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Introduction

During the last years techniques from Algebraic Topology have been applied
to a variety of fields ranging from data analysis (30) to the construction of
numerical methods for PDE’s (28).
In this thesis we will focus on this second kind of application. In particular we
will deal with spaces (manifolds) which admits a "triangularization" and then
we will use the combinatoric of the data to deal with the problems. In fact we
will show how to create a model that solves a Poisson problem in dimension 2:
we will translate the smooth geometric techniques of Differential Geometry in
discrete form via Combinatorical Algebraic Topology .
The methods that we study go under the name of "cell methods", and have
been used mostly in computational electromagnetism (32; 33). In this frame-
work one uses the identification between de Rham and simplicial cohomology
and then in this way interpretates differential forms in terms of co-chains in the
simplicial setting. As a dividend of such a construction it is possible to write a
set of algebraic equations that representes the laws of nature (this construction
is explained in the third chapter of (32) for the case of Maxwell’s equations).
One of the paradigms of this method is the necessity of introducing two different
meshes that are oriented in a different way in order to discretize "natural " and
"twisted" differential forms (the difference between these two kinds of differen-
tial forms consists of the fact that the latter changes sign when the orientation
of the space changes while the former does not, motivations for the introduction
of the "twisted" differential forms can be found in (27; 32; 33; 34)). This
approach although gives a precise description of the physical quantities has a
drawback from the computational point of view. This is due to the fact that
the dual mesh gives not rise to a simplicial complex and so it is not possible to
build the Whitney forms on it.
What we propose in this thesis is an approach to the cell method based on a
single mesh. We show that it is possible to find a discrete counter part of all
the smooth operators working just on one mesh. We find converge results for
the discrete operators although we notice that the definition of the Hodge star
operator is problematic from a computational point of view since it involves a
non perfect pairing (3.2.0.3).
The thesis is divided in three chapters:
•) In the first chapter we recall the mathematical background needed in the rest
of the thesis. We introduce the concepts of (co)homology and duality, and in
the last paragraph we define some concept of Riemannian Geometry that we
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will need later on.
•) In the second chapter we will propose an extension of Wilson’s work (23) to
manifold with boundary. Wilson has introduced a discrete interpretation of the
differential constructions as Hodge operator and codifferential which we have
introduced in chapter 1 once the manifold has a simplicial structure. We will
extend his work to the manifold with boundary and we prove that the operators
that we define in the discrete setting converges to the smooth ones when mesh
goes to zero.
•) In the last chapter we describe a model to solve a Poisson problem in di-
mension 2 (which later we have found to be equivalent to that one described
in (31)). We test it on a problem of which we know the exact solution and
we prove that the approximate solution converges to the analytic solution when
the mesh goes to 0. Moreover we compare our result with the one given by the
Matlab function "AssemPde" and we see that the convergence rates of the two
methods are the same.
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1 Mathematical Background

In this chapter, I will briefly present all the basic concepts that we will need
during the rest of the thesis.
I will often skip the proofs, but in those cases, I will indicate some reference
where it is possible to find them.

1.1 A Glimpse on Category Theory and Homological al-
gebra

We can say (co)homology theory is a way to associate to some topological
space a sequence of abelian grups, in such a way that these associations respects
a "natural" set of rules.
In order to make this definition formal we need a framework in which we can
work, for this reason in this paragraph we will briefly introduce the basic notions
of Category theory and Homological Algebra.
Main references for this paragraph are (9; 13).

Definition 1.1.0.1. A category C is made by A class of objects Ob(C) and for
every X,Y ∈ Ob(C) a set of morphisms that satisfies the following composition
law ” ◦ ”:
∀f ∈ HomC(X,Y ) and ∀g ∈ HomC(Y,Z) ∃! g ◦ f ∈ HomC(X,Z) such that
the composition operation is associative and ∀X ∈ Ob(C), ∃!1X ∈ HomC(X,X)

such that f ◦ 1X = f ∀f : X → Y and 1X ◦ g = g ∀g : Y → X.

Example 1.1.0.2. The simpler example of category is Set where the elements
are sets and morphisms are morphisms between sets.
Other useful categories are:
1) Top where the objects are topological spaces and the morphisms are continu-
ous maps.
2) R−Mod where R is a ring, the elements are left R modules and the mor-
phisms are R-linear maps.
3) Ab where, the elements are abelian groups and the morphisms are group
morphisms.

Remark 1.1.0.3. Most of the notion that we will define are not defined in
every category, so during the whole section we suppose that all the categories
are Abelian.
The definition of Abelian Category can be found in (13), Definition A.4.2.
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Definition 1.1.0.4. A covariant functor F between two categories C and D
associate to each C ∈ Ob(C) a unique element F (C) ∈ Ob(D) and ∀f ∈
HomC(X,Y ) a unique element F (f) ∈ HomD(F (X), F (Y )(a functor is said
to be contravariant if F (f) ∈ HomD(F (Y ), F (X)).

Definition 1.1.0.5. A congruence in a category C is an equivalence relation on
HomC(X,Y ) ∀X,Y ∈ Ob(C) such that if f ∼ f ′ in HomC(X,Y ) and g ∼ g′ in
HomC(Y,Z) then g ◦ f ∼ g′ ◦ f ′ in HomC(X,Z).

Example 1.1.0.6. The most important example of congruence in a category is
the homotopy relation in Top.
Two maps f, g : X → Y are homotopic if exists F : X × I → Y such that
F (−0) = f and F (−, 1) = g, where I = [0, 1]. Moreover if there are two maps
f : X → Y and g : Y → X such that f ◦ g ∼ IdY and g ◦ f ∼ IdX then
the spaces X and Y are said to be homotopic. hTop is the category that has
topological spaces as objects and HomhTop(X,Y ) = HomTop(X,Y )/ ∼ where ∼
is the homotopy relation.

Definition 1.1.0.7. An exact sequence in a category C is composed by a set
of objects {Ci}i∈Z and a set of morphisms {fi : Ci → Ci+1}i∈Z such that
Im(fi) = Ker(fi+1).
A short exact sequence is an exact sequence of the shape:

0 −→ A
f−→ B

g−→ C → 0 (1)

Definition 1.1.0.8. A chain complex over a category C is a pair (Xi, di)i∈Z

where Xi ∈ Ob(C) and di : Xi → Xi−1 such that di−1 ◦ di = 0.
A morphism between two complexes (Xi, d

X
i )i∈Z and (Yi, d

Y
i )i∈Z is given by a

sequence of morphisms φi : Xi → Yi such that φi−1 ◦ dXi = dyi ◦ φi i.e the fol-
lowing diagram is commutative:

... Xi Xi−1 ...

... Yi Yi−1 ...

dXi+1 dXi

φi

dXi−1

φi−1

dYi+1 dYi dYi−1

(2)

Definition 1.1.0.9. Given a chain complex (Xi, di) over a category C the nth

homology of the complex is Hn(X∗) = Ker(dn)
Im(dn+1) ∈ C.

Lemma 1.1.0.10. Any morphism of complexes induces naturally a morphisms
between the homology groups of the complexes.
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Proof. Let φ∗ : X∗ → Y∗ be a morphism of complexes it’s enough to prove that:
1) Let a ∈ ker(dXn ) then φn(a) ∈ ker(dYn ) .
2) Let b ∈ Im(dXn+1) then φn(b) ∈ Im(dYn+1).
The commutativity of the diagram (2) implies that dYn (φn(a)) = φn(dXn (a)) = 0

and this proves 1.
Take c ∈ Xn+1 such that dXn+1(c) = b then dYn+1(φn+1(c)) = φn+1(dXn+1(c)) =

= φ(b) and this proves 2.

Theorem 1.1.0.11 (Zig-Zag lemma). Any time we have a short exact sequence
of morphism:

0→ X∗ → Y∗ → Z∗ → 0 (3)

we will have a long exact sequnce in homology of the shape:

..→ Hn(X∗)→ Hn(Y∗)→ Hn(Z∗)
δ−→ Hn−1(X∗)→ ... (4)

and the morphisms δ are called connecting morphisms.

Proof. Theorem 1.3.1 in (13).

Proposition 1.1.0.12. A morphism between two short exact sequences of chain
complexes:

0 A∗ B∗ C∗ 0

0 X∗ Y∗ Z∗ 0

α

f

β

g h

α′ β′

(5)

induces a commutative diagram on the homology groups of the shape:

... Hn(A∗) Hn(B∗) Hn(C∗) Hn−1(A∗) ...

... Hn(X∗) Hn(Y∗) Hn(Z∗) Hn−1(X∗) ...

Hn(f) Hn(g) Hn(h) Hn(f)

(6)

Proof. Proposition 1.3.4 in (13).

Remark 1.1.0.13. The notion of chain complex have a natural dual that is the
notion of cochain complex, the latter is defined in the same of the former with
the only difference that the arrows are reversed i.e δn : Xn → Xn+1, in this case
we define the cohomology groups of the cochain complex as Hn(X∗) = Ker(δn)

Im(δn+1) ,
of course the same theorems above hold with the only caution of reversing the
arrows.
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1.2 (Co)Homology Theories

Now that we have a formal framework in which we can we work, we can
define the (co)homology theories that we will need during the thesis, these
theories will be defined as sequences of (contra)covariant functors from some
category of topological spaces to Ab.
Main references for this paragraph are (5; 10; 6).

1.2.1 Simplicial Complexes

Simplexes and simplicial complexes are crucial tools both for Simplicial and
Singular (co)homology theories, for this reason this section will be used to in-
troduce these objects and to explain their fundamental properties.

Definition 1.2.1.1 (Convex envelope). The convex envelope of the points p0, ..., pk

in RN with k ≤ N is the set of points {
k∑
i=0

λipi|
k∑
i=0

λi = 1, λi ≥ 0} and it is

denoted by [p0, ..., pk]

Definition 1.2.1.2. The points {v0, .., vk} in RN are affine independent if
{v1− v0, .., vk − v0} are linearly independent, in this case they span a k-simplex
s = [v0, ..., vk], and the {v1 − v0, .., vk − v0} is the set of vertices of s and it is
denoted by V ert(s).

Remark 1.2.1.3. The concept of simplex is easy to visualize in fact for k = 0

it is a point, for k = 1 it is a line segment, for k = 2 it is a triangle, for k = 3

it is a tetrahedron and so on..

Figure 1: 0,1,2,3-simplexes.

Notation 1.2.1.4. If s = [v0, .., vk] is a simplex :
k is the dimensions of s.
A face of s is a simplex s′ such that V ert(s′) ⊂ V ert(s) in this case we write
s′ ≤ s, if V ert(s′) ( V ert(s) s′ is a proper face of s and we write s′ � s.
The union of the proper faces of s is the boundary of s and it is denoted by
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Bd(s).
The interior of s is denoted by Int(s) and it is the complement is s of the
boundary, sometimes it is called an open simplex.

Definition 1.2.1.5 (Simplicial Complex). A simplicial complex K is a collec-
tion of simplexes in some euclidean space such that:
1) if s ∈ K, then every face of s also belongs to K.
2) if s, t ∈ K then s ∩ t is either empty or a common face of s and t.
We write V ert(K) to denote the vertices set of K and |K| is the union of all
the simplexes in K and it is called "polytope pf K".

Figure 2: K1,K2,K4 are simplicial complexes while K3 is not.

Definition 1.2.1.6 (Subcomplex). If L is a subcollection of K that contains all
faces of its elements, then L is a simplicial complex in its own right; it is called
a subcomplex of K. One subcomplex of K is the collection of all simplexes of
K of dimension at most p; it is called the p-skeleton of K and is denoted K(p).
Clearly K(0) = V ert(K).

Definition 1.2.1.7 (Trinagulation). A topological space X is a polyhedron if
there exists a simplicial complex K and a homemorphism h : |K| → X. The
ordered pair (K,h) is called a triangulation of X.

Definition 1.2.1.8 (Star of a simplex). If σ is a simplex of K, the star of σ
in K, denoted by St(σ,K), is the union of the interiors of those simplexes of K
that have σ as a face. Its closure, denoted St(σ,K), is called the closed star of
σ in K. It is the union of all simplexes of K having σ as a vertex, and is the
polytope of a subcomplex of K. The set St(σ,K) \ St(σ,K) is called the link of
σ in K and is denoted Lk(σ,K) (When the simplicial complex is clear from the
context the K is removed from the notation).

Definition 1.2.1.9 (Simplicial map). Let K and L be simplicial complexes. A
simplicial map φ : k → L is function φ : V ert(K) → V ert(L) such that any
time {p0, .., pk} spans a simplex in K then {φ(p0), .., φ(pk)} spans a simplex in
L.

10



Figure 3: Triangulation of a torus

Theorem 1.2.1.10. If K consists of all simplicial complexes and all simplicial
maps (with usual composition), then it is a category, and underlying defines a
functor | | : K → Top.

Proof. Theorem 7.2 in (10).

Definition 1.2.1.11 (Orientation). An oriented simplicial complex K is a sim-
plicial complex with a partial order on V ert(K) whose restriction to the vertices
of any simplex in K is a total order.

Definition 1.2.1.12 (Subdivision). Let K be a simplicial complex. A simplicial
complex K ′ is said to be a subdivision if :
1) Each simplex of K ′ is contained in a simplex of K.
2) Each simplex of K equals the union of finitely many simplexes of K ′.
These conditions trivially imply that |K| = |K ′|.

Definition 1.2.1.13 (Cone). Suppose that K is a simplicial complex in Rl,
and w is a point of Rl such that each ray emanating from w intersects |K| in at
most one point. We define the cone on K with vertex w to be the collection of
all simplexes of the form [w, a0, .., ap], where [a0, ..., ap] is a simplex of K, along
with all faces of such simplexes. We denote this collection w ∗K.

Definition 1.2.1.14. Let K be a complex; suppose that Lp, is a subdivision
of the p-skeleton of K. Let σ be a p + 1-simplex of K. The set Bd(σ) is the
polytope of a subcomplex of the p-skeleton of K, and hence of a subcomplex of
Lp; we denote the latter subcomplex by Lσ. If wσ, is an interior point of σ, then
the cone wσ ∗Lσ is a simplicial complex whose underlying space is σ. We define
Lp+1 , to be the union of Lp, and the complexes wσ ∗ Lσ , as σ ranges over all
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Figure 4: Cone of a vertex along an edge.

p+ 1-simplexes of K. Can be shown that Lp+1, is a complex; it is said to be the
subdivision of Kp+1 obtained by starring Lp from the points wσ.

Definition 1.2.1.15 (Barycenter). If σ = [v0, .., vp], the barycenter of σ is

σ̂ =

p∑
i=0

1

p+ 1
vi.

Lemma 1.2.1.16. If K is a complex, then the intersection of any collection of
subcomplexes of K is a subcomplex of K. Conversely, if Kα is a collection of
complexes in Rl, and if the intersection of every pair |Kα| ∩ |Kβ | is the polytope
of a simplicial complex that is a subcomplex of both Kα and Kβ, then the union⋃
αKα is a complex.

Proof. If {Kα} is a collection of subcomplexes of K then for every s, t ∈
⋂
Kα

then all their faces are in
⋂
Kα and since s∩ t is a common face in every Kα it

is a common face in
⋂
Kα and this proves the first part of the lemma.

If s ∈
⋃
αKα then in particular s ∈ Kα for some α so all the faces of s are

in
⋃
αKα, moreover if s, t ∈

⋃
αKα then if the they belong to the same Kα

trivially they intersect in a common face, while if s ∈ Kα and t ∈ Kα their
intersection is in |Kα| ∩ |Kβ | so it is a subcomplex of both Kα and Kβ so in
particular is a common face in

⋃
αKα.

Definition 1.2.1.17 (Barycentric Subdivision). We define a sequence of sub-
divisions of the skeleton of K in the following way:
1) L0 = K(0).
2) Lp+1 is the be the subdivision of the p + 1-skeleton obtained by starring Lp
from the barycenters of the p+ 1-simplexes of K.
The union of the Lp is called first barycentric subdivision of K and it is denoted
by sd(K).

Lemma 1.2.1.18. The simplicial complex sd(K) equals the collections of all
simplexes of the form
[σ̂1, .., σ̂p] such that σ1 > σ2 > .. > σp.

12



Proof. The proof proceeds by induction on p.
If p = 0 it is trivial since v = v̂.
Suppose that each simplex of sd(K) lying in |K(p)| is of this form. Let τ be a
simplex of sd(K) lying in |K(p+1)| and not in |K(p|. Then τ belongs to some
σ̂∗Lσ with σ being a p+1 simplex ofK and Lσ the first barycentric subdivision of
the complex consisting of the proper faces of σ, so using the induction hypotesis
and the definition of ∗ we are done.

Figure 5: Barycentric subdivision of a 2-simplex.

1.2.2 Simplicial (co)Homology

In this section we define the first of our (co)homology theories.
As we will see all the groups that are needed in order to define this theory are
finite dimensional.
In Chapter 3 we will use this fact to find a method of solving a Poisson’ system.

Definition 1.2.2.1 (Simplicial Chains). If K is an oriented simplicial complex
and q ≥ 0 let Cq(K) be the abelian group with the following presentation.
Generators: the q+1-tuples (p0, ..., pq) of vertices of K such that {p0, ..., pq}
spans a q-simplex in K.
Relations: (p0, ..., pq) = 0 if some vertex is repeated and
(p0, ..., pq) = (sgnσ)(pσ(0), .., pσ(q)) for any σ permutation of {0, .., q}.

Notation 1.2.2.2. The element of Cq(K) corresponding to (p0, .., pq) is denoted
by < p0, .., pq >.

Lemma 1.2.2.3. Let K be an oriented simplicial complex of dimension m.
1) Cq(K) is a free abelian group with basis all symbols < p0, ..., pq > where
{p0, .., pq} span a q-simplex in K with p0 < p1 < .. < pq.
2) Cq(K) = 0 if q > m.
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Proof. Lemma 7.10 in (10).

Definition 1.2.2.4 (Simplicial Boundary Operator). We define the boundary
morphisms in the following way

∂n : Cq(X)→ Cq−1(X) < p0, .., pq > 7→
q∑
i=0

(−1)i < p0, .., p̂i, ..pq > (7)

Of course can be easily proved that (C∗(K), ∂∗) is a chain complex and the
homology groups of this chain complexes will be called simplicial homology groups
of K and denoted by Hq(K,Z).

Remark 1.2.2.5. It is possible to show that once we have a simplicial map
φ : K → L this induces a morphisms of chain complexes φ∗ : C∗(K) → C∗(L),
this is defined in a natural way, in fact sends the element < p0, .., pq > of Cq(K)

to the element < φ(p0), .., φ(pq) > of Cq(L).
As a consequence of this fact we have that the Hn are covariant functors from
K to Ab (this fact is proved in Theorem 7.13 of (10)).

Definition 1.2.2.6 (Reduced Simplicial Complex). Define C1(K) as the free
abelian group generated by the symbol <> and ∂0 : C0(K)→ C−1(K) such that
∂̃0(
∑
mp < p >) = (

∑
mp) <>, and define the augmented simplicial complex:

C̃∗(K) = 0→ Cm(K)
∂m−−→ ....

∂1−→ C0(K)
∂̃0−→ C−1(K)→ 0 (8)

We define the reduced simplicial homology groups by H̃q(K) = Hq(C̃∗(K))

Definition 1.2.2.7 (Relative Homology). If K0 is a subcomplex of K, the
quotient group Cq(K)

Cq(K0) is called the group of relative chains of K modulo K0,
and is denoted by Cq(K,K0), clearly it is free abelian and it is generated by the
equivalnce classes of the q-simplexes of K that are not in K0. Obviouvsly the
boundary operator ∂ is well defined on the relative chain and so gives rise to a
chain complex (C∗(K,K0), ∂∗) and the homology of this chain is called relative
homology and it is denoted by Hq(K,K0).

Proposition 1.2.2.8 (Long exact sequence). If K0 is a subcomplex of K we
have along exact sequence in homology:

..→ Hn(K0)→ Hn(K)→ Hn(K,K0)
δ−→ Hn−1(K0)→ ... (9)

Proof. Clearly the inclusion map i : K0 → K is a simplicial map and so induces
a short exact sequnce:

0→ C∗(K0)
i∗−→ C∗(K)

π∗−→ C∗(K,K0)→ 0 (10)

14



where π∗ : C∗(K)→ C∗(K)
C∗(K0) is the natural projection morphism, using the Zig-

Zag lemma this induces the long exact sequence that we were looking for.

Theorem 1.2.2.9 (Exact sequence of triple). If K1 is a subcomplex of K0 that
is a subcomlex of K we have a long exact sequence:

...→ Hn(K0,K1)→ Hn(K,K1)→ Hn(K,K0)
∂−→ Hn−1(K0,K1)→ ... (11)

Proof. Theorem 5.9 in (10).

Theorem 1.2.2.10 (Excision). Let K be a complex; let K0 be a subcomplex.
Let U be an open set contained in |K0| such that |K| \ U is the polytope of a
subcomplex L of K. Let L0 the subcomplex of |K0| whose polytope is |K0| \ U
then the inclusion induces an isomorphism:

Hq(L,L0) ∼= Hq(K,K0) (12)

Proof. Theorem 9.1 in (5).

Theorem 1.2.2.11 (Mayer-Vietoris). Let K be a complex; let K0 and K1 be
subcomplexes such that K = K0∪K1. Let A = K0∩K1. Then there is an exact
sequence

...→ Hp(A)→ Hp(K0)⊕Hp(K1)→ Hp(K)→ Hp−1(A)→ ... (13)

Proof. Theorem 25.1 in (5).

Definition 1.2.2.12 (Simplicial cochains). Let K be simplicial complex. The
group of p-dimensional cochains of K, with coefficients in G, is the group
Cp(K,G) = Hom(Cp(K), G).
We can define a coboundary opeator δ : Cp(K,G)→ Cp+1(K,G) defined in such
a way that if cp is p-cochain and cp a p-chain and < cp, cp > the evaluation of
cp at cp then < δcp, cp+1 >=< cp, ∂cp+1 >, clearly the coboundary operator
inherits from the boundary operators the fact that δ ◦ δ = 0, so (C∗, δ∗) is a
cochain complex and the cohomology of the complex is the simplicial cohomology
of K with coefficients in G and it is denoted by Hp(K,G).

Remark 1.2.2.13. If we have a simplicial map φ : K → L this clearly define
a map φ∗ : C∗(L)→ C∗(K) defined in such a way that
< φp(cp), cp >=< cp, φp(cp) > where cp ∈ Cp(L) and Cp ∈ Cp(K), this proves
that H∗ are contravariant functors from K to Ab.
With the same computation we did for Homology we can build relative coho-
mology groups and we have also the long exact sequence, excision property and
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Mayer-Vietoris (but with the arrows reversed). ( the details are in Chapter 5 of
(4)).

1.2.3 Singular Homology

In this section we define Singular (co)homology theory, this is the most gen-
eral (co)homology theory that we have, indeed it is defined on every topological
space X and turn out to be equivalent to the Simplicial (co)homology theory
when the space X is triangulable.

Definition 1.2.3.1 (Standard n-simplex). A standard n-simplex is the set

∆n = {(x0, ..., xn)|
k∑
i=0

xi = 1, xi ≥ 0}, this can be seen as the convex envelope

[e0, ..., ek] of the points e0 = (1, 0, ..., 0), .., en = (0, ..., 0, 1) in Rn+1, in particular
for n = 0 is a point, for n = 1 is a segment, for n = 2 is a triangle, and for
n = 3 is a tetrahedron.

Definition 1.2.3.2 (Face). Let ∆n = [e0, ..., en] a face of ∆n is [e0, .., ei−1, êi, ei+1, .., en]

(where the hat means that the element is deleted.).

We can embed ∆n−1 into ∆n using the morphism εn−1
i that sends

(x0, .., xn−1)→ (x0, ., xi−1, 0, xi+1, .., xn)

Definition 1.2.3.3 (Orientation). An orientation of ∆n = [e0, ..., en] is a linear
ordering of its vertices, two orientations are the same if they have the same
parity as permutations of {e0, .., en} otherwise the orientations are opposite.
An orientation of ∆n induces an orientation on the faces in the sense
(−1)i[e0, ..., êi, ..., en],

Figure 6: 2simplex with orientation e0 < e1 < e2

Definition 1.2.3.4 (Singular complex). Let X be a topological space. A (singu-
lar) n-simplex in X is a continuous map σ : ∆n → X where ∆n is the standard
n-simplex.
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Definition 1.2.3.5 (n-chains). Let X be a topological space. For each n ≥ 0,
define Sn(X) as the free abelian group with basis all singular n-simplexes in X;
define S−1(X) = 0. The elements of Sn(X) are called (singular) n-chains in X.

Now we have our groups Sn(X) so in order to build a chain complex we need
the morphisms ∂n : Sn(X)→ Sn−1(X), we will call them boundary morphisms.

Definition 1.2.3.6 (Singular Boundary morphisms). We define the boundary
morphisms in the following way:

∂n : Sn(X)→ Sn−1(X) σ 7→
n∑
i=0

(−1)iσ ◦ εn−1
i (14)

∂n is defined explicitly only on the singular n-simplexes and clearly is extended
by linearity on the whole Sn(X).

Proposition 1.2.3.7. For all n ∈ Z we have ∂n ◦ ∂n+1 = 0.

Proof. Theorem 4.6 in (10).

Remark 1.2.3.8. Thanks to this proposition we know that (S∗(X), ∂∗) is a
chain complex so we can build homology groups from this.

Definition 1.2.3.9 (Singular Homology Group). HSing
n (X,Z) = ker(∂n)

Im(∂n+1) .
We will name the elements of Zn(X,Z) = ker(∂n) n-cycles and the elements of
Bn(X,Z) = Im(∂n+1) n-boundaries.

Remark 1.2.3.10 (Reduced Singular Homology). With the same procedure of
the Definition 2.2.2.6 but using the symbol [ ] as generator of S−1(X) we
can define the reduced singular complex S̃∗(X) (this construction is formally
explained at Chapter 5 of (10)).

Remark 1.2.3.11. The Theorem 4.23 of (10) proves that Hn is really a co-
variant functor from hTop to Ab, this is made in two steps, the first is to show
that any time we have a map f from two topological spaces X and Y there is
a natural chain map from S∗(X) to S∗(Y ) induced by f and it is defined send-
ing any generator σ of Sq(X) to f ◦ σ in Sq(Y ), and the second step consist
in showing that the induced map preserve the homotopy class, i.e if f ∼ g then
Hn(f) = Hn(g). Of course thanks to the result that we have seen in the previuos
section this induces a map between the homology groups of X and Y .
Notice that as a direct consequence of the fact that two homotopic maps induce
the same morphism in homology we also have that two homotopic spaces have
the same homology groups.
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Remark 1.2.3.12. All the concepts that we have defined for simplicial homology
like relative homology, long exact sequences, Mayer-Vietoris etc.. are defined in
the same way also in the singular case. (look at Paragraph 10.7 of (2) for the
construction)

So now if we have an ordered simplicial complex K we can associate to it
both H∗(K,Z) and HSing

∗ (|K|,Z) and those two classes of functors are a propri
different, but it is not difficoult to prove that those groups are isomporphic and
the isomorphism is induced by the map j∗ between the two reduced complexes
C̃∗(K) and S̃∗(K) defined in the following way:
1) j−1 sends <> to [ ] and is extended by linearity.
2) if q ≥ 0 jq(< p0, .., pq >) = σ where σ : ∆q → |K| is the affine map that
sends ei → qi and is extended by linearity.
All the details of the isomorphism are given in (10), Theorem 7.22.

Remark 1.2.3.13 (Homology of a contractible spaces). A space is said to be
contractible if it is homotopy equivalent to a point, so in particular if X is
contractible space Hn(X) = Hn({pt}), ∀n ∈ Z.
Now using (1.2.2.3) we have that Cq({pt}) = 0, ∀q 
 0 so also Hq({pt}) =

0, ∀q 
 0, moreover can be proved that for every space X, H0(X) = Zα where
α is the cardinality of the set of the path connected components of X (for the
proof look at Theorem 4.14 in (10)), so in particular H0({pt}) = Z. So the
homology of every contractible space equal to 0 for every n 
 0 and it is equal
to Z for n = 0, it is possible to prove that every convex space is contractible
(Theorem 1.7 of (10)) so in particular Rn is so for every n.

Proposition 1.2.3.14 (Homology of the sphere). Let Sn ⊂ Rn+1 be the n

dimensional sphere, i.e Sn = {(x0, .., xn) ∈ Rn+1|
∑
i

x2
i = 1} then:

{
Hk(Sn) = Z, k = 0, n

Hk(Sn) = 0, k 6= 0, n
(15)

if n 6= 0 while : {
Hk(S0) = Z2, k = 0

Hk(S0) = 0, k 6= 0
(16)

Proof. Theorem 6.5 in (10).

We can notice that there is still some important difference between singular
and simplicial homology, the most obvious is that singular homology is defined
on every topological space while the simplicial homology is defined just on the
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spaces that have a triangulation, (there are topological spaces that doesn’t ad-
mit a triangulation), so singular homology gives rise to a more general theory,
but on the other hand from a computational viewpoint simplicial homology is
much more useful, this is due mainly to the fact that while the groups Sq(|K|)
are infinitely generated, when K is finite (iff |K| is compact) the groups Cq(K)

are finitely generated and so the morphisms ∂q can be represented by matrices
and this is clearly an advantage.

1.2.4 Universal Coefficient Theorem

In this section we are going to see how to change the coefficient group of the
(co)homology and how to pass from homology to cohomology.

Definition 1.2.4.1 (Tensor product). Let A and B be abelian groups. Their
tensor product, denoted by A ⊗ B, is the abelian group having the following
presentation:
Generators: A×B, that is, all ordered pairs (a, b).
Relations: : (a + a′, b) = (a, b) + (a′, b) and (a, b + b′) = (a, b) + (a, b′) for all
a, a′ ∈ A and all b, b′ ∈ B.
The equivalence classes of the pair (a, b) in A⊗B is denoted by a⊗b. The tensor
product has a lot of good properties ( that are proved in Chapter 9 of (10)) the
two that we will need later are:
1) F ⊗G ∼= G for every free abelian group F and every abelian group G.
2) Any time that we have two group homomorphisms f : A→ A′ and g : B → B′

we can induce a unique group homomorphism f ⊗ g : A ⊗ B → A′ ⊗ B′ such
that (f ⊗ g)(a⊗ b) = (f(a)⊗ g(b)).
3) If B′ i−→ B

p−→ B” → 0 is an exact sequnce of abelian groups then B′ ⊗
G

i⊗IdG−−−−→ B⊗G p⊗IdG−−−−→ B”⊗G→ 0 is exact too ( the same holds also tensoring
on the left).

Definition 1.2.4.2. Let (X,A) be a pair of spaces and let G be an abelian
group. If (S∗(X,A), ∂) is the singular chain complex of (X,A), then the singu-
lar complex with coeflicients G is the complex:

...→ Sn+1(X,A)⊗G ∂⊗Idg−−−−→ Sn(X,A)⊗G ∂⊗Idg−−−−→ Sn−1(X,A)⊗G ∂⊗Idg−−−−→ ...

(17)
The nth homology group of (X,A) with coefficients G is the nth homology group
of this chain complex.
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Remark 1.2.4.3. Notice that
Sn(X)⊗G = {

∑
gσσ|σ : ∆n → X, gσ ∈ G, gσ = 0 a.e σ} ( where a.e means

all but finitely many of them).

Definition 1.2.4.4 (Tor). For any abelian group A it is possible to build a short
exact sequence:

0→ R
i−→ F → A→ 0 (18)

where F is a free abelian group.
For any abelian group B we define Tor(A,B) = ker(i ⊗ 1B). Tor(−, B) is a
covariant functor form Ab to himself and has a lot of good properties in particu-
lar we will use the fact that Tor(A,B) = 0 ∀B if A is torsion free. (Corollary
3.1.5 9 in (13)).

Theorem 1.2.4.5 (Universal coefficient Theorem for Homology). 1) For every
space X and every abelian group G, there are exact sequences for all n ≥ 0:

0→ Hn(X)⊗G α−→ Hn(X,G)→ Tor(Hn−1(X), G))→ 0 (19)

where α([(σ)]⊗ g) = [σ ⊗ g].
2) This sequence splits, i.e:

Hn(X,G) ∼= (Hn(X)⊗G)⊕ Tor(Hn−1(X), G). (20)

Proof. Theorem 9.21 in (10).

Corollary 1.2.4.6. If G is the additive group of Q,R,C then:

Hn(X,G) = Hn(X)⊗G (21)

Proof. All those groups are torsion free.

So now we have a formula that allow us to pass from the homology with
coefficients in Z to the homology with coefficients in any group G, in particular
we will use it to find the homology coefficints in R.
Now with a similar argument we are going to find a formula that allows us to
pass from homology to cohomology.

Definition 1.2.4.7 (Ext). For each abelian group A, choose an exact sequence
0 → R

i−→ F → A → 0 with F free abelian, then for every abelian group G we
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can induce an exact sequence:

0→ Hom(A,G)→ Hom(R,G)
i∗−→ Hom(F,G) (22)

then we define Ext(A,G) = cocker(i∗) = Hom(R,G)
i∗(Hom(F,G)) .

Definition 1.2.4.8. An abelian group G is divisible if, for every x ∈ G and
every integer n > 0, there exists y ∈ G with ny = x.

Remark 1.2.4.9. The groups Q,R,C are divisible, furthermore the functor Ext
enjoys the property that Ext(A,D) = 0 for every divisible group D and every
abelian group A.( for a proof look at Chapter 12 of (10))

Theorem 1.2.4.10 (Dual Universal Coefficient). 1) For every space X and
every abelian group G, there are exact sequences for all n ≥ 0:

0→ Ext(Hn−1(X), G)→ Hn(X,G)
β−→ Hom(Hn(X), G))→ 0 (23)

where (β([φ]))(zn +Bn) = φ(zn).
2) This sequence splits, i.e:

Hn(X,G) ∼= Ext(Hn−1(X), G)⊕Hom(Hn(X), G)). (24)

Proof. Theorem 12.11 in (10).

Corollary 1.2.4.11. If F is a field of characteristic zero (e.g. Q, R, or C),
then, for all n ≥ 0 Hn(X,F ) ∼= Hom(Hn(X), F )

Proof. Any field of characteristic 0 has a divisible additive group.

Theorem 1.2.4.12 (Universal coefficient theorem for cohomology). 1) For ev-
ery space X and every abelian group G, there are exact sequences for all n ≥ 0:

0→ Hn(X)⊗G α−→ Hn(X,G)→ Tor(Hn+1(X), G))→ 0 (25)

where α([z]⊗ g) = [zg] and zg : σ 7→ z(σ)g for any n-simplex in X
2) This sequence splits, i.e:

Hn(X,G) ∼= (Hn(X)⊗G)⊕ Tor(Hn−1(X), G). (26)

Proof. Theorem 12.15 in (10).
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1.2.5 De Rham Cohomology

In this section we are going to present a cohomology theory that works
on smooth manifolds, this cohomology will turn out to be isomorphic to the
singular and simplical cohomology with coefficients in R and the isomorphism
will be given by the integration.
I’m not going to present all the basic notions of differential geometry that can
be found in (11).

Definition 1.2.5.1 (Manifold). An n manifold with boundary is a second count-
able, Hausdorff topological space M such that ∀x ∈ M exists U open neigh-
borhood of x, and an homeomorphism φU from U to an open set of Rn or
R≥0 × Rn−1, such that φU ◦ φ−1

V : φV (U ∩ V ) → φU (U ∩ V ) is a C∞ diffemor-
phism.
A pair (U, φU ) is called a chart, while {(Uα, φUα)}α∈∆ where {Uα}α∈∆ is an
open covering of M is called an atlas.
The boundary of M is the preimage of the points (0, x1, ..xn−1) ∈ R≥0 × Rn−1,
and it is denoted by ∂M , the interior M is M \ ∂M .
M is manifold without boundary if ∂M = ∅.
A closed manifold is a compact manifold without boundary.

Definition 1.2.5.2 (Alternate form). Given a k-vector space V an alternating
multilinear n-form is a multilinear map α : V n → k such that
α(vσ(1), .., vσ(n)) = sgn(σ)α(v1, .., vn) for every σ permutation of {1, .., n} and
every {v1, .., vn} ⊂ V .
As a consequence of the definition we have that if the characteristic of the field
is different from 2, α(v1, .., vn) = 0 whenever vi = vj for i 6= j.
The space of alternating multilinear k-forms is a vector space over k and it is
denoted as Ak(V ).
We can also define an exterior product ∧ : Ar(V )⊗As(V )→ Ar+s(V ) such that:

(f ∧ g)(v1, .., vr+s) =
1

r!s!

∑
σ∈Sr+s

(sgn(σ))f(vσ(1), .., vσ(r))g(vσ(r+1), .., vσ(r+s))

(27)
for all f ∈ Ar(V ) and g ∈ As(V ) where Sr+s is the set of the permutations of
{1, .., r + s}. The wedge product is bilinear, associative and graded alternating,
i.e f ∧ g = (−1)rsg ∧ f .
Given {e1, .., en} a basis of V and {e∗1, .., e∗n} the corresponding dual basis of V ∗,
then a basis of Ak(V ) is the set {e∗i1 ∧ ..,∧e

∗
ik
|i1 � .. � ik} so the dimension of

Ak(V ) is
(
n
x

)
.
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Definition 1.2.5.3 (Differential forms). If we have a differential smooth n-
manifold M , then for every x ∈M the tangent space TxM has the structure of
vector space so we can define Ak(TxM) and we can define also
AkM =

∐
x∈M
Ak(TxM), a smooth section of AkM is a differential k form, and

the set of differential k-form is denoted by Ωk(M).
Locally any differential k-form can be represented as
ω = ωi1,..,ikdx

ii∧..∧dxik(using Eistein convention) where ωi1,..,ik are C∞ maps.
(details on this construction are in Chapter 9 of (11)).

Definition 1.2.5.4 (Exterior derivative). We define the exterior derivative d0 :

Ωk(M)→ Ωk+1(M) inductively:
1) If k=0, ω ∈ Ωk(M) = C∞(M) and d0ω = ∂ω

∂xj
dxj.

2) If k > 0, and ω = ωi1,..,ikdx
ii ∧ .. ∧ dxik then

dk(ω) = d0(ωi1,..,ik) ∧ dxii ∧ .. ∧ dxik

Definition 1.2.5.5 (De Rham Cohomology). Can be proved that dk ◦ dk+1 = 0

( Proposition 1.4 of (4)) so we can define the De Rham cochain complex:

0→ Ω0(M)
d0−→ Ω1(M)→ ...

dk−1

−−−→ Ωk(M)→ 0 (28)

The cohomology groups of the complex are the De Rham cohomology groups of
M , and it are denoted Hk

dR(M).

Now we want to compare De Rham and simplicial cohomology of a smooth
manifold M .
Notice that if we have a p-simplex σ : ∆p →M and a p-differential form ω then
if σ is a C∞ map we can integrate ω over σ in the following way:∫

σ

ω =

∫
(∆p)

σ∗ω (29)

so if we define S∞p (M) to be the groups of C∞ chains , those are subgroups of
Sp(M) and are preserved by ∂∗ so from this chain complex we can build a C∞

singular homology H∞n (M).

Theorem 1.2.5.6 (Stokes’ Theorem). For every σ ∈ S∞k (M,R) and ω ∈
Ωk−1(M) we have: ∫

∂σ

ω =

∫
σ

dω. (30)

Thanks to the Stokes’ Theorem, we have a morphism of cochain∫
: Ω∗(M)→ Hom(S∞∗ (M),R), and it is proved in (12) (Theorem 3.3) that it
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induces an isomorphism in cohomology. Now we want to show that the singular
homology groups and the C∞ singular homology groups are isomorphic.
The second statement is completely proved in (12)(Theorem 2.4) and the proof
is based on the following lemma.

Lemma 1.2.5.7. For every k-simplex σ : ∆k → M there exists a continuous
map Hσ : ∆k × I →M satisfying the following:
1) Hσ is an homotopy from σ to a smooth k-simplex σ̃.
2) For each boundary face inclusion Fi,k : ∆k−1 ↪→ ∆k:

Hσ◦Fi,k(x, t) = Hσ(Fi,k, t) (31)

for (x, t) ∈ ∆k − 1× I
2) If σ is smooth then Hσ is the constant homotopy.

Proof. Lemma 2.3 in (12).

Theorem 1.2.5.8. The inclusion i : S∞∗ (M,R) ↪→ S∗(M,R) induces an iso-
morphism in homology.

Proof. Theorem 2.4 in (12).

Both the proofs are quite long and technical so I will not provide them but
should be clear that thanks to the first statement of the lemma every k-chain
lies in the equivalence class of a smooth k-chain so it is reasonable to have the
isomorphism.
Now recall that thanks to the Universal Coefficient theorem Hom(Hk(M),R) ∼=
Hk(M,R) so using the previous theorem we have:

Hk
dR(M) ∼= Hom(H∞k (M),R) ∼= Hk

∞(M,R) ∼= Hk(M,R). (32)

Definition 1.2.5.9 (Smooth triangulation). Let M be a compact manifold then
a triangulation f : |K| → M , is said to be smooth if for every n simplex in K

exists an open set ∆n ⊂ U ⊂ Rn ( or R≥0 ×Rn−1) and an extension F of f|∆n

to U that is a smooth embedding of U in M .

Theorem 1.2.5.10 (de-Rham Theorem). Let M be a compact manifold, pos-
sibly with boundary, with a smooth triangulation on M .
Consider the map Rk : Ωk(M) → Ck(M,R), called de-Rham map, such that

< R(ω),∆k >=

∫
∆k

ω, then according to the Stokes theorem Rd(ω) = dR(ω) so

R induced a map in cohomology R∗ : H∗dR(M)→ H∗(M).
The de-Rham map induces an isomorphism in cohomology.
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Figure 7: The sets Fi and Gi.

Proof. (Sketch) The full proof is at Section 5.3 of (17) in the case of a closed
manifold, but applies with no restrictions to the case of a compact manifold
with boundary.
We will build an inverse of R∗. Let V ert(K) = {v1, .., vn} and xi the barycentric
coordinate associated to the vertex vi ( with xi = 0 for any point outside
St(v,K). Define Fi = {x ∈ M |xi ≥ 1

n+1} and Gi = {x ∈ M |xi ≤ 1
n+2}, let λi

a non negative smooth function which is positive on Fi and vanishes on Gi.
The function λ(x) = λ1(x) + .. + λn(x) is non negative and the Fi’s cover M
since the sum of the barycentric coordinates at any point equals 1, so at least
one of the is at least 1

n+1 . Now define µi(x) = λi(x)
λ(x) and associate to each

σ∗ ∈ Ck(K) dual to the simplex σ = [vi0 , .., vik ] :

W k(σ̂k) = k!

k∑
j=0

(−1)jµijdµi0 ∧ .. ∧ ˆdµij ∧ .. ∧ dµik (33)

extending W k by linearity gives a morphism W k : Ck(K) → Ωk(M), we now
want to show that W ∗ induces a morphism in cohomology and that it is in fact
an inverse of R∗, this will be done in many steps.
1) W ∗ is a cochain morphism.
We have to show that dWσ∗ = Wdσ∗ for all σ = [vi0 , .., vik ].
dWσ∗ = (k + 1)!dµi0 ∧ .. ∧ dµik since (−1)jd(µijdµi0 ∧ .. ∧ ˆdµij ∧ .. ∧ dµik) =

= (−1)jdµij ∧ dµi0 .. ∧ ˆdµij ∧ .. ∧ dµik = dµi0 ∧ .. ∧ dµik for every j.
We know from the definition of d that d(σ∗) is the sum of the dual of simplexes
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of the form [vp, vi0 , .., vik ] so:

W (d(σ∗)) = (k+1)!(
∑
p

µpdµi0∧..∧dµik−
k∑
j=0

(−1)jµijdµpdµi0∧..∧ ˆdµij∧..∧dµik)

(34)
where the sum is extended to all the p such that [vp, vi0 , .., vik ] ∈ K(k+1), using∑

µi = 1 after some straightforward computation it’s possible to show that
the term on the right hand side is equal to (k + 1)!dµi0 ∧ .. ∧ dµik .
2) If I =

∑
p∈k(0)

p∗ then W (I) ≡ 1.

From the definition W (I) =
∑
p

(W (p∗)) =
∑
p

µp = 1.

3) If σ∗ is the dual of σ = [vi0 , .., vik ] then W (σ∗) vanishes identically on a
neighborhood of M \ St(σ).
Both µi and dµi vanish identically on Gi so W (σ∗) vanishes identically on
Gi0 ∪ .. ∪Gik and this contains M \ Star(σ).
4 R ◦W = Id.
This can be proved by induction on k, if k = 0 thenR(W (v∗i ))(vj) =

∫
vj

W (v∗i ) =

= W (v∗i )(vj) = µi(vj) = δji where we used that if i 6= j then vj 6∈ Star(vj).
Now let k ≥ 1 and the hypothesis holds for k − 1 and σ∗ be the dual of
σ = [vi0 , .., vik ], by 3 we know that R(W (σ∗)) = 0 on any k simplex differ-

ent from σ, it remains to show that
∫
σ

(W (σ∗)) = 1, this can be done using

Stockes’ formula and the induction hypothesis.
5) W ∗ ◦ R∗ = Id, this part of the proof differs from the one that you find in
(17).
We want to prove that [ω] = [W ∗(R∗(ω))] for every ω ∈ Hi(M), using the iso-
morphism between simplicial and singular homology and (1.2.4.11) it’s enough

to show that
∫
σi

ω =

∫
σi

(W ∗(R∗(ω))) where {σ1, ..σl} are generators of Hi(K).

In order to do so notice that [R(ω)] = [
∑
i

(

∫
σi

ω)σ∗i ] and so
∫
σi

(W ∗(R∗(ω))) =

=
∑
j

(

∫
σj

ω

∫
σi

W (σ∗j )) =

∫
σi

ω, where we have used
∫
σj

W (σ∗i ) = δij that we

proved in 4.

1.2.6 Fundamental Class

In this section we introduce the fundamental class for an n-manifold with
boundary M , this will be an element [M ] ∈ Hsing

n (M,∂M).
The fundamental class will be used to prove the Lefschetz Duality (1.3.2.1)
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and its counterpart in simplicial homology will be used in (2.1.0.7) to define
the pairing that we need for the definition of the Hodge star operator.

Remark 1.2.6.1. Using excision it is easy to prove that for every point in the
interior of M , Hn(M,M \ {x};Z) ∼= Hn(Rn,Rn \ {0};Z) ∼= Z, for the details
refers to Chapter 3.3 of (6).

Notation 1.2.6.2. For every A ⊂ M , Hn(M,M \ A;Z) will be denoted as
Hn(M |A;Z).

Definition 1.2.6.3 (Local Orientation). Let x ∈M , withM a smooth manifold
without boundary, a local orientation of M at x is a choice of a generator µx of
Hn(M |x;Z).

Definition 1.2.6.4 (Orientation). An orientation for a manifold M , is a func-
tion x 7→ µx assigning to every point in x a local orientation, such that each
x ∈ M has a neighborhood U ∼= Rn in M , containing an open ball B around
x, such that for every y ∈ B µy is the image of µB ∈ Hn(M |B;Z) under the
natural map Hn(M |B;Z)→ Hn(M |x;Z),

Definition 1.2.6.5 (R-orientation). The same definition can be generalized to
the homology with coefficients in any ring R, in this case a local orientation will
be a generator of Hn(M |x;R) and an orientation of M is defined in the same
way as before.

Definition 1.2.6.6 (Covering space). For any ring R, the covering space MR

is defined as:
MR = {αx|x ∈M,αx ∈ Hn(M |x;R)} (35)

It is possible to give a topological structure to MR, a section of the covering
space is a continuous map M → MR such that any point x ∈ M in sent to an
element of Hn(M |x;R) , an R orientation of M is a section that sends each x
to a local orientation.

Lemma 1.2.6.7. Let M be a manifold of dimension n and let A ⊂ M be a
compact subset. Then if x 7→ µx is a section of the covering space MR then
there is a unique class αA ∈ Hn(M |A;R) whose image in Hn(M |x;R) is αx for
all x ∈ A.

Proof. Lemma 3.27 in (6).

Definition 1.2.6.8 (Fundamental class). An R-fundamental class of M is an
element [M ] ∈ Hn(M ;R) whose image in Hn(M |x;R) is a generator for every
x.
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Definition 1.2.6.9 (Collar neighborhood). Let M be a compact manifold with
boundary ∂M then a collar neighborhood of ∂M in M open neighborhood home-
omorphic to ∂M × [0, 1) by a homeomorphism taking ∂M to ∂M × {0}.

Proposition 1.2.6.10. If M is a compact manifold with boundary, then ∂M

has a collar neighborhood.

Proof. Proposition 3.42 in (6).

Definition 1.2.6.11 (R-Orientation in Manifold with boundary). A manifold
M with boundary ∂M is R-oriented if M \ ∂M is R-oriented as a manifold
without boundary.

Definition 1.2.6.12 (Fundamental Class for manifold with boundary). Us-
ing excision we have Hi(M,∂M ;R) ∼= Hi(M \ ∂M, ∂M × (0, ε);R) = Hi(M \
∂M |M \ (∂M × (0, ε))), if M is R orientable then M \ ∂M is R orietable and
we can use (1.2.6.7) to define an element in Hn(M,∂M ;R) such that the im-
age in Hn(M |x;R) is a generator for every x 6∈ ∂M × (0, ε), since this can
be done for every ε, we can define the fundamental class of M as the ele-
ment of Hn(M,∂M ;R) whose image in Hn(M |x;R) is a generator for every
x ∈M \ ∂M .

1.2.7 Cap/Cup product

In this section we define both a cap and a cup product, these will be funda-
mental tools in the proof of the Lefschetz Duality (1.3.2.1).

Definition 1.2.7.1. For an arbitrary space X and coefficient ring R, define an
R bilinear cap product:

∩ : Ck(X;R)× Cl(X;R)→ Ck−l(X;R) k ≥ l

(σ, φ) 7→ φ(σ|[v0,..,vl])σ|[vl,..,vk]

(36)

Proposition 1.2.7.2. The cap product induces a product in (co)homology
Hk(X;R)×H l(X;R)→ Hk−l(X;R).

Proof. Is a consequence of the formula:

∂(σ ∩ φ) = (−1)l((∂σ) ∩ φ− σ ∩ δσ) (37)

the complete proof is at Pag. 240 of (6).
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Remark 1.2.7.3 (Relative case). The same procedure can be applied to the
relative case and gives rise to the products:

Hk(X,A;R)×H l(K;R)→ Hk−l(X,A;R)

Hk(X,A;R)×H l(K,A;R)→ Hk−l(X;R)
(38)

moreover a similar cap prudcut can be defined also for the simplicial (co)homology,
when the space is triangulated.

Definition 1.2.7.4 (Cup product). For an arbitrary space X and coefficient
ring R, define an R bilinear cup product, from Ck(X;R)×Cl(X;R)→ Ck+l(X;R)

such that for any σ : ∆k+l → X:

(φ ∪ ψ)(σ) = φ(σ|[v0,..,vk])φ(σ|[vk,..,vk+l]) (39)

Proposition 1.2.7.5. The cup product induces a product in (co)homology
Hk(X;R)×H l(X;R)→ Hk+l(X;R).

Proof. Is a consequence of the formula:

δ(φ ∪ ψ) = δφ ∪ ψ + (−1)kφ ∪ δψ (40)

. the complete proof is at lemma 3.6 in (6).

Remark 1.2.7.6 (Relative case). The same procedure can be applied to the
relative case and gives rise to the products:

Hk(X;R)×H l(K,A;R)→ Hk+l(X,A;R)

Hk(X,A;R)×H l(K;R)→ Hk+l(X,A;R)

Hk(X,A;R)×H l(K,A;R)→ Hk+l(X,A;R)

(41)

moreover a similar cup prudcut can be defined also for the simplicial (co)homology,
when the space is triangulated.

Proposition 1.2.7.7 (Connection between cap and cup product). Let φ ∈
Ck(X;R), ψ ∈ Cl(X,A;R) and α ∈ Ck+l(K,A;R) then:

ψ(α ∩ φ) = (φ ∪ ψ)(α) (42)

Proof. Section 3.3 of (6).

29



1.3 Dualities

In this paragraph we will study Lefschetz and Alexander duality, the first
will give us a way to connect homology and cohomology of complementary di-
mensions while the second will be useful to connect the homology of a region in
the space with the cohomology of its complement in the space.
These dualities are the corner stone for the applications of (co)homological meth-
ods in Electromagnetic Theory, for details look at (1).

1.3.1 Lefschetz Duality with Triangulation

Definition 1.3.1.1 (Relative n-manifold). A topological pair (X,A) is called
a relative homology n-manifold if for each point x of X not in A, the local ho-
mology group Hi(X,X\{x}) is equal to 0 if i 6= n and it is infinte cyclic if i = n.

Definition 1.3.1.2 (Orientation). Let (X,A) be a compact triangulated relative
homology nmanifold. We say that (X,A) is orientable if it is possible to orient
all the n-simplices σi, of X not in A so that their sum γ =

∑
i

σi is a cycle of

(X,A). Such a cycle γ will be called an orientation cycle for (X,A).

Notation 1.3.1.3. A simplex is said to be locally finite if each vertex belongs
to finitely many simplexes of K.

Definition 1.3.1.4 (Dual block decomposition). Let X be a locally finite sim-
plicial complex, and Sd(X) the first barycentric subdivision. The simplexes of
sd(X) are of the form: σ̂i1 ...σ̂in where σii > .. > σin (where σ̂ is the barycenter
of σ and σi > σj iff σj is a proper face of σi). We shall partially order the ver-
tices of sd(X) by decreasing dimension of the simplexes of X of which they are
the barycenters; this ordering induces a linear ordering on the vertices of each
simplex of sd(X). Given a simplex σ a of X, the union of all open simplexes of
sd(X) of which σ̂ is the initial vertex is just Int(σ), i.e σ \ ∂σ.
Define D(σ) to be the union of all open simplexes of sd(X) of which σ̂ is the
final vertex; this set is called the block dual to σ.
We call D(σ) the closed block dual to σ. It equals the union of all simplexes of
sd(X) of which σ̂ is the final vertex. We let Ḋ(σ) = D(σ) \D(σ).

Lemma 1.3.1.5. If σ, τ are k-simplexes then D(σ) ∩ τ = ∅ if σ 6= τ and is
equal to {σ̂} if σ = τ

Proof. Lemma 1.6.12 in (7).
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Figure 8: Dual block decomposition of a simplicial complex X, sd(X) is indi-
cated with dotted lines.

Theorem 1.3.1.6. Let X be a locally finite simplicial complex that consists
entirely of n-simplexes and their faces. Let σ be a k-simplex of X. Then:
a) The dual blocks are disjoint and their union is |X|.
b) D(σ)is the polytope of a subcomplex of sd(X) of dimension n− k.
c) Ḋ(σ) is the union of all blocks D(τ) for whix τ has σ as a proper face. These
blocks have dimensions less then n− k.
d) D(σ) equals the cone |Ḋ(σ) ? σ̂|.
e) If Hi(X,X \ σ̂) ∼= Z if i = n and it is 0 otherwise then (D(σ), Ḋ(σ)) has the
homology of an n− k cell modulo its boundary.

Proof. Theorem 64.1 in (5).

Definition 1.3.1.7. Let X be a locally finite simplicial complex that is a ho-
mology n-manifold. Then the preceding theorem applies to each simplex a of X.
The collection of dual blocks D(σ) will be called the dual block decomposition of
X. The union of the blocks of dimension at most p will be denoted by Xp, and
called the dual p-skeleton of X. The dual chain complex D(X) of X is defined by
letting its chain group in dimension p be the group Dp(X) = Hp(Xp, Xp−1). Its
boundary operator is the homomorphism ∂∗ in the exact sequence of the triple
(Xp, Xp−1, Xp−2).

Theorem 1.3.1.8. Let X be a locally finite simplicial complex that is a homol-
ogy n-manifold. Let Xp be the dual p-skeleton of X. Let D(X) be the dual chain
complex of X.
a) The group Hi(Xp, Xp−1) vanishes for i 6= p and is a free abelian group for
i = p. A basis when i = p is obtained by choosing generators for the groups
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Hp(D(σ), Ḋ(σ)), as D(σ) ranges over all p-blocks of X, and taking their im-
ages, under the homomorphisms induced by inclusion, in Hp(Xp, Xp−1).
b) The dual chain complex D(X) can be used to compute the homology of X.
Indeed, Dp(X) equals the subgroup of Cp(sd(X)) consisting of those chains car-
ried by Xp whose boundaries are carried by Xp−1. And the inclusion map
Dp(X) → Cp(sd(X)) induces a homology isomorphism; therefore, it also in-
duces homology and cohomology isomorphisms with arbitrary coefficients.

Proof. Theorem 64.2 in (5).

Definition 1.3.1.9. Let A be subcomplex of X, it is said to be a full subcomplex
of the complex X if every simplex of X whose vertices are in A is itself in A.

Definition 1.3.1.10 (Deformation retract). A space A ⊆ X is said to be a
deformation retract of X is exists a map r : X → A such that r ◦ i ∼ IdA and
i ◦ r ∼ IdX where i ↪→ X is the natural inclusion.
Naturally if A is a deformation rectract of X they have the same homology
groups.

Lemma 1.3.1.11. Let A be a full subcomplex of the finite simplicial complex
X. Let C consist of all simplexes of X that are disjoint from |A|. Then |A| is
a deformation retract of |X| \ |C|, and |C| is a deformation retract of |X| \ |A|.

Proof. Lemma 70.1 in (5).

Theorem 1.3.1.12 (Lefschetz duality). Let (X,A) be a compact triangulated
relative homology n-manifold. If (X,A) is orientable, there are isomorphisms :

Hk(X,A,Z) ∼= Hn−k(|X| \ |A|,Z) (43)

Hk(X,A,Z) ∼= Hn−k(|X| \ |A|,Z) (44)

Proof. (Sketch) The complete proof is at Theorem 70.2 in (5).
Let X∗ be denote the subcomplex of the first barycentric subdivision of X
consisting of all simplexes of sd(X) that are disjoint from |A|. Now |A| is the
polytope of a full subcomplex of sd(X). By the preceding lemma |X∗| is a
deformation retract of |X| \ |A|. Therefore, we may replace |X| \ |A| by X∗ in
the statement of the theorem. Consider the collection of blocks D(σ) dual to
the simplexes of X. It is possible to prove that:
The space |X∗| equals the union of all those blocks D(σ) dual to simplexes a of
X that are not in A. Now from the above theorem we have that the inclusion
D(X∗) → C(X∗) induces an isomorphism in the homology and cohomology.
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Recall that Ck(X,A) can be considered as the subgroup of Ck(X) consisting
of all cochains of X that vanish on simplexes of A so it is free abelian and
it is generated by σ∗ such that σ is not in A, can be proved that the map
φ : Ck(X,A) → Dn−k(X∗) that sends σ∗ to a generator of Hn−k(D(σ), ˙D(σ))

and is extended by linearity induces the isomorphism in homology that we were
looking for. The other isomorphism is given by the dual of the map φ.

Theorem 1.3.1.13. If h : |K| →M is a triangulation of M then, h−1(∂M) is
the polytope of a subcomplex of K.

Proof. Theorem 35.3 of (5).

Definition 1.3.1.14. Let σ be a p simplex in X and τ an n − p dual simplex
then the intersection number I(σ, τ) is defined as :

I(σ, τ) =


1 if τ = φ(σ∗)

−1 if τ = −φ(σ∗)

0 otherwise

(45)

where φ is the morphism defined in the proof of the Lefschetz duality, it can be
extended by linearity to a map I : Cp(X)⊗Dn−p(X)→ Z, moreover if A is full
subsimplex of X, I can be restricted to a pairing
I : Cp(X,A)⊗Dn−p(X

∗)→ Z where X∗ is defined as in (1.3.1.12).

Remark 1.3.1.15 (Case n=3). The isomorphism φ is built recursively starting
from k = n, when n = 3 we define φ(σ∗) = σ̂, for k = 2 φ(σ∗) = [σ̂, τ̂0] + [σ̂, τ̂1]

where τ0, τ1 are the 3-simplexes of which σ is a face, (notice that D(σ) = [σ̂, τ̂1]∪
[σ̂, τ̂1]), k = 1 if σ is a face of {τi}i=0...r can be proved (Theorem 70.2 in (5))
that φ(δσ∗) is a generator of H1( ˙D(σ)) and using the exact sequence

0→ H2(D(σ), ˙D(σ))
∂∗−→ H1( ˙D(σ))→ 0 (46)

define φ(σ∗) such that ∂∗(φ(σ∗)) = φ(δσ), so using (1.3.1.8) we have that
|φ(σ∗)| = D(σ).
Now let Ω be a compact three dimensional manifold with boundary, thanks to
(1.3.1.13) if we give a triangulation to Ω we can use the above theorem with
X = Ω and A = ∂Ω, we have a pairing : I : C2(Ω, ∂Ω) ⊗D1(Ω∗) → Z, where
Ω∗ is defined as in the proof of (1.3.1.12) such that :

(σ, τ)→ I(σ, τ) (47)
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We want to prove that the pairing induced in homology is perfect.
Using that the homology groups are torsion free as it is proved in (1.3.3.7), we
know that the paring is perfect if and only if the induced map
H2(Ω, ∂Ω)→ H1(Ω∗)∗ is an isomorphism and this is true since, D1(Ω∗) is gen-
erated by φ(σ∗i ) for where σi are 1 simplexes in C1(Ω, ∂Ω) and I(σ1, φ(σ∗j )) = δji
implies that I(−, φ(σ∗j )) = σ∗j so the map induced in homology is the inverse of
the map φ defined in the proof of the Lefschetz Duality.
In summary we have proved that there is a perfect pairing
H1(Ω∗) ⊗ H2(Ω, ∂Ω) → Z such that if {γ1, .., γn} is basis of H1(Ω∗), and
{Σ1, ..,Σn} is a basis of H2(Ω, ∂Ω) the matrix A = (ai,j)1≤i,j≤n that repre-
sents the pairing is defined in such a way that ai,j = I(γi,Σj). This pairing
have a geometrical interpretation, indeed thanks to (1.3.1.5), the pairing really
counts the "oriented" number of intersection between 1 and 2 simplexes.

Theorem 1.3.1.16 (Poincare’ Duality). Let X be a compact orientable trian-
gulated homology n-manifold, there are isomorphisms:

Hk(X,Z) ∼= Hn−k(|X|,Z) (48)

Proof. The previous result with A = ∅.

1.3.2 Lefschetz Duality without triangulation

Theorem 1.3.2.1 (Lefschetz Duality). Suppose M is a compact R orientable
n manifold with boundary ∂M , [M ] ∈ Hn(M,∂M ;R) a fundamental class and
DM : Hk(M,∂M ;R) → Hn−k(M ;R) given by DM (φ) = [M ] ∩ φ, then DM is
an isomorphism for every k.

Proof. Theorem 3.43 in (6).

Corollary 1.3.2.2 (Perfect Pairing). The pairing
Hk(M ;R)×Hn−k(M,∂M ;R)→ R given by (φ, ψ) 7→ (φ∪ψ)([M ]) is a perfect
pairing, when R is a field or R = Z and the torsion part of the groups is factored
out.

Proof. Using (1.2.7.7) we have (φ ∪ ψ)([M ]) = ψ([M ] ∩ φ) = ψ(DM (φ)).
Consider the composition of maps:

Hk(M ;R)
h−→ Hom(Hk(M ;R), R)

D∗M−−→ Hom(Hn−k(M,∂M ;R), R) (49)

is the composition of D∗M is the map dual to DM and h is the map of the
Universal coefficient theorem, then an element ψ ∈ Hk(M ;R) is sent to the
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morphism φ 7→ ψ([M ] ∩ φ) = ψ(DM (φ)), now D∗M is always an isomorphism,
while h is an isomorphism when R is a field or R = Z and the torsion is factored
out, so we are done.

1.3.3 Alexander Duality

In the application sometimes we need a way a to connect the (co)homology
of R3 \ Ω and the (co)homology of Ω where Ω is an open bounded 3-manifold
inside R3, (for instance look at (24)), it is possible to do so thanks to the so
called Alexander Duality theorem, in this section we are going to prove it and
we are going to see how to use it in our situation.
The main reference for this duality is (3).

Notation 1.3.3.1. Ωe = R3 \ Ω

Claim 1.3.3.2. H1(Ωe) ∼= H1(Ω), the proof of the claim will be given at
(1.3.3.8).

Theorem 1.3.3.3 (Alexander Duality, original version). Let M be a compact
orientable n-manifold, A a closed subset of M , and U = M \A the complemen-
tary set. Then the relative homology group Hn−q(M,U ;G) is isomorphic to the
Cech-Alexander-Spanier cohomology group H

q
(A;G).

Remark 1.3.3.4. The Cech-Alexander-Spanier cohomology group H
q
(A;G) is

defined as lim−→
K(U,Kclosed

Hq(M \K), in general this is not equal to Hq(A) when A

is just a closed subset of M but they are equal when A is a compact submanifold
of M ( in particular the duality works in our case, a proof can be found in
Proposition 18.4.9 in (2)).

Proof. (Sketch) The complete proof can be found at Proposition 6.3 of (3) .
I will just explain how the isomorphism is made. If K is a closed subset of U we
have an in inclusion of pairs l : (M \K,U \K)→ (M,U) which induce isomor-
phisms in the relative homology groups by the excision property. Moreover we
have a cap product Hq(M \K)⊗Hn(M \K,U \K)

∩−→ Hn−q(M \K,U \K).
We denote with µ the orientation onM and with µA the image of µ inHn(M,U).
So we can go from Hq(M \K) to Hn−q(M,U) in the following way

Hq(M \K) −−−−−−−→
−⊗l−1

∗ (µA)
Hn−q(M \K,U \K)

∼=−→
l∗

Hn−q(M,U) (50)

Now passing to the limit over K we get the isomorphism from H
q
(A) to

Hn−q(M,U).
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Remark 1.3.3.5. In our situation Ω is contained in R3 so we cannot use
directly the above theorem, since R3 is not compact, but we can always embed
R3 in S3 using the stereographic projection so we can think to Ω as embedded in
S3, that is compact.

Lemma 1.3.3.6. If A is a closed subset of S3, H2(S3,S3 \A) ∼= H1(S3 \A).

Proof. Since S3 \A ↪→ S3 we have the long exact sequence

...→ H2(S3)→ H2(S3,S3 \A)→ H1(S3 \A)→ H1(S3)→ .... (51)

Clearly H2(S3) = H1(S3) = 0, so we have the claim.

Lemma 1.3.3.7. The integral (co)homology groups of Ω are torsion free.

Proof. (Sketch) Call Ωc the image of Ω in S3 under the stereographic projection
and Ωec = S3 \ Ω̊c.
Clearly Ωec is a closed subset in S3 so we can use the cohomological version of
the previuos lemma and the Alexander duality theorem we have:

H̃2−q(Ωec,Z) ∼= H̃q(Ω̊c,Z) q = 0, 1, 2 (52)

So if we call T (·) the torsion part of the (co)homology groups we have:

T 2−q(Ωec)
∼= Tq(Ω̊c) q = 0, 1, 2 (53)

since the 0-(co)homology groups are always torsion free we have T2(Ω̊c) = 0.
Thanks to the Universal Coefficient Theorem we have T p(·) = Tp−1(·) so we
have:

T0(Ωec) = 0 =⇒ T 1(Ωec) = 0 = T1(Ω̊c) (54)

So we have:
T0(Ω̊c) = T1(Ω̊c) = T2(Ω̊c) = 0 (55)

and using the Universal Coefficient Theorem:

T 0(Ω̊c) = T 1(Ω̊c) = T 2(Ω̊c) = T 3(Ω̊c) (56)

Now because the image of Ω, under stereographic projection, can be contained
in a neighborhood of Ω̊c of which he is a deformation retract, one may substitute
Ω for Ω̊c Eq. (43), (44) and (45).
The last thing to show is that T 3(Ω) = 0, this can be done using similar argu-
ments, for the proof look at Section 2 of (8).

Corollary 1.3.3.8. If Ω is a compact submanifold of R3, H1(Ωe) ∼= H1(Ω).
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Proof. Using the stereographic projection we see Ω as a compact submanifold of
S3. Alexander-Duality together with the above lemma give H1(Ω) ∼= H1(S3\Ω).
Now Ωe = R3 ∩ (S3 \Ω) and S3 = R3 ∪ (S3 \Ω) we have the long exact sequence

...→ H2(S3)→ H1(Ωe)→ H1(R3)⊕H1(S3 \ Ω)→ H1(S3)→ ... (57)

Since H2(S3) = H1(R3) = H1(S3) = 0 we have H1(Ωe) ∼= H1(S3 \ Ω).
So up to now we have proved that H1(Ωe) ∼= H1(Ω). Since we can always find
an open neighborhood of Ω that is a deformation retract of Ω, H1(Ω) = H1(Ω),
so we have H1(Ωe) ∼= H1(Ω). Now using universal coefficient theorem we have :

H1(Ω) = Hom(H1(Ω),Z)⊕ Ext(H0(Ω),Z) (58)

since H1(Ω) and H0(Ω) are torsion free we have H1(Ω) ∼= H1(Ω). With a
similar argument can be proved that H1(Ωe) ∼= H1(Ωe) and this concludes the
proof.

Proposition 1.3.3.9. H1(∂Ω) ∼= H1(R3 \ Ω)⊕H1(Ω).

Proof. From ∂Ω = (R3 \ Ω) ∩ Ω and R3 = (R3 \ Ω) ∪ Ω we have a long exact
sequence:

...→ H2(R3)→ H1(∂Ω)→ H1(R3 \ Ω)⊕H1(Ω)→ H1(R3)→ ... (59)

Since H2(R3) = H1(R3) = 0 we have the result.

1.4 Riemannian Structure and Hodge Decomposition

In this paragraph we will define, on any Riemannian manifold, an operator
? that in the three dimensional case transform 2-forms into 1-forms and vice-
versa, this operator is often used in the discretization process of the Maxwell’s
equations (for a reference look at (15; 16)).
Moreover in the second section we prove that, if the manifold is compact, the ?
operator provides also a decomposition of Ωk(M), using this decomposition we
will find another version of the Lefschetz duality for Riemannian manifolds.
Main references for this paragraph are (14; 19).
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1.4.1 Hodge star operator

Definition 1.4.1.1 (Riemannian Metric). Given a smooth manifold with bound-
ary M , a Riemannian metric on M is a family of positive definite inner prod-
ucts:

gp : TpM × TpM → R, p ∈M (60)

such that for all smooth vector fields V,W the map p 7→ gp((V (p),W (p)) is
smooth. A Riemannian Manifold (M, g) is a smooth manifold equipped with a
Riemannian metric, where smooth means C∞.

Definition 1.4.1.2 (Orthonormal Frame). Given a Riemannian manifold (M, g)

and an open set U ⊂M a local orthonormal frame on U is a set of (not neces-
sarily smooth) vector fields {E1, .., En} on U that are orthonormal with respect
to the Riemannian metric at each point p ∈ U , that is, gp(Ei(p), Ej(p)) = δji .
Can be proved that for every p ∈ M there exists a local orthonormal frame on
an open set containing p.

Definition 1.4.1.3 (Inner Product on Ak(T ∗pM)). Let (M, g) be an oriented
Riemannian manifold, let p ∈ M be a point and let {E1, ..., En} be an or-
thonormal frame at p and {e1, .., en} the corresponding dual frame. A basis for
Ak(T ∗pM) is then given by the set: B = {ei1 ∧ .. ∧ eik |ii � .. � ik}. We define
an inner product < ·, · >g on Ak(T ∗pM) such that:

< ω, η >g=
1

k!

∑
1≤i1�..�ik≤n

ω(Ei1 , .., Eik)η(Ei1 , .., Eik) (61)

This inner product is independent of the choice of orthonormal frame and is
hence well defined.

Proposition 1.4.1.4 (Riemannian volume form). There exists a unique ori-
entation form called the Riemannian volume form, on M , which we denote by
ωg, and which has the defining property that ωg(E1, .., En) = 1 for every lo-
cal oriented orthonormal frame {E1, .., En}, where oriented frame means to be
pointwise positively oriented w.r.t the orientation induced by the orientation of
M to TpM , i.e if η is an orientation ofM given by a non vanishing smooth n dif-
ferential form then {E1,p, .., En,p} is positively oriented if ηp(E1,p, .., En,p) > 0,
otherwise it is negatively oriented.
Moreover given (U, x) an oriented local chart, then ωg =

√
det(G)dx1 ∧ ..∧ dxn

where G is the matrix that represent g in this chart.

Proof. Let {e1,|p, .., en,|p} an oriented orthonormal basis of Tp(M) and define
{e1
|p, .., e

n
|p} as its dual in T

∗
p (M), and ω|p = e1

|p∧ ..∧e
n
|p, this form is well defined
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since or any other positively oriented basis of Tp(M), {ẽ1,|p, .., ẽn,|p} with B

transition matrix, ω|p = e1
|p ∧ .. ∧ e

n
|p = det(B)ẽ1

|p ∧ .. ∧ ẽ
n
|p, but in this case the

determinant of B is 1 since both the basis are positively oriented.
Now let x oriented local coordinate chart near p then and Ap the transition
matrix from {e1,|p, .., en,|p} to { ∂

∂x1 , ..,
∂
∂xn }|p we have

ωp(
∂
∂x1 , ..,

∂
∂xn ) = det(Ap)ωp(e1,|p, .., en,|p) = det(Ap) =

√
det(ATpAp), now by

the definition of G we have that (G) = (ATpAp) so we are done.

Remark 1.4.1.5. Applying < ·, · >g pointwise to differential forms yields the
map:

< ·, · >g: Ωk(M)× Ωk(M)→ C∞(M) (62)

and if M is compact, integrating < ., . >g over M get an inner product of
Ωk(M), in the following way.

< η, ω >= (

∫
M

< η, ω >p ωg) (63)

Definition 1.4.1.6 (Hodge star operator). We define the Hodge operator
? : Ω∗(M)→ Ω∗(M) such that for a k-form η the identity ζ∧η =< ζ, ?−1η > ωg

holds for all ζ ∈ Ωn−k(M).

Lemma 1.4.1.7 (Finite dimensional Riesz representation theorem). Let V be a
finite-dimensional vector space endowed with a nondegenerate inner product g,
and let f be a linear functional on V . Then there exists a unique vector v ∈ V
such that:

f(w) = g(v, w) ∀w ∈ V (64)

Proof. Let {u1, .., un} be an orthonormal basis then define v =
∑
f(ui)ui then

if w =
∑
i

wiui we have:

f(w) =
∑
i

wif(ui) =
∑
i,j

wif(uj)g(ui, uj) = g(w, v) (65)

For the unicity suppose v′ that satisfies the same property then
g(v−v′, w) = g(v, w)−g(v′, w) = f(w)−f(w) = 0 for all w ∈ V so v−v′ = 0.

Proposition 1.4.1.8. Let (M, g) be a Riemannian manifold with boundary.
The Hodge star operator is the unique automorphism on Ω∗(M) that maps the
k-form η to the (n − k)-form ?η. Moreover, for each k ∈ {0, .., n}, the map ?k
is an isomorphism from the space of k-forms to the space of n− k-forms on M .
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Proof. Every top differential form on M can be written as fωg for some smooth
function f on M . Fix η ∈ Ωk(M) then ζ ∧ η ∈ Ωn(M) for all ζ ∈ Ωn−k(M),
and thus:

ζ ∧ η = fη(ζ)ωg (66)

where fη(ζ) is smooth and fη : Ωn−k → C∞(M) is linear over C∞(M). Moreover
fη is uniquely determined and at each p ∈M the map:

fη|An−k(T∗pM) : An−k(T ∗pM)→ R (67)

is a linear functional, so using the previous lemma we obtain θ ∈ Ωn−k(M) such
that fη(ζ) =< ζ, θ >Ak , now call ?−1η = θ.
? is C∞(M) linear since fη is so, moreover if ζ ∧ η = 0 for every ζ ∈ Ωn−k(M)

then η = 0 so ? is injective so using that dim(Ωk(M)) = dim(Ωn−k(M)) we are
done.

Proposition 1.4.1.9. Let (M, g) be a Riemannian manifold with boundary.
The following definitions of ? are equivalent:
1) Let η ∈ Ωk(M), then ?−1η ∈ Ωn−k(M) such that:

ζ ∧ η =< ζ, ?−1η > ωg ∀ζ ∈ Ωn−k(M). (68)

2) Let η ∈ Ωk(M), then ?η ∈ Ωn−k(M) such that:

ζ ∧ ?η =< ζ, η > ωg ∀ζ ∈ Ωk(M). (69)

3) Let {e1, .., en} be an orthonormal coframe defined on some open subset
U ⊂M and σ ∈ Sn:

? (eσ(1)∧..∧eσ(n)
) := sgn(σ)eσ(k+1) ∧ .. ∧ eσ(n) (70)

4) Let {E1, .., En} be an orthonormal frame defined on some open subset U ⊂M
and let η ∈ Ωk(M). Then ?η is defined on U to be the (n− k)-form for which:

(?η)(Eσ(k+1), .., Eσ(n)) := sgn(σ)η(Eσ(1), .., Eσ(n)) ∀σ ∈ Sn (71)

Proof. The first two are clearly equivalent using η = ?◦?−1η, while the last two
come the definition of ωg given in (1.4.1.4).

Corollary 1.4.1.10. Let (M, g) be a Riemannian manifold with boundary.
Then ?1 = ωg.
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Proof. From the point 4) of the previous proposition.

Corollary 1.4.1.11.
? ◦ ? η = (−1)n(n−k)η (72)

Proof. Corollary 2.19 in (19).

Corollary 1.4.1.12. The inverse map ?−1 : Ω∗(M) → Ω∗(M) is equal to ?

when n is odd and it is (−1)k when n is even.

Proof. Corollary 2.21 in (19).

Proposition 1.4.1.13. If M is compact the same inner product defined in the

(1.4.1.5) can be defined as < ζ, η >=

∫
M

ζ ∧ ?η, moreover this inner product

is preserved by the star operator.

Proof. From the point 2 of (1.4.1.9) we know that ζ ∧ ?η =< ζ, η > ωg so the
first statement is trivial.
The second statement comes from:

< ?ζ, ?η >=

∫
M

?ζ ∧ ? ? η (1.4.1.11)
= (−1)k(n−k)

∫
M

?ζ ∧ η =

= (−1)2k(n−k)

∫
M

η ∧ ?ζ =< η, ζ >=< ζ, η > .

(73)

1.4.2 Boundary Conditions

Definition 1.4.2.1 (Codifferential). Define δk : Ωk(M)→ Ωk−1(M) as
δk = (−1)n(k+1)+1 ? dn−k?.

Lemma 1.4.2.2. Let (M, g) be a Riemannian manifold with boundary. An
alternative expression for the codifferential is given by:

δη = (−1)k ?−1 d ? η (74)

Proof. Proposition 2.24 in (19).

Proposition 1.4.2.3. Let (M, g) be a Riemannian manifold with boundary.
Then for any ζ ∈ Ωk(M) and η ∈ Ωk+1(M):

< dζ, η >=< ζ, δη > +

∫
∂M

i∗(ζ) ∧ i∗(?η) (75)

where i : ∂M ↪→M .
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Proof. Recall that d(ω1∧ω2) = d(ω1)∧ω2+(−1)k1ω1∧d(ω2) for all ωi ∈ Ωki(M).

< dζ, η >=

∫
M

d(ζ) ∧ ?η =

∫
M

d(ζ ∧ ?η)− (−1)k
∫
M

ζ ∧ d(?η) (76)

now the first term on the right hand side of the equation using the Stokes’

theorem became
∫
∂M

i∗(ζ) ∧ i∗(?η), while :

−(−1)k
∫
M

ζ∧d(?η) = (−1)k+1

∫
M

ζ∧d(?η) =

∫
M

ζ∧?(−1)k+1?−1d(?η) (77)

and using the previous lemma the term on the right hand side of the equation
became: ∫

M

ζ ∧ ?δη =< ζ, δη > . (78)

Remark 1.4.2.4 (Boundary conditions). From the previous proposition we see
that if the manifold is without boundary the differential and the co-differential are
adjoint w.r.t the inner product induced by the metric, i.e < dζ, η >=< ζ, δη >.
This is not always true when the manifold has a boundary, but clearly it is true
when i∗(ζ) = 0 or i∗(?η) = 0 these two conditions will be called Dirichlet and
Neumann boundary conditions.

Lemma 1.4.2.5. If (M, g) is an oriented Riemannian manifold, exists a unique
outward pointing vector field ν such that gp(νp, νp) = 1 and
gp(νp, Xp) = 0,∀Xp ∈ Tp∂M .

Proof. Lemma 5 in (26).

Definition 1.4.2.6 (Vector Field Decomposition). Given a vector field X on
M its normal component n(X|∂M ) := g(ν,X|∂M ) · ν and its tangential compo-
nent t(X|∂M ) = X|∂M − n(X|∂M ). This allows to define the tangential and
normal component of a differential form ω ∈ Ωk(M) over the boundary by
t(ω|∂M )(X1, .., Xk) := ω|∂M (t(X1), .., t(Xk)) and n(ω|∂M ) := ω∂M − t(ω∂M ).

Proposition 1.4.2.7. Let (M, g) a Riemannian manifold with boundary and
i : ∂M ↪→M be the inclusion map of the boundary, and η ∈ Ωk(M). Then:

tη = 0 iff i∗(η) = 0 (79)

Proof. Proposition 5.1 in (19).
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Proposition 1.4.2.8. Let (M, g) a Riemannian manifold with boundary and
η ∈ Ωk(M). Then:

? (nη) = t(?η) ? (tη) = n(?η) (80)

Proof. Proposition 5.2 in (19).

Definition 1.4.2.9 (Laplace de-Rham operator). Let (M, g) a Riemannian
manifold with boundary. The Laplace de-Rham operator ∆r : Ωr(M)→ Ωr(M)

is defined as ∆r = δr+1dr + dr−1δr

Proposition 1.4.2.10. The Laplace-de Rham operator commutes with ?, δ and
d.

Proof. Proposition 3.1 in (19).

Definition 1.4.2.11. 1) Dirichlet boundary condition
ΩkD(M) = {ω ∈ Ωk(M)|tω = 0}.
2) Neumann boundary condition ΩkN (M) = {ω ∈ Ωk(M)|nω = 0}.
3) Harmonic forms Hk(M) = {ω ∈ Ωk(M)|dk(ω) = 0, δk(ω) = 0}, following
the points 1) and 2) we define also HkN (M) and HkD(M).
4) Ck(M) and Ek(M) are the closed and exact k forms, while cCk(M) and
cEk(M) are coclosed and coexact.

Proposition 1.4.2.12. Let (M, g)a Riemannian manifold with boundary, then:

ΩkN (M) = {ω ∈ Ωk(M)|t(?ω) = 0} (81)

Proof. By definition ω ∈ ΩkN (M) iff nω = 0, since ? is an isomorphism, this
happens iff ?nω = 0, using (1.4.2.8), ?nω = t(?ω).

Proposition 1.4.2.13. Let (M, g) a Riemannian manifold with boundary, the
differential preserves Dirichlet boundary condition while the codifferential pre-
serves Neumann boundary condition.

Proof. Let ω ∈ ΩkD(M) then tω = 0 so by (1.4.2.8) i∗(ω) = 0 and since
the differential commutes with the pull back, i∗(dω) = d(i∗(ω)) = 0 and so
t(dω) = 0.
The second statement is made in a similar way using the previous porposition.

Definition 1.4.2.14. In the previous proposition we proved that (Ω∗D(M), d∗)

is a cochain complex, so we can define Hk(M,∂M) as the cohomology groups of
this complex.
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Proposition 1.4.2.15. Let (M, g) a Riemannian manifold with boundary then
the ? operator provide the following isomorphisms:
1) Ck(M) ∼= cCn−k(M).
2) Ek(M) ∼= cEn−k(M).
3) Hk(M) ∼= Hn−k(M).
4) EkD(M) ∼= En−kN (M).
5) HkD(M) ∼= Hn−kN (M).

Proof. Let ω ∈ Ωk(M) using (1.4.1.11) together with the definition of δ, dω = 0

iff δ ? ω = ?d ? ?ω = ± ? dω = 0, this gives the first isomorphism.
In a similar way ω = dη iff ?ω = ?dη = ±δ ? η and so we have also the second
isomorphism.
The other isomorphisms are proved in the same way, the complete proof is at
Proposition 5.4 in (19).

Theorem 1.4.2.16 (Hodge-Morrey-Friedrichs Decomposition). Let (M, g) a
compact oriented, smooth Riemannian n-manifold with boundary. Then Ωk(M)

decomposes as the orthogonal sum:

Ωk(M) = cEkN (M)⊕Hk(M)⊕ EkD(M) (82)

moreover, the spaces of harmonic k forms decomposes as:

Hk(M) = HkN (M)⊕ EcCk(M) = HkD(M)⊕ CcEk(M). (83)

where EcCk(M) = {ω ∈ Ωk(M)|δω = 0, ω = dη} and
CcEk(M) = {ω ∈ Ωk(M)|dω = 0, ω = δη}.

Proof. Corollary 2.4.9 in (20)

Theorem 1.4.2.17. Let (M, g) a compact oriented, smooth Riemannian n-
manifold with boundary, then:
1) Hk(M) ∼= HkN (M).
2) Hk(M,∂M) ∼= HkD(M).

Proof. 1) We want to show that for every ω ∈ Hk(M) exists a unique ωN ∈
HkN (M) such that [ω] = [ωN ]. Using the Hodge-Morrey-Friedrichs decomposi-
tion we have that for every ω ∈ Ωk(M) we can write, ω = δα + β + dγ, the
condition dω = 0 implies dδα = 0. Then we have:

0 =< dδα, α >=< δα, δα > (84)
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so δα = 0. Now using the decomposition Hk(M) = HkN (M) ⊕ EcCk(M), we
can write β ∈ Hk(M) = ωN + dη, this implies that ω = ωN + d(γ + η) and so
[ω] = [ωN ].
2) We want to show that for every ω ∈ Hk(M,∂M) exists a unique ωD ∈
HkD(M) such that [ω] = [ωD]. Using the Hodge-Morrey-Friedrichs decomposi-
tion we can write ΩkD(M) = (cEkN (M)∩ΩkD(M))⊕HkD(M)⊕EkD(M), so write
ω = δα+ωD+dγ, as before the condition dω = 0 implies δα = 0 so ω = ωD+dγ

and [ω] = [ωD].

Corollary 1.4.2.18 (Lefschetz Duality for Riemannian manifolds). Let (M, g)

a compact oriented, smooth Riemannian n-manifold with boundary, then:

Hk(M) ∼= Hn−k(M,∂M) (85)

Proof. Using the previous theorem we have Hk(M) ∼= HkN (M) and
Hn−k(M,∂M) ∼= Hn−kD (M) and using (1.4.2.15) we know that ? defines and
isomorphism between HkN (M) and Hn−kD (M).

45



2 Discrete Hodge star Operator

In this chapter we consider a smooth compact Riemannian manifold with
boundary (M, g) with a triangulation K. Our objective is to find a discrete
counterpart in the simplicial cohomology of K for the smooth operator ?.
We will extend the construction made by Wilson in (23) to the case of a compact
manifold with boundary, in order to manage boundary conditions we need to
define two ? operators, Fa : Ck(K) → Cn−k(K, ∂K) and Fr : Ck(K, ∂K) →
Cn−k(K), where ∂K is the triangulation induced by K on the boundary of M
(that exists because of (1.3.1.13)).
In order to do so, we need a pairing (·, ·) : Ck(K) ⊗ Cn−k(K, ∂K) → R and
two inner products < ·, · >a: Ck(K)× Ck(K)→ R and < ·, · >r: Ck(K, ∂K)×
Ck(K, ∂K)→ R.
Once we have both the inner products and the pairing we can define Fa(σ), for
every σ ∈ Ck(K), such that < Faσ, τ >a= (σ, τ) for every τ ∈ Cn−k(K, ∂K)

and viceversa for Fr.

2.1 Pairing

In order to build our pairing we will use a cup product
∪ : Ck(K) ⊗ Cl(K, ∂K) → Ck+l(K, ∂K) that mimics the work of the wedge
product in the smooth setting, this cup product will be different from the one
that we defined in (1.2.7) but using the Theorem 4 in (20), the product induced
in cohomology will be equal and so also the pairing induced in cohomology will
be the same of the one defined in (1.2.7) .

Lemma 2.1.0.1. Let φ ∈ Ck(K, ∂K) then t(W (φ)) = 0, where W is the Whit-
ney map defined in (1.2.5.10).

Proof. We know from (1.4.2.7) that t(W (φ)) = 0 iff i∗(W (φ)) = 0, moreover
we can suppose φ = σ∗ with σ = [p0, .., pk] with p0 6∈ ∂M , then using the step
3 of the proof of (1.2.5.10), the barycentric coordinate µp0 vanishes on the
boundary and so by (33), i∗(W (σ∗)) = 0 too.

Remark 2.1.0.2 (Boundary conditions). From this lemma we see that Ck(K, ∂K)

is a good discrete analogue for ΩkD(M), unfortunately we don’t have a good coun-
terpart for ΩkN (M) too.

Definition 2.1.0.3 (Discrete Cup product). Let a ∈ Ck(K) and b ∈ Cl(K, ∂K),
then we define a ∪ b ∈ Ck+l(K, ∂K) as:

a ∪ b = R(W (a) ∧W (b)) (86)
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Theorem 2.1.0.4. Let σ = [pα0 .., pαj ] ∈ Cj(K) and τ = [pβ0 , .., pβk ] ∈
Ck(K, ∂K) and σ∗ ∈ Cj(K), τ∗ ∈ Ck(K, ∂K) their dual, then σ∗ ∪ τ∗ is zero
unless σ and τ intersect in exactly one vertex and span a (j + k)-simplex v, in
which case, for τ = [pαj , pαj+1

, .., pαj+k ] we have:

σ∗ ∪ τ∗ = ε(σ, τ)
j!k!

(j + k + 1)!
v∗ (87)

where ε(σ, τ) is defined in such a way that
orientation(σ)·orientation(τ) = ε(σ, τ)·orientation(v), and v = [pα0

, .., pαj+k ].

Proof. For any simplex α, W (α∗) = 0 in M \ St(α), σ∗ ∪ τ∗ = R(W (σ∗) ∧
W (τ∗)) = 0 if V ert(σ)∩ V ert(τ) = ∅ since this would imply St(σ)∩ St(τ) = ∅.
If they intersect in more than one vertex W (σ∗) ∧W (τ∗) = 0 since it would be
a sum of terms containing dµαi ∧ dµαi for some i. Thus, up to a reordering the
vertices of K, it suffices to show that for σ = [p0, .., pj ], τ = [pj , .., pj+k] and
v = [p0, .., pj+k] we have σ∗ ∪ τ∗(v) = ε(σ, τ) j!k!

(j+k1)! .
By the definition of W and R we have:

σ∗ ∪ τ∗(v) =

∫
v

W (σ∗)∧W (τ∗) = j!k!

∫
v

j+k∑
i=0

(−1)iµiµjdµ0 ∧ ..∧ ˆdµi ∧ ..∧ dµj+k

Now,
∑
i

µi = 1 so dµ0 = −
j+k∑
i=1

dµi, so the last expression in equal to

j!k!

∫
v

j+k∑
i=0

(−1)iµiµj(−dµi) ∧ dµ1 ∧ .. ∧ ˆdµi ∧ .. ∧ dµj+k =

= j!k!

∫
v

µj

j+k∑
i=0

µidµ1 ∧ .. ∧ dµk = j!k!

∫
v

µjdµ1 ∧ .. ∧ dµj+k, where in the last

equation we have used
∑
i

µi = 1.

Now call A =

∫
v

µjdµ1 ∧ .. ∧ dµj+k clearly A =

∫
v

µsdµ1 ∧ .. ∧ dµj+k for any s,

using
∫
v

dµ1 ∧ .. ∧ dµj+k = ± 1

(j + k)!
(it is the volume of the standard (j + k)-

simplex), we get (j + k + 1)A =

∫
v

dµ1 ∧ .. ∧ dµj+k = ± 1

(j + k)!
and so

A =

∫
v

µsdµ1 ∧ .. ∧ dµj+k = ± 1

(j + k + 1)!
where the sign is defined by ε(σ, τ).

Remark 2.1.0.5. Notice that this cup product can be seen as the restriction to
Ck(K) × Cj(K, ∂K) of a cup product Ck(K) × Cj(K) → Ck+j(K) defined in
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the same way, and thanks to the previous theorem the latter cup product satisfies
I∪φ = φ∪I = φ, for every φ ∈ Ck(K) where I ∈ C0(K) is equal to

∑
p∈V ert(K)

p∗.

Theorem 2.1.0.6. The element of Hn(K, ∂K) that correspond to the funda-
mental class [M ] ∈ Hn(M,∂M) is the orientation cycle for the pair (K, ∂K)

defined in (1.3.1.2).

Proof. The isomorphism between the simplicial homology of K and the singular
homology of M is given by the map that associates to each n simplex
σ = [v0, .., vn] in K, the map σ̃ : ∆n → M that sends ei → vi and is extended
by linearity.
The fundamental class of M is characterized by the fact that for every x in
M \ ∂M , the map Hn(M)→ Hn(M |x) sends [M ] into a generator of
Hn(M |x). So to prove the theorem we have to show that for any σ, n simplex of
K, the map σ̃ generates Hn(M |x) for every x interior point of σ. Using excision
and a chart of M it’s enough to prove it for Rn, and using again excision
reduces to show that the identity map on ∆n generates Hn(∆n,∆n \ {x}) ∼=
Hn(∆n, ∂∆n).
This will be done by induction on n. If n = 0 H0(∆0, ∂∆0) = H0({pt}) so the
result is trivial.
If n = 1 consider the short exact sequence:

0→ H1(∆1, ∂∆1)
δ−→ H0(∂∆1)

i∗−→ H0(∆1)→ 0 (88)

with ∆1 = [e0, e1] and ∂∆1 = {e0, e1}, here H0(∂∆1) = Z⊕Z and it is generated
by [e0] and [e1], the kernel of i∗ is given by K = {a[e0] + b[e1]|a+ b = 0}. Since
the sequence is exact Id : ∆1 → ∆1 generates H1(∆1, ∂∆1) iff δ(Id) generates
K. Looking at the construction of the connecting morphism δ, it’s clear that
δ(Id) = [e0]− [e1] and so it’s a generator of K.
Now if n ≥ 2, define Λn as the set of all but one boundary simplexes in ∆n, this
is contractible to the vertex opposite to the face that is not contained in Λn.
Now we have:

Hn(∆n, ∂∆n)
δ−→ Hn−1(∂∆n) = Hn−1(∂∆n,Λn)

exc∼= Hn−1(∆n−1, ∂n−1) (89)

the identity in ∆n is sent by δ to the alternated sum of the identities of the
simplexes in the boundary, and so by excision this is sent to the identity in
∆n−1.
So the result for ∆n−1 implies the one for ∆n.
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Definition 2.1.0.7 (Pairing). Let [M ] ∈ Hn(K, ∂K) be the fundamental class
of M , then we define the pairing:

(·, ·) : Ck(K)× Cn−k(K, ∂K)→ R

(φ, ψ) 7→ (φ ∪ ψ)([M ])
(90)

Remark 2.1.0.8. As we pointed out in the introduction to this section this
pairing induces in cohomology induces in cohomology the same non degenerate
pairing defined in (1.2.7), but at level of chains we have no hope of building
a non degenerate pairing since the dimension of Ck(K) and Cn−k(K, ∂K) are
different, in chapter 3 we will see that this does not allow to use the discrete
Hodge star operator that we define in this section to solve a Poisson system.

Proposition 2.1.0.9. Let σ = [pα0
, .., pαk ] ∈ Ck(K) with pα0

< .. < pαk and
τ = [pβ0

, .., pβn−k ] with pβ0
< .. < pβk , then:

(σ∗, τ∗) =

±
k!(n−k)!
(n+1)! if σ and τ share only 1 vertex and span an n simplex

0 otherwise

(91)

Proof. If σ and τ share more than one vertex or they do not span an n simplex
then from (2.1.0.4) their cup product vanishes.
In this case σ∗ ∪ τ∗ = ε(σ, τ)k!(n−k)!

(n+1)! v
∗ with v = [p0, .., pn] is spanned by σ

and τ , since [M ] =
∑

w∈K(n)

w then σ∗ ∪ τ∗([M ]) = αw
k!(n−k)!
(n+1)! , with αw =

ε(σ, τ) · (v∗, w) = ±1 where (v∗, w) is equal to 1 if v and w have the same
orientation and it is equal to −1 otherwise.

Lemma 2.1.0.10. Let a ∈ Ck(K) and b ∈ Cn−k(K, ∂K) then:

(a, b) =

∫
M

W (a) ∧W (b). (92)

Proof. From the definition (a, b) = (a ∪ b)([M ]) = R(W (a) ∧W (b))[M ] =

=

∫
[M ]

W (a) ∧W (b), from (2.1.0.6) we know that [M ] is equal to the sum of

the n simplexes of K, oriented in such a way that if τ is an n− 1 simplex of K
and it is a face of σ1 and σ2 then the orientations of τ in σ1 and σ2 are opposite,

so
∫

[M ]

W (a) ∧W (b) =

∫
M

W (a) ∧W (b).
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2.2 Inner products

In this section we are going to define the inner product that we need to
build the Hodge star operators, thanks to this inner product we will also able to
build a discrete counterpart of the harmonic forms that we defined in (1.4.2.11)
and also an orthogonal decomposition that is equivalent to the one defined in
(1.4.2.16) .
The inner product that we use was firstly defined by Eckemann in (18) and
then used by Dodziuk in (25; 21).

Definition 2.2.0.1 (Inner products). Let σ, τ ∈ Ck(K) then we define
< σ, τ >a=< W (σ),W (τ) > where the inner product of the Whitney forms is
the one defined in the (1.4.1.13).
In the relative case we see Ck(K, ∂K) as a subsapce of Ck(K) and define
< ·, · >r=< ·, · >a|Ck(K,∂K).
The fact that these two products are non degenerate depends on the fact that the
Whitney map is injective so if < σ, σ >=< W (σ),W (σ) >= 0 then W (σ) = 0

from the non degeneracy of the inner product in Ωk(M) and so σ = 0 from the
injectivity of W .
Since the two inner products are defined in the same way we will refer to them
just as < ·, · >.

As we pointed out in the introduction of the paragraph 1.3.3 the Hodge
star operator should model the material properties of the medium, so we expect
also the discrete Hodge star operator to do so.
The idea behind the choice of this inner product is that this characteristic of the
operator depends on the choice of the inner product and not on the choice of
the pairing and so the inner product is built using the continuous inner product
(and so the continuous Hodge operator).

Definition 2.2.0.2 (Codifferential). We define δ : Ck(K) → Ck−1(K) such
that:

< dσ, τ >=< σ, δτ >, ∀σ ∈ Ck−1(K), τ ∈ Ck(K) (93)

the same can be done for the relative case.

Definition 2.2.0.3 (Discret Harmonic Forms). Define
Hk(K) = {σ ∈ Ck(K)|dσ = 0, δσ = 0}, and in the same way Hk(K, ∂K).

Theorem 2.2.0.4 (Discrete Hodge Decomposition). The following two orthog-
onal decompositions hold:
1) Ck(K) = d(Ck−1(K))⊕Hk(K)⊕ δ(Ck+1(K)).
2) Ck(K, ∂K) = d(Ck−1(K, ∂K))⊕Hk(K, ∂K)⊕ δ(Ck+1(K, ∂K)).
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Proof. 1) First we prove the orthogonality, let dσ ∈ d(Ck−1(K)), τ ∈ Hk(K)

and δφ ∈ δ(Ck+1(K)), we have:

< dσ, τ >=< σ, δτ >= 0

< dσ, δφ >=< σ, δδφ >= 0

< τ, δφ >=< dτ, φ >= 0.

(94)

so it’s enough to prove that dim(Ck(K)) = dim(d(Ck−1(K))) + dim(Hk(K))+

+dim(δ(Ck+1(K))).
Let δk : Ck(K)→ Ck−1(K), then we will show that
Ker(δk) = Hk(K) ⊕ δk+1(Ck+1(K)). The orthogonality of the two subspaces
follows from the previous computations, so we just have to show that for every
σ ∈ Ker(δk), if we denote πσ the orthogonal projection of σ in δk+1(Ck+1(K))

then d(σ − πσ) = 0, this is true because < d(σ − πσ), d(σ − πσ) >=

=< δd(σ − πσ), σ− πσ >= 0, where we have used that σ − πσ is orthogonal to
δk+1(Ck+1(K).
Now we have dim(Ck(K) = dim(Ker(δk)) +dim(δk(Ck(K))) = dim(Hk(K))+

+dim(δk+1(Ck+1(K))) + dim(δk(Ck(K))).
The last thing to show is that dim(δk(Ck(K))) = dim(dk−1(Ck−1(K)), but this
is true since both dk−1 : δk(Ck(K))→ dk−1Ck−1(K) and
δk : dk−1Ck−1(K)→ δk(Ck(K)) are injective.
2) As the proof of 1).

Corollary 2.2.0.5. 1) Hk(K) ∼= R(HkN (M)).
2) R(HkD(M)) ∼= Hk(K, ∂K) ∼= Hk(K, ∂K).

Proof. 1) Using the point 1 of (1.4.2.17) for every [σ] ∈ Hk(K) there is ω ∈
HkN (M) such that [ω] = [W (σ)] and so [R(ω)] = [σ].
2) The first isomorphism is proved in the same way of the one in point 1 with
the support of (2.1.0.1), while the second isomorphism can be proved in the
same way of the point 2 of (1.4.2.17), using the discrete Hodge decomposition
of Ck(K, ∂K).

Remark 2.2.0.6. The result contained in the last corollary can be viewed as
another form of the Leschetz Duality in a triangulated Riemannian Manifold.

2.3 Hodge star

Definition 2.3.0.1 (Hodge star operator). Let σ ∈ Ck(K) then ?aσ ∈ Cn−k(K, ∂K)

is defined in such a way that:

<Faσ, τ >= (σ ∪ τ)([M ]), ∀τ ∈ Cn−k(K, ∂K) (95)
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While for τ ∈ Ck(K, ∂K) then ?rτ ∈ Cn−k(K) is defined in such a way that:

< σ,Frτ >= (σ ∪ τ)([M ]), ∀σ ∈ Cn−k(K). (96)

Remark 2.3.0.2 (Matricial form). Since Fa is a linear operator from Ck(K)

to Cn−k(K, ∂K), we can write his associated matrix.
Let P k to be the matrix associated to the pairing Ck(K) × Cn−k(K, ∂K) → R
, i.e P k(i, j) = (σi

∗, τj
∗), where {σi}i=0,..,Nk are the k simplexes in K and

{τ}j=0,..,Nn−kr
are the (n−k)-simplexes in K that are not in the boundary, then

we have (σ∗, τ∗) = σ∗TP kτ∗. Moreover if Mn−k
r is the matrix associated to the

inner product in Cn−k(K, ∂K), we have < Faσ
∗, τ∗ >= Faσ

∗TMn−k
r τ∗, so

the equality (95) became Faσ
∗T = σ∗TP k · (Mn−k

r )−1.
The same argument applies to prove that the matrix associated to Fr is
(Mn−k)−1 · P k.

Using (1.4.2.2) it’s easy to show that, in Ω∗(M), ?d = (−1)k+1δ?, in the
following lemma we prove that this property holds also in the discrete case.

Proposition 2.3.0.3. The following holds:
1) For every σ ∈ Ck(K) then Fadσ = (−1)k+1δFa.
2) The same result for Fr.

Proof. 1) Let τ ∈ Cn−k−1(K, ∂K) then:

<Fadσ, τ >= dσ ∪ τ([M ]) (97)

using the properties of the wedge product dσ ∪ τ = R(W (dσ) ∧W (τ)) =

= R(d(Wσ) ∧Wτ) = R(d(Wσ ∧ τ) + (−1)k+1Wσ ∧W (dτ)) and
R(d(Wσ∧τ))([M ]) = 0 since it is the evaluation of an exact cochain on a closed
chain, so the right hand side of (97) became:

(−1)k+1σ ∪ dτ([M ]) = (−1)k+1 <Faσ, dτ >= (−1)k+1 < δFaσ, τ > (98)

since this holds for every τ we have the result.
2) The proof is the same.

Proposition 2.3.0.4. Let a ∈ Ck(K) and b ∈ Cn−k(K, ∂K) then:

<Faa, b >=< a,Frb >=

∫
M

W (a) ∧W (b). (99)

Proof. Is a direct consequence of (2.1.0.10)
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A property that we would like to have is that WF = ?W , but since in
general ?W is not a Whitney form we cannot expect to have such result, so in
the following proposition we prove a weaker results, but it will be enough to
prove to convergence of the discrete Hodge star operator in the next section.

Proposition 2.3.0.5. Let πjr : Ωj(M)→W (Cj(K, ∂K)) and
πja : Ωj(M) → W (Cn−k(K)) be the orthogonal projections of Ωj(M) onto
W (Cj(K∂K)) and W (Cn−k(K)), then:
1) ∀a ∈ Ck(K), WFaa = πn−kr ? Wa.
2) ∀a ∈ Ck(K, ∂K), WFra = πn−ka ? W .

Proof. 1) We have to show that< WFaa,Wb >=< ?Wa,Wb >, ∀b ∈ Cn−k(K, ∂K).

< WFaa,Wb >=<Faa, b >
(2.3.0.4)

=

∫
M

Wa ∧Wb =< ?Wa,Wb > . (100)

2) As the point 1).

2.4 Convergence Results

In this section we use the techniques developed by Dodziuk in (24) to show
that F converges to ? where the triangulation gets denser.

Definition 2.4.0.1 (Standard Subdivision of a Complex). Let σ = [p0, .., pm]

be a simplex in Rk, k ≥ m, the vertices of Sσ are the points, pi,j = 1
2 (pi + pj),

i ≤ j. We define a partial order of the vertices of Sσ by setting pi,j ≤ pk.l if
i ≥ k and j ≤ l.
The simplexes of Sσ are increasing sequences of vertices w.r.t the above ordering.
If τ is face of σ Sτ equals the subdivision made by the simplexes of Sσ contained
in τ . This allows to define the standard subdivision of an ordered simplicial
complex L in a natural way.
Moreover we define inductively S0(L) = L and Sn+1L = S(SnL).

Definition 2.4.0.2. Let σ = [p0, .., pm] and σ′ = [q0, .., qm] be two simplexes in
Rm, we say that they are strongly similar if exists λ > 0 such that:

λ(σ − p0) = σ′ − q0 (101)

where σ− p0 is the rigid translation of σ that takes p0 to the origin, trivially we
can see that this defines an equivalent relation of m simplexes in Rm.
Moreover we say that σ is well placed if it’s strongly similar to [0, e1, .., em] where
{e1, .., em} is a standard basis of Rm.
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Figure 9: Standard Subdivision of a tetrahedron.

Definition 2.4.0.3. We say that an n simplex σ of a smooth triangulation of
M is well places in a coordinate chart (U, φ) if :
1) σ ⊂ U .
2) φ|σ : σ → Rn is linear.
3) φ(σ) is well places in Rn

Lemma 2.4.0.4. There exists a finite set U of coordinate charts of M with the
following property. For every integer k ≥ 0 and every n-dimensional simplex τ
of SkK there exist a coordinate chart (U, φ) ∈ U and an n-simplex σ of K such
that:
1) τ is well placed in (U, φ).
2) τ ⊂ σ ⊂ U .

Proof. Lemma 3.4 in (25).

Definition 2.4.0.5 (Mesh). Let ηk = ηk(K) = sup
σ∈SkK

diam(σ), where diam(σ)

is measured in metric induced by the euclidean distance in a coordinate neigh-
borhood in which σ is well placed, we call ηk the mesh of SkK.

Lemma 2.4.0.6. lim
k→∞

ηk = 0.

Proof. Lemma 3.6 in (25).

Notation 2.4.0.7. We define Wk and Rk the Whitney and de Rham maps
defined on the triangulation SkK of M .
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Lemma 2.4.0.8. Let σ = [p0, .., pn], N = {1, .., n}, I = {i1, .., im} ⊂ N and
στI = [pτ , pi1 , .., pim ]. Then

W (σ0
I
∗
) = m!dµi1 ∧ .. ∧ dµim −

∑
τ∈N\I

W (στI
∗) (102)

Proof. Let dµI = dµi1 ∧ .. ∧ dµim and dµsI = dµi1 ∧ .. ∧ ˆdµis ∧ ..dµim .

By definition 1
m!W (σ0

I
∗
) = µ0dµI +

m∑
s=1

(−1)sµisdµ0 ∧dµsI , now using
∑

µi = 1

as we did in the proof of (2.1.0.4), the term on the right hand side became:

(1−
n∑
r=1

µr)dµI +

m∑
s=1

(−1)sµis(−
n∑
r=1

dµr) ∧ dµsI =

= dµI −
n∑
r=1

µrdµI −
m∑
s=1

µis(dµis +
∑
r∈N\I

dµr) ∧ dµsI =

= dµI −
∑

τ∈N\I

µrdµI −
m∑
s=1

µis(
∑
r∈N\I

dµr) ∧ dµsI =

= dµI −
∑
r∈N\I

(µrdµI +

m∑
s=1

(−1)sµisdµr ∧ dµsI) =

= dµI −
1

m!

∑
r∈N\I

W (σrI
∗).

(103)

Theorem 2.4.0.9. Let ω1,∈ Ωj(M) and ω2 ∈ Ωk(M), then exists a constant
C(ω1, ω2) independent of k such that:

|Wk(Rk(ω1) ∪Rk(ω2))(p)− ω1 ∧ ω2(p)|p ≤ Cσ(ω1, ω2)ηk (104)

almost everywhere on M .

Proof. The proof is based on the techniques developed in (24) and (22).
Fix k, the n − 1 skeleton of SkK has measure 0 so we can suppose that p ∈ ◦σ
for a unique n simplex σ in SkK. Let (U, φ) be a coordinate chart in which σ is
well placed, we can identify U as a subset of Rn, and since σ is well placed we
can suppose that σ = [0, he1, .., hen] for some h > 0, here we can suppose that
ω1 = fdx1 ∧ ..∧ dxj and ω2 = gdxα1

∧ ..∧ dxαk , and the baycentric coordinates
corresponding to 0, he1, .., hen are :

µ0 = 1− 1

h

n∑
i=1

xi

µi =
xi
h
, i 6= 0

(105)
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Let N = {0, .., n}, J = {1, 2, .., j} and K = {α1, .., αk}, then:

Rω1 =
∑

β∈N\J

(

∫
[pβ ,p1,..,pj ]

ω1)[pβ , p1, .., pj ]

Rω2 =
∑

γ∈N\K

(

∫
[pγ ,pα1 ,..,pαk ]

ω2)[pγ , pα1 , .., pαj ]

(106)

Now using (2.1.0.4), Rω1 ∪ Rω2 = 0 if J and K intersect in more then one
element, so we have to study the cases in which the intersection is empty or
consists of 1 element, we will study the two cases seprately.
1) J ∩K = {α1 = j}, we can suppose K = {j, j + 1, .., j + k − 1}
Using the notation σβJ = [pβ , p1, .., pj ], σ

γ
K = [pγ , pα1 , ..pαk ] the cup product

σβJ
∗
∪ σγK

∗ is non zero iff β 6= γ ∈ Q = N \ (J
⋃
K). We define:

[ps, pJ , pK ] = [ps, p1, .., pj , pα1
, .., pαk ]∫

[s]

ω1 =

∫
[ps,p1,..,pj ]

ω1∫
[s]

ω2 =

∫
[ps,pα1

,..,pαk ]

ω2

(107)

and compute

Rkω1 ∪Rkω2 =
j!k!

(j + k + 1)!

∑
β,γ∈Q,β 6=γ

(

∫
[β]

ω1)(

∫
[γ]

ω2)[pβ , pγ , pJ , pK ] (108)

from which we have:

Wk(Rkω1 ∪Rkω2) =
j!k!

(j + k + 1)!

∑
β,γ∈Q,β<γ

(Aβ,γ)W (σβ,γ) (109)

where σβ,γ is the dual of [pβ , pγ , pJ , pK ] andAβ,γ = (

∫
[β]

ω1)(

∫
[γ]

ω2)−(

∫
[γ]

ω1)(

∫
[β]

ω2),

using the definition of W and (105) we can prove that:

Wk(σ0,β) =
(j + k)!

hj+k
(dXβ − 1

h
(

n∑
i=j+k

xidX
β +

j+k−1∑
i=1

n∑
s=j+k,s 6=β

(−1)ixidX
s,β
i ))

Wk(σβ,γ) =
(j + k)!

hj+k+1
(xβdX

γ − xγdXβ +

j+k−1∑
i=1

(−1)i+1xidX
β,γ
i )

(110)
where dXi,j

l = dxi ∧ dxj ∧ dx1 ∧ .. ∧ dxl−1 ∧ dxl+1 ∧ .. ∧ dxj+k−1, notice that
|dxi|p ≤ 1 for every i and every p ∈ ◦σ so it’s using triangle inequality it’s enough
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to give an estimate to to the coefficients of Wk(Rkω1 ∪Rkω2), those are of two
kind:
I) j!k!

hj+k
A0β .

II) j!k!
hj+k+1Aβ,γxs.

In order to bound I) notice that Sj = hj

j! is the volume of [i, 1, .., j] and Sk = hk

k!

is the volume of [l, j, j+1, .., j+k−1] for every i, l 6∈ Q, so using the mean value

theorem j!
hj

∫
[0]

ω1 =

∫
[0]

f(x1, .., xj , 0, .., 0)dx1..dxj

Sj
= f(p) for some p ∈ σ,

repeating the same argument for the other integrals we have that:

| j!k!

hj+k
A0β | = |f(p)g(q)− f(p′)g(p′)| ≤

≤ |f(p)g(q)− f(p)g(q′)|+ |f(p)g(q′)− f(p′)g(q′)| =

= |f(p)||g(q)− g(q′)|+ |g(q′)||f(p)− f(p′)| ≤

≤ sup
σ
|f | sup

σ
|∇g|ηk + sup

σ
|g| sup

σ
|∇f |ηk = Cηk

(111)

Now for II) notice that
∫

[β]

ω1 =

∫
[0]

f(x1, ..xj , 0.., h(1− 1

h

j∑
i=1

xi), 0..0)dx1..dxj

and the same clearly holds for
∫

[β]

ω2 too.

So we have:∫
[0]

ω1 −
∫

[β]

ω1

Sj
=

∫
[0]

(f(x1, .., xj , 0..0)− f(x1, ..xj , 0.., h(1− 1

h

j∑
i=1

xi), 0..0)dx1..dxj

Sj
=

= (f(x1, .., xj , 0..0)− f(x1, ..xj , 0.., h(1− 1

h

j∑
i=1

xi), 0..0)

(112)
moreover

|
(f(x1, .., xj , 0..0)− f(x1, ..xj , 0.., h(1− 1

h

j∑
i=1

xi), 0..0)

h
| ≤ sup | ∂f

∂xβ
| ≤ C

(113)
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Finally we can write:

| j!k!

hj+k+1
Aβ,γxs| =

j!k!

hj+k+1
|
∫

[γ]

ω1

∫
[β]

ω2 −
∫

[β]

ω1

∫
[γ]

ω2||xs| =

=
j!k!

hj+k+1
|
∫

[γ]

ω1

∫
[β]

ω2 +

∫
[0]

ω1

∫
[β]

ω2 −
∫

[0]

ω1

∫
[β]

ω2+

+

∫
[β]

ω1

∫
[0]

ω2 −
∫

[β]

ω1

∫
[0]

ω2 +

∫
[0]

ω1

∫
[0]

ω2 −
∫

[0]

ω1

∫
[0]

ω2 −
∫

[β]

ω1

∫
[γ]

ω2||xs| ≤

≤ (
j!

hj
|
∫

[0]

ω1|) · (
k!

hk+1
· |
∫

[0]

ω2 −
∫

[β]

ω2|) · ηk + other terms of the same kind

(114)
where we used |xs| ≤ ηk.
Now the second term in the product was in bounded in (113), while the first
term in the product is bounded by supσ |f |, and this ends the first part of the
proof.
2)J ∩K = ∅, we can suppose K = {j+1, .., j+k}. Notice that there are exactly
j + k + 1 products of the form:

[pβ , pJ ] ∪ [pγ , pK ] (115)

that equals a non vanishing multiple of [pτ , pJ , pK ], for every τ ∈ Q and them
are given by:

β = τ, γ ∈ J

γ = τ, β ∈ K

β = γ = τ

(116)

so we have:

R(ω1) ∪R(ω2) =
j!k!

j + k + 1!
(
∑
|0|

(

∫
[β]

ω1)(

∫
[γ]

ω2)[p0, pJ , pK ]+

+
∑

τ∈Q\{0}

∑
|τ |

(

∫
[β]

ω1)(

∫
[γ]

ω2)[pτ , pJ , pK ])

(117)

where
∑
|s|

is the sum over all β and γ in (116).

now using 2.4.0.8 we know that:

W (σ0) = (j + k)!dµJ ∧ dµK −
∑

τ∈Q\{0}

W (στ ) (118)
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So we can write :

|W (Rω1 ∪Rω2)|p = | j!k!

(j + k + 1)

∑
|0|

(

∫
[β]

ω1)(

∫
[γ]

ω2)dµJ ∧ dµK − ω1(p)ω2(p)|p+

+
j!k!

(j + k + 1)!
|
∑

τ∈Q\{0}

(
∑
|τ |

(

∫
[β]

ω1)(

∫
[γ]

ω2)−
∑
|0|

(

∫
[β]

ω1)(

∫
[γ]

ω2))W (στ )|p

(119)
Now the second term in the sum can be bounded in the same way of II in the first
part of the proof, while for the first term notice that dµJ∧dµK = 1

hj+k
dxJ∧dxK ,

so we can write:

| j!k!

(j + k + 1)

∑
|0|

(

∫
[β]

ω1)(

∫
[γ]

ω2)dµJ ∧ dµK − ω1(p)ω2(p)|p =

= | j!k!

hj+k(j + k + 1)

∑
|0|

(

∫
[β]

ω1)(

∫
[γ]

ω2)− f(p)g(p)||dxJ ∧ dxK |p ≤

≤ | j!k!

hj+k(j + k + 1)

∑
|0|

((

∫
[β]

ω1)(

∫
[γ]

ω2)−
∫

[0]

ω1)(

∫
[0]

ω2))|+

+ | j!k!

hj+k

∫
[0]

ω1

∫
[0]

ω2 − f(p)g(p)|

(120)

where we used that
∑
[0]

contains exactly j + k+ 1 summands, moreover each of

these summands have β or γ equal to 0, if β = 0 we can write:

| j!k!

hj+k
(

∫
[0]

ω1

∫
[γ]

ω2 −
∫

[0]

ω1

∫
[0]

ω2)| = | j!
hj

∫
[0]

ω1||
k!

hk+1

∫
[0]

ω2 −
∫

[γ]

ω2||h|

(121)
and here the first term is bounded by sup |f | the second term is bounded by a
constant as in (113), and |h| ≤ ηk, so we just have to bound

| j!k!
hj+k

∫
[0]

ω1

∫
[0]

ω2 − f(p)g(p)| and this can be done using mean value theorem

as in (111), and this concludes the proof.

Corollary 2.4.0.10. Let ω1,∈ Ωj(M) and ω2 ∈ Ωk(M), then exists a constant
C(ω1, ω2) independent of n such that:

||Wk(Rk(ω1) ∪Rk(ω2))− ω1 ∧ ω2|| ≤ C(ω1, ω2)ηk (122)

Proof. By the definition of this norm we have:

||Wk(Rk(ω1) ∪Rk(ω2))− ω1 ∧ ω2||2 =

=

∫
M

|Wk(Rk(ω1) ∪Rk(ω2))− ω1 ∧ ω2(p)|2pdV olM ≤

≤ C2(ω1, ω2)η2
kvol(M)2

(123)
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where C(ω1, ω2) = maxσ C
σ(ω1, ω2) and vol(M) is finite since M is compact.

Corollary 2.4.0.11. Let ω ∈ Ωj(M) then:

||Wk(Rk(ω1))− ω1|| ≤ C(ω1)ηk (124)

Proof. Use ω2 ≡ 1 ∈ Ω0(M), then Rk(ω2) = I defined in the (2.1.0.5), and so
Rk(ω1) ∪Rk(ω2) = Rk(ω1).

Theorem 2.4.0.12. Let ω1 ∈ ΩjN (M) and ω2 ∈ ΩjD(M) then:
1) || ? ω1 −Wk(Fa(Rk(ω1)))|| ≤ C(ω1)ηk.
2) || ? ω2 −Wk(Fr(Rk(ω2)))|| ≤ C(ω2)ηk

Proof. 1) using (2.3.0.5) we have

|| ? ω1 −Wk(Fa(Rk(ω1)))|| = || ? ω1 − πn−jr ? (Wk(Rk(ω1)))|| ≤

≤ || ? ω1 − ?(Wk(Rk(ω1)))||+ || ? (Wk(Rk(ω1)))− πn−jr ? (Wk(Rk(ω1)))|| ≤

≤ || ? ||||ω1 − (Wk(Rk(ω1)))||+ || ? (Wk(Rk(ω1)))−Wk(Rk(?ω1))|| ≤

≤ || ? ||C ′(ω1)ηk + || ? (Wk(Rk(ω1)))− ?ω1||+ || ? ω1 −Wk(Rk(?ω1))|| ≤

≤ 2|| ? ||C ′(ω1)ηk + C(?ω1)ηk = C(ω1)ηk
(125)

where in the second inequality we used that πn−jr ? (Wk(Rk(ω1))) is the ele-
ment of Wk(Cn−j(K, ∂K)) of minimum distance from ?(Wk(Rk(ω1))) and that
?ω1 ∈ Ωn−jD (M) since the Hodge operator sends ΩN (M) in ΩD(M) and vicev-
ersa (1.4.2.8), moreover we used that the Hodge star operator preserves the
metric as it is remarked in (1.4.1.13).
2) as the first part.
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3 Poisson Problem

In this chapter we will use the framework defined in the chapter 2, to find a
discretization of the Laplacian problem in dimension 2, the same construction
is carried out in (31) for the n dimensional case.

3.1 The Model

The problem is defined on a triangulated compact manifold with boundary
M , embedded in R2, and the task is to find a smooth function u on M that
satisfies:

−∆u = f

u∂M = 0
(126)

where f is a smooth function over M , and ∆ = div ◦ ∇.
So we have to find a the right analogues for f, u, div,∇ in the simplicial complex
of K, where K is the triangulation of the M .
Clearly f, u can be considered as elements of Ω0(M) , so we start writing ex-
plicitely the complex Ω∗(M):

0→ Ω0(M)
∇−→ Ω1(M)

curl−−−→ Ω2(M)→ 0 (127)

where the 2 dimensional curl is defined, locally, as the map that sends
ω = a(x, y)dx+ b(x, y)dy to ( ∂b∂x −

∂a
∂y )dx ∧ dy.

As we can see the divergence operator does not appear in Ω∗(M), so what
we want to prove now is that −div : Ω1(M) → Ω0(M) is the the coadjoint
of ∇. There are two equivalent ways to prove this fact, indeed we can use
both the definition of δ given in (1.4.2.1) and the characterization given in
(1.4.2.3), in both cases we have to choose a metric onM , this will be Euclidean
metric induced in R2, in this case using the 2nd characterization of ? defined in
(1.4.1.9) and ωg = dx ∧ dy, it’s possible to show that:

? 1 = dx ∧ dy

? dx = dy

? dy = −dx

? dx ∧ dy = 1

(128)

so we can use the first definition of δ.
Take α ∈ Ω1(M) then locally we can write α = a(x, y)dx + b(x, y)dy, in this
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case, we have:

δα = − ? d1 ? (α) =− ?d1(a(x, y)dy − b(x, y)dx) = − ? ((
∂b

∂x
+
∂a

∂y
)dx ∧ dy) =

= −(
∂b

∂x
+
∂a

∂y
) = (− ∂b

∂x
− ∂a

∂y
)

(129)
so the equation −∆(u) = f translates into the equation, δ1d0(u) = f .
The discrete counterparts of u and f are clearly given by R(u), R(f) ∈ C0(K)

and, so we just need to find the matricial form of δ1 and d0.
1) Call D0 the matrix associated to d0, then D0 is matrix of dimension Ne×Nv
where Nv and Ne are the number of vertices in K, and :

D0
i,j =


1, if ei = [v, vj ]

−1, if ei = [vj , v]

0, otherwise

(130)

this is a direct consequence of the definition of d0 (1.2.2.12).
2) Now we have to find the matrix associated to δ1, we will call it D̃1, this is
a matrix of dimension Nv ×Ne, and it is defined starting from the definition of
the discrete codifferental (2.2.0.2), so we have:

aT ·DT
0 ·M1 · b = at ·M0 · D̃1 · b (131)

for all a ∈ C0(K) and b ∈ C1(K), this led to, D̃1 = M−1
0 ·DT

0 ·M1.
So the linear system of equation that we have to solve is:

(DT
0 ·M1 ·D0)R(u) = M0 ·R(f) (132)

3.2 Numerical Experiment

We have implemented in Matlab the discretization model defined above on
a Poisson Problem defined on M = [0, 1]× [0, 1] and with
f(x, y) = 2(x+ y− x2− y2), we know that the solution to this problem is given
by u(x, y) = x(1− x)y(1− y).
We have computed the L2 and the H1 errors from the exact solution, then we
have compared the error made by our model with the one obtained computing
the solution with the Matlab function "AssemPde", that implements a classical
FEM method.
As you can see from the figure, as the mesh goes to 0 the solution to our system
converges to the analytic solution, and the convergence rate is the same of the
FEM method.
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Figure 10: Both the L2 and the H1 errors for both the methods

Remark 3.2.0.1. For the sake of the numerical implementation the fact that
M = [0, 1] × [0, 1], is not a manifold is not a problem, since it is a Lipschitz
bounded domain and so we can define on it an L2 theory of differential forms
that extends our theory on smooth manifold, both the definition of Lipschitz
boundary domain and the definition of the theory can be found at chapter 3 of
(28).

Remark 3.2.0.2 (Physical System). This kind of Poisson problem appears in
many Physical models, for example in electromagnetism, where we can interpret
the function f as the electric charge density, and u as the electric potential, so
from the Maxwell’s equations (29) we have:

−∇u = E

εE = D

div(D) = f

(133)

where E is the electric field, D the electric displacement and ε is the permittivity,
the last one is usually represented as a type 2 tensor and usually represents a
property of the material.
When ε is a constant we have the same kind of Poisson problem discussed in the
previous section, but there are cases in which this is not true, in these situations
we can modify our model in order to take the property of the material into
account, in this case it’s enough to consider a new inner product between one
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form defined as :

< ω, η >ε=

∫
M

ε · ω ∧ ?η (134)

so the only modification to the model defined in the above section is a slight
modification of the matrix M1.

Remark 3.2.0.3 (Disretization of the Codifferential). Looking at the definition
of the smooth codifferential (1.4.2.1) one could ask why we haven’t defined the
discrete codifferential as (−1)n(k+1)+1F ◦ dn−k ◦F and actually this is the way
in which is defined the discrete codifferential in the numerical methods that uses
a secondary mesh (for instance look at (27)). Although our discrete Hodge
star converges to the smooth one as we proved in (2.4.0.12), it cannot be used
in a numerical method since, as we noticed in (2.1.0.8), the pairing involved
in the construction of the Hodge operator is not perfect and this causes an ill
conditioning of the linear system.
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