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Abstract

Many verification tasks, such as model checking of various kinds of specification logics,
can be expressed via a system of (mixed) fixpoint equations over complete lattices. Recent
contributions showed that the solution of systems of fixpoint equations have a game-
theoretical characterisation in terms of a parity game. We call this type of parity game,
built on top of a system of fixpoint equations, the powerset game.

This game representation allows us to develop a local algorithm: we are particularly
interested in finding the winner of the game from a specific position of the game graph (for
example, for model checking, whether a state satisfies a formula). A naive implementation
of the local algorithm could lead to the exploration of a uselessly large part of the game
graph. We can reduce the number of moves, consequently shortening game play, thanks
to the notion of selection, which intuitively selects a subset of best moves amongst all the
possible moves.

The main contribution of this thesis is an algorithmic overview of the powerset game,
and a tool written in the language Rust. This tool is able to check whether a player
has a winning strategy in the powerset game from a specific position, which formally
corresponds to checking whether a lattice element is included in the solution of the system
of fixpoint equations. It is our concern to ensure that the tool interoperates with the like
of mCRL2 [12] and Oink [6]: this allows us to access a wide pool of examples as well as
to compare our tool with the state of the art.
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1
Introduction

Systems of fixpoint equations over complete lattices with mixed least and greatest fixpoints
are ubiquitous in formal analysis and verification. Notable examples come from the area
of model checking, where we can express liveness/reachability properties as least fixpoints
and safety/invariant properties as greatest fixpoints. A type of logic for model checking
that we will use in this thesis is the µ-calculus [14]. Behavioural equivalence is another
field where fixpoint equations appear. For example, bisimilarity can be characterised as
a greatest fixpoint of a suitable operator over the lattice of binary relations on the set
of states. Other prominent examples come from the area of static analysis, and more
specifically from program analysis [19] and abstract interpretation [4]. In these instances,
the control flow graph of a program is used to generate a set of constraints specifying how
the information of interest, at the different program points, is interrelated. The constraints
can then be viewed as a system of fixpoint equations, with least or greatest fixpoints. In
almost all of these applications, the functions involved are monotone, and the domain of
interest is a complete lattice. In this setting the existence of least and greatest fixpoints is
guaranteed by the Knaster-Tarski’s fixpoint theorem [21]. A theoretical game is devised
in [3] in order to characterise solutions of systems of fixpoint equations over continuous
lattices, in terms of a parity game, between the existential player and the universal player.
This type of game is called the fixpoint game. This game characterisation opens the way
to the development of both global and local algorithms for solving systems of fixpoint
equations.

The global algorithm described in [3], uses the notion of progress measures, first introduced
in [13], adapted to the setting of fixpoint games. Progress measures are a tool originally
devised for solving parity games and, intuitively, they are witnesses of the existence of
a winning strategy for the existential player of a parity game. More formally, in the
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setting of a fixpoint game played on a system of fixpoint equations E, over a continuous
lattice L, the existence of a progress measure from a position of the existential player
intuitively means that the lattice element represented by such position is below E’s
solution. Moreover, [3] introduces the notion of selection, a way to restrict the existential
player moves. These selections can then be conveniently represented by a symbolic formula,
exploiting a characteristic of the set of moves of the existential player, in the line of [5].
Mazzocchin, in [16], developed a tool, called PMModelchecker [15], that computes global
solutions of systems of fixpoint equations, using the theory mentioned above.

We can further generalize the definition of fixpoint game, in order to be able to characterise
solutions of system of fixpoint equations over complete lattices. This type of game is shown
in [2], and it is called a powerset game. Moreover, a local algorithm for a powerset game is
shown in [2], that is, we check whether the existential player wins from a specific position
of the game graph. For instance, in the case of the µ-calculus, rather than computing
the set of states satisfying some formula φ, one could be interested in checking whether a
specific state satisfies or not φ. Similarly, in the case of behavioural equivalences, rather
than computing the full behavioural relation, one could be interested in determining
whether two specific states are equivalent.

Our main contribution is a refinement of the local algorithm in [17], which in turn improves
the proposal by [2]. This algorithm, given a system of fixpoint equations E over a complete
lattice and the corresponding set of symbolic ∃-moves, is able to verify whether a lattice
element is below the solution of E, with respect to some ordering. The local algorithm
is based on an algorithm for model checking the µ-calculus, by [20]. Moreover, we no
longer need the notion of progress measures that was previously used in [17] to show that
the powerset game, restricted to a selection of the moves of the existential player, is still
sound and complete.

We also contribute with a proof of concept, a tool called LCSFE (Local Checker for Systems
of Fixpoint Equations), which we use to show applications of the theory we present. In
particular we show how our framework behaves in the settings of parity games and of the
µ-calculus. We designed the tool with performance in mind, even if we do not aim to
compete with the state of the art in the respective fields (e.g. PGSolver, mCRL2).

The rest of this thesis is organized as follows:

Chapter 2 Contains the theoretical background needed to understand Chapter 3. We
also introduce the µ-calculus and parity games, which will be the source of examples
for the tool we have developed.

Chapter 3 Here we introduce the powerset game and a way to speed up the computation
of the winner of the game. This chapter uses contributions by [2]: namely selections
and symbolic ∃-moves, and a proof that the powerset game with moves restricted to
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a selection is still sound and complete.

Chapter 4 We describe a local algorithm for computing the winner of the powerset game
from a given position, with some details of implementation choices.

Chapter 5 We describe the tool we have created, LCSFE, as well as some implementation
choices and issues we have encountered during development.

Chapter 6 We summarise the main contributions of this thesis and what could follow.
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2
Theoretical background

In this chapter, we introduce the main theoretical tools we use throughout the whole
thesis. We will focus on lattices, the computation of fixpoints and on tuples and their
ordering. We also provide a brief overview on parity games.

2.1 Lattices and partial orders

Lattices are the main building block of this thesis: in particular, the domain and codomain
of all the functions in a system of fixpoint equations is a (complete) lattice.

Definition 1 (preorder, poset). A partial order is relation on a set D, such that for each
x, y, z ∈ D, it holds that:

• if x ⊑ y and y ⊑ x then x = y (Antisymmetry),
• x ⊑ x (Reflexivity),
• if x ⊑ y and y ⊑ z, then x ⊑ z (Transitivity).

If we drop the antisymmetry requirement we obtain a relation called preorder. A set D
endowed with a preorder or partial order relation is usually denoted with (D,⊑); we call
this type of structure preordered set and partially ordered set (or poset), respectively. From
now on all sets will be paired with some kind of order relation, thus from now on we use
D instead of (D,⊑).

We say that x ∈ D is the least (respectively greatest) element of D if for all y ∈ D, x ⊑ y
(respectively, y ⊑ x). If such x exists, it is unique.

Definition 2 (meet and join). Given a subset X ∈ D, d ∈ D is a least upper bound, or
join of X if it is the smallest upper bound of X (that is to say, the smallest d ∈ D such
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that for all x ∈ X, we have x ⊑ d). We denote such element ⨆︁
X. The greatest of the

lower bounds of X,
d
X, is the greatest lower bound or meet.

Definition 3 (lattice, complete lattice). A lattice is a non-empty poset in which every
pair of elements has a join and a meet. The greatest and least element of a lattice L (if
they exist) are denoted with ⊤L and ⊥L, respectively. A complete lattice is a lattice (L,⊑),
such that each Y ⊑ L has a join ⨆︁

Y . A complete lattice L always has a least and greatest
element, and they are ⊥L = ⨆︁ ∅ and as ⊤L =

d
∅, respectively.

Lemma 1 (finite lattice is a complete lattice). Let L be lattice with a finite number of
elements, then L is a complete lattice.

In this thesis we are going to devise a theory over complete lattices, and later, we are
going to restrict ourselves to finite lattices. We are able to use the theoretical framework
we are going to introduce thanks to the lemma above.

The next definition is a type of complete lattice, and we are going to use it extensively in
the theoretical framework we introduce later.

Definition 4 (powerset). Given a poset X, its powerset, denoted 2X is the set of all
possible subsets of X.

Definition 5 (basis). Given a lattice L, a basis is a subset BL ⊆ L, such that for all
l ∈ L, l = ⨆︁{ b ∈ BL | b ⊑ l }.

The intuition is that a basis BL contains a set of elements that enables all elements of L
to be built, by means of the join operator.

Example 1 (basis of powerset). Given a poset X, a basis of the powerset 2X , is the set
of singletons B2X = { {x } | x ∈ X }.

Definition 6 (upward-closure, upward-closed set). Given a lattice L and l ∈ L, we define
the upward-closure of l as: ↑ l = { l′ ∈ L | l ⊑ l′ }. Given a poset X and a subset U ⊑ X,
U is an upward-closed set if, for all x, y ∈ X, such that x ∈ U and x ⊑ y, it is the case
that y ∈ U .

Definition 7 (monotone function on a poset). Given a poset D and a function f : D → D,
f is monotone if for all x, y ∈ D such that x ⊑ y, then f(x) ⊑ f(y).

We are interested in the fixpoints of a monotone function over a complete lattice, that
is, given a complete lattice L and a monotone function f : L → L, all x ∈ L such that
f(x) = x. More in detail, we want to find either the join or meet of the set of fixpoints,
{x | f(x) = x }.

A useful and well-known result is that in the setting of a monotone function over a
complete lattice there always exist both a least and greatest fixpoint, we formalize this in
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the following definition.

Definition 8 (monotone function on complete lattice, least and greatest fixpoints). Given
a complete lattice L, let f : L→ L be a monotonic function. The least fixpoint of f , µf , is
the smallest element of the set of fixpoints of f , while the greatest fixpoint, νf , is defined
dually. Thanks to the Knaster-Tarski theorem [21], we know that any monotone function
f on a complete lattice has a least and a greatest fixpoint, and they can be defined as,
respectively:

• µf =
d
{ l | f(l) ⊑ l }, that is to say, the meet of all pre-fixpoints,

• νf = ⨆︁{ l | l ⊑ f(l) }, the join of all post-fixpoints.

We also have a tool to compute least and greatest fixpoint, which is the Kleene’s iteration
[4].

Given a complete lattice L, define its height λL as the supremum of the length of any
strictly ascending, possibly transfinite, chain. Then we have the following result.

Theorem 1 (Kleene’s iteration). Let L be a complete lattice and let f : L → L be a
monotone function. Consider the (transfinite) ascending chain (fβ(⊥))β, where β ranges
over the ordinals, defined by f 0(⊥) = ⊥, fα+1(⊥) = f(fα(⊥)) for any ordinal α and
fα(⊥) = ⨆︁

β≤α f
β(⊥) for any limit ordinal α. Then µf = fγ(⊥) for some ordinal γ ≤ λL.

The greatest fixpoint νf can be characterised dually, via the (transfinite) descending chain
(fα(⊤))α.

In order properly to understand this definition above we would need the notion of ordinal,
and (transfinite) chain, which is outside the purpose of this thesis, since we are only
concerned about finite-height complete lattices. The notion that we discern from this
definition is that, given a monotone function f over a finite-height complete lattice L, we
have the guarantee that by applying f iteratively, we will, eventually, reach the least or
greatest fixpoint.

2.2 Tuples

Given a set A, an n-tuple belonging to set An will be denoted by a boldface small letter a.
We introduce the following notation: let n ∈ N, then n = { 1, . . . n }. Whenever we want
to refer to the i-th element of a tuple A ∈ An, we write ai, with i ∈ n. Given an n-tuple
a ∈ An, i, j ∈ n with i ≤ j, we write ai,j for the tuple (ai, ai+1, . . . , aj) ∈ Aj−i+1. The
empty tuple is denoted by (). Given two tuples a ∈ Am and a′ ∈ An we denote by aa′

their concatenation in Am+n. We also allow concatenation between tuples and elements
of a set: for example, aaa′ ∈ Am+n+1 is the concatenation between a ∈ Am, a ∈ A and
a′ ∈ An.
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Definition 9 (pointwise order). Given a poset L, (Ln,⊑) is the set of n-tuples endowed
with the pointwise order defined, for l, l′ ∈ Ln, by l ⊑ l′ if li ⊑ l′i for all i ∈ n.

2.3 Systems of fixpoint equations

Definition 10 (system of fixpoint equations). A system of fixpoint equations E over
complete lattice L is a list of m equations of the form:

⎧⎪⎪⎨⎪⎪⎩
x1 =η1 f1(x1, ..., xm)
. . .

xm =ηm fm(x1, ..., xm).

The empty system is E = ∅.

For all i ∈ m, fi : Lm → L are monotone functions, and ηi ∈ {µ, ν }, where ν is the
greatest fixpoint, and µ is the least fixpoint.

We can describe a system of fixpoint equations E also using a tuple-like notation: x =η

f(x), where:

• x = (x1, . . . , xm);
• f = (f1, . . . , fm), which can also be seen as a function of type f : Lm → Lm;
• in =η, η is the tuple (η1, . . . , ηm).

Since each fi is a monotone function, f is therefore monotone over (Lm,⊑). This allows
us to characterise the solution of E as a fixpoint of the function f : Lm → Lm: the input
of type Lm is the input of each function fi, (x1, . . . , xm), the output is a tuple x ∈ Lm.

Definition 11 (substitution for systems of fixpoint equations). Let E be a system of m
fixpoint equations over a complete lattice L, i ∈ m and l ∈ L: E[xi := l] is the system of
m− 1 equations obtained from E by removing the i-th equation and setting xi = l in all
equations.

Definition 12 (computation of the solution for systems of fixpoint equations). The
solution of E, denoted as s = sol(E), s ∈ Lm is defined inductively as:

sol(∅) = ()
sol(E) = (sol(E[xm := sm]), sm),

where sm = ηm(λx.fm(sol(E[xm := x]), x)), and () is an empty tuple.
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We stress that the solution of a system of fixpoint equations is a tuple, thus: sol(E[xm :=
sm]) ∈ Lm−1, (sol(E[xm := sm]), sm) ∈ Lm, and soli(E) is the i-th component of the
solution.

We recall a couple of examples from [16], in which we see the procedure we can devise
from the definition above, as well as the fact that changing the order of the equations of
the system, may lead to different solutions.

Example 2 (solving a system of fixpoint equations). We will now consider a system of
fixpoint equations of size m = 2, and we will compute its solution. Consider the following
system of equations E on a powerset lattice 2A, where set A is left unspecified:

E =
⎧⎨⎩x1 =µ x1 ∩ x2

x2 =ν x1 ∪ x2.

Let f1(x1, x2) = x1 ∩ x2, and f2(x1, x2) = x1 ∪ x2. First, we create the call stack, until we
reach a base case:

1. sol(E) = (sol(E[x2 := s2]), s2), with s2 = ν(λx.f2(sol(E[x2 := x]), x)), let us define
E ′ = E[x2 := x];

2. sol(E ′) = (sol(E ′[x1 := s1]), s1), with s1 = µ(λx.f1(sol(E ′[x1 := x]), x, x))

3. sol(E ′[x1 := s1]) = () and sol(E ′[x1 := x]) = ().

Going backwards we obtain that s1 = µ(λx.x ∪ x) = A, thus sol(E ′) = ((), A) = (A).
By substituting what we obtained in expression ν(λx.f2(sol(E[x2 := x]), x)), we have
s2 = ν(λx.A ∩ x) = A. Finally, sol(E) = (sol(E[x2 := A]), A), and since sol(E[x2 := A])
is a system with only one equation, we solve it the usual way. The result is sol(E) = (∅, A),
since we want the least x1.

Example 3 (order of the equations matters). We define a system of fixpoint equations,
on the usual powerset 2A, and we use it to show that the order of the equations matters,
in the sense that it may change the solution.

⎧⎨⎩x1 =µ x1 ∩ x2

x2 =ν x1 ∪ x2.

In the previous example we computed the following solution, where x1 = ∅, and x2 = A.
We can see that if we switch the order of the equations, the solution does not change, in
fact x2 =µ ∅ ∪ x2 amounts to x2 = A. With a slightly different system of equations, we
obtain different results. Consider the following system:
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⎧⎨⎩x1 =µ x1 ∪ x2

x2 =ν x1 ∩ x2.

The solution of this system is the following: x1 = ∅, and x2 = ∅. By switching the
equations we obtain a different result: by executing the usual recursive algorithm we first
get x2 = ν(λx.x ∩ x) = A, and by substitution, x1 = A.

2.4 A brief introduction to µ-calculus

The µ-calculus was conceived by Dana Scott and Jaco de Bakker, it was further developed
and improved by Dexter Kozen [14] into its more popular modern version. Nowadays, it
is mainly used in the description of transition systems’ properties and for the verification
of such properties.

First let us define the PV ar set of propositional variables, ranged over by x, y, z and Prop
of propositional symbols, ranged over by p, q, r. Whenever we exhaust the variables, we
use indices, for example: x1 ∈ PV ar, p1 ∈ Prop. We define the syntax as follows:

φ ::= t | f | p | x | φ ∧ φ | φ ∨ φ | □φ | ♢φ | ηx.φ

where p ∈ Prop, x ∈ PV ar and η ∈ {µ, ν }. Formulas of the kind ηx.φ are called fixpoint
formulas.

The semantics of a formula is given with respect to an unlabelled transitions system (S,→)
where S is the set of states and →⊆ S× S is the transition relation. Given a formula φ
and an environment ρ : Prop⋃︁

PV ar → 2S mapping each proposition or propositional
variable to the set of states where it holds, we denote by JφKρ ∈ 2S the semantics of φ
defined as usual:
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JtKρ = S
JfKρ = ∅
JpKρ = ρ(p)

Jx ∥ρ = ρ(x)
Jφ1 ∧ φ2Kρ = Jφ1Kρ ∩ Jφ2Kρ

Jφ1 ∨ φ2Kρ = Jφ1Kρ ∪ Jφ2Kρ

J□φKρ = { s ∈ S | ∀t ∈ S, s→ t =⇒ t ∈ JφKρ }
J♢φKρ = { s ∈ S | ∃t ∈ S, s→ t ∧ t ∈ JφKρ }

Jνx.φKρ =
⋃︂
{S ⊆ S | S ⊆ JφKρ[x:=S] }

Jµx.φKρ =
⋂︂
{S ⊆ S | JφKρ[x:=S] ⊆ S }.

Operators □ and ♢ represent the fact that, for all, and respectively some, one step
evolutions of a system from a state s ∈ S, φ is satisfied. Fixpoint operators µ and ν
contribute to the expressiveness of the µ-calculus by allowing us to express, respectively,
that “something good eventually happens” and “nothing bad ever happens”, that is,
liveness and safety properties. We list some examples of liveness properties:

• µX.φ ∨ ♢X, that is, there is an evolution of the system where eventually φ is true;

• a property which expresses the fact that we will eventually satisfy φ for all possible
evolutions of the system, Even(φ) = µX.(φ ∨ (□X ∧ ♢t));

• the until operator, which expresses the fact that given two properties φ, ψ, φ is
true until, eventually, ψ becomes true. We use the following notation: φU ψ =
µX.ψ ∨ (φ ∧□X ∧ ♢t).

In the following we show examples of safety properties.

• We want to verify whether φ is true for all states of the system: νX.φ ∧□X.

• We want to verify whether there is a finite or infinite evolution of the system, where
φ is always satisfied: Safe(φ) = νX.φ ∧ (♢X ∨□f).

• we want to express the property of a system being deadlock free, that is, the system
can always make a transition. We define this property as φ = νX.♢tt ∧□X.

A generic formula ηx.φ can be translated to a fixpoint equation, which, we show through
an example.

Example 4 (µ-calculus formula to system of fixpoint equations). Let φ be the following
formula:
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φ = νx2.((µx1.(p ∨ ♢x1)) ∧□x2)

requiring that from all reachable states there exists a path that eventually reaches a state
where p holds. The same formula can be conveniently represented via a system of fixpoint
equations:

⎧⎨⎩x1 =µ p ∨ ♢x1

x2 =ν x1 ∧□x2.

2.4.1 µ-calculus on labelled transition systems

We also give the syntax and semantics of the µ-calculus over a labelled transition system.
Let as define the sets of propositional variables PV ar, propositional symbols Prop, and a
set of labels, or actions, Act, ranged over by a. The syntax is the following:

φ ::= t | f | p | x | φ ∧ φ | φ ∨ φ | [a]φ | ⟨a⟩φ | ηx.φ.

The semantics is given with respect to a labelled transition system (S, Act,→), where the
semantics of the transition relation is→ ⊆ S×Act×S. Given s, s′ ∈ S, a ∈ Act, whenever
we have a transition relation (s, a, s′) ∈ →, we usually write s a−→ s′. The semantics of the
syntactic categories is the same except for the new modal operators:

J[a]φKρ = { s ∈ S | ∀t ∈ S, a ∈ Act s.t. s a−→ t =⇒ t ∈ JφKρ }
J⟨a⟩φKρ = { s ∈ S | ∃t ∈ S, a ∈ Act s.t. s a−→ t ∧ t ∈ JφKρ }.

Observation 1. We could enrich the syntax and semantics of the µ-calculus over labelled
transition systems to define modal operators that behave similarly to □ and ♢. To do this
we add a new syntactic category, and respective semantics for the set of labels Act, where
a ∈ Act:

A := a | true | ¬a

JaK = { a }
JtrueK = Act

J¬aK = Act \ { a }.
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Instead of ⟨a⟩φ and [a]φ we use ⟨A⟩φ and [A]φ, with the new semantics:

J[A]φKρ = { s ∈ S | ∀t ∈ S, a ∈ JAK s.t. s a−→ t =⇒ t ∈ JφKρ }
J⟨A⟩φKρ = { s ∈ S | ∃t ∈ S, a ∈ JAK s.t. s a−→ t ∧ t ∈ JφKρ }.

Formulas ⟨true⟩φ and [true]φ, have the same meaning on labelled transition systems that
♢φ and □φ have on an unlabelled transition system, in the sense that they check all
possible transitions from a state.

The syntax and semantics defined above are inspired from the one used in the tool mCRL2
[12].

2.5 Parity games

We borrow the definition of parity games from [13]. In the following definition we use the
notation: [d] = { 0, 1, ..., d− 1 }, where d ∈ N.

Definition 13 (parity graph, parity game). A parity graph G = (V,E, p) consists
of a directed graph (V,E) and a priority function p : V → [d]. A parity game Γ =
(V,E, p, (V♢, V□)) consists of a parity graph G = (V,E, p), called the game graph of Γ, and
of a partition (V♢, V□) of the set of vertices V .

In a parity game there are two players ♢, □, or 0 and 1, or ∃ and ∀, respectively. We
will adopt the latter notation in the next chapters. A player, usually player ♢, starts by
placing a token on a vertex; the token is moved along the edges in the following way: if
the token is on a vertex v ∈ V♢, then player ♢ can make a move by placing the token on a
vertex adjacent to v, otherwise □ can make a move.

We define a tuple ϕ = (v1, v2, . . .) as a play, which may or may not be finite, where vi ∈ V
and the order of play is given by i.

Winning conditions change accordingly to the finiteness of the play:

• if the play is finite, the player that is unable to move loses;
• in an infinite play, ϕ is a winning play for ♢ (□) if the minimum priority that appears

infinitely often is even (odd), this value is denoted by min(Inf(ϕ)).

If an infinite game is being played, we could use a different winning condition, that is
whether max(Inf(ϕ)) is even or odd. We will use the latter winning condition throughout
this thesis.

A game which is played with the former winning conditions can be easily converted to
a game with the latter winning conditions by changing the sign of the priorities or by
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Australia: 6

Asia: 8

Africa: 6

Antarctica: 7

America: 5

Figure 2.1: An example of a parity game. It is a modified version of an example described in the documentation
of PGSolver. Diamond shaped nodes represent player 0, box shaped nodes represent player 1.

mapping the greatest priority to the least priority, the second greatest priority to the
second least priority, and so on. By doing so we obtain two equivalent games that will
yield the same solution.

Definition 14 (strategy, winning strategy, winning set). A strategy for player ♢ is a
function σ : V♢ → V . A play ϕ = (v1, v2, ...) is said to be consistent with a strategy σ if
σ(vi) = vi+1, for all i ∈ N such that vi ∈ V♢. Dually for player □.

A winning set, or region, for player P is a subset of vertices W ⊆ V , such that P can win
if a play starts from v ∈ W .

A winning strategy for a player is a function σ, if for every play starting from any v ∈ W ,
consistent with σ, the play is winning for a player.

From the definition above we can describe the problem of solving, or deciding, a parity
game: it consists in deciding whether a player has a winning strategy from the starting
vertex.

Definition 15 (odd and even cycle). An odd (even) cycle is a cycle in the parity graph
where the node with the smallest (greatest) priority is odd (even).

Any parity game admits a translation into a system of fixpoint equations over the boolean
lattice, that is, the lattice { false, true }, with ordering false ⊑ true. We show this
through an example.

13



Example 5 (example of parity game). Figure 2.1 represents a parity game: each node is
paired with a continent that identifies the node and a number that represents the node’s
priority. We recall that player 0 wins either if player 1 cannot make a move or if there is
an infinite play where the greatest priority that appears infinitely often is even, dually for
player 1.

Diamond-shaped vertices are owned by player 0, while box-shaped vertices are owned by
player 1. We represent the winning strategy of player 0 by using diamond-shaped arrow
heads, and square arrow heads for player 1. For example, the strategy for player one is a
function with the following mappings: Antarctica ↦→ Africa, and Africa ↦→ Antarctica.

The solution of the example above was checked with the tool PGSolver, [10]. Every
parity game can be converted into a system of boolean fixpoint equations via the following
procedure:

1. introduce a variable for each vertex;

2. if the left-hand variable of the equation has an even (respectively odd) index, then
such equation should be a greatest (respectively least) fixpoint equation;

3. the right-hand side of an equation should include all the variables that represent
the successors of the node related to the left-hand variable;

4. as regards the boolean operators between variables, we should first decide whether
we are interested in player 0’s or in player 1’s final win. The left hand side should
be put under an ⋁︁ operator if the owner of the right-hand side variable is the same
as the desired winner, ⋀︁ otherwise;

5. the equations must be ordered by priority of the node corresponding to the left-hand
variable, from smallest to greatest.

Example 6 (parity game to system of boolean fixpoint equations). We use the parity
game represented in Figure 2.1, and we convert it to a system of boolean fixpoint equations.
For the sake of simplicity, we relate each vertex to a number:

• Africa to 0,

• America to 1,

• Asia to 2,

• Australia to 3,

• Antarctica to 4.

The winning region of player 0 is given by the vertices corresponding to identifiers 1, 2, 3,
while player 1 is 0, 4. We build the system of boolean fixpoint equations, applying the
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algorithm described above, with the goal of determining the winning region of player 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 =µ x2 ∧ x3

x0 =ν x2 ∧ x4

x3 =ν x2 ∨ x4

x4 =ν x0

x2 =µ x0 ∨ x1 ∨ x3 ∨ x4.

The solution of this system of boolean fixpoint equations is x1 = true, x2 = true, x3 = true:
this is because nodes 1, 2, 3 are in the winning region of player 0, and x4 = false,
x0 = false, because nodes 4, 0 are not. By substituting the values in the system, we can
verify that the solution of the parity game is consistent with to the system of equations.
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3
Selections and symbolic ∃-moves

3.1 Powerset game

In this section we introduce the powerset game: we characterise the solution of a system
of fixpoint equations over a complete lattice in terms of a parity game.

Definition 16 (powerset game). Let L be a complete lattice and let BL be a basis for L.
Let E be a system of m fixpoint equations over L, of the kind x =η f(x).

The powerset game associated with E is a parity game with two players:

• ∃, the existential player, with positions (b, i);

• ∀, the universal player, with positions X = (X1, . . . , Xm) ∈ (2BL)m;

• from position (b, i) the possible moves of ∃ are E(b, i) = {X | X ∈ (2BL)m ∧ b ⊑
fi(

⨆︁
X) };

• from position X ∈ (2BL)m the possible moves of ∀ are A(X) = { (b, i) | i ∈ m ∧ b ∈
Xi }.

In a finite play the winner is the player whose opponent is unable to move. In an infinite
play the condition is the following: let h be the highest index that occurs infinitely often in
a pair (position) (b, i):

• if ηh = ν then ∃ wins,

• if ηh = µ then ∀ wins.

Remark 1 (basis and ⊥). Note that ⊥ of L is not necessarily included in BL, because
for l = ⊥ we have that ⊥ = ⨆︁ ∅ (by definition of lattice). This is consistent with the
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ω + 1

ω

2

1

0

Figure 3.1: An example of infinite lattice.

definition of basis, which is a set such that ∀l ∈ L, l = ⨆︁{b ∈ BL | b ⊑ l}, when there is
no b ∈ BL such that b ⊑ l, we have ∅. Moreover, if ∀ played (⊥, i) for some i ∈ m player
∃ could answer with a tuple (∅, . . . , ∅) ∈ (2BL)m, and win the game.

This game theoretical characterisation opens the way to the development of algorithms to
find or verify solutions of systems of fixpoint equations: given a complete lattice and a
basis, the game allows us to verify whether an element b is covered by the solution, in the
sense that it is smaller than the solution, with respect to some ordering.

Theorem 2 (correctness and completeness of powerset game). Let E be a system of m
fixpoint equations over a complete lattice L, with solution s. For all b ∈ BL, and i ∈ m,
we have that b ⊑ si if and only if player ∃ has a winning strategy from position (b, i).

The proof of this lemma can be found in [2].

Example 7 (game on an infinite lattice). Consider the lattice L = N ∪ {ω, ω + 1}
represented by the Hasse diagram in Figure 3.1 and let BL = L. We define f : L → L
as a monotone function with f(n) = n + 1 for n ∈ N and f(ω) = ω, f(ω + 1) = ω + 1.
Consider the powerset game played on a system composed by only f , of which we want the
least fixpoint, clearly µf = ω. Now suppose that we want to verify whether ω ≤ µf . On
an infinite play clearly ∀ wins, since we are playing a game on a single µ-equation. The
play starts from b = ω. An example of an infinite play is a one where ∃ answers to the
starting move with X = {ω + 1 }, to which ∀ answers with ω + 1, which clearly unfolds
into an infinite play. In a winning play for ∃ she answers with a move X = N, this is
because b = ω ≤ f(⨆︁N) = f(ω). Player ∀ can answer with any n ∈ N. From now on, ∃
can always play X = {n− 1}, which leads to a descending chain where player ∃ wins by
finally playing X = ∅, to which ∀ cannot answer.
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⊤

a

b

c

d

⊥

Figure 3.2: Hasse diagram of a finite lattice L.

3.2 Selections

Let s be the solution of a system of fixpoint equations. Thanks to Theorem 2 we can
answer the question of whether if b ⊑ si, with i ∈ m. We would have to compute a subset
of player ∃’s moves, if not the whole set, which is unreasonable, since ∃ could play a
huge number of moves. We can restrict the set of moves of the existential player without
affecting the correctness and completeness of the game. We do so by showing that some
moves are useless; by removing them we create a subset of moves called selection.

Let us first introduce an ordering relation on sets, called Hoare preorder [1].

Definition 17 (Hoare preorder). Given a poset P , consider the so-called Hoare preorder,
⊑H on P , defined by letting, for X, Y ⊆ P , X ⊑H Y if for all x ∈ X there exists a y ∈ Y
such that x ⊑ y.

Remark 2 (Hoare preorder is not anti-symmetric). The Hoare preorder is not anti-
symmetric in general, take for example the lattice L in Figure 3.2 and its powerset 2L: we
have that { a, b, c } ⊑H { a, c } ⊑H { a, b, c }, but the two sets are not equal.

We use the following intuition. Let X,Y ∈ E(b, i): since both X,Y are tuples in (2BL)m

we can order them by using the pointwise extension of ⊑H , ⊑∧
H . We say that X ⊑∧

H Y
when X i ⊑H Y i, for all i ∈ m. If X ⊑∧

H Y , we can avoid playing Y , without affecting
the winner of the game: player ∃ must descend as much as possible to win; playing larger
elements would be inconvenient from its point of view.

Definition 18 (selection). Let L be a lattice. A selection is a function σ : (BL ×m)→
2(2BL )m such that for all (b, i) it holds that ↑H σ(b, i) = E(b, i).

Where ↑H σ(b, i) = {X ∈ (2BL)m | ∃Y ∈ σ(b, i)∧Y ⊑∧
H X }, and ↑H is the upward-closure

with respect to ⊑∧
H .

Requiring set E(b, i) to be the upward-closure of σ(b, i) with respect to ⊑∧
H is equivalent
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to requiring that σ(b, i) ⊆ E(b, i) and for each X ∈ E(b, i) there exists Y ∈ σ(b, i) such
that Y ⊑∧

H X.

Lemma 2 (Hoare preorder preserves supremum). Let X, Y be two sets in 2BL. If X ⊑H Y
then ⨆︁

X ⊑ ⨆︁
Y .

Proof. Observe that, since X ⊑H Y , there exists y ∈ Y so that x ⊑ y for all x ∈ X, then
it must be the case that ⨆︁

X ⊑ ⨆︁
Y .

Theorem 3 (E(b, i) is upward-closed with respect to ⊑∧
H). Let L be a complete lattice,

and BL be one of its bases. Let E be a system of m ∈ N fixpoint equations x =η f(x). For
each b ∈ BL, i ∈ m, the set of moves of ∃ is upward-closed with respect to ⊑∧

H, meaning
E(b, i) = ↑H E(b, i).

Proof. Let us remember that E(b, i) = {X |X ∈ (2BL)m ∧ b ⊑ fi(
⨆︁

X) }. To prove that
E(b, i) is upward-closed we need to show that, given X,Y ∈ (2BL)m so that X ⊑∧

H Y ,
if X ∈ E(b, i) it must be the case that Y ∈ E(b, i). If X ∈ E(b, i), by definition we
have that b ⊑ fi(

⨆︁
X). By definition of ⊑∧

H we have that for all i ∈ m, Xi ⊑H Yi, thus
by Lemma 2, we obtain that ⨆︁

Xi ⊑
⨆︁
Yi, then it must be the case that ⨆︁

X ⊑ ⨆︁
Y .

Thanks to the monotonicity of fi we have that b ⊑ fi(
⨆︁

X) ⊑ fi(
⨆︁

Y ), then by definition
of E(b, i), Y ∈ E(b, i).

Theorem 4 (game with selection). Let E be a system of m equations over a complete
lattice L of the kind x =η f(x) with solution s, and let σ be a selection for E. For all
b ∈ BL and i ∈ m, b ⊑ si if, and only if, ∃ has a winning strategy from position (b, i) in
the game restricted to the selection σ.

Proof. This proof is taken from [2]. We first prove correctness, or (⇐). If b ̸⊑ si then by
Theorem 2 we know that in the original game, ∀ would have a winning strategy from
position (b, i). It is the same for the game restricted to the selection, since they do not
affect ∀ moves.

We now prove completeness. Let b ⊑ si, so that by Theorem 2 player ∃ has a winning
strategy t from position (b, i), in the original game. Our goal is to show that ∃ has a
winning strategy in the restricted game, starting from every position (b′, i) such that
b′ ⊑ b, hence also from b itself, independently of the moves of ∀. In the original game,
according to winning strategy t, from position (b, i) player ∃ would play X = t(b, i). Since
b′ ⊑ b, we know that X ∈ E(b, i) ⊆ E(b′, i), by definition. Thus, by definition of selection
there must exist Y ∈ σ(b′, i) such that Y ⊑∧

H X. Now, we have two cases depending on
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X. If all components of X are empty, then it must be the case for Y as well: player ∀
has no possible moves and ∃ wins. Otherwise, let (b′′, j) be every move ∀ can play from
position Y . It is the case that for all b′′ ∈ Yj ⊑H Xj , there must exist some b′′′ ∈ Xj , such
that b′′ ⊑ b′′′. In the original game this means that (b′′′, j) ∈ A(t(b, i) = X), and since
∃ wins playing strategy t, the latter must be a winning strategy from position (b′′′, j) as
well. We can apply the same reasoning to (b′′′, j), and we could go on indefinitely, until
either ∃ wins, or we obtain a pair of infinite plays, with the following shape:

(b0, i0)→X0 → (b1, i1)→X1 → (b2, i2)→X2 → . . .

(b′
0, i0)→ Y0 → (b′

1, i1)→ Y1 → (b′
2, i2)→ Y2 → . . .

where (b0, i0) = (b, i) and b′
1 = b′, and for all k we have b′

k ⊑ bk and Xk = t(bk, ik) ⊒∧
H

Y k ∈ σ(b′
k, ik). The first play above is a play in the original game, where ∃ wins. Since

the second play is from the game restricted to a selection σ, and it has the same indices
ik, we have that ∃ wins from the restricted game as well.

3.3 Least selection

We showed that player ∃ can win a version of the powerset game restricted to a selection.
We know that σ(b, i) ⊆ E(b, i), and clearly, for computational purposes, we want σ(b, i) to
be as small as possible. To do that we need to introduce an ordering relation on selections.

Definition 19 (order on selections). Let E be a system of m equations of the kind
x =η f(x), over a complete lattice L, with basis BL. Given two selections σ, σ′, we write
σ ⊆H σ′ if for all b ∈ BL, i ∈ m, and X ∈ σ(b, i), there exists Y ∈ σ′(b, i) such that
X ⊆∧ Y .

Unfortunately, the existence of a minimal selection with respect to ⊆H is not always
guaranteed. We show this through an example.

Example 8 (minimal and least selection on infinite height lattices). Consider the game
described in Example 7. We recall that it is a game played on the lattice L = N∪{ω, ω+1 },
with basis BL = L, on a single µ-equation defined as follows

f(n) =
⎧⎨⎩n+ 1 n ∈ N
n if n = ω or n = ω + 1.

Player ∃ wins a game from the starting position (ω) by forcing the play to be finite. In
Example 7 we observed that ∃ can win by playing X = N initially and then by answering
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X = {n− 1 } whenever player ∀ plays n. Player ∃ can also win by always playing the set
{m ∈ N | m ≤ n− 1 }. We show that this both kinds of moves correspond to a selection,
and that they are not minimal with respect to ⊆H .

σ(n) =

⎧⎪⎪⎨⎪⎪⎩
{ {n− 1 } } if n ∈ N
{N } if n = ω

{ {ω + 1 } } if n = ω + 1

σ′(n) =

⎧⎪⎪⎨⎪⎪⎩
{ {m ∈ N | m ≤ n− 1 } } if n ∈ N
{N } if n = ω

{ {ω + 1 } } if n = ω + 1

Since we have only one equation in the system, we omit the indices and thus the tuple
notation is no longer necessary: the selection σ : BL×m→ 2(2BL )m becomes σ : BL → 22BL .

Both σ and σ′ are valid selections, i.e., ↑H σ(b) = ↑H σ
′(b) = E(b) for all b ∈ BL. Moreover,

the two selections differ if n ∈ N, and the unique X ∈ σ(n) is always included in the unique
X ′ ∈ σ′(n), hence σ ⊆H σ′. Notably, σ is not minimal since there exist smaller selections,
infinitely many in fact. For instance, take σ′′ defined as σ except for σ′′(ω) = 2N the set
of even numbers. Clearly σ′′ is still a valid selection, σ′′ ⊆H σ and clearly there are even
smaller ones (but no minimal).

From now on we will consider only finite-height complete lattices: by doing this we can
prove the existence of a selection which is minimal and unique, hence it is the least
selection.

Theorem 5 (least selection). Let E be a system of m equations over a complete lattice
L with finite height. Then, there exists a unique selection σ such that σ ⊆H σ′ for all
selections σ′.

Proof. For the proof of the existence of a least selection for finite-height complete lattices,
we refer the reader to [2].

3.4 A logic for upward-closed sets

From Theorem 3, we know that the set of moves of the existential player is upward-closed.
Upward-closed sets can be conveniently represented and manipulated in logical form
(see, e.g., [5]). Intuitively, (minimal) selections describe a disjunctive normal form, but
more compact representations can be obtained using arbitrary nesting of conjunction and
disjunction.
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Example 9 (minimal selections are exponential in size). For instance, the minimal
selection for the monotone function f(X1, . . . , X2n) = (X1 ∪ X2) ∩ (X3 ∪ X4) ∩ . . . ∩
(X2n−1 ∪X2n) would be of exponential size (think of the corresponding disjunctive normal
form). Suppose that L is a generic complete lattice and b ∈ BL, and that f is the i-th
equation of a system of fixpoint equations x =η f(x). The minimal selection of f over b
would have the following shape:

σ(b, i) = { ({ b }, ∅, { b }, ∅, . . . , { b }, ∅), . . . , (∅, { b }, { b }, ∅, . . . , { b }, ∅) }.

In this example σ(b, i) has 2n/2 tuples, which represent all possible combinations of ways
we can cover all the disjunctions in the minimal selection.

This motivates the introduction of a propositional logic for expressing the set of moves of
the existential player in a linear size formula along with a technique for extracting moves
from such logic formulas.

Definition 20 (logic for upward-closed sets, with respect to ⊑∧
H). Let L be a lattice

and let BL be a basis for L. Given m ∈ N, the logic LH
m(BL) has the following inductive

definition, where b ∈ BL and j ∈ m:

φ ::= [b, j]|
⋀︂

k∈K

φk|
⋁︂

k∈K

φk.

We true the empty conjunction for ⋀︁
k∈∅ φk, and false for the empty disjunction ⋁︁

k∈∅ φk.

Whenever φ = [b, j], true or false, we refer to it just as atom, because in functions that
work inductively over logic formulas, whenever the input is [b, j], true or false, we do not
need any recursive step to compute the function solution.

The connection between this language and upward-closed sets is attained via the following
semantics.

Definition 21 (semantics for logic formulas). The semantics of a formula φ is an
upward-closed set JφK ⊆ (2BL)m with respect to ⊑∧

H, it is defined as follows:

J[b, j]K = {X ∈ (2BL)m | { b } ⊑H Xj }
J

⋀︂
k∈K

φkK =
⋂︂

k∈K

JφkK

J
⋁︂

k∈K

φkK =
⋃︂

k∈K

JφkK.

We also give the semantics for true and false atoms:
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JtrueK = J
⋀︂
k∈∅

φkK =
⋂︂
k∈∅

JφkK = {X |X ∈ (2BL)m }

JfalseK = J
⋁︂
k∈∅

φkK =
⋃︂
k∈∅

JφkK = ∅.

The definition of the semantics for logic formulas serves a dual purpose: the first is to
ensure that all formulas represent upward-closed sets, the second is to have a connection
between formulas and selections. We show the latter in the following example, which we
took from [16].

Example 10 (semantic for logic formulas). Let us define the semantics of an atom [b, i]
in a different way

J[b, j]Ks = {X ∈ (2BL)m | b ⊑
⨆︂
Xj }. (3.1)

This definition yields formulas with a lower number of atoms, compared to the semantics
in Definition 21. But by using Definition 3.1, the connection with the least selection is
not as immediate as it is when using the other one.

We show this in a concrete example. Consider the lattice L in Figure 3.2, with the basis
BL = { a, b, c, d }. Suppose we have a system of equations E with a single equation, such
that

E(b, 1) = {X ⊆ BL | b ⊑
⨆︂
X }

= { ({ b }), ({ a, b }), ({ b, c }), ({ b, d }),
({ a }), ({ a, c }), ({ a, d }), ({ c, d }),
({ b, c, d }), ({ a, c, d }), ({ a, b, c, d }) }.

The corresponding selection is σ(b, 1) = { ({ b }), ({ c, d }) } since ↑H{ ({ b }), ({ c, d }) } =
E(b, 1). Let φe be the formula for the semantics in Definition 21, and φs for the semantics
we defined last. Both formulas represent the same least selection σ, but they differ in the
way they do it:

φe = [b, 1] ∨ ([c, 1] ∧ [d, 1])
φs = [b, 1].
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Intuitively, φe is going to be a disjunction, where each disjunct represents a move in the
selection. Each move is going to be a conjunction between the atoms stemming from each
b in such move. However, this is not always the case. Consider Example 9, where we see
that the minimal selection is of exponential size, while the symbolic ∃-move would be of
linear size.

Intuitively, the meaning of an atom [b, j] in our semantics is an upward-closed set, therefore
the whole semantics yields upward-closed sets. The next lemma states that every upward-
closed set can be represented by a formula in the language we just defined.

Lemma 3 (formulas for upward-closed set, with respect to ⊑∧
H). Let L be a lattice with

basis BL and let X ⊆ (2BL)m be an upward-closed set with respect to ⊑∧
H. Then X = JφK

where φ is the formula in LH
m(BL) defined as follows:

φ =
⋁︂

Y ∈X

⋀︂
{ [b, j] | j ∈ m ∧ { b } ⊑H Yj }

Proof. We have to show that X = JφK.

• (⊇) Let Y ′ ∈ JφK: by applying the semantics we obtain:

Y ′ ∈
⋃︂

Y ∈X

⋂︂
{ {Y ′′ ∈ (2BL)m | { b } ⊑H Y ′′

k } | k ∈ m ∧ { b } ⊑H Yk }.

Hence there exists Y ∈ X such that for all j ∈ m and { b } ⊑H Yj it holds that
{ b } ⊑H Y ′

j . Then

Yj = { b | b ∈ BL ∧ { b } ⊑H Yj } ⊑H { b | b ∈ BL ∧ { b } ⊑H Y ′
j } = Y ′

j

for all i ∈ m. Hence Y ⊑∧
H Y ′, and we have that Y ′ ∈ X, since X is upward-closed.

• (⊆) Let Y ∈ X. We show that Y ∈ JψY K, where ψY = ⋀︁{ [b, j] | j ∈ m ∧ { b } ⊑H

Yj }. In fact,

JψY K =
⋂︂
{ {Y ′ ∈ (2BL)m | { b } ⊑H Y ′

j } | j ∈ m ∧ { b } ⊑H Yj }.

Now, if j ∈ m and { b } ⊑H Yj, then clearly Y ∈ {Y ′ | { b } ⊑H Y ′
j }, and hence Y

is contained in the intersection.

For practical purposes we should restrict to finite formulas. This can surely be done in
the case of finite lattices, and so from now on we will work only with finite lattices.
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Definition 22 (symbolic ∃-moves). Let L be a finite lattice and let f : Lm → L be a
monotone function. A symbolic ∃-move for f is a family (φb)b∈BL

of formulas in LH
m(BL)

such that, for all b ∈ BL it holds that JφbK = E(b, f), where E(b, f) = {X ∈ (2BL)m |
b ⊑ f(⨆︁

X) }. If E is a system of m equations of the kind x =η f(x) over L, a symbolic
∃-move for E is a family of formulas (φi

b)b∈BL,i∈m such that for all i ∈ m, the family
(φi

b)b∈BL
is a symbolic ∃-move for fi.

We can compose symbolic ∃-moves. This has a useful implication: if we have a formula
for all operators used in a system of fixpoint equations (e.g., the formulas for the modal
operators □ and ♢ of the µ-calculus), we can easily build, by composition, the symbolic
∃-moves for the system.

Theorem 6 (composition of symbolic ∃-moves). Let L be a complete lattice with a basis
BL, and let f : Ln → L, fj : Lm → L for j ∈ n be monotone functions and let (φb)b∈BL

,
(φj

b)b∈BL,j∈n be symbolic ∃-moves for f, f1, . . . , fn. Consider the function h : Lm → L
obtained as the composition h(x) = f(f1(x), . . . , fn(x)). Define (φ′

b)b∈BL
as follows. For

all b ∈ BL, the formula (φ′
b)b∈BL

is obtained from φb by replacing each occurrence of [b′, j]
by φj

b′. Then (φ′
b)b∈BL

is a symbolic ∃-move for h.

Proof. We first show that given a formula φ ∈ LH
n (BL), if φ′ is the formula in LH

m(BL)
obtained from φ by replacing each occurrence of an atom [b, j] by φj

b, then

Jφ′K = {X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) }) ∈ Jφj
bK }.

We proceed by induction on φb.

• (φ = [b, j]): In this case φ′ = φj
b. We have

Jφ′K = Jφb
jK

= {X |X ∈ (2BL)m ∧ { b } ⊑H { fj(
⨆︂

X) } }
= {X |X ∈ (2BL)m ∧ ({ f1(

⨆︂
X) }, . . . , { fn(

⨆︂
X) }) ∈ J[b, j]K }

= {X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) }) ∈ JφK }.

• (φ = ⋁︁
k∈K φk): We have φ′ = ⋁︁

k∈K φ′
k, where each φ′

k is obtained from φk by
replacing each occurrence of an atom [b, j] by φj

b. Then
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Jφ′K = J
⋁︂

k∈K

φ′
kK

=
⋃︂

k∈K

Jφ′
kK

=
⋃︂

k∈K

{X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) } ∈ JφkK) } [by inductive hyp.]

= {X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) }) ∈
⋃︂

k∈K

JφkK }

= {X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) }) ∈ J
⋁︂

k∈K

φkK }

= {X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) }) ∈ JφK }.

• (φ = ⋀︁
k∈K φk): Analogous.

Now, given b ∈ BL we must show that

Jφ′
bK = E(b, h) = {X |X ∈ (2BL)m ∧ b ⊑ h(

⨆︂
X) }

= {X |X ∈ (2BL)m ∧ b ⊑ f(f1(
⨆︂

X), . . . , fn(
⨆︂

X)) }

which follows from what we proved above, in fact:

Jφ′
bK =

= {X |X ∈ (2BL)m ∧ ({ f1(
⨆︂

X) }, . . . , { fn(
⨆︂

X) }) ∈ JφbK } (3.2)
= {X |X ∈ (2BL)m ∧ b ⊑ f(

⨆︂
({ f1(

⨆︂
X)) }, . . . , { fn(

⨆︂
X) })) } (3.3)

= {X |X ∈ (2BL)m ∧ b ⊑ f(f1(
⨆︂

X), . . . , fn(
⨆︂

X)) }. (3.4)

Equation 3.2 is true by the property proved above. By definition of symbolic ∃-move we
obtain Equation 3.3 and finally by applying the meet operator we reach Equation 3.4,
which concludes the proof.

The next definition gives us an algorithm to extract moves for the existential player from
the symbolic representation; moreover it connects selections with symbolic ∃-moves. This
algorithm comes as a function called M∃. Intuitively, our goal is, given a symbolic ∃-move
φi

b ∈ LH
m(BL) for a function fi, to compute a set of moves for the existential player, such

that it is the smallest set of moves and is as close as possible to selection σ(b, i).
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Definition 23 (generator for symbolic ∃-moves). Let E be a system of m fixpoint equations
over a finite lattice L, of the kind x =η f(x). The generator M∃ : LH

m(BL)→ 2(2BL )m is
defined as follows, for b ∈ BL and j ∈ m:

M∃([b, j]) = { X } such that Xj = { b } ∧Xi = ∅ for i ̸= j

M∃(
⋀︂

k∈K

φk) =
⋃︂
{∪∧{X |X ∈ y } | y ∈

∏︂
k∈K

M∃(φk) }

M∃(
⋁︂

k∈K

φk) =
⋃︂
{M∃(φk) | k ∈ K }

The definition above connects this theoretical framework with the local algorithm described
in Chapter 4.

The next lemma formalizes the fact that using the generator M∃ in the powerset game,
instead of a selection, leads to a game that is correct and complete.

Lemma 4 (symbolic ∃-moves and least selection). Let E be a system of m fixpoint
equations over a finite lattice L of the kind x =η f(x). Let (φi

b)b∈BL,i∈m be a symbolic
∃-move for E. Given the least selection σ̂ for E, for every position (b, i) ∈ (BL ×m), it
holds that

σ̂(b, i) ⊆M∃(φi
b) ⊆ ↑H σ̂(b, i) = E(b, i).

We only give an idea of the proof of the lemma above: after showing that σ̂(b, i) ⊆
M∃([b, i]) ⊆ ↑H σ̂(b, i) the rest follows by simple structural induction on the shape of the
formula.
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4
Local algorithm

We present an algorithm to verify local solutions for systems of fixpoint equations. Thanks
to Theorem 2, we can leverage the notion of powerset game so that our problem becomes
to verify whether there exists a winning strategy for player ∃ from the starting node.
More in detail, the algorithm finds whether b ⊑ si, where s is the solution of a system of
fixpoint equations x =η f(x) on a complete lattice L and b ∈ BL is an element of the
basis of the lattice.

The algorithm arises as a generalization of the one in [20]. The idea is that we explore the
game graph of the powerset game, storing the path walked and gathering assumptions
and decisions about the nodes we visit. Whenever we establish that a player can win
from a node, we backtrack, propagating the information backwards. The algorithm stops
whenever we find a winning strategy from the initial position of player ∃ or exhaust all
her possible moves, resulting in player ∀ winning. The original local algorithm is from
[2], in this thesis we also build on a contribution by [17]: we use symbolic ∃-moves to
efficiently store and generate new moves for the existential player. Moreover, we introduce
in the pseudocode notable improvements from the tool described in Chapter 5.

4.1 Notation

For the rest of the chapter, L denotes a fixed complete lattice, with basis BL, and E a
system of m fixpoint equations over L, of the kind x =η f(x), with solution s ∈ Lm.
A generic player is denoted by P , and its opponent by P . The set of all positions of
the game is denoted by Pos = Pos∃ ∪ Pos∀, where Pos∃ = BL × m, ranged over by
(b, i) is the set of positions controlled by ∃, and Pos∀ = (2BL)m, ranged over by X,
is the set of positions controlled by ∀. A generic position is denoted by uppercase C,
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and P (C) is the player controlling position C. Given a position C = (b, i) ∈ Pos∃, we
denote a symbolic ∃-move φi

b by φC . We extract moves for player ∀ using a function
M∀ : Pos∀×N→ Pos∃×N×Pos∀, whose pseudocode is presented in Algorithm 1: given
a position of ∀ we extract a b from C = X ∈ Pos∀ and we return a position (b, i) along
with a number j which is the index of the Xj from which we will extract the next move
and an updated X without the b we have just chosen. Clearly, whenever we return a
value j > m, we have exhausted all possible moves for ∀ from X.

Algorithm 1: The function M∀

Require: There is at least a move for ∀, meaning, there must be b ∈ Xi for some
i ∈ m.

function M∀(X, i):
while Xi = ∅ do

i← i+ 1
pick b from Xi

X ← Xi \ { b }
X ′ ←X1,i−1XX i+1,m

j ← i
while j > m ∨X = ∅ do

j ← j + 1
return (b, i), j,X ′

We extract moves in this manner for ∀ to make the process lazy and we are going to use a
similar idea for ∃. In previous versions of the local algorithm, the whole set of moves is
generated whenever we needed the set possible moves from a position: it is reasonable
to think that there are instances where we do not actually need to compute the whole
set of moves for a player, since we do not need to visit the whole game graph to find a
winning strategy from a node. We define a function I : Pos→ (m ∪ { 0 }), which maps
every position to a priority, which is i for (b, i) and 0 for any X ∈ Pos∀. We suppose we
have the set of symbolic ∃-moves for E available, and that we can retrieve a formula for
the position C = (b, i), at any time. When we refer to a formula for a generic position
C = (b, i) we will write φC , instead of φi

b. With this notation the winning condition can
be expressed as follows:

• a finite play is won by the player who moved last;
• an infinite play (C1, C2, . . .), is won by player ∃ (resp. ∀) if there exists a priority
h ∈ m such that ηh = ν (resp. µ), and the set { j | I(Cj) = h } is infinite and the
set { j | I(Cj) > h } is finite.

Note that the largest index which occurs infinitely often cannot be 0 since only positions
of player ∀ have priority 0 and players alternate during the game. Hence, the highest
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priority in a play will always be a priority computed from a position (b, i) ∈ Pos∃.

4.2 The algorithm

The procedure roughly consists in a depth-first exploration of the tree of plays arising
as unfolding of the game graph starting from initial position (b, i). The algorithm
optimises the search by making assumptions on particular subtrees, which are thus pruned.
Assumptions can be later confirmed or invalidated and thus withdrawn.

The algorithm is split in two main functions:

• function Explore, which explores the tree of plays of the game, trying different
moves from each node to determine the player who has a winning strategy from
such node;

• function Backtrack, which backtracks from a node after the algorithm has
established who wins from it and propagates this information backwards.

Moreover, there are six auxiliary functions:

• function Forget, which removes erroneous decisions made during the search;

• functions NextMove and BuildNextMove, that generate a move for player ∃
from a formula;

• functions Reduce, ApplyDecisions and Unfold, which update a formula φ to
keep ∃ from playing unnecessary moves.

4.2.1 Data structures

The algorithm uses the following data structures.

• Counter k ∈ Nm, an m-tuple of natural numbers that associates each non-zero
priority with the number of times the priority has been encountered in the play since
a higher priority was last faced (the current position is not included). After each
move, the counter is updated considering the priority of the current position. More
precisely, the update of counter k, moving from a position with priority i, denoted
Next(k, i), is defined as follows: Next(k, i)j = 0, for all j < i, Next(k, i)i = ki +1
and Next(k, i)j = kj, for all j > i. We also define a total order on counters <P ,
that measures how good the current advancement of the game is for player P . We
let k <∃ k′ when the largest i such that ki ≠ k′

i is the index of a greatest fixpoint
equation and ki < k′

i, or it is the index of a least fixpoint and ki > k′
i. We say that

k <∀ k′ if, and only if k′ <∃ k. We write k ≤P k′ for k <P k′ or k = k′.
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• Playlist ρ, a list of the positions encountered from the root to the current node
(empty if the current node is the root), each with counter k, and π, which is a tuple
that represents the alternative moves not yet explored. Thus ρ is a list of triples
(C,k, π), where C is a position, k a counter corresponding to the move that led to
position C and π is a tuple such that:

– if C is a move for the existential player and k is the corresponding counter, π
is a tuple (φ,k), where φ is a formula that represents unexplored moves for ∃
from C;

– if C is a move for the universal player and k is the corresponding counter, π is
a tuple with three elements (X, j,k), where X stores the remaining alternative
moves for ∀ and j ∈ N represents the j-th element of X, Xj, from which we
are going to extract the next alternative move.

• Assumptions for player ∃ and ∀, that is, a tuple of sets Γ = (Γ∃,Γ∀). We store
assumptions for each player. A position C is assumed to be winning for some player
when it is encountered for the second time in the current playlist ρ. This reveals
the presence of a loop in the game graph, which can be unfolded into an infinite
play. A position C is assumed to be winning for the player that would win in such
infinite play. This ensures that the highest priority in the loop is the index of a
least fixpoint if P = ∀ and of a greatest fixpoint if P = ∃. The assumption is stored
with the corresponding counter: ΓP contains pairs of the kind (C,k). Since other
possible paths branching from the loop are possibly unexplored, assumptions can be
proved false during the exploration.

• Decisions for player ∃ and ∀, that is, a pair of finite sets ∆ = (∆∃,∆∀). Intuitively,
a decision for a player P is a position C of the game from which we established that
P has a winning strategy. The decision is stored with the corresponding counter.
The result of this is that ∆P contains pairs of the kind (C,k).

We suppose that each time we add either a new assumption or a new decision, we store a
timestamp along with the new tuple. We do not show this in the pseudocode.

4.2.2 Generation of moves for the existential player

Moves for the existential player are stored in a formula φ. Intuitively, we can extract
moves from φ by using an algorithm based on Definition 23. Moreover, we can use the set
of decisions Γ and the playlist ρ to reduce the set of moves available to ∃ from a position.
Intuitively, we just anticipate what could have happened if player ∃ chose these moves.

If we could somehow make the whole process lazy, we would have a solution similar to
that we used for the universal player. But this is not necessary, since we can modify and
store the formula directly, so that whenever we want a move for ∃ we can simply extract
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one from the current φ. We can modify the formula by using the decisions and the playlist
we currently have, making sure that we do not visit the same position more than once if
we already have information about it.

4.2.2.1 Reducing the formula

Given a formula φ, a counter k, the set of decisions ∆ and a playlist ρ, the function
Reduce(φ,k,∆, ρ), in Algorithm 2, returns a triple (φ′,Γ∃,Γ∀), where φ′ is the simplified
symbolic ∃-move equipped with two sets of new assumptions, one for each player.

Algorithm 2: The function Reduce
function Reduce(φ,k,∆, ρ):

(φ′,Γ∃,Γ∀)← ApplyDecisions(φ,k,∆, ρ)
return Simplify(φ′), Γ∃, Γ∀

The function Reduce uses two auxiliary functions: ApplyDecisions and Simplify. The
function ApplyDecisions, described in Algorithm 3, takes all Reduce input parameters
and transforms the atoms of the given formula into true or false, using the information
contained in ∆ and ρ. We describe the behaviour of this function: it first performs a
recursive unfolding of the formula until it reaches all the atoms by using the function
Unfold. Whenever we reach an atom [b, i], we check:

• whether there is a decision for the position (b, i), with a favourable k′ for player P ,
that is, if there is a k′ such that ((b, i),k′) ∈ ∆P and k′ ≤P k. Hence, P = ∃ means
that the atom [b, i] would lead to a win for player ∃ and so the value returned is
true. Otherwise, [b, i] would lead to a win for player ∀, so in this case the function
returns false;

• whether position (b, i) has already been encountered in the play, i.e., if there is a k′

such that ((b, i),k′,_) ∈ ρ and k′ <P k; in this case (b, i) becomes an assumption
for P . As before, if P = ∃ the atom becomes true, false otherwise.

Finally, the function ApplyDecisions returns a triple (φ′,Γ∃,Γ∀), where φ′ is the
formula with some atoms transformed into true or false; the set Γ∃ includes all the new
assumptions favorable for ∃, and dually Γ∀ is the set of new assumptions for ∀.

We do not show the pseudocode for the function Simplify, but just provide an intuition.
Let us define a function Simplify : LH

m(BL)→ LH
m(BL), such that during the exploration

of the tree of the input formula, certain subformulas are recursively replaced with the
following:
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Algorithm 3: Functions ApplyDecisions and Unfold
function ApplyDecisions(φ,k,∆, ρ):

match φ
case [b, i]

if there is ((b, i),k′) ∈ ∆∃ s.t. k′ ≤∃ k then
return (true, ∅, ∅)

else if there is ((b, i),k′) ∈ ∆∀ s.t. k′ ≤∀ k then
return (false, ∅, ∅)

else if there is ((b, i),k′) ∈ ρ s.t. k′ <∃ k then
return (true, { ((b, i),k′) }, ∅)

else if there is ((b, i),k′) ∈ ρ s.t. k′ <∀ k then
return (false, ∅, { ((b, i),k′) })

else
return (φ, ∅, ∅)

case ⋁︁
j∈J φj

return Unfold(φ, J,∨, false)
case ⋀︁

j∈J φj

return Unfold(φ, J,∧, true)
function Unfold(φ, J, op, init):

(Γ1,Γ2)← (∅, ∅)
φ′ ← init
foreach j ∈ J do

(φ′,Γ∃,Γ∀)←ApplyDecisions(φj,k,∆, ρ)
(Γ1,Γ2)← (Γ1 ∪ Γ∃,Γ2 ∪ Γ∀)
φ′ ← φ′ op φ′

j

return φ,Γ1,Γ2
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Simplify(x ∧ true) = x

Simplify(x ∧ false) = false

Simplify(x ∨ true) = true

Simplify(x ∨ false) = x

where x, true, false are formulas and operators ∧,∨ are commutative. Function Simplify
receives a formula φ as input and returns φ′, which is either an atom or a formula that
does not contain true or false atoms.

4.2.2.2 Building the next move

Given a formula φ, the function NextMove(φ), which we provided in Algorithm 4,
returns a move for ∃. We require the function to be called after a simplification phase,
which removes true and false atoms from the formula, and require the formula itself to
not be a false atom. All these requirements are fullfilled in Explore, see Algorithm 7,
where NextMove is called after Reduce. If we simplify φ to a false atom we avoid
computing the next move. The function NextMove(φ) does the following:

• if φ is a true atom, then it returns the emptyset tuple ∅, lowest possible move we
can choose among all the moves in (2BL)m;

• otherwise, it calls the auxiliary function BuildNextMove.

Algorithm 4: The function NextMove
Require: φ is not false and it was simplified using Reduce.
function NextMove(φ):

match φ
case true

return ∅
other

return BuildNextMove(φ)

The function BuildNextMove has the same requirements as NextMove. We are
sure that they are met since it is always called inside NextMove. The function Build-
NextMove unfolds the formula until it reaches an atom [b, i], and it returns a tuple
where all components are ∅ except for the i-th one, which is { b }. For ∧ nodes we return
the union of the recursive calls applied to the subformulas, while instead for ∨ nodes
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we return the recursive call of just one subformula of the node. The “pick” statement
could choose either a random or a fixed formula; it does not affect the correctness of the
function, but it does affect its performance. Intuitively, there are “better” moves among
the set of available moves: it is usually convenient to give priority to moves which are
immediately reducible to valid decisions or assumptions for the player who is moving (see
[2]). Intuitively, players could choose each turn the best possible move available from a
position, which corresponds to a winning strategy. Of course, this is not possible since it
would require a The pseudocode of BuildNextMove is defined in Algorithm 5.

These two algorithms use the function in Definition 23. Intuitively, each time we call
NextMove(φ) we return just one move among the moves we could generate by using
M∃(φ).

Algorithm 5: The function BuildNextMove
Require: φ doesn’t contain true or false leaves.
function BuildNextMove(φ):

C ← ∅
match φ

case [b, i]
Ci = { b }

case ⋀︁
j∈J φj

foreach j ∈ J do
C ← C ∪∧ BuildNextMove(φj)

case ⋁︁
j∈J φj

pick any j ∈ J
C ← BuildNextMove(φj)

return C

4.2.3 Explore and backtrack

We call the function Explore((b, i),0, [], (∅, ∅), (∅, ∅)) for checking whether b ⊑ si for
b ∈ BL and i ∈ m, where 0 is the everywhere-zero counter. This returns the only player
P having a winning strategy from position (b, i) and, by Theorem 2, P = ∃ if, and only if
b ⊑ si. Intuitively, whenever we call Explore we walk along a path in the game graph,
while saving it in the playlist ρ. The walk goes on until we find a node from which a player
has a winning strategy. Then we backtrack, propagating the information backwards: while
backtracking we try alternative moves for each player. This procedure terminates when,
during backtracking, we go back to the starting position, i.e., the playlist ρ is empty and
we do not have alternative moves to try. The player that wins from the starting position
is the overall winner.
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Let us now describe the function Explore, whose pseudocode is provided in Algorithm 7.
Given a position C, the corresponding counter k, the playlist ρ, and the set of assumptions
Γ and decisions ∆, the function checks whether one of the following conditions hold, and
answers accordingly.

• If there are no moves from position C, the player controlling C, P (C), cannot move
and its opponent P (C) wins. This check is operated by the function IsEmpty (see
Algorithm 6). Therefore, a new decision for the current position C, along with a
timestamp, is added for the opponent, and then we backtrack.

• If there is already a favourable decision for P for the current position C, that is,
(C,k′) ∈ ∆P and k′ ≤P k, we can use that information to assert that P would win
from the current position as well. The requirement k′ ≤P k intuitively ensures that
we arrived at the current position C with a play that is at least as good for P as
the play which led to the previous decision (C,k′).

• If the current position C was already encountered in the play, meaning that there is
(C,k, π) ∈ ρ for some k′, such that k′ <P k, then C becomes an assumption for P ,
the player for which the counter became strictly better. Then we backtrack.

• If none of the conditions above holds and P = ∀, the exploration continues from
C. A move C ′ ∈ M∀(C, 1) is chosen to be explored. The playlist is extended by
adding (C,k, π), where π records the remaining moves to be explored. Counter k is
updated according to the priority of C.

• If none of the conditions above holds and the P = ∃, we first retrieve the associated
formula φC from the current position C ∈ Pos∃. Then we simplify the logic
formula using the function Reduce. If any assumptions are created, we merge them
pointwise to the current set of assumptions Γ, that is, we combine assumptions for
each player P with the newly created assumptions for P . Now we check whether
the simplified formula φ′

C became false; if so, we add C, along with its counter, as a
decision for the universal player and we backtrack. Otherwise, we explore a new
move C ′, extracted with NextMove. The playlist is extended by adding (C,k, π),
where π stores the simplified symbolic ∃-move φ′

C . Counter k is updated according
to the priority of the past position C.

We now describe the backtracking procedure, presented in Algorithm 8. The function
Backtrack(P, ρ,Γ,∆) is used to backtrack from a position C, from the top of playlist
ρ, after assuming or deciding that player P will win from this position. The Backtrack
algorithm works as follows. If the playlist is empty, we are back at the root, the position
from which the computation started, then the exploration concludes and the algorithm
decides that player P is the winner from such a position. Otherwise, we pop the head
(C ′,k, π) of the playlist ρ and the status of position C ′ is investigated.
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Algorithm 6: The function IsEmpty
function IsEmpty(C):

match C
case X

return false if Xi ∈ ∅, for all i ∈ m, true otherwise
case (b, i)

get φC from position C
return φC = false

Algorithm 7: The function Explore
function Explore(C,k, ρ,Γ,∆):

if IsEmpty(C) then
∆P (C) ← ∆P (C) ∪ { (C,k) }
return Backtrack(P (C), ρ,Γ,∆)

else if there is P s.t. (C,k′) ∈ ∆P ∧ k′ ≤P k then
return Backtrack(P, ρ,Γ,∆)

else if there is P s.t. (C,k′,_) ∈ ρ ∧ k′ <P k then
ΓP ← ΓP ∪ { (C,k′) }
return Backtrack(P, ρ,Γ,∆)

else
k′ ← Next(k,I(C))
match C

case X
(C ′, j,X ′)← M∀(X, 1)
π ← (X ′, j,k′)
return Explore(C ′,k′, ((C,k, π) :: ρ),Γ,∆)

case (b, i)
get φC from C
(φ′

C ,Γ′
∃,Γ′

∀)← Reduce(φC ,k
′, ((C,k) :: ρ),∆)

Γ← (Γ∃ ∪ Γ′
∃,Γ∀ ∪ Γ′

∀)
if φ′

C = false then
∆∀ ← ∆∀ ∪ { (C,k) }
return Backtrack(∀, ρ,Γ,∆)

else
C ′ ← NextMove(φ′

C)
π ← (φ′

C ,k
′)

return Explore(C ′,k′, ((C,k, π) :: ρ),Γ,∆)
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• If C ′ is controlled by the opponent of P , such that P (C ′) ̸= P , we face two cases:

– if ∀ controls C ′ and there are still unexplored moves from C ′, that is, π =
(X, j,k′′) and j ≤ m, we must explore such moves before deciding the winner
from C ′. Then a new move is extracted and we explore the tree of plays from
it;

– if, instead, ∃ controls C ′, we retrieve (φ,k′′) from π. Then we simplify φ to φ′

and we add the newly created assumptions, if any. If φ′ ̸= false, we retrieve
the next move C ′′ to be explored from φ′. Before exploring the move C ′′, we
replace the formula φ with φ′ in ρ, with the same counter k′′.

• At this point either P (C ′) = P or there are no unexplored moves from C ′. In both
cases C ′ is winning for player P , hence we insert C ′ with the corresponding counter
in ∆P , along with a timestamp. Since we decided that P would win from C ′ we
can now continue to backtrack. Before backtracking, however, we must discard all
assumptions for the opponent of P in conflict with the newly taken decision, and
this must be propagated to the decisions depending on such assumptions. This is
done by the invocation Forget(∆P ,ΓP , (C ′,k′)).

4.2.3.1 Forget

Each time we add a new decision or assumption, we also associated a timestamp with it.
From the pseudocode that we presented it is not apparent that all decisions are supported
by other decisions and assumptions. We have already seen that we may prove some
assumptions false during the exploration. Intuitively, when an assumption in ΓP fails and
is withdrawn, a sound Forget function must delete at least all decisions relying on the
assumption that were proved false. We implemented a sound Forget function which only
considers timestamps: whenever an assumption is proved false, we remove all the decisions
that have been made after the assumption. This, by experimentation, proved to be a more
efficient approach than removing only the set of decisions depending on the assumption
which have been proven wrong, at least in the setting of the µ-calculus. Otherwise,
managing decisions and assumptions becomes complex and inefficient. Different sound
realizations of Forget and a more thorough analysis of this issue can be found in [20].

4.3 Correctness

Here we provide an intuition of how correctness can be proved for the local algorithm.
A detailed correctness proof for the original algorithm can be found in [2]. In order to
formally show that our algorithm is correct, we would need to prove the following theorem.

Theorem 7 (correctness). Given a fixpoint game, if a call Explore(C,0, [], (∅, ∅), (∅, ∅))
returns a player P , then P wins the game from C.
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Algorithm 8: The function Backtrack
function Backtrack(P, ρ,Γ,∆):

if ρ = [] then
return P

let C ′,k′, π, t s.t. ρ = ((C ′,k′, π) :: t)
if P(C ′) ̸= P then

if P(C ′) = ∀ then
let X, j,k′′ s.t. π = (X, j,k′′)
if j ≤ m then

(C ′′, j′,X ′)← M∀(X, j)
π′ ← (X ′, j′,k′′)
return Explore(C ′′,k′′, ((C ′,k′, π′) :: t),Γ,∆)

if P(C ′) = ∃ then
let φ,k′′ s.t. π = (φ,k′′)
(φ′

C ,Γ′
∃,Γ′

∀)← Reduce(φ,k′′, ρ,∆)
Γ← (Γ∃ ∪ Γ′

∃,Γ∀ ∪ Γ′
∀)

if φ′
C ̸= false then
C ′′ ← NextMove(φ′

C)
π′ ← (φ′

C ,k
′′)

return Explore(C ′′,k′′, ((C ′,k′, π′) :: t),Γ,∆)
∆P ← ∆P ∪ { (C ′,k′) }
ΓP ← ΓP \ { (C ′,k′) }
if there is (C ′,k′) ∈ ΓP then

∆P ← Forget(∆P ,ΓP , (C ′,k′))
ΓP ← ΓP \ { (C ′,k′) }

return Backtrack(P, t,Γ,∆)
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The proof of correctness in [2] relies on the following lemma.

Lemma 5 (termination). Given a fixpoint game on a finite lattice, any call
Explore(C0,0, [], (∅, ∅), (∅, ∅)) terminates with an invocation of the function
Backtrack(P,C0, [], (∅, ∅),∆) for some player P and a set ∆.

We modified the backtracking algorithm in [2] by allowing player ∃ to anticipate future
moves among the unexplored ones. It is not convenient for ∃ to play moves which would
be winning for player ∀, according to either the set of decisions and the playlist. Moreover,
we make new assumptions whenever we are able to anticipate that a move would be either
winning or losing by looking inside playlist ρ. As a consequence of this modification the
termination lemma no longer holds. Here we discuss how we can prove our algorithm
correct. A completely formal proof is needed, ad it is regarded as a possible future
contribution.

The only change with respect to the algorithm in [2] is the choice of moves for the
existential player. Intuitively, since we are only restricting the moves played by the
existential player, and only pruning plays for which we already have information, the
algorithm is still correct.

More specifically, we distinguish two possibilities concerning the moves of ∃ not explored
in the algorithm.

• The move discarded from player ∃ does not belong to a selection. This case
is completely covered by Theorem 4, which states that the game played with
moves restricted to selections is equivalent to the original game played without any
restriction.

• The move discarded from player ∃ belongs to a selection. Let us call this move
C ∈ Pos∀. Since C was discarded during the simplification step, a decision or
assumption (C,k) must have led to the transformation of the corresponding atom
to true or false. If we had played C in the next exploration step, we would have
reached the same conclusions, since (C,k) would have been applied when exploring
the said atom. Indeed, this arises from the fact that the same necessary conditions,
specified in the function Explore, are also checked in ApplyDecisions. which
can be seen by comparing Algorithm 7 and Algorithm 3.

In this version of the local algorithm, we anticipate future moves. It is important for the
sake of correctness that whenever we add a new assumption it comes from the playlist ρ,
and the counter we use to verify whether a move in the playlist is repeated is the counter
corresponding to the move we are going to choose in the future. In function Reduce
both conditions are satisfied: we look for new assumptions in ρ and player ∀ does not
modify the counter, moves are anticipated of one step only, that is, the next move of ∀.

40



5
The tool: LCSFE

The main contribution of this thesis is a tool called LCSFE, (Local Checking for Systems
of Fixpoint Equations). The source code of this project can be found at link https:
//github.com/strang3nt/LCSFE. The tool implements the algorithm described in
Chapter 4. It receives as input a specification language consisting of a system fixpoint
equations with monotone operators over a complete lattice and the symbolic ∃-moves for
each operator. It then verifies whether an element of the lattice is covered by the solution
of the system of fixpoint equations.

In particular, the user can provide customized monotone operators and their respective
symbolic ∃-moves, making it possible to instantiate our tool for many types of verification
logics, provided that they can be encoded into systems of fixpoint equations.

We provide, along with our tool, two modules containing examples of applications of our
theoretical framework, namely, a local solver for parity games, and a model checker for the
µ-calculus. Each module performs the encoding of a specification language to a system of
fixpoint equations, and computes the symbolic ∃-moves for their respective operators.

Firstly, we will introduce Rust, the language we chose for this project. Then, we will make
some mentions of PEGs (Parsing Expression Grammars) and parser combinators: in our
project we used a parser library that uses both such techniques. Finally, we will describe
the project’s design choices.

5.1 A brief introduction to Rust

In this section we give a brief introduction to the programming language Rust, our main
goals being to highlight some of its features and to introduce some of the specific Rust
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terminology that we will use in the rest of this chapter.

Rust is a relatively new programming language, but thanks to its characteristics has
soon become one of the most important programming languages to date. Rust promises
performance to rival the likes of C++ and C, while using a modern syntax and enforcing
memory safety. Rust borrows characteristics from both functional and object-oriented
programming; it has support for sum types, pattern matching, clojures, but it can also
realise side effects and has support for mutable collections and advanced operations with
memory. The type system is minimal: along with the usual primitive types it supports
the struct type, the sum type (called enum), and the trait. The trait is the only way to
obtain some form of inheritance. Structs, enums, traits and functions are then organized
in modules. One or more modules working together form a crate. In the rest of this
chapter, we will be using the term module quite loosely and usually to refer to a crate.
Whenever we refer to a module in the proper sense, it will be made clear by the context.

Memory management in Rust is based on ownership: each value is owned by a variable, and
a value is immediately deleted whenever the variable that owns it goes out of scope. Owned
values can be borrowed and intuitively a borrow is a reference to a value. Moreover, there
are precise rules about how owned values can be borrowed by other variables, functions,
or other constructs. Ownership is enforced by the borrow checker at compile time. The
borrow checker is usually able to do most of the work for the programmer, but there are
situations where the programmer is required to declare how long references should be
valid: in this case we are required to specify the so-called lifetime of a reference. This
system guarantees type safety and no memory leaks, but it comes at a cost: the learning
curve is quite steep.

The Rust Standard Library is minimal, but useful nonetheless. It supports a set of basic
collections: vectors, lists, and maps. We can also do operations on collections via iterators,
which are provided by the Rust Standard Library as well. Iterators in Rust are lazy, in
the sense that no computation occurs until they are required to generate an element. Rust
also supports a number of smart pointers, which are particularly useful when managing
lifetimes becomes too hard and to allocate values on the heap. The most notable smart
pointers are Box<T> which is a smart pointer in the line of C++ unique pointers, and
Rc<T>, which is a type of pointer whose ownership can be shared, similarly to C++ shared
pointers.

One of the reasons for Rust’s success is Cargo: it is a build system, dependency and
package manager and is used in the vast majority of Rust based projects. It makes
compiling, running and testing Rust projects easy and seamless.
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5.2 Parsing Expression Grammars and parser combinators

In LCSFE we made extensive use of a parsing library called Chumsky, whose source code
can be found at link https://github.com/zesterer/chumsky. Chumsky is a type of parser
based on parser combinators, capable of parsing PEGs. We provide a brief description of
both terms and their implications.

Parser combinators are a parsing technique that consists in implementing parsers by
defining them in terms of other parsers. Thus, parser combinators are merely functions
accepting other parser combinators as input. A parser in this setting can be viewed as a
function that accepts a string and returns some kind of data structure. This approach is
quite different from parser generators (e.g., Bison, ANTLR), which are a kind of parser
that accepts as input a grammar specification to then generate a source code that can
parse streams of characters, using the grammar. This process, aside from writing the
grammar, usually requires little to no intervention by the developer. Problems start
later in the development whenever the grammar needs to be changed: both the grammar
and the generated source code are going to need maintenance. The main advantage of
parser combinators, and the main reason why we choose a parser based on them, is quick
prototyping. A simple language can be described by a hundred lines of code, which is
exactly our setting.

PEG is a type of formalism used to describe languages and protocols which is quite different
from context-free grammars (CFGs). The main advantage of PEG, with respect to CFG
and any of its parsing algorithms, is that a well-formed PEG makes linear time parsing
possible, through a parsing algorithm called packrat parsing [8]. A PEG is well-formed
when it does not contain left recursion.

PEG grammars always chose the first alternative matching the remaining input, this could
lead to errors that are quite difficult to catch. This, together with the limited support
for left recursion, means that one must be very careful when designing a language. More
information on PEGs can be found in [9].

5.3 Design choices

The tool is divided into multiple modules, namely:

• lcsfe-algorithm,
• lcsfe-cli,
• lcsfe-common,
• lcsfe-pg,
• lcsfe-mu-ald.

Module lcsfe-algorithm is the core of the project: it contains an implementation of the
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local algorithm for verifying solutions of systems of fixpoint equations over complete lattices.
Module lcsfe-cli is a command line interface. Modules lcsfe-pg and lcsfe-mu-ald
both use the local algorithm. As input, they take some specification language and some
verification logic. Then they translate this input to a system of fixpoint equations and
generate the correct symbolic ∃-moves for their respective operators, after which they call
the local algorithm to solve the verification problem, after which the output is passed
to lcsfe-cli to be printed. Module lcsfe-common exposes a common interface that
lcsfe-pg and lcsfe-mu-ald use to provide their results to the command line interface
module; it avoids circular dependency.

Figure 5.1: A component diagram of LCSFE.

Figure 5.1 represents how the various modules of LCSFE are related. In the diagram,
Spec translator represents both lcsfe-pg and lcsfe-mu-ald. From the diagram we
understand that lcsfe-algorithm offers an interface, represented by the ball notation,
which is accessed by every other module. The lcsfe-common crate exposes a trait,
represented in the diagram as an interface, via the ball notation. The goal of this trait is
to uniform the results computed by Spec translator, so that lcsfe-cli can easily access
and print them via the same common interface. The Spec translator module is used by
lcsfe-cli: as input, the former takes a specification file and some verification logic and
provides the latter with the results of the computation.
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5.3.1 The local algorithm module

Module lcsfe-algorithm implements the local algorithm we described in section 4. In
the following we show this crate in greater detail.
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Figure 5.2: A class diagram of the module lcsfe-algorithm.

Figure 5.2 shows a class diagram of the module. We do not show the structure of the
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crate in its entirety but only wish to highlight some of its notable features. This diagram
roughly represents the interface offered by the crate, meaning that other crates can access
the structs, enums and functions represented.

The crate offers its clients a number of functionalities:

• the ability to parse symbolic ∃-moves, systems of fixpoint equations, name and arity
of the operators in the system and the basis;

• it makes normalizing the system of fixpoint equations possible;
• it offers a representation, or better, abstract syntax trees, of symbolic ∃-moves and

fixpoint equations;
• finally, it can verify local solutions for systems of fixpoint equations.

5.3.1.1 The local algorithm

In this section we make a thorough description of the module powerset_game in Figure
5.2. The local algorithm implementation is wrapped in a structure called LocalAlgorithm.
A client that wants to solve a verification task must first build this struct by providing a
system of fixpoint equations and the corresponding symbolic ∃-moves. Then it should call
the function local_check(String, Int): Player, which takes as input (b, i), a starting
position of the existential player, where b is a string and i is a natural number, and
returns the winning player from such position. The other functions, such as Explore and
Backtrack, are not shown in the diagram: functions shown in Chapter 4 are already
quite close to the actual implementation.

Note that there are a number of types in the powerset_game module: each can be mapped
to a construct described in Chapter 4. Players ∃ and ∀ are represented by the enum
Player, player ∃ is Player::Eve, player ∀ is Player::Adam. A position is an enum as
well. Positions of ∀ are elements of a set Pos∀ = (2BL)m, which are represented in the
source code by the enum variant Position::Adam(Vec<HashSet<Nat>>), where where
the Nat type represents an element of the basis. Positions for the existential player
(b, i) ∈ BL ×m are represented by the enum variant Position::Eve(Nat, Nat), where
the first natural number represents a basis element and the second an index. Note that
we have a mapping for basis elements into natural numbers. Assumptions and decisions
are both represented by structure PositionCounterSet<T>, where T is a generic data
type. In our implementation, for both assumptions and decisions, T will be a timestamp.
PlayData is a struct that contains a position C and a counter k, the latter represented
by a vector of naturals. We noticed that C and k often appear as a tuple (C,k), which is
exacly what PlayData represents.

A notable feature that we want to highlight is that the function M∀ is implemented via
iterators: iterators in Rust are lazy, which allows us to iterate through elements of an
instance of Position::Adam(Vec<HashSet<Nat>>), and extract a move (b, i) whenever
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needed, rather than computing the whole set of moves from a specific position of ∀, and
then extracting one.

5.3.1.1.1 Input grammars We now give the grammar, in EBNF form, for systems
of fixpoint equations, symbolic ∃-moves, basis and the arity of the operators.

⟨eq_list⟩ ::= ⟨eq⟩ ⟨eq_list⟩ ; | ⟨eq⟩ ;

⟨eq⟩ ::= ⟨id⟩ =max ⟨or_exp_eq⟩ | ⟨id⟩ =min ⟨or_exp_eq⟩

⟨atom⟩ ::= ⟨id⟩ | ( ⟨or_exp_eq⟩ ) | ⟨custom_exp_eq⟩

⟨and_exp_eq⟩ ::= ⟨atom⟩ (and ⟨atom⟩)∗

⟨or_exp_eq⟩ ::= ⟨and_exp_eq⟩ (or ⟨and_exp_eq⟩)∗

⟨custom_exp_eq⟩ ::= ⟨op⟩ ( ⟨or_exp_eq⟩ (, ⟨or_exp_eq⟩)∗ )

⟨id⟩ ::= " ( a C-style identifier ) "

⟨op⟩ ::= " ( any ASCII string ) "

The grammar above represents a system of fixpoint equations. We notice that the syntactic
category ⟨and_exp_eq⟩ has a higher precedence than ⟨or_exp_eq⟩; by doing this we
enforce the precedence of operator ∧ over ∨. String ⟨op⟩ represents the name of an
operator provided by the user. If the goal is to parse µ-calculus formulas, ⟨op⟩ would
accept, for example, strings such as “diamond”, or “box”. Rule ⟨custom_exp_eq⟩ is a
custom operator: all operators in an instance of a system of fixpoint equations will appear
as functions with their respective arguments between parentheses, except for operators
and and or, which are conveniently already provided and are infix. A C-style identifier
respects the following regex pattern: [a-zA-Z_][a-zA-Z0-9_]*.
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⟨sym_mov_list⟩ ::= ⟨sym_mov_eq⟩ ⟨sym_mov_list⟩ ; | ⟨sym_mov_eq⟩ ;

⟨sym_mov_eq⟩ ::= phi ( ⟨id⟩ ) ( ⟨num⟩ ) = ⟨disjunction⟩

⟨conjunction⟩ ::= ⟨atom⟩ (and ⟨atom⟩)∗

⟨disjunction⟩ ::= ⟨conjunction⟩ (or ⟨conjunction⟩)∗

⟨atom⟩ ::= [ ⟨id⟩ , ⟨num⟩ ] | true | false | ( ⟨disjunction⟩ )

⟨id⟩ ::= " ( a C-style identifier ) "

⟨num⟩ ::= N

The grammar above represents the symbolic ∃-moves for the operators appearing in a
system of fixpoint equations. Note that, similarly to what we did for the grammar of
systems of fixpoint equations, the conjunction operator has precedence over disjunction
operator.

We now give the grammar of a basis: it is simply a list of strings separated by the new-line
character \n.

⟨basis⟩ ::= ⟨basis_elem⟩ \n ⟨basis⟩ | ⟨basis_elem⟩

⟨basis_elem⟩ ::= " ( any ASCII string ) "

The grammar specification of a language for specifying operator names and their arity
follows.

⟨arity⟩ ::= ⟨op_name⟩ ⟨num⟩ \n ⟨arity⟩ | ⟨op_name⟩ ⟨num⟩

⟨op_name⟩ ::= " ( a C-style identifier ) "

⟨num⟩ ::= N

5.3.1.2 Abstract syntax trees

In this section we describe the data structures we used to represent systems of fixpoint
equations, symbolic ∃-moves and symbolic ∃-moves after composition. We decided to use
different representations for the symbolic ∃-moves for the operators and for composed
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symbolic-∃-moves: the former are indexed by the name of a function (the operator), and
by a basis element, while the latter by a function in the system of fixpoint equations and
a basis element.

5.3.1.2.1 Systems of fixpoint equations In Figure 5.3, we show the structure
of a fixpoint equation. Fixpoint equation xi =η fi(x) is represented by struct FixEq. It
contains the name of the left-hand side variable, the value of η, i.e., if we want a least
or greatest fixpoint, and the function itself, represented by the enum ExpFixEq. The
right-hand side of a fixpoint formula is represented by the enum ExpFixEq, which is either
a custom operator or a variable. A custom operator is a recursive type defined by its
name and its parameters, that are ExpFixEq types as well.

Figure 5.3: Class diagram for the module fixpoint_system.

5.3.1.2.2 Symbolic ∃-moves Figure 5.4 displays the abstract syntax tree of the
symbolic ∃-moves for the operators. Formulas are inside struct SymbolicExistsMoves,
in vector formulas. Moreover, struct SymbolicExistsMoves contains mappings of both
basis elements and operators’ names to natural numbers. It follows that formulas can
be seen as a matrix with elements of the basis as columns and the operators as rows.
Let L be a complete lattice, f a monotone operator f : L → L and b ∈ BL; the index
of a formula φb in vector formulas is fun_map[f] * fun_map.len() + basis_map[b],
where fun_map[f] and basis_map[b] are the mappings of f and b to natural numbers
and fun_map.len() is the number of operators defined. A logic formula has the usual
interpretation: it is either an element of the basis, a conjunction or a disjunction (see
Definition 20). For the sake of convenience, we decided to add atoms false and true,
instead of checking whether conjunctions and disjunctions are empty.
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Figure 5.4: Class diagram for the module symbolic_moves.

Figure 5.5: Class diagram for the module symbolic_moves_composed.

5.3.1.2.3 Symbolic ∃-moves composed Figure 5.5 shows the internals of module
symbolic_moves_composed. A composed symbolic ∃-move for a function of a system
of fixpoint equations is a tree structure. We show in Figure 5.6 a tree representation
of a formula. Symbolic ∃-moves are stored in vector symbolic_moves and they are
indexed as in the representation of symbolic ∃-moves for operators. A formula is a type
Rc<Node<FormulaOperator>>, which intuitively is the root of a tree. Type Rc<T> is one
of Rust’s smart-pointer types: it is an immutable pointer to an object in the heap which
can be owned multiple times. In simpler terms, it is a pointer that can be copied multiple
times, and thus owned multiple times, without copying the object pointed to.

A instance of the struct Node contains a value, which in this context is instantiated
to LogicFormula and a vector of pointers to children nodes. The value of a node
is instantiated to enum LogicFormula. A LogicFormula is either a conjunction or a
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disjunction operator, or a leaf of the kind [b, i]. An atom true or false is a node without
children, i.e., an empty conjunction or an empty disjunction.

We also show the function compose which is the constructor of SymbolicExistsMoves:
as input, it takes a system of fixpoint equations, the operators’ symbolic ∃-
moves and a basis; it performs the composition and returns an instance of
symbolic_moves_composed::SymbolicExistsMoves.

Using a tree structure together with type Rc<T> removes the need of copying: whenever
we need to store a formula φ in the playlist ρ we simply clone the root pointer.

5.3.1.2.4 A DAG data structure for symbolic ∃-moves? Here we propose an
optimisation of the algorithm, which should speed up the reduction of a symbolic ∃-move
performed by Algorithm 2. This optimisation is not implemented in LCSFE due to time
constraints. It comes from the observation that in a formula the same subformula can
appear more than once. Using the current data structure for composed symbolic ∃-moves,
we can build a tree without duplication in atoms of the kind [b, i], just as in Figure 5.6. As
of now, the only purpose of this implementation is to improve, timewise, the composition
of formulas: each time we need an atom of type [b, i] we retrieve it from a buffer stored
in the SymbolicExistsMoves struct instead of creating a new atom each time. This is
not shown in Figure 5.5. Our intuition is that by having a high degree of sharing in a
formula, that is, identical subformulas are represented by a single object in memory, we
would improve Algorithm 2 when a symbolic ∃-move contains identical subformulas.

We see this as a future contribution, we provide more details in Section 6.1.

∨

∧ ∧

...
...

[b, i] ...

Figure 5.6: Tree representation of a formula, without duplication in the atoms.

5.3.2 The µ-calculus module

We now provide some details about the lcsfe-mu-ald module. This module requires two
different files as input. The first one is an Aldebaran specification, representing a labelled
transitions system, the second one is a µ-calculus formula. The Aldebaran syntax is a
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simple format for specifying labelled transition systems. It is widely used, most notably
by the CADP toolset [11]. Moreover, we require a starting node, from which the model
checking of the labelled transition system is carried out.

5.3.2.1 The µ-calculus grammar

We want to parse the following syntax, described with more details in Section 2.4.1.

A ::= a | true | ¬a
φ ::= t | f | x | φ ∨ φ | φ ∧ φ | µx.φ | νx.φ | ⟨A⟩φ | [A]φ

Where a ∈ Act and x ∈ PV ar. For the reasons set out in Section 5.2, we designed a
grammar that avoids left recursion as much as possible. The following EBNF grammar
describes a µ-calculus formula.

⟨atom⟩ ::= tt | ff | ( ⟨mu_calc⟩ ) | ⟨id⟩

⟨modal_op⟩ ::= < ⟨label⟩ > ⟨atom⟩ | [ ⟨label⟩ ] ⟨atom⟩

⟨conjunction⟩ ::= ⟨modal_op⟩ (&& ⟨modal_op⟩)

⟨disjunction⟩ ::= ⟨conjunction⟩ (|| ⟨conjunction⟩)

⟨fix_op⟩ ::= mu ⟨id⟩ . ⟨disjunction⟩ | nu ⟨id⟩ . ⟨disjunction⟩

⟨mu_calc⟩ ::= ⟨fix_op⟩ | ⟨disjunction⟩

⟨label⟩ ::= true | ⟨id⟩ | ! ⟨id⟩

⟨id⟩ ::= " ( a C-style identifier ) "

Moreover, we designed this grammar to respect some standard conventions: modal
operators [a] and ⟨a⟩ bind stronger than ∨,∧, and the fixpoint operators capture everything
after the . character. The consequence is that a formula µx(([a]x)∨ νy(⟨a⟩y ∧ f)) can be
written as µx.[a]x ∨ νy.⟨a⟩y ∧ f , minimizing the use of parenthesis. Whenever we wish
to add anything different from the syntactic categories t, f or x ∈ PV ar to a modal
operator, parentheses must be used, due to the inherent limitations of the type of parser
we used. This is expressed by the rule ⟨atom⟩.
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5.3.2.2 Symbolic ∃-moves for the µ-calculus

From a labelled transition system and a µ-calculus formula, we can compute the symbolic
∃-moves for the µ-calculus operators. Here we provide a definition for each operator, with
respect to the semantics described in Section 2.4. For each b ∈ BL, with L the powerset
lattice of the set of states S, represented by the nodes in the transition system:

• φ∪
b = [b, 1] ∨ [b, 2], for ∪ : L× L→ L;

• φ∩
b = [b, 1] ∧ [b, 2], for ∩ : L× L→ L;

• φ
[a]
b = ⋀︁{ [x, 1] | b a−→ x }, for each a ∈ Act, [a] : L→ L;

• φ
⟨a⟩
b = ⋁︁{ [x, 1] | b a−→ x }, for each a ∈ Act, [a] : L→ L;

• φt
b = true;

• φf
b = false.

In a formula where the operator [A] or ⟨A⟩ appears, with A = true, a symbolic ∃-move for
each a ∈ Act must be generated. If otherwise A = ¬a we generate all symbolic ∃-moves
for the modal operators, besides for operators [a], ⟨a⟩.

5.3.3 The parity game solver

We now provide some details about lcsfe-pg. As input, this module receives a file which
represents a parity game, which is then translated into a system of boolean fixpoint
equations. A system of boolean fixpoint equations is a system of fixpoint equations over
the complete lattice false, true, where false ⊑ true and only operators ∧ and ∨ appear.
We show a translation of a parity game into a system of boolean fixpoint equations in
Example 6. The user is also required to provide a starting node, from which the local
algorithm then search for a winning strategy for one of the players.

5.3.3.1 The PGSolver format

The parity game solver uses PGSolver’s grammar, which we show here with a brief
description.
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⟨parity_game⟩ ::= [parity ⟨identifier⟩ ;] ⟨node_spec⟩+

⟨node_spec⟩ ::= ⟨identifier⟩ ⟨priority⟩ ⟨owner⟩ ⟨successors⟩ [⟨name⟩] ;

⟨identifier⟩ ::= N

⟨priority⟩ ::= N

⟨owner⟩ ::= 0 | 1

⟨successors⟩ ::= ⟨identifier⟩ (, ⟨identifier⟩)∗

⟨name⟩ ::= " ( any ASCII string not containing ‘"’) "

The ⟨identifier⟩ in ⟨parity_game⟩ should be the maximum priority of the parity game
described in the file. In PGSolver it is used for a more efficient parsing. It is ignored in
the parser we have developed. Each line in the file describes a node, uniquely identified by
⟨identifier⟩, and optionally a string. Each node is then coupled with its priority, owner,
and a list of successors.

5.3.3.2 Symbolic ∃-moves for systems of boolean fixpoint equations

From the parity game specification we generate a system of boolean fixpoint equations.
The next step is to extract, or rather, compose, the corresponding symbolic ∃-moves. Note
that in a system of boolean fixpoint equations only operators ∧ and ∨ appear. For b ∈ BL,
where L is the boolean lattice { false, true }, with false ⊑ true, and BL = { true }, the
symbolic ∃-moves for both operators are the following:

• φ∧
b = [b, 1] ∧ [b, 2], for ∧ : L× L→ L;

• φ∨
b = [b, 1] ∨ [b, 2], for ∨ : L× L→ L.

5.4 Examples and performance considerations

In this section we show three examples of executions of LCSFE. We solve the same three
examples with Oink and mCRL2. We use them to discuss the performance of our tool.
All tests are performed on the same machine: a laptop powered by an AMD Ryzen 5 5500
processor and 8 gigabytes of RAM, with the Linux kernel 6.5.11.

We use the following parity game, which is the same in Figure 2.1.

parity 4;
0 6 1 4,2 "Africa";
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4 7 1 0 "Antarctica";
1 5 1 2,3 "America";
3 6 0 4,2 "Australia";
2 8 0 3,1,0,4 "Asia";

We want to know whether player ∃ wins from node Antarctica: to do that we run the
following command.

> cargo run -r -- pg tests/parity_games/test_03.gm Antarctica

File test_03.gm contains the game specification. The command cargo run -r compiles
and runs LCSFE in release mode, which creates an optimised executable. The compilation
might take a few seconds. Then, aside from the compilation messages, the output is the
following.

Preprocessing took: 0.000022963 sec.
Solving the verification task took: 0.000010881 sec.
Result: Player 1 wins from vertex Antarctica

There is a preprocessing phase before running the local algorithm. The preprocessing
phase encompasses extracting the fixpoint system from the specification and generating
and composing the symbolic ∃-moves. For parity games, the preprocessing phase consists
in extracting the system of boolean fixpoint equations and composing the moves, there are
only two operators in a system of boolean fixpoint equations, ∧, ∨ and we provide symbolic
∃-moves for both by default. In the case of lcsfe-mu-ald, the preprocessing comprises
extracting the system of fixpoint equations from the µ-calculus formula, generating the
symbolic moves for each operator appearing in the formula, instantiated to the labelled
transition system provided as input and composing them to symbolic ∃-moves.

We solve the same parity game on the same machine with Oink, via the following command.

> oink tests/parity_games/test_03.gm -p

The output of the command is shown below.

[ 0.00] parity game with 5 nodes and 11 edges.
[ 0.00] parity game reindexed
[ 0.00] parity game renumbered (4 priorities)
[ 0.00] no self-loops removed.
[ 0.00] 2 trivial cycles removed.
[ 0.00] preprocessing took 0.000017 sec.
[ 0.00] solved by preprocessor.
[ 0.00] total solving time: 0.000033 sec.
[ 0.00] current memory usage: 4.62 MB
[ 0.00] peak memory usage: 4.75 MB
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[ 0.00] won by even: America Asia Australia
[ 0.00] won by odd: Africa Antarctica

In this very simple example, LCSFE performance is on par with Oink’s, even though Oink
finds the global solution, instead of just a winner from a node.

The next examples come from the mCRL2 tutorial, which can be found at the following
link: https://www.mcrl2.org/web/user_manual/tutorial. We want to solve two
problems. The first problem we solve is “The Rope Bridge”: we want to know whether
four adventurers can cross a bridge in 17 minutes. We have the following constraints:
no more than two persons can cross the bridge at once and a flashlight needs to be
carried by one of them every crossing. The adventurers have only one flashlight at their
disposal. They are not all equally skilled: crossing the bridge takes them 1, 2, 5 and 10
minutes, respectively. A pair of adventurers cross the bridge in an amount of time equal
to that of the slowest of the two adventurers. We define the following µ-calculus formula:
µX.t ∨ ⟨true⟩(⟨report(17)⟩X).

To use a mCRL2 specification in LCSFE, we convert it to a labelled transition system in
Aldebaran format, using the tool ltsconvert, from mCRL2’s toolset. Then we run our
tool. The resulting transition system has 102 states, and 177 transitions.

> cargo run -r -- mu-ald tests/example_mucalc/bridge-referee.aut \
tests/example_mucalc/receive-17 0

We pass as input to the command line interface the Aldebaran specification file,
bridge-referee.aut, and the file containing the µ-calculus formula. We want to perform
local model checking from state 0 of the labelled transition system. Follows the output of
the command.

Preprocessing took: 0.000235959 sec.
Solving the verification task took: 0.000004718 sec.
Result: The property is satisfied from state 0

To do the same with mCRL2, we run the following commands. We first need to translate
the mCRL2 specification the to .lps, which is a file format used internally by mCRL2.

> mcrl22lps bridge-referee.mcrl2 bridge.lps

The command below takes a µ-calculus formula, in formula_A-final.mcf, and the file
we have just generated, bridge.lps, and builds a type of system of boolean fixpoint
equations, called parameterised boolean equation system. This process took 0.017395
seconds to finish.

> lps2pbes --formula=formula_A-final.mcf bridge.lps bridge.pbes --timings

Finally, we solve the model checking task via the following command.
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> pbes2bool -rjittyc bridge.pbes --timings

The output is the following.

true
- tool: pbes2bool

timing:
instantiation: 0.009156
solving: 0.000032
total: 0.038423

In this small instance our tool actually performs better than mCRL2. That is because
during the composition of symbolic ∃-moves we are able to simplify every formula to true:
in the µ-calculus formula there is a disjunction and one of the disjunct is t.

We now describe the next specification: “Gossips”. There are five agents, each have
an information that must be shared to all of the others. Agents share information by
making phone calls, and each time they share every secret they have come to know.
We want to check whether this system is deadlock free. To do so we use the following
µ-calculus formula: φ = νX.⟨true⟩t∧ [true]X. The result of the conversion of the mCRL2
specification to Aldebaran format is a labelled transition system with 9152 states and
183041 transitions.

> cargo run -r -- mu-ald tests/example_mucalc/gossips.aut \
tests/example_mucalc/deadlock-liveness 0

As input, we pass to the command line interface the Aldebaran specification file,
gossips.aut and the file containing the µ-calculus formula. We want to perform local
model checking from state 0 of the labelled transition system.

Preprocessing took: 0.16171992 sec.
Solving the verification task took: 5.695183 sec.
Result: The property is satisfied from state 0

We run the same commands as before, until we reach the following output.

true
- tool: pbes2bool

timing:
instantiation: 1.397916
solving: 0.002444
total: 1.424587

We see that now mCRL2 is much faster. Moreover, during the execution of LCSFE we
experienced a stack overflow: due to the recursive nature of the local algorithm we employ
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the recursive calls filled a stack of 8 megabytes of size. In order to solve this verification
task we incremented the size of the stack.
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6
Conclusions

In this thesis we explored a game-theoretic view of systems of fixpoint equations over
complete lattices, which arise in several verification tasks. The idea is to exploit a game
theoretical characterisation of the solution of a system of fixpoint equations in terms of a
parity game called powerset game. In view of an implementation, in order to improve the
efficiency of the verification process one can introduce a notion of selection, which allows
us to restrict the moves of one of the two players, namely, the existential player, without
losing the completeness and correctness of the game. Moreover, a logic can be used to
represent the moves of the existential player symbolically. The semantics of this logic is
designed in a way that there is a connection between formulas of this logic and selections.
Concretely, from a formula, we are able to generate moves for the existential player. This
thesis contributes to the theoretical framework described in [2] and [17]. We proved that
symbolic ∃-moves, in Definition 22, can be composed: we can build a symbolic ∃-move for
a function that combines many monotone operators, provided that we have a symbolic
∃-move for each one of them. We also showed that by using the logic we described in
Definition 20, we can always represent sets that are upwards-closed with respect to ⊑∧

H.

Inspired by the theory in [2] and [17], we proposed a concrete local algorithm for verifying
solutions of systems of fixpoint equations over complete lattices. Even though some
description of the basic procedures was already given in [2], [17] here we presented the
algorithm in a much more detailed way. We first defined the various components of the
algorithm using pseudocode. This was the first step towards an actual implementation.
We built a tool, LCSFE, which shows two applications of our theory, on parity games and
on the µ-calculus over labelled transition system. We decided not to limit our tool to only
the verification of local solutions for systems of boolean fixpoint equations and systems
stemming from µ-calculus formulas. In fact, the user can input any monotone operator
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over a complete lattice, provided that it is possible to define a symbolic ∃-move for it. By
doing this we are able to encode in our theoretical framework many types of verification
logics.

6.1 Future contributions

Unfortunately, due to time constraints we are not able to build a benchmark suite for
properly exploring the performance of our tool. We were able to observe that our recursive
algorithm, described in Chapter 4, can cause stack overflow on examples of a certain size.
Thus, as a future improvement, it could be useful to convert the local algorithm, which is
currently recursive, to an iterative form.

Improvements to LCSFE could also come in the form of a smarter data structure for
representing symbolic ∃-moves. In Section 5.3.1.2.4 we discussed a possible optimization
for simplifying a formula during the execution of the local algorithm. This optimisation
would require using a DAG (Directed Acyclic Graph) structure: ideally, we would like to
represent a formula with some degree of sharing between nodes. The goal is to modify
at once identical subformulas in a symbolic ∃-move. Whenever we modify a formula in
Algorithm 2, identical subformulas, which in a DAG would be represented by the same
object in memory, are modified at once. In the current implementation, whenever we
need a formula during the execution of the local algorithm, we retrieve the root node. We
cannot directly modify any of the nodes of a formula, since otherwise we would modify
the original formula, which we might need more than once. Thus, we build an entirely
new tree each time we use the Reduce function, and we reuse the nodes that do not
need modifications. This, arguably, requires the least number of copies. Intuitively, we
are modifying pointers each time we modify a formula. Instead, this optimisation requires
us to modify the object referenced by the pointer directly, which might be pointed to
by many other nodes. The consequence is that whenever we prune an atom [b, i] from
the tree of the formula, i.e., when [b, i] becomes either true or false after an execution
of Algorithm 3, all atoms [b, i] are changed at once. This optimization could then be
extended to entire subformulas during the invocation of Simplify by Algorithm 2. That
is, if a formula contains identical subformulas, once we find that a subformula can be
reduced to an atom true or false, they are all modified at once. In practice, we think
that this kind of optimisation would require significant modifications to the data structure
used for composed symbolic ∃-moves, and that it would require using a persistent data
structure [7] along with the DAG. By using a persistent data structure, we could effectively
modify formulas without causing side-effects on the original symbolic ∃-moves. We did
not find instances of formulas with identical subformulas in our pool of examples from
parity games and µ-calculus properties. Still, we think that this could very well happen
in other types of verification logics.
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Additionally, even though we can rely on the original proof to make an informal argument
explaining how it can be adapted to the new version of the algorithm (see Section 4), a
completely formal proof of correctness would be desirable.

As mentioned before, systems of fixpoint equations are ubiquitous in the setting of formal
system verification, ranging from behavioural equivalence (like bisimilarity) to various
kinds of qualitative and quantitative logics in the style of the µ-calculus, to static analysis.
Hence, it could be interesting to explore the use of this theoretical framework in a number
of other contexts. Including a new specification formalism into the tool will require a
module that given a system and a property of interest constructs the corresponding system
of equations and the associated symbolic ∃-moves, as we already did for the µ-calculus
and for parity games. For instance, one might be interested in quantitative models and
properties, capturing features like time, probabilities or costs. The Łukasiewicz µ-calculus,
considered in [18] as a precursor to model-checking PCTL or probabilistic µ-calculi is a
type of probabilistic logic. The Łukasiewicz logic can be encoded to a system of fixpoint
equations over the set of reals [0, 1]. Since quantitative models of this kind typically have
an unlimited number of states, we need to define suitable abstractions: an example is a
form of discretisation where we consider a fixed number of elements from [0, 1]. This topic
is developed further in [2].

Another area from which improvements could come are up-to functions. Up-to functions
can be applied to systems of fixpoint equations, while preserving the solution of the
original system. Moreover, we can enhance our algorithm by using up-to functions, while
keeping soundness and correctness. This idea has already been studied extensively in [2].
Further study is needed in order to integrate up-to functions in our local algorithm, more
precisely, the question of whether it is possible, and if so how, to represent such functions
through symbolic moves.
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