λ(x− 1)x− 4(x− 1)x. (1.14)

In this form is more explicit the dependence of IP (x) on the transition matrix
via the control parameter λ. We can see IP (x) having all the properties to
be a rate function:
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Figure 1.2: Plots of IP (x) for di�erent values of λ: in blue λ = 0.1, in orange
λ = 0.4, in green λ = 0.6 and in red λ = 0.9.

• IP (x) is convex, i.e. d2IP
dx2

> 0;

• IP (x) is non-negative, i.e IP (x) ≥ 0 ∀x ∈ [0, 1];

• IP (x) has a point of absolute minimum. This minimum is xmin = 1
2

independently of P .

Some plots of IP (x) for di�erent λ are shown in Figure 1.2.
To compute the exponent b the ratio between t−1 logE [N2(t)] and t−1 logE [N(t)]
is considered. The relation is looked for large t, i.e for t→ +∞ so that the
chain reaches the steady state.
With this limit, it is possible to compute t−1 logE [N2(t)] and t−1 logE [N(t)]
easily exploiting Large Deviation Theory. This in fact provides the so called
Varadhan's Lemma (see Appendix A) which states

lim
t→+∞

t−1 logE
[
Nk(t)

]
= sup

x∈[0,1]

[kG(x)− IP (x)] . (1.15)

thanks to the relation Nk(t) = etkG(x). In fact

lim
t→+∞

1

t
logE

[
Nk(t)

]
= lim

t→+∞

1

t
logE

[
etkG(x)

]
=

= lim
t→+∞

1

t
log

∫ 1

0

etkG(x)Pt(dx) =

= sup
µ∈[0,1]

[kG(x)− I(x)] . (1.16)

So the authors obtained the exponent of the generalized Taylor's Law for
the �rst and the second moment (we drop the subscripts when we look to
k = 2 and j = 1) to be

b(λ) =
supx∈[0,1] [2G(x)− IP (x)]

supx∈[0,1] [G(x)− IP (x)]
. (1.17)

12



Figure 1.3: Regions of divergence for the exponent of the generalized TL. The
small panels show b(λ) for r and s in the di�erent zones. Only in the
highlighted gray regions (R1,nostrat and R2,nostrat) λc ∈ [0, 1] and so
the exponent diverges.

More generally the exponent of the power-law relating the kth to the jth
moment is

bjk(λ) =
supx∈[0,1] [kG(x)− IP (x)]

supx∈[0,1] [jG(x)− IP (x)]
(1.18)

1.3.2 Model results and possible explanations

With the models the authors found an analytical expression for b(λ) parametrized
by r and s. In particular they observed a division of the space of parameters
as shown in Figure 1.3.

The division is due to the possibility of having a critical value of the proba-
bility of changing environment λc. Searching for the zero of the denominator
of Equation (1.17) in fact

log

{
1

2

[
(1− λc)(r + s) +

√
4(2λc − 1)rs+ (λc − 1)2(r + s)2

]}
= 0

(1.19)
it holds

λc =
1− r − s+ rs

2rs− r − s
. (1.20)

The divergence occurs when λc ∈ [0, 1]. Imposing that the regions of diver-
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gence are{
R1,nostrat =

{
(r, s) : r > 1 ∧ 0 < s < 1 ∧ s < 1

r

}
R2,nostrat =

{
(r, s) : s > 1 ∧ 0 < r < 1 ∧ r < 1

s

} (1.21)

shown in Figure 1.3.
This demonstrates how the exponent can assume any value and not only
bounded values near 2 as empirical evidences display.
The authors suggested that this disagreement between theoretical results
and data analysis may be due to an under sampling and so b ' 2 could be
only a statistical artifact, in the sense that it does not have any physical
meaning. They proposed that in the data set there are not enough mea-
surements to detect also the rare events (events with very low probability of
being observed) that could have an huge impact on the right computation
of the di�erent moments and variance of N(t).
In fact in Equation (1.17) b is computed as the ratio of two suprema over
x ∈ [0, 1]. Now calling bs the sample exponent, i.e. the exponent coming
from empirical data of the observed sampling unit, an agreement between
b and bs is possible only if the measurements contributing to bs included
all the values in the possible range of x. That is Equation (1.17) gives a
right estimation of bs only if all the values of x ∈ [0, 1] are detected by the
measurements contributing to bs because only in this way the two suprema
are correctly computed.
By de�nition, x is the fraction of times up to the instant t that the Markov
chain An goes in the state 0 in a realization. So the theoretical and empirical
exponents can be equal only if in the sampling from which bs is obtained
contains all the value of x. Thus we have to observe a number of trials of
the chain large enough to observe the state 0 appears 0 times, once, twice,
· · · , t− 1 times and t times.
The problem now is that, as we said above, the probability of observing a
fraction x of times in a realization of t step of the Markov chain satis�es a
LDP with rate function (1.13) and so the probability to observe x close to
the extremes of the interval [0, 1] is exponentially low while increasing the
number of steps t during which we look at the chain. Thus to observe also
the realizations of the chain with x ' 0 and x ' 1 we have to collect a very
large number of measurements.
With this way of reasoning the authors suggested that empirically the two
suprema are not computed over all the set of possible values of x, but on
a restricted one due to the under sampling in the measurements procedure.
More explicitly

b(λ) =
supx∈[0,1] [2G(x)− IP (x)]

supx∈[0,1] [G(x)− IP (x)]
6= bs =

supx∈[x−,x+] [2G(x)− IP (x)]

supx∈[x−,x+] [G(x)− IP (x)]
,

(1.22)
where x− and x+ are the extremes of the experimentally observed interval
of values for x with [x−, x+] ⊂ [0, 1].
It the same work the authors gave an illustration on how the under sam-
pling can be the reason of ine�ciency of detecting the real value of b. The
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sampling was reproduced by repeated direct simulations of the chain An.
To observe the rare events in realizations of t steps of the chain, the number
R of direct simulations of the Markovian dynamics needed as to be R� et.
For this reason, due to the limited number of trials the one can perform to
keep simulations feasible, for large t direct simulations can not explore all
the possible realizations of the chain and detect all the rare events needed to
estimate precisely the generalized TL exponent bs. The results supporting
this idea are shown in Figures 1.4.
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Figure 1.4: Generalized TL exponents b12 and b23 as a function of λ for di�erent
values of the parameters r and s: in A and C r = 2 and s = 1

4 , hence
we can see a divergence (rs < 1); instead in B and D r = 4 and s = 1

2
and the exponents don't display discontinuities (rs > 1).
The two curves have di�erent meanings: the black continue line is the
asymptotic population exponent that is the expression coming from
Equation (1.17) and the dashed red line the sample exponent, i.e k/j.
The black dots and the red squares are the sample exponents com-
ing from the simulations in two di�erent regimes of number of trials
of the chain R: for the black solid circles 1 � t � logR (R = 106

and t = 10), i.e R is large enough to detected also the low-probable
realizations of the chain, while to �nd the red squares t� logR with
large t (R = 104 and t = 400), i.e in this case only a subset of possi-
ble realizations are explored and in particular the ones with highest
probability.
The sample exponents are obtained via �t of logE

[
N(t)k

]
as a func-

tion of logE
[
N(t)j

]
for the last 6 (black dots) and 200 (red squares)

respectively time steps. These two sets of points are obtained. Hence
this panel shows the disagreement between the two regimes support-
ing the hypothesis of the under sampling as the source of discrepancy
between b and bs.
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Chapter 2

Introduction of an adaptive

strategy in the population

dynamics

We just said there is a possibility that bjk ' k/j may be not due to a
some physical mechanisms but only to an accidental feature of ecological
dynamics, supposing the model in 1.3.1 to be realistic.

Here the basic idea of this thesis comes: in fact in the model the population
remains static and it is passively a�ected by the environment �uctuations,
while in nature individuals perform a dynamical evolution facing the chang-
ing in their habitat and trying to be adapted as much as they can to the
environment to survive and grow. So in this work we investigate the pos-
sibility of evolutionary strategies with optimal resources investments to be
the mechanisms generating bounded values for TL and generalized TL in-
troducing these ecological processes in the model dynamics.

So in this chapter we will show a new multiplicative growth model trying to
reproduce the dynamics of a population living in a �uctuating environment.
We call N(t) the size of a population at the time t and N0 the initial value
(in the following we will set N0 = 1 without any lost of generality). Again
we have

N(t) =
t∏

n=1

Ãn (2.1)

where Ãn ∈ {r, s}.
Instead of being passive like in the work presented in 1.3.1, the population
now adopts an evolutionary strategy to face the changes in the environment
states.

To accomplish the study of this model, we will exploit some techniques of
the Large Deviations Theory (LDT) (see Appendix A).
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2.1 Model dynamics

Let us consider a population of individuals living in a stochastic �uctuating
environment whose evolution in time is described by a discrete-time Markov
chain {At,t≥0 } that takes values in a two-dimensional state-space Γ. Let us
call the two states 0 and 1 (so Γ = {0, 1}). Let us introduce the transition
matrix of this Markov chain P and we assume it to be symmetric, i.e. in
the form:

P =

(
1− λ λ
λ 1− λ

)
(2.2)

with 0 < λ < 1 and
pij = P(At+1 = j|At = i) (2.3)

We can look at parameter λ ∈ (0, 1) as the probability with which the
environment changes state from a step to the next one.
Now the individuals can adopt two di�erent phenotypes, labelled 0 and 1,
which are adapted respectively to the state 0 and 1 of the environment. This
means that if at a certain time-step the environment assumes the state 0
the number of individuals with the phenotype 0 will grow by a factor r and
the number of the others with the phenotype 1 will be reduced by a factor
s (typically r > 1 and 0 < s < 1, but in the following we will consider
the more possible generic case and so we ask only r, s > 0). Again r is the
multiplicative factor when the phenotype matches the environment state
and s when this does not happen.
In this model we assume that all the individuals adopt the same phenotype
at the same moment. We indicate the phenotype used at the time-step t as
St. Now we introduce a new dynamics feature with respect to the model
presented above: the sequences of St, given a certain realization of the chain
that rules the environment evolution, is �xed by the adaptive strategy. The
phenotype St+1 that will be adopted at the step t+ 1 is the one adapted to
the environment state At at the step t,

St+1 = St+1(At) = At.

In other words, with this strategy the population bets that the environment
does not change in two consecutive steps of the chain and so the individuals
will adopt for the next step the phenotype suited to the environment state
they are currently living in. Here an example of what happens given a
certain realization of the environment chain:

t :0 1 2 3 4 5 · · ·
At :0 0 1 1 0 1 · · ·
St :x 0 0 1 1 0 · · ·

Now, the population increases, as we said above, only if the phenotype is
the right one for the environment state, i.e. At+1 = St+1, but with this
strategy, since St+1 = At we have that the population increases by a factor
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r only if At+1 = At, i.e. the environment does not change from a step to
the next one. In this sense we can say that this strategy is Darwinian:
the population grows only while it is adapted to its habitat, but when the
environment changes the individuals are not more able to survive and so
their number falls. This is intended to model the mechanism by which the
natural selection operates.
So with this strategy the multiplicative factors Ãn of Equation (2.1) we have

Ãn = r · δAn−1,An + s ·
(
1− δAn−1,An

){r if An−1 = An

s if An−1 6= An
(2.4)

2.1.1 Population growth

We can now write an expression for the population according to the model
dynamics. Given N(t) we can �nd the size of the population at the time
t+ 1 as

N(t+ 1) = N(t)
[
r · δAt,At+1 + s ·

(
1− δAt,At+1

)]
(2.5)

We call recursively Equation (2.5) and so we can write N(t) as

N(t) = N0

t∏
n=1

Ãn = N0

t∏
n=1

[
r · δAn−1,An + s ·

(
1− δAn−1,An

)]
(2.6)

Now the situation simpli�es a lot since the term in the square brackets of
Equation (2.6) can be only equal to r or s thanks to the Kronecker delta as
shown in Equation (2.4).
Exploiting this, we have that the size the population at the time t can be
expressed as N0 multiplied by r raised to the number of times that the
environment did not change state in two consecutive steps of the chain
(
∑t

n=1 δAn−1;An) and s raised to the number of times that the environment
changed state in two consecutive steps of the chain (

∑t
n=1

(
1− δAn−1;An

)
).

So we have

N(t) = N0 · r
∑t

n=1 δAn−1,An · s
∑t

n=1(1−δAn−1,An) =

= N0 · rt·
1
t

∑t
n=1 δAn−1,An · st·

1
t

∑t
n=1(1−δAn−1,An) =

= N0 · rtµ · st(1−µ) =

= N0 · etµ log r+t(1−µ) log s =

= N0 · etG(µ), (2.7)

where we de�ned

µ =
1

t

t∑
n=1

δAn−1,An (2.8)

as the fraction of times the strategy wins the bet, i.e. the environment
remains in the same state from a step to next one (1 − µ instead is the
fraction of times the chain moves to a di�erent state).
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In the Equation (2.7) we introduced also the function G(µ) de�ned as

G(µ) = µ log r + (1− µ) log s. (2.9)

This function G(µ) has the meaning of the growth rate of the population
and it is parametrized by r and s.
Now from the de�nition in Equation (2.8) we can see that µ is not a deter-
ministic object, but it depends on the Markov chain realization. Hence we
need to study the probability of seeing each possible value of µ in order to
compute the moments of the population size needed for the calculation of
the generalized TL exponent.

2.2 Large Deviations Principle for the model

Let us introduce L2
t as the random measure counting the fraction of times

the environment chain An does not change de�ned as

L2
t =

1

t

t∑
n=1

δAn−1,An (2.10)

It is possible to demonstrate that the family Pt(µ) = P
(
L2
t ∈ [µ, µ+ dµ]

)
satis�es a Large Deviation Principle and we will obtain its rate function.
To do so, let us start from what it is known.
We introduce the empirical pair measure L2

t for Markov chain de�ned as

L2
t =

1

t

t∑
n=1

δ(An−1,An), (2.11)

that counts the fraction of times each possible transition appears in a real-
ization of the Markov chain up to time t. Since the chain satis�es

At ∈ Γ ⊂ N
{At,t≥0 } is Markov with transition matrix P = (Pij)i,j∈Γ (2.12)

Pij > 0,∀i, j ∈ Γ,

the family
(
PA
t

)
de�ned as

PA
t (ν) = PA

(
L2
t ∈ [ν, ν + dν]

)
with ν ∈ M̃1 (Γ× Γ) (2.13)

satis�es a LDP on M̃1 (Γ× Γ) with rate t and rate function

I2
P (ν) =

∑
i,j∈Γ

νij log

(
νij
νiPij

)
, (2.14)

where νi =
∑

j νij (see [42], Theorem IV.3). We introduced ν as a four
components object

ν = (ν00, ν01, ν10, ν11) (2.15)
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where νij counts the fraction of times the transition from i to j appears, i.e.
ν00, ν01, ν10 and ν11 are the fraction of times in which we have a transition
respectively from 0 to 0, from 0 to 1, from 1 to 0 and from 1 to 1.

Explicitly Equation (2.14) becomes

I2
P (ν) = ν00 log

[
ν00

(ν00 + ν01) · (1− λ)

]
+ ν01 log

[
ν01

(ν00 + ν01) · λ

]
+

+ ν10 log

[
ν10

(ν10 + ν11) · λ

]
+ ν11 log

[
ν11

(ν10 + ν11) · (1− λ)

]
(2.16)

Now, because of the strategy used in the model, we are not interested in
knowing which states the chain is moving from and to, but only if the chain
is changing state or not. For this reason in our model we do not have to
count separately ν00 from ν11 and ν01 from ν10 since the transitions they
count provide the same contributions to the population growth. With this
in mind we can notice that the quantities µ and 1−µ introduced previously
can be written in terms of νij as{

µ = ν00 + ν11

1− µ = ν01 + ν10

(2.17)

Using Equation (2.17), we can derive the rate function for L2
t from the one in

Equation (2.16) for L2
t applying the Contraction Principle (A.5. For further

details see [42], Theorem III.20).

With the notation of the Theorem statement, we have

X = M̃1 (Γ× Γ)

Y = M̃1 ({(0, 0) ∪ (1, 1), (0, 1) ∪ (1, 0)}) .

and we apply the theorem to Pt = P (L2
t ∈ [ν, ν + dν]), whose rate function

I2
P (ν) is shown in Equation (2.16) to obtain the rate function I(µ) of Qt =

P
(
L2
t ∈ [µ, µ+ dµ]

)
. The continuous map T which from M̃1 (Γ× Γ) goes

to M̃1 ({(0, 0) ∪ (1, 1), (0, 1) ∪ (1, 0)}) is

µ = (µA, µB) = T (ν) = T (ν00, ν01, ν10, ν11) =

{
µA = ν00 + ν11

µB = ν01 + ν10

(2.18)

So it holds

I(µ) = inf
ν∈M̃1(Γ×Γ):µ=T (ν)

I2
P (ν) (2.19)

Computing the in�mum with that constraint we obtain

I(µ) = µA log

(
µA

1− λ

)
+ µB log

(µB
λ

)
(2.20)
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Figure 2.1: Plots of I(µ) for di�erent values of λ: in blue λ = 0.1, in orange
λ = 0.4, in green λ = 0.6 and in red λ = 0.9.
We can see that I(µ) is always non-negative, convex and it has a
di�erent absolute minimum depending on λ, µmin = 1− λ.

Since 1 = ν00 + ν01 + ν10 + ν11 = µA + µB, we have µB = 1 − µA. Thus
we have that I(µ) depends only on one variable µA and with an abuse of
notation we call this simply µ. In this way Equation (2.20) becomes

I(µ) = µ log

(
µ

1− λ

)
+ (1− µ) log

(
1− µ
λ

)
(2.21)

In this way we demonstrate that Pt(µ) = P
(
L2
t ∈ [µ, µ+ dµ]

)
satis�es

a Large Deviation Principle on M̃1 ({(0, 0) ∪ (1, 1), (0, 1) ∪ (1, 0)}) and we
also found its rate function.
We can see from Figure 2.1 and mathematically demonstrate that this rate
function has the needed good properties:

• I(µ) is convex, i.e. d2I
dµ2

> 0;

• I(µ) is non-negative, i.e I(µ) ≥ 0 ∀µ ∈ [0, 1];

• I(µ) has a point of absolute minimum that is µmin = 1− λ.

2.3 Study of the generalized Taylor's Law ex-

ponent

Now we have all the tools to compute the exponent of the generalized TL

E[Nk(t)] = ajkE[N j(t)]bjk , (2.22)

focusing in the following only on the case k = 2 and j = 1 (so we will call
b = b12).
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To calculate this exponent we follow the same path shown in 1.3.1. So we
take the logarithm of both sides of Equation (2.22) and we multiply them
by t−1. Hence

b =
t−1 logE[N2(t)]

t−1 logE[N(t)]
(2.23)

We apply Varadhan's Lemma (A.4) obtaining

b(λ) =
supµ∈[0,1] [2G(µ)− I(µ)]

supµ∈[0,1] [G(µ)− I(µ)]
(2.24)

Carrying on the calculations to compute the two suprema in Equation
(2.24), we �nd the explicit expression for the exponent

b(λ) =
log [(1− λ)r2 + λs2]

log [(1− λ)r + λs]
(2.25)

In Figure 2.2 some plots of (2.25) with di�erent r and s are shown. As
we can see from Figures 2.2b and 2.2c, in some cases there is a divergence.
This is due to the fact that there may be a critical value of λ, depending on
r and s, that we will call λc in the following, belonging to the interval [0, 1]
making the denominator of Equation (2.25) to go to zero.
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(a) r = 0.7 and s = 0.2.
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(d) r = 4 and s = 2.

Figure 2.2: Plots of b(λ) for di�erent values of r and s after the introduction of
the adaptive strategy in the population dynamics.

To �nd an expression for λc we have to solve the equation

log [(1− λ)r + λs] = 0 (2.26)

�nding

λc =
r − 1

r − s
(2.27)
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Figure 2.3: Regions of divergence for the exponent of the generalized TL after the
introduction of the adaptive strategy in the population dynamics.
The small panels show b(λ) for r and s in the di�erent zones. Only
in the coloured regions λc ∈ [0, 1] making the exponent to diverge: in
blue is shown R1,strat (the natural region of the parameters), while in
orange R2,strat is shown.

As we said above the divergence occurs only if λc ∈ [0, 1] and so in the
plot of b(λ) we can see a divergence if the parameters r and s satisfy the
inequality

0 ≤ r − 1

r − s
≤ 1 (2.28)

In this way we �nd out that the regions of the parameter space with a
divergence in the exponent of the generalized Taylor's Law b12 are{

R1,strat = {(r, s) : r > 1 ∧ 0 < s < 1}
R2,strat = {(r, s) : s > 1 ∧ 0 < r < 1}

(2.29)

These two regions are shown in Figure 2.3. As we can see unfortunately
the �rst region is the one of interest, since it corresponds to the region
of parameters with ecological meaning in which when the population is
adapted it can grow (r > 1) and when the individuals phenotypes doesn't
match the environment state their number falls (0 < s < 1).
If we compare this model to the one presented in 1.3.1, we see that our
model provides a bigger region of divergence. As matter of fact in the
model in which the population does not play a strategy ([41]), the regions
of the parameters r and s in which the exponent b displays a divergence are
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de�ned by{
R1,nostrat =

{
(r, s) : r > 1 ∧ 0 < s < 1 ∧ s < 1

r

}
R2,nostrat =

{
(r, s) : s > 1 ∧ 0 < r < 1 ∧ r < 1

s

} (2.30)

We see that the overall region of divergence in this case is smaller and in
particular in the region of natural interest (0 < s < 1 < r) we can have
some r and s that ensure the continuity in λ of the exponent. In our model
instead for all (r, s) in this region b displays a discontinuity.
By de�nition, λc is the probability transition value for which the denomi-
nator of Equation (2.25) becomes null. So for λ = λc

lim
t→+∞

t−1 logE[N(t)] = 0 (2.31)

This can be interpreted as an extinction of the population because it means
that for great times N(t) is not increased.
With the adaptive strategy the population is disadvantaged when λ > 1

2

since in this situation is more probable that the environment changes from
a step to the next one. So the individuals are more likely not to match their
phenotype with the environment, hence the population can become extinct
and so for there is a λc. Due to this fact in the region of divergence it is
natural to expect to have a lot of points that give λc >

1
2
.

Nevertheless we have to consider that the changes in the environment in
the natural scenarios are rare or at least the environment doesn't change so
quickly. This situation is described by taking λ < 1

2
, i.e. it is more probable

that the environment does not change than to observe a new state. In this
case the adoption of an adaptive strategy can be a signi�cant ecological
move for the population because in this scenario the strategy can bring
bene�ts for the growth. With this consideration we want to compare the
two models in the natural region of the parameters.
For model without any strategy [41] the critical value of λ is de�ned by

λc,nostrat =
rs− r − s+ 1

2rs− r − s
, (2.32)

while in the model with the strategy we have

λc,strat =
r − 1

r − s
. (2.33)

Searching the region {(r, s) : r > 1, 0 < s < 1, 0 < λc,nostrat/strat <
1
2
} we

�nd
R1 = {(r, s) : 1 < r < 2 ∧ 0 < s < 2− r} (2.34)

in both cases. This region is shown in Figure 2.4. So considering a situation
in which an adaptive strategy may be a good evolutionary move (λ < 1

2
), the

region of divergence is reduced by a lot, but this does not give any improve-
ment with respect to the model illustrated in 1.3.1 because both models
provides the same region of divergence. Hence by the introduction of a sim-
ple adaptive strategy the fundamental model predictions on the exponent
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Figure 2.4: Region R1 of the parameter space for which 0 < λc <
1
2 .

range still do not match with empirical observation and actually under the
natural considerations on the parameters discussed above it provides the
same results.
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Figure 2.5: Regions of divergence for the exponent of the generalized TL after
the introduction of the adaptive strategy. The small panels show
b(λ) for r and s in the di�erent zones. Only in the coloured regions
λc ∈ [0, 1] making the exponent to diverge: in blue is shown R1,strat

which contains the sub-region R1 in green, while in orange R2,strat is
shown.
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Chapter 3

Population dynamics with two

possible evolutionary strategies

In the previous chapter we have studied a dynamics in which all the individ-
uals of a population living in a stochastic environment play, in order to try
to increase in time, the same evolutionary strategy encoding the Darwinian
dynamics of the natural selection.

In nature we may not have that all the population uses the same strategy,
but we can �nd individuals playing di�erent evolutionary strategies in order
to have the best way to grow. We can �nd an example of this idea in
the models of �nancial markets and the portfolio optimization in which to
have the best income in the long term we have to diversify the capital of
investment in di�erent assets. The idea now is to �nd a way to decide how
much invest in each asset in order to �nd the optimal asset distribution of
the capital.

To introduce this feature in ecological dynamics we implement a new mul-
tiplicative model dynamics in which the individuals can adopt two di�erent
strategies. So the population now has to choose how much individuals play
the �rst or the second two strategy.

Biologically speaking a population has two requests: the former is to at
least not to become extinct and the latter is to maximize in a certain way
the growth.

The idea now is to �nd out how much the population is willing to invest its
resources into the two strategies (i.e what are the fractions of individuals
playing the �rst or the second strategy) looking at the possible optimization
ways that try to accomplish these requests.

If we keep calling N(t) the size of a population upon the time t and N0 (we
can take it equal to 1 without any loss of generality) its initial value we will
still have

N(t) =
t∏

n=1

Ãn (3.1)

but, as we will see, Ãn takes values in a di�erent set from the previous
model.
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3.1 Model dynamics

In this new dynamics we keep on looking at a population living in a stochas-
tic environment whose evolution is described in the same way as in the pre-
vious model, i.e. the status of this environment evolves like a Markov chain
{At,t≥0} moving in a two dimensional state-space Γ (we call these two states
0 and 1 again) with the same transition matrix P (2.2).
Having two habitat states the individuals can adopt two di�erent pheno-
types as in the previous model, each one most adapted to one of the possible
states (again we will call the two phenotypes 0 and 1 with the same notation
and meaning as done above). Also in this case only the individuals with
the right phenotype in use can grow (i.e. their number will be multiplied
by a factor r, naturally r > 1), while the others will be reduced by a factor
s (naturally 0 < s < 1).
In this model we implement a two evolutionary strategies dynamics to de-
termine which phenotype the di�erent individuals will use: a fraction p of
the population will bet on the persistence of the environment in the same
state (let us call this strategy S1), i.e. these individual will bet that the
environment does not change state from a time-step to the next one, while
the remaining fraction 1 − p will bet that the environment changes state
from a step to the next one (let us call this strategy S2) and so at the time-
step t + 1 they will assume the phenotype which was not adapted at the
time-step t. With these two di�erent strategies we have

S1,t+1 = S1,t+1(At) = At

S2,t+1 = S2,t+1(At) = At = 1− At,

where At = 1 − At we want to indicate the other state of Γ di�erent from
At.
Here an example of what could happen with this dynamics given a certain
realization of the environment chain:

t :0 1 2 3 4 5 · · ·
At :0 0 1 1 0 1 · · ·
S1,t :x 0 0 1 1 0 · · ·
S2,t :x 1 1 0 0 1 · · ·

We can look at these two evolutionary lines as the usual Darwinian one (S1)
and its exactly opposite (S2): in fact the fraction playing S1 increases the
individuals by r when At+1 = S1,t+1, but with this strategy S1,t+1 = At and
so we have a multiplication only if At+1 = At, i.e the environment doesn't
change and so this fraction of individuals keep on being adapted to their
habitat and so able to grow; instead the other fraction using S2 raises its
users by r when At+1 = S2,t+1, i.e. At+1 6= At. This last case means that
this fraction of population bets on the changing in the environment state
and so they will adopt the phenotype di�erent from the right one at the
present.
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3.1.1 Population growth

So the population splits into

N(t) =

S1︷ ︸︸ ︷
pN(t) +

S2︷ ︸︸ ︷
(1− p)N(t) (3.2)

since now we have two sub-populations, the users of S1 and S2. Then the
time moves from t to t + 1 and based on the strategies and on what the
environment did, the numbers of individuals of the two sub-population will
be multiplied by r or s. Now the population size is N(t + 1) and it has
to decide much it is invested on S1 or S2. We will keep �xed what are the
fractions p and 1− p playing the two evolutionary lines at each time-step:

N(t+ 1) =

S1︷ ︸︸ ︷
pN(t+ 1) +

S2︷ ︸︸ ︷
(1− p)N(t+ 1) (3.3)

We want now to write an expression for the population size at time t. Given
N(t) and remembering how the two strategies were de�ned we have

N(t+ 1) =pN(t)
[
r · δAt,At+1 + s ·

(
1− δAt,At+1

)]
+

+ (1− p)N(t)
[
s · δAt,At+1 + r ·

(
1− δAt,At+1

)]
(3.4)

In this way we �nd

Ãn = p
[
r · δAn−1,An + s ·

(
1− δAn−1,An

)]
+(1−p)

[
s · δAn−1,An + r ·

(
1− δAn−1,An

)]
=

=

{
r = rp+ s(1− p) if An−1 = An

s = r(1− p) + sp if An−1 6= An
(3.5)

Since the fractions are kept �xed we iterate Equation (3.4) obtaining

N(t) =N0

t∏
n=1

{
p
[
r · δAn−1,An + s ·

(
1− δAn−1,An

)]
+

+ (1− p)
[
s · δAn−1,An + r ·

(
1− δAn−1,An

)]}
=

= N0

t∏
n=1

{
[rp+ s(1− p)] · δAn−1,An + [r(1− p) + sp] ·

(
1− δAn−1,An

)}
=

= N0 · [rp+ s(1− p)]
∑t

n=1 δAn−1,An · [r(1− p) + sp]
∑t

n=1 1−δAn−1,An =

= N0 · [rp+ s(1− p)]t·
1
t

∑t
n=1 δAn−1,An · [r(1− p) + sp]t·

1
t

∑t
n=1 1−δAn−1,An =

= N0 · [rp+ s(1− p)]tµ · [r(1− p) + sp]t(1−µ) =

= N0 · rtµ · st(1−µ) =

= N0 · etµ log r+t(1−µ) log s =

= N0 · etG(µ) (3.6)
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where we de�ned µ as done in Equation (2.8).
With these de�nitions we wrote the growth rate G(µ) as

G(µ) = µ log r + (1− µ) log s (3.7)

which now is parametrized by r, s and also p.

3.2 Study of the generalized Taylor's Law ex-

ponent

Also with the two-strategies dynamics the only thinks that matters is how
many time the chain changes state. Thus the underlying random measure
needed to compute the moments of the population size is the same as above
and so we have to use in the following the same rate function obtained in
2.2. Looking for the exponent of the generalized Taylor's law

b =
logE[N2(t)]

logE[N(t)]
(3.8)

we exploit Varadhan's Lemma, which gives us the exponent in the form

b(λ) =
supµ∈[0,1] [2G(µ)− I(µ)]

supµ∈[0,1] [G(µ)− I(µ)]
(3.9)

Carrying on the calculation for (3.9) we �nally �nd the explicit expression
for the exponent

b(λ) =
log [(1− λ)r2 + λs2]

log [(1− λ)r + λs]
(3.10)

We can notice that this is the same expression of (2.25), but with the
substitution r ←→ r and s ←→ s. This is due to the fact that in both
case the population growth is ruled by the changing or the remaining of
the environment in the same state, the di�erences between them are in the
di�erent multiplicative factors Ãn of the two models.

3.3 The optimal investment strategies

Until now we have not �xed the value of p yet. Now we want to �nd
an expression for it and analyze the results of this choice. To do so we will
look up three ways of optimization with di�erent ecological objectives. This
means that among all the possible values of p the population organizes its
dynamics in the best way possible choosing a certain value of p (we call this
the optimal p∗) to allow the accomplishment of a goal.
In the �rst place, we will maximize the growth rate on the long term consid-
ering only the most likely situation or looking at all the possible realizations
(although they might have very low probability to happen). These two op-
timizations correspond to the application of two probability results: in the
former case we appeal to the Law of Large Numbers (LLN), while in the
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latter LDT and Varadhan's Lemma are used. As last optimization method
we will try to minimize the entity of the �uctuations of N(t), which are dan-
gerous for the extinction of the population. We will try to do this imposing
a growth, i.e. we will look for p that gives the lowest risk of extinction but
that at the same time can allow the population to grow in the long term.

3.3.1 Maximization based on the most probable real-

izations of the chain

We are looking for the optimal p∗ which maximizes the growth on the long
term taking into account only the most probable trajectories of the environ-
ment evolution. Taking into account only the most probable realizations of
the chain means to apply the LLN.
In fact we would like to maximize with respect to p growth rate G(µ). Now
µ is not �xed, but depend on the realization of the chain. By de�nition

µ =
1

t

t∑
n=1

δAn−1,An (3.11)

Now

P (An−1 = An) =
∑
i∈Γ

P (An−1 = i) · pii = (1− λ)
∑
i∈Γ

P (An−1 = i) = 1− λ

∀n ∈ N. Hence δAn−1,An can be regarded as an i.i.d. random variable labeled
by n with expectation value equal to 1− λ.
So LLN can be applied giving

µ = 1− λ (3.12)

almost surely in the limit of t → +∞ (that we consider since we want a
maximization on the long term). We could also obtaining the same result
noting that µ = 1−λ is the point of absolute minimum of the rate function

(2.21) for the family of probability P
(
L2
t ∈ [µ, µ+ dµ]

)
, therefore the most

probable value for large t.
Hence, Equation (3.7) becomes a function of λ:

G(λ) = (1− λ) log[rp+ (1− p)s] + λ log[r(1− p) + sp]. (3.13)

Looking for the maximum with respect to p of Equation (3.13) we obtain
the optimal investment fraction to be

p∗(r, s, λ) =
r(1− λ)− λs

r − s
. (3.14)

Since 0 ≤ p ≤ 1, we have to set p∗ = 1 when Equation (3.14) is greater than
1 and p∗ = 0 when Equation (3.14) is smaller than 0. To do so we have to
distinguish the case r > s and r < s.
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Figure 3.1: Plot of p∗(λ) optimized using LLN in the case of the two strategy
dynamics with r = 4 and s = 0.7.

Case r > s

With this scenario we have r − s > 0 and this leads us to

p∗(r, s, λ) =


1 if 0 < λ ≤ s

r+s
r(1−λ)−λs

r−s if s
r+s
≤ λ ≤ r

r+s

0 if r
r+s
≤ λ < 1

(3.15)

The plot of (3.15) with �xed r, s will be as the one shown in Figure 3.1.

Case r < s

Now in Equation (3.14) r − s changes sign and so we have

p∗(r, s, λ) =


0 if 0 < λ ≤ r

r+s
r(1−λ)−λs

r−s if r
r+s
≤ λ ≤ s

r+s

1 if s
r+s
≤ λ < 1

(3.16)

The plot of p∗ now is like the one show in Figure 3.2.

In both cases we see that there is an interval of λ in which 0 < p∗ < 1, i.e
there is a coexistence of individuals using the two di�erent strategies, while
near the extremes there is only a strategy used by the whole population.
This is reasonable because near the extremes of the range for λ the environ-
ment changes or not changes almost surely, so to maximize the growth all
the individuals follow the same strategy because for these values of λ one
strategy is clearly better than the other.

Plot of b(λ) and divergences

Fixing p = p∗ we can insert this into the expressions of r and s, which
become functions of λ parametrized by r and s.
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Figure 3.2: Plot of p∗(λ) optimized using LLN in the case of the two strategy
dynamics with r = 0.4 and s = 1.6

From the expression of the exponent shown in Equation (3.10) we can see
that we may have divergences as the denominator becomes zero, i.e when

λ = λc =
r − 1

r − s
(3.17)

Since r and s are λ, we also have that λc is a function of λ. For this reason
we have to solve Equation (3.17) with the constraint 0 ≤ λ ≤ 1 to �nd the
regions of the space of parameters r and s in which the exponent b of the
generalized Taylor's law displays divergences.
In order to accomplish this we have to write explicitly λc and for this reason
we have to look at the case r > s and r < s separately since in these two
di�erent situations we have seen above that p has two distinct behaviours.
Let us start with the case r > s and so we have

λc =
r − 1

r − s
=


r−1
r−s if 0 < λ < s

r+s
(r+s)(1−λ)−1
(r+s)(1−2λ)

if s
r+s

< λ < r
r+s

s−1
s−r if r

r+s
< λ < 1

(3.18)

Solving Equation (3.17) with λ ∈ [0, 1] we �nd two regions:

• R1 = {(r, s) :
√
−4s2 + 4s+ 1 − 2r > −1, 0 < s < 1, r > 1}. In this

region we have

λc =
r − 1

r − s
∨ λc =

1− s
r − s

(3.19)

• R2 = {(r, s) :
√
−4s2 + 4s+ 1− 2r < −1, r+ s < 2, 0 < s < 1, r > 1}.

In this region instead we have

λc =
1

2
± 1

2

√
2− r − s
r + s

. (3.20)

We can see that in the regions of divergence the exponent displays two
divergences, symmetric to λ = 1

2
. These two regions are shown in Figure
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Figure 3.3: Regions of the parameter space restricted to r > 1 and 0 < s < 1 in
which b displays divergences in the case of the two model dynamics
with p∗ optimized using LLN. The blue zone represents region R1 and
in this zone the divergences are in the intervals of λ in which p∗ = 1
or p∗ = 0, i.e. all the population plays the same strategy. The orange
zone represents R2 and in this zone the divergences appear in the
interval of λ in which there is a coexistence of both strategies, i.e.
0 < p∗ < 1 and there are individuals playing S1 and others playing
S2.

3.3. The division of the region of divergence into two subregions is due to the
possibility of having a divergence when only one strategy is used or when
there is a coexistence of individuals using the two di�erent evolutionary
lines: R1 corresponds to the former situation, while R2 to the latter.
In Figure 3.4 are shown some plots of b(λ) with di�erent r and s with r > s.
We can see that for (r, s) ∈ R1 (see Figure 3.4b) and (r, s) ∈ R2 (see Figure
3.4c) the exponent diverges twice as analytically found and discussed above.
Now let us look at the case r < s. So we have

λc =
r − 1

r − s
=


s−1
s−r if 0 < λ < r

r+s
(r+s)(1−λ)−1
(r+s)(1−2λ)

if r
r+s

< λ < s
r+s

r−1
r−s if s

r+s
< λ < 1

(3.21)

Looking for the solution of Equation (3.17) we �nd two regions:

• R3 = {(r, s) :
√
−4r2 + 4r + 1 − 2s > −1, 0 < r < 1, s > 1}. In this

region we have

λc =
r − 1

r − s
∨ λc =

1− s
r − s

. (3.22)
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(a) r = 0.8 and s = 0.6.
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(b) r = 1.1 and s = 0.6.
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(c) r = 1.5 and s = 0.35.
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(d) r = 2.5 and s = 0.5.
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(e) r = 4 and s = 2.

Figure 3.4: Plots of b(λ) in the case of the two model dynamics with p∗ optimized
using LLN with di�erent r and s (r > s).
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Figure 3.5: Regions of the parameter space restricted to 0 < r < 1 and s > 1
in which b displays divergences for the two model dynamics with p∗

optimized using LLN. The blue zone represents region R3 and in this
zone the divergences are in the intervals of λ in which p∗ = 1 or
p∗ = 0, i.e. all the population plays the same strategy. The orange
zone represents R4 and in this zone the divergences appear in the
interval of λ in which there is a coexistence of both strategies, i.e.
0 < p∗ < 1 and there are individuals playing S1 and others playing
S2.

• R4 = {(r, s) :
√
−4r2 + 4r + 1− 2s < −1, r+ s < 2, 0 < r < 1, s > 1}.

In this region instead we have

λc =
1

2
± 1

2

√
2− r − s
r + s

. (3.23)

We can see that also in this case in the regions of divergence the exponent
displays two divergences, symmetric to λ = 1

2
. These two regions are shown

in Figure 3.5.
In Figure 3.6 are shown some plots of b(λ) with di�erent r e s. We can see
that for (r, s) ∈ R3 (see Figure 3.6b) and for (r, s) ∈ R4 (see Figure 3.6c)
the exponent diverges.
We can now look at the parameter space globally and discuss the regions of
divergence of the exponent b. These regions are shown in Figure 3.7. We
can see that with this optimization of the growth Equation (3.17) doesn't
have solution for 0 < r, s < 1 or r, s > 1 and so in this regions the exponent
never diverges. In the region of natural interest (and its symmetric under
exchange of r and s) we still have some points causing divergence and in
this case we have two values of λc while the previous models gave only one
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(c) r = 0.35 and s = 1.5.
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Figure 3.6: Plots of b(λ) in the case of the two model dynamics with p∗ optimized
using LLN with di�erent r and s (r < s).
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Figure 3.7: Regions of divergence for the generalized TL exponent in the case of
the two strategies dynamics with p∗ optimized using LLN. The blue
zone is R1, the orange one is R2, the green zone represents R3 and the
red zone is R4. The small panels show b(λ) for r and s in the di�erent
zones. As we can see in the coloured zones the exponent diverges.

critical value. On the other hand the situation is much improved since it is
reduced a lot the region of the parameters in which the exponent displays
a discontinuity.

We said that the two divergences are symmetric with respect to λ = 1
2
and

so in the region of divergence there is always λc <
1
2
. Thus, looking for

the region the region {(r, s) : r > 1, 0 < s < 1, 0 < λc <
1
2
} because of

its close correspondence to a real natural scenario, we automatically �nd
{(r, s) : r > 1, 0 < s < 1, r + s < 2}, which is the same found in the
previous model.

3.3.2 Maximization considering also the contribution

of rare events

Above we maximized taking into account the Law of Large Numbers, i.e.
we consider only the most probable trajectories of the environment states
for large t. Now we want to consider also the rare events and to do so we
have to use LDT.

For this reason we try to �nd the optimal investment fraction p∗ looking
for the highest logE[N(t)] (i.e. the highest E[N(t)] since the logarithm is
a monotone function). In order to accomplish this we exploit Varadhan
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Lemma again which gives us

lim
t→+∞

t−1 logE[N(t)] = sup
µ∈[0,1]

[G(µ)− I(µ)] = log [(1− λ)r + λs] (3.24)

Using Equation (3.5) and writing explicitly Equation (3.24) we �nd

log [(1− λ)r + λs] = log[s+ λ · (r − s) + p · (r − s) · (1− 2λ)] (3.25)

Now we try to maximize this quantity with respect to p and to do so it
is enough to �nd the maximum of the argument of the logarithm. The
derivative is (r − s) · (1 − 2λ), so the maximum is in the extremes of the
interval of values allowed to p (i.e. p∗ = 0 or p∗ = 1) depending on the sign
of r − s:

• if r > s then

p∗ =

{
1 if λ ≤ 1

2

0 if λ > 1
2

(3.26)

• if r < s then

p∗ =

{
0 if λ ≤ 1

2

1 if λ > 1
2

(3.27)

Plot of b(λ) and divergences

Once we �xed p = p∗ we can study b(λ). In Figure 3.8 some plots of the
exponent for di�erent values of r and s are shown.
As done before we look for the potential regions of the parameters r and s
of divergence of the exponent of generalized TL. The denominator of b(λ)
becomes zero for

λ = λc =
r − 1

r − s
=

{
r−1
r−s if (r − s > 0 ∧ λ ≤ 1

2
) ∨ (r − s < 0 ∧ λ > 1

2
)

s−1
s−r if (r − s > 0 ∧ λ > 1

2
) ∨ (r − s < 0 ∧ λ ≤ 1

2
)

(3.28)
The regions in which λc ∈ [0, 1] are shown in Figure 3.9 and are de�ned by{

R̃1 = {(r, s) : 1 < r < 2− s ∧ 0 < s < 1}
R̃2 = {(r, s) : 0 < r < 2− s ∧ 1 < s < 2}

(3.29)

We can see that these are the same regions obtained with the previous
optimization, with the di�erence that there are not sub-divisions because
in this case there is no more a coexistence of the two sub-populations, but
only a strategy is actuated at the time by the whole population at each
moment.
Due to the symmetry around 1

2
of the two divergences, automatically we

get the region {(r, s) : r > 1, 0 < s < 1, 0 < λc <
1
2
} is again de�ned by

{(r, s) : r > 1, 0 < s < 1, r + s < 2}.
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(e) r = 0.5 and s = 1.25.
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(f) r = 0.7 and s = 2.

Figure 3.8: Plots of b(λ) in the case of the two model dynamics with p∗ optimized
using LDT techniques for di�erent values of r and s.
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Figure 3.9: Regions of divergence for the generalized TL exponent in the case of
the two strategies dynamics with p∗ optimized using LDT techniques
to take into account even rare events. The blue zone represents R̃1.
The orange one instead is R̃2. The small panels display some plots of
b(λ) for r and s in the di�erent regions.
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3.4 Fluctuations and extinction risk

Until now we asked for the fraction p to maximize the growth on the long
term of the population in two di�erent ways (neglecting or considering rare
events) without worrying about the possibility of extinction. But we said
that a population in its dynamics would minimize the risk to become extinct.
The possibility of extinction is related to the �uctuations on E[N(t)] so now
we try to evaluate and minimize them. Then we wonder if this minimun risk
condition can allow a growth of the population, i.e taking p which minimize
the �uctuations we wonder if it is possible to have a growth. If the answer
is positive, this will be the best scenario ecologically speaking since we will
have a low-risk dynamics allowing a growth. This kind of optimization
in Economics and �nance is called Markowitz optimization and again we
exploit the similarity of our topic to the dynamics of market to study the
model.

3.4.1 Evaluation of the �uctuations

Now we are going to evaluate the e�ect of the �uctuations on the expectation
value N(t) in two di�erent ways and we will minimize the ratio of the
them and the expectation value itself since we are interested to see if the
the �uctuations are large with respect to the value of E [N(t)], i.e we will
minimize with respect to p the ratio√

Var [N(t)]

E [N(t)]
(3.30)

So the �rst method is to compute exactly the two quantities involved. Let
us consider the population in our model at the time-step t. In these t steps
the environment changed status from a step to the next one, let us say, t−n
times, while it didn't change the other n times. In our model we have seen
that when the environment doesn't change the population increases by a
factor r = rp+ (1− p)s and when it changes by a factor s = sp+ (1− p)r.
So the population at the time t will be:

N(t) = N0 · rn · st−n (3.31)

The probability of having n non-changing in the environment status in t
steps of the chain follows a binomial distribution with parameter (1− λ)

P (t;n) =
t!

n!(t− n)!
(1− λ)nλt−n (3.32)

We can easily compute the expectation value and the variance of N(t):

E[N(t)] =
t∑

n=0

t!

n!(t− n)!
(1− λ)n · λt−n · rn · st−n = [r(1− λ) + sλ]t (3.33)
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E[N2(t)] =
t∑

n=0

t!

n!(t− n)!
(1− λ)n · λt−n · r2n · s2(t−n) =

[
r2(1− λ) + s2λ

]t
(3.34)

V ar[N(t)] =
[
r2(1− λ) + s2λ

]t − [r(1− λ) + sλ]2t (3.35)

Inserting Equations (3.33) and (3.35) in Equation (3.30) we can look for its
minimum with respect to p �nding p∗ = 1

2
.

The same result can be achieved using Varadhan's Lemma: instead of min-
imizing Equation (3.30) we consider its square and then we exploit

Var[N(t)]

(E[N(t)])2
=

E[N2(t)]

(E[N(t)])2
− 1 (3.36)

In this way we can look only at E[N2(t)]
(E[N(t)])2

. Taking the logarithm of this

quantity , multiplying in by 1
t
and considering the limit t → ∞ we can

apply the Lemma. So we have

lim
t→∞

1

t
log

[
E[N2(t)]

(E[N(t)])2

]
= lim

t→∞

1

t
log
[
E[N2(t)]

]
−2

t
log [E[N(t)]] = log

[
r2(1− λ) + s2λ

[r(1− λ) + sλ]2

]
(3.37)

Minimizing the argument of the logarithm with respect to p we �nd again
p∗ = 1

2
.

We can understand why p∗ = 1
2
is the minimum of the quantity in Equation

(3.30). In fact it is the point of zero of the variance. Taking this value
Equation (3.35) is zero. This can be explained looking at the de�nitions of
r and s: with p∗ = 1

2
we have r = s ∀r, s and so the growth of the population

in time becomes deterministic. In other words with this choice of p and at
each step the number of individuals increases by the same factor regardless
of what the environment does.
With this investment strategy we have r = s, so exploiting this fact in
Equation (3.10) we �nd b(λ) = 2 ∀r, s, λ since

b(λ) =
log [(1− λ)r2 + λr2]

log [(1− λ)r + λr]
=

log [r2]

log [r]
= 2 (3.38)

3.4.2 Markowitz optimization: growth and risk mini-

mization

In order to minimize the �uctuations we found that the population has to
invest half and half of the resources in the two strategies and we saw that
this leads to a deterministic evolution. But we have not studied yet if this
type of investment can allow a growth. So now we propose ourselves to �nd
which choice of p with r, s and λ �xed permits a growth in the population
taking the lowest extinction-risk possible. We borrowed (and adapted to our
situation) the idea of this optimization from the discipline of Finance and
risk management in which is called Markowitz optimization and it applies
to portfolio management.
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In this �eld, Markowitz optimization gives the ideal portfolio diversi�cation
over a set of di�erent assets of a market in which each asset has �xed gain or
loss factors (similar to our factors r and s). Then, �xing a desired income,
the objective of this optimization is to provide the lowest risk of loss of
capital investment that can provide this pro�t. Adapting this idea to an
ecological framework the simplest and most realistic request is to impose a
growth on the long term, without asking how big it has to be. In this way
we avoid the introduction of a new parameter that has not an ecological
meaning, because the individuals do not growth with purpose of reaching a
certain number of individuals. Instead they can try to actually invest their
living resources to make the community to survive, i.e. growing, maybe
slowly, but taking the lowest risk of extinction possible.
To ask a growth means E[N(t)] > 1 or similarly limt→+∞

1
t

logE[N(t)] > 0
(N0 = 1). With this condition satis�ed, we look for the value of p that gives
the smallest value of the the quantity (3.30).
Let us start looking at which values of p can grant a growth on the long
term. To do so we ask

lim
t→+∞

1

t
logE[N(t)] = log [r(1− λ) + sλ] > 0 (3.39)

obtaining

r(1− λ) + sλ = rλ+ s(1− λ) + p · (r − s) · (1− 2λ) > 1 (3.40)

Solving this we �nd

• if λ < 1
2 {

plim < p ≤ 1 if r > s

0 ≤ p < plim if s > r
(3.41)

• if λ > 1
2 {

0 ≤ p < plim if r > s

plim < p ≤ 1 if s > r
(3.42)

where we have de�ned

plim =
1− rλ− s(1− λ)

(r − s) · (1− 2λ)
(3.43)

We see that this range of values is bounded by the quantity plim. Hence
now we have to study how plim changes as a function of r, s and λ. We saw
that p = 1

2
is the absolute minimum of the �uctuations. This means that if

this value is in the interval of values of p allowing a growth it will be taken
as optimal p, i.e. p∗ = 1

2
. In this case the population will growth surely

with a null possibility of extinction. Otherwise the population will adopt
a di�erent p∗ which can't grant a deterministic growth, but we will have a
growth with non-zero �uctuations.
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Case λ < 1
2

Let us start with the case λ < 1
2
(in the following discussion we consider λ

�xed and smaller than 1
2
). We found the interval of values for p to have an

increase in the population in time to be{
plim < p ≤ 1 if r > s

0 ≤ p < plim if s > r
(3.44)

So now we have to study the behaviour of plim and based on that we will
�nd the optimal value p∗. As we discussed, p = 1

2
is the minimum of the

�uctuations. Then we have to investigate the possibility of this value to fall
into the intervals of Equation (3.44).
Let us start from r > s. To make p = 1

2
to fall within the allowed interval

of values we have to ask plim ≤ 1
2
that gives the condition

r + s ≥ 2. (3.45)

Then we have to control when plim > 1. The solution is

s <
1

λ
+
λ− 1

λ
r (3.46)

When this happens there is no more an interval of p allowing for a growth
(on average). Hence in this case the individuals cannot growth and going
to become extinct anyway. To try to live as longer as it can, the population
will take p∗ = 1. We see that, strictly speaking, in this situation there is
not an optimal value of p because E[N(t)] < 1 for all p. The only ecological
move that the individuals may carry out is trying to last for the longest
time possible. So it maximizes log [r(1− λ) + sλ] which is the mean value
of the growth rate taking p∗ = 1.
The last possibility to be considered is

1

2
< plim ≤ 1 (3.47)

which gives the region

1

λ
+
λ− 1

λ
r ≤ s < 2− r (3.48)

Now there is an interval for p satisfying the growth condition, but 1
2
is not

in there. Above we found there is only a point of minimum with respect
to p for the �uctuations and so minimum condition on the �uctuations
cannot be imposed any more. In fact the minimum in this interval would
be p = plim but with this choice limt→+∞

1
t

logE[N(t)] = 0. Hence again the
unique reasonable ecological move is trying to maximize the growth. This
set p∗ = 1. The di�erence now is that with this p∗ a growth(on average) is
possible.
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In the case r < s we proceed similarly. To make 1
2
within the permitted

interval we have to ask plim ≥ 1
2
�nding again

r + s ≥ 2. (3.49)

Then we check
plim < 0 (3.50)

�nding

s <
1

1− λ
− 1

1− λ
r (3.51)

In this case there is no interval of values for p allowing a growth. For the
same way of reasoning shown above p∗ = 0.
Finally we look

0 ≤ plim <
1

2
(3.52)

providing
1

1− λ
− 1

1− λ
r ≤ s < 2− r (3.53)

The minimum condition on the �uctuations can not be established, so to
�x the fraction p the population will set p∗ = 0 to maximize the growth and
trying to live as longest as possible.
So we have that the parameter space will be divided as shown in Figure
3.10. In the blue region, de�ned by

{(r, s) : r + s ≥ 2} (3.54)

it is possible to have p∗ = 1
2
since it belongs to the allowed interval of values

for p which grant a growth. So with λ < 1
2
and a couple (r, s) in this area

we can have a deterministic growth, i.e. surely the population will increase
in time.
In the purple zone {

(r, s) : r < s, s <
1

1− λ
− 1

1− λ
r

}
(3.55)

we have 0 ≤ p < plim with plim < 0. This says us that with a �xed λ and
r, s in this region we can not have growth since r(1−λ)+sλ < 1 ∀p ∈ [0, 1].
Hence in this region p∗ = 0, i.e although taking the value for which E[N(t)]
is maximized there will be no growth, but it can hope to survive as longest
as possible.
Analogously in the green region{

(r, s) : r > s, s <
1

λ
+
λ− 1

λ
r

}
(3.56)

we have plim < p ≤ 1 with plim > 1, so we have to take p∗ = 1. As before
this means that we can not have an increase (on average) in the number of
individuals since r(1− λ) + sλ < 1 ∀p ∈ [0, 1].
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Let us now consider the orange region{
(r, s) : r > s,

1

λ
+
λ− 1

λ
r < s < 2− r

}
. (3.57)

In this zone we have 1
2
< plim < p ≤ 1, i.e. we can have a growth (r(1 −

λ) + sλ > 1) but p = 1
2
would not satisfy the growth condition. So we have

to choose p∗ based on another criterion (maximization of the growth).
A similar situation occurs in the red zone (s > r) where we have 0 ≤ p <
plim < 1

2
, i.e. r(1− λ) + sλ > 1 but not using p = 1

2
.

In these two regions the minimum of the variance can not be the absolute
minimum, but it is in the extremes of the interval. Since we asked for a
growth we have to take p = 1 in the orange zone, while p = 0 in the red one
(if p = plim then E[N(t)] = 1 = N0, i.e. there will be no increase, we invest
our resources to stay steady, which is meaningless).
So with λ < 1

2
we found

p(λ, r, s) =


1
2

if r + s > 2

1 if r + s < 2 ∧ r > s

0 if r + s < 2 ∧ s > r

(3.58)

Case λ > 1
2

In the same way we can analyze the case λ > 1
2
, obtaining the division of the

parameter space shown in Figure 3.11. This division is the same because, by
the de�nition of plim (which is the discriminating factor on which basically
the division is based on) the exchanges

λ←→ 1− λ
r ←→ s

at the same time cannot provide any di�erence. Now instead the conditions
(3.41) and (3.42) are the same with these exchanges. So for λ > 1

2
we have

p∗(λ, r, s) =


1
2

if r + s > 2

1 if r + s < 2 ∧ r > s

0 if r + s < 2 ∧ s > r

(3.59)

This reasoning can be veri�ed by direct calculation as done before.
Summarizing, with this optimization we �nd:

• if λ < 1
2

p∗(λ, r, s) =


1
2

if r + s > 2

1 if r + s < 2 ∧ r > s

0 if r + s < 2 ∧ s > r

(3.60)

• if λ > 1
2

p∗(λ, r, s) =


1
2

if r + s > 2

0 if r + s < 2 ∧ r > s

1 if r + s < 2 ∧ s > r

(3.61)
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Figure 3.10: Division of the parameter space using Markowitz optimization with
λ = 1

4 . In the blue region p = 1
2 , in the green one p = 1, in the

purple zone p = 0. In the orange region 1
2 < plim < p ≤ 1 and in the

red one 0 ≤ p < plim < 1
2 .

The border between the blue region and the orange-red is the straight
line s = 2 − r, the border between the purple zone and the green
region is the straight line r = s, between the green and orange regions
the border is de�ned by the straight line s = 1

λ + r λ−1
λ and between

the purple and red zone is de�ned by the straight line s = r λ
λ−1−

1
λ−1 .
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Figure 3.11: Division of the parameter space using Markowitz optimization with
λ = 3

4 . In the blue region p∗ = 1
2 , in the green one p∗ = 0, in the

purple zone p∗ = 1. In the orange region 0 ≤ p∗ < plim < 1
2 and in

the red one 1
2 < plim < p∗ ≤ 1.

The border between the blue region and the orange-red is the straight
line s = 2 − r, the border between the purple zone and the green
region is the straight line r = s, between the green and orange regions
the border is de�ned by the straight line s = 1

λ + r λ−1
λ and between

the purple and red zone is de�ned by the straight line s = r λ
λ−1−

1
λ−1 .
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Figure 3.12: Regions of divergence for the generalized TL exponent in the case
of the two strategies dynamics with p∗ optimized using Markowitz
optimization. The blue zone represents R̃1. The orange one instead
is R̃2. The small panels display some plots of b(λ) for r and s in the
di�erent regions.

Divergences

With the optimal p∗ found above we can look for the regions in which
generalized TL exponent may diverge.
As we said, for p∗ = 1

2
there is not divergence in the exponent. Instead

when r + s < 2 we �nd the regions shown in Figure 3.12 and found with
the previous optimization performed.
In conclusion, the divergences would disappear taking p = 1

2
everywhere, but

as we showed this would not allow a growth for every choice of r and s. In
these regions of the parameters the only reasonable thing to do is maximized
the growth. We accomplished this maximizing limt→+∞

1
t

logE[N(t)] as in
3.3.2. We could use the �rst optimization (the one exploiting LLN), but as
we veri�ed any remarkable di�erence would be obtained since both of them
provide the same regions of divergences.
In this way we discovered that, regardless on the optimization objective,
the two strategies model predicts exactly the same regions of divergences.
Moreover the region of divergence for the generalized TL, under natural
hypothesis on the dynamics of the environment and the model parameters,
is again R1,strat as in the two previous considered models.
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Chapter 4

Population dynamics with

adaptive strategy and a randomly

moving fraction of individuals

Up to now we illustrated two dynamics in which the population moves with
one or two evolutionary strategies, i.e given a certain realization of the chain
describing the environment the succession of the phenotypes adopted by the
individuals is deterministic.
This could be seen in contrast with what is observed in nature. In fact we
know from the studies of Darwin about the existence of random mutation
in the genotype that could manifest as di�erent traits in the phenotypes.
So to take into account this feature of the ecological dynamics we have
to introduce in our model a fraction of population moving randomly, i.e.
that takes decisions about what phenotype adopt without looking at the
environment.

4.1 Model dynamics

Once more we consider a population living in a stochastic environment
whose evolution is described by the same Markov chain {At,t≥0} moving in
a two dimensional state-space Γ (we call these two states 0 and 1 again)
with the same transition matrix P (2.2) as in the previous models.
Also in this case the individuals can adopt two di�erent phenotypes due
to the possibility of having two di�erent habitat states. Each phenotype is
the most adapted to one of the possible environment states (again we will
call the two phenotypes 0 and 1 with the same notation and meaning as
above). Only the individuals with the right phenotype with respect to the
environment can grow (i.e. their number will be multiplied by a factor r,
typically r > 1), while the others will be reduced by a factor s (typically
0 < s < 1).
Now we introduce a split in the population. A fraction p follows the Dar-
winian strategy S1 in which the individuals for the next step choose to
be adapted to what they are seeing now or, in other words, they become
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adapted to the environment and bet the environment won't change. Instead
the other fraction 1−p represents that part of population which moves ran-
domly, i.e. which adopts a phenotype without basing its decision on what
the environment may do. We will call this Sr: at each step this group of
individuals choose to use the phenotype 0 or 1 with probability 1

2
.

An easy calculation, based on the transition matrix P and the steady distri-
bution of the Markov chain, shows how moving randomly is equal to remain
always in one of the two possible phenotypes, let us say 0 without any loss
of generality.
So for the fraction p the phenotype adopted at the time t+ 1, S1,t+1, is the
one good for the environment at the step t, At, while for Sr the phenotype
will be always 0, i.e. Sr,t = 0 ∀t ≥ 1, i.e.

S1,t+1 = S1,t+1(At) = At

Sr,t = 0 ∀t ≥ 1

Here an example of what could happen with this dynamics given a certain
realization of the environment chain:

t :0 1 2 3 4 5 · · ·
At :0 0 1 1 0 1 · · ·
S1,t :x 0 0 1 1 0 · · ·
Sr,t :x 0 0 0 0 0 · · ·

We can look at these two evolutionary lines as the usual Darwinian one
(S1) and the random motion naturally present (Sr). In fact the fraction
playing S1 increases the individuals by r when they become adapt to the
environment until it change. When it happens they are no more able to
grow since they do not �nd a good habitat to live in and they have to try
to be adapted again adopting a new phenotype. Instead the other fraction
using Sr wins only when At+1 = 0. This is not an adaptive strategy since
their user do not try to predict the evolution of the environment to remain
adapted as longest as possible changing the phenotype but they remain
passive.

4.1.1 Population growth

We can write the population size as

N(t) =

S1︷ ︸︸ ︷
pN(t) +

S2︷ ︸︸ ︷
(1− p)N(t) (4.1)

since now we have two sub-populations, the users of S1 and Sr. When
the time moves from t to t + 1, based on the strategies and on what the
environment did, the numbers of individuals of the two sub-population will
be multiplied by r or s. Now the population size is N(t + 1) and it has
to decide much it is invested in S1 or Sr. We will keep �xed what are the
fractions p and 1− p playing the two evolutionary lines at each time-step:
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N(t+ 1) =

S1︷ ︸︸ ︷
pN(t+ 1) +

Sr︷ ︸︸ ︷
(1− p)N(t+ 1) (4.2)

We want now to write an expression for the population size as a function of
the time t. Given N(t) and remembering how the two strategies are de�ned
we have

N(t+ 1) =pN(t)
[
r · δAt,At+1 + s ·

(
1− δAt,At+1

)]
+

+ (1− p)N(t)
[
s · δAt+1,0 + r ·

(
1− δAt+1,0

)]
(4.3)

Since the fractions are kept �xed we iterate Equation (4.3) obtaining

N(t) =N0

t∏
n=1

{
p
[
r · δAn−1,An + s ·

(
1− δAn−1,An

)]
+

+ (1− p) [s · δAn,0 + r · (1− δAn,0)]

}
(4.4)

Now we can see concretely the di�erence between S1 and Sr: while for the
�rst what matters is the changing or the persistence of the environment in
the same state without any importance of which this is, for the last instead
we have to look at the state acquires by the chain regardless of the transition
just e�ectuated. So we have to factorize the delta in the following way to
emphasize the transitions of the chain to write in more useful form Equation
(4.4): 

δAn−1,An = δ(An−1,An),(0,0) + δ(An−1,An),(1,1)

1− δAn−1,An = δ(An−1,An),(0,1) + δ(An−1,An),(1,0)

δAn,0 = δ(An−1,An),(0,0) + δ(An−1,An),(1,0)

1− δAn,0 = δ(An−1,An),(0,0) + δ(An−1,An),(1,0)

(4.5)

Equation (4.4) now becomes

N(t) = N0

t∏
n=1

{
p
[
r · (δ(An−1,An),(0,0) + δ(An−1,An),(1,1)) + s · (δ(An−1,An),(0,1)+

+ δ(An−1,An),(1,0))
]

+ (1− p)
[
s ·
(
δ(An−1,An),(0,0) + δ(An−1,An),(1,0)

)
+

+ r ·
(
δ(An−1,An),(0,0) + δ(An−1,An),(1,0)

) ]}
(4.6)

From this form we can see what are the multiplicative factors Ãn and how
each transition provides a di�erent one of those

Ãn =


r if (An−1, An) = (0, 0)

s if (An−1, An) = (0, 1)

s if (An−1, An) = (1, 0)

r if (An−1, An) = (1, 1)

(4.7)
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where r and s are de�ned ad in the previous chapter ((3.5)). So

N(t) = N0

t∏
n=1

{
δ(An−1,An),(0,0) · [pr + (1− p)r] + δ(An−1,An),(0,1) · [ps+ (1− p)s] +

+ δ(An−1,An),(1,0) · [ps+ (1− p)r] + δ(An−1,An),(1,1) · [pr + (1− p)s]
}

=

= N0

t∏
n=1

{
δ(An−1,An),(0,0)r + δ(An−1,An),(0,1)s+ δ(An−1,An),(1,0)s+ δ(An−1,An),(1,1)r

}
=

= N0 · r
∑t

n=1 δ(An−1,An),(0,0) · s
∑t

n=1 δ(An−1,An),(0,1 · s
∑t

n=1 δ(An−1,An),(1,0) · r
∑t

n=1 δ(An−1,An),(1,1 =

= N0 · rtν00 · stν01 · stν10 · rtν11 =

= N0 · etν00 log r+tν01 log s+tν10 log s+tν11 log r =

= N0e
tGrs(ν) (4.8)

We introduced ν = (ν00, ν01, ν10, ν11) which the four component object
counting the fraction of times each transition occurs in a realization of the
Markov chain up to time t

νij =
1

t

t∑
n=1

δ(An−1,An),(i,j) (4.9)

with the obvious constraint
∑1

i,j=0 νij = ν00 + ν01 + ν10 + ν11 = 1, i.e ν

belongs to the four-dimensional simplex ∆4.
As we can recover from 2.2, we have already introduced the rate function
for family of probabilities Pt(ν) = P (L2

t ∈ ν, ν + dν]) for the empirical pair
measure counting the same quantities

L2
t =

1

t

t∑
n=1

δ(An−1,An), (4.10)

This rate function is

I2
P (ν) = ν00 log

[
ν00

(ν00 + ν01) · (1− λ)

]
+ ν01 log

[
ν01

(ν00 + ν01) · λ

]
+

+ ν10 log

[
ν10

(ν10 + ν11) · λ

]
+ ν11 log

[
ν11

(ν10 + ν11) · (1− λ)

]
(4.11)

The function

G(ν) = ν00 log r + ν01 log s+ ν10 log s+ ν11 log r (4.12)

has the usual meaning of growth rate and it is parametrized by r, s and p.

4.1.2 Study of the generalized Taylor's Law exponent

With G(ν) and I2
P (ν) we can evaluate the exponent b of the generalized

Taylor's law relating the second and the �rst moment of the random variable
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N(t) exploiting again Varadhan's Lemma. In fact

b(λ) =
supν∈∆4 [2G(ν)− I2

P (ν)]

supν∈∆4 [G(ν)− I2
P (ν)]

(4.13)

We see that we should compute two suprema over the four variables νij. Due
to the constraint ν00 + ν01 + ν10 + ν11 = 1 there are only three independent
variables. We can still reduce the number of degrees of freedom noticing
that, due to the dynamics of the chain, we have to count the same number
of transition from 0 to 1 and from 1 to 0 and this leads us to ν01 = ν10.
Finally we have two independent variables.
Unfortunately also with these simpli�cations the suprema can not be ob-
tained analytically. Although we can't �nd them explicitly, for sure the
functions 2G(ν)− I(ν) and G(ν)− I(ν) have a maximum and a minimum
in ∆4 since they are continuous functions on a compact domain. So we have
to look for the two suprema via numerical calculations.

4.2 The optimal investment strategies

Also in this case we have to �x p somehow. We will use the same optimiza-
tions used in the previous chapter, i.e. maximizing the growth considering
or neglecting rare events or minimizing the risk of extinction (i.e. the �uc-
tuations) with the constraint of a growth on the long term (not always
possible as we will see). Due to the absence of an explicit form of the
suprema contributing to b, we will not have an expression for the optimal
investment fraction p on the strategy S1, with the exception of the �rst way
of optimization since in this case we look only at G(ν).

4.2.1 Maximization based on the most probable real-

izations of the chain

Again the �rst optimization consists in maximizing the growth of the pop-
ulation on the long term taking into account only the most probable re-
alizations of the chain describing the environment. So we will exploit the
ergodic theorem.
Since we would like to look for large t we will consider the limit t → +∞.
In this limit the chain reaches its steady distribution which is

π(i) =
1

2
∀i ∈ Γ (4.14)

thanks to the bistochastic form of the transition matrix. So we have

lim
t→+∞

P (At = i) = π(i) =
1

2
∀i ∈ Γ (4.15)

Now νij was de�ned as

νij =
1

t

t∑
n=1

δ(An−1,An),(i,j)
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The ergodic theorem (see Appendix A) states

P (νij → π(i) · pij) −−−−→
t→+∞

1. (4.16)

and so in this limit we obtain

ν =

{
ν00 = ν11 = 1−λ

2

ν01 = ν10 = λ
2

(4.17)

The same result could be achieved noting that ν = (1−λ
2
, λ

2
, λ

2
, 1−λ

2
) is the

point of minimum of the rate function (4.11) for the family of probabilities
P (L2

t ∈ [ν, ν + dν]).
As we can see automatically we found ν01 = ν10 and ν00 = ν11 as we said
above. In this way G(ν) becomes only a function of the control parameter
λ

G(λ) =
1− λ

2
log r +

λ

2
log s+

λ

2
log s+

1− λ
2

log r (4.18)

Since G is the growth rate, we try to maximize this quantity with respect
to p we obtain the optimal investment fraction to be

p∗(r, s, λ) =
r(1− λ)− λs

r − s
. (4.19)

which is the same found in 3.3.1. So the discussion to bound p∗ between 0
and 1 depending on the sign of r − s is exactly the same. Thus we have

• if r > s

p∗(r, s, λ) =


1 if 0 < λ ≤ s

r+s
r(1−λ)−λs

r−s if s
r+s
≤ λ ≤ r

r+s

0 if r
r+s
≤ λ < 1

(4.20)

• if r < s

p∗(r, s, λ) =


0 if 0 < λ ≤ r

r+s
r(1−λ)−λs

r−s if r
r+s
≤ λ ≤ s

r+s

1 if s
r+s
≤ λ < 1

(4.21)

Depending on r, s we have two di�erent plots of p∗ shown in Figure 4.1.
With the optimal investment fraction p∗ now we have to compute the two
suprema of Varadhan's Lemma as functions of λ remembering the constraint
over ν. To compute them we implement a numerical procedure following
these steps:

(1) we �x of r and s;

(2) we �x a value of λ ∈ [0, 1];

(3) with r, s and λ we compute p∗ with Equations (4.20) and (4.21);

(4) we compute numerically supν∈∆4 [2G(ν)− I2
P (ν)], supν∈∆4 [G(ν)− I2

P (ν)]
and their ratio, i.e. the generalized TL exponent;
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Figure 4.1: Plots of p∗(λ) optimized using the ergodic theorem for the model dy-
namics with the adaptive strategy and the randomly moving fraction
for di�erent r and s with r > s and r < s.
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(5) we reiterate step 2 for other values of λ to obtain a discrete plot for
the exponent with the generated r and s.

With this procedure we can estimate the exponent. This can be only an
approximation due to the discretization of the domain of λ, but it is still
useful since it allows us to have an insight on how b behaves. Some plots
are displayed in Figure 4.2.
As we can see from Figures 4.2c and 4.2d there are same values of the
parameters r and s for which the exponent diverges.
Since we haven't an analytic expression for b, we haven't also the expression
for λc, but we can add a step in the procedure to detect the points in the
parameter space (r, s) causing the divergence. In fact we label a couple
(r, s) as point of divergence if the exponent goes above a threshold (we
used 8− 10) or becomes negative. To reconstruct the regions of divergence,
shown in Figure 4.3, we sampled uniformly couples (r, s) in [0, 3]× [0, 3] and
we tested the divergence as just explained. It is possible to note that the
situation is no more symmetric for the exchange of r and s. This can be
explained from the expression ofG(ν) in Equation (4.12). In fact exchanging
r with s (and consequently p with 1−p as we can see from Equations (4.20)
and (4.21)) we have that G(ν) goes into

G̃(ν) = ν00 log s+ ν01 log r + ν10 log s+ ν11 log r (4.22)

which is a di�erent function, hence the exponent (and its region of diver-
gence) is no more symmetric for the exchange of the parameters. This will
be true also in the case of the other two optimizations
We see that this region for r > 1 looks like the same found in the work
discussed in 1.3.1, while for r < 1 seems the one of the two strategies
model.
For the usual natural hypothesis on the dynamics, we can for the region in
which λc <

1
2
�nding the division shown in Figure 4.4.

Although without any expression for the critical value for λ, we can see that
the red regions in Figure 4.4 look like the same regions of the two strategies
model illustrated in the previous chapter and de�ned by the conditions

(r > 1 ∨ s > 1) ∧ r + s < 2, (4.23)

while the blue one look the same of the work presented at 1.3.1, i.e de�ned
by

r > 1 ∧ s < 1

r
(4.24)

So if we look for 0 < λ < 1
2
with 0 < s < 1 < r (natural interval) also in

this case we �nd the same region of divergence predicted by all the previous
analyzed dynamics.

4.2.2 Maximization considering also the contribution

of rare events

To consider also the rare events, that may provide a great contribution
to the right evaluation of mean values although their low probability of
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Figure 4.2: Plots of b(λ) for the model dynamics with the adaptive strategy and
the randomly moving fraction optimized using the ergodic theorem
with di�erent values of r and s.
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Figure 4.3: Points generated by uniform sampling of the region [0, 3]× [0, 3] of the
parameter space that make b to display divergences for the model dy-
namics with the adaptive strategy and the randomly moving fraction
optimized using the ergodic theorem.

Figure 4.4: Regions in which the generalized TL exponent diverges for the model
dynamics with the adaptive strategy and the randomly moving frac-
tion optimized using the ergodic theorem. The blue points make b to
diverge with λc >

1
2 . The red one instead provide λc <

1
2 . In this

way we derived numerical evidences on what the regions could be.
The small panels shows some plots obtained via numerical calculation
of the exponent for a couple r and s in the di�erent regions of the
parameters obtained in such a way.
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happening, we have to go beyond LLN and ergodic theorem and exploit
LDT.
To maximize the growth on long term we have to look for the maximum
of E [N(t)] with respect to p. Since the logarithm is monotone, in this
optimization we have to maximize

lim
t→+∞

1

t
logE [N(t)] . (4.25)

Applying once again Varadhan's Lemma we have to look for the maximum
with respect to p of

sup
ν∈∆4

[
G(ν)− I2

P (ν)
]
, (4.26)

i.e. look at the supremum as a function of p and search its maximum.
Due to the absence of an analytical form, we implement a numerical proce-
dure to compute the optimal p∗ and the exponent of generalized TL:

(1) we �x r and s;

(2) we �x a value of λ ∈ [0, 1];

(3) with a �xed value of p we compute supν∈∆4 [G(ν)− I2
P (ν)];

(4) we iterate step 3 to �nd p which maximized the supremum over ν and
we use it as the optimal p∗ for the considered r, s and λ;

(5) with λ and using the optimal p∗ just found we compute also supν∈∆4 [2G(ν)− I2
P (ν)]

and so the value of the exponent for that λ;

(6) we iterate step 2 moving λ.

With this procedure we obtain plots for b shown in Figure 4.5
Instead from all the considered couples of r and s, we have the evidence
that p∗ has the form:

• if r > s then

p∗ =

{
1 if λ ≤ 1

2

0 if λ > 1
2

(4.27)

• if r < s then

p∗ =

{
0 if λ ≤ 1

2

1 if λ > 1
2

(4.28)

i.e. all the population uses the strategy or moves randomly depending on
the multiplicative factors and the probability of changing the environment.
The two cases are shown in Figures 4.6 and 4.7.
We see from Figures 4.5c and 4.5d that some r and s make b to diverge.
Looking for the region of divergence in the same way as done above we �nd
the region in Figure 4.8. Dividing between λc greater or smaller than 1

2
we

have Figure 4.9. As we can see we obtain the same results found above with
the previous maximization.
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Figure 4.5: Plots of b(λ) for the model dynamics with the adaptive strategy and
the randomly moving fraction optimized using LDT techniques with
di�erent values of r and s.
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Figure 4.6: Plot of p∗(λ) for the model dynamics with the adaptive strategy and
the randomly moving fraction optimized using LDT techniques with
r > s.
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Figure 4.7: Plot of p∗(λ) for the model dynamics with the adaptive strategy and
the randomly moving fraction optimized using LDT techniques with
r < s.
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Figure 4.8: Points generated by uniform sampling of the region [0, 3]× [0, 3] of the
parameter space that make b to display divergences for the model dy-
namics with the adaptive strategy and the randomly moving fraction
optimized using LDT techniques.

Figure 4.9: Regions in which the generalized TL exponent diverges for the model
dynamics with the adaptive strategy and the randomly moving frac-
tion optimized using LDT techniques. The blue points make b to
diverge with λc >

1
2 . The red one instead provide λc <

1
2 . In this

way we derived numerical evidences on what the regions could be.
The small panels shows some plots obtained via numerical calculation
of the exponent for a couple r and s in the di�erent regions of the
parameters obtained in such a way.
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4.2.3 Markowitz optimization

The last optimization performed is Markowitz optimization. We try to
minimize the ratio between the �uctuations, i.e

√
Var [N(t)], and the ex-

pectation value E [N(t)] with the constraint of having a growth or in other
words E [N(t)] > 1 on the long term.
So again exploiting Varadhan's Lemma we have to minimize with respect
to p

lim
t→∞

1

t
log

[
E[N2(t)]

(E[N(t)])2

]
= lim

t→∞

1

t
log
[
E[N2(t)]

]
− 2

t
log [E[N(t)]] (4.29)

asking

lim
t→∞

1

t
log [E[N(t)]] > 0. (4.30)

as done in 3.4.2.
Again we have to study this optimization via numerical calculation with the
following procedure:

(1) we �x r and s;

(2) we �x a value of λ ∈ [0, 1];

(3) with a �xed value of p we compute supν∈∆4 [2G(ν)− I2
P (ν)],supν∈∆4 [G(ν)− I2

P (ν)]
and supν∈∆4 [2G(ν)− I2

P (ν)]− 2 supν∈∆4 [G(ν)− I2
P (ν)];

(4) we iterate step 3 to �nd p∗ which minimize the di�erence supν∈∆4 [2G(ν)− I2
P (ν)]−

2 supν∈∆4 [G(ν)− I2
P (ν)] with the constraint (if it possible with those

λ, r and s) supν∈∆4 [G(ν)− I2
P (ν)] > 0;

(5) with λ and the optimal p∗ just found we compute the value of the
exponent for that λ, i.e. the ratio of the two suprema;

(6) we iterate step 2 moving λ.

Obviously, due to the inevitable discretization during the scan of values of
p for the search of p∗, a computational error is present. Nevertheless in this
way we can estimate the optimal p∗ that minimizes the risk of extinction
and that ensures a growth on the long term. Some plots are shown in Figure
4.10.
We obtain also plots of the exponent of generalized TL displayed in Figures
4.11.
From Figures 4.11a and 4.11d we still see the presence of divergences in the
exponent so we investigated the regions of the parameters as done so far
�nding the same results, as it is possible to see from Figures 4.12 and 4.13
Comparing the results of the three di�erent optimization performed, we
�nd always the same regions of divergences. Looking only at the region
0 < s < 1 < r for λ < 1

2
it is possible to see that always the same region is

obtained. Moreover this region is equal to the one found in the two previous
models, common also in that case among the three optimizations.
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(h) r = 2.5 and s = 1.5.

Figure 4.10: Plot of p∗(λ) for the model dynamics with the adaptive strategy and
the randomly moving fraction optimized using Markowitz optimiza-
tion with di�erent values of r and s.
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Figure 4.11: Plot of b(λ) for the model dynamics with the adaptive strategy and
the randomly moving fraction optimized using Markowitz optimiza-
tion with di�erent values of r and s.
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Figure 4.12: Points generated by uniform sampling of the region [0, 3] × [0, 3]
of the parameter space that make b to display divergences for the
model dynamics with the adaptive strategy and the randomly moving
fraction optimized using Markowitz optimization.

Figure 4.13: Regions in which the generalized TL exponent diverges for the model
dynamics with the adaptive strategy and the randomly moving frac-
tion optimized using Markowitz optimization. The blue points make
b to diverge with λc >

1
2 . The red one instead provide λc <

1
2 . In

this way we derived numerical evidences on what the region could
be. The small panels shows some plots obtained via numerical cal-
culation of the exponent for a couple r and s in the di�erent regions
of the parameters obtained in such a way.
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Hence, for all the evolutionary strategies we have considered in this work,
the model still predict the exponent to take any real value due to the pres-
ence of regions of divergence. Moreover under some natural hypothesis on
the model parameters (0 < s < 1 < r and 0 < λ < 1

2
) the same region

is found, independently of the strategies implemented or the optimization
performed.
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Conclusions

The aim of this thesis was to study how simple evolutionary strategies and
optimal investments of the population resources a�ect and maybe generate
ecological patterns.

In Chapter 1 we have discussed the regularities we have been interested in,
i.e. the Taylor's Law and its generalized form. The former states a power-
law scaling property of the variance of a non-negative random variable with
respect to its mean, while the latter extends the power-law relationship to
all the moments of the random variable. Due to their wide di�usion across
a large class of heterogeneous ecosystems (in this case the random variable
is the population size), it is interesting to understand how they emerge and
in particular why only a restricted range of values has been observed for
the exponents of these power-laws. Indeed somehow independently of the
ecosystem considered, most of the data sets analyzed in literature have pro-
vided a Taylor's Law exponent between 1 and 2 with a clustering around the
value b = 2, while the exponent of the generalized version which relates the
kth to the jth moment acquires values near to k/j, bjk ' k/j. Despite their
robust corroboration through empirical data analysis, reliable explanations
of how these regularities emerge with the same values for the exponents
independently of the ecosystem considered have not yet been formulated.
Hence the question under investigation in the study of this topic was: are
these ecological regularities consequences of a some biological process or are
mere statistical artifacts without any physical relevance?

In the same chapter we have illustrated a paper work in which the authors
found that the exponent of the generalized TL relating the second and the
�rst moment can acquire any real value. In fact, adopting the framework of
multiplicative growth model, they showed the existence of a region of the
model parameters in which the exponent displays a divergence. They also
argued how only b12 ' 2/1 is observed thanks to an under sampling in the
measurements procedure. That is they suggested TL and generalized TL
are statistical artifacts.

In Chapters 2,3 and 4 we instead have introduced in the multiplicative
growth model new dynamics features trying to accounting for the e�ects of
ecological processes on the emergence of the studied patterns. In fact we
have allowed the population to follow three di�erent evolutionary strategies
and to perform di�erent possible optimizations of its living resources to ac-
complish ecological goals. With this way of reasoning we have explored the
possibility of the statitical patterns to be due to some physical mechanisms.
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To compute an expression of the exponent relating the second to the �rst
moment (the same studied in the work of Chapter 1), LDT results have had
to been adopted. While in Chapters 2 and 3 analytical calculations have
been carried out, in Chapter 4 numerical calculations have been necessary
in order to investigate the exponent. So in the �rst two cases we have
directly analyzed the exponent handling its explicit expression, while in the
last considered scenario the behaviour of the exponent has been studied via
numerical procedures.
In all the dynamics analyzed and independently of the optimization objec-
tive considered, regions of the model parameter space in which the exponent
diverges have been found. So also in our case, as in the model presented in
Chapter 1, we predict an unbounded range of values obtaining a disagree-
ment with the evidences coming from the data. Hence from the analysis of
these model dynamics we can conclude that the simple evolutionary strate-
gies we considered can not be the origin of the statistical regularities we
have looked at and their limited possible values of the scaling exponents.
Another interesting result is that, under some considerations on the model
dynamics and parameters in order to reproduce in the most faithful way eco-
logical meaningful scenarios, every considered strategy and also the model
of the quoted paper have given the same (smaller) region of divergence. This
may suggest us the dynamics details do not have any remarkable e�ect on
the exponent, while Large Deviation and rare events seem to matter more
making TL to appear as a meaningless statistical artifact. This assertion
has to be veri�ed and so further studied in this direction are needed. For
the moment we can only exclude evolutionary strategies to be the reasons
of the empirical (and still unexplained) observations.
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Appendix A

Large Deviations Theory

In the main text we built up stochastic models based on Markov chains
and we mathematically analysed exploiting Large Deviation Theory (LDT)
techniques. In this appendix we brie�y framed Large Deviations for Markov
chains and illustrated some general results needed during the work of Thesis.
For a further and detailed overview of this theory we suggest to look at the
references [42], [43], [44] and [45].

A.1 Ergodic Theorem

The Markov chain we considered was a Markov chain with two dimensional
state-space Γ = {0, 1} and symmetric transition matrix P with Pij > 0
∀i, j ∈ Γ. So we can see that P is irreducible and there is only one invariant
distribution π that, due to the bistochatic form of P , is π =

{
π(i) = 1

2

}
∀i ∈ Γ.
Our chain is a speci�c case of the family of ergodic, �nite state-space Markov
chains. So let be

Xi, i = 1, 2, 3, · · ·
with

Xi ∈ Γ = {1, 2, · · · , h}, h ∈ N
�xed and let π be its unique invariant distribution. For such a class of
chains an important theorem holds: the so called ergodic theorem.

Theorem 1 (Ergodic Theorem). Let P be irreducible and α a generic dis-

tribution. If (Xi)i≥0 is Markov (α, P ) with �nite state- space Γ, then for

any function f : Γ→ R

P

(
Sn =

1

n

n∑
i=1

f(Xi)→ Eπ(f) =
h∑
i=1

π(i)f(i)

)
−−−−→
n→+∞

1. (A.1)

In other words, this theorem states that for any function f , independently
of the initial condition (i.e. the initial distribution α), the empirical sample
average of f

Sn =
1

n

n∑
i=1

f(Xi)
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the probabilistic average of f

Eπ(f) =
h∑
i=1

π(i)f(i)

are equal in the limit of n→ +∞.
The statement of Ergodic Theorem can be formulated into the form of
probability decay:

P (|Sn − Eπ(f)| ≥ x) −−−−→
n→+∞

0, ∀x > 0. (A.2)

In this way we see that increasing n is more and more unlikely to observe
Sn taking a di�erent value from Eπ(f), but it is not established how fast
this probability goes to 0.
In the case in which also the low probability situations (the rare events)
has to be taken into account it is important to be able to compute their
probabilities and so it is mandatory to �nd how the decay displayed in
Equation (A.2) behaves. The Large Deviations Theory provides the answer
to this question.

A.2 Rate Function and Large Deviation Prin-

ciple for the sample average

The precise statement is based on the so called rate function. To introduce
the rate function a previous de�nition is needed.

De�nition 1 (Scaled cumulant generating function). Let us consider a real
random variable An parametrized by the positive integer n. We de�ne the

scaled cumulant generating function of An as

φ(θ) = lim
n→+∞

1

n
logE

[
enθAn

]
(A.3)

with θ ∈ R.

In the framework of Markov chain and Ergodic Theorem the random vari-
able is the sample average Sn and so

φ(θ) = lim
n→+∞

1

n
logE

[
enθSn

]
With this function φ(θ) it is possible to introduce the rate function.

De�nition 2 (Rate Function). We de�ne the rate function for the sample

averaged of f Sn as the Legendre-Fenchel trasformation of it scaled cumulant

generating function, i.e.

I(x) = sup
θ∈R

[θx− φ(θ)] (A.4)
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From this de�nition several properties of the rate function I(x) follow:

• it is positive, I(x) ≥ 0∀x;

• it is convex, d2I
dx2

> 0;

• it has an absolute point of minimum. This is xmin = Eπ(f) and
I(xmin) = 0.

Given I(x), LDT says that, given a set B ⊂ R,

lim
n→+∞

1

n
logP (Sn ∈ B) = − inf

xinB
I(x) (A.5)

This is called Large Deviations Principle (LDP). Starting from LDP, for
n� 1 we can write

P (Sn ∈ B) ≈ e−n infx∈B I(x) (A.6)

So �nally we obtain the answer we were looking for: the decay in n is
exponential with rate equal to in�mum of the rate function.
It is possible to remark that if Eπ(f) ∈ B the Ergodic theorem is recovered
and so LDT for Markov chains can be seen as an extension that result.
For the case of ergodic Markov chains with �nite space state Γ the rate
function for the sample average of a real function f can be computed ex-
plicitly. Let us call P = (Pij)i,j∈Γ the transition matrix and F the set of
functions from Γ into the set of real numbers R. We introduce the linear
operator

Tθ : F −→ F
g 7−→ Tθg(i) =

∑
j∈Γ

eθf(i)g(i)Mij

and we look for its the largest eigenvalue

λ(θ) = sup
g:||g||≤1

||Tθ(g)||.

Then it easy to see that the rate function is

I(x) = sup
θ∈R

[θx− log λ(θ)]

A.3 Gärtner-Ellis Theorem

So far we discussed LDT for a restricted family random variables (the sample
average of a real function taking value from the space state of a Markov
chain). LDT can be extended to a broader class of random variables under
certain assumption thanks the to Gärtner-Ellis Theorem.
Let Yn with n = 1, 2, 3, · · · be a sequence of real random variables. We can
de�ne the scaled cumulant generating function as

φ(θ) = lim
n→∞

1

n
logE

[
eθYn

]
(A.7)

with k ∈ R.
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Theorem 2 (Gärtner-Ellis Theorem). Given a sequence of random vari-

ables (Yn)n∈N, if φ(θ) exists and is di�erentiable for all θ ∈ R, then Pn =
P
(
Yn
n
∈ B

)
satis�es a LDP, i.e.

lim
n→∞

1

n
logPn = − inf

x∈B
I(x)

with a rate function I(x) given by the Legendre-Fenchel transform of φ(θ)

I(x) = sup
θ∈R

[θx− φ(θ)] .

The importance of this theorem is clear: it gives a criterion easy to evaluate
to establish if a sequences of generic random variable satis�es a LDP and
to calculate its rate function looking only at φ(θ) and its features. So it is
no longer necessary to compute

Pn = P (An ∈ B)

and the limit of the logarithm of this quantity. This is a very powerful
result since sometimes Pn cannot be explicitly evaluated. With Gärtner-
Ellis Theorem no restrictions on the sequence are made. Instead requests
are made on the sequence of functions φn(θ).

A.4 Varadhan's Lemma

After a general introduction to LDT, now we illustrate two results employed
in the main text. The �rst is Varadhan's Lemma

Theorem 3 (Varadhan's Lemma). Let Pn be a sequence of probability

measures satisfying a LDP on Γ and continuous and limited real function

F : Γ→ R, then

lim
n→+∞

1

n
log

∫
Γ

enF (x)Pn(dx) = sup
x∈Γ

[F (x)− I(x)] (A.8)

Basically this Lemma is a saddle-point or Laplace's approximation exploit-
ing LDP (i.e. Pn(dx) � e−nI(x), the probability measure asymptotically in
the limit n→ +∞ has an exponential form) that becomes exact in the limit
n→ +∞.
We employed this when we needed to compute limt→+∞

1
t

logE
[
Nk(t)

]
.

Since we shown that N(t) can be written as

N(t) = etG(µ)

with µ satisfying a LDP with rate function I(µ). So we had

lim
t→+∞

1

t
logE

[
Nk(t)

]
= lim

t→+∞

1

t
logE

[
etkG(µ)

]
=

= lim
t→+∞

1

t
log

∫ 1

0

etkG(µ)Pt(dµ) =

= sup
µ∈[0,1]

[kG(µ)− I(µ)] .
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A.5 Contraction Principle

Another theorem we employed is the Contraction Principle. This theorem
deals with the problem of �nding the rate function of a sequence of prob-
ability measures obtained as the image through a continuous function of a
sequence of another probability measures satisfying a LDP with a known
rate function.

Theorem 4 (Contraction Principle). Let (Pn) be a sequence of probability

measures on a Polish space X that satis�es the LDP with rate n and rate

function I. Let
Y be a Polish space,

T : X → Y a continous map,

Qn = Pn ◦ T−1 an image probability measure.

Then (Qn) satis�es the LDP on Y with rate n and rate function J given by

J(y) = inf
x∈X :T (x)=y

I(x), (A.9)

with the condition inf∅ =∞.
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