
Dipartimento di Ingegneria dell’Informazione

Master’s degree in Computer Engineering

MASTER’S DEGREE THESIS

MONITORING AT HIGH SCALE
FOR VERY HETEROGENEOUS

DISTRIBUTED SYSTEMS

Supervisor:
Prof. Francesco Silvestri

Student:
Leonardo Bellin

Academic year 2023/2024

Graduation date 15/10/2024

Contents

Abstract 3

1 Introduction 5

2 Typical Monitoring Systems in the Industry 7

2.1 Nagios . 7

2.1.1 Software Architecture and Functionality 8

2.1.2 Plugins . 9

2.1.3 Strengths and Weaknesses . 10

2.1.3.1 Strengths . 10

2.1.3.2 Weaknesses . 11

2.2 Zabbix . 12

3 The Old Monitoring System at The Company 13

3.1 Overview . 13

3.2 Components . 13

3.2.1 Prometheus . 13

3.2.1.1 Features . 14

3.2.1.2 Metrics . 14

3.2.1.3 Components . 15

3.2.1.4 Architecture . 15

3.2.1.5 PromQL . 17

3.2.1.6 Strengths and Weaknesses 18

3.2.2 Grafana . 18

3.2.2.1 Alerting . 20

3.2.3 PostgreSQL . 21

3.2.4 Cortex . 21

3.2.4.1 Distributor . 22

3.2.4.2 Ingester . 23

3.2.4.3 Hash ring . 23

3.2.4.4 Querier . 23

3.2.4.5 Compactor . 23

3.2.4.6 Store Gateway . 24

3.2.4.7 Optional Services . 24

3.2.4.8 Challenges in Horizontal Scalability 24

3.3 Architecture . 25

3.4 Limitations and Challenges . 27

2

4 The New Monitoring System at The Company 29
4.1 Overview . 30
4.2 Architecture . 30
4.3 Components . 31

4.3.1 Mimir . 31
4.3.2 Loki . 32

4.3.2.1 Loki Stack . 32
4.3.2.2 LogQL . 33

4.3.3 Sentry . 36
4.3.3.1 Error Monitoring . 37

4.3.4 PagerDuty . 39
4.3.4.1 Key Features and Strengths 40

4.4 Logging . 42
4.5 Challenges . 43
4.6 Ephemeral Jobs . 43
4.7 Alerting . 44

4.7.1 Alerting rules . 44
4.7.1.1 Alert rule evaluation . 45
4.7.1.2 Alerting instances . 46
4.7.1.3 Notifications . 47
4.7.1.4 Recording Rules . 49
4.7.1.5 Architecture . 49

4.8 Error Rate monitoring . 49
4.8.1 SLIs . 49
4.8.2 SLOs . 50

5 Analysis 53
5.1 Theoretical Analysis . 53

5.1.1 Evaluation Criteria . 53
5.1.2 Parameters . 54

5.1.2.1 Fixed parameters . 54
5.1.2.2 Variables . 54

5.1.3 Cost analysis . 55
5.1.4 Scalability analysis . 58
5.1.5 Traffic Spikes analysis . 58
5.1.6 Maintenance analysis . 59
5.1.7 Summary . 59

5.2 Simulations . 60
5.2.1 Scenario 1 . 60
5.2.2 Scenario 2 . 61
5.2.3 Scenario 3 . 62

6 Conclusions 63
6.1 Results . 63
6.2 Future Work . 63

3

Abstract

As the portfolio of products of a company expands, so do the number of components to keep
track of, and with that, it also highly increases the complexity of the systems in place.
For product based companies it is essential to have a deep and responsive monitoring system,
in order to promptly identify, respond and fix critical issues.
This thesis will present a state-of-the-art monitoring system developed for a real-world, fast-
growing enterprise to deal with this situation. Given the scope of The Company, largely
based on acquisitions, and the volume of transactions, it is clear that the infrastructure
behind all the different products will be extremely heterogeneous and time-critical, and as
such, a very flexible and efficient monitoring solution will need to be implemented.
This thesis will also highlight the main key strengths that such a model offers, demonstrating
practical real-life scenarios and situations, comparing it with the old system that was in place
in The Company as well as some other typical monitoring solutions that are commonly found
in the tech industry. The analysis focuses on a several main aspects, such as cost, ease of
setup and use, scalability and resilience to traffic spikes.

4

Chapter 1

Introduction

With the rapid increase of complexity in the software industry [1] and the rising demand in
scalability [2], comes the need for all companies to consistently and effectively keep an eye
out for issues that will inevitably happen to any system, be them caused by human mistakes,
provider outage or hardware failure.
It goes without saying that in a trillion dollar industry [3], such as the software one, even
small interruptions in their services cost companies billions of dollars per year [4]. That’s
why all the so called ”big-tech” invest heavily on research and development into new, cutting-
edge and always better monitoring systems to reduce the loss to a minimum [5].

This is a piece that is often overlooked by small and medium companies, as they do not see
the trade-off between time spent and cost to implement such a monitoring system and the
savings that it entails as a beneficial one. The aim of this study is to show that this is not the
case, and provide a practical, state-of-the-art solution that is not only easily implemented by
small and medium companies, but also scalable and future proof, so that the maintenance
time of such system does not become a burden on the company’s costs. With the goal to be
as generic therefore useful for most companies, it is also designed to be flexible, easily fitting
both homogeneous and heterogeneous systems, as well as both centralized and distributed
ones.

This study is based on the ongoing effort to implement a better scalable monitoring system
in real-world, fast-growing enterprise, which is one of the biggest software house in Italy.
Throughout this study, it will be referred as The Company.
The business model of this company, which relies on acquisitions of new products, has led it
to grow exponentially in the last 10 years, proving its very high upsides in term of growth.
It, although, has certainly also shown one of its biggest downsides: the mix of technolo-
gies used proves really tough to overcome and requires years of hard work before a sort
of company-wide standards is reached. Giving the now spread portfolio of products and
huge money flows, it is clear that a very flexible, fast and scalable solution must be devel-
oped, in order to be fit for different technologies and prevent losses of money in case of issues.

The study will firstly give a brief overview of a typical monitoring system that can be found
in any small to medium company, analyzing its strengths, weaknesses and ways of improve-
ment. It will then give a detailed description of the old system that was in place in The

5

Company before the development of the new one, which will give a sense to what can be
typically found in bigger companies.
The fourth chapter will focus on the architecture of the new monitoring system, explaining
the structure and the working of each piece, as well as how they interconnect with one an-
other. This part aims at giving an in-depth insight on the whole system, giving an example
on how this works with microservices in The Company and what the workflow is.
The fifth chapter will try to analyze the models in both a theoretical and practical way,
using practical metrics, such as cost, time to setup and scalability, highlighting the benefits
and drawbacks of one over the others. It will try to support the results of the theoretical
analysis with some practical experiments, based on real life scenarios.
In the conclusion, the paper will outline future research directions based on promising tech-
nologies that have emerged in recent years, which address some of the inherent issues present
in current solutions.

6

Chapter 2

Typical Monitoring Systems in the
Industry

This section aims at giving a foundational monitoring system that we can assume as the
baseline for small and medium companies. This will help the analysis in chapter 5 at better
giving the scale of the improvements that an ad-hoc system would provide.
Clearly it is impossible to know what each company is using and hence derive an average
baseline becomes a very hideous task. Given the lack of information about this topic, which
is typically under industrial NDAs, this part will describe a system that is considered the
standard in the Industry.

Open-source software solutions are rapidly becoming the favourite choice in the domain of
infrastructure monitoring across both small and large enterprises. Small companies can
benefit from the cost-free nature of open-source tools, while large enterprises can leverage
their flexibility, allowing for extensive customization to meet specific needs.
These systems dominate the market because they combine the best of both worlds: they
are freely available, yet their developers often offer them as Software as a Service (SaaS)
with additional features and support, making them an excellent choice even for those who
want an out of the box solution. This approach combines the adaptability of open-source
software with the convenience and reliability of proprietary solutions, which is way this is the
preferred way for most monitoring developers. Among the hundreds of open-source projects,
Zabbix and Nagios have emerged as two of the most popular options in the last twenty years.

2.1 Nagios

Although Zabbix has been gaining significant ground in popularity and represents a much
broader range of applications, Nagios still largely holds the reputation of being the industry
standard for monitoring IT infrastructure. Over the years it has been acknowledged nu-
merous awards, including: Infoworld’s Best of Open Source Software (BOSSIE) 2008 Award
under the ”Server Monitoring” category [6], the Linux Journal Reader’s Choice 2009 award
for ”Favorite Linux Monitoring Application” from G. Jame, “Readers’ Choice Awards 2009”
[7], and for the 12th consecutive year, Nagios was named the Network Monitoring Application
of the Year at the LinuxQuestions.org Members Choice Awards [8]. Its strong orientation
toward IT operations has made it a representative of reliability and efficiency for big en-
terprise customers worldwide. That’s why industry leaders like Apple, IBM, Sony, PayPal,

7

NASA, Ford, HP, UPS, and McAfee have utilized Nagios for their critical monitoring needs
in the last twenty years [9].
With a long history in the industry, Nagios often becomes the main choice of organizations
looking for robust and reliable monitoring solutions.
Given its status as the industry standard, and considering that this study is particularly
focused on IT infrastructure monitoring, we will take Nagios as the baseline monitoring tool
for our analysis. This will help to better understand its efficiency at managing and main-
taining complex and heterogeneous distributed systems against other alternatives, such as
the ones implemented at The Company.

From 2010 to 2015, Nagios Core has been one of the favorite open-source network monitoring
solutions and today counts more than 8 million downloads from official sources.
Although it is still loved by the monitoring community, its roaring popularity started to
decrease around 2016. It is believed that this loss of interest started when other more auto-
matic and easier-to-deploy tools started to appear.

Figure 2.1: Nagios Core downloads over the years from SourceForge.net [10]

2.1.1 Software Architecture and Functionality

Nagios architecture follows the simple client-server network pattern:

• The Nagios client is the host that we want to monitor. This monitored object, which
can be either local or remote, runs a Nagios agent in the background that is in charge
of collecting metrics data such as CPU, memory and network usage. It then sends it
back to the server for data recollection and elaboration.

• The Nagios server, on the other hand, is usually a Linux platform hosting the Nagios
Core monitoring application. The Nagios Core server is responsible for scheduling,
executing, processing and managing events and alerts for all the monitored objects.

The Nagios client-server communication flow works with a three steps process:

• The server periodically sends instructions to the monitored objects to execute one or
more plugins and scripts. It then stores and processes the results of these instructions.

8

• The remote agents running the Nagios plugins gather the status requested by the server
(i.e. the specific metric that the server requests) and send them back to the Nagios
process scheduler. The Nagios client may get either active or passive checks: active
checks are periodically requested by the Nagios server through plugins and use either
TCP/IP or SNMP protocols (for example http status checks), passive checks, on the
other hand, gather performance data from application servers directly without the need
for the Nagios Core server to request them (for example hardware performance).

• Finally the Nagios scheduler process in the Nagios Core server updates the Graphical
Web Interface (GUI) and sends notifications (or alerts) via SMS or emails back to the
admin. In addition, the performance data from passive checks can be saved in a Long
Term Storage (LTS) like a database to be used for graphing.

Figure 2.2: Nagios client-server flow

2.1.2 Plugins

Without plugins, Nagios Core wouldn’t work. Plugins are essential extensions of Nagios
Core that help monitor anything, indeed, it does not include any internal mechanisms for
checking the status of hosts and services on the network by default and instead relies on
external programs (plugins) to do all the dirty work.
Plugins in practice are compiled executables or scripts (Perl scripts, shell scripts, Python,
PHP, Ruby, etc.) that can be run from a command line to check the status or a host or
service. Nagios Core uses the results from them to determine the current status of hosts and
services on the network of interest.
Nagios Core will execute a plugin whenever there is a need to check the status of a service
or host. The plugin does its magic to perform the check and then simply returns the results

9

to Nagios Core, which will then process the results that it receives and take any further
necessary actions such as running event handlers, sending out notifications, etc.

Plugins act as an abstraction layer between the monitoring logic present in the Nagios Core
daemon and the actual services and hosts that are being monitored.
The upside of this type of plugin architecture is extensibility, that is, you can monitor just
about anything if you can automate the process of checking something. There are already a
lot of plugins that have been created in order to monitor basic resources such as processor
load, disk usage, ping rates, etc.
The downside to this type of plugin architecture is the fact that Nagios Core has absolutely no
idea what it is that it is monitoring. It could be anything between network traffic statistics,
data error rates, room temperate, CPU voltage, fan speed, processor load, disk space, etc.
Nagios Core will not understand the difference between them and the specifics of what’s
being monitored, it just tracks changes in the state of those resources. The separation of
concerns makes it so only the plugins themselves know exactly what they’re monitoring and
how to perform the actual checks.

Figure 2.3: Nagios Core Plugin architecture diagram. Source: [11]

2.1.3 Strengths and Weaknesses

Below, the key strengths and weaknesses of the platform are listed.

2.1.3.1 Strengths

Nagios has several key advantages that contribute to its widespread adoption in the IT
community, including:

10

• Free and Open source: One of the primary advantages of Nagios Core is its open-
source nature, which allows users to access and modify the source code freely. This
feature makes it particularly attractive to small companies that do not have to pay for
a service and for large organizations, as they can tailor the software to meet specific
monitoring needs without incurring licensing costs.

• Active Community: The Nagios community has grown to quite a decent number in
the last decades, and even if it has seen some decline lately, it still actively supports
and develops the software, providing extensive resources such as plugins, forums and
a comprehensive knowledge base.

• Robust and Wide Monitoring Capabilities: Despite being a free tool, Nagios
Core is as robust as many commercial solutions, offering comprehensive monitoring
capabilities. It can collect a wide range of metrics, such as CPU usage, memory
consumption, disk usage, and network latency, among others. Nagios Core is capable of
monitoring virtually any network device, host, or server, making it an all-encompassing
solution for various IT environments.

• Extensibility and Flexibility: Nagios Core’s plugin architecture is another signifi-
cant strength, allowing for extensive customization. The core system can monitor basic
system metrics using standard plugins. However, as monitoring needs evolve, admin-
istrators can integrate third-party plugins or develop custom ones to extend Nagios
Core’s functionality. This flexibility enables the monitoring of nearly any conceivable
parameter, provided it can be automated.

• Integration Capabilities: Nagios Core can integrate with a multitude of existing
services and tools, enhancing its utility within diverse IT environments. For example,
it can be integrated with email services for alert notifications, graphical tools for data
visualization, dashboards for centralized monitoring, and log management tools for
deeper analysis. This versatility ensures that Nagios Core can work seamlessly within
existing infrastructure.

• Licensed Solution: Nagios also offers a paid out-of-the-box solution called Nagios
XI, which meets the need of those with little expertise, allowing little to no effort
setting up the monitoring system while benefiting from practically the same features
as Nagios Core. This is Nagios main tool in the later years, and since the underlying
architecture is very similar to Nagios Core, the later analysis will focus on it.

2.1.3.2 Weaknesses

While Nagios is a powerful monitoring tool, it does have several limitations that may pose
challenges, particularly in more complex environments:

• Scalability: One of the major drawbacks of Nagios Core is its limited scalability.
While it performs well in small to medium-sized networks, managing large-scale dis-
tributed networks can become cumbersome. As the network grows, administrators of-
ten find it necessary to decentralize Nagios Core by creating multiple instances, which
complicates management and increases the overhead associated with maintaining the
system.

• User Interface: Nagios Core includes a graphical user interface, but it is frequently
criticized for being unintuitive and difficult to navigate. Configuring multiple hosts

11

and services through the GUI can be challenging, especially for users who are new to
the platform. Nagios XI mostly solves this issue, offering a much more user-friendly
interface and allowing administrators to perform all configurations through the GUI.

• Requirement for Technical Expertise: Nagios Core’s flexibility comes with a steep
learning curve. System administrators need advanced Linux knowledge to manually
configure plugins, adjust file and directory permissions, and manage log files. Unlike
Nagios XI, which automates many of these processes, Nagios Core requires significant
manual intervention, which can be a barrier for less experienced users or smaller teams.

• Complexity in Configuration: The flexibility of Nagios Core, while beneficial, also
results in a complex configuration process. The minimalistic design philosophy of
Nagios often leads to a lack of user-friendly features, such as an interactive interface or
automatic device discovery. Users must often rely on community-developed add-ons or
plugins to overcome these limitations. However, some challenges, particularly related
to distributed monitoring and multi-site configurations, remain unresolved.

• Difficulty to Tailor Ad-Hoc Solutions: The flexibility and reliability of the product
to plugins becomes a double-edged sword: while it provides extensive community-built
plugins, it fails to deliver an easy way to develop a new one, tailored to specific needs.
This acts as a barrier for companies that cannot afford the time to develop an ad-hoc
plugin or lack the expertise to do so.

In conclusion, while Nagios Core offers a simple and open-source solution for monitoring, it
has some major drawbacks that partially come from its core structure with plugins. Nagios
XI resolves some of these issues at the cost of being a commercial licensed software. While it
is not open-source, it is often regarded as the evolution of Nagios Core, and nowdays there
are plugins to mimic Nagios XI behavior, hence they are usually both just called Nagios,
with one being the open-source solution and the other being the licensed one.

2.2 Zabbix

Developed a bit more lately than Nagios, Zabbix received a host of very significant awards,
including ”The Most Open Solution” by the Latvian Open Technologies Association [12] and
the April 2019 Customers’ Choice for IT Infrastructure Monitoring Tools on Gartner Peer
Insights [13].
Zabbix is acknowledged for its great flexibility and adaptability to many other industries
apart from IT, such as environmental monitoring, industrial automation, and even health-
care. This flexibility has made it the selection of choice of famous institutions like the
European Space Agency and the University of Oslo, further underpinning its status as a
solid and powerful monitoring solution still in wide use within the industry circles.
Its functionality is similar to that of Nagios, as both are out-of-the-box solutions. However,
due to the resemblance between the two software and the fact that Zabbix is more widely
adopted in non-IT-specific industries such as Energy, Healthcare, Banking and Finance,
Retail, Government, and Education, this study will focus solely on Nagios, which is more
aligned with the context of our case study.

12

Chapter 3

The Old Monitoring System at The
Company

3.1 Overview

As The Company became more and more dominant in the market, there was an ever growing
need for a better monitoring solution. This was mainly due to the rapidly expanding portfolio
of apps that the company was managing, which counted at the time a few dozens of apps,
several of which with millions of monthly users.
It goes without saying that numbers that high inevitably lead to some mistakes or service
outages, which can cost upwards of tens of thousands of dollars per hour.
Given the company’s rigorous standards, the monitoring system was required to approach
the state of the art and offer a high degree of expressiveness. To meet this goal, Prometheus
was introduced into the stack, as it is highly regarded as having over-the-top expressive
capabilities.

3.2 Components

The system made use of several services, such as Prometheus or Grafana. The following
section aims at giving a detailed overview of each of them.

3.2.1 Prometheus

Prometheus is an open source software application used for event monitoring and alerting.
It was developed in 2012 by former Google employees working at SoundCloud and written in
Go. Its main purpose was to meet their needs of multi-dimensionality, operational simplicity,
scalability, and a powerful query language, all in a single tool.
Over the years, Prometheus has evolved into one of the most user-friendly monitoring services
available. The project continues to thrive, supported by a vibrant community of developers
and users.
It is now an independent open-source project, maintained separately from any corporate in-
fluence. Highlighting its importance and governance, Prometheus became the second hosted
project under the Cloud Native Computing Foundation (CNCF) in 2016, following Kuber-
netes.

13

This software is used as a metric generator and its duty stops at exposing said metric.
Therefore another system will be needed to handle the collection, aggregation and querying
of the metrics.

3.2.1.1 Features

Prometheus offers several main features, such as:

• A sophisticated data model that organizes time series data using metric names and
associated key/value pairs.

• The use of PromQL, a versatile query language designed to exploit the full potential
of the data model.

• Independence from distributed storage systems, allowing each server node to operate
autonomously.

• Time series data is collected using a pull mechanism over HTTP.

• The system supports time series data pushing through an intermediary gateway.

• Target discovery is handled through either service discovery mechanisms or static con-
figurations.

• A variety of options for graphing and creating dashboards to visualize data.

3.2.1.2 Metrics

Prometheus collects and stores its metrics as time series data, meaning that each metric
is recorded with a corresponding timestamp and optional key-value pairs known as labels,
which are sometimes called dimensions. In simple terms, metrics are numerical measurements
that track various aspects of an application’s performance over time. The specific metrics to
be monitored can vary depending on the application: for a web server, it might be request
durations, while for a database, it could be the number of active connections or queries.
Metrics are crucial for diagnosing and understanding an application’s behavior. If a web
application experiences performance issues, metrics can assist in identifying the underlying
cause. For example, if the application slows down as the number of requests increases, the
request count metric can help identify the issue and guide actions such as scaling up the
number of servers to handle the increased load.
The Prometheus client libraries offer four core metric types:

• Counter: A cumulative metric that represents a single monotonically increasing
counter whose value can only increase or be reset to zero on restart (useful for number
of requests, number of errors, etc.).

• Gauge: A metric that represents a single numerical value that can arbitrarily go up
and down (useful for hardware statistics such as CPU utilization, number of replicas,
etc.).

• Histogram: A histogram samples observations (usually things like request durations
or response sizes) and counts them in configurable buckets. It also provides a sum of
all observed values. A histogram exposes multiple time series during a scrape such as
cumulative counters for the observation buckets, the total sum of all observed values

14

and the count of events that have been observed. It also provides easy access to quan-
tiles from histograms that are especially useful when one wants to compute percentiles,
such as when computing the 99 percentile of an API response time.

• Summary: Similar to a histogram, it also provides a total count of observations and
a sum of all observed values. Furthermore, it also exposes streaming φ-quantiles (0 ≤
φ ≤ 1) of observed events

3.2.1.3 Components

The Prometheus ecosystem comprises several components, many of which are optional:

• The core Prometheus server, responsible for scraping and storing time series data.

• Client libraries for instrumenting application code.

• A push gateway for handling short-lived jobs.

• Specialized exporters for services like HAProxy, StatsD, Graphite, and others.

• An alert manager to manage and process alerts.

• Various supporting tools.

Most Prometheus components are written in Go, making them easy to build and deploy as
static binaries.

3.2.1.4 Architecture

Here is a diagram highlighting the architecture of the whole system.

Figure 3.1: Prometheus architecture diagram. Source: [14]

In the figure we can see in orange all the main components depicted in the precious section,
together with some other components that aim at demonstrating how the whole Prometheus
architecture interfaces with other external tools such as Grafana for visualization of data.

15

The main elements are:

1. Prometheus Server

• Central Component: The Prometheus server retrieves (or ”scrapes”) metrics data
from various targets, stores this data in its time-series database (TSDB), and
makes the data available through its HTTP server.

• Data Storage: The metrics are stored on local disk (HDD/SSD) in a time-series
format, allowing Prometheus to perform efficient queries on historical data.

2. Prometheus Targets

• These are the sources from which Prometheus scrapes metrics, including long-
running jobs and exporters that expose metrics in a format that Prometheus can
consume.

• The scraping mechanism operates on a pull model, where the Prometheus server
actively retrieves data from these targets.

3. Pushgateway

• Short-lived Jobs: For ephemeral jobs that may terminate before Prometheus
scrapes them, the Pushgateway serves as an intermediary.

• Push Metrics at Exit: Metrics are sent to the Pushgateway when these jobs
complete, ensuring their performance data is not lost.

4. Service Discovery

• Automatic Target Detection: Prometheus can automatically discover targets to
scrape using service discovery mechanisms like Kubernetes or static files.

• This helps in dynamically adjusting the monitoring scope as the infrastructure
changes.

5. Prometheus Alerting

• Alertmanager: Prometheus can generate alerts based on metrics data when cer-
tain conditions are met.

• These alerts are processed by the Alertmanager, which can notify stakeholders
through various channels like email or third-party services (e.g., PagerDuty).

6. Data Visualization and Export

• Prometheus Web UI: Prometheus has a built-in web interface that allows users
to run queries (using PromQL) and visualize metrics directly.

• Grafana: For more advanced visualization, Prometheus data can be exported to
Grafana, which supports rich dashboards and various graphing options.

• API Clients: Prometheus also supports other API consumers, enabling integration
with external systems for further data processing or visualization.

16

3.2.1.5 PromQL

Prometheus features a powerful query language known as PromQL (Prometheus Query Lan-
guage), enabling real-time selection and aggregation of time series data. The outcomes of
these queries can be visualized as graphs, displayed as tabular data in Prometheus’s expres-
sion browser, or accessed by external systems through the HTTP API.
PromQL stands out for its flexibility and expressiveness, enabling users to perform complex
queries that provide deep insights into the behavior of monitored systems. For instance,
PromQL allows for on-the-fly calculations, filtering, and aggregation of time series data.
One powerful feature is the ability to compute rolling averages over time with range vectors,
which is crucial for smoothing out short-term fluctuations and observing long-term trends.
For example, the query

avg over time(http requests total[5m] offset 5m)

calculates the average number of HTTP requests over a 5-minute window that occurred
between 10 minutes ago and 5 minutes ago, helping to identify periods of increased traffic.
The offset feature is typically very useful when creating dynamic thresholds for alerts.
Additionally, PromQL supports conditional logic, allowing users to filter and alert on specific
conditions. A query like

rate(cpu usage seconds total{job="app-server"}[1m]) > 0.8

could be used to monitor CPU usage, triggering an alert if any application server with the
job attribute set to app-server exceeds 80% CPU utilization over the last minute. As
stated before, instead of using a hard threshold of 0.8 we could instead use a dynamical one,
such as ”twice the amount of average CPU used in the previous day”, with the query

rate(cpu usage seconds total{job="app-server"}[1m]) >

2 * avg over time(rate(cpu usage seconds total{job="app-server"}[1m])
[24h] offset 24h)

Filtering can also be done by means of regular expressions by using the operator =∼,
for example supposing there are three replicas named rep-a, rep-b and replica-c, the
query

http requests total{replica!="rep-a",replica=∼"rep.*"}

would match only

http requests total{replica="rep-b"}

There are many more functionalities that make PromQL a very powerful language and that
are highly used, such as subqueries, functions and an extensive list of ad-hoc operators. For
sake of simplicity we will avoid going in detail into these features, and instead just focus
on the simpler ones. It is clear, however, that with these capabilities, PromQL enables the
creation of highly specific and useful queries tailored to the needs of complex monitoring
environments, which is the key of what this study aims to demonstrate.

17

3.2.1.6 Strengths and Weaknesses

Prometheus is well-suited for recording purely numeric time series data, making it ideal for
machine-centric monitoring and highly dynamic service-oriented architectures, especially in a
microservices environment where its multi-dimensional data collection and querying capabil-
ities shine. Its design prioritizes reliability, allowing it to function effectively as a standalone
system during outages without relying on network storage or remote services. However, if
you need 100% accuracy for tasks like per-request billing, Prometheus may fall short, as
the collected data might not be detailed or complete enough for precise measurements. In
such scenarios, it’s best to use another system specifically for billing data, while leveraging
Prometheus for general monitoring purposes.

3.2.2 Grafana

Grafana has established as one of the main tools used for monitoring, taking the crown from
previous industry standards such as Nagios. Looking at the Google Trends search for the
two terms clearly reflects the change in roles the two software have had in the last decade.

Figure 3.2: Nagios vs Grafana Google Trend

Grafana is a powerful open-source platform designed for monitoring, visualization, and alert-
ing. It excels in providing users with the ability to create dynamic, real-time dashboards
that display metrics, logs, and traces from a wide array of data sources. Grafana’s flexibility
in connecting to various databases and monitoring systems, including time series databases
like Prometheus, makes it an indispensable tool for system administrators, developers, and
DevOps teams aiming to gain deep insights into their infrastructure and application perfor-
mance.

18

One of Grafana’s standout features is its advanced visualization capabilities. Users can easily
create and customize dashboards that offer a clear and comprehensive view of system metrics.
Grafana supports a wide variety of graph types, such as line charts, heatmaps, and gauges,
enabling users to choose the most appropriate visual representation for their data. These
visualizations are not only aesthetically pleasing but also highly functional, allowing users to
drill down into specific time frames, filter data by specific labels, and compare metrics from
different sources on a single dashboard. This makes it easier to identify patterns, trends,
and anomalies in the data, facilitating quick and informed decision-making.
The integration between Grafana and Prometheus further enhances its utility in monitoring
and alerting. Prometheus, known for its robust and efficient time-series data collection, serves
as a powerful backend for Grafana’s visualizations. Users can seamlessly query Prometheus
data within Grafana using PromQL to create detailed and insightful visualizations. This
integration allows for the aggregation of metrics across multiple systems, making Grafana a
central hub for monitoring complex, distributed environments.
Here is an example of what a very simple graph might look like. In this case we are interested
in plotting the amount of writing to disk of an application that is monitored with Prometheus,
thus the graph in Grafana will be done using PromQL.

Figure 3.3: Grafana graph for number of bytes written to disk over time. Source: [15]

19

While this view offers some insight into system performance, it does not present a complete
picture. A more accurate understanding of system performance necessitates examining the
rate of change, which reveals how quickly the data being written is fluctuating. To effectively
monitor disk performance, it is essential to identify spikes in activity that indicate when the
system is under load and assess whether disk performance is at risk. This can be achieved
by using the PromQL rate() function, as demonstrated below:

Figure 3.4: Grafana graph for rate of number of bytes written to disk over time. Source:
[15]

As shown, the fusion of Grafana and Prometheus offers a powerful combination, capable of
monitoring most systems, and using the high flexibility of the PromQL language, it can meet
almost every specific need.

3.2.2.1 Alerting

In addition to visualization, Grafana’s alerting capabilities are highly regarded. Grafana
enables users to set up alert rules based on queries from Prometheus or other data sources.
These alerts can be configured to trigger notifications via Prometheus’ Alertmanager through
various channels such as email, Slack, PagerDuty, or other communication tools, ensuring
that teams are promptly informed of potential issues. The alerting system is highly customiz-
able, allowing users to define thresholds, conditions, and even silence periods to prevent alert
fatigue. This ensures that alerts are both actionable and relevant, helping teams to respond
quickly to incidents before they escalate.

20

Figure 3.5: Grafana alerting default behaviour. Source: [15]

3.2.3 PostgreSQL

PostgreSQL, often referred to as Postgres, is an advanced, open-source relational database
management system (RDBMS) known for its robustness, extensibility, and compliance with
SQL standards. Over the years, PostgreSQL has evolved over several decades into a powerful
and versatile database system used by developers and organizations worldwide.
One of PostgreSQL’s key strengths is its support for a wide array of data types and complex
queries, which makes it suitable for various applications, from small web apps to large-scale
enterprise solutions. It supports advanced features such as transactional integrity, concur-
rency control, and sophisticated indexing, enabling efficient data handling and querying.
PostgreSQL’s extensibility is another notable feature, allowing users to define their own data
types, operators, and functions.
The system is known for its strong adherence to SQL standards while also incorporating
advanced features such as JSON support for non-relational data, full-text search, and mate-
rialized views. PostgreSQL’s architecture allows for high performance and scalability, making
it suitable for handling large volumes of data and high-concurrency workloads.
In summary, PostgreSQL combines reliability, flexibility, and performance, making it a fa-
vored choice for developers seeking a powerful RDBMS for diverse and large scale applica-
tions, such as monitoring.

3.2.4 Cortex

Cortex is a horizontally scalable, microservices-based architecture designed to handle large-
scale, distributed Prometheus metrics. The system consists of multiple microservices, each
performing a specific role within the architecture. These microservices can be deployed in-
dependently and scaled horizontally to meet varying demands.
The use of a managing tool like Cortex is essential when dealing with a fleet of federated
Prometheus machines, since they are not designed to handle anything after the exposure of
the collected metrics

21

Figure 3.6: A typical Cortex deployment topology. Source: [16]

The following section aims at giving a brief overview at the main microservices used by
Cortex, highlighting their different role and challenges they pose.

3.2.4.1 Distributor

The distributor service is the initial entry point for all incoming samples from Prometheus
instances. It is responsible for validating and forwarding these samples to the appropriate
ingesters (multiple in parallel). The distributor operates statelessly, meaning that it does
not maintain any persistent data between requests. This characteristic allows it to scale
horizontally with ease, ensuring that additional distributor instances can be added to handle
increased traffic.
Distributors also have a feature to deduplicate incoming metrics, ensuring that even if mul-
tiple Prometheus replicas write the same metric, it is not managed twice by cortex and all
the subsequent software.

22

3.2.4.2 Ingester

Ingesters receive and temporarily store metric samples in memory before writing them to
long-term storage. This service plays a critical role in the system’s write path, as it batches
and compresses samples to minimize the frequency of writes to the storage backend. Ingesters
are stateful due to their in-memory storage of metrics, that means horizontal scalability is
very hard to achieve.
This in-memory storage introduces the risk of data loss if an ingester crashes or shuts down
unexpectedly before the data is written to disk. To mitigate the risk of data loss, Cortex
employs two primary strategies:

• Replication: Cortex typically replicates each time series across multiple ingesters. If
one ingester fails, the replicated data in the other ingesters ensures that no time series
samples are lost. However, in scenarios where multiple ingesters fail simultaneously,
specifically those holding all replicas of a particular time series, there is a potential for
data loss.

• Write-Ahead Log (WAL): The WAL strategy involves logging all incoming samples
to a persistent disk as they are received. This ensures that even if an ingester fails,
the data can be recovered by replaying the WAL during the subsequent restart of the
ingester. Unlike replication, WAL provides a means of recovering all in-memory data,
thereby protecting against data loss even in the event of multiple simultaneous ingester
failures.

3.2.4.3 Hash ring

Distributors utilize consistent hashing combined with a configurable replication factor to
determine which ingester instance(s) should receive each series, this ensures that each ingester
receives a specific portion of the data.
The hash ring, which lies in a key-value store, enables consistent hashing by assigning tokens
to ingesters. Each ingester is responsible for a specific range of hashes based on these tokens.
When a series is received, the distributor determines the appropriate ingester by finding the
smallest token value larger than the series’ hash and then sends it to that instance plus the
N following, where N is the replication factor. This setup ensures balanced data distribution
and redundancy, mitigating data loss if an ingester fails.

3.2.4.4 Querier

Queriers handle incoming read requests, executing PromQL queries to retrieve metrics data.
They fetch data from both ingesters (for recent samples) and the long-term storage. Queriers
are stateless and can be scaled horizontally by adding more instances to the system. However,
care must be taken to ensure that queries are balanced across available queriers to prevent
performance bottlenecks.

3.2.4.5 Compactor

The compactor service optimizes long-term storage by merging multiple blocks of metrics
data into larger, more efficient blocks. This process reduces storage costs and improves query
performance. The compactor is stateless and can be horizontally scaled, although its role is
less sensitive to high concurrency compared to other services.

23

3.2.4.6 Store Gateway

The store gateway facilitates efficient querying of blocks stored in long-term storage. It
periodically scans the storage bucket or downloads an index to stay up-to-date with the
blocks it is responsible for. This service is semi-stateful, as it needs to maintain an up-to-
date view of the storage bucket. Horizontal scalability of the store gateway is supported,
but care must be taken to ensure consistency across instances.

3.2.4.7 Optional Services

Cortex also includes several optional services that enhance its functionality:

• Query Frontend: Improves query performance by splitting and caching queries, al-
lowing for more efficient execution across multiple queriers. It is stateless and horizon-
tally scalable.

• Alertmanager: Manages alert notifications, including deduplication and routing to
appropriate channels. It is semi-stateful due to its persistence of alert states and
silences.

• Ruler: Executes PromQL queries for recording rules and alerts. It is semi-stateful,
requiring careful management to avoid data gaps in the event of failures.

3.2.4.8 Challenges in Horizontal Scalability

While many of Cortex’s microservices are designed to be horizontally scalable, certain chal-
lenges arise, particularly with stateful services like the ingesters and store gateways, which
disallow the entire system from being totally horizontably scalable. Additionally, the use of
key-value stores for coordinating state (e.g., hash rings) introduces complexity in maintain-
ing consistent views of the system across distributed instances.
Another significant challenge is handling sudden virality spikes, which are common in apps
like those operated by The Company. These spikes can force the system to either maintain
a high number of replicas, resulting in underutilized resources during normal operation, or
face increased latency during spikes due to insufficient scaling.

In summary, Cortex’s architecture leverages microservices to achieve horizontal scalability,
but careful consideration is required to manage the complexities introduced by stateful com-
ponents. The system’s design emphasizes redundancy and replication to mitigate the risks
associated with these challenges, however, this comes at a high infrastructure cost that rises
rapidly with the upscaling of the monitored system.

24

3.3 Architecture

The original monitoring system at The Company was built entirely in-house, without rely-
ing on any SaaS (Software as a Service) solution. This approach allowed the company to
maintain complete independence from third-party providers.
The initial plan involved deploying a Prometheus server to scrape metrics from the VMs
(Virtual Machines) running the services. To visualize these metrics, this Prometheus server
was connected to a self-hosted Grafana instance, which enabled the building of dashboards
and running of queries.
While this setup was straightforward, it had significant limitations in terms of scalabil-
ity. Since the system was not stateless, it could not be horizontally scaled, and a single
Prometheus server quickly became insufficient as the infrastructure grew.

The next step involved retaining Grafana for visualization, as it can be made stateless, and
thus horizontally scalable, when connected to an external PostgreSQL database. All nec-
essary security measures were configured, including Google authentication and user/team
management with specific permissions.
For metric scraping, a single Prometheus server proved insufficient, necessitating multiple in-
stances. Two approaches were considered: the first involved assigning a separate Prometheus
server to each new project, managed by the respective team, with metrics forwarded to a
central system. The second approach, which was ultimately chosen, involved the platform
team managing Prometheus servers in a way that was transparent to the other teams. A
federation of Prometheus servers was created, where each project was assigned to a feder-
ated Prometheus instance responsible for scraping metrics from its VMs via ping. However,
this approach still required manual scaling, as Prometheus itself does not support horizontal
scalability.

To connect Grafana with all the Prometheus instances used for scraping, a centralized point
for metrics aggregation was necessary. Without this, Grafana would need to connect to
each individual Prometheus instance, which is not scalable as the number of instances in-
creases over time. This centralized point is referred to as Long-Term Storage (LTS). In the
Prometheus ecosystem, two main technologies serve this purpose: Thanos and Cortex. Cor-
tex was chosen due to its newer, state-of-the-art capabilities, and it also was fully deployed
in-house.
Prometheus can interface with Cortex using a feature called ”remote write”, which allows
Prometheus to handle metric ingestion while delegating the responsibility of metric storage
and exposure to the LTS. One of Cortex microservices, specifically the ingesters, are in-
structed to keep on disk the data they receive for 6 hours, and then they save it to Google
Drive. This value was set as a tradeoff between risk of losing data in case of failure and
speed of querying. Prometheus instances send their data to Cortex through a load balancer.
In addition to the Prometheus federation, which scrapes custom metrics from individual
VMs, there was also a need to ingest metrics from Google Cloud Platform (GCP) ser-
vices such as Pub/Sub, Memorystore, and load balancers. This was handled by a separate
Prometheus instance using Google Stackdriver exporter. This Prometheus instance also sent
its metrics to Cortex, treating them as if they were their own project.
API HTTP calls were made within the same Virtual Private Cloud (VPC), rather than over
the internet, as everything was hosted in-house.

25

Cortex operated with a load balancer that exposed two main endpoints: one for writing data
(which pointed to a microservice) and one for reading data (handled by another microser-
vice). Grafana was configured to connect to the read endpoint, while Prometheus instances
were directed to the write endpoint. The remote write function in Prometheus allowed for
the batching of metrics, with configurable options such as batching time, size, queue han-
dling if Cortex was down (including retry logic and maximum retention).
Each service, including Cortex microservices, had its own replicas to ensure reliability and
redundancy. While the setup was effective, there were opportunities for improvement. For
instance, scaling the system significantly to handle traffic spikes could have been an option,
but the associated costs were prohibitive.
Logging was managed using the native tools provided by the infrastructure provider. In the
case of Google Cloud, this involved utilizing Stackdriver. This approach eliminated the need
for developing a custom logging solution, saving both time and resources while still offering
powerful capabilities suited to the project’s requirements.

Figure 3.7: High level architecture of the old monitoring system in The Company

Each project is allocated a dedicated Virtual Private Cloud (VPC) that contains its virtual
machines (VMs) and other components to be monitored. A dedicated federated Prometheus
server is assigned to each project, responsible for collecting metrics from the project’s com-

26

ponents. These Prometheus federations are housed in their own dedicated VPCs to minimize
the number of network peers. This approach is necessary because Google Cloud Platform
imposes a limit of 25 peers per VPC. Placing the Prometheus servers in a centralized VPC
would require adding one peer for each new project. However, by assigning one peer per
federation project, each federation can manage up to 24 projects.
After the Prometheus servers collect the metrics, the data is sent to the central Cortex via
its write endpoint. Cortex temporarily stores this data in its ingesters before writing it to
long-term storage, which, in this case, is Google Cloud Storage.
When a Grafana dashboard is accessed, it forwards the query internally to the central Cortex
through its read endpoint. Cortex then retrieves the necessary data either from the ingesters
or the long-term storage. Grafana uses PostgreSQL to store dashboards, configurations, and
other metadata, allowing Grafana itself to remain stateless.

3.4 Limitations and Challenges

.
Several challenges arose during implementation:

• Federation Management: The management of federations was cumbersome. Com-
munication between federations was done via VPC peering, which is not an elegant
solution and has limitations. For instance, in Google Cloud Platform, a VPC can only
be peered with a maximum of 25 other VPCs. When a federation reached its peering
limit, new projects had to be deployed and assigned manually.

• Traffic Balancing: Balancing traffic across different federations was problematic be-
cause not all peers experienced the same traffic load. This made it difficult to manage
traffic spikes effectively. Spikes were particularly challenging because Prometheus op-
erates on a pull model (unlike newer technologies like OpenTelemetry, which use a push
model). In a pull model, the Prometheus virtual machine suffers under heavy load but
cannot be easily scaled up; deploying another VM would only scrape the same metric
set, rather than alleviating the load on the existing one. In contrast, push systems
deploy agents on every physical machine, enabling scalable metric scraping for each
individual machine.

• GCP Metrics: The Prometheus instance responsible for reading GCP metrics, known
as the GCP exporter, was shared across all The Company’s projects, leading to scala-
bility issues. Scaling this instance would result in duplicating GCP metrics. This issue
was partially addressed by clustering the exporter by service (e.g., one for Redis, one
for Pub/Sub), but scalability challenges persisted.

• Cortex Scaling: Cortex encountered difficulties with stateful microservices, particu-
larly during traffic spikes. These spikes could cause the system to hit maximum RAM
or disk capacity, making scaling a painful and manual process. Additionally, after
scaling up, it was challenging to scale back down to save costs during periods of lower
demand, as the handoff process was still manual.

• Configuration Complexity: Cortex required the management of thousands of con-
figuration parameters, making it difficult to find and maintain an optimal setup for
every situation.

27

• Need for Meta-Monitoring: A significant drawback of a self-hosted system is the
need for a secondary system, known as a meta-monitoring system, to oversee the
original system and ensure the reliability of the data it collects. If the meta-monitoring
system is also self-hosted, a tertiary system would be required to monitor it, potentially
leading to a chain of monitoring systems to achieve total reliability.

28

Chapter 4

The New Monitoring System at The
Company

The old system had a lot of challenges and limitations, but the most restricting ones were
certainly scalability and the need of constant manual labor to maintain and configure the
system.
To solve these issues, a number of different solution have been proposed:

• Use agents: a possible improvement could have been to keep doing things in house
and not use federations Prometheus but use agents (both Prometheus and Grafana)
which are small, lightweight components that attach to a machine and scrape it, while
using the remote-write function to still detach from the ingestion phase. With this
solution it would be possible to scrape metrics of the single Virtual Machine and then,
using the remote write, send them to the cortex cluster for ingestion.
Another key improvement that agents brought to the table was the unnecessariness
of deploying manually the Prometheus federations, as the agents could be integrated
code-wise by each project’s team, thus saving a lot of time on deploying new infras-
tructure for monitoring.
While this solution would be lighter than the previous, it would still have most scala-
bility issues, mainly those related to virality spikes.

• Use Mimir: another thing to consider is the possibility of using what’s regarded
as Cortrex successor, Grafana Mimir, which promises easier management and query
performance that are up to 40 times better.

• Use Kubernetes: the usage of Kubernetes instead of VMs was another possible
improvement, with the upside of having native support for Mimir, while with the
previous solution, everything had to be done custom.

• Decentralize GCP exporter: GCP metrics scraping could be decentralized to a
shared module that would be deployed by each team, making it highly more scalable
and removing the need of a dedicated platform team to deal with the centralized
architecture.

• Pass to SaaS solutions: Lastly, a possible solution for scaling is to pay for Software
as a Service for everything that was previously done in-house. This solution will be
pricier than before but will automate the process, freeing up manpower than can then
be converted into more revenue.

29

4.1 Overview

As The Company’s biggest problem is scalability, there was a big need to solve the issue
using a long-term solution. After careful cost analysis, the conclusion was that the best
solution among the ones listed before was to pass to SaaS solution, as well as including some
of the others, such as using agents. As predictable, this includes a substantial price increase
over the previous infrastructural and manpower cost, which will now be replaced by just
service cost. As we will see in the analysis later, this will still end up in a net positive, given
the high gain of opportunity given by freeing up engineers from this duty.

4.2 Architecture

At a high-level the system behaves like this:

Figure 4.1: High level architecture of the new monitoring system in The Company

This solution is based on leveraging Software as a Service, shifting away from self-hosting
to rely on the infrastructure provided by third-party services. Like the previous system,
Grafana is still used for visualization and querying of metrics, but the difference lies in the
way data is handled. Metrics are scraped and sent via Prometheus’ remote-write feature to
Grafana Cloud, which takes care of ingestion, storage, and authentication.

30

This is facilitated by the introduction of Prometheus agents, known as Grafana Alloy, which
are specifically designed to handle remote writes. Another key component managed by
the provider is Mimir, which now serves as the Long-Term Storage (LTS) for metrics.
Mimir’s multi-tenant architecture significantly mitigates issues related to virality spikes, as
the provider can balance traffic across shared servers, ensuring minimal latency and down-
time.
The use of Grafana Alloy agents also addresses scalability challenges, as each virtual ma-
chine runs its own agent that scrapes only its respective metrics. This setup allows for more
accurate load estimation and easier planning, with metrics being sent over the internet via
HTTP API calls to Mimir.
For cloud service metrics, such as those from Google Cloud Platform (GCP), a shared infras-
tructure is deployed via Terraform, which provisions another Grafana Alloy agent dedicated
solely to scraping cloud service metrics. These metrics are also remotely written to Mimir.
The logging is also handled by the system leveraging Grafana Loki and forwarding the logs
directly from the provider.
Another improvement over the last system is the introduction of Sentry as a tool to trace
exceptions and errors, which vastly improves error resolution.

This new system is fully horizontally scalable, with the complexity of scaling handled by the
SaaS provider, reducing the need for ongoing maintenance and freeing up internal resources.

4.3 Components

Some components are the same ones from the previous model, such as Prometheus and
Grafana, with the difference than now they would be entirely managed by the provider of
service, Grafana Cloud.
However, this new model also introduces a few more components, to better tackle logging,
error tracing and ephemeral jobs.
In the following section the new software will be presented, with the aim of giving a brief
understanding of each component, clarifying its job, as well as its strengths and weaknesses.

4.3.1 Mimir

Grafana Mimir is an open-source software project designed to provide scalable, long-term
storage for Prometheus. Its core strengths include:

• Massive scalability: Grafana Mimir features a horizontally-scalable architecture that
can be distributed across multiple machines, enabling it to process significantly more
time series data than a single Prometheus instance. Internal tests indicate that Grafana
Mimir can handle up to 1 billion active time series.

• Comprehensive metric aggregation: Grafana Mimir allows for queries that ag-
gregate series from multiple Prometheus instances, providing a global perspective on
system metrics. Its query engine extensively parallelizes query execution, ensuring
even high-cardinality queries are executed rapidly.

• High availability: Grafana Mimir replicates incoming metrics, preventing data loss in
the event of machine failures. Its horizontally scalable architecture also supports zero-

31

downtime restarts, upgrades, or downgrades, ensuring uninterrupted metrics ingestion
and querying.

• Native multi-tenancy: Grafana Mimir’s multi-tenant architecture allows data and
queries to be isolated for different teams or business units, enabling them to share the
same cluster. Advanced limits and quality-of-service controls ensure that resources are
distributed fairly among tenants.

• Cost-effectiveness and durability of metric storage: Grafana Mimir utilizes
object storage for long-term data retention, leveraging this cost-effective and highly
durable technology. It is compatible with various object storage implementations,
including AWS S3, Google Cloud Storage, Azure Blob Storage, OpenStack Swift, and
any S3-compatible storage solution.

• Easiness to installation and maintenance: Grafana Mimir is accompanied by
extensive documentation, tutorials, and deployment tools that make it easy to get
started. Using its monolithic mode, Grafana Mimir can be deployed with a single
binary and no additional dependencies. Once deployed, the system includes best-
practice dashboards, alerts, and runbooks that simplify monitoring its health.

4.3.2 Loki

Grafana Loki is a horizontally scalable, highly available, and multi-tenant log aggregation
system inspired by Prometheus. While Prometheus focuses on metrics, Loki specializes in
logs and collects them via a push model rather than pull.
Loki is designed for cost efficiency and scalability. Unlike traditional logging systems, it does
not index the contents of logs but instead indexes metadata associated with logs through a
set of labels for each log stream.
A log stream consists of logs that share the same labels. These labels are crucial for efficiently
locating log streams within the data store, making a well-defined set of labels essential for
effective query execution.
Log data is compressed and stored in chunks within an object store, such as Amazon Simple
Storage Service (S3) or Google Cloud Storage, or alternatively, on the local filesystem for de-
velopment or proof-of-concept purposes. The use of a minimal index and highly compressed
chunks simplifies operations and significantly reduces the cost of using Loki.

4.3.2.1 Loki Stack

A typical Loki-based logging stack comprises three key components:

• Agent: This component, such as Grafana Alloy or Promtail (which is distributed with
Loki), is responsible for scraping logs, converting them into log streams by appending
labels, and pushing these streams to Loki via an HTTP API.

• Loki: The central server that ingests, stores, and processes logs. Loki can be deployed
in various configurations.

• Grafana: Utilized for visualizing and querying log data using LogQL language. Logs
can also be queried through the command line using LogCLI or directly via the Loki
API.

32

Figure 4.2: Loki logging stack. Source: [15]

Together, these components form a robust and scalable logging stack, enabling efficient log
management, real-time querying, and comprehensive visualization within modern observabil-
ity frameworks. This is, in fact, the logging stack used by most companies, as its simplicity
makes it easy to deploy without compromising its power. Despite its ease of use, it remains
a highly effective and robust tool.

4.3.2.2 LogQL

LogQL is Grafana Loki’s query language, drawing inspiration from PromQL while being
specifically designed for log data. Unlike PromQL, which focuses on metrics, LogQL is
tailored to handle logs, allowing for efficient and powerful log aggregation and filtering.
LogQL is capable of handling both simple log searches and complex data processing, making
it an essential tool for anyone working with large volumes of log data.
The key features of the language are:

1. Two different types of queries:

• Log queries: These queries retrieve the content of log lines. They are similar to
using a distributed grep, where logs are filtered based on specified criteria. For
example, you could search for all logs related to a specific service:

{service name="auth-service"} |= "error"

This query retrieves all logs from the auth-service that contain the word ”error”.

• Metric Queries: These queries extend log queries by enabling calculations on
the query results, such as counting log occurrences or calculating the rate of
log entries. For example, you could calculate the rate of error logs in the last
minute:

sum(rate({service name="auth-service", level="error"}[1m]))

This metric query sums the rate of logs labeled as errors for the auth-service over
the past minute.

33

2. Binary operators: LogQL supports various binary operators, allowing for arithmetic,
logical, and comparison operations. These operators make it possible to perform com-
plex calculations and data manipulations directly within queries.

• Arithmetic Operators: These include basic mathematical operations such as ad-
dition, subtraction, multiplication, and division. For instance, to double the rate
of log entries, you could use:

sum(rate({app="web"}[5m])) * 2

This query doubles the rate of logs generated by the web app over the last 5
minutes.

• Logical and Set Operators: Operators like and, or, and unless allow you to com-
bine or exclude log streams based on specific criteria. For example, to find logs
that are common between two applications:

rate({app=∼"frontend|backend"}[1m]) and

rate({app="backend"}[1m])

This query returns the intersection of logs between frontend and backend apps
over the past minute.

• Comparison Operators: Operators such as ==, ! =, >,<,>=, and <= allow for
filtering based on specific conditions. For example, to find logs where a specific
condition is met more frequently than another:

sum(rate({app="frontend", status="500"}[1m])) >

sum(rate({app="frontend", status="200"}[1m]))

This query checks if the rate of 500 status logs is higher than that of 200 status
logs for the frontend app.

3. Pattern Matching: LogQL introduces pattern matching operators (| > and ! >) that
simplify the filtering of log lines. These operators make it easier to search for specific
patterns within logs without requiring complex regular expressions. For example, to
find all logs that contain a specific pattern:

{service name="distributor"} |> "< > level=debug < >

msg="POST /push.v1.PusherService/Push < >"

This query matches logs where the service is distributor, and the log contains a debug
level entry related to a specific POST request.
Conversely, to exclude logs matching a certain pattern:

{service name="distributor"} !> "< > level=debug < >

msg="POST /push.v1.PusherService/Push < >"

This query excludes logs that contain the specified pattern.

34

4. Keyword modifiers: LogQL uses keyword modifiers like on and ignoring allow users
to fine-tune the scope of operations by either focusing on specific labels or excluding
them during matches. For example, when comparing log counts across machines, you
might ignore the machine label in the matching process with a query like:

max by(machine) (count over time({app="foo"}[1m])) >

bool ignoring(machine) avg(count over time({app="foo"}[1m]))

This query returns the machines where the total count within the last minute exceeds
the average value for the foo app.
Similarly, the group left and group right modifiers allow for many-to-one or one-
to-many vector matches, adding further flexibility. For instance, to calculate the per-
centage of total requests for different HTTP status codes within an app, you might
use:

sum by (app, status) (rate({job="http-server"} | json [5m])) /

on (app) group left sum by (app) (rate({job="http-server"} |

json [5m]))

This query partitions request rates by app and status, and then calculates each as a
percentage of the total requests.

5. Error handling: Another advanced feature that might be useful is Error handling,
which is designed to be as straightforward as it can be. If an error occurs during
a pipeline operation, such as failing to parse a log line as JSON, the log line is not
discarded but instead continues through the pipeline with an added error label.
For instance, to filter out all logs that encountered JSON parsing errors, you would
use:

{cluster="ops-tools1", container="ingress-nginx"} | json |

error != "JSONParserErr"

This filter ensures that only logs without JSON errors are included in the results.

Overall, LogQL combines simplicity with powerful querying capabilities, making it a versatile
tool for managing and analyzing logs. Whether conducting straightforward searches or
executing complex aggregations and calculations, LogQL’s flexibility ensures that users can
gain deep insights from large volumes of log data. This adaptability, combined with its
error-handling features and advanced modifiers, solidifies LogQL as an indispensable part
of any robust logging stack, empowering users to monitor, troubleshoot, and optimize their
applications effectively.

35

4.3.3 Sentry

Sentry is a popular open-source monitoring and error-tracking tool designed to help de-
velopers identify, diagnose, and resolve issues in real-time across various environments and
platforms. It’s primarily used to monitor the performance and health of applications, ensur-
ing that developers can proactively address potential problems before they impact users.
The main features of Sentry include:

• Application Monitoring: Sentry provides comprehensive application monitoring
by collecting data on performance metrics, errors, and transactions. It integrates
with various languages and frameworks, allowing it to monitor applications written in
JavaScript, Python, Ruby, Java, and more. This broad compatibility makes Sentry a
versatile tool for developers working across different tech stacks.

• Real-Time Alerts: Sentry can send real-time alerts to developers when an issue is
detected. These alerts can be configured based on the severity of the issue, allowing
teams to prioritize responses to critical errors. Notifications can be sent via email,
Slack, or other communication tools, ensuring that the right team members are in-
formed as soon as a problem arises.

• Contextual Information: Sentry captures detailed context about each error or per-
formance issue, including the stack trace, environment, user actions, and the specific
lines of code that triggered the issue. This contextual information helps developers
quickly pinpoint the root cause of a problem, reducing the time needed to diagnose
and fix it.

• Release Tracking: Sentry allows developers to track errors and performance metrics
by release version. This feature helps teams correlate issues with specific deployments,
making it easier to identify and address problems introduced in recent updates. Release
tracking also supports regression detection, alerting developers if a previously resolved
issue reappears in a new version.

• Performance Monitoring: Beyond just error tracking, Sentry offers performance
monitoring features that allow teams to track the performance of their applications.
This includes measuring response times, throughput, and other key performance indi-
cators (KPIs) to ensure the application is running smoothly and efficiently.

• User Feedback: Sentry can capture user feedback directly within the application,
allowing users to report issues they encounter. This feedback is linked to the corre-
sponding error or performance issue in Sentry, providing additional context from the
user’s perspective.

36

Figure 4.3: Sentry main project page

4.3.3.1 Error Monitoring

One of Sentry most loved and useful features regards error tracing and monitoring. Unlike
traditional logging, which provides only with a trail of events, some of which are errors, but
many are simply informational, Sentry is fundamentally different because it is focused on
exceptions, capturing only application crashes.
Sentry’s error tracing is designed to automatically do this job of detecting and tracking errors
and exceptions in applications. When an error occurs, Sentry captures detailed information,
including the error message, stack trace, environment details, and user actions leading up
to the error. It groups similar errors into issues, helping developers prioritize and focus on
critical problems by giving a scope of how frequent each on them is.
Sentry also provides tools for debugging, such as source maps and traceability to the specific
lines of code causing the issue.
Here are some key features that it offers in this field:

• Detailed Error Tracking: Sentry automatically tracks errors and exceptions in your
application as they occur. It captures detailed information about each error, including
the error message, stack trace, affected users, and the environment (e.g., browser,
OS, version). This automated tracking helps developers identify issues that might go
unnoticed during manual testing.

• Issue Grouping: Sentry groups similar errors together into issues, helping to reduce
noise and avoid alert fatigue. By grouping errors that share the same root cause,
Sentry ensures that developers can focus on resolving the underlying problem rather
than getting bogged down by multiple reports of the same issue.

37

• Error Prioritization: Sentry provides tools to prioritize errors based on their impact.
For instance, errors affecting many users or causing critical failures are highlighted,
allowing teams to address the most pressing issues first. Sentry’s dashboards and
reports provide insights into the frequency and severity of errors, aiding in effective
prioritization.

• Exact line of code Traceability: Sentry’s detailed error reports include stack traces
that point to the exact lines of code where the error occurred. This traceability is
invaluable for debugging, as it allows developers to quickly identify and fix the specific
part of the codebase responsible for the issue. Additionally, Sentry can capture local
variables, breadcrumbs (user actions leading up to the error), and the application state
at the time of the error, providing a comprehensive view of the error’s context.

• Source Maps and Symbols: For applications written in languages that compile or
minify code (like JavaScript or C++), Sentry supports source maps and symbolication.
This feature translates the minified or compiled code back into its original source form
in the error reports, making it easier to understand and debug the issue. This is
essential for languages such as TypeScript, which gets compiled to JavaScript. Without
this feature the stacktrace and code snippets would be shown in the compiled version,
which is much less readable.

• Error Resolution Workflow: Sentry supports a robust workflow for resolving errors,
including assigning issues to team members, adding comments, and marking issues as
resolved or ignored. This workflow integration helps teams manage the error resolution
process efficiently, ensuring that all errors are tracked and addressed systematically.

• Integration with DevOps Tools: Sentry integrates with various DevOps tools like
GitHub, Jira, and other issue-tracking systems, enabling seamless transitions from
error detection to resolution. When an error is detected, it can automatically create
a ticket in your issue tracker, linking the error report directly to the task in your
development workflow.

Overall, Sentry is a comprehensive monitoring tool that excels in error tracking and perfor-
mance monitoring, offering developers the insights they need to maintain application health
and improve user experience. Its powerful error monitoring capabilities, combined with its
integrations and detailed context capture, make it an essential tool for modern development
teams who want to efficiently deal with runtime issues.

38

Figure 4.4: Sentry page for specific error

4.3.4 PagerDuty

PagerDuty is a leading incident management platform designed to help organizations enhance
their operational reliability and respond effectively to system outages, critical issues, and
performance degradations. With its focus on real-time operations and incident management,
PagerDuty enables teams to detect, prioritize, and resolve incidents before they escalate,
minimizing downtime and improving customer experiences. It also has a built-in feature
that allows for oncall rotations, scheduling team members to be responsible to acknowledge
and act upon incidents occurring during their schedule. Below is a detailed overview of
PagerDuty as a service, with an emphasis on its ease of use, effectiveness, and its status as
a de facto standard in the incident management space.

39

4.3.4.1 Key Features and Strengths

1. Ease of Use: PagerDuty is known for its intuitive and user-friendly interface, which
enables teams to quickly adopt and configure the platform with minimal effort. Its
design emphasizes simplicity, ensuring that even teams with limited experience in in-
cident management can set up monitoring and escalation policies efficiently.

• Quick Setup and Integration: PagerDuty provides out-of-the-box integrations
with over 600 tools, making it easy to integrate with services that teams already
use, such as Prometheus, Alertmanager, AWS CloudWatch, Datadog, and oth-
ers. This pre-built integration ecosystem allows users to seamlessly incorporate
PagerDuty into their existing workflows without complex configurations.

• Web and Mobile Access: The platform is accessible via both web and mobile
applications, enabling users to manage alerts, incidents, and on-call rotations from
anywhere. This mobility ensures that team members can respond to incidents in
real time, even when they are not at their workstations.

• On-Call Scheduling and Escalation Policies: PagerDuty’s on-call manage-
ment capabilities are straightforward to configure. Teams can define on-call
schedules and escalation paths that automatically notify the right people at the
right time. The platform’s drag-and-drop interface allows for easy modification
of schedules and rules without the need for technical expertise.

2. Effectiveness in Incident Management: PagerDuty excels in streamlining the
incident response lifecycle—from detection to resolution. The platform offers a variety
of features that enable teams to respond quickly and efficiently to issues, reducing
mean time to recovery (MTTR).

• Real-Time Alerts and Notifications: PagerDuty ensures that critical alerts
are delivered in real time across multiple communication channels, including SMS,
email, push notifications, and voice calls. This multi-channel approach ensures
that incidents do not go unnoticed, and the appropriate team members are alerted
promptly, minimizing delays in response.

• Advanced Incident Routing: One of PagerDuty’s core strengths is its ad-
vanced incident routing and automated escalation policies. Incidents are routed
to the right on-call team based on the severity and type of issue. If an incident
is not acknowledged within a specified time frame, it escalates automatically to
the next level of response, ensuring that issues are addressed without unnecessary
delays.

• Collaboration and Automation: PagerDuty integrates seamlessly with col-
laboration tools like Slack and Microsoft Teams, allowing teams to coordinate re-
sponses to incidents directly within their chat applications. Additionally, Pager-
Duty supports automation workflows, enabling teams to define automated re-
sponses to incidents, such as restarting services, running diagnostics, or triggering
predefined remediation scripts.

• Post-Incident Analysis and Reporting: After an incident is resolved, Pager-
Duty provides comprehensive post-mortem analysis and reporting. These reports
include details on incident timelines, response times, and any delays in acknowl-
edgment or resolution. The insights gathered from these reports help teams iden-
tify areas for improvement in their incident response processes.

40

3. De Facto Standard and Broad Integrations: PagerDuty has established itself
as the industry standard for incident management, particularly in DevOps and IT
operations environments. Its widespread adoption across organizations of all sizes is
a testament to its reliability and effectiveness. One of the primary reasons for its
popularity is the extensive range of integrations it offers.

• Integration with Prometheus’ Alertmanager: PagerDuty is tightly inte-
grated with Prometheus, a leading monitoring and alerting toolkit, and Alert-
manager, which handles alerts generated by Prometheus. This integration allows
organizations to easily send Prometheus alerts to PagerDuty, where they can be
escalated and managed using PagerDuty’s powerful incident response features.
The integration ensures that alerts generated from Prometheus, based on spe-
cific monitoring conditions, are immediately routed to the appropriate on-call
engineers, enabling prompt action.

• Cloud, Monitoring, and IT Service Management (ITSM) Tools: Pager-
Duty integrates with a broad range of cloud providers (AWS, Azure, GCP), mon-
itoring tools (Datadog, New Relic, Zabbix and Nagios), and ITSM platforms
(ServiceNow, Jira, Zendesk). These integrations allow organizations to central-
ize their monitoring, alerting, and incident management processes within a single
platform, reducing complexity and enhancing operational visibility.

• Customizable APIs and Webhooks: For teams with specific requirements,
PagerDuty provides customizable APIs and webhooks that allow developers to
create custom workflows and integrations. This flexibility ensures that PagerDuty
can be adapted to fit virtually any organization’s needs, regardless of how unique
their environment may be.

4. Reliability and Scalability: PagerDuty is built to scale with organizations of any
size, from small startups to large enterprises. Its cloud-based architecture ensures
high availability and reliability, critical for incident management platforms. As orga-
nizations grow and their systems become more complex, PagerDuty can handle the
increased volume of alerts and incidents without degradation in performance.

• Global Reach and Distributed Teams: PagerDuty supports organizations
with distributed teams across different geographies. It allows for configuring
region-specific alerting rules and schedules, ensuring that the right teams in the
right time zones are notified of incidents.

• Robust Analytics and Insights: PagerDuty’s analytics capabilities provide
deep insights into operational performance. Teams can track key metrics such as
incident frequency, response times, and service reliability, helping them identify
trends and continuously improve their processes.

Overall, PagerDuty has established itself as a market leader in incident management due to
its ease of use, powerful incident routing, and broad integration capabilities. Its seamless in-
tegration with popular tools like Prometheus’ Alertmanager, combined with its effectiveness
in managing real-time incidents, makes it the de facto standard in the industry. Whether
for a small team or a global enterprise, PagerDuty ensures that critical issues are addressed
efficiently, reducing downtime and improving overall operational reliability.

41

Figure 4.5: PagerDuty incident escalation policy example. Source: [17]

4.4 Logging

Previously, logs were managed using the integrated tools provided by the cloud platform.
With the transition to Grafana Cloud, it is now advantageous to use Grafana Loki due to
its high performance, customizability, and expressiveness.
Although it is possible to create log streams directly in Loki through specific agents that
must be deployed on each virtual machine, it was decided to continue using the native log
streams from the cloud provider’s tools. These logs are then forwarded to Grafana Cloud.
This approach is more cost-effective, as the native logging services, such as AWS Cloud-
Watch or GCP Stackdriver, are often offered at minimal cost, and are sometimes included
in the service packages provided to companies.
The forwarding is handled via a sink, specifically AWS Kinesis Firehose, which provides an
endpoint where logs from AWS or GCP are sent. In GCP, however, logs are read by Grafana
Alloy agents configured to scrape logs instead of metrics, using a technology called Promtail
(provided by Grafana Cloud) to tail logs and forward them to Loki. Once the logs are sent
to Loki, they are deleted from the native logging tool to avoid unnecessary storage costs.
This is done using an exclusion rule for GCP and by setting a low retention time in AWS.
The primary advantage of this solution is that it represents a seamless upgrade from the
previous system and requires minimal effort to implement. Only the log forwarding process
needs to be configured, with Kinesis Firehose and Promtail being relatively simple to set up.

42

4.5 Challenges

This system faces several challenges, particularly due to the pull-based nature of Prometheus.
A key issue arises with ephemeral jobs, such as AWS Lambdas or Google Cloud Functions.
These are short-lived functions that execute a task and terminate quickly, often running on-
demand. This creates a significant problem for a pull-based system like Prometheus, which
relies on persistent instances to scrape for metrics. Ephemeral jobs do not exist long enough
for Prometheus to collect metrics, nor do they have a stable identifier for the scraper to
track.

4.6 Ephemeral Jobs

To address the challenges presented by ephemeral jobs, there are three main approaches:

• Switch to Push Systems: In recent years, push-based systems have become more
advanced and are now widely adopted across the industry. OpenTelemetry, which
has emerged as the new industry standard, supports push mechanisms. With this,
agents can be attached to ephemeral jobs, allowing metrics to be pushed at the end
of each job’s execution. Grafana Cloud already supports OpenTelemetry as part of
its ecosystem, making integration straightforward. However, adopting this approach
would require a company-wide shift to OpenTelemetry, as maintaining both push and
pull systems simultaneously would be inefficient. This significant infrastructure over-
haul should be evaluated based on the extent to which ephemeral jobs contribute to
overall system performance.

• Use Pushgateway: Prometheus offers a specific solution for ephemeral jobs through
its Pushgateway component, which acts as middleware between ephemeral jobs and the
Prometheus scraper. This involves integrating the Pushgateway into the job’s code,
allowing metrics to be explicitly written and then exposed for scraping via an endpoint
of the Pushgateway itself. While relatively easy to implement, Pushgateway adds
execution time to ephemeral jobs, given by the POST call made to push the metrics.
Since these jobs are billed based on duration, this additional time can significantly
increase costs, especially for jobs that typically run within a few hundred milliseconds.
In such cases, doubling execution time may lead to unacceptable cost increases.

• Use Log-Based Metrics: Amore lightweight solution is leveraging log-based metrics,
particularly if the system is already configured to handle logs. Ephemeral jobs naturally
emit status logs upon completion to native logging solutions, such as AWS CloudWatch.
By adding a few extra logs, the jobs can emit metrics without the overhead of a
POST call, as required by Pushgateway. These logs are then forwarded to Grafana
Loki, where they can be queried using LogQL. This solution seamlessly integrates
with existing infrastructure, especially if Loki is already in use for log management.
However, forwarding logs to Loki consumes a log subscription filter, which may be a
concern in environments with strict limits (e.g., AWS allows only two filters per log
group, which can quickly become exhausted if one filter is used for Loki forwarding
and another for Prometheus exporting).

The system presented in this chapter ultimately opts for the third solution of log-based met-
rics since the additional costs associated with Pushgateway are prohibitive, and switching
to OpenTelemetry would require substantial time and effort. Log-based metrics offer an

43

efficient, low-cost alternative that integrates smoothly with the existing use of Loki for log
management. The use of a log subscription filter is acceptable within the current infrastruc-
ture constraints.

4.7 Alerting

Grafana offers native support for alerting, a key feature to have in any monitoring system
to be able to promptly respond and evaluate incidents.
How the system works is easily defined in these three steps that run periodically:

1. Grafana Alerting queries data sources and assesses the conditions specified in the
alerting rules specified by the user.

2. If the condition evaluates as true, then an alert is fired with that condition.

3. Firing alerts are sent through the designated notification channels while they remain in
the ”firing” state. If the alerting rule later evaluates to false, an additional notification
is triggered, indicating that the issue has been resolved, either automatically or through
human intervention.

Figure 4.6: Grafana Alerting diagram. Source: [15]

This can then be linked with Prometheus’ Alertmanager as shown in figure 3.5

4.7.1 Alerting rules

An alert rule is the key component of an alert. It consists of one or more conditional queries,
so that the metric that has to be monitored is constantly evaluated against a static or
dynamic threshold, after which the alert is fired.
For example this alert rule

avg over time(http requests total{level="error"}[5m]) > 100

will fire if there are more than 100 error http calls in the last 5 minutes.
An alert rule can also be configured to fire if the specified query evaluates to true for a
specific amount of time, for example if we set an alert rule like this

44

avg over time(http request time) > 1000

will fire anytime we have a HTTP request that takes over than 1 second to finish, and it is
undesirable to have an alert raised every time this happens. We can then set a condition to
raise the alert only if this keeps happening for 5 minutes, indicating a service outage.

4.7.1.1 Alert rule evaluation

There are two criteria determining the evaluation of each rule: evaluation group and pending
period.
While the previous alert rule might be useful to notice any network issues, there are always
a small portion of calls that will fail due to various reasons, because no service is 100%
reliable. So we might want to specify that the latter query will trigger an alert rule only if
the condition is persistent for 5 minutes, this is what’s called a pending period. It is then
clear how useful this feature really is to avoid spamming the alerting channels with single
alerts instances.
Each alert rule is associated with an evaluation group. You can either assign the alert rule
to an existing group or create a new one.
Each evaluation group has a specified evaluation interval, which dictates how often the alert
rule is assessed. For example, evaluations can be scheduled every 10 seconds, 30 seconds, 1
minute, 10 minutes, and so on.

Figure 4.7: Grafana Alerting rule configuration. Source: [15]

Here is a simple diagram explicating the steps an alert rule can take during its evaluation
cycle.

45

Figure 4.8: Grafana Alerting rule cycle diagram. Source: [15]

In this context:

• Normal: The state where the alerting condition is not met.

• Pending: The state where the alerting condition is met, but the pending period has
not yet elapsed.

• Alerting: The state where the alerting condition has been met and the pending period
has passed.

The transitions between these states are as follows:

• Normal to Pending: This transition occurs when the alerting condition is met, but
the pending period has not yet elapsed. If the alerting condition resolves during the
pending period, the state will revert to normal.

• Normal to Alerting: An alert can transition directly from normal to alerting if
the pending period is set to 0, if there are errors in the query, or if there is no data.
Conversely, an alert will move from alerting to normal if the alerting condition is
resolved.

• Pending to Alerting: This transition occurs when the pending period expires and
the alerting condition is still met. Transitioning from alerting back to pending is not
allowed.

4.7.1.2 Alerting instances

Each rule can produce multiple instances of a specified alert, this is because each one is tied
to the corresponding time series. This is especially useful when monitoring multiple replicas
of the same server. One single copy of an alert rule can be enough to fire for each individual
server.

46

Figure 4.9: Grafana Alerting instances. Source: [15]

4.7.1.3 Notifications

In the alert rule it is also possible to specify the channels for the notification (called contact
points), making it possible to divide alerts by priority, i.e. setting the more serious alerts to
fire more direct streams such as phone calls, SMS or third party services such as PagerDuty,
and the less important ones via slack or email.
The message that gets sent is also completely customizable by using templates, and it is also
possible to populate it with variables, for example the first alerting rule of the section can
be customized to send the message

There have been ${avg over time(http requests total{level="error"}[5m])}
error requests in the last 5 minutes!

giving the receiver a sense of how much the threshold has been surpassed, which is again
very useful to captivate the magnitude of the alert.

Figure 4.10: Grafana Alerting templates diagram. Source: [15]

47

In the figure above:

• Monitored Application: This refers to any web server, database, or service that gen-
erates performance metrics. For instance, a web server may generate metrics regarding
request rates, response times, and other performance indicators.

• Prometheus: Prometheus is responsible for collecting metrics from the monitored
application. For example, it may scrape metrics from a web server, with each metric
associated with specific labels such as instance (representing the server’s hostname)
and job (denoting the name of the service being monitored).

• Grafana: Grafana serves as a querying interface to retrieve metrics data from Prometheus.
For example, one may define an alert rule to track request rates of the web server over
time, utilizing labels like instance to create templates or annotations within the alert-
ing system.

• Alertmanager: As part of the Prometheus ecosystem, Alertmanager is responsible
for managing alert notifications. For example, if a particular web server exceeds a
predefined request rate threshold, Alertmanager can dispatch an alert notification to
platforms such as Slack or via email. The instance label is interpolated to include
the actual server name within the notification.

• Alert Notification: Upon fulfillment of an alert rule’s conditions, Alertmanager
issues notifications to various channels, including Slack or PagerDuty. These notifica-
tions may contain specific details derived from the labels associated with the alerting
rule. For instance, an alert triggered by high CPU usage on a specific server may
include the server name (as identified by the instance label), the percentage of disk
usage, and the threshold that was breached.

All these components come together to produce a notification with interpolated values, for
example from the generic template

CPU usage for {{ index $labels "instance }} has exceeded 80% of available

disk space

becomes

CPU usage for server1.example.com has exceeded 80% of available

disk space

This example query uses the built-in set of variable $labels, which contains automatically
all the labels from the query in the alert rule. Another default variable is $value which is
a table containing the values of the alerting rule, making possible to also return the actual
value of the resulting query in the following way

CPU usage for {{ index $labels "instance }} has exceeded 80% of available

disk space: {{ index $values "A" }}

which becomes

48

CPU usage for server1.example.com has exceeded 80% of available

disk space: 81.32%

Note that the table of $values is indexed by ID, which by default are letters in alphabetical
order, that’s why in the last query we need to use $values "A".
Finally, it is also possible to instruct the Grafana to batch issues together to reduce the spam
of notifications. This is useful in big systems, where each single component is monitored,
so the developers can know which component is affected and which is not within a single
notification.

4.7.1.4 Recording Rules

A recording rule enables the pre-computation of frequently used or resource-intensive expres-
sions, storing the results as a new time series. This is particularly useful for running alerts
on aggregated data or optimizing dashboards that repeatedly query complex expressions.
By querying the newly created time series, performance improves significantly, especially for
dashboards that refresh frequently.

4.7.1.5 Architecture

Grafana Alerting is based on the Prometheus model for designing alerting systems, which
consists of two primary components:

• An alert generator that evaluates alert rules and sends both firing and resolved
alerts to the alert receiver.

• An alert receiver, also called Alertmanager, which handles incoming alerts and man-
ages their notifications.

While Grafana Alerting does not rely on Prometheus as its default alert generator, since it
supports multiple data sources beyond Prometheus, it can still utilize Prometheus for alert
generation, as well as external Alertmanagers, depending on the configuration (see fig 3.5).

4.8 Error Rate monitoring

When dealing with error rates, SLOs (Service Level Objectives) are used because they pro-
vide a more reliable and context-sensitive approach to monitoring service performance, as
demonstrated in [18].
In order to understand SLOs, the concept of SLIs (Service Level Indicators) must also be
introduced.

4.8.1 SLIs

A Service Level Indicator is a key performance metric, such as availability, used to assess
the health or performance of a service over time. SLIs quantify actual performance results,
often expressed as a fraction or percentage, such as 99.9% system availability (or 0.999).
In Grafana SLO the creation of precise SLIs is facilitated by its ratio query builder, while also
supporting custom PromQL queries, allowing for flexibility in defining performance metrics
tailored to specific service needs.

49

4.8.2 SLOs

A SLO defines the target that an SLI must achieve to ensure an acceptable level of service.
This target specifies the threshold of performance that is acceptable for users, such as the
percentage of error-free responses within a given time frame that prevents noticeable service
degradation. For example, an SLO might dictate that 99.9% of requests to a web service
must be processed without server errors over a 28-day period.
When defining SLOs, it is important to acknowledge that aiming for 100% availability is
neither practical nor cost-effective. As availability approaches 100%, the complexity and
associated costs increase disproportionately. Therefore, it is essential to account for a margin
of error, commonly referred to as an error budget.
To illustrate, consider a credit card processing application. Although the company has
committed to 99.95% availability in its contracts, this figure may not fully capture customer
expectations. Using the SLO framework, the company can specify its availability goals
more precisely. In this case, the SLO could state that 99.97% of credit card validation
requests must return without a 500 error and within 100 milliseconds. Since validation
needs to be instantaneous, allowing e-commerce platforms to inform customers of errors
before completing a purchase, this SLO ensures that the service meets user needs. The
corresponding SLI would be the percentage of credit card validation requests that succeed
within the specified time frame and without errors.

Figure 4.11: Grafana SLO alerting rule

Unlike pure error rate tracking, which triggers alerts immediately when any error occurs,
potentially causing false alarms due to momentary spikes (e.g., a one-second spike in errors),
SLOs define acceptable error thresholds over a longer period, effectively doing a ”weighted”
or time-based evaluation of the error rate. This approach acts like an integral over time,
considering the cumulative impact of errors rather than reacting to transient issues, which
ensures that alerts are raised only when the service’s reliability genuinely deviates from the
defined objective. This reduces alert fatigue and focuses attention on incidents that truly
affect user experience.
SLOs are essential not only for operational alignment but also for ensuring transparency with
users. They allow service providers to set realistic performance targets in collaboration with
users through SLIs and SLAs (Service Level Agreements), making it clear that no system can
be 100% reliable. By defining an acceptable level of error, users have a clear understanding
of the expected service quality and the degree of occasional failure that is considered normal.
This transparency builds trust, as users know upfront the reliability they can expect and
what constitutes acceptable degradation, helping to manage their expectations and avoid
unrealistic assumptions about flawless service delivery. This transparency is particularly
important when dealing with SaaS, as any enterprise can know in advance the error rate to
expect from that service and act accordingly, for example by integrating a retry policy in
case of error.

50

Figure 4.12: Grafana SLO dashboard

When implementing a SLO strategy, it is important to familiarize with several key concepts:

• Error Budget: An error budget represents the allowable margin for failure when
measuring service performance. It reflects the difference between actual and desired
performance levels. For instance, using the previous example, the error budget would
be the gap between perfect service (100%) and the service level objective (SLO) of
99.97%. This budget can be expressed as a percentage (e.g., 0.03% allowable failures)
or as a specific amount of time (e.g., 12 minutes of non-compliance over 28 days).

• Burn Rate: The burn rate is the rate at which a service consumes its error budget,
essentially indicating how quickly the service is approaching its allowed margin of
failure. When setting an SLO, such as 99.5% availability, the remaining 0.5% accounts
for acceptable errors or slower responses. A burn rate of 1 implies that the service is
exhausting its error budget at the exact rate permitted by the SLO, while a slower
burn rate (e.g., 0.75) suggests that the service is outperforming the SLO. Conversely, a
faster burn rate indicates that the service quality is below expectations, and corrective
actions may be required.

• Alerting on Burn Rate: SLO-based alert rules trigger notifications when the service
is at risk of depleting the error budget within the defined timeframe. This approach
ensures that alerts are generated only when business objectives are at risk, avoiding
unnecessary notifications for every minor threshold breach. Grafana, for example,
provides both fast and slow burn rate alerts. Fast burn rate alerts are designed for
critical issues like outages, which may quickly consume the error budget and require

51

immediate attention. In contrast, slow burn rate alerts are triggered by less-urgent
issues, such as minor bugs or network slowdowns, and may prompt the creation of a
ticket in systems like Jira, ServiceNow, or GitHub for further investigation.
For instance, if the service is consuming 2% of the error budget per hour, Grafana will
trigger an urgent alert, notifying an on-call engineer through tools such as PagerDuty to
address critical events like system outages or hardware failures. However, if the service
is burning through 0.8% of the error budget per hour, a less-critical alert may be issued,
prompting the team to open a ticket for non-urgent issues, such as a performance
degradation caused by a bug.

• Fast-Burn Alert Rule: Over short time intervals, Grafana triggers alerts when the
burn rate is particularly high, signaling severe conditions such as outages or hardware
failures that require immediate response.

• Slow-Burn Alert Rule: Over longer time intervals, Grafana sends alerts when the
burn rate is moderate, indicating ongoing issues that, while less critical, still require
timely resolution.

A good SLI for Error rate is simple and easy to read, for example

requests total{code!∼"5.."} / requests total

for availability, and

requests duration seconds bucket{code!∼"5..", le="1.0"} /

requests duration seconds count{code!∼"5.."}

for latency.

52

Chapter 5

Analysis

The following chapter aims at giving some theoretical analysis of the three systems presented.
The goal is to identify when each system is better to use then the others, so that it becomes
easier to choose one of the alternatives, depending of each specific need and condition.
Given the very high amount of variables that such a situation may comprise, in this study
we will simplify by fixing some of them. This simplification should not impact the quality of
the results, since the chosen variables to be fixed, should only impact the scale of the results,
and not their respective rankings.

Throughout the analysis, the Nagios system will be referred as System 1 or just (1), The
in-house solution as System 2 or just (2) and the Grafana Cloud solution as System 3 or
just (3).

5.1 Theoretical Analysis

The first section of the analysis will just be theoretical. The aim of this section is to give
results based on common knowledge or publicly available information.
In the following section, those results will be tested against practical scenarios, to see if the
results match or if in reality some systems perform better or worse then expected.

5.1.1 Evaluation Criteria

The systems will be evaluated based on a set of simple, objective metrics that can be clearly
measured across different monitoring solutions. The following criteria are used to guide the
analysis:

• Cost: This is the primary criterion for comparison, as financial considerations are
critical for any organization. Cost encompasses both the initial setup and ongoing
maintenance. Different systems have distinct cost structures: for instance, an in-
house system incurs significant setup costs, both in terms of infrastructure and human
resources, while a SaaS solution, like Grafana Cloud, typically requires minimal upfront
investment.

• Scalability: Scalability is crucial for companies expecting growth in the coming years.
A system must be capable of handling increasing demands without requiring substantial
changes. Systems that lack inherent scalability can hinder future expansion, necessi-
tating costly overhauls.

53

• Resilience to Traffic Spikes: This criterion assesses the system’s ability to handle
sudden and extreme increases in traffic, which are common for businesses susceptible to
viral trends or unpredictable demand surges. While related to scalability, this focuses
specifically on the system’s ability to manage short-term, high-intensity traffic loads,
which can easily overwhelm less resilient architectures. Not being able to capitalize on
these spikes represents a significant loss of potential revenue for companies, and must
therefore be prevented.

• Ease of Maintenance: Particularly relevant for smaller companies with limited tech-
nical staff, this criterion considers how simple a system is to maintain. Systems that
require minimal intervention and expertise are preferable for organizations without
dedicated IT personnel. For example, a small company might favor a solution that
operates with minimal knowledge, configuration and maintenance effort.

Typically, monitoring systems are assessed based on their Mean Time To Response (MTTR).
However, for the three systems analyzed here, the MTTR is not measured. This decision
is based on the fact that MTTR is highly dependent on specific implementations, and all
three systems employ an alert manager to dispatch notifications about potential issues.
Consequently, the variability in MTTR would largely be influenced by the nature of the
specific issues encountered. Additionally, setting up all three systems to undergo identical
scenarios for measurement purposes presents significant challenges and might be infeasible
to do with low degrees of uncertainty.

5.1.2 Parameters

As mentioned at the beginning of this chapter, evaluating monitoring systems in detail
requires accounting for a wide range of variables. Even just estimating costs involves data
such as the volume of metrics ingested per day, the number of time series processed, the
frequency of queries (both for visualization and alerting), the number of machines being
monitored, the number of active users, and the amount of egress traffic. While allowing
these variables to fluctuate would offer a more flexible analysis, enabling companies to tailor
decisions based on their specific circumstances, for simplicity, most of these factors will be
fixed at realistic values representative of high-scale operations.

5.1.2.1 Fixed parameters

The fixed parameters will be:

• volume of metrics ingested: this parameter will be set at 100TB/month.

• number of time series active: this parameter will be set at 20M/month.

• volume of logs ingested: this parameter will be set at 30TB/month.

• number of machines: this parameter will be set at 10000.

5.1.2.2 Variables

The variables of the model will be:

• System used: This parameter reflects the choice of either of the three systems presented
between (1), (2) and (3).

54

• Cost of opportunity: This parameter reflects the additional revenue a company can
generate if the engineers, who would otherwise be dedicated to maintaining the in-
house monitoring system, are reassigned to work on other projects. By redirecting
these resources, the company can capitalize on new opportunities or enhance existing
initiatives, thus increasing overall revenue potential.

5.1.3 Cost analysis

To analyze cost we need to define a function that captures the overall economical net of a
company. This will simply be:

Costtot = Costsystem + Costopp

Where the total cost of the system is computed as the cost of building and maintaining the
system plus the Cost of opportunity of relocating resources. This way we will only capture
the end result of cost, taking into account every scenario.
We now have to compute the cost of each system. To do this, we use publicly available
usage-based prices, as neither GrafanaCloud or Nagios offer publicly prices for enterprises.
All costs computed will be per months.

• Cost of (1): Nagios does not provide public, usage-based pricing. For this analysis,
the most appropriate pricing estimate has been used, and prices for larger packages
have been extrapolated from smaller ones.
The out-of-the-box solution requires purchasing a Nagios XI license. For small to
medium-sized enterprises, the cost for unlimited nodes is approximately $26,000. How-
ever, given our scale, the ”sitewide” package, designed for distributed and large-scale
deployments, would be necessary. While no official pricing exists for this option, es-
timates based on online data suggest that the 10-node package costs around $55,000.
Scaling this to meet the needs of a system with approximately 10,000 machines, we
estimate a cost of around $5.5 million. This approximation follows typical pricing mod-
els and, for simplicity, the assumption of linearity of the increase in price, though the
actual cost may vary significantly. It is important to note that this cost is a one-time
payment for the license, and not a monthly subscription.
As for setup, we can estimate the cost of implementation at roughly $17,000, based
on one full-time engineer working on the system for two months, assuming an average
annual salary of $100,000. In total, the cost of Nagios XI is projected to be around
$5.5 million for a one-time license plus setup costs.

• Cost of (2): The cost of the second system depends significantly on the specific
implementation details, but a reasonable estimate can be made based on common
usage patterns for this type of application and then using public prices for GCP.

– To store 130TB of metrics and logs, using Google Cloud Storage would cost
approximately $2,600/month.

– For Cortex servers, approximately 30 high-memory machines are required for
ingesters. Based on the cost of n2-highmem-64 machines from GCP, this would
total $92,000/month.

– Prometheus federation would require around 50 general-purpose e2-standard-8
machines, leading to a total of approximately $10,000/month.

55

– The cost of maintaining and building the system would include two full-time engi-
neers, which adds about $16,800/month, assuming an annual salary of $100,000.

Summing these components, the total cost of System 2 is approximately $121,400/month.

• Cost of (3): The cost of system 3 can be computed using Grafana Cloud usage-based
pricing and GCP for the egress cost as follows:

– $160,000/month for 20M active series.

– $65,000/month for 130TB of ingested metrics

– $11,700/month for egress traffic

– No cost for setting up and maintaining, since it is offered as SaaS.

Overall system 3 would cost $236,700/month

For simplicity, here is reported a table with the costs of the systems:

System Components cost Total cost

System 1 License: $5,500,000 (one-time)
Setup: $17,000 (one-time)

$5,517,000 (one-time)

System 2
Storage: $2,600/month

Cortex Servers: $92,000/month
Prometheus Federation: $10,000/month

Maintenance: $16,800/month

$121,400/month

System 3 Active Series: $160,000/month
Ingested Metrics: $65,000/month
Egress traffic: $11,700/month

$236,700/month

Table 5.1: Table of total costs of the three systems

Here are the costs of the three systems plotted for four different values of Costopp: $500,000/year,
$1,000,000/year, $1,500,000/year, and $2,000,000/year. Each graph represents the total cost
over a period of 40 months, according to the formula defined at the beginning of this section.

56

(a) Costs with Costopp = $500,000/year (b) Costs with Costopp = $1,000,000/year

(c) Costs with Costopp = $1,500,000/year (d) Costs with Costopp = $2,000,000/year

In the four scenarios depicted above, the analysis reveals the following insights:

• System 1 proves to be more cost-effective in the long term. This is because it involves a
one-time license fee rather than a recurring monthly cost. However, it is important to
note that this comes with limitations in scalability and adaptability of the monitored
system. Therefore, System 1 remains the preferred choice for small to medium-sized
companies with limited growth expectations or those that anticipate changing their
monitoring stack infrequently.

• Both Systems 2 and 3 surpass System 1 in cost after 2 to 3 years. Hence, if the
monitoring requirement is anticipated to last less than this time frame, choosing either
System 2 or System 3 would be more economical.

• The cost of opportunity value at which Systems 2 and 3 are roughly equivalent is
slightly less than $1,500,000/year (∼$1,400,000/year). For values below this threshold,
System 2 is more cost-effective, while values above this threshold make System 3 the
cheaper option.

A purely numerical analysis is insufficient, as companies may prioritize flexibility, scalability,
and other factors beyond cost, and often will be prepared to pay a bit more for a better tool
or for one that will withstand the test of time better. Therefore, additional metrics are also
analyzed below.

57

5.1.4 Scalability analysis

Scalability is a challenging aspect to quantify objectively, so we will outline the necessary
steps for scaling each system and identify any hard limits they may encounter.

• System 1: Scalability is generally not a concern for this system, as it is managed
internally. However, performance issues arise when scaling beyond a certain number
of hosts. Nagios XI is designed to handle a limited number of hosts effectively; for
instance, the most expensive package supports up to 1,000 hosts. While it may perform
adequately for a few thousand hosts (e.g., up to 3,000), monitoring tens of thousands
of hosts, as in our case, would likely exceed its practical capabilities. Thus, for very
large deployments, Nagios XI may not be the optimal choice.

• System 2: Scalability presents significant challenges with this system due to its lim-
ited horizontal scalability. The system requires constant manual deployment of new
infrastructure, which increases complexity. Although it could theoretically be scaled in-
finitely with sufficient resources and manpower, cloud providers like GCP impose hard
limits on various aspects, such as the number of peering connections and machines per
VPC. For example, GCP has a limit of 24 peering connections per VPC, necessitating
a hierarchical approach to scale beyond this. As a result, adding more than 24 squared
projects requires additional layers of peering, complicating the architecture further.

• System 3: Scalability is managed entirely by the external provider, so it is theoreti-
cally infinite, provided the provider can accommodate the increased demand. As long
as the provider supports and can handle higher traffic volumes, scalability is not a
concern for this system.

5.1.5 Traffic Spikes analysis

For traffic spike analysis, it is necessary to assume a magnitude. For simplicity, assume
that the spike is five times the normal traffic, thereby generating five times the load on the
current machines and requiring five times the number of machines to maintain the same load
on each.

• System 1: Traffic spikes are generally manageable if Nagios is configured properly.
However, if spikes cause the number of hosts to exceed the software’s limitations as
discussed in the previous section, the entire system may experience performance degra-
dation or, in the worst case, complete shutdown.

• System 2: Traffic spikes present a significant challenge for this system, as scalability
must be handled manually. Unless the spike can be anticipated several days in advance
to allow for the deployment of necessary infrastructure, there is a high likelihood that
the system will collapse under increased traffic. This scenario is particularly problem-
atic because not only would there be a substantial increase in costs to deploy five times
the number of machines, but the system might fail due to its data ingestion bottleneck
before any monitored systems encounter issues, resulting in a loss of visibility on po-
tential problems.
One potential solution is to design the system to handle up to x times the normal traffic,
although this approach would significantly increase costs during normal operations.

58

• System 3: Traffic spikes are not an issue for this system, provided that the provider
can handle them. The primary concern would be the associated increase in service
costs. This is particularly relevant if the contract is not based on usage but is limited
to a certain amount of traffic, in which case overage charges may apply.

In conclusion, the most effective solution for managing traffic spikes is System 3. It is
therefore preferable if the expected traffic in the applications is not consistently constant
and instead follows trends or viral waves.

5.1.6 Maintenance analysis

When maintaining a monitoring system, several factors may be of interest, such as the level
of expertise required and the time commitment involved.

• System 1: This system is designed to function with minimal maintenance effort,
making it an ideal solution for small to medium-sized businesses that may have less
specialized staff or cannot afford to dedicate a full-time engineer. However, if cus-
tomization to specific needs becomes necessary, it can be challenging and requires
substantial IT knowledge.

• System 2: This system demands considerable expertise and time for both setup and
maintenance. Nevertheless, it offers the greatest degree of flexibility in implementation.
It is recommended for organizations that require tailored applications and have the
capability to manage the associated complexity.

• System 3: This system requires less expertise than System 2 but more than System
1, as some components, such as agents on monitored machines, need to be deployed
manually. This solution can also be used with minimal maintenance effort, as it is
offered as a SaaS product and any issues can be addressed through the provider’s
customer support.

In summary, both Systems 1 and 3 offer a balanced compromise between required knowledge
and time commitment. However, System 2 may be preferable if the organization is focused
on developing specific, tailored applications, due to its higher degree of customizability.

5.1.7 Summary

For convenience, the results theorized above are reported in the following table.

59

System Cost Scalability Traffic Spikes Maintenance

System 1 High
($5.5M)

but one-time

Limited
(up to a few

thousand hosts)

Potential issues
beyond capacity

Low effort
but limited

customization

System 2

Moderate
($121,400/month)

but high cost
of opportunity

Challenging
Manual scaling
GCP limits

Severe issues
without planning
or overcapacity

design

High effort
Customizable

System 3 High
($236,700/month)

No issues
(handled by
provider)

No issues
but higher costs

Moderate effort
Low maintenance
SaaS solution

Table 5.2: Summary of system performance in cost, scalability, traffic spike handling, and
maintenance

5.2 Simulations

In this section there will be presented 3 situations to test the three systems:

• The first scenario is normal operation: This aims to simulate the typical day-to-day
functioning, allowing us to assess which system performs best under ideal conditions.

• The second scenario is traffic spikes: This scenario simulates an unexpected surge
in traffic, with the goal of evaluating which system exhibits greater resilience under
unusually high load.

• The third scenario is system outage: This simulates a situation where a component,
such as a database, is non-operational. The objective is to determine which system
responds more effectively to the failure, focusing on both issue detection and resolution
capabilities.

5.2.1 Scenario 1

• System 1: This system operates efficiently under normal conditions due to its model,
which allows for reliable functionality within the bounds of the purchased license. Its
primary strength is its cost-effectiveness for small to medium-sized enterprises, as the
cost is fixed regardless of the number of machines. However, its performance might
degrade as the number of monitored hosts approaches its maximum capacity. The
system provides comprehensive monitoring and alerting capabilities, but customization
to specific needs can be complex and require significant IT expertise.

• System 2: Designed for flexibility and customization, this system is well-suited for
environments with variable monitoring needs. It allows for extensive tailoring to meet
specific requirements, and its monthly subscription model means costs are very pre-
dictable. The system provides advanced monitoring and analysis features, which can

60

be fine-tuned to suit the organization’s needs. However, its complexity requires skilled
personnel for setup and maintenance. Overall this system also performs really well
under normal conditions.

• System 3: As a SaaS solution, System 3 offers ease of use with minimal maintenance
requirements. It includes built-in scalability and performance optimization managed
by the provider. This system is ideal for organizations that prefer a managed service
with predictable costs that increase with usage. The provider handles the infrastruc-
ture, allowing the organization to focus on utilizing the system’s features without
worrying about scalability or maintenance. This is the ideal scenario for a company
with unlimited budget, as it proves to have less burden on employees than the other
two.

It is no surprise that all three systems perform effectively under normal conditions, provided
they are set up correctly and function without any issues.
When it comes to routine operations, the optimal choice among the three systems depends
on their specific strengths and weaknesses, as well as their associated costs.

5.2.2 Scenario 2

• System 1: During traffic spikes, System 1 may face challenges due to its limited
scalability. Although the price allows for using as many machines as needed (in the
unlimited hosts price range), the system might not handle sudden surges in traffic
effectively. It is essential to plan for such spikes within the system’s capacity limits to
avoid performance issues. Choosing this system means possibly losing control over the
whole flow.

• System 2: Managing this system during unexpected traffic spikes can be challenging.
Its need for manual scaling means that without advance notice, the system may strug-
gle to handle sudden high loads. The cost of rapidly scaling up can be substantial,
making it less suitable for environments with unpredictable traffic patterns. Effective
management of traffic spikes requires careful planning and additional resources. While
this system also faces difficulties with traffic spikes, it remains possible to address them,
unlike System 1, which has a hard limit on scalability.

• System 3: System 3 excels at handling traffic spikes due to its managed scalability.
The provider can adjust resources dynamically to accommodate increased loads, ensur-
ing continuous performance. However, costs will increase with higher traffic volumes,
and it is crucial to ensure that the service contract includes provisions for high usage
to avoid unexpected charges.

In this scenario, System 3 clearly emerges as the best option, effortlessly managing traffic
spikes since all scalability concerns are handled by the service provider. If traffic spikes
are anticipated or could be a potential issue, System 3 offers superior efficiency and cost-
effectiveness. System 1, on the other hand, has a scalability limit that cannot be exceeded,
while System 2 would require substantial infrastructure expansion and extensive manual
intervention to accommodate high loads.
However, if traffic spikes are unlikely or if the company can tolerate potential monitoring
disruptions during such events, Systems 1 or 2 might still be viable alternatives.

61

5.2.3 Scenario 3

• System 1: During a system outage, System 1 depends on its built-in monitoring and
alerting functionalities. The system’s effectiveness in detecting and addressing issues
hinges on its configuration and any supplementary support arrangements. Although
it offers strong monitoring capabilities, resolving issues might be slower if the system’s
capacity is exceeded or if complex custom configurations are required. However, with
thoughtful planning and the appropriate selection of plugins, many of these challenges
can be managed or prevented.

• System 2: System 2 provides extensive customization options, which can be valu-
able for identifying and resolving system outages. Its advanced features and manual
management capabilities enable tailored solutions for handling failures. However, the
system’s complexity may affect response speed, necessitating skilled personnel to ad-
dress issues promptly. Its in-depth approach often allows for more precise identification
of problems compared to System 1, including the ability to pinpoint exactly which ma-
chine caused the error, thereby facilitating quicker issue resolution.

• System 3: As a SaaS solution, System 3 benefits from the provider’s dedicated support
for managing outages. The provider is responsible for maintaining system reliability
and addressing failures, which typically results in a faster and more efficient resolution.
Organizations benefit from the provider’s expertise and infrastructure, though they rely
on the provider’s responsiveness and support quality.

While all three systems perform effectively in this scenario, the last two may offer slightly
faster resolution due to their more machine-specific approaches. The identification and
resolution processes can be significantly expedited by utilizing tools like Sentry, which can
pinpoint the exact lines of code where the error occurred, thus aiding in the swift resolution
of bugs that might be causing the issue.

62

Chapter 6

Conclusions

6.1 Results

In conclusion, this study examined three distinct monitoring systems: the first offering an
out-of-the-box solution, the second a fully customized system built on popular and powerful
open-source projects, and the third utilizing the same open-source projects but offered as a
SaaS (Software as a Service) solution, optimized for scalability and robustness.
Each system demonstrated unique strengths that were unmatched by the others. System 1
stood out for its simplicity in setup and maintenance, making it an ideal choice for organi-
zations with minimal technical staff. System 2 excelled in customizability at a relatively low
cost, making it suitable for companies with specific monitoring needs who prefer a solution
tailored to their existing infrastructure. Finally, System 3 showcased superior scalability,
making it well-suited for large-scale applications or organizations managing a high volume
of users or applications.
Each system also presented certain limitations. System 1 proved less effective for highly
technical and scalable environments. While System 2 offered better scalability and lever-
aged more modern software, it remained limited in horizontal scaling and required manual
intervention for scaling, which was slow and cumbersome. Additionally, System 2 strug-
gled to efficiently manage traffic spikes. In contrast, System 3 provided the highest level
of scalability and handled traffic spikes with ease, though this came at the cost of reduced
customizability and a significantly higher price point.
Ultimately, none of the systems emerged as a definitive winner. Each is best suited for differ-
ent scenarios and organizational needs, depending on the priorities of the company: whether
scalability, customizability, or ease of setup is the primary concern.

6.2 Future Work

The primary objective of this thesis was to explore alternative monitoring systems with a
focus on scalability. While the study provided a general overview and comparison of three
systems, a more in-depth analysis was beyond the scope of this work. Such an analysis
would inevitably depend on specific implementations, which could significantly influence the
outcomes and lead to varying results.
One promising area for future research is the integration of OpenTelemetry, which has in-
creasingly become the industry standard for observability. OpenTelemetry offers features
such as operating in push mode rather than pull, making it particularly well-suited for envi-
ronments with ephemeral jobs, an approach that is becoming more prevalent in microservices

63

architectures. Future work could explore how systems like those discussed in this thesis (es-
pecially Systems 2 and 3) could be built or adapted using OpenTelemetry, leveraging its
advanced capabilities to enhance scalability and flexibility.
Additionally, the current analysis does not include any optimization of the systems. The
focus was on evaluating the systems as they are, without exploring potential optimizations
that could improve performance or cost efficiency. Future research could investigate areas
within each system where optimizations could be applied, such as resource allocation, in-
frastructure configuration, or monitoring strategies, to achieve better outcomes tailored to
specific use cases. Another avenue for future work could involve exploring cost optimization
strategies for Systems 2 and 3, as the current analysis is based on public, usage-based pric-
ing. This study did not examine ways to reduce costs by identifying primary cost drivers
and shifting to more affordable alternatives. It is also important to note that enterprise-level
contracts often provide discounts compared to public pricing, which were not considered in
this analysis. Since these discounts are highly company-specific, each organization should
conduct its own cost-benefit analysis, similar to the approach shown here, but tailored to
its specific financial data. By incorporating such optimizations, a more refined comparison
could emerge, potentially leading to different conclusions.
Finally, a more comprehensive exploration of automation and self-healing capabilities could
provide valuable insights into reducing manual intervention during outages and enhancing
overall system resilience.

64

Bibliography

[1] M. Lopes and A. Hora, “How and why we end up with complex methods: a multi-
language study,” Empirical Software Engineering, vol. 27, no. 5, pp. 1–29, 2022.

[2] S. Laato, M. Mäntymäki, A. Islam, and et al., “Trends and trajectories in the software
industry: implications for the future of work,” Information Systems Frontiers, vol. 25,
pp. 929–944, 2023.

[3] Statista, “Global software market size from 2012 to 2025.” https://www.statista.c

om/markets/418/topic/484/software/#statistic1, 2023. Accessed: 2024-09-21.

[4] S. Elliot, “Devops and the cost of downtime: Fortune 1000 best practice metrics quan-
tified,” International Data Corporation (IDC), 2014.

[5] Alphabet Inc., “Alphabet inc. q2 2024 earnings release,” 2024. Accessed: 2024-09-21.

[6] S. Rodrigues, “Infoworld’s best of open source software 2008.” Available: https://ww
w.infoworld.com/article/2311663/infoworld-announces-our-2008-best-of-o

pen-source-awards.html, August 2008. Last accessed: 2024-08-10.

[7] J. Gray, “Readers’ choice awards 2009.” Available: http://www.linuxjournal.com/a
rticle/10451, June 2009. Last accessed: 2024-08-10.

[8] “Linuxquestions.org network monitoring application of the year 2018.” Available: http
s://www.nagios.com/awards/, August 2018. Last accessed: 2024-08-10.

[9] “Nagios case studies.” Available: https://www.nagios.com/case-studies/. Last
accessed: 2024-08-10.

[10] “Nagios core monthly downloads on sourceforge.net.” Available: https://sourceforg
e.net/projects/nagios/files/stats/timeline?dates=2001-05-01%20to%20202

4-08-01&period=monthly. Last accessed: 2024-08-10.

[11] “Nagios core 4 documentation.” Available: https://assets.nagios.com/downloads/
nagioscore/docs/nagioscore/4/en/plugins.html. Last accessed: 2024-08-10.

[12] “Latvian open technologies association ”the most open solution”, 2021.” Available:
https://www.zabbix.com/pr/pr321, February 2021. Last accessed: 2024-08-10.

[13] “April 2019 gartner peer insights customers’ choice for it infrastructure monitoring
tools.” Available: https://blog.zabbix.com/zabbix-users-have-spoken/6888/,
April 2019. Last accessed: 2024-08-10.

[14] “Prometheus documentation.” Available: https://prometheus.io/docs/introduct

ion/overview/. Last accessed: 2024-08-28.

65

[15] “Grafana documentation.” Available: https://grafana.com/docs/grafana/latest/
fundamentals/intro-to-prometheus/. Last accessed: 2024-08-28.

[16] “Cortex documentation.” Available: https://cortexmetrics.io/docs/. Last ac-
cessed: 2024-08-28.

[17] “Pagerduty documentation.” Available: https://support.pagerduty.com/main/doc
s/. Last accessed: 2024-08-28.

[18] S. Thurgood, J. Frame, A. Lenton, C. Quinito, A. Tolchanov, and N. Trdin, “Alerting
on slos,” 2018. Accessed: 2024-09-21.

66

	Abstract
	Introduction
	Typical Monitoring Systems in the Industry
	Nagios
	Software Architecture and Functionality
	Plugins
	Strengths and Weaknesses
	Strengths
	Weaknesses

	Zabbix

	The Old Monitoring System at The Company
	Overview
	Components
	Prometheus
	Features
	Metrics
	Components
	Architecture
	PromQL
	Strengths and Weaknesses

	Grafana
	Alerting

	PostgreSQL
	Cortex
	Distributor
	Ingester
	Hash ring
	Querier
	Compactor
	Store Gateway
	Optional Services
	Challenges in Horizontal Scalability

	Architecture
	Limitations and Challenges

	The New Monitoring System at The Company
	Overview
	Architecture
	Components
	Mimir
	Loki
	Loki Stack
	LogQL

	Sentry
	Error Monitoring

	PagerDuty
	Key Features and Strengths

	Logging
	Challenges
	Ephemeral Jobs
	Alerting
	Alerting rules
	Alert rule evaluation
	Alerting instances
	Notifications
	Recording Rules
	Architecture

	Error Rate monitoring
	SLIs
	SLOs

	Analysis
	Theoretical Analysis
	Evaluation Criteria
	Parameters
	Fixed parameters
	Variables

	Cost analysis
	Scalability analysis
	Traffic Spikes analysis
	Maintenance analysis
	Summary

	Simulations
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusions
	Results
	Future Work

