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Preface

In this thesis we investigate the emergence of collective periodic behaviors in a frus-
trated network of stochastic interacting diffusions. The study proposed revisits the
work on [12]. We provide a model of noisy interacting particles, arranged in two com-
munities of units, which depend on their mutual coupling interactions. Motivated by
insights on numerical simulations, we show that this model features the phenomenon
of noise-induced periodicity: when the number of particles goes to infinity, in a certain
range of interaction strengths, although the system has no periodic behavior in the
zero-noise limit, a moderate amount of noise may generate attractive periodic rules.
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2.1.4 Itô Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Stochastic mean-field dynamics and propagation of chaos . . . . . . . . . 23
2.2.1 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Propagation of chaos for interacting systems . . . . . . . . . . . . 25

2.3 Limit cycle from a Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . 27
2.4 An application: The Fitzhugh-Nagumo model for neurons . . . . . . . . . 28

3 Noise-induced periodicity: illustration of the results 33
3.1 Preliminary study of the model . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Numerical simulations of the finite-size system . . . . . . . . . . . 34
3.2 Well-posedness of the macroscopic limit . . . . . . . . . . . . . . . . . . . 38
3.3 Propagation of chaos in the model . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Noiseless dynamic of the macroscopic limit . . . . . . . . . . . . . . . . . 47

3.4.1 Equilibrium points of the system . . . . . . . . . . . . . . . . . . . 49
3.5 Small noise approximations of the macroscopic limit . . . . . . . . . . . . 52
3.6 Occuring of a Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . 57

Conclusions 63

A Code 65
A.1 Euler’s algorithm for SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 69

v



vi



Introduction

Living systems are characterized by the emergence of recurrent dynamical patterns,
that arise from the aggregate of a very large number of interacting units. Such patterns
are due to self-organization and are observed at all scales of magnitude. Self-organized
behaviors are noted both in large communities of microscopic components - like neu-
ral oscillations (alpha and beta waves), gene network activity and chemical reactions
- as well as on larger levels - as predator-prey equilibria and applauding audiences
to name few. In particular, collective periodic behaviors of many elements systems are
among the most commonly observed ways of self-organization in biology, ecology and
socio-economics. The attempt of modeling such complex systems leads naturally to
consider large families of microscopic identical units (particles). Self-organized oscil-
lations, then, arise on a macroscopic scale from the dynamic of these minimal compo-
nents that evolve coupled by interaction terms.

In this framework lies the topic of this thesis: the phenomenon of noise-induced
periodicity. Indeed, large-volume natural systems of noisy interacting particles often
exhibit robust collective periodic behaviors [17]. Frequently are encountered systems,
with this property, in which the particles neither have tendency to behave periodically
on their own nor are subject to a periodic external forcing; nevertheless, they organize
to produce a regular motion perceived only macroscopically: a collective self-sustained
rhythm.

The presence, within a system, of noise, meant as an intrinsic, unpredictable, dis-
turbance element in the particle’s interactions, may stimulate the emergence of such
collective periodic motions. However, how such families of “non-periodic” particles
can generate macroscopic oscillations, is, still, poorly understood from a theoretical
standpoint.

The difficulty of treating theoretically large noisy interacting components leads to
give great attention to mean-field theory and mean-field interacting particles systems,
due to their more analytical properties. In this context, the attempt of explaining rig-
orously possible origins of self-organized rhythms identified various essential aspects
that enhance the emergence of such coherent and structured dynamics. Since, rhyth-
mic behaviors are intrinsically non-equilibrium phenomena, a breaking mechanism
needs to enter the microscopic design of the models.

Quite a number of such mechanisms, lately, have been taken into account: for ex-
ample, the addition of delay in the information’s transmission [1, 9], and/or frustration
in the interaction’s network in multi-population discrete particle systems [2]. However,
several works have highlighted the importance of the interplay between the reciprocal
interaction of the units and noise. Examples of nonlinear diffusion processes, for which
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periodic behaviors are caused by the presence of noise, meaning that no periodicity
occurs in the system when noise is turned off, where given long time ago [15]. Re-
cent works have stressed the specific importance of noise, as a equilibrium-breaking
element. For instance, the phenomenon, known as excitability by noise, is widely ob-
served [10]. From this point of view, the role of noise is believed to be twofold. On one
hand, noise can lead to oscillatory states in systems whose deterministic counterparts
do not display any periodic behavior; on the other, it can facilitate the transition from
incoherence to macroscopic pulsing [17].

In this thesis we investigate the emergence of a collective periodic behavior in a
frustrated network of interacting diffusions. We retrace the work made on [12], con-
ducting a similar study. In the model we provide, particles are divided into two pop-
ulations and they interact only via the respective empirical means. The frustration of
the network is designed as follows. On one hand, both intra-population interaction
parameters are positive: each particle wants to conform to the average position of the
particles in its own community. On the other hand, inter-population couplings have
opposite signs: the particles of one population want to conform to the average posi-
tion of the particles of the other community, while the particles in the latter want to
move away from the empirical mean of the first community. We show that this sys-
tem features the phenomenon of noise-induced periodicity: in the infinite volume limit,
that is when the number of particles goes to infinity, in a certain range of interaction
strengths, although the system has no periodic behavior in the zero-noise limit, a mod-
erate amount of noise may generate an attractive periodic law.

The thesis is divided into the following chapters.

In Chapter 1 we introduce the model described above as a system of N diffusive
particles on R, divided in two populations of N1 and N2 elements. Mean-field theory
is introduced as, by design of our model, the interaction between particles is managed,
only, via the respective means of the populations. Then we give a description of the
study, as we analyzed the occurring of noise-induced periodicity in the model. We
summarize it here.

We observed, on numerical simulations of the model, periodic oscillations in the tra-
jectories of the empirical means of the two populations. This motivated the investi-
gation of the thermodynamic/macroscopic limit of the system (when N goes to infinity).
Through a propagation of chaos statement we prove that, in the macroscopic limit, two
generic particles of the system, one for each population, follow non-linear diffusion
equations. As non-linear diffusion processes can have time-periodic law, we argue that,
for specific choices of the parameters, the presence of a noise component may gener-
ate a robust, self-sustained, rhythmic behaviour in the mean-field trajectories. While,
when the noise is turned off the system moves towards stable equilibria.
Therefore, we further analyze the time-evolution of the macroscopic limit and prove
that, the noisy limiting dynamic can evolve as a pair of Gaussian processes. This reduces
the study of our problem to a finite dimensional one, since we derive the explicit (de-
terministic) equations for the mean and variance of these processes. Finally, we show
that the dynamical system describing the time evolution of these means and variances
undergo a phase transition via a Hopf bifurcation at an equilibrium point. As a conse-
quence, in a certain range of the noise intensity and parameter’s choice, the system has
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a stable limit cycle as a long-time attractor, implying that the laws of the previously
mentioned Gaussian processes are periodic.

In Chapter 2 we give some general background and mathematical tools to the
study of diffusions. In particular, after recalling some basics in stochastic calculus and
stochastic differential equations, we give a short introduction to some modern concepts
about propagation of chaos for interacting diffusions. We state the general theorem that
provides the convergence of a wide class of mean-field interacting dynamics (micro-
scopic models) to a macroscopic limit, as the number of particles goes to infinity. This
can be useful to describe whenever stochastic independence of two random particles
in a many-particle system, persists in time, as the number of particles tends to infinity.
Originally designed for Statistical Mechanics, the emergence of application of stochas-
tic mean-field dynamics includes life and social sciences. We illustrate, without tech-
nical details, a famous model of interacting Fitzhugh-Nagumo neurons.
We include also in this chapter the relevant result about Hopf bifurcations, which pro-
vides the technical conditions to be checked when searching for limit cycles around
equilibrium points in dynamical systems.

Finally, in Chapter 3 we provide all the results in the study. In order, in Sec. 3.1,
after a well posedness statement for the finite-size system which describes the model,
we give the results and the analysis of the numerical simulations we ran. Sec. 3.2
contains the well-posedness proof of the macroscopic limit, while in Sec. 3.3 we state
the propagation of chaos theorem for our model. After that, we argue, in Sec. 3.4,
that no periodic behaviour are present for the macroscopic limit when the noise is
absent. In Sec. 3.5 we prove the existence of a pair of independent Gaussian processes
which approximate the macroscopic dynamic and, finally, in Sec. 3.6 we show that the
system which describes the means and variances of these processes displays a Hopf
bifurcation.

ix



Contents

x



Chapter1
Description of the model and

outline of the results

In the first section, we introduce the (microscopic) model as a diffusion process.
We define the dynamics of the system with N Itô stochastic differential equations on
R. The analytical expression of the equation is inspired by a model of interacting
FitzHugh-Nagumo neurons, of which we give a brief description in Sec. 2.4; here we
divide the units into two populations.
Then, in latter section, we give a walk through of the study and a brief summary of the
results: starting from the numerical simulations, trough the theoretical work, finishing
with the main topic, the noise-induced periodicity.

1.1. The model as a finite-size system of interacting diffu-

sions

So to introduce the subject let us consider a system of N diffusive particles on R and
divide the N particles into two disjoint communities of sizes N1 and N2 respectively.
Denote by I1 (resp. I2) the set of sites belonging to the first (resp. second) community.

In this setting, we indicate with
(︃
x

(N )
j (t)

)︃
j=1,...,N1

the “positions” at time t of the particles

of population I1 and with
(︃
y

(N )
j (t)

)︃
j=1,...,N2

the “positions” at time t of the particles of

population I2, so that

x(N )(t) =
(︃
x

(N )
1 (t),x(N )

2 (t), ...,x(N )
N1

(t), y(N )
1 (t), y(N )

2 (t), ..., y(N )
N2

(t)
)︃

represents the state of the whole system at time t.

The basic feature we want to introduce in the following model is that the strength
of the interaction between particles depends on the community they belong to: θ11
and θ22 tune the interaction between sites of the same community, whereas θ12 and
θ21 control the coupling strength between particles of different groups.
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Chapter 1. Description of the model and outline of the results

More specifically, each population, taken alone, is a mean field system with interac-
tion strength θ11 (resp. θ22). When we couple the two communities, the population
I1 (resp. I2) influences the population I2 (resp. I1) through the average position of its
particles with strength θ21 (resp. θ12).
A crucial feature for the system to show periodic behavior is frustration of the network,
i.e. the inter-community interactions must have opposite signs.

Now we introduce the microscopic dynamics we are interested in. Let

m
(N )
1 (t) :=

1
N1

N1∑︂
j=1

x
(N )
j (t) and m

(N )
2 (t) :=

1
N2

N2∑︂
j=1

y
(N )
j (t)

be the empirical means of the positions of the particles in populations I1 and I2, re-
spectively, at time t. Moreover, denote by α := N1

N the fraction of sites belonging to the
first group. Then, omitting time dependence for notations convenience, the interacting
particle’s system we are going to study reads:

dx
(N )
j =

(︄
−
(︃
x

(N )
j

)︃3
+ x(N )

j

)︄
dt −αθ11

(︃
x

(N )
j −m(N )

1

)︃
dt

− (1−α)θ12

(︃
x

(N )
j −m(N )

2

)︃
dt + σdW j for j = 1, ...,N1,

dy
(N )
j =

(︄
−
(︃
y

(N )
j

)︃3
+ y(N )

j

)︄
dt −αθ11

(︃
y

(N )
j −m(N )

1

)︃
dt

− (1−α)θ12

(︃
y

(N )
j −m(N )

2

)︃
dt + σdWN1+j for j = 1, ...,N1,

(1.1)

where
(︃
W

j
t

)︃
j=1,...,N

are N independent copies of a standard Brownian motion. Here

σ ≥ 0 is the parameter that tunes the amount of noise in the system, since the diffusion
coefficient is the same for each coordinate.
Note that in (1.1), the two populations interact only via their empirical means. This
feature puts our model into the mean-field theory.

When θ11 = θ22 = θ12 = θ21 = θ > 0 the model reduces to the mean field interacting
diffusions considered in [5]. In particular, it describes a dynamical model of a collec-
tion of an-harmonic oscillators, which can be proved to experience a phase transition
as the number of oscillators goes to infinity.

In a general setting, all the coupling constants could be either positive or negative,
allowing both cooperative and uncooperative interactions. Nevertheless, in the present
work, we focus on the case θ11,θ22 > 0 and θ12θ21 < 0. In particular, we make the
specific choice: θ12 > 0 and θ21 < 0. This means that a generic particle from I1 tends to
conform to the average particle position of community I2, whereas particles in I2 are
incline to differ from the average particle position of community I1.
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1.2. Noise-induced periodicity: synopsis of the study

The numerical simulations of the model (1.1), that we have computed in Section 3.1.1,

show that the empirical means
(︂
m

(N )
1 (t) and m(N )

1 (t)
)︂

display an oscillatory behavior for
appropriate choices of the parameters. This motivated the investigation of thermody-
namic limit of (1.1), i.e when the number of particles N goes to infinity.
Indeed, it is known that diffusion processes, described by SDEs as (1.1), cannot have a
time periodic law.

Remark. Solutions to stochastic differential equation of the form:

dX(t) = b(X(t))dt + σdW(t), t ≥ 0, σ > 0

with b : Rd −→ R
d Lipschitz continuous, {W(t); t ≥ 0} a d-dimensional Brownian mo-

tion cannot have a time periodic law. This follows from the fact that solutions to
such equations either have an invariant probability measure π, which is globally
asymptotically stable

(︂
the Law{X(t)} converges to π weakly as t → ∞, for every ini-

tial Law{X(0)}
)︂

or P
(︂
X(t) ∈ K |X(0) = x

)︂ t→∞−−−−→ 0, for every compact subset K ⊆ R
d and

every initial condition x ∈ P (Rd), the space of probability measures on R
d [15, 8].

While, this need not to be true for nonlinear diffusion processes, i.e. solutions of
stochastic differential equations of the form:

dX(t) = b
(︂
X(t),Law{X(t)}

)︂
dt + σdW(t);

where b : Rd ×M(Rd) −→ R
d . They are called “nonlinear” because the associated

Fokker-Plank equation is a nonlinear partial (integro-)differential equation.
In [16] can be found a proof of this fact, whereas [15] even provides examples of a
nonlinear diffusions for which periodic behaviours are created by the noise, i.e. no pe-
riodicity occurs when the noise is turned off (σ = 0).

In our model (1.1) the mean-field interaction has a peculiar feature: when the num-

ber of particles N goes to infinity, the empirical averages m(N )
1 (t) and m

(N )
2 (t) are ex-

pected to converge to a limit given by the solution of a nonlinear stochastic differential
equation, which, can have a time periodic law. So the oscillatory behaviour, observed
in the numerical simulations, could be theoretically explained trough the macroscopic
limit. In the following we outline the study in more details.

First, we prove that, starting form i.i.d. initial conditions, if we let the number of
particlesN grow large, independence propagates in time. As a result, time evolution of
a pair of representative particles, one for each population, is described by the stochastic
differential system of equations:

dXt =
[︂
−X3

t +Xt −αθ11(Xt −E[Xt])− (1−α)θ12(Xt −E[Yt])
]︂
dt + σdW 1

t ,

dYt =
[︂
−Y 3

t +Yt −αθ21(Yt −E[Xt])− (1−α)θ22(Yt −E[Yt])
]︂
dt + σdW 2

t ;

(1.2)

3



Chapter 1. Description of the model and outline of the results

where {W i
t ; t ≥ 0}i=1,2 are two independent Brownian motions and E[ · ] is the expec-

tation respect of the joint probability measure Law{X(t),Y (t)}, given the initial condi-
tions. The system (1.2) is well posed and a proof of the existence and uniqueness of a
strong solution is given.

To be more precise, we show that, for all 0 ≤ k1, k2 ∈ N, for all T > 0 and for all

t ∈ [0,T ], as N goes to infinity, the random vector
(︃
x

(N )
1 (t), ...,x(N )

k1
(t), y(N )

1 (t), ..., y(N )
k2

(t)
)︃

converges in distribution to the vector
(︂
X1(t), ...,Xk1(t),Y 1(t), ...,Y k2(t)

)︂
, whose entries

are independent random variables such that
(︂
Xi(t)

)︂
i=1,...,k1

are copies of the solution

of the first equation in (1.2) and
(︂
Y i(t)

)︂
i=1,...,k2

are copies of the solution to the second

equation of (1.2). This is referred as the phenomenon of propagation of chaos.

Moreover, if we introduce the transition densities of the laws of Xt and Yt as qXt (x,y)
and qYt (x,y) and denote their respective means E

X[ · ] and E
Y [ · ], the Fokker-Plank

equation, associated to (1.2), is nonlinear:

∂qXt (x,z)
∂t

=
σ2

2
∂2qXt (x,z)

∂z2 − ∂
∂z

{︃[︂
(1−αθ11 − (1−α)θ12)z − z3

]︂
qXt (x,z)

}︃
−
[︃
αθ11E

X[z]− (1−α)θ12E
Y [z]

]︃∂qXt (x,z)
∂z

,

∂qYt (y,z)
∂t

=
σ2

2
∂2qYt (y,z)

∂z2 − ∂
∂z

{︃[︂
(1−αθ21 − (1−α)θ22)z − z3

]︂
qYt (y,z)

}︃
−
[︃
αθ21E

X[z]− (1−α)θ22E
Y [z]

]︃∂qYt (y,z)
∂z

;

(1.3)

Therefore system (1.2) is a good candidate for having a solution
{︁
(Xt ,Yt) ;0 ≤ t ≤ T

}︁
with time periodic law, in view of the previous remark. However, it is very hard to have
insight into the long-time behaviours or to find periodic solutions, since the presence of
non-linearity and noise makes the problem infinite dimensional, as we’ll find out later.
One could also perform numerical simulations of system (1.3) using the F.E.M. method
with point-wise initial conditions

(︂
qX0 (x,z),qY0 (y,z)

)︂
=

(︂
δx(z),δy(z)

)︂
, x,y ∈ R. Neverthe-

less, we proceeded with a different approach.

First, in Section 3.4, we analyze the system (1.2) in the absence of noise and prove
that oscillatory/periodic behaviour are not observed when σ = 0. We fully analyze the
equilibrium points of the system and, doing so, we provide a scheme for the parame-
ters space. Then, in the main part of the study, we investigate our limiting model, with
σ > 0.

We show, in Sec. 3.5, that in presence of an appropriate amount of noise, the posi-
tions, at the thermodynamical limit, of the two representative particles of system (1.2),
evolve as a pair of two independent Gaussian processes; we refer to this as small-noise
Gaussian approximation. More precisely, we construct two independent Gaussian pro-
cesses so that they solve the first two moments equations of (1.2), and, starting from
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same i.i.d. initial conditions, their evolution in time is close to the one of the macro-
scopic limit.

Consequently, we reduce the study to the means and variances of the Gaussian
processes, for which we provide an explicit and deterministic system of differential
equations. The dynamical system, which describes the time evolution of these, is pa-
rameterized by the noise (σ ) and displays, in different parameters regions, a Hopf bifur-
cation for some critical values σc. In Section 3.6, we prove that, as the noise-parameter
is decreased to cross the thresholds σc, a stable limit cycle appears around an equilib-
rium point. Therefore, within a certain range of the noise intensity (0 < σ < σc) the two
Gaussian processes have a limit cycle, as long-time atractor of their evolution.

This, in particular, denotes that the laws of the Gaussian processes are periodic
and, therefore, the small-noise approximation gives a good qualitative description of
the emergence of the self-sustained oscillations observed in the numerical simulations
of the system (1.1).
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Chapter 1. Description of the model and outline of the results
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Chapter2
Mathematical background

In this chapter we introduce a basic background for diffusion processes. In view
of provide a general context for diffusions and give some useful notions to the study
of them, we present some famous results in a discursive manner, without giving any
rigorous demonstration. One can find extensive description about diffusion processes
in [7], while we refer to [8, 6] for the study of stochastic differential equation.
In Sec. 2.2 we introduce some basic facts about propagation of chaos in a stochastic
mean-field dynamic. In Sec. 2.4 we use them in an application of a Fitzhugh-Nagumo
model for interacting neurons. For these we used [4] as a reference.
Sec. 2.3 reports the condition, that we used in our study, to check when showing the
occurrence of a Hopf bifurcation within a dynamical system.

2.1. Basics on diffusion processes

Before diving into the subject, we bring in the common notions of basic probability the-
ory on Euclidean n-spaces, as we will use most of them and their properties on defining
diffusion processes.

We denote with the triple (Ω,U ,P) a general probability space, provided: Ω is a
non-empty set, U is a σ -algebra of subsets of Ω and P : U → [0,1] is a probability mea-
sure. The smallest σ -algebra of subsets of R

n, containing all the open sets, is called
the Borel subsets of Rn and it is indicated with B. In the following, the presence of a
probability space will be implicit.
The elements A ∈ U are called events, and P(A) is the probability of the event A. When-
ever a property is true except for an event of probability zero, we say that it holds almost
surely/almost everywhere (usually abbreviated with “a.s.”).

A U -measurable function X : Ω → R
n, which is almost everywhere finite, is a

generic random variable. Boldface characters denote vector valued quantities.
Usually, for a random variable, we omit the ω dependence and write “X” instead of
“X(ω)”. Moreover, if B ∈ B, P(X ∈ B) indicates P(X−1(B)), the probability that X takes
values within B.
If X a random variable, U (X) := {X−1(B) |B ∈ B} is a σ -algebra, generated by X.

7



Chapter 2. Mathematical background

The expectation/mean of a random variable is defined to be the integral

E[X] :=
∫︂
Ω

XdP
(︄
=

∫︂
Ω

X(ω)P(dω)
)︄
,

provided
⃓⃓⃓
X(ω)

⃓⃓⃓
is integrable; | · | denotes the Euclidean norm. So we can set the covari-

ance function of two random variables X,Y: Cov(X,Y) := E[(X −E[X])(Y −E[Y])]; and
the variance Var(X) := Cov(X,X) = E[|X|2]−

⃓⃓⃓
E[X]

⃓⃓⃓2
.

Additionally, a random variable X, can be defined in terms of the joint distribu-
tion function FX(x1, ...,xn), that is, by specifying the probability of the event {X(ω)1 <
x1, ...,X(ω)n < xn}, for ω ∈Ω and (x1, ...,xn) ∈Rn. In particular, if there exists a nonnega-
tive, integrable function f : Rn→R such that FX(x1, ...,xn) =

∫︁ x1

−∞ ...
∫︁ xn
−∞ f (y1, ..., yn)dyn...dy1,

we say that X has probability density f (X ∼ ...).
In this case, it follows that, for any event B ∈ B:

P(X ∈ B) =
∫︂
B
f (x)dx.

The expectation of a random variable can be extended and written using its density
function.

For any pair of eventsA,Bwith P(B) > 0, the conditional probability ofA, given B, is
P(A |B) := P(A∩B)

P(B) . Thus, A and B are said to be independent if P(A∩B) = P(A)P(B). This
definition is naturally extended to sequence of events and σ -algebras. In particular,
{Xi : Ω→ R

n}i=1,... is a collection of independent random variables, if for all k ≥ 2 and
choices of B1, ...,Bk ∈ B,

P(X1 ∈ B1,X2 ∈ B2, ...,Xk ∈ Bk) = P(X1 ∈ B1)P(X2 ∈ B2) · · ·P(Xk ∈ Bk).

Upon this, one defines the conditional expectation of a random variable X, given the
event B (P(B) > 0) as the mean over the probability measure P( · |B):

E[X|B] :=
1

P(B)

∫︂
Ω

XdP;

and, more in general, given the σ -algebra V ⊆ U , E[X|V ] is defined to be the unique
V -measurable random variable such that

∫︁
A

XdP =
∫︁
A
E[X|V ]dP for every A ∈ V .

The properties that follow from these notions will be used without giving too much
details and considerations.

2.1.1 Diffusions as Markov processes

For simplicity of notation, in the following, most of the definitions are given on the one
dimensional case, but the concepts we present are easily generalized.

The concept of a stochastic process is used to describe, in a loose sense, systems
which evolve probabilistically in time, or, more precisely, systems in which a certain
time-dependent random variable X(t) exists.

8



We can measure values x1,x2,x3, ..., etc., of X(t) at times t1, t2, t3, ... and assume that a set
of joint probability densities exists p(x1, t1;x2, t2;x3, t3; ...), which describe the system
completely. In terms of these probability densities, one can define the conditional
probabilities

p(x1, t1;x2, t2; ... |y1, τ1;y2, τ2; ...) =
p(x1, t1;x2, t2; ...;y1, τ1;y2, τ2; ...)

p(y1, τ1;y2, τ2; ...)
;

where the time-ordering is: t1 ≥ t2 ≥ t3 ≥ ... ≥ τ1 ≥ τ2 ≥ .... The concept of an “evo-
lution” leads to consider the conditional probabilities as the predictions of the future
values of X(t) (i.e. x1,x2, ... at times t1, t2, ...) given the knowledge of the past (values
y1,y2, ... at times τ1, τ2, ...).

Definition 1 (Stochastic process). Let T be a set, denoting the time, and (Ω,U ,P)
a probability space. A stochastic process is a collection of real random variables X =
{Xt | t ∈ T } that can be expressed as a function of two variables X : T ×Ω→R

n, where:

• Xt := X(t, · ) : Ω→R
n is a random variable for every t ∈ T .

• X( · ,ω) : T →R
n is the realization or sample path for each ω ∈Ω.

Depending on T being a discrete or a continuous time set, we call the stochastic pro-
cess a discrete or a continuous time process. Most of the times, we will denote a stochas-
tic process by time dependence {Xt}t≥0 or simply by Xt.

The time variability of a stochastic process, technically, is described by all its con-
ditional probabilities. Though, substantial information can be gained studying the
quantities:

• Mean: E[Xt] = µ(t) for each t ∈ T

• Variance: Var(Xt) = ν2(t) for each t ∈ T .

• (two-time) Co-variance: Cov(Xt ,Xs) for distinct time instants s, t ∈ T .

A stochastic process Xt, for which the random variables Xtj+1−Xtj , j = 1, ...,n−1, are
independent for any finite combinations of time instants t1 < ... < tn in T is a stochastic
process with independent increments.

Example 1. A stochastic process Xt, such that any joined distribution

FXti1 ,...,Xtin
(xi1 , ...,xin)

is normal, i.e. has density of the form

f (x) =
1

√
2πσ2

e−
|x−µ|2

2σ2 for some µ,σ ∈R,

for every choices of tij ∈ T , is called Gaussian.

9



Chapter 2. Mathematical background

Example 2. A Poisson process is a continuous time stochastic process X = {Xt | t ≥ 0}
with (non-overlapping) independent increments for which

X0 = 0 a.s.,

E[Xt] = 0,

Xt −Xs ∼ P (λ(t − s))

for all 0 ≤ s ≤ t; λ is called intensity parameter.

We call a stochastic process strictly stationary if all its joint distributions are invari-
ant under time displacement, that is

FXti1+h
,...,Xtin+h

( · ) = FXti1 ,...,Xtin
( · )

for every tij , tij+1
∈ T and h ≥ 0. While a stochastic process Xt is wide-sense stationary if

there exists a constant m ∈R and a function c : T →R, such that

E[Xt] =m, Var[Xt] = c(0) and Cov[Xt ,Xs] = c(t − s)

for all s, t ∈ T .

The setting of a generic stochastic process is very loose, so, next, we focus on the
concept of Markov process, which rises from the simple idea that only the knowledge of
the present determines the future. We start from discrete time and discrete spaces and
the definition of Markov chain; this helps to better understand diffusion processes.

Definition 2 (Markov chain). Let X = {x1, ...,xN } be the set of a finite number of
discrete states. The discrete time stochastic process X = {Xn : Ω→ X |n = 1,2, ...} is a
discrete time Markov chain if it satisfies the Markov property, that is

P(Xn+1 = xj |Xn = xin) = P(Xn+1 = xj |X1 = xi1 , ...,Xn = xin)

for all possible xj ,xi1 , ...,xin ∈ X with n = 1,2, ....

Heuristically, the Markov property tells that the future depends on the past only
through the present, or, in other words, that only the present state is needed to deter-
mine the future ones.

For a Markov chain we can define the transition matrix Pn ∈ RN×N , its entries are
given by

p
(i,j)
n = P(Xn+1 = xj |Xn = xin)

for i, j = 1, ...,N . We call them the transition probabilities and they satisfy
∑︁N
j p

(i,j)
n = 1

for each i, as Xn+1 can only attain state in X .
If we call pn the column vector of the marginal probabilities (P(Xn = x1), ...,P(Xn =

xN )), then the probability vector pn+1 is given by pn+1 = P Tn pn.

A discrete time Markov chain is called homogeneous if Pn = P for all n = 1,2, ....
Therefore the probability vector of a homogeneous Markov chain satisfies

pn+k =
(︃
P k

)︃T
pn

10



for every k ≥ 1, and the probability distributions depend only on the time that has
elapsed.
This does not mean that the Markov is strictly stationary. In other to be so, it is also re-
quired that pn = p for each n = 1,2, ..., which implies that the probability distributions

are equal for all times such that p = P Tp.

Remark. It can be shown that a homogeneous Markov chain has at least one stationary
probability vector solution. Therefore, it is sufficient that the initial random variable
X0 is distributed according to one of its stationary probability vectors for the Markov
chain to be stationary.

Definition 3. Let X = {x1, ...,xN } the set of a finite number of discrete states. The
stochastic process X = {Xt : Ω → X | t ∈ R

+} is a continuous time Markov chain if it
satisfies the following property:

P(Xt = xj |Xs = xi) = P(Xt = xj |Xr1 = xi1 , ...,Xrn = xin ,Xs = xi)

for 0 ≤ r1 ≤ ... ≤ rn < s < t and all xi1 , ...,xin ,xi ,xj ∈ X .

The entries of the transition matrix Ps,t ∈RN×N and the probability vectors are now
respectively:

p
(i,j)
s,t = P(Xt = xj |Xs = xi) pt = P Ts,tps

for any 0 ≤ s ≤ t; and the transition matrices satisfy the relationship Pr,t = Pr,sPs,t, for
any 0 ≤ r ≤ s ≤ t.
If all the transition matrices depend only on the time differences, the we say that the
continuous time Markov chain is homogeneous and we write Ps,t = P0,t−s ≡ Pt−s for any
0 ≤ s ≤ t. So we have Pt+s = PtPs = PsPt for all s, t ≥ 0.

Moreover, for an homogeneous continuous time Markov chain, we define the in-
finitesimal generator or intensity matrix G ∈RN×N , as follows:

g(i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩limt→∞
p

(i,j)
t
t if i ≠ j,

limt→∞
p

(i,j)
t −1
t if i = j.

Theorem 1. A homogeneous continuous time Markov chain Xt is completely character-
ized by the initial probability vector p0 = P(X0 = xi)i and its intensity matrix G. Moreover,
if all the diagonal elements of G are finite, then, the transition probabilities satisfy the Kol-
mogorov forward and backward equation, respectively:

d
dt
Pt −PtG = 0

d
dt
Pt −GT Pt = 0

We move on now to define continuous time continuous state Markov processes, when
the state space X ⊆R.

11



Chapter 2. Mathematical background

Definition 4 (Markov process). Let X ⊆R be the state space, the stochastic process
X = {Xt : Ω→ X | t ∈ R+} is a continuous time continuous state Markov process if it
satisfies the following Markov property:

P(Xt ∈ B |Xs = x) = P(Xt ∈ B |Xr1 = x1, ...,Xrn = xn,Xs = x)

for all Borel subsets B ⊆ R, time instants 0 ≤ r1 ≤ ... ≤ rn ≤ s ≤ t and all x1, ...,xn,x ∈ R
for which the conditional probabilities are defined.

Fore fixed s,x and t the transition probability P(Xt ∈ B |Xs = x) is a probability
measure on the σ -algebra B of Borel subsets of R such that

P(Xt ∈ B |Xs = x) =
∫︂
B
p(s,x; t,y)dy

for all B ∈ B. The quantity p(s,x; t, ·) is called transition density, it generalize the role of
the transition matrix of Markov chains. It follows form the Markov property that

p(s,x; t,y) =
∫︂ ∞
−∞
p(s,x;τ,z)p(τ,z; t,y)dz

for all 0 ≤ s ≤ τ ≤ t and x,y ∈ R. This equation is known as the Chapman-Kolmogorov
equation.

Remark. From this point of view, one can construct a complete Markov process given
a transition probability function p(s,x; t,y) and starting with an arbitrary initial dis-
tribution X0.

If all the transition density of a Markov process Xt depend only on the time dif-
ferences t − s, then it is called homogeneous and we write p(s,x; t,y) = p(0,x; t − s,y) ≡
pt−s(x,y) for any 0 ≤ s ≤ t. It is called periodic if the function p(s,x; t + s,y) is periodic in
s.

Now we have all the tools to give the definition of a diffusion process.

Definition 5 (Diffusion process). A continuous time continuous state Markov pro-
cess X = {Xt | t ∈ R+} is a diffusion process if the following limits, involving the transi-
tion densities p(s,x; t, ·), exists for all ϵ > 0, s ≥ 0 and x ∈R:

lim
t↓s

1
t − s

∫︂
|y−x|>ϵ

p(s,x; t,y)dy = 0, (2.1)

lim
t↓s

1
t − s

∫︂
|y−x|<ϵ

(y − x)p(s,x; t,y)dy = b(s,x), (2.2)

lim
t↓s

1
t − s

∫︂
|y−x|<ϵ

(y − x)2p(s,x; t,y)dy = σ2(s,x). (2.3)

The functions α(s,x) and β(s,x) are called respectively the drift and diffusion coefficient
at time s and position x. Usually it is assumed that these limit relations are uniform
with respect to t in each finite interval t0 ≤ t ≤ t1 and with respect to x in −∞ < x <∞.
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The first condition (2.1) prevents the diffusion process from having instantaneous
jumps, assuring the “continuity”. It means that the probability for the final position y
to be finitely different from x goes to zero faster than t−s, as t−s goes to zero. Diffusion
processes are almost surely continuous functions of time, i.e. the map X( ·,ω) : R+ → R

is continuous function in t, for P-almost all ω ∈Ω, this is also called sample continuity.
However they not need to be differentiable.

Remark. The continuity of a stochastic process, can be defined in several ways (con-
tinuity with probability one, mean square continuity, continuity in probability, etc.
) An interesting result is the Kolmogorov’s continuity criterion, which states that if a
continuous time continuous states stochastic process Xt satisfy

E

[︂
|Xt −Xs|a

]︂
≤ c|t − s|1+b

for all s, t ≥ 0 and |t − s| ≤ h, for some a,b,c,h > 0, then there exists a modification ˜︁Xt
such that ˜︁Xt is sample continuous and for all t ≥ 0 P(Xt = ˜︁Xt) = 1.

Conditions (2.2) and (2.3), on the other hand, shows that b(s,x) and σ2(s,x) repre-
sent, respectively, the instantaneous rate of change of the mean and the instantaneous
rate of change of the squared fluctuations of the process, given Xs = x:

b(s,x) = lim
t↓s

E[Wt −Ws |Ws = x]
t − s

σ2(s,x) = lim
t↓s

E[(Wt −Ws)2 |Ws = x]
t − s

Remark. If Xt is a homogeneous diffusion process, i.e. its probability densities depend
only on the time differences, it follows that the drift and the diffusion coefficients are
independent of time, that is b(s,x) ≡ b(x) and σ (s,x) ≡ σ (x) for every s,x ∈R.

We give now two important notions that describe the evolution of a diffusion pro-
cess in time. For simplicity, we focus here on homogeneous diffusion processes, since our
model falls into this class, but the concepts are generic.

A Markov process is well portrayed by its “infinitesimal behaviour”, i.e. the evolu-
tion for small time increments.
Suppose Xt is an homogeneous Markov process that takes values in R

n, we use the ab-
breviations Ex[ · ] := E[ · |X0 = x] and Px( · ) := P( · |X0 = x), so we can set the transition
kernel:

Qt(x;A) := Px(Xt ∈ A) =
∫︂
A
pt(x,y)dy.

We denote with C0(Rn,R) the space of continuous functions f : Rn → R such that
lim|x|→∞ f (x) = 0.

Definition 6 (Infinitesimal generator). We define the infinitesimal generator L of a
homogeneous Markov process Xt:

Lf (x) := lim
t→0

Ex

[︂
f (Xt)

]︂
− f (x)

t
(2.4)

for every function f ∈ C0(Rn,R) for which such limit exists. The set of such functions
is called the domain of the generator.
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It can be shown that the generator completely describes the law of the process.

Note. This relation is valid and can be extended also to the class of functions twice
continuously differentiable with compact support C2

0(Rn,R).

If Xt is a diffusion process that takes values in R
n, its diffusion and drift functions

are respectively σ : R × Rn → M(n × d,R) and b : R × Rn → R
n. Moreover, if Xt is

homogeneous b and σ are time independent and it can be proved that the infinitesimal
generator acts:

Lf (x) =
n∑︂
i=1

bi(x)
∂
∂xi

f (x) +
1
2

n∑︂
i,j=1

(σσT )i,j(x)
∂2

∂xi∂xj
f (x),

for every f ∈ C0(Rn,R).
Furthermore, we can define a family of operators {Pt | t ≥ 0}, called semigroup of the

process, that acts on the functions f ∈ C0(Rn,R) in the following way:

Ptf (x) := Ex[f (Xt)] =
∫︂
R
n
f (y)Qt(x;dy);

It is possible to show that Ptf ∈ C0(Rn,R) for every f .
The name “semigroup” comes from the fact that Pt ◦ Ps = Pt+s, i.e. Pt(Psf ) = Pt+sf

for every t, s ≥ 0 and f ∈ C0(Rn,R), as it follows from the Chapman-Kolmogorv equa-
tion. Note that

Lf = lim
t→0

1
t

(Ptf − f ) =
d
dt
Pt(f )|t=0,

for every f in the domain of L. More generally, for every f , Pt(f ) is still in the domain
of L and the following relation holds

d
dt
Ptf = L(Pt) = Pt(Lf ), ∀t ≥ 0.

Therefore, the generator L determines the semigroup.
We shall see later an useful criterion on stochastic differential equations, that em-

ploy the infinitesimal generator.

For a diffusion process, another way to gain sight into its behaviour is to look at the
backward-forward evolution of its transition density p(s,x; t,y).

Let Xt be a homogeneous diffusion process such that its transition distribution
Qt(x;dy) = Px

(︂
Xt ∈ dy

)︂
is absolutely continuous for every t ≥ 0, i.e. suppose that there

exists a measurable function qt : Rn ×Rn→R such that

Qt(x;dy) = qt(x,y)dy, ∀t > 0, ∀x,y ∈Rn.

Giving some regularity assumptions, it can be shown that the density qt(x,y) satisfy
the backward Kolmogorov equation, that is, for every fixed y ∈Rn,

∂
∂t
qt(x,y) = Lxqt(x,y), ∀t > 0, ∀x ∈Rn;
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here LX means that the infinitesimal generator is acting on the variable x of qt(x,y).
Furthermore, if we denote with L∗ the Hermitian adjoint operator of L, it holds that, for
every fixed x ∈Rn,

∂
∂t
qt(x,y) = L∗yqt(x,y), ∀t > 0, ∀y ∈Rn;

This is the so called Kolmogorov forward equations, which is also know as the Fokker-
Plank equation. It can be proved that for a generic homogeneous diffusion process Xt
the equation is:

∂
∂t
qt(x,y) = −

n∑︂
i=1

∂
∂yi

{︂
bi(y)qt(x,y)

}︂
+

1
2

n∑︂
i,j=1

∂2

∂yi∂yj

{︂
(σσT )i,j(y)qt(x,y)

}︂
;

where the initial conditions are given by qt0(x,y) = δ(x−y). The study of such equations
can give useful insight of the long time behaviour of a diffusion process.

2.1.2 The Wiener process

The Wiener process was proposed by Wiener as mathematical description of the Brow-
nian motion. It is the fundamental building block of the theory of stochastic differen-
tial equations, as we will show. The physical phenomenon of the Brownian motion
was investigated by the famous botanist Robert Brown in the nineteenth century, when
observing the motion of pollen grains suspended in water. Essentially, it characterizes
the erratic motion (i.e. diffusion) of a grain pollen on a water surface due to the fact
that is continually bombarded by water molecules. The modern formulation is quite
straight forward and we shall use both terms (Brownian motion and Wiener process)
to indicate it.

Definition 7 (1-dim Brownian motion). A standard 1-dim Wiener process is a con-
tinuous time continuous states Gaussian Markov process W = {Wt | t ≥ 0}, with (non-
overlapping) independent increments for which

• P(W0 = 0) = 1

• E[Wt] = 0 for all t ≥ 0

• Wt −Ws ∼N (0, t − s) for all 0 ≤ s ≤ t

The covariance is Cov[Wt ,Ws] = min{t, s}. Indeed, if 0 ≤ s ≤ t, then

Cov[Wt ,Ws] =E[(Wt −E[Wt])(Ws −E[Ws])]

=E[WtWs]

=E[(Wt −Ws +Ws)Ws]

=E[Wt −Ws]E[Ws] +E[W 2
s ] = 0 · 0 + s

Hence, it is not a wide-sense stationary process. However, it is homogeneous since its
transition probability is given by

p(s,x; t,y) =
1√︁

2π(t − s)
exp

⎧⎪⎪⎨⎪⎪⎩− (y − x)2

2(t − s)

⎫⎪⎪⎬⎪⎪⎭.
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Although the sample paths of Wiener processes are almost surely continuous functions
of time (the Kolmogorov continuity criterion is satisfied for a = 4, b = 1 and c = 3), they
are almost surely nowhere differentiable. The following lines give a proof of this fact.

Consider the partition of a bounded time interval [s, t] into sub-intervals [τ (n)
k , τ

(n)
k+1]

of equal length (t−s)
2n , where τk(n) = s+ k(t−s)

2n for k = 0,1, ...,2n − 1. It can be shown that

lim
n→∞

2n−1∑︂
k=0

(︃
W
τ

(n)
k+1

(ω)−W
τ

(n)
k

(ω)
)︃2

= t − s, a.s.;

Wτ (ω) is a realization of the standard Wiener processW = {Wτ |τ ∈ [s, t]} for any ω ∈Ω.
Hence,

t − s ≤ limsup
n→∞

max
0≤k≤2(n)−1

⃓⃓⃓⃓⃓
W
τ

(n)
k+1

(ω)−W
τ

(n)
k

(ω)
⃓⃓⃓⃓⃓

×
2n−1∑︂
k=0

⃓⃓⃓⃓⃓
W
τ

(n)
k+1

(ω)−W
τ

(n)
k

(ω)
⃓⃓⃓⃓⃓
.

From the sample path continuity, we have that

max
0≤k≤2(n)−1

⃓⃓⃓⃓⃓
W
τ

(n)
k+1

(ω)−W
τ

(n)
k

(ω)
⃓⃓⃓⃓⃓
→ 0, a.s. , as n→∞,

and therefore, we must have that:

2n−1∑︂
k=0

⃓⃓⃓⃓⃓
W
τ

(n)
k+1

(ω)−W
τ

(n)
k

(ω)
⃓⃓⃓⃓⃓
→∞, a.s. , as n→∞

As a consequence, the sample paths do, almost surely, not have bounded variation on
[s, t] and cannot be differentiated.

The standard Wiener process is a diffusion process with drift and diffusion coeffi-
cient b(s,x) = 0 and σ (s,x) = 1:

b(s,x) = lim
t↓s

E[y]− x
t − s

= 0

σ2(s,x) = lim
t↓s

E[y2]− 2E[y]x+ x2

t − s
= lim

t↓s

{︃ t − s
t − s

+ 0
}︃

= 1

Closely related to the Brownian motion is the white noise, as we show in the follow-
ing.

Let Xt be a (wide-sense) stationary process, i.e. E[Xt] = m ∈ R, Var[Xt] = c(0) and
Cov[Xt ,Xs] = c(t − s) for some function c : R+→R.
We define for Xt the power spectral density as the Fourier transform of its covariance, that
is:

c̃(ξ) =
∫︂ ∞
−∞
c(t)e−iξt dt,
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where ξ = 2πf and c(t) ≡ c(t − 0), f indicates the frequency.
We can recover the covariance of Xt as the inverse transform of the spectral den-

sity: c(t) = 1
2π

∫︁∞
−∞ c̃(ξ)e−iξt dξ. So, the variance of the process can be interpreted as the

average power (or energy):

Var[Xt] = c(0) =
1

2π

∫︂ ∞
−∞
c̃(ξ)dξ

Definition 8 (White noise). A white noise wt is a zero-mean wide-sense stationary
process with constant non-zero spectral density c̃(ξ) = c̃(0) for all ξ ∈R.

The white noise has flat spectral density, all “frequencies” contribute equally in the
correlation function. The covariance of the white noise Cov[wt ,xs] = E[wtws] = c(t − s)
satisfy c(t) = c̃(0)δ(t) for all t ∈R+.
So, without loss of generality, if we assume that c̃(0) = 1, it can be shown that Gaussian
white noise correspond to the following limit process

wt = lim
h→0

Wt+h −Wt

h
,

where Wt is a standard Wiener process. To see this, suppose h > 0, fix t > 0, and set

φh(s) : = E

⎡⎢⎢⎢⎢⎣(︄Wt+h −Wt

h

)︄(︄
Ws+h −Ws

h

)︄⎤⎥⎥⎥⎥⎦
=

1
h2 (E [Wt+hWs+h]−E [Wt+hWs]−E [WtWs+h] +E [WtWs])

=
1
h2 (min{t + h,s+ h} −min{t + h,s} −min{t, s+ h}+ min{t, s})

Then, φh(s) → 0 as h → 0 for each s ≠ t. But φh ≥ 0 and
∫︁
φh(s)ds = 1; and so

presumably φh(s) → δ0(s − t) in some sense, as h → 0. In addition, we expect that
φh(s) → E[wtws]. These heuristic considerations, suggest the definition of the white
noise.

Hence the white noise can be seen as the “derivative” of a Wiener process. However,
the sample paths of a Wiener process are not differentiable anywhere. We will see how
to interpret this in the next section.

2.1.3 Diffusion processes as solution to stochastic differential equations

Diffusion processes can be described by solutions of Itô stochastic differential equa-
tions (SDE). Generally speaking, stochastic differential equations describe processes
for which a variable x following the rule a(t,x) might be subject to some random envi-
ronmental effect, i.e. noise.

The solution to an ordinary differential equation (ODE) of the form

d
dt
x(t) = a(t,x),
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can be written in its symbolic differential form or as an integral equation, which are
respectively:

dx = a(t,x)dt

x(t) = x(t0) +
∫︂ t

t0

a(s,x(s))ds;

x(t; t0,x0) denotes the solution satisfying the initial condition x(t0) = x0. For some reg-
ularity conditions on a(t,x), this solution is unique, which means that the future is
completely defined by the present given the initial condition.

In a similar manner, we want to extend this to deal with the presence of an intrinsic
random component ξt, which represent the environmental noise, in such a way that we
can find solutions to equations of the form:

d
dt
x(t) = a(t,x) + “b(t,x)ξ ′′t ;

for suitable functions a(t,x) and b(t,x).
We want to associate the noise ξt to some random process and expect it has the prop-
erties:

• zero mean: E[ξt] = 0 for all t;

• uncorrelation: E[ξtξs] = 0 for every t ≠ s;

• (wide-sense) stationarity.

One can easily check that the white noise wt satisfies all these.
Therefore, the symbolic form of a stochastic differential equation can be written as
follows:

dXt = α(t,x)dt + β(t,x)wtdt (2.5)

for suitable functions α(t,x),β(t,x). It defines a continuous time continuous space
Markov process Xt, as one can prove.

The next step is to connect this to the standard Wiener process Wt, and read wtdt
as the increment dWt. Roughly speaking, we want the process Xt to be connected with
Wt in such a way that if Xt = x, then the increment dXt = Xt+dt −Xt during the next
period of time dt is

dXt ∼ α(t,x)dt + β(t,x)dWt .

Indeed, if this relation holds, one can prove that

E[dXt − (α(t,x)dt + β(t,x)dWt) |Xt = x] =o(dt),

E[dXt − (α(t,x)dt + β(t,x)dWt)
2 |Xt = x] =o(dt);

where o(dt) approach zero as dt, and therefore, that Xt defines a diffusion process in
the sense of the definitions (2.1) to (2.3).
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The interpretation of the symbolic expressions (2.5) is the integral equation along
a sample path

Xt(ω) = Xt0(ω) +
∫︂ t

t0

α(s,Xs(ω))ds+
∫︂ t

t0

β(s,Xs(ω))dWs(ω), (2.6)

given some probability space (Ω,U ,P); where we interpreted wtdt as dWt

However, the Wiener processWt is (almost surely) nowhere differentiable such that
the white noise process wt does not really exist as a conventional function of t. As a
result, the second integral in (2.6) cannot be understood as an ordinary (Riemann or
Lebesgue) integral. Worse, it is not a Riemann-Stieltjes integral since the continuous
sample paths of a Wiener process are not of bounded variation for each sample path.
A way to read (2.6) is given by the Itô’s stochastic integral, which we will explain in the
next section.

2.1.4 Itô Stochastic Calculus

Consider a probability space (Ω,U ,P), a Wiener processW = {Wt | t ≥ 0} and an increas-
ing family {Ut , t ≥ 0} of sub-σ -algebras of U such that Wt is a Ut-measurable for each
t ≥ 0 and with

E[Wt |U0] = 0 and E[Wt −Ws |Us] = 0 a.s. ,

for 0 ≤ s ≤ t. Consider the integral expression of the random function f : T ×Ω→R on
the unit time interval:

I[f ](ω) :=
∫︂ 1

0
f (s,w)dWs(ω). (2.7)

Step 1. If the function f is a nonrandom step function, i.e. f (t,ω) = fj on tj ≤ t < tj+1
for j = 1,2, ...,n− 1 with 0 = t1 < t2 < ... < tn = 1, then

I[f ](ω) =
n−1∑︂
j=1

fj
(︂
Wtj+1

(ω)−Wtj

)︂
, a.s. . (2.8)

Remark. This integral is a random variable with zero mean as it is a sum of random
variables with zero mean.

Furthermore, we have that:

E[I[f ](ω)] =
n−1∑︂
j=1

f 2
j (tj+1 − tj ), (2.9)

by the properties of the Brownian motion.

Step 2. If the function f is a random step function, that is f (t,ω) = fj(ω) on tj ≤ t < tj
for j = 1,2, ...,n − 1 with t1 < t2 < ... < tn is Ut-measurable and mean square integrable
over Ω, that is E[f 2

j ] <∞ for j = 1,2, ...,n. The stochastic integral is defined as follows

I[f ](ω) =
n−1∑︂
j=1

fj(ω)
(︂
Wtj+1

(ω)−Wtj

)︂
, w.p. 1. (2.10)
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Then, for any a,b ∈R and any random step functions f ,g such that fj , gj on tj ≤ t < tj+1
for j = 1,2, ...,n − 1 with 0 = t1 < t2 < ... < tn = 1 is Utj -measurable and mean square
integrable, the stochastic integral (2.10) satisfies the properties a.s.:

I[f ] is U1-measurable, (2.11)

E[I[f ]] = 0, (2.12)

E[I2[f ]] =
∑︂
j

E[f 2
j ](tj+1 − tj ) (2.13)

I[af + bg] = aI[f ] + bI[g], (2.14)

Step 3. If f is a continuous function such that f (t, · ) is Ut-measurable and mean
square integrable, then we define the stochastic integral I[f ] as the limit of integrals
I[f (n)] of random step functions f (n) converging to f , with the following convergence
description. We characterize the limit of the following finite sums:

I[f (n)](ω) =
n−1∑︂
j=1

f
(︃
t
(n)
j ,ω

)︃[︂
Wtj+1

(ω)−Wtj (ω)
]︂
, a.s. ;

where f (n)(t,ω) = f
(︃
t
(n)
j ,ω

)︃
on tj ≤ t ≤ tj+1 for j = 1,2, ...,n−1 with t1 < t2 < ... < tn. From

the property (2.13) it follows:

E

[︃
I2

[︂
f (n)

]︂]︃
=
n−1∑︂
j=1

E

[︄
f 2

(︃
t
(n)
j , ·

)︃]︄
(tj+1 − tj ).

This quantity converges to the Riemann integral
∫︁ 1

0 E[f 2(s, · )]ds for n→ ∞. This re-
sult, along with the well-behaved mean square property of the Wiener process, i.e.
E[(Wt −Ws)2] = t − s, suggests defining the stochastic integral in terms of mean square
convergence.

Theorem 2 (Itô stochastic integral). The Itô (stochastic) integral I[f ] of a function
f : T ×Ω→ R, is the (unique) mean square limit of sequences I[f (n)] for any sequence of
random step functions f (n) converging to f (in mean square):

I[f ](ω) = m.s. lim
n→∞

n−1∑︂
j=1

f
(︃
t
(n)
j ,ω

)︃[︂
Wtj+1

(ω)−Wtj (ω)
]︂
, a.s. ;

f (n) is converges to f in mean square if E
[︃∫︁ t
s

(︂
f (n)(τ,ω)− f (τ,ω))2

)︂
dτ

]︃
→ 0, as n→∞.

The time-dependent Itô integral

Xt(ω) =
∫︂ t

t0

f (s,ω)dWs(ω)

is a random variable defined on any interval [t0, t], and it Ut-measurable and mean
square integrable for every t ≥ 0. Moreover, properties (2.11) to (2.14) still hold.
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Remark. Since we chose f to be mean square integrable, one can prove that I[f ] has a
version with continuous samples path almost surely, which leads us to consider I[f ]
satisfying sample continuity.

As the Riemann and the Riemann-Stieltjes integrals, the Itô integral satisfies con-
ventional properties such as the linearity property and the additivity property. How-
ever, it has also the following unusual property.

Example 3. Let Wt be the standard Brownian motion, then∫︂ t

0
Ws(ω)dWs(ω) =

1
2
W 2
t (ω)− 1

2
t, a.s. .

This follows from the fact that∑︂
j

Wtj (Wtj+1
−Wtj ) =

1
2
W 2
t −

1
2

∑︂
j

(Wtj+1
−Wtj )

2,

for every choice of tj < t.

Indeed, another famous interpretation of
∫︁
f (s,w)dWs(ω) is the Stratonovich inte-

gral. In Itô, the integrand f is approximated in the left end point tj in every interval

[tj , tj+1]. An alternative option is to choose the middle point tj =
tj+tj+1

2 , which charac-
terizes the Stratonovich integral. The two definitions lead to different results in various
cases and are useful in diverse contexts. The Stratonovich integral, for example, obeys
the usual chain rule when performing change of variables, so can be easier to use to
perform some calculations, while the Itô integral does not, as we shall se in the next
section.

Stochastic differentials that are interpreted as Itô stochastic integrals do not follow
the chain rule of classical calculus. Roughly speaking, when differentiating, an addi-
tional term is appearing due to the fact that dW 2

t is equal to dt in the mean square
sense.

Let Xt be a general diffusion process and consider Y = {Yt = U (t,Xt) | t ≥ 0} with
U (t,x) having continuous second order partial derivatives. If Xt were continuously
differentiable, the chain rule of classical calculus would give the following expression:

dYt =
∂U
∂t
dt +

∂U
∂x

dXt

This follows from a Taylor expansion ofU . IfXt is a process such that dXt = f (t,Xt)dWt

for some function f , we get,

dYt =

⎧⎪⎨⎪⎩∂U∂t +
1
2
f 2∂

2U

∂x2

⎫⎪⎬⎪⎭dt +
∂U
∂x

dXt;

where the equality is interpreted in the mean square sense. The additional term is due
to the fact that E[dX2

t ] = E[f 2]dt gives rise to an additional term of the order in ∆t of
the Taylor expansion for U :

∆Yt =
{︄
∂U
∂t

∆t +
∂U
∂x

∆x

}︄
+

⎧⎪⎨⎪⎩∂2U

∂t2
∆t2 + 2

∂2U
∂t∂x

∆t∆x+
∂2U

∂x2 ∆x2
⎫⎪⎬⎪⎭+ ...
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Chapter 2. Mathematical background

Theorem 3 (Itô Formula). Consider the following general stochastic differential:

Xt(ω)−Xs(ω) =
∫︂ t

s
α(u,Xu)du +

∫︂ t

s
β(u,Xu)dWu(ω).

Let Yt = U (t,Xt), with U (t,x) having continuous partial derivatives in t and up to second
order in x. Then the following stochastic chain rule (Itô formula) holds :

Yt −Ys =
∫︂ t

s

⎧⎪⎨⎪⎩∂U∂t ⃓⃓⃓⃓
(u,Xu)

+
∂α
∂u

∂U
∂x

⃓⃓⃓⃓
(u,Xu)

+
1
2
∂2U

∂x2

⃓⃓⃓⃓
(u,Xu)

⎫⎪⎬⎪⎭du +
∫︂ t

s

∂U
∂x

⃓⃓⃓⃓
(u,Xu)

dXu

Now that we gave an precise interpretation to the expression (2.6), we we give the
standard definition of stochastic differential equation.

Let Wt be a standard d-dimensional Brownian motion and Z a random variable
independent of the process Wt. Define Ft := U ({Ws |0 ≤ s ≤ t},Z) with t ≥ 0 the σ -
algebra generated by Z and all the history of the Wiener process up to (and including)
time t.

Definition 9 (Itô Stochastic differential equations). Assume T > 0 and

b : [0,T ]×Rn→R
n, σ : [0,T ]×Rn→M(n× d,R)

are given functions. We say that a stochastic process Xt is a strong solution of the Itô
stochastic differential equation⎧⎪⎪⎨⎪⎪⎩dXt = b(t,Xt)dt +σ (t,Xt)dWt

X0 = z
(2.15)

for 0 ≤ t ≤ T provided for all t ≥ 0:

1. Xt is Ft-measurable,

2. E

[︃∫︁ T
0

⃓⃓⃓
bi(s,Xs)

⃓⃓⃓
ds

]︃
<∞, for all i = 1, ...,n;

3. E

[︃∫︁ T
0 σ2

i,j(s,Xs)ds
]︃
<∞, for all i = 1, ...,n and j = 1, ...,d;

4. for all times 0 ≤ t ≤ T ,

Xt = X0 +
∫︂ t

0
b(s,Xs)ds+

∫︂ t

0
σ (s,Xs)dWs

Remark. In view of previous assertions, Xt(ω) can be always assumed to have sample
continuous paths almost surely.

In the following we recall two famous results about stochastic differential equations
we use in the study of our models.
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Theorem 4. Let T > 0, {Wt |0 ≤ t ≤ T } a standard Wiener process and let b : [0,T ]×Rn→
R
n and σ : [0,T ]×Rn→M(n× d,R) be measurable functions such that:

⃓⃓⃓
b(t,x)

⃓⃓⃓2
+

d∑︂
j=1

⃓⃓⃓
σj(t,x)

⃓⃓⃓2 ≤ L(1 +|x|2); x ∈R, t ∈ [0,T ]

⃓⃓⃓
b(t,x)−b(t,y)

⃓⃓⃓
+

d∑︂
j=1

⃓⃓⃓
σj(t,x)− σj(t,y)

⃓⃓⃓
≤D

⃓⃓⃓
x− y

⃓⃓⃓
x,y ∈R, t ∈ [0,T ]

for some constants L,D. Then,

1. For every σ -algebra {Ft |0 ≤ t ≤ T } generated by the history of the Brownian motion
and fixed (square-integrable) random variable Z independent of the processes Wt−Wt0 ,
there exists a solution Xt of the stochastic differential equation

dXt = b(t,Xt)dt +σ (t,Xt)dWt; 0 ≤ t ≤ T , X0 = Z

which is an almost surely continuous stochastic process and is unique w.p. 1.

2. This solution is a Markov process whose transition probability density p(s,x; t,y) is
defined for t > s by the relation p(s,x; t,y) = P(Xt = y |Xs = x);

Moreover,

3. The transition probability density p(s,x; t,y) satisfies a generalized version of limits
(2.1) to (2.3), and define a diffusion process with drift and diffusion constants respec-
tively b(t,x) and σ2(t,x).

The following result is useful to prove the existence of solution to stochastic differ-
ential equations. In the study of our model we use the following theorem to prove the
well posedness of system (1.1).

Theorem 5. Suppose that conditions of the previous theorem are valid in every cylinder
I ×UR and, moreover, that there exists a non-negative function V ∈ C2

0 (R ×Rn,R) on the
domain of the infinitesimal generator L such that for some constant c > 0

LV (t,x) ≤ cV (t,x), for every t ∈R, x ∈Rn,

VR = inf
|x|>R

V (t,x)→∞, as R→∞

then part 1, 2 and 3 of the previous theorem hold true.

2.2. Stochastic mean-field dynamics and propagation of chaos

We give in this section a brief view on the stochastic mean-field dynamics perceived as
the random evolution of a system comprised byN interacting components, invariant in
law for permutation of components and such that the contribution of each component
to the evolution of any other is of order 1

N . The permutation invariance clearly does
not allow any freedom in the choice of the geometry of the interactions, however this is
the feature that makes these models analytically treatable. Applications of such theory
span in many field including social and life sciences.
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Chapter 2. Mathematical background

2.2.1 A first example

First we give a result to better understand the general setting.

Consider a system of N interacting diffusions on R
d solving the following system

of SDEs:

dXi,Nt =
1
N

N∑︂
j=1

b
(︂
Xi,Nt ,Xj,N

)︂
dt + dW i

t i = 1, ...,N

where b : Rd ×Rd → R is a Lipschitz function,
(︂
W i
t

)︂
i≥1

are independent Brownian mo-

tions, and we assumed that
(︂
Xi,N0

)︂
i=1,...,N

is a family of i.i.d. square integrable random
variables; so that that the above stochastic differential equation is well posed, by the
fundamental theorem [13].
Consider the single component Xi,N , assume Xi,N0 = Xi0 does not depend on the specific
number of particles N and “believe in laws of large numbers” as N →∞. It is natural

to guess that Xi,N converges, in some sense, to a limit process X
i

solving:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dX

i
t =

{︄∫︂
b
(︃
X
i
t , y

)︃
qt(dy)

}︄
dt + dW i

t

X
i
0 = Xi0

(2.16)

where qt( · ) denotes Law(X
i
t).

Once the nontrivial problem of well-posedness of (2.16) is settled, one aims at showing
that, for any given T > 0 and for any given m ≥ 1:(︃

X1,N
[0,T ],X

2,N
[0,T ], ...,X

m,N
[0,T ]

)︃
−→

(︃
X

1
[0,T ],X

2
[0,T ], ...,X

m
[0,T ]

)︃
in distribution, as N → ∞; indicating with X[0,T ] ∈ C([0,T ]), the whole trajectory up

to time T . Note that the components of the process (X
1
[0,T ],X

2
[0,T ], ...,X

m
[0,T ]) are inde-

pendent. This means that independence at time 0 propagates in time, at least in the
macroscopic limit N →∞. This property is referred to as propagation of chaos.

Propagation of chaos can be actually rephrased as a Law of Large numbers. To this
aim, given a generic vector x = (x1,x2, ...,xN ), denote with ρ(x;dy) := 1

N

∑︁N
i=1 δxi (dy) the

related empirical measure. The propagation of chaos property given above, is equiva-
lent to the fact that the sequence of empirical measures ρ(XN[0,T ]) converge in distribu-
tion to Q ∈ P (C([0,T ])); where P (C([0,T ])) denotes the set of probabilities on C([0,T ]),
provided with the weak topology of weak convergence and Q is the law of the solution
of (2.16). This is established in the following result.

Proposition 6. Let (Xi,N : N ≥ 1,1 ≤ i ≤ N ) be a triangular array of random vari-
ables taking values in a topological space E, such that for each N the law of (Xi,N )1≤i≤N is
symmetric (i.e. invariant by permutation of components). Moreover let (X

i
)i≥1 be a i.i.d.

sequence of E-valued random variables. Then the following statements are equivalent:

i) for every m ≤ 1

(X1,N ,X2,N , ...,Xm,N ) −→ (X
1
,X

2
, ...,X

m
)

in distribution as N →∞
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ii) the sequence of empirical measures ρ(XN[0,T ]) converges in distribution toQ := Law(X
1
)

as N →∞.

2.2.2 Propagation of chaos for interacting systems

Now we extend this result to a wide class of R
d-valued interacting dynamics, which

includes the relaxed model above. Systems given by (1.1) and (1.2), fall into this very
general setting, however here the main aim is to introduce quenched disorder, which
accounts for inhomogeneities in the system and jumps in the dynamics, which allows to
include process with discrete state space. The dynamics is determined by the following
characteristics.

• “Local” parameters (hi)
N
i=1, drawn independently from a distribution µ on R

d′

with compact support.

• A drift coefficient

b(xi ,hi ,ρN (x,h)) : Rd ×Rd
′
×P (Rd ×Rd

′
) −→R

d ,

where

ρN (x,h) =
1
N

N∑︂
i=1

δ(xi ,hi ).

• A diffusion coefficient

σ (xi ,hi ,ρN (x,h)) : Rd ×Rd
′
×P (Rd ×Rd

′
) −→R

d×n

where n is the dimension of the Brownian motion.

• A jump rate

λ(xi ,hi ,ρN (x,h)) : Rd ×Rd
′
×P (Rd ×Rd

′
) −→ [0,+∞),

together with

• a distribution f (xi ,hi ,ρN (x,h);v)α(dv) with

f : Rd ×Rd
′
×P (Rd ×Rd

′
)× [0,1] −→R

d ;

α(dv) is a probability measure on [0,1].

The microscopic model. The dynamics could be introduce also via the infinitesimal
generator and the semigroup, but it is convenient to use the language of stochastic
differential equations. Let (W i)i≥1 be a i.i.d. sequence of the n-dimensional Brownian
motions; (N i(dt,du,dv))i≥1 be i.i.d. Poisson random measures on [0,+∞)×[0,+∞)×[0,1]
with characteristic measure dt⊗du⊗α(dv). The microscopic model is given as solution
of the SDEs:

Xi,Nt =Xi0 +
∫︂ t

0
b(Xi,Ns ,hi ,ρ(XNs ,h))ds+

∫︂ t

0
σ (Xi,Ns ,hi ;ρ(XNs ,h))dW i

s

+
∫︂

[0,t)×[0,+∞)×[0,1]
f (Xi,Ns− ,hi ;ρN (Xi,Ns− ,h),α)1[0,λ(Xi,Ns− ,hi ;ρN (XN

s− ,h))](u)N i(ds,du,dv);

(2.17)

it will be assumed that the inital conditions Xi0 are i.i.d., square integrable, indepen-
dent of both the local parameters (hi) and of the driving noises (W i ,N i).
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The macroscopic limit. At heurisitc level it is not hard to identify the limit of a give
component Xi,N of (2.17) subject to a local field h. We omit the apex i on the process
and of the driving noises

Xt(h) = X
i
0 +

∫︂ t

0
b(Xs(h),h, rs)ds+

∫︂ t

0
σ (Xs(h),h, rs)dW

i
s

+
∫︂

[0,t)×[0,+∞)×[0,1]
f (Xs−(h),h, rs,α)1[0,λ(Xs− (h),h,rs)]

(u)N i(ds,du,dv);
(2.18)

where rs = Law(Xs(h))⊗ µ(dh). We indicate by X
i

the solution to (2.18) with X0 = X
i
0

and driving noises W i ,N i .

Well posedness conditions We now give conditions that guarantee well posedness
of (2.17) and (2.18). Weaker conditions exists but the two Lipschitz conditions we pro-
vide allow a reasonable economy of notations. It is useful to work with the following
probability measure:

P 1(Rd) :=
{︄
ν ∈ P (Rd) |

∫︂
|x|ν(dx) <∞

}︄
which is provide with the Wasserstein metric:

d(ν,ν′) := inf
{︄∫︂ ⃓⃓⃓

x − y
⃓⃓⃓
Π(dx,dy) |Π has marginals ν and ν′

}︄
.

L1: The function b(x,h, r) and σ (x,h, r) defined in Rd×Rd′×P (Rd×Rd′ ) are continuous,
and globally Lipschitz in (x,r) uniformly in h

L2: We assume f : Rd×Rd′×P (Rd×Rd′ )×[0,1] −→R
d and λ : Rd×Rd′×P (Rd×Rd′ ) −→

[0,+∞) are continuous and obey the following condition:∫︂ ⃓⃓⃓
f (x,h;r;v)1[0,λ(x,h;r)](u)− f (y,h;r ′;v)1[0,λ(x,h;r ′)](u)

⃓⃓⃓
duα(dv) ≤ L

(︂
x− y

⃓⃓⃓
+ d(r, r ′)

)︂
for all x,y, r, r ′ ,h.

Remark. The above assumptions imply that when one replaces r by the empirical
measure ρN (x,h), recovers a Lipschitz condition in x. For instance, the function
b(xi ,hi ,ρN (x,h)) is globally Lipschitz in x uniformly in h.

Theorem 7 (Propagation of chaos). Under conditions L1 and L2 both the system

(2.17) and (2.18) admit a unique strong solution. Moreover, for i ≥ 1 denote by X
i
(hi) the

solution of (2.18) with the local parameter hi and the same initial condition Xi0 of (2.17).
Then for each i and T > 0:

lim
N→∞

∫︂
E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

⃓⃓⃓⃓⃓
Xi,Nt −Xit(hi)

⃓⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦µ⊗N (dh) = 0

where µ⊗N is the N -fold product of µ.
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We have seen in proposition (6), that propagation of chaos is equivalent to a Law of
Large Numbers:

ρ(XN ) =
1
N

N∑︂
i=1

δXi,N −→Q

as N → ∞, where Q is the law of the macroscopic dynamics. It is therefore natural
to consider a corresponding Central Limit Theorem, which describes the fluctuations
around the limit. In particular, one can consider the normalized distribution-valued
process

ΦN
t :=

√
N

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N

N∑︂
i=1

δXi,Nt − qt

⎤⎥⎥⎥⎥⎥⎥⎦ ;

where qt is the marginal probability of Q at time t and prove, with remarkable gener-
ality, that for any bounded time-interval [0,T ], the process ΦN converges quickly to a
distribution valued Gaussian process.

2.3. Limit cycle from a Hopf bifurcation

Here we recall a famous result in dynamical system which it is useful in the study of
our model. The aim is to provide some tools that allow us to justify the presence of
periodic behaviours for a diffusion process.

Consider a generic non-linear dynamical system of differential equations, depend-
ing on a parameter k ∈R:

ẋ = f(x, k),

with f ∈ C1(E), where E is an open subset of Rn. We focus on changes of the param-
eter k, if the qualitative behavior of the system remains the same, we say that there is
structurally stability. A vector field which is not structurally stable, it belongs to the
bifurcation set in C1(E). A bifurcation occurs when a small smooth change made to the
parameter values causes a sudden “qualitative” or topological change in the behavior
of the system. A value ˜︁k of the parameter k for which the vector field f(x,˜︁k) is not
structurally stable is called a bifurcation value. We are interested in a particular type
of these phenomena.

The analysis around non-hyperbolic critical points of a vector field is relevant to
the notion of Hopf bifurcations. These occur when a periodic solution or a limit cycle
branches-out around the equilibrium point x0, as the parameter k changes to cross the
threshold˜︁k.

Note. When a equilibrium point locally changes its stability, as the parameter varies,
from stable to unstable or vice-versa, the phase portrait far from it will be qualita-
tively unaffected: if the non-linearity makes the far flow contracting, then orbits will
still be coming in (or out) and we expect a periodic orbit to appear where the near and
far flow find a balance.

One can detect Hopf bifurcations simply by looking whether a pair of complex
eigenvalues of the linearized system, given by the Jacobian matrix Df(x0,˜︁k), around the
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Chapter 2. Mathematical background

equilibrium point x0, crosses the imaginary axis at k =˜︁k.

Theorem 8 (Hopf). Suppose that ẋ = f(x, k) defines a C4-system, where x ∈ R
n and

k ∈R, with a critical point x0 for k =˜︁k. Moreover, suppose that Df
(︂
x0,˜︁k)︂ has a simple pair

of pure imaginary eigenvalues and no other eigenvalues with zero real part. Then there is a
smooth curve of equilibrium points x(k) with x(˜︁k) = x0 and the eigenvalues λ(k) and λ(k),
which are pure imaginary at k =˜︁k, vary smoothly with k. Furthermore, if

d
dk

[︃
Re

(︂
λ(k)

)︂]︃
k=˜︁k ≠ 0, (2.19)

then there is a unique two-dimensional center manifold passing through the point
(︂
x0,˜︁k)︂

and a smooth transformation of coordinates such that the system on the center manifold is
transformed into the normal form

ẋ = −y + ax(x2 + y2)− by(x2 + y2) +O(|x|4)

ẋ = x+ bx(x2 + y2) + ay(x2 + y2) +O(|x|4)
(2.20)

in a neighborhood of the origin which, for a ≠ 0, has a weak focus of multiplicity one.

For a function f ∈ Ck(E), where E is an open subset of Rn, we define

∥f∥k = sup
x∈E

⃓⃓⃓
f(x)

⃓⃓⃓
+ sup

x∈E

⃦⃦⃦
Df(x)

⃦⃦⃦
+ ...+ sup

x∈E

⃦⃦⃦⃦
Dkf(x)

⃦⃦⃦⃦
where for the norms ∥ ·∥ on the right-hand side of this equation we use⃦⃦⃦⃦

Dkf(x)
⃦⃦⃦⃦

= max

⃓⃓⃓⃓⃓
⃓ ∂kf(x)
∂xj1 ...∂xjk

⃓⃓⃓⃓⃓
⃓

with j1, ..., jk = 1, ...,n.

Theorem 9. If the origin is a multiple focus of multiplicitym of the analytic system (2.20)
then for k ≤ 2m+ 1

1. there is a δ > 0 and an ϵ > 0 such that any system ϵ-close to (2.20) in the Ck-norm,
defined above, has at most m limit cycles in a neighbourhood Nδ(0) and

2. for any δ > 0 and an ϵ > 0 there is an analytic system which is ϵ-close to (2.20) in the
Ck-norm and has exactly m simple limit cycles in Nδ(0) .

2.4. An application: The Fitzhugh-Nagumo model for neu-

rons

The FitzHugh-Nagumo model describes (qualitatively rather than quantitatively) the
response of an excitable neuron membrane to external current stimuli. It was designed
to isolate conceptually the essentially mathematical properties of excitation and prop-
agation from the electrochemical properties of sodium and potassium ion flow, but it
has many more apllications in various fields of science.
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The FitzHugh-Nagumo model comes from a reduction of more realistic and com-
plex models (e.g. the Hodgkin-Huxley model) and describes the evolution of the mem-
brane potential xt through the following differential equation⎧⎪⎪⎪⎨⎪⎪⎪⎩ẋt = xt −

1
3
x3
t + yt + Iextt

ẏt = ϵ(a+ bxt −γyt)
(2.21)

where:

• yt is a recovery variable obtained by reduction of other variables

• Iextt is the input current, assumed to be random and stationary. Without loss of
generality, choosing a properly, we can assume Iextt has zero mean.

• b is the interaction strength between x and y, γ ≥ 0 is a dissipation parameter and
a is a kinetic parameter related with the input current and synaptic conductance.

The parameter ϵ can be used to separate the time scales of the evolution of the
two variables. We assume the input current takes the form a scaled Brownian motion:
dIextt = σdWt.

If we analyze the system in absence of randomness, i.e. consider in the equations no
input current (σ = 0) and set b = −1,γ = 0 to make the analysis simpler, then (2.21) has
a unique equilibrium point in (a,−a+ a3

3 ), which is globally stable for |a| < 1, resulting
in small amplitude trajectory dynamics.
The system display a Hopf bifurcation at |a| = 1 and a stable periodic orbit emerges for
|a| > 1. This means that the system can be excited by the input current, producing, at
least for appropriate choice of the parameters, rapid variations of the potential (spikes)
which occur periodically.

There are many ways to make several neurons interact with each others in a net-
work, even within the mean-field scheme, depending of how we model synaptic con-
nections. The simplest that correspond to electrical synapses, leads to the following
system.

We denote with Xi,N the membrane potential of the i-th neuron. Assigning the
local parameter hi , that can be interpreted as the macroscopic location of the neuron, or
its type, we derive the following stochastic differential system of equations:

dXi,Nt =
(︄
Xi,Nt − 1

3

(︂
Xi,Nt

)︂3
+Y i,Nt

)︄
dt

+
1
N

N∑︂
j=1

J(hi ,hj )
(︃
Xi,Nt −Xj,Nt

)︃
dt + σdW i

t

dY i,Nt =ϵ(hi)
[︂
a(hi) + b(hi)X

i,N
t −γ(hi)Y

i,N
t

]︂
(2.22)

where the coupling parameters J(hi ,hj ) are introduced. These quantities tune the inter-
action between neurons. One can introduce a delay dynamics to enririch the dynamic.
So, denoting the delay with τ in the transmission of information between different
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neurons, we have:

dXi,Nt =
(︄
Xi,Nt − 1

3

(︂
Xi,Nt

)︂3
+Y i,Nt

)︄
dt

+
1
N

N∑︂
j=1

J(hi ,hj )
(︃
Xi,Nt −Xj,Nt−τ(hi ,hj )

)︃
dt + σdW i

t

dY i,Nt =ϵ(hi)
[︂
a(hi) + b(hi)X

i,N
t −γ(hi)Y

i,N
t

]︂
(2.23)

However the delay makes a bit more difficult to prove the well posedness of the sys-
tem, for both the model and its macroscopic limit, nevertheless one can prove that, as
N → ∞, the propagation of chaos carries through, giving the following macroscopic
description:

dXt(h) =
(︄
Xt(h)− 1

3
X

3
t (h) +Y t(h)

)︄
dt

+
(︄∫︂

J(h,h′)(Xt(h)− y)qt−τ(h,h′)(dy;h′)µ(dh′)
)︄
dt + σdWt ,

dY t(h) =ϵ(h)
(︂
a(h) + b(h)Xt(h)−γ(h)Y t(h)

)︂
dt.

(2.24)

Here qt(dx;h) denotes the law of Xt(h).
Not much is known at this level of generality, so we consider the simplest, homoge-

neous case in which h is constant, γ = 0 and b = −1. The following SDEs describe the
evolution of the state of a generic particle of the system, when N →∞:

dXt =
[︄
Xt −

1
3
X

3
t +Y t + J

(︂
Xt −E[Xt−τ ]

)︂]︄
dt + σdWt

dY t =ϵ
(︂
a+Xt

)︂
dt

(2.25)

here E[ · ] is the conditional expectation of the process, given the initial conditions.

As a further simplification, we let the noise go to zero, in both the equation and the
initial condition. We obtain the deterministic system with delay⎧⎪⎪⎪⎨⎪⎪⎪⎩ẋt = xt −

1
3
x3
t + yt + J(xt − xt−τ )

ẏt = ϵ(a+ xt)
(2.26)

This system has been extensively studied in [9]. Here we assume J ≥ 0.

• For every fixed a ∈R, the point (a,−a+ a3

3 ) is still the unique fixed point of system
(2.26). It is stable for |a| >

√
1 + 2J and unstable for |a| < 1, no matter what τ is.

• For 1 < |a| <
√

1 + 2J loss of stability via a Hopf bifurcation can be obtained by
increasing τ : interaction and transmission delay may produce oscillations even if
single neurons are in the stability region.
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In this setting the noise may play a role in exciting the neuronal network. Consider
the simplified system (2.25) and remove the delay. We obtain:

dXt =
[︄
Xt −

1
3
X3
t +Yt + J (Xt −E[Xt])

]︄
dt + σdWt

dYt = ϵ(a−Xt)dt
(2.27)

Some indications on the behavior of this system, confirmed by numerical simulations,
are obtained via the following heuristic argument. A similar approach can be found
also in [3].

Using the Ito formula, write the moments equations of (2.27):

dX
p
t =

⎧⎪⎨⎪⎩[︄Xt − 1
3
X3
t +Yt + J (Xt −E[Xt])

]︄
pX

p−1
t + σ2p(p − 1)Xp−2

t

⎫⎪⎬⎪⎭dt + σpXp−1
t dWt

dY
p
t = ϵ(a−Xt)pY

p−1
t dt

If we pretend the two variables (Xt ,Yt) describe Gaussian processes, one can de-
rive a closed system for the mean functions

(︂
µX(t),µY (t)

)︂
and the covariance matrix(︂

Cov(Xt ,Xt),Cov(Xt ,Yt),Cov(Yt ,Yt)
)︂
. The solutions to this system fully describe two

Gaussian processes (˜︁Xt ,˜︁Yt) which can be shown to be a good approximation of the so-
lution to (2.27) for σ small.
Therefore, one can focus on the study of the evolution of the law of (˜︁Xt ,˜︁Yt) and gain, at
least locally around the fixed point, a sufficient approximation of (Xt ,Yt), the solution
to our model.

It can be shown that for |a| > 1 but sufficiently close to 1, periodic solutions for the
law of (˜︁Xt ,˜︁Yt) emerge for moderate values of σ , i.e. within some interval 0 < σ0 < σ < σ1:
we therefore obtain noise-induced oscillations. On can find in [11] a considerable anal-
ysis of (2.22) and its parameters.

This is an example of a model that undergo a phase transition: in the macroscopic
dynamics, the stationary solution that is unique for small interaction, loses its stability
as the interaction strength crosses a threshold, and is subject to bifurcation, which
generates periodic solutions.
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Chapter3
Noise-induced periodicity:

illustration of the results

This chapter illustrates all the results, previously mentioned, and presents the
study as we demonstrate the occurring of the phenomenon of noise-induced period-
icity in the model.

3.1. Preliminary study of the model

We prove, firstly, the existence and uniqueness of a strong solution to (1.1):{︂
x(N )(t);0 ≤ t ≤ T

}︂
=

{︄(︃
x

(N )
1 (t), ...,x(N )

N1
(t), y(N )

1 (t), ..., y(N )
N2

(t)
)︃

;0 ≤ t ≤ T
}︄

using the Khasminskii criterion [8].

Consider the auxiliary norm-like function V : RN1 ×RN2 −→R

V
(︂
x(N )

)︂
=

1
N1

N1∑︂
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(︃
x

(N )
i

)︃4

4
+

(︃
x

(N )
i

)︃2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
1
N2

N2∑︂
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(︃
y

(N )
i

)︃4

4
+

(︃
y

(N )
i

)︃2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the infinitesimal generator L of (1.1).

Remark. We recall that for a general Markov process defined by the stochastic dif-
ferential equation dXt = b(Xt)dt + σdWt (the prototype equation of our model), the
infinitesimal generator acts like:

LF(x) =
∑︂
i=1

bi(x)
∂
∂xi

F(x) + σ2
∑︂
i,j

∂2

∂xi∂xj
F(x),

for every, at least C2, time independent real function F.

33



Chapter 3. Noise-induced periodicity: illustration of the results

It is easy to prove that there exists some real constant k > 0 such that the inequality

LV
(︂
x(N )

)︂
≤ k

(︃
1 +V

(︂
x(N )

)︂)︃
holds true in every bounded domain of RN1 ×RN2 . This fact ensures the existence and
uniqueness of a strong solution to (1.1) (Khasminskii criterion).
In particular, for every initial condition x(N )(t0) = z, independent of the processes(︂
W i
t −W i

0

)︂
i=1,...,N

, there exist a solution x(N )
z (t) to (1.1) which is an almost surely con-

tinuous stochastic process in some probability space (Ω,F ,P).

3.1.1 Numerical simulations of the finite-size system

In this section we present the results of numerical simulations of the finite-size system
(1.1) with the aim of giving evidence of the phenomenon of noise-induced periodicity.
In the view of the model, all the simulations were ran with different choices of σ and
several values of the interaction strengths. We made use of the classical Euler method
to perform simulations of 106 iterations with time-step dt = 0.005 for a system of 1000
particles equally divided between the two populations, i.e. we set α = 1

2 . We computed
these with the help of the software Mathematica: the appendix A contains the code.

All the particles in the same population were given identical initial conditions. For
the analysis we fixed θ11 = θ22 = 8 and let A := (1−α)θ12 > 0 and B := −αθ21 > 0
vary. The parameter’s space of the simulations in this work can be summarized in the
following scheme:

1. Noiseless dynamics (σ = 0):

(a) A = 2,B = 2.5; (A− 1 < B < A+ 2)

(b) A = 2,B = 4; (B = A+ 2)

(c) A = 2,B = 7; (B > A+ 2)

2. Intermediate noise (σ > 0)

(a) σ = 0.5; A = 2,B = 2.5; (A− 1 < B < A+ 2)

(b) σ = 0.1; A = 2,B = 4; (B = A+ 2)

(c) σ = 0.6; A = 2,B = 7; (B > A+ 2)

3. Large noise value (σ ≫ 1)

(a) σ = 5; A = 2,B = 2.5; (A− 1 < B < A+ 2)

(b) σ = 5; A = 2,B = 4; (B = A+ 2)

(c) σ = 5; A = 2,B = 7; (B > A+ 2)

Remark. This particular structure was motivated by the investigation conducted on
the deterministic dynamical system that drives (1.2). The equilibrium point analysis
of the related vector field is found in Section 3.4.

Ours examinations establish the following.
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1. Deterministic behaviour If σ = 0 the system is attracted to a fixed point (Fig. 3.1).
During a time interval of T = 0.005 · 106, for different initial conditions, no periodic
behaviors arise in any of the three considered cases and the system ends up in one of
the stable equilibria. In section 3.4 we will explore better the nature of the dynamics
in this case. Numerical evidences support the idea that this behavior persists also in
the parameter range A− 1 < B < A+ 2 and B > A+ 2 for small values of σ .

(a) (b) (c)

Figure 3.1: Each graph represent the trajectory t ↦→
(︃
m

(N )
1 (t),m(N )

2 (t)
)︃

obtained with numerical

simulations of system (1.1) starting from the same 4 random initial points. In (a) A = 2,B = 2.5,
(b) A = 2,B = 4, (c) A = 2,B = 7.

2. Large noise values If σ is increased to larger values (≫ 1), the dynamics are com-
pletely altered, the zero-mean Brownian disturbance dominates and the trajectories
exhibit random excursions around the origin. The system essentially becomes a Brow-
nian motion: see Fig. 3.2

(a) (b) (c)

Figure 3.2: In these simulations σ = 5 and the coupling constants are respectively: (a) A =
2,B = 2.5; (b) A = 2,B = 4; (c) A = 2,B = 7. It is clear from the graphics that the stochastic
component dominates the dynamics.

3. intermediate noise range We find that if the intensity of the noise is tuned to an
intermediate range of values, that are different for each case, we observe robust oscilla-
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Chapter 3. Noise-induced periodicity: illustration of the results

Noise Coupling constants Poincaré return time P.r.t projection

σ = 0.5 A = 2, B = 2.5 19.30± 0.16 19.23± 0.45

σ = 0.1 A = 2, B = 4 29.27± 0.26 29.24± 0.61

σ = 0.6 A = 2, B = 7 6.45± 0.01 6.46± 0.03

Table 3.3: First and second column display the different choices for the constants. Third

column: period of t ↦−→
(︃
m

(N )
1 (t),m(N )

2 (t)
)︃

obtained by computing the average passing time from

positive to negative values of m(N )
2 for each simulations. In the fourth column the period of

every simulation is recovered from the power spectrum of the Fourier transform, considering
a sampling period of dt = 0.005.

tory behaviors on the
{︃
m

(N )
1 ,m

(N )
2

}︃
plane. This suggests the presence of a time periodic

law. Therefore this model seems to exhibit the phenomenon of the noise-induced peri-
odicity.

A simple explanation could be the following. An intermediate amount of noise may
create/stabilize some attractors and destabilize others. In this setting, seems that the
noise destabilizes (some of the) fixed points and generates a stable rhythmic behavior
on the empirical averages of the particle positions of the two communities.

The oscillatory behavior emerging from the simulations of system (1.1) is analyzed
in Fig. 3.4 and Table 3.3. In particular, in the analysis we computed the average return

time of the system to the Poincaré section
{︃
m

(N )
2 = 0,m(N )

1 > 0
}︃

and its standard devia-

tion, in the various cases. These are reported in the third column of Table (3.3). On top
of this we computed the discrete Fourier transform (DFT), averaged over n = 50 sim-

ulations, of the mean particle position m(N )
2 . Using the peak frequency of the Fourier

transform, we computed a projection of the period of the trajectory t ↦→ m
(N )
2 (t). The

average of the periods and their standard deviations are reported in the fourth column
of Table 3.3, for the different values of the constants, as the Poincarè return time (P.r.t.)
projection. In this setting, in every simulation we assigned different initial points,
identical for particles of the same population.
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Figure 3.4: Analysis of the trajectories t ↦−→
(︃
m

(N )
1 (t),m(N )

2 (t)
)︃

and t ↦−→
(︃
m

(N )
2 (t)

)︃
from the nu-

merical simulations of system (1.1), when the noise is tuned to an intermediate range of values.
From top to bottom: (a) A = 2,B = 2.5, σ = 0.5 (A− 1 < B < A+ 2); (b) A = 2,B = 4, σ = 0.1 (B =

A + 2); (c) A = 2,B = 7, σ = 0.6 (A + 2 < B). In the first column: trajectory
(︃
m

(N )
1 (t),m(N )

2 (t)
)︃

of sample simulation, with the Poincaré section. The second column display the time evolu-

tion of m(N )
2 (t). In the third column: we plotted the modulus of the discrete Fourier transform

(averaged over the simulations), i.e. the power spectrum P (ν) against the frequencies ν, in
the relevant spectral region. To produce these figures we used the Fourier built-in function of

Mathematica applied to the trajectory t ↦−→ m
(N )
2 (t) over 106 steps and averaged the obtained

spectrum over the 50 simulations. In the three cases the projection of the period was obtained
as the reciprocal of the frequency highlighted by the red peak lines in the graphs.
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3.2. Well-posedness of the macroscopic limit

As a first step to the study of (1.2), we prove that the system (1.2) is well posed, i.e. for
every suitable initial condition (X∗,Y ∗) the system (1.2) exhibits a unique strong solution.

Theorem A (Existence and uniqueness of a strong solution of system (1.2)).
Let T > 0 and any initial condition (X0,Y0) = (X∗,Y ∗), having finite first moment and
being independent of the Brownian motions {W i(t);0 ≤ t ≤ T }i=1,2. Then the system (1.2)

dXt =
[︂
−X3

t +Xt −αθ11(Xt −E[Xt])− (1−α)θ12(Xt −E[Yt])
]︂
dt + σdW 1

t ,

dYt =
[︂
−Y 3

t +Yt −αθ21(Yt −E[Xt])− (1−α)θ22(Yt −E[Yt])
]︂
dt + σdW 2

t ;

has a unique strong solution.

Proof. The argument follows a Picard iteration. A similar approach is used, for
example, in [5].

Step 1: Picard iteration.
Consider the two sequence of stochastic processes {Xn(t);0 ≤ t ≤ T } and {Yn(t);0 ≤
t ≤ T }, indexed by n ≥ 1, defined by the following integral equations and iteration
scheme: for n ≥ 1

Xn(t)−Xn(0) =
∫︂ t

0
−Xn(s)3 +Xn(s)−αθ11Xn(s)− (1−α)θ12Xn(s)ds

+
∫︂ t

0
αθ11E[Xn−1(s)] + (1−α)θ12E[Yn−1(s)]ds+ σW 1(t)

=
∫︂ t

0
−Xn(s)3 +Xn(s)(1−αθ11 − (1−α)θ12)ds

+
∫︂ t

0
αθ11E[Xn−1(s)] + (1−α)θ12E[Yn−1(s)]ds+ σW 1(t)

Yn(t)−Yn(0) = ... =
∫︂ t

0
−Yn(s)3 +Yn(s)(1−αθ21 − (1−α)θ22)ds

+
∫︂ t

0
αθ21E[Xn−1(s)] + (1−α)θ22E[Yn−1(s)]ds+ σW 2(t)

(0 ≤ t ≤ T ); all with the same initial conditions
(︂
Xn(0),Yn(0)

)︂
= (X∗,Y ∗), together

with X0(t) = X∗ and Y0(t) = Y ∗. Now, by subtracting two subsequent approxima-
tions we get:

Xn+1(t)−Xn(t) =
∫︂ t

0
−[Xn+1(s)3 −Xn(s)3] + [Xn+1(s)−Xn(s)](1−αθ11 − (1−α)θ12)ds

+
∫︂ t

0
αθ11E[Xn(s)−Xn−1(s)] + (1−α)θ12E[Yn(s)−Yn−1(s)]ds
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Yn+1(t)−Yn(t) =
∫︂ t

0
−[Yn+1(s)3 −Yn(s)3] + [Yn+1(s)−Yn(s)](1−αθ21 − (1−α)θ22)ds

+
∫︂ t

0
αθ21E[Xn(s)−Xn−1(s)] + (1−α)θ22E[Yn(s)−Yn−1(s)]ds

Note that the Brownian motions cancel out. Now, using the identity (a3 − b3) =
(a− b)(a2 + ab+ b2), we can re-write the system as:

Xn+1(t)−Xn(t) =
∫︂ t

0
[Xn+1(s)−Xn(s)](1− fn(s)−αθ11 − (1−α)θ12)ds

+
∫︂ t

0
αθ11E[Xn(s)−Xn−1(s)] + (1−α)θ12E[Yn(s)−Yn−1(s)]ds,

(3.1)

Yn+1(t)−Yn(t) =
∫︂ t

0
[Yn+1(s)−Yn(s)](1− gn(s)−αθ21 − (1−α)θ22)ds

+
∫︂ t

0
αθ21E[Xn(s)−Xn−1(s)] + (1−α)θ22E[Yn(s)−Yn−1(s)]ds;

(3.2)

where, we put:

fn(t) :=Xn+1(t)2 +Xn+1(t)Xn(t) +Xn(t)2,

gn(t) :=Yn+1(t)2 +Yn+1(t)Yn(t) +Yn(t)2;

note that fn(t), gn(t) ≥ 0 for all t ∈ [0,T ].
Equations (3.1) and (3.2) have the form:

ϕ(t) =
∫︂ t

0
ϕ(s)H(s)ds+

∫︂ t

0
Q(s)ds; (3.3)

where ϕ(t) is given by Xn+1(t)−Xn(t) and Yn+1(t)−Yn(t) respectively.
Solutions to this kind of equations can be written as

ϕ(t) = ϕ(0) +
∫︂ t

0
Q(s)e

∫︁ t
s
H(r)dr ds.

Therefore, applying this to Eq. (3.1) and (3.2) we have that for t ∈ [0,T ] and n ≥ 1:

Xn+1(t)−Xn(t) =
∫︂ t

0

{︂
αθ11E[Xn(s)−Xn−1(s)] + (1−α)θ12E[Yn(s)−Yn−1(s)]

}︂
· e

∫︁ t
s

1−fn(r)−αθ11−(1−α)θ12 dr ds,

φ(0) =Xn+1(0)−Xn(0) = X∗ −X∗ = 0;

(3.4)
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and

Yn+1(t)−Yn(t) =
∫︂ t

0

{︂
αθ21E[Xn(s)−Xn−1(s)] + (1−α)θ22E[Yn(s)−Yn−1(s)]

}︂
· e

∫︁ t
s

1−gn(r)−αθ21−(1−α)θ22 dr ds,

φ(0) =Yn+1(0)−Yn(0) = Y ∗ −Y ∗ = 0.

(3.5)

Above we used respectively 1−fn(r)−αθ11−(1−α)θ12 and 1−gn(r)−αθ21−(1−α)θ22
as H(r), and it is easy to notice that H(r) ≤ 1 in both cases. In the next lines we use
these facts to bound ours solutions.

Step 2: Convergence’s property.
We want to show now that for every T > 0, {E[Xn(t)];0 ≤ t ≤ T }n≥1 and {E[Yn(t)];0 ≤
t ≤ T }n≥1 are Cauchy sequences in C ([0,T ]), equipped with the sup-norm:

d(f ,g) := sup
t∈[0,T ]

⃓⃓⃓
f (t)− g(t)

⃓⃓⃓
∀f ,g ∈ C([0,T ])

Hence, since (C([0,T ]),d) is a complete metric space, we expect that the two se-
quences converge to some elements {MX(t);0 ≤ t ≤ T }, {MY (t);0 ≤ t ≤ T } ∈ C([0,T ]).

Consider Eq.(3.4) and take the Expectation of the absolute value on both side. De-
fine φn(t) := sups∈[0,t]E

[︂
Xn+1(s)−Xn(s)

⃓⃓⃓]︂
and ψn(t) := sups∈[0,t]E

[︂
Yn+1(s)−Yn(s)

⃓⃓⃓]︂
.

Then, there exists some positive constants ˜︁Ct and ˜︁Dt such that:

φn(t) ≤ ˜︁Ct∫︂ t

0
φn−1(s)ds+ ˜︁Dt∫︂ t

0
ψn−1(s)ds; (3.6)

From Eq. (3.5) we get an identical inequality for ψn(t). Hereby, applying iteratively
the above inequalities in [0,T ], we prove that:

φn(T ) ≤ CTφ1(T )
T n−1

(n− 1)!
+DTψ1(T )

T n−1

(n− 1)!

for some real constants CT and DT ; and the same for ψn(T ).
This proves that, for every T > 0:

lim
n→∞

φn(T ) = 0 and lim
n→∞

ψn(T ) = 0

It follows that {E[Xn(t)];0 ≤ t ≤ T }n≥1 and {E[Yn(t)];0 ≤ t ≤ T }n≥1 are two Cauchy
sequences, so they converge to some continuous limits {MX(t);0 ≤ t ≤ T } and
{MY (t);0 ≤ t ≤ T } in C([0,T ]).
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Step 3: Existence.
Consider now the following stochastic differential equations

dXt =
[︂
−X3

t +Xt −αθ11(Xt −MX(t))− (1−α)θ12(Xt −MY (t))
]︂
dt + σdW 1

t

dYt =
[︂
−Y 3

t +Yt −αθ21(Yt −MX(t))− (1−α)θ22(Yt −MY (t))
]︂
dt + σdW 2

t

(3.7)

with initial conditions (X0,Y0) = (X∗,Y ∗). Now, since the terms MX(t) and MY (t)
are bounded for every t ∈ [0,T ], existence and uniqueness of a strong solution to
system (3.7), can be proven with the Khasminskii’s test, see [8].

So, let
{︃(︂˜︁Xt ,˜︁Yt)︂ ;0 ≤ t ≤ T

}︃
be the solution of (3.7). We can repeat the scheme of

(3.1) and (3.2) and construct the two approximations:

Xn+1(t)− ˜︁Xt =
∫︂ t

0
[Xn+1(s)− ˜︁X(s)](1− ˜︁fn(s)−αθ11 − (1−α)θ12)ds

+
∫︂ t

0
αθ11E[Xn(s)−MX(s)] + (1−α)θ12E[Yn(s)−MY (s)]ds

Xn+1(t)− ˜︁Yt =
∫︂ t

0
[Yn+1(s)− ˜︁Y (s)](1−˜︁gn(s)−αθ21 − (1−α)θ22)ds

+
∫︂ t

0
αθ21E[Xn(s)−MX(s)] + (1−α)θ22E[Yn(s)−MY (s)]ds

where ˜︁fn(s) comes from replacing the terms Xn(s) with ˜︁Xs and analogously ˜︁gn(s)
with ˜︁Ys. Now, applying the same arguments as before, we have:

sup
s∈[0,t]

⃓⃓⃓⃓
Xn+1(t)− ˜︁Xt ⃓⃓⃓⃓ ≤k1

∫︂ t

0
sup
r∈[0,s]

⃓⃓⃓
E[Xn(r)−MX(r)]

⃓⃓⃓
ds

+ k2

∫︂ t

0
sup
r∈[0,s]

⃓⃓⃓
E[Yn(r)−MY (r)]

⃓⃓⃓
ds for every t ∈ [0,T ];

for some positive constants k1, k2.
Hereby, we obtain that:{︂

E[Xn(t)];0 ≤ t ≤ T
}︂ n→∞−−−−−→

{︂
E[˜︁Xt];0 ≤ t ≤ T }︂

in C([0,T ]).

The same result can be shown for ˜︁Yt.
This proves that E[˜︁Xt] = MX(t), E[˜︁Yt] = MY (t) and, therefore, (3.7) provides a so-
lution for the system (1.2). It remains only to prove uniqueness.

Step 4: Uniqueness.

Let
{︃(︂
U (t),V (t)

)︂
;0 ≤ t ≤ T

}︃
be another solution of (1.2). Consider the integral ex-

pressions for X(t) −U (t) and Y (t) − V (t) as in (3.4). We can use them to estimate
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the quantities:

Φ(t) =
⃓⃓⃓
E[X(t)−U (t)]

⃓⃓⃓
,

Ψ (t) =
⃓⃓⃓
E[Y (t)−V (t)]

⃓⃓⃓
.

Applying an identical argument, we easily obtain the following inequalities:

Φ(t) ≤ ˜︁KT ∫︂ t

0
Φ(s) +Ψ (s)ds and Ψ (t) ≤ ˜︁HT ∫︂ t

0
Φ(s) +Ψ (s)ds,

for some real constants ˜︁KT , ˜︁HT . Summing up them we get that

Φ(t) +Ψ (t) ≤ (˜︁KT + ˜︁HT )
∫︂ t

0
Φ(s) +Ψ (s)ds.

Note that, in this particular expression, the Gronwall’s Lemma can be applied, and
it can be used to prove that Φ(t) +Ψ (t) ≤ 0 for every t ∈ [0,T ].
This means that E[X(t)] = E[U (t)] and E[Y (t)] = E[V (t)] for every t ∈ [0,T ], and
so

{︁
(Ut ,Vt) ;0 ≤ t ≤ T

}︁
and {(Xt ,Yt);0 ≤ t ≤ T } are both solutions to (3.7) with same

pair
(︂
MX(t),MY (t)

)︂
of moments and initial conditions (X∗,Y ∗). By the uniqueness,

it follows that:

P

{︃(︂
X(t),Y (t)

)︂
=

(︂
U (t),V (t)

)︂
, for all t ∈ [0,T ]

}︃
= 1.

This concludes the proof.

3.3. Propagation of chaos in the model

Follows, in this section, a propagation of chaos statement, in which we prove that the
macroscopic description of system (1.1) is exactly the system (1.2). We claim that,
as N → ∞, the evolution of each particle remains independent of the evolution of
any finite subset of others. Indeed, one key feature of our model, is that individual
particles interact only via the empirical means of the two populations. Consequently,
when taking the infinite volume limit, the influence of a finite number of particles
becomes negligible. In our case, the macroscopic evolution of a pair of representative
particles, one for each population, is the process {(X(t),Y (t)); t ≤ T } described by the
system (1.2).

Theorem B (Propagation of chaos). Fix T > 0. Let{︄(︃
x

(N )
1 (t), ...,x(N )

N1
(t), y(N )

1 (t), ..., y(N )
N2

(t)
)︃

;0 ≤ t ≤ T
}︄

be the solution to (1.1), with the initial condition satisfying the following properties:

i) the vector
(︃
x

(N )
1 (0), ...,x(N )

N1
(0), y(N )

1 (0), ..., y(N )
N2

(0)
)︃

is a family of independent random

variables, such that each component is also independent of the Brownian motions(︃
W

j
t

)︃
j=1,...,N

.
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ii) the random variables
(︃
x

(N )
1 (0), ...,x(N )

N1
(0)

)︃
are identically distributed with the law QX ,

respectively
(︃
y

(N )
1 (0), ..., y(N )

N2
(0)

)︃
withQY ; and such thatQX andQY have finite second

moment.

Let {︃(︂
x1(t), ...,xN1

(t), y1(t), ..., yN2
(t)

)︂
;0 ≤ t ≤ T

}︃
be the random processes whose components {xi(t);0 ≤ t ≤ T }i=1,...,N1

are copies of the so-
lution to the first equation of (1.2) and {yj(t);0 ≤ t ≤ T }j=1,...,N2

copies of the solution of
the second equation of (1.2); with both sharing the same initial conditions (component-
wise equal) and Brownian motions that define system (1.1). Define the index sets I =
{i1, ..., ik1

} ⊆ {1, ...,N1} and J = {j1, ..., jk2
} ⊆ {1, ...,N2}, so that |I | = k1 and |J | = k2.

Then, we have

lim
N→∞

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

⃓⃓⃓⃓
x(N )
k1,k2

(t)− xk1,k2
(t)

⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦ = 0; (3.8)

here | · | denotes the ℓ1-norm and

x(N )
k1,k2

(t) =
(︃
x

(N )
i1

(t), ...,x(N )
ik1

(t), y(N )
j1

(t), ..., y(N )
jk2

(t)
)︃
,

xk1,k2
(t) =

(︂
x1(t), ...,xk1

(t), y1(t), ..., yk2
(t)

)︂
.

Proof. The proof relies on a coupling method. Similar approaches were used, for
example, in [3]. The goal here is to prove (3.8).

To begin with, without loss of generality, we can take I = {1, ..., k1} andJ = {1, ..., k2}.
Next, we can note immediately that:

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

⃓⃓⃓⃓
x(N )
k1,k2

(t)− xk1,k2
(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦ ≤
k1∑︂
i=1

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

⃓⃓⃓⃓
x

(N )
i (t)− xi(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦+
k2∑︂
j=1

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

⃓⃓⃓⃓
y

(N )
j (t)− yj(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦;
so, to conclude it suffices to show that each of the k1 + k2 terms goes to zero when
N →∞.
We will show this holds for i = 1, i.e. E

[︃
supt∈[0,T ]

⃓⃓⃓⃓
x

(N )
1 (t)− x1(t)

⃓⃓⃓⃓]︃
, since identical

arguments can be carried out for the others terms.
As we did in the proof of existence e uniqueness of system (1.2), we consider the

integral equations for
{︃
x

(N )
1 (t); 0 ≤ t ≤ T

}︃
and

{︂
x1(t); 0 ≤ t ≤ T

}︂
.
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Therefore we can write:

x
(N )
1 (t)− x1(t) =

∫︂ t

0
[x(N )

1 (s)− x1(s)](1− f (s)−αθ11 − (1−α)θ12)ds

+
∫︂ t

0
αθ11

(︃
m

(N )
1 (s)−E[X1(s)]

)︃
+ (1−α)θ12

(︃
m

(N )
2 (s)−E[y1(s)]

)︃
ds;

here, as we did before, we used the identity a3 − b3 = (a − b)(a2 + b2 + ab) and put

f (s) :=
(︃
x

(N )
1 (s)

)︃2
+ x1(s)2 + x(N )

1 (s)x1(s). Moreover we can set:

µ(s) := αθ11

(︃
m

(N )
1 (s)−E[X1(s)]

)︃
+ (1−α)θ12

(︃
m

(N )
2 (s)−E[y1(s)]

)︃
,

so

x
(N )
1 (t)− x1(t) =

∫︂ t

0

[︄(︃
x

(N )
1 (s)− x1(s)

)︃(︂
1− f (s)−αθ11 − (1−α)θ12

)︂
+µ(s)

]︄
ds (3.9)

We can see that equation (3.9) is of the type ϕ(t) =
∫︁ t

0 ϕ(s)H(s) + Q(s)ds, where

ϕ(t) = x
(N )
1 (t) − x1(t). We already saw previously, that a solution to this kind of

equation can be written as ϕ(t) = ϕ(0) +
∫︁ t

0 Q(s)e
∫︁ t
s
H(r)dr ds; this fact will be useful

to estimate
⃓⃓⃓⃓
x

(N )
1 (t)− x1(t)

⃓⃓⃓⃓
with

⃓⃓⃓
µ(s)

⃓⃓⃓
.

Since by assumption x(N )
1 (0) = x1(0), we can have that, for every t ∈ [0,T ]:⃓⃓⃓⃓

x
(N )
1 (t)− x1(t)

⃓⃓⃓⃓
≤

∫︂ t

0

⃓⃓⃓
µ(s)

⃓⃓⃓
e
∫︁ t
s

1−fn(r)−αθ11−(1−α)θ12 dr ds ≤ CT
∫︂ t

0

⃓⃓⃓
µ(s)

⃓⃓⃓
ds (3.10)

for some real positive constantCT (we used the above fact). Moreover we have that:

E

[︂
µ(s)

⃓⃓⃓]︂
≤E

[︃
αθ11

⃓⃓⃓⃓
m

(N )
1 (s)−E[X1(s)]

⃓⃓⃓⃓
+ (1−α)θ12

⃓⃓⃓⃓
m

(N )
2 (s)−E[y1(s)]

⃓⃓⃓⃓]︃
≤E

⎡⎢⎢⎢⎢⎢⎣αθ11

⃓⃓⃓⃓
m

(N )
1 (s) +

1
N1

N1∑︂
i=1

xi(s)−
1
N1

N1∑︂
i=1

xi(s)−E[X1(s)]
⃓⃓⃓⃓

+ (1−α)θ12

⃓⃓⃓⃓
m

(N )
2 (s) +

1
N2

N2∑︂
j=1

yi(s)−
1
N2

N2∑︂
j=1

yi(s)−E[y1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦.

(3.11)

We added and subtracted the quantities 1
N1

∑︁N1
i=1 xi(s) and 1

N2

∑︁N2
j=1 yi(s), respectively

in the first and second absolute values of the first line.
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Continuing we have:

E

[︂
µ(s)

⃓⃓⃓]︂
≤ αθ11

N1

N1∑︂
i=1

E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓x(N )
i (s)− xi(s)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦+αθ11E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓ 1
N1

N1∑︂
i=1

xi(s)−E[x1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦

+
(1−α)θ12

N2

N2∑︂
j=1

E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓y(N )
j (s)− xj(s)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦+ (1−α)θ12E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓ 1
N2

N2∑︂
j=1

yj(s)−E[y1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦

(3.12)

Now we want to bound the four relevant terms:

E

[︃⃓⃓⃓⃓
x

(N )
i (s)− xi(s)

⃓⃓⃓⃓ ]︃
, E

[︃⃓⃓⃓⃓⃓
y

(N )(s)−xj (s)
j

⃓⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦;
E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓ 1
N1

N1∑︂
i=1

xi(s)−E[x1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦, E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓ 1
N2

N2∑︂
j=1

yj(s)−E[y1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦.

The first two are easy, since:

E

[︃⃓⃓⃓⃓
x

(N )
i (s)− xi(s)

⃓⃓⃓⃓ ]︃
≤ E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
x

(N )
i (r)− xi(r)

⃓⃓⃓⃓ ]︃
E

[︃⃓⃓⃓⃓
y

(N )
j (s)− yj(s)

⃓⃓⃓⃓ ]︃
≤ E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
y

(N )
j (r)− yj(r)

⃓⃓⃓⃓ ]︃
Note, in addition, that these terms are independent of the indexes i, j, due to the
symmetry of our system, which, on the other hand, depends on the initial condi-
tions and the choice of the constants. So we can chose for example i = 1 and j = 1.
Regarding the other two terms, we can employ the central limit theorem. The two
limiting processes {xi(t)}i∈N1

and {xj(t)}j∈N2
are a family with independent identi-

cal distributions and have uniformly bounded second moments (since the system
(1.2) is well posed). As a consequence the standard limit theorem assures that
there exists a positive constant KT , such that, uniformly for all s ∈ [0,T ], it holds:

E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓ 1
N1

N1∑︂
i=1

xi(s)−E[x1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦ ≤ KT√

N1
and E

⎡⎢⎢⎢⎢⎢⎣⃓⃓⃓⃓ 1
N2

N1∑︂
j=1

yj(s)−E[y1(s)]
⃓⃓⃓⃓⎤⎥⎥⎥⎥⎥⎦ ≤ KT√

N2
.

Now, if we take the supremum and the expectation on both sides of (3.9), for every
t̃ ∈ [0,T ] for which:

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,t̃]

⃓⃓⃓⃓
x

(N )
1 (t)− x1(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦ ≤ CT ∫︂ t̃

0
E

[︂⃓⃓⃓
µ(s)

⃓⃓⃓ ]︂
ds
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We now put everything together, recall that α = N1
N . We obtain:

E

[︂
µ(s)

⃓⃓⃓]︂
≤αθ11E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
x

(N )
1 (r)− x1(r)

⃓⃓⃓⃓ ]︃
+
√
αθ11KT√
N

+ (1−α)θ12E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
y

(N )
1 (r)− y1(r)

⃓⃓⃓⃓ ]︃
+

√︁
(1−α)θ12KT√

N
;

(3.13)

and so, surely there exists some real positive arbitrary constant D, depending on
T and on all the parameters (α,θ11,θ12,θ21 and θ22), such that:

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,t̃]

⃓⃓⃓⃓
x

(N )
1 (t)− x1(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦ ≤D∫︂ t̃

0
E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
x

(N )
1 (r)− x1(r)

⃓⃓⃓⃓ ]︃
ds

+D
∫︂ t̃

0
E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
y

(N )
1 (r)− y1(r)

⃓⃓⃓⃓ ]︃
ds

+
D
√
N

;

(3.14)

In the same way, we can achieve:

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,t̃]

⃓⃓⃓⃓
y

(N )
1 (t)− y1(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦ ≤D∫︂ t̃

0
E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
x

(N )
1 (r)− x1(r)

⃓⃓⃓⃓ ]︃
ds

+D
∫︂ t̃

0
E

[︃
sup
r∈[0,s]

⃓⃓⃓⃓
y

(N )
1 (r)− y1(r)

⃓⃓⃓⃓ ]︃
ds

+
D
√
N

(3.15)

Therefore, if we define the function

g(t̃) := E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,t̃]

⃓⃓⃓⃓
x

(N )
1 (t)− x1(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦+E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,t̃]

⃓⃓⃓⃓
y

(N )
1 (t)− y1(t)

⃓⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦.
Summing up the inequalities (3.14) and (3.15), we get:

g(t̃) ≤ 2D
∫︂ t̃

0
g(s)ds+ 2

D
√
N
.

An easy application of the Gronwall’s lemma leads, in particular, to:

g(T ) ≤ 2De2DT
√
N

that proves limN→∞ g(T ) = 0. This concludes the proof.
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3.4. Noiseless dynamic of the macroscopic limit

Before giving the main result of the thesis, we argue here that, in absence of a noise
component, the system (1.2) does not exhibit oscillatory behaviours. Thus, it behave,
essentially, in the same way as the finite-size system.

If σ = 0, the system (1.2)

dXt =
[︂
−X3

t +Xt −αθ11(Xt −E[Xt])− (1−α)θ12(Xt −E[Yt])
]︂
dt + σdW 1

t

dYt =
[︂
−Y 3

t +Yt −αθ21(Yt −E[Xt])− (1−α)θ22(Yt −E[Yt])
]︂
dt + σdW 2

t ,

reduces to a system of differential equation, in which the variables Xt and Yt are de-
terministic functions of time. Thus, in the equations, both terms αθ11(Xt −E[Xt]) and
(1−α)θ22(Yt −E[YT ]) are equal to zero. Setting A := (1−α)θ12(> 0),B := −αθ21(> 0) and
Xt = x,Yt = y the system can be re-written as:⎧⎪⎪⎨⎪⎪⎩ẋ = −x3 + x −A(x − y)

ẏ = −y3 + y −B(x − y)
(3.16)

where time dependence is implicit and ż := ∂
∂t z(t).

Note. We assume that A > 1 and B > 0, unless otherwise specified.

In the following we summarize the equilibria analysis of the vector field of (3.16).
Many results about dynamical system were used, we refer to [14] for complete expla-
nations.

1. The fixed points (0,0) and ±(1,1) are present for any values of A and B, in partic-
ular:

• The linearization of (3.16) around the origin has the eigenvalues:

λ1 = 1 and λ2 = 1−A+B = 1−γ,

setting γ := A − B. Thus (0,0) is a saddle if γ > 1, it has a unstable and a
neutral direction for γ = 1 and it is a unstable node in the other cases.

• The points ±(1,1) have identical properties since the eigenvalues for the lin-
earized system around them are:

λ1 = −2 and λ2 = −2−A+B = −2−γ

Therefore ±(1,1) are stable nodes for γ > −2, they have a neutral and a stable
direction when γ = −2 and they are saddle points otherwise.

So, summarising we have: i) γ < −2, (0,0) is unstable and ±(1,1) are saddle points;
ii) when −2 < γ < 1, (0,0) is unstable and ±(1,1) are stable nodes; iii) for γ > 1,
(0,0) is a saddle point and ±(1,1) are stable nodes.
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Chapter 3. Noise-induced periodicity: illustration of the results

2. Two additional equilibria points might be present, depending on the values of
the parameter space. To find them we seek through the lines y = βx (β ≠ 0).
Substituting on the first equation of the system⎧⎪⎪⎨⎪⎪⎩−x3 + x −A(x − y) = 0

−y3 + y −B(x − y) = 0
(3.17)

gives the points:
x̃β = ±(

√︁
1−A(1− β),β

√︁
1−A(1− β)) (3.18)

where β is subject to the condition: β > A−1
A .

Since we assumed A > 1, we must have β > 0. Therefore fixed points of the form
(x,βx) can only appear in the first and third quadrant. Meanwhile the second
equation of (3.17) gives the extra condition on β:

β = f (β) with f (β) :=

⌜⎷
1−B1−β

β

1−A(1− β)
(3.19)

Note that β = 1 is a solution, for which we find again the equilibria ±(1,1).
Fixed points x̃β may exist only if the argument inside the square root in (3.19) is
strictly positive, that is if:

β >max
{︄
A− 1
A

,
B

1 +B

}︄
, (3.20)

which brings to the following cases, since both terms are positive.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β > A−1

A = B
1+B iff B = A− 1

β > A−1
A iff B < A− 1

β > B
1+B iff B > A− 1

(3.21)

However,it is possible to prove that two additional fixed points only appear in
the last case, i.e. when B > A− 1; we postpone the details. The others either have
no solution or the solutions are again (0,0) and ±(1,1).

Moreover, in this range of values (B > A− 1), three situations arise:

• A− 1 < B < A+ 2: there exist β > 0 such that ±xβ are fixed points for system
(3.16), with

⃓⃓⃓
xβ

⃓⃓⃓
< 1 and β < 1. In this case ±xβ are saddle points.

• B = A+ 2: no other fixed points are present apart from (0,0) and ±(1,1).

• B > A+ 2: there exist β > 0 such that ±xβ are fixed points for system (3.16),
with

⃓⃓⃓
xβ

⃓⃓⃓
> 1 and β > 1. In this situation ±xβ are stable nodes.

The table (3.6) summarizes the study, combining points 1 and 2. The parameters space
of interest is A > 1, B > A− 1.

The scenarios summarized in Table 3.6 have inspired the numerical study carried
out on the model. In addition, we have examined in more details the behaviour of
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(a) (b) (c)

Figure 3.5: Phase portrait of system (3.16) for various values of A and B. (a) Case A − 1 <
B < A + 2 with A = 2 and B = 2.5. Fixed points: (0,0) is an unstable node, ±(1,1) are stable
nodes and ±(0.78′ ,0.63′), numerically computed, are saddle points. (b) Case B = A + 2 with
A = 2 and B = 4. Fixed points: (0,0) is an unstable node ±(1,1) have a negative and a zero
eigenvalue. (c) Case B > A + 2 with A = 2 and B = 7. Fixed points: (0,0) is an unstable node,
±(1,1) are saddle points and ±(1.24′ ,1.58′), numerically computed, are stable spirals. Red dots
mark the equilibria. Streamline colors corresponds to the magnitude of vector field scaled to
[0,1] (relative magnitude).

(3.16) in the three different cases, providing some examples. In Fig. 3.5, numerically
obtained phase portraits are displayed for specific values of the parameters in the cases
A− 1 < B < A+ 2, B = A+ 2 and B > A+ 2.

■ (B < A+ 2). If A = 2,B = 2.5 the Eq. β = f (β) has the solution β = 1 and β = βx < 1,
numerically obtained. Thus we obtain respectively the fixed points ±x̃1 = ±(1,1)
and ±x̃βx ≈ ±(0.78,0.63). The eigenvalues of the linearized system around ±x̃1 are
both real and negative, therefore they are stable nodes. The fixed points ±x̃βx are
saddle points. The phase portrait numerically obtained is shown in Fig. 3.5 (a).

■ (B = A + 2). If A = 2,B = 4 the only solution for β is 1, so the only fixed points,
apart from (0,0), are ±x̃1. The analysis above, for this particular case, gives a good
explanation of the dynamics. Also the Fig. 3.5 (b) displays the phase portrait for
this choice of constants.

■ (B > A + 2). If A = 2,B = 7, there are two solutions for β: β = 1 and β = βx > 1.
In this case the fixed points ±x̃1 are saddle points, while the fixed points ±x̃βx ≈
±(1.24,1.58) have complexes eigenvalues with negative real part, thus they are
stable spirals. The phase portrait is shown in Fig. 3.5 (c).

Remark. In the 3 cases, (0,0) is a unstable fixed point.

3.4.1 Equilibrium points of the system

We include here the case study of (3.21) and hence conclude the analysis of the equi-
libria points of the system.

1. If B = A − 1, f (β) = 1√
β

. So the unique solution to the equation (3.19) is β = 1

and x̃β = ±(1,1). In this case γ = 1 so ±(1,1) are stable nodes and (0,0) has a zero
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Chapter 3. Noise-induced periodicity: illustration of the results

(0,0) ±(1,1) ±(x,βx)

A− 1 < B < A+ 2 unstable node stable nodes
0 < x < 1,0 < β < 1,

saddle points

B = A+ 2 unstable node
one negative

and one null eigenvalue
–

B > A+ 2 unstable node saddle points
x > 1,β > 1,

stable nodes

Table 3.6: Parameters space is A > 1, B > A − 1. The table outline the nature of the fixed
points of system (3.16) for different values of the parameters A,B. It defines also the scheme
used to arrange the numerical simulations conducted on (1.1).

eigenvalue, thus the linearization cannot give information about the behavior in
the phase space close to it. Nevertheless, the system can be re-written as

⎧⎪⎪⎨⎪⎪⎩ẋ = −x3 − x(A− 1) +Ay

ẏ = −y3 − x(A− 1) +Ay.

We observe that above the line t : y = A−1
A x, that is the eigen-direction of the

zero eigenvalue, the linear component of the vector field is positive and negative
below it. So close to (0,0) we can neglect the third-order terms and the get a good
approximation for the local dynamics. Furthermore along the line t, the linear
component is equal to zero and so only the third-order terms count. We get that
ẋ < 0, ẏ < 0 in the first quadrant and ẋ > 0, ẏ > 0 in the third one, which give a
good understanding of the flow.

2. If B < A− 1, the only solution to Eq. (3.19) is again β = 1.
First of all, observe that f (β) has a vertical asymptote to positive infinity as β
approaches A−1

A and it has a horizontal asymptote to zero as β grows to infinity.
Moreover, ∂

∂β f (β) = 0 in:

β± =
AB±

√︁
AB(B− (A− 1))
A(1 +B)

,

that are not real for B < A − 1. Now, in this case, we are searching for solutions
β > A−1

A . In this region f (β) is strictly decreasing and its graph cannot have more
than one intersection with the line y = β, so the only solution to the Eq. (3.19) is
β = 1. This means that the only fixed points of the system are (0,0) and ±(1,1)
and we already portrait this behavior in the previous paragraph.
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Figure 3.7: This figures represent the phase portrait of the system (3.16) when B < A−1.
In red are displayed the nodes, and the dashed lines t show the neutral eigen-directions
of (0,0): y = A−1

A x in the first graph and y = B
Ax in the second. In order, the choice for the

constants was A = 2,B = 1 and A = 2,B = 0.5.

3. When B > A − 1, i.e. β > B
B+1 , (0,0) is unstable and the nature of ±(1,1) changes

according to γ being greater, less or equal to −2.
Observe that f ( B

B+1 ) = 0, limβ→∞ f (β) = 0 and in this case ∂
∂β f (β) = 0 gives two

distinct real points β±, with β− <
B
B+1 . So the function f (β) has only one critical

point (maximum) β = βx >
B
B+1 , therefore it may cross the line y = β once, twice

or never. But since we know that β = 1 is a solution of β = f (β), there are 3
possibilities: β = βx = 1 is the only solution [i)], or there is another intersection
βx that could be greater [ii)] or less [iii)] than 1. In the following lines we analyze
the 3 sub-cases.

i) β = βx = 1 is the only solution to Eq. (3.19).
This happens when the line y = β is tangent to f (β) in β = 1, i.e. ∂f

∂β (1) = 1.
That is if B = A + 2 (γ = −2). In this case ±(1,1) have a negative and a zero
eigenvalue, so to check stability one has to take into account higher-order
terms. We study only (1,1), since −(1,1) is similar.
To ease the computations we make the change of variables: x̂ = x−1, ŷ = y−1;
so (1,1) is shifted to (0,0). The system (3.16) becomes⎧⎪⎪⎨⎪⎪⎩ẋ̂ = −(A+ 2)x̂+Aŷ − 3x̂2 − x̂3

ẏ̂ = −(A+ 2)x̂+Aŷ − 3ŷ2 − ŷ3 (3.22)

Along the eigen-direction of the zero eigenvalue, represented by the line
r : ŷ = A+2

A x̂, the first-order terms of the system above vanish, and the line
r always lies above ŷ = x̂, that is the eigen-direction of the non-zero eigen-
value. Also the first-order terms of the system are positive above r and neg-
ative below it. So, out of this line, higher-order terms can be neglected close
to the origin, while the second-order terms give a good approximation along
the line r, where is immediate to see that the vector field points downward-
left.

ii) If 0 < ∂f
∂β (1) < 1, i.e. B < A + 2, there are two intersections, one at β = 1 and

one at β = βx(A,B) < 1. This means that there are two extra fixed point of
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Chapter 3. Noise-induced periodicity: illustration of the results

type ±(x,βxx), with absolute value less than 1.

iii) If ∂f
∂β (1) > 1, i.e. B > A + 2, in addition to the intersection β = 1 there is a

second intersection at β = βx > 1, so there are two extra fixed points of type
±(x,βx), with absolute value greater than 1.

3.5. Small noise approximations of the macroscopic limit

We derive now a small-noise approximation of the system (1.2). In particular, we aim

to create a pair of independent Gaussian processes
{︃(︂˜︁Xt ,˜︁Yt)︂ ;0 ≤ t ≤ T

}︃
that closely fol-

lows in time
{︁
(Xt ,Yt) ;0 ≤ t ≤ T

}︁
, the solution of the system (1.2). Although we prove

that this approximation, holds rigorously true when σ → 0, numerical simulations
show that it remains valid also beyond the assumption of σ ≪ 1, which explains the
observations made on the numerical study.

Note that the specific form of the system allows to consider the two processes ˜︁Xt
and ˜︁Yt to be independent. Indeed, in the equations

dXt =
[︂
−X3

t +Xt −αθ11(Xt −E[Xt])− (1−α)θ12(Xt −E[Yt])
]︂
dt + σdW 1

t ,

dYt =
[︂
−Y 3

t +Yt −αθ21(Yt −E[Xt])− (1−α)θ22(Yt −E[Yt])
]︂
dt + σdW 2

t ,

the two variables interact only through their expected mean; if we had mixed terms of
the type XnYm, such approach would not be possible.

The following theorem gives the result.

Theorem C (Small noise approximations). Let T > 0 and
{︁
(Xt ,Yt) ; t ≤ T

}︁
be the

solution of (1.2) with initial conditionsX∗ and Y ∗. There exist two Gauss-Markov processes
{˜︁X(t);0 ≤ t ≤ T } and {˜︁Y (t);0 ≤ t ≤ T }, with ˜︁X(0) = X∗ and ˜︁Y (0) = Y ∗, satisfying the
following properties.

1. ˜︁Xt and ˜︁Yt solve the first two moments equations of the system (1.2)

2. ˜︁Xt and ˜︁Yt are simultaneously σ -closed to the solution of (1.2), that is, for every T > 0
there exists some real constant CT > 0 such that for every σ > 0:

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

{︄⃓⃓⃓⃓
X(t)− ˜︁X(t)

⃓⃓⃓⃓
+
⃓⃓⃓⃓
Y (t)− ˜︁Y (t)

⃓⃓⃓⃓ }︄⎤⎥⎥⎥⎥⎥⎦ ≤ CT σ2

Remark. ˜︁Xt and ˜︁Yt are Gaussian processes, so, among other properties, we use here
the fact that their higher-order moments are polynomial functions of the first two
moments. In particular, this means that their behaviour is completely described by
the mean and variance functions. As a result, rather than studying some infinite
dimensional system, given by the moments equations of the solution of (1.2), we can
reduce our analysis to a 4-dim system of differential equations, which portrays the
behaviour of the means and variances of the Gaussian-approximation processes. We
shall see how to do this in the proof of the theorem.
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Proof. We divide the proof in several steps and begin by deriving the equations of
the moments for (1.2).

Step 1: Moments equations.
Applying Itô’s formula to the equations of the system (1.2) we obtain the following
SDEs, which are solved by all X(t)p and Y (t)p, with p ≥ 1:

dX
p
t =

[︄
− pXp+2

t + pXpt − [αθ11(Xt −E[Xt]) + (1−α)θ12(Xt −E[Yt])]pX
p−1
t

+
σ2

2
p(p − 1)Xp−2

t

]︄
dt + σpXp−1

t dWt

dY
p
t =

[︄
− pY p+2

t + pY pt − [αθ21(Yt −E[Xt]) + (1−α)θ22(Yt −E[Yt])]pY
p−1
t

+
σ2

2
p(p − 1)Y p−2

t

]︄
dt + σpY p−1

t dW Y
t

(3.23)

Now, set mXp (t) := E[Xp(t)] and mYp (t) := E[Y p(t)] the p-th moments of Xt and Yt.
Taking the expectation E[·] on both side of the above equations we obtain the sys-
tem:

d
dt
mXp (t) =− pmXp+2(t) + pmXp (t) +

σ2

2
p(p − 1)mXp−2

− pαθ11

(︂
mXp −mX1 (t)mXp−1(t)

)︂
− p(1−α)θ12

(︂
mXp (t)−mY1 (t)mXp−1(t)

)︂
d
dt
mYp (t) =− pmYp+2(t) + pmYp (t) +

σ2

2
p(p − 1)mYp−2

− pαθ21

(︂
mYp −mX1 (t)mYp−1(t)

)︂
− p(1−α)θ22

(︂
mYp (t)−mY1 (t)mYp−1(t))

)︂
;

(3.24)

(the Brownian motion has zero mean: E[Wt] = 0). We formally divided by dt on
both sides of the equations.
Note that in (3.24) the p-th moments depend on the (p+2)-th moments, this makes
the system infinite dimensional, unless some higher order term depends on the
first two moments of Xt and Yt.

Nevertheless, consider the first two moments equations, so take p = 1,2 in
(3.24):

d
dt
mX1 (t) = −mX3 (t) +mX1 (t)−αθ11m

X
1 − (1−α)θ12m

X
1 (t),

d
dt
mY1 (t) = −mY3 (t) +mY1 (t)−αθ21m

Y
1 − (1−α)θ22m

Y
1 (t);

(3.25)
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d
dt
mX2 (t) = −2mX4 (t) + 2mX2 (t)− 2αθ11

(︂
mX2 −m

X
1 (t)

2)︂
− 2A

(︂
mX2 (t)−mY1 (t)mX1 (t)

)︂
+ σ2

d
dt
mY2 (t) = −2mY4 (t) + 2mY2 (t) + 2B

(︂
mY2 −m

X
1 (t)mY1 (t)

)︂
− 2(1−α)θ22

(︂
mY2 (t)−mY1 (t)

2)︂
+ σ2;

(3.26)

here, we called A := (1−α)θ12 and B := −αθ21.

Recall that if Z is a Gauss random variable with normal distribution N (µ,ν),
where µ and ν denote the mean and variance respectively, then we have the iden-
tities:

E[Z3] = µ3 + 3µν and E[Z4] = µ4 + 6µ2ν + 3ν2

Therefore, if we suppose that a couple of Gauss-Markov random processes with
mean and variance µX(t),νX(t) and µY (t),νY (t) respectively, solve equations (3.25)
and (3.26), then, plugging the identities into the equations, we obtain the following
system of differential equations, to which the mean and variance functions must
obey:

µ̇X = −µ3
X +µX(1− 3νX)−A(µX −µY )

µ̇Y = −µ3
Y +µY (1− 3νY ) +B(µY −µX)

ν̇X = −6ν2
X − 6µ2

XνX + 2νX − 2αθ11νX + 2AνX + σ2

ν̇Y = −6ν2
Y − 6µ2

XνY + 2νY + 2BνY − 2(1−α)θ22νY + σ2

(3.27)

In particular, (3.27) has a four-dimensional vector field which is continuous in
each variable and has continuous partial derivatives. Hereby the system has a

unique global solution
{︃(︂
µX(t),µY (t),νX(t),νY (t)

)︂
; t ≥ 0

}︃
with the initial conditions

µX(0) = X∗, νY (0) = Y ∗ and νX(0) = νY (0) = 0.

Step 2: approximations processes’ definition.
Now let T > 0, and set VX(t) := σ−2νX(t) and VY (t) := σ−2νY (t). We want to define
two centered (with zero mean) Gaussian processes {ZX(t)}t≤T and {ZY (t)}t≤T , so
that

E

[︂
ZX(t)2

]︂
= VX(t) and E

[︂
ZY (t)2

]︂
= VY (t) for all t ∈ [0,T ]; (3.28)

and obtain the differential characterization of these, that will be useful later to
prove the σ -closedness to the solution.
Let’s consider {ZX(t)}t≤T first and its differential as a generic Ito’s process:

dZX(t) = a(t)dt + b(t)dW1(t);
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with suitable functions a(t),b(t) andW1(·) a standard Brownian motion. Using Ito’s
formula we derive:

dZX(t)2 = (2ZX(t)a(t) + b(t)2)dt + 2ZX(t)b(t)dW1(t);

and taking the expectation E[·] and dividing by dt on both side of the equation we
otain:

d
dt

E[ZX(t)2] = 2E[ZX(t)a(t)] +E[b(t)2]. (3.29)

Now we have to give b(t) and a(t) such that (3.29) respects condition (3.28), that is
E[ZX(t)2] satisfies the third equation of (3.27):

ν̇X = −6νX
2 − 6µX

2νX + 2νX − 2αθ11νX + 2AνX + σ2,

which, dividing both side by σ2, becomes:

V̇ X(t) = −2
(︂
VX(t)(3σ2VX(t)− 3µX(t)2 + 1−αθ11 +A)

)︂
+ 1; (3.30)

where we used the definition of VX and made the time-dependency explicit.
Now we can set b(t) = 1 and define a(t) in the following way.
Take the deterministic function

ã(t) = 3σ2VX(t)− 3µX(t)2 + 1−αθ11 +A.

We can define a(t) such that ZX(t)a(t) = Z2
X(t)ã(t). Then we have a process ZX(t),

whose second moment function EZX(t)2 satisfies 3.30), for which VX(t) is the solu-
tion. In the same way, with straight-forward modifications, we construct {ZY (t)}t≤T .

Hence, putting together the results, we have constructed two processes {ZX(t)}t≤T
and {ZY (t)}t≤T satisfying the stochastic equations:

dZX(t) =
(︂
− 3σ2VX(t)− 3µX(t)2 + 1−αθ11 − (1−α)θ12

)︂
ZX(t)dt + dW1(t)

dZY (t) =
(︂
− 3σ2VY (t)− 3µY (t)2 + 1−αθ21 − (1−α)θ22

)︂
ZY (t)dt + dW2(t)

ZX(0) = ZY (0) = 0

(3.31)

They are both Gauss Markov with zero mean and such that Var[ZX(t)] = VX(t) and
Var[ZY (t)] = VY (t) for all t ∈ [0,T ]; they are also well-defined, since the solution of
(3.27) is unique.

Part 3: σ -closedness.
Define the two processes:

˜︁X(t) := µX(t) + σZX(t) ˜︁Y (t) := µY (t) + σZY (t) for all t ∈ [0,T ];

They both are Gaussian Markov processes, with the respective means µX(t),µY (t)
and variances νX = σ2VX ,νY = σ2VY that satisfy system (3.30). This also imply
they solve the first two moments equations: (3.25) and (3.26). So we proved the
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first statement of the theorem.
Now, we consider the following trivial inequality:

E

⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

{︄⃓⃓⃓⃓
X(t)− ˜︁X(t)

⃓⃓⃓⃓
+
⃓⃓⃓⃓
Y (t)− ˜︁Y (t)

⃓⃓⃓⃓ }︄⎤⎥⎥⎥⎥⎥⎦ ≤E[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
X(t)− ˜︁X(t)

⃓⃓⃓⃓ ]︄
+E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
Y (t)− ˜︁Y (t)

⃓⃓⃓⃓ ]︄
.

(3.32)

To conclude the proof of the theorem, it is sufficient to find an upper bound for
the right-hand side terms.
So, by construction we have that:

d˜︁Xt =dµX(t) + σdZX(t)

=
[︂
−µX(t)3 +µX(t)

(︂
1− 3σ2VX(t)

)︂
− (1−α)θ12

(︂
µX(t)−µY (t)

)︂]︂
dt

+ σZX(t)
[︂
− 3σ2VX(t)− 3µX(t)2 + 1−αθ11 − (1−α)θ12

]︂
dt + σdW1(t)

=
[︂
1− 3σ2VX(t)− (1−α)θ12

]︂(︂
µX(t) + σZX(t)

)︂
dt +

[︂
−µX(t)3 − 3σZX(t)µX(t)2

]︂
dt

+
[︂
(1−α)θ12µY (t)−αθ11σZX(t)

]︂
dt + σdW1(t)

=
[︃(︂

1− 3σ2VX(t)− (1−α)θ12

)︂ ˜︁Xt − ˜︁X3
t + σ3ZX(t)3 + 3σ2ZX(t)2µX(t)

]︃
dt

+
[︂
(1−α)θ12µY (t)−αθ11σZX(t)

]︂
dt + σdW1(t);

(3.33)

we used the identity (a+b)3 = a3+3a2b+3ab2+b3. Following the same computations
we obtain also:

d˜︁Yt = ... =
[︃(︂

1− 3σ2VY (t)−αθ21

)︂ ˜︁Yt − ˜︁Y 3
t + σ3ZY (t)3 + 3σ2ZY (t)2µY (t)

]︃
dt

+
[︂
αθ21µY (t)− (1−α)θ22σZY (t)

]︂
dt + σdW2(t).

(3.34)

Then, we can look at their integral equations. For ˜︁Xt, we have:

X(t)− ˜︁X(t) =
∫︂ t

0

(︂
X(s)− ˜︁X(s)

)︂[︂
1− f (s)−αθ11 − (1−α)θ12

]︂
ds

− σ2
∫︂ t

0

(︂
σZX(s)3 + 3µX(s)ZX(s)2 − 3µX(s)VX(s)− 3σVX(s)ZX(s)

)︂
ds;

recall that E[Xt] = µX(t) = E[˜︁Xt], since they solve the same equations. We used
f (t) = X(t)2 +X(t)˜︁X(t) + ˜︁X(t)2.
Again, the above equation is of the formφ(t) =

∫︁ t
0 φ(s)H(s)ds+

∫︁ t
0 Q(s)ds, withφ(t) =
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X(t)− ˜︁X(t). So, as φ(0) = 0, the solution is φ(t) =
∫︁ t

0 Q(s)e
∫︁ t
s
H(r)drds, with:

H(t) = 1− f (t)−αθ11 − (1−α)θ12

Q(t) = −σ2
(︂
σZX(t)3 + 3µX(t)ZX(t)2 − 3µX(t)VX(t)− 3σVX(t)ZX(t)

)︂
So, we have the inequality:⃓⃓⃓⃓

X(t)− ˜︁X(t)
⃓⃓⃓⃓
≤

∫︂ t

0

⃓⃓⃓
Q(s)

⃓⃓⃓
e
∫︁ t
s

1−f (r)−αθ11−(1−α)θ12 dr ds

and, therefore,

E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
X(t)− ˜︁X(t)

⃓⃓⃓⃓ ]︄
≤ E

[︄
sup
t∈[0,T ]

∫︂ t

0

⃓⃓⃓
Q(s)

⃓⃓⃓
e
∫︁ t
s

1−f (r)−αθ11−(1−α)θ12 dr ds

]︄
≤ E

[︄∫︂ T

0

⃓⃓⃓
Q(s)

⃓⃓⃓
sup
t∈[0,T ]

e
∫︁ t
s

1−f (r)−αθ11−(1−α)θ12 dr ds

]︄
≤ CT

∫︂ T

0
E

[︂⃓⃓⃓
Q(s)

⃓⃓⃓ ]︂
ds

Now, since Q(s) is polynomial function of a Gauss Markov process, it has a time-
local finite L1-norm. Furthermore we can define ˜︁Q(s) := σ2Q(s), and the last term
of the above inequality can be bounded by the constant ˜︁CT σ2. Everything said can
be applied in the same way to prove it holds that:

E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
Y (t)− ˜︁Y (t)

⃓⃓⃓⃓ ]︄
≤ ˜︁DT σ2

for some positive constant ˜︁DT . All of this proves the second statement of the the-
orem and concludes the proof.

3.6. Occuring of a Hopf bifurcation

This section concludes our study of the model. Here we reduce our analysis to a four
dimension dynamical system. With the help of bifurcation theory, we provide the re-
sults that motivates the observations made in the numerical simulations.

In the proof of the theorem C we constructed a pair of Gauss-Markov processes,{︃(︂˜︁Xt ,˜︁Yt)︂ ;0 ≤ t ≤ T
}︃
, that closely follows the solution of the system (1.2). These pro-

cesses are σ -closed to the solution of (1.2) and their respective mean and variance
functions

(︂
µX(t),µY (t),νX(t),νY (t)

)︂
solve the system of differential equations (3.27):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̇X = −µ3
X +µX(1− 3νX)−A(µX −µX)

µ̇Y = −µ3
Y +µY (1− 3νY ) +B(µY −µX)

ν̇X = −6ν2
X − 6µ2

XνX + 2νX − 2αθ11νX + 2AνX + σ2

ν̇Y = −6ν2
Y − 6µ2

XνY + 2νY + 2BνY − 2(1−α)θ22νY + σ2

(3.27)

57



Chapter 3. Noise-induced periodicity: illustration of the results

Since the equations above completely describe the processes ˜︁Xt and ˜︁Yt, we can focus on
the study of the system (3.27) to have a sufficiently good approximation of the solution
to the model (1.2), which is the macroscopic limit of our model.

Result For fixed values θ11,θ22,A,B, considered in this work, the dynamical system
(3.27) displays a Hopf bifurcation at the equilibrium point(︂

µX ,µX ,νX ,νX
)︂

=
(︂
0,0,νA,B1 ,νA,B2

)︂
with a critical value ˜︁σA,B of the noise parameter.
We recall that a Hopf bifurcation occurs whenever a fixed point of a dynamical system
loses stability, as a pair of complex conjugate eigenvalues (of the linearization around
the fixed point) crosses the imaginary axis of the complex plane.

Consider the vector field of the system (3.27):

F(µX ,µY ,νX ,νY ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−µ3

X +µX(1− 3νX)−A(µX −µX)
−µ3

Y +µY (1− 3νY ) +B(µY −µX)
−6ν2

X − 6µ2
XνX + 2νX − 2αθ11νX + 2AνX + σ2

−6ν2
Y − 6µ2

XνY + 2νY + 2BνY − 2(1−α)θ22νY + σ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with the noise-parameter σ . For F( · ,σ ) we find the equilibrium point:

(︂
0,0,νA,B1 ,νA,B2

)︂
=

⎛⎜⎜⎜⎜⎝0,0,
1
6

(︄√︂
(A+ 3)2 + 6σ2 −A− 3

)︄
,
1
6

(︄√︂
(B− 3)2 + 6σ2 +B− 3

)︄⎞⎟⎟⎟⎟⎠ ;

and the linearized system DF
(︃(︂

0,0,νA,B1 ,νA,B2

)︂
,σ

)︃
, given by the Jacobian matrix:

JA,B(σ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−A− 3νA,B1 + 1 A 0 0

−B B− 3νA,B2 0 0
0 0 −2A− 12νA,B1 − 6 0
0 0 0 2B− 12νA,B2 − 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix JA,B(σ ) has the eigenvalues:

λA,B1 (σ ) = −2
√
A2 + 6A+ 6σ2 + 9

λA,B2 (σ ) = −2
√
B2 − 6B+ 6σ2 + 9,

and

λA,B3 (σ ) =
1
4

⎧⎪⎪⎨⎪⎪⎩−√︂
(A+ 3)2 + 6σ2 −A−

√︂
(B− 3)2 + 6σ2 +B+ 10

−
√

2
[︄
A2 +A

(︄√︂
(A+ 3)2 + 6σ2 −

√︂
(B− 3)2 + 6σ2 − 7B+ 3

)︄
−
(︄√︂

(B− 3)2 + 6σ2 −B
)︄(︄√︂

(A+ 3)2 + 6σ2 +B
)︄
− 3B+ 6σ2 + 9

]︄ 1
2
⎫⎪⎪⎬⎪⎪⎭
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Figure 3.8: The figures displays the behaviour of the eigenvalues λA,B3 and λA,B4 (the real part
in blue and in orange the absolute value of the imaginary part) as the values of the parameter
σ change, in the three cases: i) A = 2,B = 2.5, ii) A = 2,B = 4 and iii) A = 2,B = 7. The red
line represent, in each case, the threshold, i.e. the value of σ at which the eigenvalues cross the
imaginary axis: ˜︁σ2,2.5 ≈ 1.65, ˜︁σ2,4 ≈ 2 and ˜︁σ2,7 ≈ 2.45; while the thin black ones represent, in
each case, the values for which we computed the simulations in Fig. 3.11. All the results were
obtained numerically using the software Mathematica

λA,B4 (σ ) =
1
4

⎧⎪⎪⎨⎪⎪⎩−√︂
(A+ 3)2 + 6σ2 −A−

√︂
(B− 3)2 + 6σ2 +B+ 10

+
√

2
[︄
A2 +A

(︄√︂
(A+ 3)2 + 6σ2 −

√︂
(B− 3)2 + 6σ2 − 7B+ 3

)︄
−
(︄√︂

(B− 3)2 + 6σ2 −B
)︄(︄√︂

(A+ 3)2 + 6σ2 +B
)︄
− 3B+ 6σ2 + 9

]︄ 1
2
⎫⎪⎪⎬⎪⎪⎭

In the three cases considered in this study
(︂
i) A = 2,B = 2.5, ii) A = 2,B = 4 and iii)

A = 2,B = 7; θ11 = θ22 = 8
)︂
, λA,B1 ,λA,B2 are non-zero for σ > 0. Moreover, λA,B3 and λA,B4

are complexes conjugate numbers. Fig. 3.8 represents the behaviour of them in the
three different choices of A and B, respect to the noise’s parameter changes. We can see
that, in each case, the eigenvalues have a threshold ˜︁σA,B for which the system stability
changes as we cross it. We have ˜︁σ2,2.5 ≈ 1.65, ˜︁σ2,4 ≈ 2 and ˜︁σ2,7 ≈ 2.45. Therefore the
conditions for the Hopf bifurcation are satisfied, which proves the presence of a limit
cycle.

The Fig. 3.8 shows that in all the three cases, the equilibrium point
(︂
0,0,νA,B1 ,νA,B2

)︂
changes its nature from stable to unstable, as the noise decrease and the real part of
λA,B3 ,λA,B4 becomes positive (λA,B1 ,λA,B2 are always negative for every σ > 0). This suggest
the presence of a stable limit cycle. We computed numerical simulations of system
(3.27) that prove the occurring of a Hopf bifurcation in all the cases considered and
the presence of a stable limit cycle for an intermediate range of values of the noise. In
Fig. 3.11 we analyze the results. For completeness we also show in Fig. 3.9 the cases
σ = 0 and σ = 5.
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Figure 3.9: Dynamics of system (3.27) when σ = 0 and σ = 5. The figure display trajectories of
µX(t) and µY (t) during the numerical simulations of the system (3.27). For these we used the
Euler method. In the first row we plotted the simulations for σ = 0 and σ = 5 for the second
row. Each column represent respectively: first A = 2,B = 2.5, second A = 2,B = 4 and third
A = 2,B = 7.

To complete the study, in Fig. 3.10 we simulated the behaviour of the system (3.27)
with the same choices of the parameters A,B,σ as Fig. 3.4. Our analysis shows that
the behaviour of our model 1.1 is qualitatively well described by the the Gaussian
approximation given by (3.27), which drives its robust, self-sustained, periodic rhythm.
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M.r.t. of µY (t) ≈ 20.69 M.r.t. of µY (t) ≈ 29.26 M.r.t. of µY (t) ≈ 11.76

Figure 3.10: The figure shows numerical simulations of the system (3.27), in three parameters
cases: A = 2, B = 2.5, σ = 0.5 first column, A = 2, B = 4, σ = 0.1 for the second and A =
2, B = 4, σ = 0.6 for the third. On the top we plotted the path of

(︂
µX(t),µY (t)

)︂
, while under

the trajectory of each variable. We ran the simulations using the Euler method, with the same
choice for the constants as in Fig. 3.4, with the same time step dt = 0.005, for 106 iterations.
We computed also the mean return time (M.r.t.)to the Poincaré section

{︂
µX(t) > 0,µY (t) = 0

}︂
for

the trajectory t ↦→ µY (t).
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σ = 1.45

σ = 1.45 σ = 1.7

σ = 1.7

σ = 1.8

σ = 1.8 σ = 2.05

σ = 2.05

σ = 2.25

σ = 2.25 σ = 2.8

σ = 2.8

Figure 3.11: We ran numerical simulations of the system (3.27), to prove the occurring of an
Hopf bifurcation at the equilibrium point

(︂
0,0,νA,B1 ,νA,B2

)︂
, and the rise of a stable limit cycle.

From top to bottom in each row we have the three cases: i) A = 2,B = 2.5, ii) A = 2,B = 4 and iii)
A = 2,B = 7. In each row we plotted the trajectory t ↦→ (µX(t),µY (t)) as well as the time evolution
of the 4 dimensional vector

(︂
µX(t),µy(t),νX(t),νY (t)

)︂
. We choose in each case two values of σ ,

that are from opposite sides of the threshold ˜︁σA,B. We recall that: ˜︁σ2,2.5 ≈ 1.65, ˜︁σ2,4 ≈ 2 and˜︁σ2,7 ≈ 2.45. We can clearly see the presence of stable limit cycles in each case. The simulations
were run with the Euler method, with a time step dt = 0.005 for 106 steps, using he software
Mathematica.
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Conclusions

In this thesis we investigated the emergence of collective periodic behaviours in a frus-
trated network of interacting diffusion particles. In particular, we were interested in
the role of the noise as equilibrium-breaking element and, thus, as an essential compo-
nent, for the model considered in this thesis, to develop self-sustained periodicities.

In our view, the emergence of periodic motions in the model can be explained as
follows. If we imagine to start with two independent communities, that is, particles
evolve according to system (1.1) with θ12 = θ21 = 0. When the interaction constants θ11
and θ22 are positive and large enough, each population tends to its own equilibrium. In
this case a well description is found in [5]. However, as soon as the two populations are
linked together within a interaction network, with θ12θ21 < 0, dynamical frustration
is generated between the two populations. If σ > 0 and large enough, diffusion in
enhanced and the interaction terms start to play a significant role. Indeed the rest
state of the first community is not compatible with the rest position of the second.
Thus, as a consequence, the dynamics does not settle down to a fixed equilibrium and
keeps oscillating. While, when σ = 0 and all the particles in a same population share
the same initial condition (as in the simulations), the system is attracted to a critical

point where x(N )
i = y(N )

j = m(N )
1 = m(N )

2 for all i = 1, ...,N1 and j = 1, ...,N2 and, thus, the
interaction’s terms in (1.1) vanish. This makes noise responsible for the emergence of a
stable periodic rhythm and, hence, the occurring of the phenomenon of noise-induced
periodicity.

In particular we argued that oscillations appear for an intermediate amount of noise.
Our analysis goes as follows. First, we derive the large volume limit of the system and
show that it has no periodic behaviour in absence of noise. Second, we increase noise
and study our system trough numerical simulations. Such simulations shows clearly
that self-organized periodic behaviour appear for an intermediate size of the noise to
disappear when the noise is too large. Finally, to explain rigorously observed behaviour
we prove a small noise approximation. We reduce the system of interest to a system of
ODEs for the time evolution of the means and the variances of the two communities.
For this system we are able to prove there is a Hopf bifurcation, which explain at least
qualitatively the result of numerical simulations.
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Appendix A

Code

A.1. Euler’s algorithm for SDEs

Consider the one-dimensional ordinary differential equation ẋ = A(x , t) with initial
conditions x(0) = x0 in the time interval [0 ,1]. Let’s choose our step size h and the
number of iteration we want to perform N , which define the grid points thn := nh,0 ≤
n ≤N . Then a numerical solution xh can be found with the following inductive scheme:

xh(0) = x0 xhn+1 = xhn + A(xhn , t
h
n)h

Let’s consider now the stochastic differential equation

dX(t) = A(X(t), t)dt + B(X(t), t)dW (t) (A.1)

with initial conditions X(0) = X0, where {W (t)}t≥0 is the standard Brownian motion.
The meaning of (A.1) is

X(t) = X0 +
∫︂ t

0
A(X(s), s)ds+

∫︂ t

0
B(X(s), s)dW (s) t ≥ 0 (A.2)

where the second integral has to be interpreted in the Itô sense, while the first one is
a standard integral. Like before, with the step-size h and the number of iterations we
construct the grid points thn := nh. We recall that, since {W (t)}t≥0 is a Brownian motion,
W (t) −W (s) are independent normal distribution for every t ≥ s ≥ 0: W (t) −W (s) ∼
N (0, t − s). Therefore, ∆hnW :=W (thn)−W (thn−1) are i.i.d. N (0,h). So, we can implement
a numerical solution Xh to (A.1):

Xh(0) = X0 Xhn+1 = Xhn + A(Xhn , t
h
n)h+ B(Xhn , t

h
n)∆hnW

The following Mathematica script uses this method to find a numerical solution to the
system (1.1).
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Appendix A. Code

Mathematica Session

In[1]:= sdesim[n1 ,n2 ,α ,θ ,dt , iter ,σ ,z0 ] := Module[{m1m2k ,cix ,ciy ,avg ,
ci ,sim} ,

cix = Table[z0⟦1⟧ , {i ,1 ,n1}];
ciy = Table[z0⟦2⟧ , {i ,1 ,n2}];
ci = {cix ,ciy}; avg = {}; m1m2k = {};

fx[x ,m1 ,m2 ] := −x3 + x −αθ⟦1 ,1⟧(x −m1)− (1−α)θ⟦1 ,2⟧(x −m2);
fy[y ,m1 ,m2 ] := −y3 + y −αθ⟦2 ,1⟧(y −m1)− (1−α)θ⟦2 ,2⟧(y −m2);
F[z ] := Module[{m1 ,m2} ,

m1 = Mean[z⟦1⟧];m2 = Mean[z⟦1⟧];
AppendTo[m1m2k , {m1 ,m2}];{︂
fx[z⟦1⟧ ,m1 ,m2] ,fy[z⟦2⟧ ,m1 ,m2]

}︂
];

AlgEulero[h ][z ] := z +hF[z] +

σ
{︃

RandomVariate[NormalDistribution[0 ,
√
h] ,n1] ,

}︃
{︃

RandomVariate[NormalDistribution[0 ,
√
h] ,n2]

}︃
;

Monitor[Do[
Clear[sim];

sim = NestList
[︄
AlgEulero[dt] ,ci ,

iter
100

]︄
;

AppendTo[avg ,m1m2k];
m1m2k = {}; ci = sim⟦−1⟧ ,
{n ,100}] ,ProgressIndicator[n , {1 ,100}]

];
Flatten[avg ,1]
]
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[11] Eric Luçon and Christophe Poquet. “Periodicity induced by noise and interaction
in the kinetic mean-field FitzHugh–Nagumo model”. In: The Annals of Applied
Probability 31.2 (2021), pp. 561–593. doi: 10.1214/20-AAP1598. url: https:
//doi.org/10.1214/20-AAP1598.

[12] Elisa Marini et al. “Noise-induced periodicity in a frustrated network of interact-
ing diffusions”. In: Nonlinear Differential Equations and Applications NoDEA 30.3
(Feb. 2023), p. 34. issn: 1420-9004. doi: 10.1007/s00030-022-00839-3. url:
https://doi.org/10.1007/s00030-022-00839-3.

[13] B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Universitext. Springer Berlin Heidelberg, 2010. isbn: 9783642143946. url: https:
//books.google.it/books?id=EQZEAAAAQBAJ.

[14] Lawrence Perko. Differential Equations and Dynamical Systems. Springer, 2001.

[15] Michael Scheutzow. “Noise can create periodic behavior and stabilize nonlinear
diffusions”. In: Stochastic Processes and their Applications 20.2 (1985), pp. 323–
331. issn: 0304-4149. doi: https://doi.org/10.1016/0304-4149(85)90219-4.
url: https://www.sciencedirect.com/science/article/pii/0304414985902194.

[16] Michael Scheutzow. “Some Examples of Nonlinear Diffusion Processes Having a
Time-Periodic Law”. In: The Annals of Probability 13.2 (1985), pp. 379–384. doi:
10.1214/aop/1176992997. url: https://doi.org/10.1214/aop/1176992997.

[17] Edward Wallace et al. “Emergent Oscillations in Networks of Stochastic Spiking
Neurons”. In: PLOS ONE 6.5 (May 2011), pp. 1–16. doi: 10.1371/journal.
pone.0014804. url: https://doi.org/10.1371/journal.pone.0014804.

70

https://doi.org/10.1214/20-AAP1598
https://doi.org/10.1214/20-AAP1598
https://doi.org/10.1214/20-AAP1598
https://doi.org/10.1007/s00030-022-00839-3
https://doi.org/10.1007/s00030-022-00839-3
https://books.google.it/books?id=EQZEAAAAQBAJ
https://books.google.it/books?id=EQZEAAAAQBAJ
https://doi.org/https://doi.org/10.1016/0304-4149(85)90219-4
https://www.sciencedirect.com/science/article/pii/0304414985902194
https://doi.org/10.1214/aop/1176992997
https://doi.org/10.1214/aop/1176992997
https://doi.org/10.1371/journal.pone.0014804
https://doi.org/10.1371/journal.pone.0014804
https://doi.org/10.1371/journal.pone.0014804



	Introduction
	Description of the model and outline of the results
	The model as a finite-size system of interacting diffusions
	Noise-induced periodicity: synopsis of the study

	Mathematical background
	Basics on diffusion processes
	Diffusions as Markov processes
	The Wiener process
	Diffusion processes as solution to stochastic differential equations
	Itô Stochastic Calculus

	Stochastic mean-field dynamics and propagation of chaos
	A first example
	Propagation of chaos for interacting systems

	Limit cycle from a Hopf bifurcation
	An application: The Fitzhugh-Nagumo model for neurons

	Noise-induced periodicity: illustration of the results
	Preliminary study of the model
	Numerical simulations of the finite-size system

	Well-posedness of the macroscopic limit
	Propagation of chaos in the model
	Noiseless dynamic of the macroscopic limit
	Equilibrium points of the system

	Small noise approximations of the macroscopic limit
	Occuring of a Hopf bifurcation

	Conclusions
	Code
	Euler's algorithm for SDEs

	Bibliography

