
University of Padova

Department ofMathematics

Master Thesis in Big dataManagement & Analytics

Federated learning: A study of its

applications in seizure prediction &

colorectal polyp segmentation tasks

Supervisor Master Candidate
Professor Alessandro Sperduti Andrés Gabriel Espinal Hernández
University of Padova

Co-supervisor
Professor Alberto Testolin
University of Padova

Academic Year
2023-2024



ii



In deep appreciation for all the mentors I have encountered duringmy jour-
ney; directly or indirectly materialized as family, friends, professors, or
colleagues. Thanks for blessing me with the gift of knowledge and the mo-
tivation to pursue it.



iv



Abstract

Machine learning (ML) algorithms have achieved exceptional levels of performance in automat-
ing tasks across several domains. However, in a traditional ML or Centralized Learning (CL)
approach, the data needs to first be collected in a centralized location before an ML model
can be built, raising a series of data privacy-related issues in domains that deal with sensitive
data, like finance, government, supply chains, and healthcare. The siloed nature of these data
sources stifles the power ofML and has recently sparked the interest of the research community
in techniques like Federated Learning (FL), which enables parties to participate in a collabora-
tive effort to build a robustmodelwithout sharing their private data. In thiswork, FL is studied
from a healthcare perspective to investigate its applicability in two domains: seizure prediction
using EEG signals, and polyp segmentation using colonoscopy images. A systematic analysis of
FL algorithms,model architectures, datasets, configurations, and hyperparameters is presented
in this work. Results suggest that FL can produce equivalent, and even better results than CL
in the aforementioned tasks, even for poorly performing centralized models. Hyperparameter
tuning is highlighted as a key component of good FL models, and additional insights on the
effect of federated hyperparameters are presented in an effort to motivate future research in
hyperparameter optimization.

v



vi



Contents

Abstract v

List of figures ix

List of tables xv

Listing of acronyms xvii

1 Introduction 1
1.1 Background &motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Justification & impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Backgroundwork & literature review 7
2.1 Federated learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Federated averaging strategies for model updates . . . . . . . . . . . 12
2.1.3 FL systems review . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Applications in the medical domain . . . . . . . . . . . . . . . . . 21
2.1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.6 Future work & research directions . . . . . . . . . . . . . . . . . . 23

2.2 Machine learning techniques . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Medical case studies & FL . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 EEG seizure detection/prediction . . . . . . . . . . . . . . . . . . 25
2.3.2 Polyp segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Methodology & experiment design 31
3.1 Datasets & data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 EEG signals dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Polyp segmentation dataset . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Dataset partitioning summary . . . . . . . . . . . . . . . . . . . . 35

3.2 Hardware & software characteristics . . . . . . . . . . . . . . . . . . . . . 36
3.3 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Centralized setting . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



3.3.2 Federated setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Federated setup & experiment design . . . . . . . . . . . . . . . . . . . . . 42

4 Experimental results & discussion 43
4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Exploratory data analysis (EDA) . . . . . . . . . . . . . . . . . . . 44
4.1.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.3 Centralized model evaluation . . . . . . . . . . . . . . . . . . . . . 49
4.1.4 Federated model evaluation . . . . . . . . . . . . . . . . . . . . . . 51
4.1.5 Effect of FL client size . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.6 Federated model convergence . . . . . . . . . . . . . . . . . . . . . 56
4.1.7 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.8 Resources consumption . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Analysis & interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusions & recommendations 65

Appendix A Supplementary information 67
A.1 Hyperparameter grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Hyperparameter tuning results . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Federated results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.4 Software settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.5 EEG Extracted features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

References 81

Acknowledgments 85

viii



Listing of figures

2.1 General formulation of FL as defined by Rieke et al. [1]. . . . . . . . . . . . 7
2.2 Example of the network architecture and communication process for an FL

healthcare application by Nguyen et al. [2]. . . . . . . . . . . . . . . . . . . 8
2.3 Federated Averaging (FedAvg) algorithm as proposed byMcMahan et al. [3] . 13
2.4 Adaptive Federated Algorithms: FedAdam, FedAdagrad & FedYogi as pro-

posed by Reddi et al. [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 FedProx algorithm as proposed by Li et al. [5] . . . . . . . . . . . . . . . . . 16
2.6 Choice of input data across EEG studies reviewed by Craik et al. [6]. Panel

A indicates the breakdown of input formulations across all EEG studies, the
inner circle groups the outer options into categories. Panel B summarizes the
choice of input category per EEG task, it is worth noting seizure detection
studies use signal values predominantly. . . . . . . . . . . . . . . . . . . . . 27

2.7 ML technique implemented across EEG studies reviewed by Craik et al. [6].
Seizure detection studies focus mostly on RNNs and CNNs . . . . . . . . . 28

2.8 Schematic of a semantic segmentation task of colorectal polyps (Peralta et al.,
2021) [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Scalp positioning for the 20 common EEG channels used by Shafiezadeh et al.
[8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Segmentation for theEEGrecordings of epileptic patients studiedbyShafiezadeh
et al. [8]. Panel A displays 480minutes of recording from the F7 channel and
its division into the interictal, preictal, ictal, and postictal stages. Highlighted
in green are the zones of the recording used for the binary classification task.
Panels B through E show 20 s magnifications of the recordings from the 20
channels at the beginning of each stage. . . . . . . . . . . . . . . . . . . . . 33

3.3 Polyp dataset example, the upper row displays the source images and the bot-
tom row shows the ground truth binary masks used to identify the ROI of
the polyps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Architecture for the FNN used for the seizure prediction task. . . . . . . . . 39
3.5 CaraNet architecture from Lou et al. [9]. . . . . . . . . . . . . . . . . . . . 40
3.6 Evaluation metrics for the seizure prediction task (FNN). . . . . . . . . . . . 41
3.7 Evaluation metrics for the polyp segmentation task (CNN). . . . . . . . . . 41

ix



4.1 Class distribution for the EEG dataset. Label 0 (blue) indicates a period of
regular brain activity (no seizure) and label 1 (orange) indicates an atypical
surge in brain activity (seizure incoming). . . . . . . . . . . . . . . . . . . . 44

4.2 Per patient class distribution for the EEG dataset. Label 0 (blue) indicates a
period of regular brain activity (no seizure) and label 1 (orange) indicates an
atypical surge in brain activity (seizure incoming). . . . . . . . . . . . . . . 45

4.3 Class distribution for each of the polyp datasets across centralized partitioning
strategy. Label 0 (Blue) is assigned to black pixels that do not contain theROI,
and 1 (orange) represents white pixels that contain the ROI containing the
polyp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Distribution of class labels in the EEG dataset per FL configuration (2, 4, 8,
and 16 clients), and FL client for the stratified sampling and patient-aware
datasets. The blue portion of the bar indicates the proportion of the negative
labels, and the orange portion the proportion of positive labels. . . . . . . . . 46

4.5 Distribution of class labels in the polyp dataset per FL configuration (2, 4, 6,
and 8 clients) and FL client. The blue portion of the bar indicates the pro-
portion of the negative labels (black pixels in the segmentationmask), and the
orange portion is the proportion of positive labels (white pixels in the segmen-
tation mask). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Training results for the centralized seizure prediction task (FNN). Training
loss (blue) against validation loss (orange) is plotted against the two dataset
sampling approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Model results for the centralized seizure prediction task (FNN). Test metrics
are displayed accompaniedby a snapshot of the training andvalidationmetrics
in the training epoch that minimized validation loss. . . . . . . . . . . . . . 50

4.8 Training results for the polyp segmentation task (CNN).MeanDice is plotted
for training (blue) and validation (orange) datasets. Dice values closer to 1
indicate a closer match of inferred and ground truth segmentation masks. . . 51

4.9 Model results for the polyp segmentation task (CNN). Test mean dice is dis-
played accompanied by a snapshot of the training and validation metrics in
the training epoch that minimized validation loss. . . . . . . . . . . . . . . . 51

4.10 Mean test AUROC results for the federated seizure prediction task (FNN)
across FL client sizes. Eachpanel represents one of the federated strategies eval-
uated, and each panel displays the results for the stratified and patient-aware
datasets. Mean AUROC across datasets and FL client configurations is re-
ported per federated strategy panel (line). . . . . . . . . . . . . . . . . . . . 52

4.11 Mean test dice results for the federated polyp segmentation task (CNN) across
FL client sizes. Each bar represents one of the federated strategies evaluated.
Mean dice across strategies and FL client configurations are shown as a line. . 52

x



4.12 Model results for the federated seizure prediction task (FNN) partitioned by
FL client sizes. Each bar represents one of the federated strategies and client
configurations evaluated. ThemeanAUROCmetric across strategies is shown
as a line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Graph showing the balance between sensitivity (blue) and specificity (orange)
test metrics for the federated seizure prediction task (FNN). The vertical pan-
els represent the stratified and patient-aware datasets, and the horizontal pan-
els the federated strategy. Inside each cell, the horizontal axis displays the
amount of FL clients, and the vertical axis the sensitivity/specificity values. . . 54

4.14 Mean test dice results for the federated polyp segmentation task (CNN) par-
titioned by FL client sizes. Each bar represents one of the federated strategies
and client configurations evaluated. Mean dice across strategies are shown as a
line. Empty bars (FedYogiwith 2 and 4 clients) indicate numerical instabilities
in the models that resulted in NaNs. . . . . . . . . . . . . . . . . . . . . . 55

4.15 Training loss convergence curves for all tasks. The first two panels display the
seizure prediction tasks curves with the stratified and patient-aware datasets
respectively, while the third panel displays the polyp segmentation task curves.
Rows represent each FL strategy employed (with different colors) and training
loss is plotted per FL round in each cell. Each cell has an independent scale
based on the loss function values for each configuration. . . . . . . . . . . . 57

4.16 Comparison of training loss convergence curves for all tasks. FedAvg (dark
blue) is compared against the adaptive strategies: FedAdam (orange), FedAda-
grad (red), and FedYogi (sky blue). The first two panels display the seizure pre-
diction tasks curves with the stratified and patient-aware datasets respectively,
while the third panel displays the polyp segmentation task curves. . . . . . . 58

4.17 Execution time (seconds) of each of the models per federated strategy and
client configuration, for the seizure prediction task (FNN). . . . . . . . . . . 59

4.18 Execution time (seconds) of each of the models per federated strategy and
client configuration, for the polyp segmentation task (CNN). . . . . . . . . 59

4.19 Centralized setting average VRAMMemory consumption (MB) per training
epoch for the networks used. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.20 Federated setting average VRAM Memory consumption (MB) per FL algo-
rithm, client configuration, dataset, and training round for the networks used. 61

A.1 Hyperparameter grid results forFedAdam in the seizureprediction task (FNN).
Evaluation loss over the last 125 rounds was averaged to acquire the values
for each cell across a combination of τ , η, and ηl combinations. Each com-
bination was explored against a stratified and a patient-aware data sampling
strategy. Minimum evaluation loss across configurations is marked with an (x). 69

xi



A.2 Hyperparameter grid results for FedAdagrad in the seizure prediction task
(FNN). Evaluation loss over the last 125 rounds was averaged to acquire the
values for each cell across a combination of τ , η, and ηl combinations. Each
combination was explored against a stratified and a patient-aware data sam-
pling strategy. Minimum evaluation loss across configurations is markedwith
an (x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.3 Hyperparameter grid results forFedYogi in the seizure prediction task (FNN).
Evaluation loss over the last 125 rounds was averaged to acquire the values
for each cell across a combination of τ , η, and ηl combinations. Each com-
bination was explored against a stratified and a patient-aware data sampling
strategy. Minimum evaluation loss across configurations is marked with an (x). 71

A.4 Hyperparameter grid results forFedProx in the seizureprediction task (FNN).
Evaluation loss over the last 125 epochs was averaged to acquire the values for
each cell µ choice. Each choice was explored against a stratified and a patient-
aware data sampling strategy. Minimum evaluation loss across configurations
is marked with an (x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.5 Hyperparameter grid results for FedAdam in the polyp segmentation task
(CNN). Evaluation loss over the last 3 rounds was averaged to acquire the
values for each cell across a combination of τ , η, and ηl combinations. Max-
imum evaluation mean dice coefficient across configurations is marked with
an (x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.6 Hyperparameter grid results for FedAdagrad in the polyp segmentation task
(CNN). Evaluation loss over the last 3 rounds was averaged to acquire the val-
ues for each cell across a combination of τ , η, and ηl combinations. Maximum
evaluation mean dice coefficient across configurations is marked with an (x). . 73

A.7 Hyperparameter grid results forFedYogi in thepolyp segmentation task (CNN).
Evaluation loss over the last 3 rounds was averaged to acquire the values for
each cell across a combination of τ , η, and ηl combinations. Maximum eval-
uation mean dice coefficient across configurations is marked with an (x). . . . 74

A.8 Hyperparameter grid results forFedProx in thepolyp segmentation task (FNN).
Evaluation loss over the last 3 rounds was averaged to acquire the values for
each cell µ choice. Maximum evaluation mean dice coefficient across config-
urations is marked with an (x). . . . . . . . . . . . . . . . . . . . . . . . . 74

A.9 Results of the federated models on the polyp segmentation task (CNN). All
combinations of FL strategies and client configurations are displayed in this
table. Test metrics are accompanied by the training and validation metrics
encountered in the FL round that maximized the validation mean dice met-
ric (Round best model column). Dice values for models with instabilities are
filled in with 0’s (FedYogi with 2 and 4 clients) . . . . . . . . . . . . . . . . 75

xii



A.10 Results of the federatedmodels on the seizure prediction task (FNN).All com-
binations of FL strategies, client configurations, and datasets are displayed in
this table. Test metrics are accompanied by the training and validation met-
rics encountered in the FL round that minimized validation loss (Round best
model column). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.11 Training loss convergence curves for the federated seizureprediction task (FNN).
The left panel contains results for the stratified sampling dataset, while the
right panel contains results for the patient-aware dataset. Rows represent each
FL strategy employed (with different colors), and columns are divided by the
number of FL clients. Each cell represents a model trained with a specific FL
strategy, FL client configuration, and dataset. Training loss is plotted per FL
round in each cell, and the best round (the one thatminimizes evaluation loss)
is highlighted using a dotted line. Every cell has an independent scale based on
the configuration loss values. . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.12 Training loss convergence curves for the federated polyp segmentation task
(CNN). Rows represent each FL strategy employed (with different colors),
and columns are divided by the number of FL clients. Each cell represents a
model trainedwith a specific FL strategy, FL client configuration, and dataset.
Training loss is plotted per FL round in each cell, and the best round (the one
that minimizes evaluation loss) is highlighted using a dotted line. Every cell
has an independent scale based on the configuration loss values. . . . . . . . 78

A.13 Conda Environment: List of the main Python packages used and their versions. 78
A.14 List of the APIs (PythonMNE package, version 3.8.5) used to extract the sig-

nal features from the EEG dataset by Shafiezadeh et al. [8]. . . . . . . . . . . 79

xiii



xiv



Listing of tables

2.1 FL taxonomy considered for the medical cases studied in this work. . . . . . . 11
2.2 Popularity of FLS Projects. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Landscape of FLSs based on the taxonomy proposed by Li et al. [10]. . . . . . 21

3.1 EEG seizure dataset partitioning strategy. . . . . . . . . . . . . . . . . . . . 35
3.2 Polyp dataset partitioning strategy. . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Hardware configuration of the GCP VM used to run experiments . . . . . . 36

4.1 Best combination of federated hyperparameters found for the seizure predic-
tion (FNN)andpolyp segmentation (CNN) tasks across datasets andFL strate-
gies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xv



xvi



Listing of acronyms

FL . . . . . . . . . . . . . Federated Learning

CL . . . . . . . . . . . . Centralized Learning

FLS . . . . . . . . . . . . Federated Learning System

ML . . . . . . . . . . . . Machine Learning

DL . . . . . . . . . . . . Deep Learning

FNN . . . . . . . . . . Feed-Forward Neural Network

RNN . . . . . . . . . . Recurrent Neural Network

CNN . . . . . . . . . . Convolutional Neural Network

CaraNet . . . . . . . Context Axial Reverse Attention Network

CFP . . . . . . . . . . . Channel-wise Feature Pyramid

IoU . . . . . . . . . . . . Intersection over Union

Res2Net . . . . . . . Residual Resolution Network

SGD . . . . . . . . . . . Stochastic Gradient Descent

P2P . . . . . . . . . . . Peer-to-Peer

SMPC . . . . . . . . . Secure Multi-Party Computation

DP . . . . . . . . . . . . Differential Privacy

FedAvg . . . . . . . . Federated Averaging

IID . . . . . . . . . . . . Independent and Identically Distributed

EEG . . . . . . . . . . . Electroencephalogram

ROI . . . . . . . . . . . Region of Interest

GCP . . . . . . . . . . . Google Cloud Platform

xvii



VM . . . . . . . . . . . . Virtual Machine

CV . . . . . . . . . . . . Cross-Validation

ROC . . . . . . . . . . Receiver Operating Characteristic

AUROC . . . . . . . Area Under the ROCCurve

BCE . . . . . . . . . . . Binary Cross-Entropy

CRC . . . . . . . . . . Colorectal Cancer

EHR . . . . . . . . . . Electronic Health Record

xviii



1
Introduction

1.1 Background & motivation

Machine learning (ML) algorithms are computational models that have been designed to ana-
lyze data, identify patterns, and make predictions or decisions without explicit programming,
by learning entirely from data. These types of algorithms have achieved exceptional levels of
success in tasks like healthcare, natural language processing (NLP), image recognition, finance,
and recommendation systems. Traditionally, these models require the data to be collected in a
centralized location before training can start. However, bringing the data to a central location
might pose regulatory, ethical, legal, and technical challenges related to privacy and protection
of the data [1] in some domains. These challenges lead to the problem of data islands, which
is a phenomenon commonly seen in areas such as finance, government, supply chains, and
healthcare [10] where data is isolated and out of reach for ML development. This makes it
difficult to build robustMLmodels, especially in domains like healthcare where publicly avail-
able data is scarce. An example of such scarcity is present in public colorectal polyp datasets,
which are often used to detect colorectal cancer (CRC); a type of cancer with high mortality
rates, and significant miss rates by clinicians [11]. Traditional ML approaches are unable to
leverage this type of data, due to its siloed nature, which highlights the importance of data
privacy-preserving techniques in ML.

Federated Learning (FL) is a technique where different clients or parties collaborate to learn

1



a model on a central server while keeping individual client data decentralized [12]. FL elimi-
nates the issue of data islands by training an independentmodel on each client’s local data, and
then aggregating thesemodels to produce a globalmodel that learns of each of the independent
data distributions. A typical FL process consists of the following steps, which are repeated for
a set of training rounds: 1) A set of FL clients is selected amongst a pool of participants to train
a local model, b) once training is done, the local model parameters are collected and aggregated
in a coordinator server, c) the server uses the aggregated parameters to construct a globalmodel,
d) the global model parameters are then redistributed to the clients. These steps are repeated
until achieving convergence, at the end of training a global model that can be used for infer-
ence in all the clients is produced. This process is often accompanied by privacy-preserving
techniques to securely move model weights through the network. Recent developments in FL
have enabled the development of complex machine-learned models in a distributed manner,
particularly in the medical domain while preserving privacy and addressing security concerns
[13]. FL introduces awealth of newopportunities in healthcare by enabling large-scale research
on rare diseases [1], that would be otherwise impossible in a centralized setting due to the afore-
mentioned data privacy challenges.

1.2 Research questions

In this section, themain problems investigated in this work are presented. All of these inquiries
have been formulated in the context of two medical tasks of critical importance to the field a)
A seizure prediction task using a dataset composed of features extracted from time intervals of
EEG signals and b) A colorectal polyp segmentation task using colonoscopy images and binary
segmentationmasks from a set of polyp datasets. These problems have been addressed through
the application of Deep Learning (DL) techniques in a Federated Learning (FL) setting which
is the subject of this study.
Assumptions. Under the assumptions that: a) simulated federated workloads output com-

parable model evaluation results to those executed in distributed resources; b) results obtained
across evaluation metrics are independent of the presence of privacy mechanisms for model
updates (differential privacy, cryptographic methods, ...), as the impact these methods have on
model results is quantifiable; and c) the data partitioning strategies implemented in this study
to distribute data across training devices lead to data distributions that are comparable to those
found in real federatedworkloads. The purpose of this research is to answer the following ques-
tion.

2



Main Research Question
Is Federated Learning (FL) a viable alternative, capable of achieving equivalent levels of
evaluation and generalization performance to Centralized Learning (CL), when applied
tomedical tasks in the domain of seizure prediction and colorectal polyp segmentation?

To work towards the goal of answering the main research question, a series of specific re-
search questions are listed below. All these questions will be constantly addressed throughout
this manuscript.

Specific Research Questions

• Q1. How do federated approaches fare against their centralized counterparts in
terms of convergence, evaluationmetrics, execution times, resource consumption, and
generalization performance?

• Q2. What is the effect that the number of FL clients has on these metrics?

• Q3. Are some FL averaging strategies more robust to non-IID datasets than oth-
ers?

• Q4. Do adaptive FL averaging strategies improve the convergence performance of
the models?

• Q5. What is the effect that the choice of hyperparameters has on the behavior of
models across averaging strategies?

1.3 Research objectives

General Objective. Contribute to the advancement of research on Federated Learning (FL)
by analyzing the performance of FL approaches on a set of medical tasks, across a series of DL
architectures, FL strategies, client configurations, hyperparameter choices, and datasets.

Specific Objectives

• Provide a systematic overview of the current state-of-the-art techniques relevant to DL,
FL, and the case of studies reviewed in this work.

3



• Design, implement and analyze the experiments required to answer each of the research
questions.

• Guarantee that the results of said experiments are transparent and reproducible.

• Identify interesting research directions for FL on the aforementioned tasks.

1.4 Justification & impact

Recent research has demonstrated FLmodels can achieve comparable levels of performance to
those trained in centrally hosted data sets, and superior tomodels that only see centralized data
[1]. However, one of the limitations of FL techniques comes from their privacy-preserving na-
ture: researchers are often unable to investigate data upon which models are being trained to
acquire a deeper understanding of their behavior [1]. For this reason, there is a need to system-
atically analyze the behavior of federated models in relation to the data distributions they are
trained on, and this is often only possible by performing FL simulations. To aggravate the prob-
lem, publicly available medical datasets are scarce which highlights even more the importance
of FL. Systems trained in federated settings can yield less biased decisions and better general-
ization performance in rare cases due to their exposure to more complete data distributions
[1], which is of special value in healthcare. The two medical cases studied in this work (seizure
prediction and polyp detection) can benefit from the application of FL.
Epilepsy is a severe neurological disease that leads to recurrent seizures and affects around 65

million people worldwide [8]. This has motivated the development of techniques and devices
to automatically anticipate seizures using EEG signals [6]. Across studies, it has been found
that models applied to seizure detection/prediction using EEG data can achieve decent levels
of performance. However, model evaluation for this task is often based on questionable ran-
domized cross-validation schemes, which can introduce correlated signals [8] and exhibit pes-
simistic results when generalizing to unseen patient data. Finding correlated samples of EEG
signals across hospitals in real scenarios is unlikely, as a result of each hospital holding an in-
dependent set of patients. Additionally, seizure data is often imbalanced, as seizure episodes
happen less often than regular brain activity [8], and different hospitals might contain differ-
ent distributions of data, which further complicates the development of ML models. For this
reason, investigating seizure prediction from a federated perspective provides a more realistic
viewof the performance these types of algorithms canhavewhendeployed. Furthermore, there

4



might be opportunities to improve the performance of centralizedMLmodels through the use
of FL techniques designed for dealing with heterogeneous datasets.
Colorectal polyps are a precursor for a particularly deadly type of cancer called Colorectal

Cancer (CRC), which accounts for 10% of overall cancer cases worldwide [7]. Even though
patient survival rates can improve with early detection of the polyps, clinicians miss between
14% and 30% of the polyps in colonoscopy images [11]. Although several model architectures
have found success in automatic polyp detection and segmentation tasks, they are usually not
robust to detecting small medical objects, which are very common in colorectal polyps [9]. For
this reason, architectures like CaraNet [9] have been designed, which are more sensitive to the
inherent size differences of polyps andprovide better detection and segmentation results. How-
ever, the success of ML techniques heavily relies on the amount and quality of data used for
training. Unfortunately, publicly annotated polyp datasets are scarce [11] and the vast major-
ity of colonoscopy images are kept private in hospital data islands. For this reason, studying
polyp segmentation from an FL perspective can help overcome data privacy issues and enable
researchers to perform studies across a wealth of otherwise inaccessible data. As of the date of
writing, no studies were found considering FL for the segmentation of small polyps using the
CaraNet architecture, making this the first study of this kind.

5



6



2
Background work & literature review

The intention of this chapter is to provide an overview of the literature and build a foundation
to explain the experiments carried out. This chapter is divided into three sections: Section 2.1
reviews Federated Learning (FL), Section 2.2 reviews the consideredmachine learning architec-
tures and techniques, and Section 2.3 reviews the state of the art on the medical cases studied.

2.1 Federated learning

Rieke et al. [1] define Federated Learning (FL) as a “learning paradigm that seeks to address
the problem of data governance and privacy by training algorithms collaboratively without ex-
changing the data itself”. A general formulation of FL is presented in Figure 2.1. L denotes
the global loss function, which is obtained through a weighted combination ofK local losses
{Lk}Kk=1 and computed for the private dataset Xk which resides in each of the K parties or
FL Clients and never shared among them [1]. Therefore, the objective of FL is to find a set of
parameters ϕ that minimizes a global loss function based on the collaborative effort of a set of
independent FL clients.

Figure 2.1: General formulation of FL as defined by Rieke et al. [1].

7



An example of a typical FL application for the medical domain inspired by this formulation
is shown in Figure 2.2. An example of the architectural components (left panel) and communi-
cation process (right panel) for a medical application is displayed: a set of devices or FL clients
(wearables, mobile devices, computers, etc.) is selected from an available pool of clients. Each
of the selected clients uses their local datasets to train a model, these local model parameters
are then uploaded to an aggregation server that collects each of the parameters and aggregates
them to construct a global model. Finally, the global model is redistributed to each client as
the new local model, and the process is repeated for a set of FL rounds until convergence is
achieved. The result of this process is a global model at the end of training that aggregates the
characteristics of the models of each of the FL clients, and can then be redistributed and used
for inference. Note that none of the training devices communicate between themselves, and
no data (other than the model parameters) is communicated through the network. This al-
lows the FL network to produce a model that takes into account each individual client’s data
distribution while keeping their data private and secure. A similar client-server architecture is
simulated throughout this study for the study of FL in medical tasks.

Figure 2.2: Example of the network architecture and communication process for an FL healthcare application by Nguyen et
al. [2].

8



2.1.1 Taxonomy

FL solutions can be classified according to different criteria, as defined by Li et al. [10]. It
is important to take into account the following criteria when designing FL solutions, as the
choices done in the design phase depend on the domain and the task at hand. The specific FL
taxonomy used for this study is summarized in Table 2.1.

• Data Partitioning: Indicates the strategy adopted to distribute the data across the par-
ties involved in an FL setting. The choice of what partitioning strategy to use depends
on the type of data and task at hand.

– Horizontal: Also known as feature-based partitioning. The parties have the same
feature space but little to no intersection in the sample space. In otherwords, from
a data set perspective, each node holds the same columns, but different observa-
tions from thedata. The advantage of this configuration is that it follows a security-
first approach naturally while allowing learning independence across nodes [12]
(each node can independently train its own model).

– Vertical: Also known as sample-based partitioning. The parties have different fea-
ture spaces but intersecting sample spaces. In other words, from a data perspective,
each node has different columns belonging to intersecting observations. This set-
ting works well for data sets that are highly intersecting by nature [12], but also
works well for data sets that don’t intersect naturally. For the second scenario, En-
tity Alignment can be used to identify overlapping samples on related data sets by
analyzing the feature space across different nodes, further enriching feature con-
tent across the FL network.

– Hybrid: A combination of horizontal and vertical partitioning strategies. Under
this scenario Transfer Learning can be leveraged to discover insights on data sets
that are not directly related, using data sets with small intersecting spaces/from
different domains.

• Machine Learning Model: The type of Machine Learning (ML) technique used to
accomplish the task through an FL setting. The choice of ML technique defines the
logistics of how the FL network operates. The most usedMLmodels in FL settings are
listed below.

– Neural Networks: Currently the most used technique, sparked by several FL stud-
ies on Stochastic Gradient Descent (SGD) and the use of neural networks with
multiple layers, or Deep learning (DL). Even though neural networks can achieve
state-of-the-art levels of performance, they suffer from limited interpretability.

9



– Decision Trees: Highly efficient to train and best suited for tasks that require inter-
pretability.

– Linear Models: Well-designed FL systems that deal with Linear/Logistic Regres-
sion and Support Vector Machines (SVM) exist.

• Privacy Mechanism: FL does not provide any security or privacy guarantees by itself
but it sets the stage to implement mechanisms with this objective [12]. The privacy
mechanisms are the measures put in place to securely move learned weights across the
FL network. Several strategies have been proposed to securely update and distribute the
weights of the FL network.

– Cryptographic Methods: Homomorphic Encryption and Secure Multi-Party Com-
putation allow parties to encrypt messages and perform operations on these en-
crypted messages before finally being decrypted securely to get the final result.

– Differential Privacy: Injects random noise to the data or to the model parameters
to provide statistical privacy guarantees for records and protection againstmodel
poisoning, which is a malicious attack that consists in influencing the global model
weights to alter its behavior. The disadvantage of these methods is that they tend
to have a detrimental impact on model performance.

• Communication Architecture: The communication strategy used by the parties in-
volved in the FL network to update model weights.

– Centralized: A manager node is in charge of aggregating the local weight updates
from the models and sending back training results. This architecture has the ad-
vantage of being simpler but not the most resilient, as it involves a single point of
failure.

– Decentralized: Communications are performed across parties: each party is able
to update the global weights of the model directly. Some examples of these com-
munication architectures are Peer-to-Peer (P2P), Graph, and recently Blockchain
networks.

• Averaging Strategy: To build a global model, a set of local models are averaged dur-
ing training. The specific steps of how this averaging is done, and how the updates are
communicatedbetweenparties are definedby the federated averaging strategy or FL algo-
rithm. Several strategies exist to address different challenges in FL (heterogeneous data
distributions, convergence, communication costs, etc.) and are exploredmore deeply in
Section 2.1.2.

10



• Scale of Federation: The characteristics of the devices participating in a FL task, based
on the amount of data they hold, computational power, and number of devices in the
network.

– Cross-Silo: The nodes are organizations or data centers. The amount of nodes
under this scale tends to be small, but each node holds a large amount of data
and has the computational power to carry out expensive computations. Under
this configuration, most clients participate in each federated round and nodes are
capable of maintaining state between rounds [4].

– Cross-Device: The nodes are usually mobile devices with limited computational re-
sources. The number of nodes under this scale tends to be large, but the nodes usu-
ally hold small amounts of data and compute lighter workloads. On cross-device
configurations only a small fraction of the clients might participate in each feder-
ated round and clients are not allowed to maintain state [4]. Edge Computing is
an example of cross-device FL.

• Motivation of Federation: Motive for the parties to actively participate in the FL task.

– Regulation: The parties are involved in an FL setting due to requirements, depen-
dencies, or other binding reasons. Example of this is FL done inside a company or
organization.

– Incentive: The parties participate in a FL setting on an opt-in basis, in exchange for
some incentive. Examples of this are hospitals that join an FL network to benefit
from robust models that have been trained with examples from other hospitals.

Data Partitioning Horizontal
Machine Learning Model Neural Networks

Privacy Mechanism Not Considered
Communication Architecture Centralized

Averaging Strategies FedAvg, FedAdam, FedAdagrad, FedYogi, FedProx
Scale of Federation Cross-Silo

Motivation of Federation Regulation

Table 2.1: FL taxonomy considered for the medical cases studied in this work.

11



2.1.2 Federated averaging strategies for model updates

In FL, a set of FL clients with independent models and datasets, collaboratively train a global
model that inherits the underlying characteristics of these datasets, while remaining agnostic to
eachother’s data distributions. In order to do this, anaveraging strategy is required to aggregate
each of the independent model updates into one single global model. Several solutions have
been proposed to solve this problem, as it is explained in this section.

One of the first algorithms to be developed, and currently the state-of-the-art method and
most used strategy for FL [5] is the Federated Averaging or FedAvg strategy introduced by
McMahan et al. [3]. This federated strategy is used for gradient descent/ascent-based learn-
ing approaches. Pseudocode for this algorithm can be found in Figure 2.3.

• FedAvg: Clients performmultiple rounds of training, updating their weights with their
local datasets, usually with (but not limited to) SGD as a local optimizer. Each client
takes one (ormore) local steps of gradient descent on itsmodel anddata. Then, the server
fetches each of the clientweights and performs aweighted average to acquire a new set of
weights to update the globalmodel. This set of weights represents what has been learned
across all FL client’s data distributions. The aggregated weights are then redistributed
to each of the participating clients and a new round of FL is started, repeating the same
process for a given amount of federated rounds.

The amount of work the whole FL network does is defined by 3 quantities. Namely,
C which represents the fraction of clients that perform computation on each round;
E the number of training passes or epochs each client makes over its local dataset on
each FL round, andB, which represents the local mini-batch size used for the client up-
dates. These parameters need to be calibrated according to the nature of the problem
and data at hand, the neural network architecture, and the hardware characteristics of
the client/server. For instance, not all FL clients are required to participate in a given
FL round (participating nodes are usually sampled randomly from a pool of available
clients), and adding too many clients might be detrimental to the global model perfor-
mance [3]. Increasing the amount of local SGDupdates each FLnode does, can result in
smaller communication costs and faster convergence, but it can also cause clients to over-
work and diverge from the global solution. Finally, clientsmight have different hardware
characteristics (for example different VRAM) andB needs to be calibrated accordingly.

Despite being one of themost widely used FL algorithms FedAvg currently suffers from
two problems. The first one involves client drift which causes clients’ local models to
diverge from the optimal global solution. This can occur especially in federated settings
with heterogeneous data distributions across nodes, as local models might overempha-
size client-specific features, leading to overfitted client solutions that don’t generalize

12



Figure 2.3: Federated Averaging (FedAvg) algorithm as proposed by McMahan et al. [3]

well when averaged. The second problem is its lack of adaptivity [4] which might lead
to convergence issues in some scenarios as a consequence of using fixed learning rates.

Reddi et al. [4] proposed a series of adaptive federated strategies to deal with the adaptivity
issues inherent to FedAvg with a focus on the cross-silo setting where only a fraction of the FL
clients might participate per round. These models can be seen as extensions of the original
FedAvg algorithm proposed by McMahan et al. [3]. Their work focuses on adaptive server
optimization, a technique that aims to reduce the communication costs that result from saving
the state of optimizers across clients.

Adaptive learning rates canbehighly beneficial in someDL tasks to improve the convergence
of themodels. Just as in the centralized setting, an adaptive learning rate can aid federatedmod-
els to navigate over the error landscape more efficiently by dynamically decreasing/increasing
the step size of gradient descent according to the gradients’ magnitude. One such example can
be foundwhen training languagemodels as they usually exhibit noisy stochastic gradient distri-
butions [4]whichmight cause themodel tomiss localminima, or run into vanishing/exploding
gradients issues.

All these federated algorithms are inspired by their centralized counterparts (Adam, Ada-
grad, andYogi optimizers). Due to their reinterpretation in the federated domain, they require
specifying a few additional hyperparameters. Parameter τ represents the degree of adaptivity
of the algorithm, with smaller values of τ indicating higher levels of adaptivity. Additionally,
the server learning rate η and client learning rate ηl need to be specified. The choice of these
hyperparameters depends on the underlying data characteristics of the task at hand. In their ex-

13



perimental results, Reddi et al. [4] found that parameters η and ηl are inversely related for non-
adaptive optimizers like FedAvg, whichmeans both parameters need to be tuned together. On
the other hand, when inspecting the hyperparameter grids visually (plotting accuracy against η
and ηl), they found that parameters η and ηl delimitate rectangular shapes in hyperparameter
space where the accuracy of the models is optimized. This suggests that the choice of η might
be more important to tune than ηl, as there are several choices of ηl that generate good results
once a good choice of η is picked. Pseudocode for the described adaptive algorithms can be
found in Figure 2.4.

• FedAdam: Similar to the centralized Adam optimizer it combines an adaptive learning
rate (like the Adagrad optimizer) and momentum-based methods (such as those in the
RMSProp optimizer). The optimizer’s goal is to adapt the learning rate of the model
based on the average of past gradients and squared gradients to more efficiently traverse
the loss function landscape. Parametersβ1 andβ2 represent the exponential decay rate of
the first and secondmoment estimates (mean and variance of the gradients, respectively).

• FedAdagrad: This is another adaptive optimizer whose purpose is to adjust the learn-
ing rate based on the history of the squared gradients. Unlike Adam, it doesn’t include
momentum-based updates, though.

• FedYogi: Similar to Adam implements both an adaptive learning rate and momentum.

Figure 2.4: Adaptive Federated Algorithms: FedAdam, FedAdagrad & FedYogi as proposed by Reddi et al. [4]

14



One frequent problem that arises from federating learning across nodes is the existence of
heterogeneous data. Naturally, federated clients might belong to different entities with very
heterogeneous sources of data. Providing a rather naive example, a particular hospital might
have a higher incidence of a specific type of cancer likeMesothelioma, which is a rare and ag-
gressive form of cancer that develops mostly in the lungs as a result of asbestos exposure. If
this hospital happens to be located in a community where asbestos exposure is common, it is
logical to think the incidences of this type of cancer might be over-represented when compar-
ing it to other hospitals participating in the same FL project. This is defined by Li et al. [5] as
statistical heterogeneity. This imposes a challenge on model averaging as clients might overfit
to these over-represented samples, compromising the globalmodel generalization performance.
Heterogeneous data distributions pose challenges for FL algorithms and strategies, as many are
assuming independently and identically distributed (IID) data across the participants [1].
Another frequent problem, especially on cross-device FL settings is that FL clients may differ

in the characteristics of their systems. Consequently, it is logical to think that some FL clients
might require more local rounds of gradient descent than others due to the nature of its data
before sending the updates to the server for averaging. This hints at the necessity of varying the
amount of work each local client does (namely the number of gradient descent steps) across
time. This is defined by Li et al. [5] as system heterogeneity
An averaging strategy that attempts to solve both statistical and systems heterogeneity has

been proposed by Li et al. [5]. Similar to the adaptive algorithmsmentioned before, FedProx is
an algorithm that extends the functionality of FedAvg. To see the code for this algorithm refer
to Figure 2.5.

• FedProx: This is an algorithm that attempts to solve issues caused by the divergence
of local models from the global model due to heterogeneous datasets. FedProx imple-
ments this through a regularization term that is added to the loss function of each of
the federated clients. The intuition behind this strategy is to add a penalization term to
the local loss functions before minimizing them in a way that local models are penalized
when they start diverging from global solutions. The penalty term is defined as the L1
Normof the difference between the localmodel weightsw and the globalmodel weights
wt scaled by a parameter µ known as the proximal term, that limits the impact of vari-
able local updates. Besides ensuring local updates don’t diverge too much from the best
global solutions, it safely allows each FL client to perform a variable amount of work
based on the heterogeneity degree of its data [5]:

µ

2
∥w − wt∥2.

15



It is worth noting that setting the value of µ = 0 yields a vanilla FedAvg strategy, as the
penalty term becomes zero and each gradient descent step minimizes only the original
loss function. The choice of µ is critical for the performance of the FedProx algorithm.
Heuristically, a large choice of µ can slow down convergence as updates are forced to
be closer to the initial global weights. As training progresses, the weights acquired at
each federated roundwill be very similar to the previous one, and “recycled” for the next
round as a result of the proximal term. On the other hand, small values of µmight have
a negligible regularization impact on the loss function [5].

The main federated averaging strategies used in this work have been reviewed. FedAvg is
the current state-of-the-art algorithm for averaging model updates and requires calibration of
the learning rate and the local epochs hyperparameters. Even though it provides satisfactory
results in several scenarios it suffers from problems like client drift and lack of adaptivity. To
solve the adaptivity problems, adaptive federated strategies have been proposed based on their
centralized adaptive optimizer counterparts. FedAdam, FedAdagrad, and FedYogi are all adap-
tive algorithms that dynamically adapt learning rates using different degrees ofmomentum and
require calibration of the degree of adaptivity τ and server and client learning rates η, ηl param-
eters. Finally, to deal with statistical and systems heterogeneity the FedProx algorithm has been
proposed, which introduces a regularization term in the local client loss functions to prevent
local updates from straying too far from the solution of the global model.

Figure 2.5: FedProx algorithm as proposed by Li et al. [5]

16



2.1.3 FL systems review

As a natural consequence of the application of federated techniques over and over again in
studies across different domains, some patterns started to become evident with time. Eventu-
ally, researchers realized that there are “common methods and building blocks for building FL
algorithms” [10], and as in other fields in computer science, frameworks started to emerge to
ease the development of FL tasks and avoid boilerplate code. These FL frameworks, more for-
mally known as Federated Learning Systems (FLSs) [10], are usually presented in the form of
libraries and APIs that facilitate a faster development cycle of FL solutions. In this section,
the main offerings of FLS/frameworks are reviewed as of the time of writing. For a compact
overview of all the FLSs capabilities refer to Table 2.3.

First, let’s review Li et al. [10] definition of an FLS:

In a federated learning system,multiple parties collaboratively trainmachine learn-
ing models without exchanging their raw data. The output of the system is a
machine-learning model for each party (which can be the same or different). A
practical federated learning system has the following constraint: given an evalua-
tion metric such as test accuracy, the performance of the model learned by feder-
ated learning should be better than the model learned by local training with the
same model architecture.

It is worth to note the terms FLS and FL Framework are used interchangeably across this re-
search. Given that there are several independent FLS projects out there, currently gaining trac-
tion, and reviewing them all is beyond the scope of this manuscript, the list of FL Frameworks
presented is not meant to be exhaustive. This comprehensive list of FLSs was built following
leads on FL surveys like the ones from Li et al. [10], querying for Federated Learning projects
in GitHub and searches against Google Scholar & DBLP:

• FATE: (Federated AI Technology Enabler) [14] is a Python-based industrial-grade FL
open-source framework maintained by the Linux Foundation. It implements secure
computationprotocols basedonhomomorphic encryption andSecureMulti-PartyCom-
putation (SMPC), andworks onhorizontally andvertically partitioneddatasets. Amongst
theML algorithms supported by this framework are: logistic regression, tree-based algo-
rithms, deep learning, and transfer learning algorithms. It also supports deployment on
single or multiple machines. Even though it has good documentation, it might not be
the best choice for researchers as implementing new federated algorithms requires mod-
ifying FATE’s source code [10].

17



• Tensorflow Federated (TFF): This is an open-source framework developed by Google
aimed to build machine learning models on TensorFlow, a widely used deep learning
framework. TFF’s interfaces are organized in two layers, namely the Federated Learn-
ing (FL) API, which enables the application of included federated implementations to
already existing TensorFlowmodels, and the Federated Core (FC) API, which is a set of
low-level interfaces that allow developers expressing new federated algorithms [15, 10].
UsingTFF is a reasonable choice formodels that have been already coded inTensorFlow
due to its tight integration with the framework.

• PySyft: This is a Python framework proposed byOpenMined, an open-source AI com-
munity, and organization. It can be set up to work with two of the most used Deep
Learning Frameworks: TensorFlow & PyTorch. PySyft experiments can run against a
single machine (through simulation of FL clients) or on multiple machines [10]. Addi-
tionally to its Federated capabilities, it can run Federated data scienceworkloads through
a numpy-like interface that enables a permission-based workflow on remotely owned
data. PySyft also provides differential privacy, and encrypted computation as a means
to secure model weights [16]. Even though it is a framework with a lot of activity in
Github [10] and flexibility due to its framework support, it has recently become a chal-
lenging framework toworkwith. PySyft’s APIs change substantially during each release
and the documentation as of the time of reviewing is outdated, which leads to a steep
learning curve.

• PaddleFL: Is a federated framework based on the PaddlePaddle [10] DL platform that
works both on Python and C++. The framework provides functionality for both hor-
izontal and vertical federated workloads and secure aggregation protocols. It provides
scalable deployment ofworkloads acrossmultiple computing nodes, whichmakes it suit-
able for large-scale FL applications. PaddleFL architecture is modular which also makes
it a good framework for research.

• FedML: FedML [17] is an open research library and benchmark designed to facilitate
FL research. It supports several FL computing paradigms like on-device training, dis-
tributed computing, and single-machine simulation. It provides standardized bench-
marks alongside synthetic and real-world datasets to facilitate fair performance compar-
ison. Its architecture is made up of two components, the FedML-API and FedML-core.
FedML-API provides a high-level API for users to build distributed training applica-
tions, focusing on algorithmic implementations and abstracting low-level communica-
tion details. FedML-core separates distributed communication andmodel training into
two modules, supporting various network topologies and security/privacy functions.
Overall, FedML aims to overcome the limitations of existing FL frameworks by provid-
ing a comprehensive and flexible toolkit for FL algorithm development and fair perfor-
mance comparison under diverse computing paradigms and configurations.

18



• Flower: Flower [18], is a recent language-agnostic federated framework that provides
high-level abstractions aimed tomake experimentation and research onFL easy. Itworks
very well with frameworks that use NumPy-like interfaces and also provides interfaces
for frameworks that don’t. Despite lacking functionality topreserve theprivacyofmodel
updates, Flower provides functionality to extend FL implementations to mobile and
wireless clients with heterogeneous resources. Also, unlike other frameworks, Flower fo-
cuses on simulations with a large number of federated clients through their gRPC com-
munication protocol and Virtual Client Engine (VCE) [18]. Overall, Flower is a good
choice for researchers and individuals that require to migrate already existing models
without being constrained by their deep learning framework choice. Flower’s documen-
tation is well maintained, and as a consequence federating existing centralized models is
relatively painless. However, due to how recent the framework is (the original paper by
Beutel et al. is from 2022 [18]) there are still some bugs and unexpected behaviors that
need to be polished.

• Nvidia Flare: Nvidia’s Federated Learning Application Runtime Environment [19], is
a recently open-sourced software development kit (SDK) that offers state-of-the-art FL
algorithms and federated ML approaches. Additionally, it offers privacy-preserving sys-
tems for multiparty collaboration using techniques like homomorphic encryption and
differential privacy. NVFlare is a framework that is both adept in research simulations
and in real-world production settings. Even though originally designed with healthcare
applications inmind, NVFlare is not limited to healthcare and can be applied across var-
ious domains. Developers can bring their own data science workflows implemented in
popular libraries like PyTorch, TensorFlow, or even pure NumPy, and apply them in a
federated setting. NVFlare has been used in real use case scenarios for breast mammog-
raphy classification, prostate segmentation, pancreas segmentation, chest X-ray (CXR),
and electronic health record (EHR) analysis to predict oxygen requirements forCOVID-
19 patients.

• OpenFL: [20] is an open-source project maintained by Intel Labs and the University
of Pennsylvania that works with TensorFlow, PyTorch, and other ML and DL frame-
works. It is mostly coded in Python, and FL plans containing the rules and configura-
tions for federation are orchestrated throughYAMLfiles. What distinguishes this frame-
work from others is that it implements privacy protection policies through mutually-
authenticated TLS connections and supports trusted execution environments (TEEs)
like Intel SGX (Which implements secure enclaves within the CPU to protect compu-
tations providing confidentiality and data integrity guarantees). OpenFL has been im-
plemented in a Federated Tumor Segmentation Initiative with 56 clinical sites spread
worldwide. The framework exhibits some weaknesses as the FL plan has to be agreed
upon by all parties before the workload begins, which may not suit all FL scenarios. On
the other hand, Intel SGXbenefits require specialized hardware to be exploited andmay

19



Federated Framework Github Popularity (Github Stars)
PySyft https://github.com/OpenMined/PySyft 8.9k

FATE https://github.com/FederatedAI/FATE 5.1k

FedML https://github.com/FedML-AI/FedML 3.1k

Flower https://github.com/adap/flower 2.8k

Tensorflow Federated (TFF) https://github.com/tensorflow/federated 2.1k

OpenFL https://github.com/securefederatedai/openfl 561

PaddleFL https://github.com/PaddlePaddle/PaddleFL 456

IBM Federated Learning https://github.com/IBM/federated-learning-lib 427

Nvidia Flare https://github.com/NVIDIA/NVFlare 405

Table 2.2: Popularity of FLS Projects.

also introduce additional complexity in production deployments.

• IBM Federated Learning: [21] is a Python library that provides modular components
for networking, protocol handling, data handling, and FL training modules. Due to its
modular design, IBMFederated Learning is able to provide a communication infrastruc-
ture independent of the FL algorithm and machine learning library used. Communica-
tion canbeperformed throughFlask, gRPC, andWebSockets. The framework supports
FL algorithms for training neural networks, decision trees, and machine learning mod-
els. Like other frameworks, it also supports securingmodel updates through SMPC and
differential privacy. It provides FL Model implementations for Keras, PyTorch, Ten-
sorFlow, Scikit-learn, and RLlib, allowing ML professionals to leverage their preferred
libraries when specifying and training models. Even though IBM Federated Learning
is available on GitHub, it can only be used for experimental and non-commercial pur-
poses.

As it can be seen in Table 2.2 PySyft is currently the most popular FLS with the most active
developer community. Table 2.3 summarizes the capabilities of each of the FL frameworks. It is
evident from this summary that only a fewof them support vertical partitioning and all of them
support neural networks and linear ML models (with a few supporting tree-based methods).
Additionally, most of the frameworks support federating models originally built in Tensor-
Flow and Pytorch, being PaddleFL the only exception as it was built exclusively for the Paddle
Paddle framework. Furthermore, the privacy mechanism offerings vary across frameworks, be-
ing thosemore targeted for production pipelines the ones that support cryptographicmethods
and differential privacy. Finally, most of the frameworks provide functionality to run single-
machine experiments (simulations) and multi-resource workloads, with only a few of them
providing on-device functionality. Overall, there is a vast offering of FL frameworks develop-
ers can choose from to satisfy their model federation needs.

20



Characteristics PySyft FATE FedML Flower TFF OpenFL PaddleFL IBM FL NVFlare

License Apache License 2.0 X X X X X X X X

Non-Commercial Use X

Data Partitioning Horizontal X X X X X X X X X

Vertical X X X X

MLModels
Neural Networks X X X X X X X X X

Decision Trees X X X X

Linear Models X X X X X X X X X

ML Frameworks

TensorFlow X X X X X X X X

PyTorch X X X X X X X

Scikit-Learn X X X X

XGBoost X X X

Paddle Paddle X

Privacy Mechanisms CM X X X X X X

DP X X X X X

Computing Paradigms
Simulation X X X X X X X

Distributed X X X X X X X X X

On-Device X X

Table 2.3: Landscape of FLSs based on the taxonomy proposed by Li et al. [10].

Choice of Framework. Flower was chosen as the FLS for this study due to its ease of use,
focus on research, and comprehensive documentation and examples. The framework is well in-
tegratedwithPyTorch (theMLframeworkused) and facilitates themigrationof existingmodels
to the federated setting. Furthermore, it has been used successfully to train Feed-ForwardNeu-
ral Networks (FNNs) andConvolutional Neural Networks (CNNs) which are the techniques
used in this study.

2.1.4 Applications in the medical domain

FL has contributed to the development of applications across an extensive and diverse collec-
tion of domains. Due to its capabilities to exploit otherwise siloed datasets and its evident bene-
fits to data privacy, it has recently gained traction in healthcare applications [6]. In this section,
a set ofmedical use caseswhere FL has been applied is presented, based on the systematic review
fromNguyen et al. [2].

• EHR Management: Valuable digital medical information can be captured from Elec-
tronic Hospital Records (EHRs). However, this type of private data is highly sensitive
and metadata removal is not enough to address privacy concerns. FL enables hospitals
to leverage health records to train models that can train on this data. An example of
these applications is the prediction of hospitalizations for patients diagnosed with heart

21



diseases, which can be achieved by using a combination of patients’ smartphones and
distributed hospital data. Other examples include forecasting patient mortality based
on drug features, and the detection of preterm birth.

• Remote Health Monitoring: FL has been used to provide in-home health monitor-
ing, a service that has accrued special interest in the medical domain. Personal devices
(like mobile phones and wearables) at each home can learn personalized CNN models
that when aggregated through FL can achieve accuracies as high as 95% to detect human
activity, which would be otherwise impossible using only the individual clients’ data.
These types of solutions have several applications in fields like assisted living, fall detec-
tion, mood analysis, and monitoring treatment effects on patients.

• Medical Imaging: A significant proportion of clinical data is composed of medical im-
ages (X-rays, CT scans, MRI, PET, EEG, etc.), which presents an interesting opportu-
nity for DL models to take advantage of this type of data across data centers. FL has
been successfully implemented in a series of medical imaging tasks like small bowel dis-
ease detection, and segmentation tasks such as pancreas cancer, breast and lung cancer,
brain tumors, and colorectal polyps among others.

• COVID-19 Detection &Diagnosis: The recent pandemic also attracted the attention
of FL researchers in an effort to detect COVID-19 cases. Due to concerns with pub-
lic data sharing across datacentres holding COVID-19 data analytics, strategies to train
models while keeping each data center’s data private were required. DL techniques such
as CNNs have been widely used in the identification of cases by extracting essential fea-
tures fromchestX-rays and computed tomography (CT) scans. When federated, CNNs
were able to achieve COVID-19 detection rates of up to 98% when leveraging DL archi-
tectures such as ResNet18.

2.1.5 Limitations

Despite the many advantages that FL provides, it does not solve all the issues inherent to work-
ing withmedical data [1]. Some of themain challenges and limitations faced by FL approaches
are presented by Banabilah et al. [12]:

• Reliability of Edge Devices: Real-time communication might cause batteries of de-
vices to drain which has an effect on the reliability of an edge device to participate in FL.
For this reason, FL frameworks provide the functionality to sample a pool of available
training clients in each round. Furthermore, some algorithms like FedProx [4] include
logic to calibrate the amount of work each FL client does.

22



• Imbalanced Data: Since each node might have imbalanced data that is not identically
and independently distributed, it can causemodel performance and generalization prob-
lems as localmodels overfit. Some federated algorithms like FedProx [4] aim to solve this
issue by introducing a regularization term that guarantees local updates don’t deviate too
much from the best global solution.

• Communication Costs: Since each training round of FL a set of interactions needs to
occur between the server and clients, to transmit local updates and distribute theweights
from the global model to the local clients, network congestion can increase the overall
communication costs.

• PrivacyChallenges: FLmodels are vulnerable todataPoising, ormodelPoisoningwhich
is amalicious threat that aims to influence the globalmodel tomisclassify specific inputs
that might lead to negative effects on the FL clients and the global model. Furthermore,
shared information may still indirectly expose the data distributions used for local train-
ing, through methods like model inversion and adversarial attacks [1].

• Model Behavior & Investigations: Naturally, as access to the local datasets is not possi-
ble in a true federated setting, researchers might not be able to investigate the data used
to train themodels to get a deeper understanding of the results acquired from the global
models [1].

2.1.6 Future work & research directions

Federated Learning is a relatively new subject of study and as such there are still a wealth of
open topics to be investigated. Rauniyar et al. [13] provide an overview of some of the future
research directions of FL in the medical setting, which are summarized below.

• Hyperparameter Optimization: Tuning of hyperparameters is of vital importance to
theperformance of FL systems, but it becomes a process difficult to execute in a federated
setting due to the lack of incentives for parties to collaborate. One open research area is
of designing proper incentives that motivate FL parties to participate in hyperparameter
optimization processes.

• Security and Privacy-Enabled FL Systems: Malicious attacks like model poisoning
are highly undesirable in medical settings. Current strategies to alleviate this problem
impose constraints on model performance or have to be applied in controlled settings
which motivates the development of new techniques that can adapt to a federated set-
ting.

23



• Efficient Communication Paradigm for FL Systems: This becomes increasingly im-
portant in FL applied to edge devices, as the communication overhead required to up-
date the model parameters across the network can create bottlenecks. Efforts have been
made to solve this by reducing the amount of FL rounds required (improve model con-
vergence), optimizing communication bandwidths, and compression/sparsification of
models.

• SolvingMedical Data Heterogeneity and Statistical Issues of FL Systems: Non-IID
data is the norm in federated learning, and it is well known this type of data degrades
the performance of DL models. Even though there are currently some strategies (like
FedProx) that are targeted towards heterogeneous FLmore research needs to be done in
this area.

• Contrastive Learning as a Solution forUn-labelledMedicalDataDistribution: Most
of the research done in FL focuses on supervised learningmodels in which the data is an-
notatedwith the expected ground truth labels. Since a significant amount of themedical
data generated is unlabeled (for example, colonoscopy images) there is an opportunity to
exploit techniques like contrastive learning to acquire insights on this type of data. Con-
trastive learning (otherwise known as self-learning) involves a pre-training procedure in
which the model learns to discriminate between similar and distinct data samples from
an unlabeled dataset.

• Benchmarking FL: Even though several studies have been done for FL across different
domains, results tend to be tricky to compare due to differences in experiments and eval-
uation procedures. This calls for a need for standard methodologies and FL datasets to
evaluate FL performance.

2.2 Machine learning techniques

In this section, a summarized overview of the DL techniques used in this investigation is pro-
vided.

Feed-Forward Neural Networks (FNNs). Are the most basic type of learning algorithm
used as the basis for most DLmethods. These networks are composed of a series of layers con-
taining an interconnected set of units or “neurons” which take the inputs, process these inputs
through an activation function (a linear combination of the inputs likeReLUor hyperbolic tan-
gent), and produce a new set of outputs for the next layers. The network assigns a set ofweights
and biases to the units and connections between units, which are adjusted through training to

24



minimize a loss function [22]. In a feed-forward network, information flows in a unidirectional
path, from the input layers to the output layers. Learning occurs through a process known as
backpropagation, which consists in applying gradient descent to propagate errors across the net-
work in the opposite direction. The intuition behind this technique is that the gradient of the
loss function with respect to the weights and biases (the network parameters) can be used to
navigate the error landscape in the direction that minimizes loss (the discrepancy between the
predicted and ground truth values). As a consequence, through an iterative training process,
the error landscape can be navigated through small steps, which will lead to better solutions
with time. Once the model is trained it can be used for inference by feeding it unseen data.
These types of networks are particularly useful in regression and classification tasks.

Convolutional Neural Networks (CNNs). Even though FNNs are useful for both re-
gression and classification tasks they do not exploit spatial information/spatial autocorrelation
from the inputs, which might be valuable for several medical tasks (for example identifying
polyps in an image). Primarily designed for tasks related to image and video processing, CNNs
are designed to efficiently extract features from images. The building blocks of CNNs are the
convolutional layers, in which a set of filters or kernels (a small weights matrix) slides over a
region of the image performing element-wise operations and outputting a feature map that
highlights certain patterns (edges, shapes, textures, etc.) in the input [22]. Similar to FNNs,
non-linearity is introduced through an activation function that allows the network to learn
complex relationships in the data. Pooling layers are used to reduce the dimensionality of the
feature maps by retaining the maximum values found in a local region and discarding the rest,
reducing computational complexity while retaining important feature information.

2.3 Medical case studies & FL

This section reviews the two main medical tasks that were studied in this investigation, seizure
prediction from EEG signals and colorectal polyp segmentation from colonoscopy images. A con-
textual description of each medical case, its importance, and a literature review of the most
commonML and FL techniques applied in these fields are provided.

2.3.1 EEG seizure detection/prediction

EEG signals are widely used in several fields such as neural engineering, neuroscience, biomed-
ical engineering, sleep analysis, and seizure detection [6]. The motivation to work with these

25



signals becomes evident when analyzing diseases like Epilepsy, which is a severe neurological
disease that leads to recurrent seizures and affects around 65 million people worldwide [8].
There is evidence that alterations in brain dynamics can be observed before epileptic attacks,
which has led to the development of devices to anticipate seizures by analyzing EEG signals [8].
This evidence has led researchers to explore the possibility of applyingML techniques to EEG
signals, to both identify and anticipate the occurrence of seizures in patients. In their topical re-
view for EEG classification tasks, Craik et al. [6] summarize themost commonML techniques,
data cleansing approaches, and inputs used in seizure detection/prediction tasks.

Several input data formulations have been proposed across EEG studies in line with the type
of task and ML technique employed. Specifically, 41% of the studies surveyed used calculated
features, 39% of the studies used images, and the remaining 39% used signal values [6]. Specific
choices of inputdata types for eachof these categories canbe found inFigure 2.6. Besides choos-
ing the right input formulation, preprocessing also requires special attention as EEG signals
tend to exhibit a low signal-to-noise ratio (due to electrodes picking unwanted electrical phys-
iological signals, channel cross-talk, and motion artifacts) and high dimensionality [6]. EEG
studies implement different strategies to deal with these preprocessing challenges. From all
the studies, 41% of them didn’t report performing any signal cleansing, while 29% performed
manual removal, 8% did automatic removal, and 22% worked directly with the raw signal [6].

Concerning the model architecture choice, the state-of-the-art approaches to tackle seizure
detection tasks across studies are split into Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs), as shown in Figure 2.7. Seizure detection studies employ
RNNsmore than any other EEG analysis study, probably due to the added benefitRNNs have
on exploiting temporal autocorrelation in the signals. CNNs remain the most used method
to perform inference in seizure detection tasks. Average accuracies of up to 84% have been
achieved by studies that use CNNs with images or calculated features as inputs, while CNNs
using signal values as inputs achieved even higher accuracies of up to 87%, which leads to think-
ing data cleansing might not be as important when using EEG signals in neural networks as it
is in other MLmethods [6].

2.3.2 Polyp segmentation

Colorectal polyps are “protrusions or bumps that develop in the colon as the body produces an
excessive number of unwanted cells in the lining of the bowel” [23]. These polyps can develop
anywhere in the large intestine or rectum. Colorectal Cancer (CRC), is a type of cancer with

26



Figure 2.6: Choice of input data across EEG studies reviewed by Craik et al. [6]. Panel A indicates the breakdown of input
formulations across all EEG studies, the inner circle groups the outer options into categories. Panel B summarizes the choice
of input category per EEG task, it is worth noting seizure detection studies use signal values predominantly.

a high mortality rate that might happen if these polyps (which are usually harmless in their ini-
tial stages) are left untreated [23]. According to the world health organization’s International
Agency for Research on Cancer (IARC), approximately 2 million individuals were diagnosed
with CRC in 2020, with an approximate 1 million people death toll [23], and CRC accounts
for 10% of overall cancer cases worldwide [7]. Additionally, CRC incidence has been found to
be higher in countries with a diet high in calories and animal fat and sedentary populations [7].
Colonoscopy is currently the standard procedure to detect polyps, which involves a multistep
process consisting of preparing the bowel with a specific solution for a subsequent examina-
tion phase where a colonoscopy equipped with a camera and light is inserted into the patient’s
rectum for an obstruction-free view of the colon [23].

As it is evident, early colorectal polyp detection is of crucial importance to prevent the pre-
vention of CRC. Unfortunately, polyp detection has a significant miss rate among physicians
[23] which is usually between 14% to 30%, depending on the type and size of polyp [11]. The
high miss rate is a concerning issue, as the standard method for detecting and diagnosing them
is through colonoscopy [23]. This leads to the conclusion that automated detection systems
can help gastroenterologists increase the detection rate of polyps [7]. As a matter of fact, DL
solutions have been able to achieve expert levels of performance in several cases [7]. For this rea-
son, automatic methods for the detection, classification, and segmentation of polyps through
ML are needed, which has led to increased interest among the research community.

DL architectures used for polyp detection are usually specialized to excel in a specific type of

27



Figure 2.7: ML technique implemented across EEG studies reviewed by Craik et al. [6]. Seizure detection studies focus
mostly on RNNs and CNNs

.

task. A synthesis of the most used DL approaches and their benefits are presented by Peralta et
al. [7], who group these approaches into the following categories:

• Feature Extractor: FL architectures are used to automatically create feature vectors
which can then be used as input to other classifiers, resulting in hybrid methods that
combine deep learning with classical classifiers.

• Classification: A classifier labels an image as containing a polyp or not, without provid-
ing the precise position information of the polyp.

• Patch-based: Utilizes a combination of image patches or tiles to determine the presence
and location of a polyp.

• Bounding-box: This method provides the location of the polyp through a bounding-
box representation, typically consisting of coordinates of the upper right corner, height,
and width. A regression layer is commonly employed for this purpose.

• Semantic Segmentation: In this approach, each pixel of the image is labeled as either
polyp or background. Networks based on encoder-decoder blocks, typically employing
Fully Convolutional Networks (FCNs), are commonly selected. The first half of the
layers encode the image description by highlighting discriminative features, while the
second half maps the low-resolution encoding into full input-resolution feature maps.

28



This is the task investigated in this work, and a schematic representation of a DL archi-
tecture for this task can be found in Figure 2.8.

Despite being a field that can potentially benefit from DL techniques, a series of problems
regarding data quality and consistency across datasets imposes some challenges. For optimal
performance in DL, it is well known in the research community that datasets with large num-
bers of examples are needed. Unfortunately, annotated colorectal polyp datasets are scarce and
usually contain a limited amount of examples [11]. This requires models to be trained with
augmented examples produced through random rotations, flips, and crops to enhance exam-
ple content [23]. This is further aggravated by data disparity issues, data quality problems like
incorrect bowel preparation, light reflections in the footage, and different viewpoints across
datasets [23].
Even though working with polyp datasets can be challenging for the reasons mentioned

above, it hasn’t deterred researchers from exploring a wealth of DL architectures with satis-
factory results. The main DL architectures used across colorectal polyp segmentation and de-
tection tasks are reviewed in ELKarazle et al. [23] and summarized below:

• U-Net: U-Net is a widely used segmentation network in the medical imaging domain,
consisting of an encoder, decoder, and residual connections.

• SegNet: SegNet is a semantic segmentation network following an encoder-decoder de-
sign, lacking residual connections, and utilizing pixel-wise classification layers.

• Fully Convolutional Networks (FCN): FCN is a flexible segmentation network com-
posed solely of convolutional layers, allowing variable input sizes and faster training
speed.

• Pyramid Scene Parsing Network (PSPNet): PSPNet incorporates a pyramid parsing
module for accurate global context information aggregation using different-region con-
text aggregation, it is less common in detection tasks compared to SegNet and U-Net.

Polyp classification also benefits from transfer learning, which consists of tuning knowledge
acquired on a different (but to a degree, related task) to solve a problem on a different domain.
This seems to be a preferred method for feature extraction and building polyp classification
network backbones in the field (over creatingCNNModels from scratch), probably due to the
computational efficiency and ease of tuning they offer [23]. ELKarazle et al. [23] provides an
overview of the most used pre-trained CNN architectures which are listed below:

29



Figure 2.8: Schematic of a semantic segmentation task of colorectal polyps (Peralta et al., 2021) [7]

• VGG16: A standard network with 16 convolutional layers that takes an input size of
224× 224 pixel images used for colorectal polyp classification. It was trained using the
ImageNet dataset [24].

• VGG19: Similar to VGG16, but using 19 convolutional layers instead of 16.

• ResNet50: ResNet50, is a widely used network in computer vision tasks. It consists of
50 layers and an input size of 227× 227 pixels. It implements skip connections to allow
smooth information flow and was also trained on the ImageNet dataset. ResNet50 is
commonly used as the backbone for specialized polyp segmentation networks.

• Xception: Consists of 71 depthwise-separable convolutional layers, that require an in-
put size of 299 × 299 pixels and was trained on ImageNet. It is, however, not as com-
monly used as VGG or ResNet.

• AlexNet: An eight-layer deep CNNwith an input size of 227× 227 pixels, trained on
the ImageNet dataset.

• GoogLeNet: GoogLeNet, a 22-layer CNN that takes images 224 × 224 pixels. It was
trained on the ImageNet dataset for image classification. It is mostly used in ensemble
configurations.

30



3
Methodology & experiment design

The purpose of this chapter is to systematically introduce the configuration of the experiments
performed along with design decisions and assumptions made, in an effort to promote re-
producibility of the results. This chapter is divided into 5 sections: Section 3.1 provides an
overview of the datasets used and the data preprocessing pipeline, Section 3.2 summarizes
the hardware configuration and software used, Section 3.3 reviews the hyperparameter tuning
setup, Section 3.4 touches on the model architectures studied, Section 3.5 reviews the metrics
used to evaluate model performance, and finally, Section 3.6 explains how the federated exper-
iments were set up.

3.1 Datasets & data preparation

In this section, a description of the datasets used for each of the medical tasks described in
Section 2.3 can be found. For each dataset, the preprocessing steps carried out before feeding
the data to themodels, their respective labeling strategies, and the data partitioning strategy for
model development, evaluation, and testing are explained.

3.1.1 EEG signals dataset

• Dataset description: For the EEG signals task the dataset from Shafiezadeh et al. [8]
paper on seizure prediction was used. This dataset was collected by the Epilepsy and

31



Clinical Neurophysiology Unit of the Eugenio Medea IRCCS Hospital in Conegliano
(Italy). The EEG signals were obtained by using the international standard 10-20 EEG
Scalp electrode positioning system, at a sampling rate of 256HZ. The position of the
electrodes for each of the EEG channels can be seen in Figure 3.1. The dataset contains
a total of 38 patients.

Figure 3.1: Scalp positioning for the 20 common EEG channels used by Shafiezadeh et al. [8].

• Preprocessing: In their work, the signal was processed through a combination of notch
filters to remove power line interference, a high pass filter to remove Direct Current
(DC) offset and fluctuations, and a low pass filter to highlight higher frequencies that
might characterize abnormal brain activity. The preprocessed signal was divided into
non-overlapping timewindows of 5 seconds, and a set of 53 features was extracted using
Python’sMNE-Features package [8]. For a comprehensive list of the features extracted
refer to Appendix A.5, Figure A.14. The preprocessed outputs were stored as a zipped
.npz file containing Numpy arrays for both the features and labels. Working directly
with the .npz file proved to be slow, so the outputs were extracted and consolidated into
Pandas dataframes before finally exporting them as .csv files containing the final features
and labelmatrices. The feature values are normalized using z-score normalization before
being fed to a feed-forward neural network (FNN) as described in Section 3.4.

• Data labeling: The EEG signal can be categorized into four distinct stages as illustrated
in Figure 3.2, which are the interictal state, which represents periods of regular brain
activity between consecutive seizures, the preictal state, which is the period between ap-
proximately 60-90 mins before seizure onset, the ictal state, which corresponds to the
seizure occurring, and the postictal state, which refers to the period immediately follow-
ing a seizure for a few minutes [8]. Markers for the beginning and end of the ictal state
were created by clinicians based on electroclinical information and EEG video monitor-
ing [8]. To this end, one of the classes contains signals between 0 and 30 mins before
the seizure (which is supposed to represent a seizure coming), and the other class had sig-
nals sampled 30mins randomly from the interictal state (which represents regular brain
activity). The prediction task consists of discriminating between these 2 classes.

32



• Data partitioning: The final dataset was partitioned into three splits: a training split
(whichwas further split throughK-FoldsCV to acquire training and evaluation datasets
for centralized tuning), a validation split for federated hyperparameter tuning, and a test-
ing split that was set apart to be presented to the models until the end, for final model
evaluation. A total of 15% of the examples were used for the validation set, 15% for
the test set, and the remaining 70% for the training set. To address generalization per-
formance on seizure prediction tasks, as demonstrated in Shafiezadeh et al. [8], two
different dataset configurations were used for splitting, one that consisted of a strat-
ified random sample of the examples (which led to IID data across splits with cross-
contamination of patient data) and a patient-aware random sample of the data (which
resulted in non-IID data that effectively separated patients data across splits).

Figure 3.2: Segmentation for the EEG recordings of epileptic patients studied by Shafiezadeh et al. [8]. Panel A displays 480
minutes of recording from the F7 channel and its division into the interictal, preictal, ictal, and postictal stages. Highlighted in
green are the zones of the recording used for the binary classification task. Panels B through E show 20 s magnifications of
the recordings from the 20 channels at the beginning of each stage.

3.1.2 Polyp segmentation dataset
• Dataset description: For the polyp segmentation task, a series of standard benchmark
polyp datasets were used following Lou et al. [9] research on the CaraNet architecture,
with some minor modifications. Three of the original five polyp segmentation datasets

33



used in CaraNet: Kvasir-Seg [11], ClinicDB [9], and CVC-ColonDB [9] were used for
different purposes. The number of examples, resolution, and approximate size of the
polyps in each dataset are explained in Table 3.2.

• Pre-processing: Inputs to theCaranetCNN(explained in3.3) are composedof a source
image and a binary mask that specifies the Region Of Interest (ROI) surrounding the
polyp as shown in Figure 3.3. Both images were resized to a resolution of 352 × 352
pixels, and a multi-scale training strategy with scaling set to 75%, 100%, and 125% reso-
lution was used [9]. Multi-scale training is a commonly used technique in CNNs and
image segmentation tasks that feeds scaled versions of images to the network to improve
its generalization performance across object sizes, which was one of the objectives for
developing CaraNet. Additionally, some image augmentations like random horizontal
and vertical 90◦ flips with the probability of flipping set to 50% were used. Images are
ultimately normalized before being fed to the network.

Figure 3.3: Polyp dataset example, the upper row displays the source images and the bottom row shows the ground truth
binary masks used to identify the ROI of the polyps.

• Data labeling: Eachdataset contains ground truthbinarymasks annotatedby clinicians.
The ROI corresponding to the polyp is represented by the positive pixels in the mask.
The purpose of the polyp segmentation task is to generate a binary mask that closely
resembles the ground truth mask.

• Data partitioning: In theCaraNet paper [9], a combination of samples from theKvasir
andCVC-ClinicDBdatasets were used for training and another for evaluation purposes.
Several other polyp datasets were used for testing and benchmarking purposes. This
data-splitting strategy is kept as the intention was to replicate, to a degree, CaraNet cen-
tralized results before performing federated tests. This work uses 90% of Kvasir and

34



CVC-ClinicDB as the training set, the leftover 10% for model evaluation purposes, and
a separate CVC-ColonDB used for testing to measure the model’s generalization abil-
ity against an unseen dataset. Unlike the EEG dataset strategy, which considers strat-
ified and patient-aware distributions of examples, only one configuration of the polyp
dataset is studied here. Stratifying class distributions across partitions wouldmean redis-
tributing negative and positive pixels from the source binarymasks into the splits, which
wouldn’t make sense methodologically. For this reason, the data partitioning strategy
specified outputs non-IID data across splits.

3.1.3 Dataset partitioning summary

The final distributions of samples for the training, validation, and test datasets for the seizure
prediction and polyp segmentation tasks can be found in Tables 3.1 and 3.2 respectively.

Configuration Partition Total Examples Number of Patients Positive Class Proportion

Stratified Sampling

Training Set (70%) 1317890 38 20.20%

Validation Set (15%) 282405 38 20.20%

Test Set (15%) 282405 38 20.20%

Patient-Aware Sampling

Training Set (68%) 1287420 28 20.20%

Validation Set (16%) 293960 6 19.55%

Test Set (16%) 301320 4 21.39%

Table 3.1: EEG seizure dataset partitioning strategy.

Partition Total Examples Dataset Resolution Dataset Examples Object Size Ratio

Training Set (90%) 1450
Kvasir 1070x1348 900 0.79% - 62.13%

CVC-ClinicDB 288x384 550 0.34% - 45.88%

Validation Set (10%) 162
Kvasir 1070x1348 100 0.79% - 62.13%

CVC-ClinicDB 288x384 62 0.34% - 45.88%

Test Set (Separate) 380 CVC-ColonDB 500x574 380 0.30% - 63.15%

Table 3.2: Polyp dataset partitioning strategy.

35



3.2 Hardware & software characteristics

In this section, the configuration of the resources used to train the models is described.

• Hardware configuration: Google Cloud Platform (GCP) was used as a cloud provider
for the experiments. Cloud Storage andCompute Engine services were used to persist the
data inputs/outputs and perform computations. AVirtualMachine (VM)with the con-
figurations specified in Table 3.3 was used for all the experiments. Federated workloads
were simulated through the concurrent executionof FL client processes after the server is
initiated. All experiments were run on an Nvidia GPU to leverage CUDA acceleration.

GCP Tier OS GPU VRAM RAM vCPUs CPU Platform Disk

a2-highgpu-1g Debian 10 Nvidia A100 40GB 85GB 12 Intel Cascade Lake 100 GB SSD

Table 3.3: Hardware configuration of the GCP VM used to run experiments

• Software configuration: All models were coded in Python using Pytorch as the chosen
DL framework. The FNN used for the seizure prediction task was built from scratch,
while the code for the CNN of the polyp segmentation task was adapted from the origi-
nal CaraNet paper from Lou et al. [9] *. Models were extended to the federated setting
through the Flower FL framework fromBeutel et al. [18]. A virtual conda environment
was configured for all experiment-related tasks. A comprehensive list of all the Python
packages and their respective versions can be found in Appendix A.4. The code devel-
oped for all the FL experiments can be found in a GitHub repository †.

3.3 Hyperparameter tuning

One of the open topics in FL research is hyperparameter optimization, as this is a difficult task
to achieve in a federated setting due to parties likely not wanting to contribute to tuning before
benefitting from FL [13]. In this section, the approach to performing hyperparameter tuning
in the models is presented. Tuning is of vital importance to discover the optimal settings for
each model and provides the means to perform fair comparisons of results across techniques
and datasets (the best models are compared). Tuning was performed both in the centralized

*CaraNet [9] Github Repository: https://github.com/AngeLouCN/CaraNet
†Research Github Repository: https://github.com/andresespinalh/mt-federated-learning-in-healthcare

36



and federated setting by leveraging a combination of K-Folds CV, trial-and-error adjustment
of parameters, and grid search exploration based on the complexity of the models.

3.3.1 Centralized setting

Hyperparameters for the seizure prediction task were calibrated by using a combination of K-
Folds Cross-Validation withK = 3, and trial-and-error manual adjustment of tuning param-
eters to minimize the evaluation loss metric (the loss metric is described in Section 3.5). The
training set presented in Table 3.1 was split through K-Folds CV, and the model was trained
withK−1 of the resulting folds, while the leftover fold was used for evaluation of the lossmet-
ric. This was used to calibrate the number of layers, units, and choice of the optimizer (SGD
vs. Adam) while the number of epochs and learning rate parameters were tuned manually by
running experiments and doing trial-and-error adjustments. The average evaluation loss across
folds was used to select the best hyperparameters. For the polyp segmentation task values used
in the original CaraNet paper, Lou et al. [9] were used, so tuning wasn’t required.

3.3.2 Federated setting

The best architectural hyperparameters found in the centralized setting (number of layers, op-
timizer, local learning rate, etc.) were transferred to the federated setting for a fair comparison
across approaches. The number of local epochs and FL rounds, similarly to the centralized
setting, were calibrated manually through trial-and-error adjustments that optimized the eval-
uation metric. This calibration was done in a way that FL training approximately equated to
the number of gradient descent steps done in the centralized setting. The batch size per client,
in the case of the polyp segmentation task, was adjusted proportionally to the amount of FL
clients summoned, to be able to accommodate all the data in VRAM.

Hyperparameter tuning in the federated setting proved to be a challenging task (especially
for the polyp dataset), due to the long wait time required to get results back from the experi-
ments. As a consequence of running FL in a simulated environment on a single physical ma-
chine, there is an overhead caused by instantiating the aggregation server, and the FL clients,
besides the cost of parallel execution through concurrent processes. This is aggravated by the
need of running hyperparameter grids through CV to guarantee the statistical significance of
changes in the parameters, and their generalization capability. K-Folds CV withK = 4 was
attempted on a 4-client FL configuration, with each client holding a fold of the data. Each
client’s fold was used for centralized evaluation in the FL server once, using the validation sets

37



defined in Section 3.1.3, and the aggregatedmodels that resulted fromaveraging the parameters
of the models trained in the remainingK − 1 clients in each FL round. Even though feasible,
after estimating the time required to explore all the hyperparameter grids in the federated con-
figuration, it was evident that it would be impractical for the purposes of this investigation to
run experiments in this mode, so this approach was ultimately abandoned to avoid wasting
computational resources of the GCP VM.

As a literature-aided alternative, the less computationally intensive approach from the origi-
nal adaptive algorithmspaper byReddi et al. [4]was adopted. In their research, they choose the
best hyperparameters for the federated algorithms FedAdam, FedAdagrad, and FedYogi based
on the averaged training loss of the models over the last 100 communication rounds. The au-
thors argue that the training loss at a specific round is a ”noisy estimate of the population-level
training loss” due to variable participation of FL clients per round in their experiments, and
as a consequence decided to average over the last rounds of training. In this work, a similar
approach was used as a naive replacement to K-Folds CV, but instead of using training metrics
to choose the best parameters as in [4], metrics resulting from performing inference on a sepa-
rate validation set as mentioned in Section 3.1.3 were used. Since variable participation of FL
clients is out of the scope of this work, averaging evaluation metrics over a few epochs should
provide reliable estimates of the generalization performance of the model.

The federated hyperparameter grid explored in this work was inspired by the best configu-
rations across the tasks reported in Reddi et al. [4], and adjusted to the studied tasks through
trial and error. These grids can be found in Appendix A.1. The target metric for the seizure
prediction task was minimum validation loss, and for the polyp segmentation task, the maxi-
mum average validation Dice coefficient. The target metric was averaged over the last 125 of
the 1000 rounds of training for the first task, and the last 3 of the 10 rounds for the second task
(the last fourth of FL training rounds on both tasks). The process followed on both tasks to do
grid search exploration is described as follows: first, an experiment is run for a specific federated
algorithm and choice of hyperparameters. Then at each FL round, after training concludes on
all clients, the aggregated parameters are collected and used to create a global model in the FL
server, whichholds the aforementioned validationdatasets. After this, the constructedmodel is
used to do inference on the validation dataset of the subject task to acquire the target evaluation
metrics. After all experiments are run, the combination of hyperparameters that resulted in the
best evaluation metrics is selected. The best combinations of hyperparameters per task and FL
strategy as a result of these experiments can be found in Section 4.1.2. One weakness of this
approach is that it might be too optimistic due to the choice of the train-validation-test split,

38



so future investigations using different subsets of the development set to train and evaluate the
model are needed to further guarantee the robustness of the parameters chosen.

3.4 Model architectures

Seizure Prediction Task (FNN).The architecture used for the FNN is displayed in Figure 3.4.
The network is composed of an input layer that consumes each of the 53 calculated features
from the EEG signal, followed by 2 fully connected layers of 64 units each, and finishing with a
single unit layer that outputs theprediction. ReLU is used as thenon-linear activation function
for each of the units. This configuration was chosen after performing hyperparameter tuning
as explained in the results of Section 4.1.2. A total of 11,841 parameters were required to train
this network.

Figure 3.4: Architecture for the FNN used for the seizure prediction task.

Polyp Segmentation Task (CNN).CaraNetwas used as theCNNarchitecture for this task
as introduced by Lou et al. [9]. The architectural components for this CNN can be found in
Figure 3.5. The network extracts a combination of low-level features like corners, edges, angles,
etc. (features f1, f2), and abstract high-level features (features f3, f4, f5). After this, a parallel
partial decoder aggregates the high-level features to produce a global feature map to partially
reconstruct the outputted mask. Low-level features contribute less to performance while also
exhibiting a higher computational cost so only the high-level features are used [9]. These fea-
tures are later processed through a lightweight Channel-wise Feature Pyramid (CFP) module
to extract multiscale features across 4 channels that will aid in the detection of small polyps.
To refine the location of the polyps self-attention techniques were used. The Axial Reverse At-
tention (A-RA) module was used to focus the attention of the network on the location of the
polyp. Axial attention was used to factorize 2D attention into two 1D attention along height
and width axes to save computational resources. A sigmoid function is attached at the end

39



of the network to output the final binary mask prediction. The total number of parameters
needed to train this model was 46,642,560.

Figure 3.5: CaraNet architecture from Lou et al. [9].

3.5 Evaluation metrics

• SeizurePredictionTask (FNN):Standardbinary classificationmetrics likeBinaryCross-
Entropy (BCE) loss, accuracy, sensitivity, specificity, and area under the receiver operat-
ing characteristic (AUROC)were tracked for training, validation, and test metrics. This
aligns with the set of metrics used by Shafiezadeh et al. [8] in their seizure prediction
experiments. BCE was used as the loss function due to its favorable mathematical prop-
erties in binary classification tasks. AUROCwas preferred as themain evaluationmetric
over accuracy, due to its robustness to class imbalance. Sensitivity and specificitymetrics
are also used as they are standard metrics used in medicine for diagnostics. The defini-
tion of each of these metrics is reported in Figure 3.6.

• Polyp Segmentation Task (CNN):The Sørensen–Dice coefficient is a standardmetric
used in object segmentation tasks to compare the pixel-wise results between the ground
truthmask and thepredicted segmentationmaskedoutputtedby thenetwork [11]. This
metric considers both the sets’ intersection and sizes, with values ranging between 0 and
1. A coefficient of 0 indicates no overlap and 1 indicates a perfectmatch between the pre-
dicted and true segmentation masks. Similarly, Intersection Over Union (IoU) is often
used as a threshold-based metric to determine correct detections or segmentations. The
binary segmentation masks are often imbalanced datasets, due to the larger proportion

40



BCE Loss = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

Accuracy =
Number of Correct Predictions
Total Number of Predictions

Sensitivity (Recall) =
True Positives

True Positives+ False Negatives

Specificity =
True Negatives

True Negatives+ False Positives

AUROC =

∫ ∞

−∞
TPR(f) d(FPR(f))

Figure 3.6: Evaluation metrics for the seizure prediction task (FNN).

of negative pixels than positive pixels in the images. As a result, the balance between
false positives and false negatives is important. The dice coefficient was adopted over
other metrics (like IoU) as it is the evaluation metric used in the CaraNet network [9]
and it takes into account class imbalances inherent to the polyp datasets used. Finally,
a combination of the weighted Intersection over Union (IoU) metric and weighted Bi-
nary Cross-Entropy (BCE) loss was used as the loss function for themodel. Themetrics
used for this task are presented in Figure 3.7.

Dice =
2|X ∩ Y |
|X|+ |Y |

=
2TP

2TP + FP + FN

IoU =
|X ∩ Y |
|X| ∪ |Y |

=
TP

TP + FP + FN

Loss = Lw
IoU + Lw

BCE

Figure 3.7: Evaluation metrics for the polyp segmentation task (CNN).

41



3.6 Federated setup & experiment design

In this section, the configuration of the federated experiments is reviewed. For the seizure pre-
diction task, configurations of 2, 4, 8, and 16 clients were used, for the polyp segmentation task,
the configurations were 2, 4, 6, and 8 clients. The datasets specified in Section 3.1.3 were used
as a baseline to develop the federated datasets for this stage. Specifically, both datasets’ training
sets were split in the configurations mentioned by distributing the data in several partitions for
local training.

For theEEGdataset, trainingdatawaspartitionedusingboth stratified sampling and patient-
aware sampling to yield two different configurations analogous to the configurations found in
Section 3.1.3. The objective of the splitting strategy was to evaluate the impact of IID and non-
IID data in the federated setting across a series of averaging algorithms. It is worth noting that
crossing patient data across nodes defeats the purpose of FL, so this strategy was used purely
for experimental purposes to make a comparison against the centralized setting easier. In the
polyps dataset, the data from the Kvasir and CVC-Clinic DB’s was distributed across clients
uniformly, in such a way that a specific FL client only contained data from one of the datasets,
to simulate a real case scenario of hospitals having distinct patient data.

The remaining validation and test sets in Section 3.1.3 have the same purpose in the FL set-
ting as their centralized counterparts. The first dataset is used to perform per-federated-round
centralized evaluation in the FL server, by constructing amodel with the rounds’ aggregated pa-
rameters and then doing inference on the validation set. After all FL rounds have been finished,
the best model is acquired and the test set is used to evaluate the final model generalization per-
formance. Performingmodel validation and testing across the same sets in both the centralized
and federated settings ensures that results are comparable.

Experiments were executed only once, due to the long waiting times required for the feder-
ated experiments to finish (especially with the CaraNet model). Due to the high cost of the
cloud resource with GPU used ($3.75 hourly) and the number of experiments planned (espe-
cially in hyperparameter optimization), it was decided to draw conclusions based on single-run
experiments. DLmodels are often sensitive to the initial choice of weights, which is often done
randomly. For this reason, future investigations with repeated runs of experimentsmight be re-
quired to ensure the independence of results onmodelweight initializations and their statistical
robustness.

42



4
Experimental results & discussion

This chapter presents the results of the experiments carried out in this research. Section 4.1
presents the results that address each of the research questions defined in Section 1.2. Section
4.2 wraps up this chapter by providing an overview of themain discoveries found, the interpre-
tation of the results, and the identification of potential research directions.

4.1 Experimental results

In this section, evidence of the main scientific findings gathered from the centralized and fed-
erated experiments is presented. This section is further organized into 8 subsections that ad-
dress the specific research questions from Section 1.2. Subsection 4.1.1 provides an overview
of the data distributions, Subsection 4.1.2 presents the best hyperparameters found, Subsec-
tions 4.1.3 and 4.1.4 present the centralized and federated results, Subsection 4.1.5 shows an
analysis on FL client size, Subsection 4.1.6 reviews the convergence behavior of themodels, and
finally Subsections 4.1.7 and 4.1.8 provide an overviewof the execution time and resources con-
sumption of the experiments. All the results presented in the next sections can also be found
in an interactive public Tableau dashboard *.

*ResultsDashboard: https://public.tableau.com/app/profile/andresespinalh/viz/FLAnalysisinHealthcare/Main

43



4.1.1 Exploratory data analysis (EDA)

Centralized datasets

EEG dataset. The distribution of classes across patients and partitioning approaches are
explored in Figures 4.1 and 4.2 respectively. As it is evident from the first figure, most signals
contain normal brain activity, indicating only a few of the signals correspond to an upcoming
seizure. The partitioning strategy described in Section 3.1.1 is also shown here. As seen in this
visualization, the stratified sampling strategy outputs IID data with cross-contamination of
samples from different patients (notice how data from all the patients exist in every partition),
while the patient-aware approach generates non-IIDdata but separates patient data across splits
(one particular patient exists only in one partition at the time). The original dataset manifests
variable proportions of examples and class distributions across patients as shown in the second
figure, which indicates varying lengths of EEG activity being sampled across subjects.

Figure 4.1: Class distribution for the EEG dataset. Label 0 (blue) indicates a period of regular brain activity (no seizure) and
label 1 (orange) indicates an atypical surge in brain activity (seizure incoming).

Polyp dataset. An analogous data distribution analysis is shown in Figure 4.3. By interpret-
ing black pixels in the colonoscopy images as the negative class (non-polyp regions) and white
pixels as the positive class (which contains the polyp’s ROI) a binary label is produced. The to-
tal pixel count per label across all images is analyzed per partition. On average, samples drawn
from the Kvasir dataset exhibit double the count of positive pixels (approximately 16%) com-
pared to the other datasets (approximately 8%). This behavior is expected across splits due to
the bigger sizes of polyps found in the Kvasir dataset (as seen in Table 3.2). Additionally, polyp

44



Figure 4.2: Per patient class distribution for the EEG dataset. Label 0 (blue) indicates a period of regular brain activity (no
seizure) and label 1 (orange) indicates an atypical surge in brain activity (seizure incoming).

regions are relatively small when compared to the complete source image so having small pixel
counts for the positive labels is expected. Regardless of the differences in class labels, all of the
splits manifest class imbalances similar to the ones found in the EEG dataset.

Figure 4.3: Class distribution for each of the polyp datasets across centralized partitioning strategy. Label 0 (Blue) is assigned
to black pixels that do not contain the ROI, and 1 (orange) represents white pixels that contain the ROI containing the polyp.

Federated datasets

EEG dataset. The FL distribution of samples for the seizure prediction task is displayed
in Figure 4.4. All FL clients across all FL configurations (2, 4, 8, 16 clients) contain the same
proportion of positive classes in the stratified sampling setup, while samples are uniformly dis-
tributed across FL clients. Each client holds the same percentage of data from the original train-

45



ing set. This is not the case in the patient-aware sampling setup, inwhich each clientmight have
slightly different proportions of positive labels and a variable number of examples assigned to
each FL client. It is worth noting that as a side-effect of increasing client size, local models have
less data to learn from.

Figure 4.4: Distribution of class labels in the EEG dataset per FL configuration (2, 4, 8, and 16 clients), and FL client for the
stratified sampling and patient‐aware datasets. The blue portion of the bar indicates the proportion of the negative labels,
and the orange portion the proportion of positive labels.

Polyp dataset. The polyp segmentation dataset showcases the same behavior as the patient-
aware EEG dataset as it is shown in Figure 4.5. Each FL client contains a variable set of images
and positive pixels (polypROI). The datawas partitioned in away that samples from theKvasir
and CVC-ClinicDB datasets didn’t coexist in a particular federated node.

46



Figure 4.5: Distribution of class labels in the polyp dataset per FL configuration (2, 4, 6, and 8 clients) and FL client. The blue
portion of the bar indicates the proportion of the negative labels (black pixels in the segmentation mask), and the orange
portion is the proportion of positive labels (white pixels in the segmentation mask).

4.1.2 Hyperparameter tuning

Centralized models

Seizure prediction task (FNN). The final configuration used consisted of an FNNwith 2
layers, containing 64 units each. Further increases in model complexity proved to be unneces-
sary, and even detrimental to model performance. Complex networks consisting of more than
2 layers and 64 units exhibited heavy overfitting without a significant improvement in evalu-
ation metrics. The network was trained for a total of 3000 epochs using whole batches, and
as a result, tuning mini-batch size wasn’t required. Complete batches were used for training
as the whole EEG dataset could be accommodated in memory. The network was left to train
for a little longer than it took to converge, to be able to compare convergence trends across ap-
proaches. Both SGD and Adam optimizers were tried, but ultimately the former was chosen
due to its faster convergence capabilities and robustness to the learning rate hyperparameter.

47



The optimizer was parametrized with a learning rate of 1e-2 and β1, β2 parameters set to 0.9
and 0.999 respectively. These hyperparameters were used across both the stratified and patient-
aware datasets. Due to class imbalances inherent to EEG datasets, since most signals won’t
result in a seizure, weighted loss was implemented to balance the proportions of negative and
positive labels. An equivalent approach was attempted by replacing loss weighting with posi-
tive class oversampling, and the results were very similar. To avoid adding more complexity to
the data partitioning strategy in the federated setting the first strategy was adopted.
Polyp segmentation task (CNN): For the CaraNet model, all of the original values from

Lou et al. [9] except for the number of epochs andmini-batch sizes was adopted as the optimal
hyperparameters. Mini-batches of size 6 containing images of 352×352 pixels resolutionwere
used. Adam was used as the optimizer with a learning rate of 1e-4, a weight decay of 1e-4, a
momentum of 0.9, and β1, β2 parameters set to 0.9 and 0.999 respectively. The training was
done for a total of 15 epochs, clipping gradients by a value of 0.5 after each gradient descent
step.

Federated models

Seizure prediction task (FNN): The amount of FL rounds and local epochs was tuned
manually through trial-and-error experiments runs until similar results to the centralized set-
ting on the validation performance metrics were achieved. The optimal values found were 500
FL roundswith 10 epochs of local work each. Hyperparameters specific to each federated strat-
egy were explored through a grid search approach. The optimal combination of parameters
that minimized evaluation loss against the two EEG datasets and averaging strategy configu-
rations is presented in Table 4.1. The experiment grids containing the average evaluation loss
per hyperparameter set can be found in Appendix A.2. Specifically, grids for FedAdam (Figure
A.1), FedAdagrad (Figure A.2), FedYogi (Figure A.3) and FedProx (Figure A.4) were explored.
FedAvg required no further tuning besides the number of averaging rounds and local epochs.
Polyp segmentation task (CNN): Similar to the FNN, manual tuning was done for the

number of epochs and FL rounds. The FL model was trained for a total of 10 FL rounds,
performing 2 epochs of training in each FL client. Since each client loaded a batch of data con-
currently to memory during training, adequate memory management was required to avoid
running out of the 40GBs of available memory. To do this, the batch size used for each client
configuration (2, 4, 6, 8) was calibratedmanually to allow the simulated clients to fit the data in
available VRAM (batch sizes of 16, 8, 4, and 2 respectively). Results for the federated strategy-

48



specific hyperparameters can be reviewed inAppendixA.2. Similarly, grids for FedAdam (A.5),
FedAdagrad (A.6), FedYogi (A.7) and FedProx (A.8) were explored and the best hyperparame-
ters can be found in Table 4.1.

Task Partitioning Strategy Federated Strategy tau eta etal mu

EEG Seizure Prediction (FNN)

Stratified

FedAdam 10e − 1 10e − 0 10e − 0

FedAdagrad 10e − 2 10e − 2 10e − 0

FedYogi 10e − 5 10e − 3 10e − 2

FedProx 10e − 0

Patient-Aware

FedAdam 10e − 2 10e − 1 10e − 1

FedAdagrad 10e − 0 10e − 3 10e − 3

FedYogi 10e − 0 10e − 3 10e − 2

FedProx 10e − 3

Polyp Segmentation (CNN) Standard

FedAdam 10e − 0 3e − 0 10e − 1

FedAdagrad 10e − 0 10e − 0 10e − 0

FedYogi 15e − 0 5e − 0 10e − 2

FedProx 10e − 4

Table 4.1: Best combination of federated hyperparameters found for the seizure prediction (FNN) and polyp segmentation
(CNN) tasks across datasets and FL strategies.

4.1.3 Centralized model evaluation

Seizure prediction task (FNN). Training results for the FNN are shown in Figure 4.6, and
the trajectory of the loss function is displayed for both training and validation datasets. The
stratified sampling strategy exhibits a healthy learning curve where the training and validation
loss decreases until reaching the convergence of the model, with little overfitting. The patient-
aware approach on the other hand suffers from heavy overfitting from the beginning as can be
seen from the divergence of training and validation loss curves.

A crosstab containing the final results of both models across all metrics can be found in
Figure 4.7. The stratified sampling approach achieved an AUROC of 0.7 on the test set while
keeping a balance in the performance of the sensitivity and specificity metrics and the model
encountered its best performance at epoch 1962 out of 3000. The patient-aware approach
outputted an AUROC of 0.53 which is in practical terms a chance level result, and the best
validation loss was found at the beginning of the training process. Furthermore, the sensitivity

49



Figure 4.6: Training results for the centralized seizure prediction task (FNN). Training loss (blue) against validation loss (orange)
is plotted against the two dataset sampling approaches.

and specificity metrics are imbalanced due to the model overfitting the majority class (label 0)
as observed in Figure 4.6.

Figure 4.7: Model results for the centralized seizure prediction task (FNN). Test metrics are displayed accompanied by a
snapshot of the training and validation metrics in the training epoch that minimized validation loss.

50



Polyp segmentation task (CNN) The training results for this task are displayed in Figure
4.8. The network showcases an increase in the mean dice metrics through time with little over-
fitting. The detailed crosstab with the final results can be found in Figure 4.9. The network
achieved a mean dice result of 0.75 in the test set with its best validation dice (0.88) in epoch
16.

Figure 4.8: Training results for the polyp segmentation task (CNN). Mean Dice is plotted for training (blue) and validation
(orange) datasets. Dice values closer to 1 indicate a closer match of inferred and ground truth segmentation masks.

Figure 4.9: Model results for the polyp segmentation task (CNN). Test mean dice is displayed accompanied by a snapshot of
the training and validation metrics in the training epoch that minimized validation loss.

4.1.4 Federated model evaluation

Seizure prediction task (FNN).Aggregated results across client configurations can be found
in Figure 4.11. Overall, models trained with the stratified sampling strategy achieved a higher
AUROCon average, withmost of the strategies achieving a performance of 0.7, which is equiv-
alent to the AUROC found in the centralized setting. Analogous to the results in the central-
ized setting, the patient-aware approachmanifested a decrease in performance on theAUROC
metric. However, FedAvg, FedAdam, and FedProx strategies scored higher AUROC scores
(0.6, 0.59, 0.58) than the ones achieved in the centralized experiments (0.53). The mean AU-
ROCs per federated strategy are relatively close to each other across datasets, indicating results
across strategies at this level of aggregation are similar. A detailed table containing the results of
all experiments across all the evaluation metrics tracked can be found in Appendix A.3, Figure
A.10.

51



Figure 4.10: Mean test AUROC results for the federated seizure prediction task (FNN) across FL client sizes. Each panel
represents one of the federated strategies evaluated, and each panel displays the results for the stratified and patient‐aware
datasets. Mean AUROC across datasets and FL client configurations is reported per federated strategy panel (line).

Polyp segmentation task (CNN). For this network, federated averaging done through Fe-
dAvg, FedProx, and FedAdagrad strategies resulted in the highest test dice coefficients (0.76,
0.75, 0.75). These values are similar to the ones encountered in the centralized setting, but un-
like the seizure prediction task, there is a more significant difference between the performance
of the averaging strategies. A crosstab detailing the results of all experiments across all the eval-
uation metrics tracked can be found in Appendix A.4, Figure A.9.

Figure 4.11: Mean test dice results for the federated polyp segmentation task (CNN) across FL client sizes. Each bar repre‐
sents one of the federated strategies evaluated. Mean dice across strategies and FL client configurations are shown as a line.

52



4.1.5 Effect of FL client size

Seizure prediction task (FNN). Model evaluation metrics on the test set grouped by feder-
ated strategy, dataset, and client configuration are shown in Figure 4.12. Models trained with
the stratified sampling dataset showcase a similar behavior in performancemetrics across client
configurations disregarding the averaging strategy used (FedAdam seems to be marginally an
exception to this). For the models trained with the patient-aware strategy differences are more
notorious across client configurations. There is a very slight decrease in model performance in
some of the algorithms as the client size increases.

Figure 4.12: Model results for the federated seizure prediction task (FNN) partitioned by FL client sizes. Each bar represents
one of the federated strategies and client configurations evaluated. The mean AUROC metric across strategies is shown as
a line.

Similar to the centralized setting, models trained with the patient-aware strategy exhibit im-
balances between the sensitivity and specificity metrics as illustrated in Figure 4.13. This graph
outputs an overlap between the two areas when sensitivity and specificity are balanced as seen

53



across the algorithms in the stratified sampling column, with FedAdam being a subtle excep-
tion. The patient-aware approach results in imbalances, but curiously across configurations of
FL clients, the class that is overfitted evolves. For instance, strategies like FedAdam and FedYogi
favor the negative and positive classes in different FL configurations, while the other algorithms
seem to favor one of these metrics across all client configurations.

Figure 4.13: Graph showing the balance between sensitivity (blue) and specificity (orange) test metrics for the federated
seizure prediction task (FNN). The vertical panels represent the stratified and patient‐aware datasets, and the horizontal
panels the federated strategy. Inside each cell, the horizontal axis displays the amount of FL clients, and the vertical axis the
sensitivity/specificity values.

54



Polyp segmentation task (CNN). Evaluation metrics across client configurations for the
polyp segmentation task can be found in Figure 4.14. A similar decrease inmodel performance
is present here, with FedAdam producing the most dramatic decrease in the mean dice metric
(from0.64 to 0.38)when increasing the amount of FL clients (from2 to 8), andFedYogi becom-
ing unstable in configurations with a few federated clients (from 2 to 4). FedAvg and FedProx
produced the best results with 4 and 2 FL clients respectively, both achieving a score of 0.78,
which is 3% higher than the best score achieved in the centralized setting.

Figure 4.14: Mean test dice results for the federated polyp segmentation task (CNN) partitioned by FL client sizes. Each bar
represents one of the federated strategies and client configurations evaluated. Mean dice across strategies are shown as a
line. Empty bars (FedYogi with 2 and 4 clients) indicate numerical instabilities in the models that resulted in NaNs.

55



4.1.6 Federated model convergence

Seizure prediction task (FNN). The mean training loss function behavior across all client
configurations can be found in the first two panels in Figure 4.15. Convergence curves for the
stratified dataset for the FedAvg, FedAdagrad, and FedYogi algorithms look very similar, while
FedAdam has a noisy training curve and FedProx a rather precipitated convergence behavior.
In the patient-aware dataset, FedAvg has a behavior analogous to the stratified loss curve while
FedAdaGrad and FedYogi continue on a decreasing trend by the end of training. Finally, Fed-
Prox manifests a more stable training curve in the heterogeneous setting.

The same trends for the training loss function for each of the models across client configu-
rations can be found in Appendix A.4, Figure A.11. Overall, adding more FL clients doesn’t
seem to affect the shape of the convergence curve too much across algorithms, as is evident
from the relatively similar convergence curve shapes across client configurations. However, in
some cases like the FedProx algorithm in the stratified dataset, the loss starts ramping up as the
amount of FL clients increases. FedAvg, FedAdagrad, and FedYogi on the other handmanifest
a decrease in the loss function in the patient-aware dataset as the amount of FL clients increased,
being the last 2 algorithms the ones with the most pronounced decrease. FedAdam is the only
algorithm that exhibits unfavorable convergence curves across both datasets.

A comparison of the baseline FedAvg algorithm against the adaptive strategies (FedAdam,
FedAdagrad, and FedYogi) is presented in the first two panels of Figure 4.16. When analyzing
all the training curves on the same scale, it is evident that FedAvg, FedAdagrad, and FedYogi
have relatively similar convergence behavior in the stratified dataset, but the former two exhibit
different behavior in the patient-aware setting. FedAdam’s loss curve starts diverging (and in-
creasing) after the first rounds of training in both scenarios, while FedAvg appears to be the
most consistent curve with the minimum average loss across datasets.
Polyp segmentation task (CNN).Themean convergence behavior across all client configu-

rations can be found in the third panel in Figure 4.15. FedAvg, FedAdagrad, and FedProxman-
ifest the greatest decreases in training loss, while FedAdam and FedYogi finish training with
higher training loss values which coincides with the unfavorable performance metric results
found in the federated evaluation.

Detailed convergence curves per client configuration are illustrated in Appendix A.4, Figure
A.12. After inspection of the minimum loss values produced by each model, an increasing
trend of training loss can be detected as the amount of FL clients increases across all algorithms.
Overall, models trained with fewer FL clients performed relatively better in terms of training

56



Figure 4.15: Training loss convergence curves for all tasks. The first two panels display the seizure prediction tasks curves
with the stratified and patient‐aware datasets respectively, while the third panel displays the polyp segmentation task curves.
Rows represent each FL strategy employed (with different colors) and training loss is plotted per FL round in each cell. Each
cell has an independent scale based on the loss function values for each configuration.

loss, which translates into better performance when reviewing the test mean dice values shown
in Figure 4.14. Additionally, most of the models exhibited the best validation mean dice score
in the last round of training (which differs from the results in the seizure prediction task).

FedAdam is compared to the adaptive algorithms (FedAdam, FedAdagrad, and FedYogi) in
the third panel of Figure 4.16, for the seizure prediction task. Here, FedAvg and FedAdagrad
produce themodels with the fastest convergence, while FedAdam and FedYogi produce similar
convergence curves with a higher average loss.

57



Figure 4.16: Comparison of training loss convergence curves for all tasks. FedAvg (dark blue) is compared against the adaptive
strategies: FedAdam (orange), FedAdagrad (red), and FedYogi (sky blue). The first two panels display the seizure prediction
tasks curveswith the stratified and patient‐aware datasets respectively, while the third panel displays the polyp segmentation
task curves.

4.1.7 Execution time

Seizure prediction task (FNN). The time that each FL experiment took to run is shown in
Figure 4.17. The values displayed in the graphs represent the duration of the federated learn-
ing process, which includes the instantiation of the FL clients, the I/O operations performed
locally to load the federated datasets, the local training time per client, and the averaging steps
of each federated round. The duration doesn’t include the time that it takes to start up the
federated server. There is a clear increasing trend in execution time as the amount of FL clients
is increased. Finally, all algorithms take approximately the same time to run when averaging
across client configurations, with FedProx being the exception taking a little bit longer.
Polyp segmentation task (CNN).Duration of the federated experiments for the polyp seg-

mentation task is illustrated in Figure 4.18. Similar to the seizure prediction task, there is an
increasing trend in execution time proportional to the number of FL clients. However, there
is a slight dip in execution time when using 4 FL clients. Analogous to the seizure prediction
task the FedProx algorithm takes longer to execute than the other strategies, but the difference
is even more pronounced with this dataset.

58



Figure 4.17: Execution time (seconds) of each of the models per federated strategy and client configuration, for the seizure
prediction task (FNN).

Figure 4.18: Execution time (seconds) of each of the models per federated strategy and client configuration, for the polyp
segmentation task (CNN).

4.1.8 Resources consumption

Centralized setting. The amount of VRAM (MB) used by the models for the seizure predic-
tion task (FNN) and polyp segmentation task (CNN) in the centralized setting is displayed in
Figure 4.19. VRAMwas recorded during each training epoch and averaged to acquire an aggre-
gate ofmemory consumption for eachmodel. The amount ofVRAMconsumedby themodel
is largely dependent on the amount of data that is loaded inmemory at a specific training epoch
which is defined by the minibatch size. The FNNwas fed with a whole batch of data while the
CNN was trained with batches of size 6 for each training epoch. The FNN consumed a total
of 2.57 GB, while the CNN consumed 7.55 GB due to its larger size of parameters and type of
input data (images).
Federated setting. The amount of VRAM (MB) used by the models for the seizure predic-

59



Figure 4.19: Centralized setting average VRAMMemory consumption (MB) per training epoch for the networks used.

tion task (FNN) and polyp segmentation task (CNN) in the federated setting is displayed in
Figure 4.20. Similar to the centralized setting, VRAM usage was monitored per training unit
(FL rounds in this case) and averaged to acquire an aggregate at the level of federated strategy
and amount of FL clients. For the FNN, the amount of VRAM consumed increased propor-
tionally to the amount of clients, due to the exposure to whole batches of data per local client
at the time. For the CNN, the amount of VRAM varies due to the decreasing batch sizes used
on increases to client configuration. Batch sizes were halved per increasing step in the number
of FL clients (mini-batches of 16, 8, 4, and 2 items respectively). The amount of memory used
across federated strategies remained the same, except for FedProx in theCNNmodel, which ex-
hibits a slight increase in memory usage due to the overhead of parameter operations required
to calculate the proximal term. This increase wasn’t present in the FNN due to the smaller
amount of parameters required for this network when compared to CaraNet.

60



Figure 4.20: Federated setting average VRAM Memory consumption (MB) per FL algorithm, client configuration, dataset,
and training round for the networks used.

4.2 Analysis & interpretation

In this section, the results presented in Section 4.1 are discussed and analyzed in terms of the
research questions of this investigation.

How do federated approaches fare against their centralized counterparts? (Q1).
Centralized setting. Themodel trained for the seizure prediction task produced good results for
the stratified-sampling approach (AUROC of 0.7 in the test set), and chance level (AUROC
of 0.53 on the test set) results for the patient-aware splitting strategy. The good results exhib-
ited in the first case are very likely caused due to cross-contamination of correlated patient ex-
amples across evaluation sets. This cross-contamination violates the principle of independent
splits in CV, which causes the model to learn spurious relationships in the data and inflates
evaluation metrics. This rather frequent methodology mistake motivated the study of a sep-
arate dataset with independent patients per split, and the results are less favorable using this
approach. The low performance of the model could be caused due to heterogeneous examples
of seizures across patient splits. Another possible explanation is that features extracted from the

61



EEG signal might not be enough to infer patterns in the data, which might be the reason why
only a few studies perform seizure prediction with calculated features, and more with RNNs
and CNNs using images and raw signals [6]. In any case, both of these results are aligned with
the findings explained in Shafiezadeh et al. [8] when using Leave-One-Patient-Out CV strate-
gies. Both approaches were studied despite their low centralized performance, in an attempt
to understand if FL can provide any performance benefits. The model trained for the polyp
segmentation task achieves good levels of performance (mean dice of 0.75 in the test set) in line
with Lou et al. [9] with the default hyperparameters from the original paper used.

Federated setting. Federated approaches were capable of producing equivalent results to the
centralized experiments in terms of all the evaluation metrics across tasks and datasets as ex-
plained in Subsections 4.1.3 and 4.1.4. In some particular cases, the performance of themodels
even improved like in the patient-aware dataset for the seizure prediction task (from an AU-
ROC of 0.53 to 0.63), and in the polyp segmentation task (from a mean dice score of 0.7
to 0.78). This improvement occurred in specific client configurations (FedAdam with 2 FL
clients, and FedProx with 2 FL clients respectively) which might be a result of favorable data
distributions occurring in each individual client as a product of random partitioning. How-
ever, federating the models also has a regularization effect on the patterns learned in the local
nodeswhichmight also lead tomore favorable evaluationmetrics than the centralized approach
when averaged. This indicates there is an opportunity to improve the performance of central-
ized models trained with heterogeneous datasets by implementing them in a federated setting.

What is the effect that the number of FL clients has on evaluation metrics? (Q2).
An increase in the amount of FL clients results in a proportional increase in execution time
as explained in Subsection 4.1.7. FedProx takes on average more time than the rest of the al-
gorithms due to the overhead of performing matrix operations between the local and global
weights for the local loss regularization term. This is more evident in the CaraNet network
which has a substantially larger amount of parameters than the FNN trained for the seizure pre-
diction task. The sudden decrease in experiment duration foundwith 4 FL clients in the polyp
segmentation task is an interesting result, and it might be caused due to favorable partition-
ing for this configuration and batch size. Whether these increases in experiment duration will
be found in a distributed environment is a matter that needs to be investigated, as concurrent
processes in simulated environments might be affected by context switching and scheduling
from the operative system. Furthermore, Beutel et al. [18] recognized that the Virtual Client
Engine (VCE) component from the Flower framework might cause configurations with few
FL clients to underperform. In their findings, they discovered significant speedups from 35 FL

62



clients onwards, which suggests experiments with more FL clients should be performed.
Besides the downside of execution time, adding more FL clients resulted in a slight decrease

in evaluation performance across tasks in the heterogeneous datasets, in all experiments except
for the stratified EEG dataset. This decrease might be caused due to an insufficient number
of examples being distributed in larger client configurations for the datasets tested. It is well
known that datasets with a big number of examples are required to achieve good results in DL
tasks, so the small number of examples present in each client in larger configurations might
lead to poor training sets that generate suboptimal local solutions in some cases. When av-
eraged, these noisy solutions might decrease the overall evaluation performance of the aggre-
gated model. This effect is not as noticeable in the stratified approach likely due to the cross-
contamination of training examples into the test set. The best models were found in config-
urations with fewer clients across tasks, which implies there is an optimal range of clients to
use for a given data distribution. The amount of FL clients should probably be treated as a
hyperparameter of its own, varying the number of clients involved in the learning process.
Are some FL averaging strategies more robust to non-IID datasets than others? (Q3).

FedAvg performed well on all tasks irrespective of whether the data was IID or non-IID which
makes it a robust choice for both scenarios. FedProx which is originally designed for working
with heterogeneous datasets also produced good results for the non-IID datasets but might
require recalibration of the number of local epochs and FL rounds hyperparameters as valida-
tion loss starts increasing in the early stages of training. FedAdam and FedAdagrad had mixed
results while FedYogi consistently appeared in the lower rankings of evaluation performance.
Do adaptive FL averaging strategies improve the convergence performance of the mod-

els? (Q4).
FedAvg achieved the lowest average levels of training loss across all tasks and dataset configura-
tions, beating even the adaptive algorithms inmost cases. Even though some adaptive strategies
featured similar convergence behavior to FedAvg in some scenarios, there is no evidence that the
use of adaptive algorithms in the configurations tested in this study resulted in improvements
to model convergence. The only conclusion that can be drawn from the experiments is that
the behavior of the convergence curves can vary in a case-by-case scenario, so experimentation
needs to be performed to understand the applicability of these methods to the task at hand.

Adaptive algorithms didn’t produce a benefit in model convergence for the tasks studied
probably due to a combination of a) the relatively small number of client configurations tested
(maximum 16 FL clients), b) the limited number of examples per federated dataset, and c) the
favorable distribution of labels across nodes. Individual client partitions have fewer examples

63



to train on as the amount of FL clients increases, which makes local models more prone to
overfitting when the learning rates are adjusted too aggressively. The benefit of using adaptive
algorithmsmight bemore evident in configurationswith tens or hundreds of FLclients, eachof
which might contain bigger datasets and less similar data distributions than the ones studied.
Even in the non-IID configurations studied the distribution of classes across nodes was rela-
tively balanced, as seen in Subsection 4.1.1, with the patient-aware EEGdataset splits per client
ranging between 14.84% to 28.53% of positive labels, and the polyp dataset splits per client be-
tween 9% to 18%. It is possible adaptive algorithms perform better in FL configurations with
more FL clients, more data, and bigger differences in data distributions.
What is the effect of the choice of hyperparameters on model behavior? (Q5).

FedAvg, despite being the model that requires the least tuning of hyperparameters got consis-
tently good results across all tasks, which is in linewith its usage as the state-of-the-art algorithm
for FL. The FedProx algorithm on the other hand appeared to be relatively robust to the choice
of theµhyperparameter, as evaluationmetrics for different choices ofµwere close to eachother
as illustrated in Appendix A.2, Figures A.4 andA.8. Both of these algorithms seemed relatively
straightforward to tune, the most important parameters to tune are the amount of FL rounds
and the number of local training epochs each FL client does.

For the adaptive algorithms, some combinations of the τ , η, and ηl hyperparameters caused
the CNN to become numerically unstable, which resulted in the network evaluating to NaNs.
In general, the CaraNetmodel required values of τ larger than the ones needed in the FNN for
the seizure prediction task, as is evident by the large empty rectangular regions inAppendixA.2,
Figures A.5, A.6 and A.7. There seems to be a trend toward higher evaluation values in all the
algorithms at higher values of τ , η, and ηl for this model, which suggests increasing the range
of values explored in the hyperparameter grid would be beneficial. However, discrete jumps
on these hyperparameters often caused instabilities which implies a randomized exploration of
value ranges would have had more success in finding the sweet spot values for the strategies.
TheCaraNet network was particularly sensitive to these hyperparameters to find the best mod-
els, probably due to a combination of model complexity and the relatively small number of
examples used to train the model. The choice of these parameters in the more parsimonious
FNNwasn’t as important as seen inAppendixA.2, Figures A.1, A.2 andA.3. The choice of pa-
rameters for the seizure prediction task didn’t generate numerical instabilities, and evaluation
metrics were relatively close to each other across hyperparameter choices. The takeaway from
this analysis is that networks withmore parameters and trainedwith less data requiremore care
and effort to tune.

64



5
Conclusions & recommendations

In this work, seizure prediction on EEG signals and polyp segmentation on colorectal images
were studied in an effort to gain a deeper understanding of the applicability of FL in healthcare.
Through a series of experiments, both tasks were studied in a federated setting and compared
against traditional centralized learning approaches. A series of IID and non-IID datasets were
considered, and the application of state-of-the-art federated strategies was analyzed to under-
stand their benefits in terms of convergence, adaptivity, and robustness to heterogeneous data.
The effect of hyperparameter choice, FL client size, and other configurationswere also reviewed
and presented in this work. Overall, FL proved to be an effective alternative to CL in the afore-
mentioned tasks, providing similar or even better results than CL inmost scenarios. The main
conclusions of this work and identified research directions are presented below:

• Model performance & interpretation. FLmodels achieved comparable, and even bet-
ter results than the centralized models in this work for the medical tasks studied. This
suggests that even models that might initially perform poorly in the centralized setting
can be improved by simply federating them, leveraging a combination of favorable fed-
erated partitioning and regularization side effects. Further investigations are required to
assess the degree of improvement that can be achieved inMLmodels through these side
effects of FL. However, due to the private nature of data in real FL, it might be difficult
for researchers to understand the underlying distributions of the data and their effect
on local model performance. Developing new techniques that allow researchers to delve
deeper into these distributions while preserving the privacy of the data is important for
the development of the field.

65



• Hyperparameter optimization. As demonstrated in this study, hyperparameter choice
has a significant impact on model performance and stability, especially on complex net-
works that use a larger amountofparameters. Hyperparameter optimization in the feder-
ated setting imposes challenges that might not exist in a centralized setting, like a heavier
consumptionof computational resources, communication costs, understanding of local
node behavior, experiment duration, and the energy expenditure of clients in configura-
tions with edge devices. All these challengesmight deter FL parties fromparticipating in
the tuning process, so better strategies to explore hyperparameter grids in less time while
ensuring the statistical significance of the results (through methods like federated CV)
are of vital importance to the adoption of FL.

• Federated strategies. FedAvg proved to be a robust federated strategy that produces
good results most of the time, even when facing heterogeneous datasets, which explains
why it is usually depicted as the state-of-the-art algorithm for FL. In the results found
in this research both adaptive strategies (FedAdam, FedAdagrad, FedYogi) and strategies
designed to deal with heterogeneous data (FedProx) produced only marginal improve-
ments in all the areas, and in some cases even performedworse than the FedAvg standard.
The benefits of using these strategies might be more evident when using full-scale fed-
erated systems, which suggests further investigations are needed with a more significant
number of FL clients and bigger and more diverse datasets.

• FL in healthcare. Overall, despite all the challenges, FL has proven to be a feasible al-
ternative to leverage the benefits of ML in data silos. FL allows researchers to train ML
models on data that would be otherwise inaccessible, which is increasingly valuable in
fields like medicine where publicly available datasets are scarce. Furthermore, FL can
motivate the study of rare diseases by naturally augmenting the number of available ex-
amples by simply recruiting the parties that hold such data. Further developments need
to be performed in the area of incentives, to motivate data owners to contribute to the
development of better andmore robustMLmodels that improve the quality of life and
survivability rates of patients.

66



A
Supplementary information

A.1 Hyperparameter grids

• Seizure prediction task (FNN)

– FedAdam:

* τ : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

* η : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

* ηl : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

– FedAdagrad:

* τ : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

* η : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

* ηl : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

– FedYogi:

* τ : [10e− 5, 10e− 3, 10e− 1, 10e− 0]

* η : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

* ηl : [10e− 3, 10e− 2, 10e− 1, 10e− 0]

– FedProx:

67



* µ : [10e− 4, 10e− 3, 10e− 2, 10e− 1, 10e− 0]

• Polyp segmentation task (CNN)

– FedAdam:

* τ : [10e− 2, 10e− 1, 10e− 0, 15e− 0]

* η : [10e− 2, 10e− 1, 3e− 0, 5e− 0, 10e− 0]

* ηl : [10e− 2, 10e− 1, 10e− 0]

– FedAdagrad:

* τ : [10e− 2, 10e− 1, 10e− 0]

* η : [10e− 2, 10e− 1, 10e− 0, 12e− 0, 15e− 0]

* ηl : [10e− 2, 10e− 1, 10e− 0]

– FedYogi:

* τ : [10e− 2, 10e− 1, 10e− 0, 15e− 0]

* η : [10e− 2, 10e− 1, 3e− 0, 5e− 0, 10e− 0]

* ηl : [10e− 2, 10e− 1, 10e− 0]

– FedProx:

* µ : [10e− 4, 10e− 3, 10e− 2, 10e− 1, 10e− 0]

68



A.2 Hyperparameter tuning results

Figure A.1: Hyperparameter grid results for FedAdam in the seizure prediction task (FNN). Evaluation loss over the last 125
rounds was averaged to acquire the values for each cell across a combination of τ , η, and ηl combinations. Each combination
was explored against a stratified and a patient‐aware data sampling strategy. Minimum evaluation loss across configurations
is marked with an (x).

69



Figure A.2: Hyperparameter grid results for FedAdagrad in the seizure prediction task (FNN). Evaluation loss over the last 125
rounds was averaged to acquire the values for each cell across a combination of τ , η, and ηl combinations. Each combination
was explored against a stratified and a patient‐aware data sampling strategy. Minimum evaluation loss across configurations
is marked with an (x).

70



Figure A.3: Hyperparameter grid results for FedYogi in the seizure prediction task (FNN). Evaluation loss over the last 125
rounds was averaged to acquire the values for each cell across a combination of τ , η, and ηl combinations. Each combination
was explored against a stratified and a patient‐aware data sampling strategy. Minimum evaluation loss across configurations
is marked with an (x).

71



Figure A.4: Hyperparameter grid results for FedProx in the seizure prediction task (FNN). Evaluation loss over the last 125
epochs was averaged to acquire the values for each cellµ choice. Each choice was explored against a stratified and a patient‐
aware data sampling strategy. Minimum evaluation loss across configurations is marked with an (x).

Figure A.5: Hyperparameter grid results for FedAdam in the polyp segmentation task (CNN). Evaluation loss over the last
3 rounds was averaged to acquire the values for each cell across a combination of τ , η, and ηl combinations. Maximum
evaluation mean dice coefficient across configurations is marked with an (x).

72



Figure A.6: Hyperparameter grid results for FedAdagrad in the polyp segmentation task (CNN). Evaluation loss over the last
3 rounds was averaged to acquire the values for each cell across a combination of τ , η, and ηl combinations. Maximum
evaluation mean dice coefficient across configurations is marked with an (x).

73



Figure A.7: Hyperparameter grid results for FedYogi in the polyp segmentation task (CNN). Evaluation loss over the last
3 rounds was averaged to acquire the values for each cell across a combination of τ , η, and ηl combinations. Maximum
evaluation mean dice coefficient across configurations is marked with an (x).

Figure A.8: Hyperparameter grid results for FedProx in the polyp segmentation task (FNN). Evaluation loss over the last
3 rounds was averaged to acquire the values for each cell µ choice. Maximum evaluation mean dice coefficient across
configurations is marked with an (x).

74



A.3 Federated results

Figure A.9: Results of the federated models on the polyp segmentation task (CNN). All combinations of FL strategies and
client configurations are displayed in this table. Test metrics are accompanied by the training and validation metrics encoun‐
tered in the FL round that maximized the validation mean dice metric (Round best model column). Dice values for models
with instabilities are filled in with 0’s (FedYogi with 2 and 4 clients)

75



Figure A.10: Results of the federated models on the seizure prediction task (FNN). All combinations of FL strategies, client
configurations, and datasets are displayed in this table. Test metrics are accompanied by the training and validation metrics
encountered in the FL round that minimized validation loss (Round best model column).

76



Figure A.11: Training loss convergence curves for the federated seizure prediction task (FNN). The left panel contains results
for the stratified sampling dataset, while the right panel contains results for the patient‐aware dataset. Rows represent each
FL strategy employed (with different colors), and columns are divided by the number of FL clients. Each cell represents a
model trainedwith a specific FL strategy, FL client configuration, and dataset. Training loss is plotted per FL round in each cell,
and the best round (the one that minimizes evaluation loss) is highlighted using a dotted line. Every cell has an independent
scale based on the configuration loss values.

77



Figure A.12: Training loss convergence curves for the federated polyp segmentation task (CNN). Rows represent each FL
strategy employed (with different colors), and columns are divided by the number of FL clients. Each cell represents a model
trained with a specific FL strategy, FL client configuration, and dataset. Training loss is plotted per FL round in each cell, and
the best round (the one that minimizes evaluation loss) is highlighted using a dotted line. Every cell has an independent scale
based on the configuration loss values.

A.4 Software settings

Figure A.13: Conda Environment: List of the main Python packages used and their versions.

78



A.5 EEG Extracted features

Figure A.14: List of the APIs (Python MNE package, version 3.8.5) used to extract the signal features from the EEG dataset
by Shafiezadeh et al. [8].

79



80



References

[1] N. Rieke, J. Hancox, W. Li, F. Milletarì, H. R. Roth, S. Albarqouni, S. Bakas, M. N.
Galtier, B. A. Landman, K. Maier-Hein, S. Ourselin, M. Sheller, R. M. Summers,
A. Trask, D. Xu, M. Baust, andM. J. Cardoso, “The future of digital health with feder-
ated learning,” npj DigitalMedicine, vol. 3, no. 1, p. 119, 2020.

[2] D. C.Nguyen, Q.-V. Pham, P.N. Pathirana,M.Ding, A. Seneviratne, Z. Lin, O.Dobre,
and W.-J. Hwang, “Federated learning for smart healthcare: A survey,” ACMComput.
Surv., vol. 55, no. 3, feb 2022. [Online]. Available: https://doi.org/10.1145/3501296

[3] B.McMahan, E.Moore,D.Ramage, S.Hampson, andB.A. y.Arcas, “Communication-
Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54. PMLR, 20–22
Apr 2017, pp. 1273–1282. [Online]. Available: https://proceedings.mlr.press/v54/
mcmahan17a.html

[4] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar,
and H. B. McMahan, “Adaptive federated optimization,” CoRR, vol. abs/2003.00295,
2020. [Online]. Available: https://arxiv.org/abs/2003.00295

[5] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “On
the convergence of federated optimization in heterogeneous networks,” CoRR, vol.
abs/1812.06127, 2018. [Online]. Available: http://arxiv.org/abs/1812.06127

[6] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram
(eeg) classification tasks: a review,” Journal of Neural Engineering, vol. 16, no. 3,
p. 031001, apr 2019. [Online]. Available: https://dx.doi.org/10.1088/1741-2552/
ab0ab5

[7] L. F. Sánchez-Peralta, L. Bote-Curiel, A. Picón, F. M. Sánchez-Margallo, and J. B.
Pagador, “Deep learning to find colorectal polyps in colonoscopy: A systematic litera-

81

https://doi.org/10.1145/3501296
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/2003.00295
http://arxiv.org/abs/1812.06127
https://dx.doi.org/10.1088/1741-2552/ab0ab5
https://dx.doi.org/10.1088/1741-2552/ab0ab5


ture review,” Artificial Intelligence in Medicine, vol. 108, p. 101923, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0933365719307493

[8] S. Shafiezadeh, G. M. Duma, G. Mento, A. Danieli, L. Antoniazzi, F. Del
Popolo Cristaldi, P. Bonanni, and A. Testolin, “Methodological issues in evaluatingma-
chine learning models for eeg seizure prediction: Good cross-validation accuracy does
not guarantee generalization to new patients,” Applied Sciences, vol. 13, no. 7, 2023.

[9] A. Lou, S. Guan, H. Ko, and M. Loew, “Caranet: Context axial reverse attention net-
work for segmentation of small medical objects,” 2022.

[10] Q. Li, W. Z. Wen, Zeyi and, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on
federated learning systems: Vision, hype and reality for data privacy and protection,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3347–3366,
2021.

[11] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and
H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” in MultiMedia Model-
ing, Y. M. Ro, W.-H. Cheng, J. Kim, W.-T. Chu, P. Cui, J.-W. Choi, M.-C. Hu, and
W. De Neve, Eds. Cham: Springer International Publishing, 2020, pp. 451–462.

[12] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh, “Federated learning
review: Fundamentals, enabling technologies, and future applications,” Information
Processing andManagement, vol. 59, no. 6, p. 103061, 2022.

[13] A.Rauniyar, D.H.Hagos, D. Jha, J. E.Håkegård, U. Bagci, D. B.Rawat, andV.Vlassov,
“Federated learning for medical applications: A taxonomy, current trends, challenges,
and future research directions,” 2022.

[14] F. AI, “Fate,” Federated AI, 2023. [Online]. Available: https://github.com/
FederatedAI/FATE

[15] TensorFlow, “Tensorflow federated,” TensorFlow, 2023. [Online]. Available: https:
//www.tensorflow.org/federated

[16] OpenMined, “Pysyft,” OpenMined, 2023. [Online]. Available: https://github.com/
OpenMined/PySyft

82

https://www.sciencedirect.com/science/article/pii/S0933365719307493
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft


[17] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh,
H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. An-
navaram, and S. Avestimehr, “Fedml: A research library and benchmark for federated
machine learning,” 2020.

[18] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
K. Hei Li, T. Parcollet, P. Porto Buarque de Gusmão, and N. D. Lane, “Flower: A
friendly federated learning research framework,” 2022.

[19] H. R. Roth, Y. Cheng, Y. Wen, I. Yang, Z. Xu, Y.-T. Hsieh, K. Kersten, A. Harouni,
C. Zhao, K. Lu, Z. Zhang,W. Li, A.Myronenko,D. Yang, S. Yang,N.Rieke, A.Quraini,
C. Chen, D. Xu, N. Ma, P. Dogra, M. Flores, and A. Feng, “Nvidia flare: Federated
learning from simulation to real-world,” 2023.

[20] P. Foley, M. J. Sheller, B. Edwards, S. Pati, W. Riviera, M. Sharma, P. N. Moorthy,
S. hanWang, J. Martin, P. Mirhaji, P. Shah, and S. Bakas, “OpenFL: the open federated
learning library,” Physics in Medicine &amp Biology, vol. 67, no. 21, p. 214001, oct
2022. [Online]. Available: https://doi.org/10.1088%2F1361-6560%2Fac97d9

[21] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, Y. Ong,
J. Radhakrishnan, A. Verma, M. Sinn, M. Purcell, A. Rawat, T. Minh, N. Holo-
han, S. Chakraborty, S. Whitherspoon, D. Steuer, L. Wynter, H. Hassan, S. Laguna,
M. Yurochkin, M. Agarwal, E. Chuba, and A. Abay, “Ibm federated learning: an enter-
prise framework white paper v0.1,” 2020.

[22] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van
der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical
image analysis,”Medical Image Analysis, vol. 42, pp. 60–88, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1361841517301135

[23] K. ELKarazle, V. Raman, P. Then, and C. Chua, “Detection of colorectal polyps from
colonoscopy usingmachine learning: A survey onmodern techniques,” Sensors, vol. 23,
no. 3, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/3/1225

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEEConference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

83

https://doi.org/10.1088%2F1361-6560%2Fac97d9
https://www.sciencedirect.com/science/article/pii/S1361841517301135
https://www.mdpi.com/1424-8220/23/3/1225


84



Acknowledgments

My sincerest thanks to my supervisors, Prof. Alessandro Sperduti and Prof. Alberto Testolin
from the Department of Mathematics at the University of Padova, for their valuable guidance
in this academic endeavor, and for facilitating the cloud infrastructure and tools required to
perform this study. Last but not least, my heartfelt gratitude to the Erasmus Mundus BDMA
program staff for granting me the honor of participating in this life-changing international
master’s program.

85


	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background & motivation
	Research questions
	Research objectives
	Justification & impact

	Background work & literature review
	Federated learning
	Taxonomy
	Federated averaging strategies for model updates
	FL systems review
	Applications in the medical domain
	Limitations
	Future work & research directions 

	Machine learning techniques
	Medical case studies & FL
	EEG seizure detection/prediction
	Polyp segmentation


	Methodology & experiment design
	Datasets & data preparation
	EEG signals dataset
	Polyp segmentation dataset
	Dataset partitioning summary

	Hardware & software characteristics
	Hyperparameter tuning
	Centralized setting
	Federated setting

	Model architectures
	Evaluation metrics
	Federated setup & experiment design

	Experimental results & discussion
	Experimental results
	Exploratory data analysis (EDA)
	Hyperparameter tuning
	Centralized model evaluation
	Federated model evaluation
	Effect of FL client size
	Federated model convergence
	Execution time
	Resources consumption

	Analysis & interpretation

	Conclusions & recommendations
	Appendix Supplementary information
	Hyperparameter grids
	Hyperparameter tuning results
	Federated results
	Software settings
	EEG Extracted features

	References
	Acknowledgments

