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Introduction

The main purpose of my work is to report an alternative way to see the
process of data acquisition: why is necessary, in the transition between analog
and digital, to keep all data if then one has to compress it to save memory
as much as possible? And if one wants to apply this hypothesis, for example
in Fluorescence Microscopy, what are the outcomes?

A solution to this apparent contradiction is found in the technique of
Compressed Sensing : to introduce the topic I’ve started with the description
of the Fourier Transform, whose coefficients are a valid representation of
most signals. In particular, I’ve presented the Discrete Fourier Transform
and the Dscrete-Time Fourier Transform because most of the signals we deal
with have discrete values.

Subsequently in Chapter 2 I’ve dealt with Sampling Theory, the principal
approach to data acquisition used before the introduction of Compressed
Sensing Theory and which is mainly based on Shannon’s Theorem. Under
the hypotheses of the Theorem, one can reduce the number of measurements
but it is evident that there’s more that can be done about it.

Finally one can find in Chapter 3 a concise but sufficient treatment of
Compressed Sensing in which I’ve especially underlined the importance of
sparsity and incoherence as requirements for signals recovery.

In conclusion I’ve described some examples of biological images acqui-
sition through a Compressive Fluorescence Microscope which show how a
practical implementation of the theory can considerably reduce the number
of necessary measurements.
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Chapter 1

DFT e DTFT

1.1 Discrete Fourier Transform (DFT)

Before we talk specifically about the DFT, let’s take a look in general at the
Fourier Transform (FT) of a continuous-time signal. Given a finite-energy
signal x (x ∈ L2(−∞,∞), it may be defined as a mean-square limit.

X(ω) =

∫ +∞

−∞
x(t)e−jωtdt, ω ∈ (−∞,+∞) (1.1)

As we know from Signal Theory, the passage from continuous time to discrete,
is marked by the use of the sum instead of the integral, and therefore we have:

X(ωk) =
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, ..., N − 1 (1.2)

where x(tn) is the input signal amplitude at the sampling time tn = and N
is the number of time and frequency samples.

Because the sampling period T is also written as T = 2π
ωk

and it’s com-

monly set at 1, (1.2) becomes:

X(k) =
N−1∑
n=0

x(n)e−jn
2π
N
k, k = 0, 1, 2, ..., N − 1 (1.3)

where ej2πnk/N = sk(n) is the sampled complex sinusoid and n is the new
variable for the discrete time. It’s now easy to see that X(k) is the inner
product of x and sk,

X(k) = 〈x, sk〉 =
N−1∑
n=0

x(n)sk(n) (1.4)
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Therefore the DTF is a measure of ”how much” of the basis sinusoid sk is
present in x and at what phase.

1.2 Discrete Time Fourier Transform (DTFT)

The Discrete Time Fourier Transform is the limiting form of the DFT (1.3)
when N → +∞:

X(ejθ) =
∞∑

n=−∞

x(n)e−jθn x ∈ `2(−∞,∞) (1.5)

Differently from the DFT , which involves only a finite number N of samples
of the signal, the DTFT operates on discrete-time signals x(n) which are
defined over all integers n ∈ Z.

We see that the DTFT is a function of continuous frequencies θ ∈ [−π, π],
contrary to the DFT whose frequencies ωk = 2πk/N (k = 0, 1, 2, ..., N − 1)
are discrete and are obtained by the angles of N points along the unit circle
in C. When N → ∞, the frequency axis form the unit circle and remains
finite in length in accordance with the time domain which is sampled.

Given the discrete-time signal x(n) with n ∈ Z and x(n) 6= 0 only for
n=0,1,...,N-1, let’s xp(n) be the periodic repetition of period N of x. Its
Fourier series is

xp(n) =
N−1∑
k=0

ake
jk 2π

N
n (1.6)

and from this we derive ak as:

ak =
1

N

N−1∑
n=0

xp(n)e−jn
2π
N
k (1.7)

From (1.7) and (1.3) we see that:
x(0)
x(1)
·
·

x(N − 1)

 DFT7−→ N


a0
a1
·
·

aN−1


Therefore we can write the DFT of xp(n) as:

4



X̃(k) = Nak = X(ej(k
2π
N

)) (1.8)

We see that X̃(k) is nothing but samples of the DTFT (1.5).

5



Chapter 2

Sampling Theory

The discrete-time signal x(n) is often the sampled version of a continuous-
time signal x(t) at time tn = nT , where T is the sampling period. On account
of this the DTFT can be seen as an approximation of the continuous-time
Fourier Transform

X(jω) =

∫ ∞
−∞

x(t)e−j2πωtdt (2.1)

Hence the question is: can we determine from the samples {x(nT )} the
DTFT X(jω) = F{x(t)} and therefore, the original signal x(t)? How
good is this approximation? An answer to this question is given to us by
”Shannon′s Sampling Theorem”:

Theorem 1. (Shannon’s Sampling Theorem) If ∃ ωM (Nyquist rate) such
that X(jω) = F{x(t)} = 0 ∀ |ω| > ωM and if ωS = 2π

T
> 2ωM , then we can

reconstruct x(t) in the mean-square sense from its samples xP (t) = x(nT ).

Thus if we have an image, the sampling frequency ωS, that is the inverse of
the image size in pixels, must be at least twice the bandwidth of the signal
ωM . This procedure of picture capture is obviously independent from the
image type and from this perspective we can do something to reduce the
number of samples without compromising the data.

For example if we have a signal x(t), we obtain its discrete version through
a series of impulses p(t) =

∑∞
n=−∞ δ(t− nT ), where T = 2π

ωS
is the period:

xP (t) = x(t)p(t) = x(t)
∞∑

n=−∞

δ(t− nT ) =
∞∑

n=−∞

x(nT )δ(t− nT ) (2.2)

From P (iω) = F{p(t)} = 2π
T

∑∞
k=−∞ δ(ω − kωS), we calculate F{xP (t)}:
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XP (jω) =
1

2π

∫ ∞
−∞

X(jθ)P (j(ω − θ))dθ =
1

T

∞∑
k=−∞

X(j(ω − kωS)) (2.3)

which is periodic of period ωS.
In (2.3) to calculate XP (jω) we have used the property of the Fourier

Transform:

F{x(t)y(t)} =
1

2π
X(jω) ∗ Y (jω)

and then the one of the delta function:

X(jω) ∗ δ(ω − ωO) = X(j(ω − ωO))

Example of sampling without aliasing

Let’s take into account a real signal x(t) with the following Fourier Transform
X(jω)

Figure 2.1: |X(jω)|

We see that the signal is limited in frequency, namely X(jω) = 0 ∀ |ω| ≥
B = 1, therefore ω ∈ (−1, 1).

To avoid aliasing, which leads to data loss or distortion, we have to use a
sampling rate ωS ≥ 2B = 2.
We consider ωS = 5 and so we obtain XP (jω) (fig. 2.2).
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Figure 2.2: |XP (jω)|

To obtain the original signal we have to return to the original transform
X(jω) removing the spectral repetition introduced by the sampling. To
achieve this, we can use an ideal low-pass filter (fig. 2.3)

Figure 2.3: |H(jω)|

H(jω) = Trect

(
ω

ωS

)
=


T |ω| < B

T/2 ω = ±B
0 altrove
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From H(jω) we obtain Xr(jω) = XP (jω)H(jω) that is a reconstructed ver-
sion ofX(jω), which, in this case, according to Shannon’s Theorem (Theorem
1), coincides with the original one X(jω).

Example of sampling with aliasing

On the contrary, if the sampling frequency ωS doesn’t respect the Shannon’s
Theorem (Theorem 1), there’s the risk that the reconstructed signal presents
the aliasing phenomenon, namely during the sampling the translates of the
signal transform overlap with each other.
For example, if in the previous case we use ωS = 1, 8 < 2B = 2, we would
have the following results for the XP (jω) (fig. 2.4).

Figure 2.4: |XP (jω)|

Due to the overlaps the reconstructed signal Xr(jω) would be, in this case,
different from X(jω).
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Chapter 3

Compressed Sensing

Nowadays we deal with data that are compressed, either if we talk about
music (.mp3, .aac,...) or videos (.avi, .mp4, ...) or images (.jpg, .gif,...). As a
matter of fact all these signals have some data that would be cut off during
compression without severe damage to the outcome and that are therefore
’useless’, in the meaning that they are acquired only to be later thrown out.

The idea behind Compressed Sensing is that, for a picture, we can directly
acquire only the information that is useful, without knowing where it is
located in the image.

In this sensing mechanism, information about the signal x(t) is obtained
by linear functionals:

yk = 〈x, ϕk〉, k = 1, ...,m (3.1)

The equation shows a correlation between the signal we want to acquire and
the sensing waveforms ϕk(t): for example if ϕk(t) = δ(t−k), then y is simply
a vector of sampled values of x, or if the sensing waveforms are sinusoids,
then y contains the Fourier coefficients.

Compressed Sensing is only interested in undersampled problems, that is
when the number m of samples is smaller than the dimension n of the signal
x. Therefore we have to solve an underdetermined linear system of equations
with more unknowns than equations.

As we saw in the previous chapter (Theorem 1), if x(t) has very large
bandwidth, we need a small number of uniform samples to recover the sig-
nal. As we will see in this chapter, Compressed Sensing makes the recovery
possible for a broader class of signals under some peculiar features: sparsity
and incoherence.
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Sparsity

Many natural signals are sparse in the sense that their ”information con-
tent” is much smaller than suggested by their bandwidth. Therefore their
representation could be more concise if expressed in a proper basis.

If we have a signal x(t), it may be represented through an expansion in
an orthonormal basis Ψ = [ψ1ψ2...ψn] as follows:

x(t) =
n∑
i=1

αiψi(t) (3.2)

where αi = 〈x, ψi〉 are the coefficients of x.
Hence a signal is sparse if one can discard the small coefficients without
much sensible loss. We name xS(t) the signal obtained keeping only the
terms corresponding to the S largest value of αi so that (3.2) becomes:

xs(t) =
S∑
k=1

αSkψk (3.3)

where αSi are the S largest coefficients.
Since Ψ is an orthonormal basis, ‖x− xS‖`2 = ‖α− αS‖`2 and if x is sparse
then α is well approximated by αS and hence the error ‖x− xS‖`2 is small.

The real advantage that sparsity brings to Compressed Sensing, is that
one can efficiently acquire signals nonadaptively, namely in a way that doesn’t
require the knowledge of all the n coefficients αi to determine the significant
S ones.

Incoherence

Another peculiar feature of the signal required by CS is incoherence: while
the signal of interest has to be sparse in Ψ, on the contrary the sampling
waveforms have to be very dense in Ψ.

Let’s consider two orthonormal basis of Rn, 〈Φ,Ψ〉, where Φ is used to
sense the signal x as in (3.1) and Ψ to represent x: we can define coherence
between Φ and Ψ as follow:

µ(Φ,Ψ) =
√
n max

1≤k,h≤n
|〈ϕk, ψh〉| (3.4)

It’s now clear that the coherence is related to the correlation between Φ and
Ψ: if Φ and Ψ contain correlated elements, µ is going to be large (µ(Φ,Ψ) ∈
[1,
√
n]).
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For example if Φ is the canonical basis with ϕk(t) = δ(t − k) and Ψ is the
Fourier basis with ψh(t) = n−1/2ej2πht/n, we have µ(Φ,Ψ) = 1 and therefore
maximal incoherence. Or if we create an orthonormal basis Φ at random,
orthonormalizing n vectors sampled independently and uniformly on the unit
sphere, then with a probability close to one, µ(Φ,Ψ) =

√
2 log n.

3.1 Signal Recovery

The goal of this technique is to re-

Figure 3.1: Example of signal recov-
ery: (a) sparse real valued signal, (b) its
reconstruction by `1 minimization and
(c) its reconstruction by `2 minimization

cover signals from only m of the n avail-
able coefficients (m < n). We use `1-
norm minimization with ‖α‖`1 =

∑
i |αi|:

min
α̃∈Rn

‖α̃‖`1 subject to yk = 〈ϕk,Ψα̃〉
(3.5)

where Ψα̃ = x and Ψ is the n×n matrix
with ψ1, ..., ψn as columns.

One can think to recover the signal
via `2-norm minimization, that is search-
ing the x̃ with minimal energy, but this
system doesn’t allow us to obtain S-sparse
solutions and as we can see in Figure
3.1 the reconstruction is not exact. We
run into a similar problem if we use the
`0-norm that gives us S-sparse solutions
but it requires all the possible positions
of the S nonzero coefficients.

Thus the reconstructed signal is given
through the `1-norm minimization by

x∗ = Ψα∗ (3.6)

where α∗ are the coefficients according
to (3.5), namely among all possible x̃ =
Ψα̃, we choose the one x∗ which has
minimal ‖α‖`1 .

If x is sparse with a probability close
to one, x∗ = x, that is the recovery is
exact.
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Theorem 2. Given x ∈ Rn supposed S-sparse in Ψ and chosen m measure-
ments in Φ uniformly at random, then if

m ≥ Cµ2(Φ,Ψ)S log n C > 0,

the solution to (3.5) x∗ is exact with large probability.

We clearly see the big role played by coherence in Theorem 2: the smaller
is the coherence, the smaller the number of needed samples m becomes. In
fact if µ is close to one, then m is on the order of S log n. The `1-norm
minimization technique allows to recover a signal x without any knowledge
about the number of relevant coefficients α∗i , their locations among all the n
coefficients α̃i or their amplitude, that is we can acquire signals nonadaptively.

Also sparsity is crucial but we have to be careful: there are indeed some
sparse signals that are zero nearly everywhere in Φ, that is almost all yk =
〈x, ϕk〉 = 0 for all k = 1, ...,m. In this situation one would have a stream
of zeros and it would be impossible to reconstruct the signal. Therefore we
don’t need more than O(S log n) samples but we can’t recover the signal if
they are less.

Figure 3.2: Illustration of compressed sensing

The important goal that Compressed sensing allows us to achieve, is that
one can directly acquire only the important information about an object,
namely that which would remain after compression.

13



Chapter 4

Fluorescence Microscopy

The fluorescence microscope is becoming an essential tool in biology and
medical sciences and this is because it has some peculiar features that are
not available in conventional microscopes. Contrary to the traditional optical
one, the fluorescence microscope uses a much more intense light that excites
the fluorescent species in the object: besides the magnified image is based
on the light emanating from the specimens rather than the light used to illu-
minate the sample. The interesting side of this technic is that one can use it
not only with autofluorescent specimens, but also with added fluorochromes,
which are excited by specific wavelenghts of light.

Figure 4.1: Example of an Epi-Fluorescence Microscope
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To acquire the image, the specimen is illuminated with a specific band of
wavelengths: only the emission light should reach the detector so that the
outcome is a bright image against a dark background. To achieve that the
weaker emitted fluorescence should be blocked.

The light of a specific wavelength is produced by passing multispectral
light through a wavelength selective filter. The light passed by the filter
reflects from the surface of a dichromatic mirror through the objective to il-
luminate the specimen. The light emitted by the fluorescent specimen passes
back through the dichromatic mirror and is filtered by an emission filter,
which blocks the unwanted wavelengths, though most of the excitation light
reaching the dichromatic mirror is reflected back toward the light source.

The only factor that could compromise

Figure 4.2: Inverted Microscope
TIRFM

the outcome is the presence of the optical
background noise even if it’s minimal: it is
caused also by the microscope itself because
of the autofluorescence of the material and
therefore it would seem inevitable. Total
internal reflection fluorescence microscopy
(TIRFM) takes advantage of the evanescent
wave, that is produced when light is to-
tally internally reflected at the interface be-
tween two media with different refractive in-
dices, and provides the optimal combination

of low background and high excitation light.
A beam of light (usually laser) is directed through a prism of high refrac-

tive index which borders on a lower refractive index medium: if the direction
of the light has an angle that is higher than the critical one, the beam will be
totally internally reflected at the interface. This phenomenon produces an
evanescent wave at the interface thanks to the generation of an electromag-
netic field that goes 200 nanometers or less into the lower refractive index
medium. The light intensity of this wave is high enough to excite the fluo-
rophores in the specimen even if very little of it is exposed: this leads to a
low background noise as wanted.
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4.1 Compressive Fluorescence Microscopy

For the experiments it was used a standard epi-

Figure 4.3: (a) Experimental
set-up, (b) Slice of lily anther,
(c) Projection of a Hadamard
pattern on a uniform fluores-
cent pattern, (d) Projection
of the pattern on the biologi-
cal sample, (e) Fluorescent in-
tensity during acquisition se-
quence.

fluorescence inverted microscope (Nikon Ti-E)
as shown in Figure 4.3: it was also added a
Digital Micromirror Device (DMD) to generate
spatially modulated excitation patterns. The
DMD is a 1024-by-768 array of micromirrors
that can be shifted between two orientations,
+12° and -12° with respect to the surface, and
is positioned so that the optical axis is orthog-
onal to the plane of the DMD.

The laser beam passes first through a dif-
fuser to reduce spatial coherence and then it’s
coupled to a multimode fiber. The beam is then
expanded into a 2cm diameter beam and ori-
ented towards the DMD at an angle of incidence
that is twice the tilting angles of the DMD mir-
rors: micromirrors oriented at +12° reflect the
light and appear as bright pixels in the sample
plane, while micromirrors oriented at -12° ap-
pear as dark pixels. Depending of the sample
one can use different objectives (air or oil-immersion) and according to this
the imaging lenses (f1, f2 and f3 in Figure 4.3) introduce different reduc-
tion: 1,5X for the air-immersion objective and 1X for the oil-immersion one.
The fluorescence emanated by the specimen is detected on a photomultipler
tube PMT and sampled at 96kHz using an analog-digital converter board. In
Compressed Sensing measurements, the information on the sample is given
by the variations of the intensity as in Figure 4.3 (e).

One of the crucial points, as seen in the previous chapters, is to determine
the basis Φ which should be as incoherent as possible with the basis Ψ of
the signal, even if we have no information about it. The choice falls into the
Hadamard system which is known to be highly incoherent with the basis in
which most natural signals are sparse, for example with the Dirac basis.
A Hadamard basis can be identified with a matrix n×n (with n = 2k) whose
entries are hjk ∈ {+1,−1} and which rows are mutually orthogonal.
For example if we have

H2 =

(
1 1
1 −1

)
, then H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (4.1)
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and in general all H2` can be constructed by recursion:

H2` =

(
H` H`

H` −H`

)
(4.2)

Since the excitation pattern is generated by the micromirrors, every ϕi[k] can
be either 1 or 0 and we have to redefine ϕi as a shifted and rescaled version
of hi: ϕi=(hi+1)/2. The sensing function ϕ represents light intensities and
its components are thus non-negative.
From the recording of the fluorescence intensity we have to recover the signal
x by solving the optimization problem (3.5) and because the measurements
are noisy it becomes:

min
x∈Rn

‖ΨTx‖`1 subject to ‖y− Φx‖`2 ≤ ε (4.3)

where ΨT is the transposed of Ψ with ψ1, ..., ψn as rows.
For computational reasons one can solve instead a relaxed version of the
problem:

min
x∈Rn

‖ΨTx‖`1 +
γ

2
‖y− Φx‖2`2 (4.4)

where γ is a parameter that depends on ε.
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4.2 Experiments

4.2.1 Fluorescent beads

Figure 4.4: Camera snapshot and reconstructed bead images with undersampling ratio
equal to 8, 16, 32, 64 and 128; (a) plot of the PSNR of the simulated data for a nominal
illumination level (blue), for the same level reduced by a factor 10 (red) and by a factor
100 (green); (b) same as (a) for the experimental data

First we try to acquire an image of fluorescent beads (diameter 2µm, peak
emission at 520nm, Fluorospheres Invitrogen) which appears as few bright
spots in a dark background. As Ψ, one can equally use either the Dirac basis
or a wavelet transform, but in this case it was used the wavelet transform
with 512 random 256 × 256 Hadamard patterns. After defining the Under-
sampling ratio as the ratio between the number n of pixels and the number
m of measurements, we see that in this case it can be up to 64, namely 1
measurement every 64 pixels is enough, and the signal would still be recov-
ered. With a higher undersampling ratio a lot of beads, expecially the ones
with low intensity, are lost.

An approximation of the distortion of the recovered image is given by the
Peak Signal-to-Noise Ratio (PNSR), which we define as follow:

PNSR = 10 log
d2

MSE
with MSE =

1

n
‖x− x∗‖2`2 (4.5)

where x∗ is the reconstructed signal from m measurements and d is the
dynamical range of the reconstruction obtained from a full sample.
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As we see in Figure 4.4 A, the PSNR decreases with the undersampling
ratio and reaches a plateau at 64, but it depends also on the illumination:
since low-intensity beads are lost before bright ones, measurements have been
repeated with an excitation light intensity reduced by a factor 100 (green
curve) and, as expected, the PSNR is lower and reaches a plateau at an
undersampling ratio of 10 where however almost all beads are lost.

Another aspect that we have to take into consideration is the presence of
photon noise that at these low intensities could play an important role in the
distortion of the reconstructed image. To achieve that, the measurements are
repeated again on an artificial image of fluorescent beads made of 50 spots
randomly positioned in the 256× 256 pixels. The reconstructions take place
with intensities I0, I0/10 and I0/100 with undersampling ratios between 2
and 64. As we can see in Figure 4.4 B there is a decrease of efficiency for
low-light levels but one can not quantitatively estimate the PSNR of the
reconstructed image up to a ratio equal to 64. This suggests that photon
noise isn’t the only source of image degradation.

4.2.2 Lily anther slice

Figure 4.5: Image of a slice of lily anther and, from left to right, the reconstructed image
with undersampling ratios between 1 and 8

The second acquisition is of a slice of lily anther sampled with 128 × 128
Hadamard pattern: as basis Ψ it’s used the Curvelet Transform because it’s
known that contour-like pictures are sparse in it.

In this case we can reconstruct the image up to an undersampling ratio
of 8: the fact that it’s not so high as for the beads, can be explained by
the lesser sparsity of the image. Furthermore this sample is not properly
two dimensional because of the thickness of the slice (about 50µm) and this
interferes with the image reconstruction.
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4.2.3 Zyxin-mEOS2 COS7 cells

Figure 4.6: Image of COS7 cells expressing Zyxin-mEOS2 with superposition of the
conventional epifluorescence image of the native (green) and converted form (red) and,
from left to right, the reconstructed image with undersampling ratios equal to 2, 4, 8 and
15

In many biological applications we deal with high magnification and high NA
optics1 which leads to a limitation due to the short focal depth. Therefore
in these conditions (oil-immersion objective and NA equal to 1,45), photoac-
tivation techiques were used on the specimens: COS7 cells were transfected
with Zyxin-mEOS2, which is a focal adhesion protein, at the surface on
which the cells are plated, fused with a genetically-encoded photoconvertible
fluorescent protein tag that has normally green fluorescence and red one if
illuminated with violet light. For the acquisition a wavelet transform was
used as sparsity basis Ψ and 32768 different Hadamard patterns: even if the
emitted fluorescence of the cells is low, the reconstruction is good for under-
sampling ratios up to 8 and tends to degrade at a ratio equal to 15. Also in
this case the photon noise due to the low illumination is a limiting factor for
CS imaging.

1NA is a parameter that characterizes the range of angles over which the system can
accept or emit light. It’s directly proportional to the index of refraction of the medium
in which the lens is located and to the half-angle of the maximum cone of light that can
enter or exit the lens.
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Conclusions

The main goal of the modern society is to save money and resources in every
possible area and Information Engineering makes no exception: for a long
time it focused on the compression of data to save space on the storage
devices and only recently it began to get to the root of the problem by trying
to intervene during data acquisition.
We saw that we can reduce the number of the needed samples thanks to
Shannon’s Theorem but with a very restrictive condition: the signal must
have a limited bandwidth ωM and, because the number of measurements is
proportional to ωM , it has to be also very narrow to have a concrete reduction
of the measurements number.

With the Compressed Sensing technique instead, one can transform ana-
log data into an already compressed digital form, through very few measure-
ments, without losing information. As we have seen, one of its focal points
is the possibility of ’choosing’ the samples without knowing the nature of
the original signal or where the important information lays: one can pick m
values at random and can still reconstruct the signal. The only requirements
are the sparsity of the signal in a chosen basis Φ and the incoherence of Φ
with the sensing basis Ψ.

A natural step forward was to design sampling devices that directly record
incoherent low-rate measurements of the analog high-bandwidth signal. An
example of these devices is the Compressive Fluorescence Microscope which
takes advantage of the natural sparsity of biological images and, combining
it with the choice of a proper basis Ψ, leads to a very significant reduction
of samples (up to 1/64 for the beads experiment in (4.2.1)).

The importance of Compressed Sensing is the fact that it has various
implications in practical life, despite its being a mathematical theory: it
has obvious applications in Bioengineering, Telecommunication Engineering,
Robotics and Control Theory, but the strong point is its potential in everyday
life like, for example, the reconstruction of noisy images and the classification
of images for the automatic recognition of faces.
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