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Chapter 1

Introduction

Neutron stars (NSs) are collapsed stellar cores that owe their existence to the
death of massive stars. They weight slightly more than the Sun but are only
∼ 10 kilometers in radius, which is why they are so dense to resemble more an
atomic nucleus than a regular star. They host among the strongest magnetic
fields in the observable Universe, and their gravitational pull is second only to
that of a black hole. In fact, if a neutron star gets any denser it will turn into
one of them. Such extreme physical conditions make these stellar corpses not
only a probe into the life of a star but also a unique laboratory for several fields
of physics.

Since their prediction (Baade and Zwicky 1934)1 and the emergence of the first
models (Oppenheimer and Volkoff 1939), neutron stars have been unambiguously
linked to a plethora of different observations, being found alone (e.g. Hewish et al.
1968), in couple with ordinary stars (e.g. Giacconi et al. 1962), or even with other
neutron stars (e.g. Hulse and Taylor 1975). Due to the extreme compactness of
these objects, their motion is able to perturb the fabric of spacetime and produce
ripples in it. The first strong evidence of these perturbations, also known as
gravitational waves (GWs), was indeed provided by the Hulse-Taylor binary
neutron star (BNS), whose orbit shrinks according to Einstein’s general relativity.
In such binaries, GWs are produced by the orbital motion of the two bodies
and their emission extracts energy from the binary, damping the motion and
shrinking the orbit. As the emission increases with the orbit getting smaller, the
orbital damping eventually gets so strong to doom the binary to a coalescence
(Peters 1964).

Other than being recognized as prime sources of GWs, BNS mergers have
long been thought to give rise to various electromagnetic counterparts, such as
short gamma-ray bursts (sGRB, for a review see Berger 2014) or kilonovae (for
a review see Metzger 2019). The observation of these phenomena altogether
has always been challenging due to their elusive nature, and not a single BNS
merger has ever been clearly identified until three years ago. On the 17th August
2017, the interferometers of LIGO and Virgo detected a GW signal with a chirp
compatible to that of a merging BNS. The GW event named GW170817 ended
at 12:41:04.4 UTC and its ∼100 s long signal had the highest signal-to-noise
ratio ever observed, making it the longest and loudest yet recorded (Abbott
et al. 2017a). Less than 2 s after GW170817 end, both the Fermi Gamma-

ray Space Telescope and INTEGRAL detected a sGRB coming from a region
overlapping the GW event location. The dispatch of reports on these almost-
simultaneous detections immediately unleashed a fleet of telescopes on the hunt
for electromagnetic counterparts, leading to the identification of a new optical
transient 12 hours later. The transient, named AT 2017gfo and localized in the
lenticular galaxy NGC 4993, has shown a dimming spectrum with broad lines
likely due to neutron-rich heavy elements, consistent with the kilonova from a
BNS merger. All these coincident detections, namely gravitational wave, short
gamma-ray burst, kilonova, and subsequent X-ray and radio counterparts, have

1It is possible that the original intuition came from Landau (Yakovlev et al. 2013).
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Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals coming
from the BNS merger of 17th August 2017. The main panel shows initial gravitational-wave
90% areas in green (with and without Virgo) and gamma-rays in blue (the InterPlanetary
Network triangulation from the time delay between Fermi and INTEGRAL, and the
Fermi Gamma-ray Burst Monitor localization). The inset shows the location of the optical
counterpart (the top panel was taken 10.9 hours after merger with the Swope Telescope,
the lower panel is a pre-merger reference without the transient from the DLT40 Survey).
Figure and caption adapted from Abbott et al. (2017b).

now clearly identified as the different facets of the first direct observation of a
binary neutron star merger (Abbott et al. 2017b).

The direct observation of BNS mergers contributes in a substantial way to
our knowledge of BNSs and the topics they are connected to (Barack et al. 2019).
It is impactful already with one of the most direct questions it answers, that is
“how many mergers there are per unit volume and unit time”, or in short “at
which rate BNSs merge”. The merger rate is known to deeply depend on the
progenitors’ evolution, to such an extent that theoretical predictions of the rate
can vary by two orders of magnitude (Abadie et al. 2010; Dominik et al. 2012).
The main observational estimate before GW170817 was extrapolated from the
properties of Galactic BNSs (e.g. Kalogera et al. 2004), but its uncertainties were
too high to constrain the predictions. Today we can infer a direct estimate from
the GW observations, which is still uncertain due to low statistics (290-2810
Gpc−3 yr−1, 90% credible interval from Abbott et al. 2020) but will get more
precise as the observation time increase. With the narrowing of the merger rate
uncertainties we can expect to rule out inconsistent models, and this motivates a
comprehensive study of the evolutionary processes behind the BNS demography
(e.g. Belczynski et al. 2018).

This thesis presents a study on the statistical properties of isolated BNS
populations, by means of stellar population synthesis. The work focuses on the
impact of two critical processes, namely electron-capture supernovae (ECSNe)



1 ] introduction 3

and natal kicks. The former is a putative NS formation channel involving stars
that are not massive enough to undergo classic iron core-collapse supernovae
(CCSNe). The latter is the recoil given to the NS by an asymmetric SN explosion,
which shapes the orbit, regulates binary disruptions, and is a long-standing matter
of debate.

The study employs the population-synthesis code sevn, which has already
been used to study single and binary isolated BHs (Spera et al. 2015; Spera and
Mapelli 2017; Spera et al. 2019). Together with sevn, thi thesis employed a
novel Python code that generates realistic initial conditions for binary systems,
based on observational constraints. Most of the work behind this thesis consisted
in developing and testing these codes, with the aim to simulate realistic BNSs.

The thesis is structured as follows. Chapter 2 summarizes the evolutionary
path that leads a star to become a NS and provides a brief survey of the NS’s
birth properties, so that a basic framework for the formation of single NSs is
established. Chapter 3 summarizes the main evolutionary processes of binary
stellar systems aside single stellar evolution, and outlines two standard formation
scenarios for merging BNSs. Chapter 4 reviews the implementation in the sevn

code of the theoretical framework given above, together with physically-motivated
initial conditions for population synthesis. Chapter 5 exposes and analyzes a
set of synthetic populations simulated with the sevn code, focusing on the
demography of BNSs and their progenitors. Chapter 6 gives a final summary,
together with possible future development.





Figure 2. The kilonova AT 2017gfo from the BNS merger of 17th August 2017, and its
host galaxy NGC 4993. The transient faded really quick in few days after its detection, as
shown by the insets. The host galaxy is a lenticular galaxy located 42.5 Mpc away from
the Milky Way, in the Hydra constellation. It shows shell-like features in the outer stellar
component, and edge-on spiral-like dust lanes around the center, suggesting a turbulent
past. This image was taken with the WFC3 instrument on the Hubble Space Telescope at
optical/infrared wavelenghts. Credit: NASA and ESA. Acknowledgment: N. Tanvir (U.
Leicester), A. Levan (U. Warwick), and A. Fruchter and O. Fox (STScI)
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Chapter 2

Isolated neutron stars

This Chapter presents a summary of the current theory of stellar evolution,
focusing on the path taken by isolated massive stars (M ≳ 8 M⊙) to become
NSs. A brief survey of NS’s birth properties is also presented.

Part of this Chapter is based on the book Stellar Structure and Evolution

from Kippenhahn et al. (2012) (hereafter abbreviated to Kip 2012), and follows
its notation. Further details on single stellar evolution have been collected from
Chiosi (1998) and Woosley et al. (2002). The Section on NSs is based on the
lecture notes of Turolla (2019) on relativistic astrophysics.

2.1. STELLAR EVOLUTION OF THE PROGENITORS

2.1.1 General features

Nondegenerate stars (hereafter simply stars) are giant spheres of glowing
plasma that populate the Universe and live on a precarious equilibrium. On one
side there is their own gravity, which steadily works to squeeze them, while on
the other side there is their internal pressure, which pushes against gravity1. The
balance between the two drives the stellar evolution, and to understand how it
works let us start from noticing that almost all stars must evolve in near-perfect
hydrostatic equilibrium.

If we suppose that hydrostatic equilibrium does not hold, then the stellar
Hydrostatic equilibrium

and virial theoremstructure should change on a free-fall timescale

τhydro ≈

√

R3

GM
(2.1)

where G is the gravitational constant, while R and M are the radius and the
mass of the star. For a solar mass star, this timescale ranges from roughly
half an hour for the Sun (R = 1 R⊙) to 18 days for a red giant (R = 100 R⊙).
Hence, if stars evolve far from hydrostatic equilibrium we should see collapses or
explosions quite often, but since this is not observed we can safely assume they
live in a near-perfect hydrostatic equilibrium2 (Kip 2012, §2.4).

The condition of hydrostatic equilibrium in a spherically-symmetric fluid body
can be expressed equaling the pressure gradient to the gravitational force

dP
dm

= −
Gm

4πr4
, (2.2)

where P is the pressure and

m =

∫ r

0

4πr̃2ρ dr̃ (2.3)

1For the sake of conciseness, the following exposition assumes that stars are non-rotating
and have negligible magnetic fields.

2It is necessary to mention that there exist several classes of variable stars, which show
periodic changes on a timescale around τhydro. This behavior can be explained by small
oscillations about the hydrostatic equilibrium.

7
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is the mass coordinate, a lagrangian generalized coordinate that identifies the
radius r enclosing the mass m. Under the simplifying assumption that the star
is made of an ideal monoatomic gas, the integration over the whole star’s mass
M of (2.2) gives

Ein = −
1

2
Egr (2.4)

where the left hand side

Ein =

∫ M

0

P

ρ
dm (2.5)

is the internal energy, and the right hand side

Egr = −

∫ M

0

Gm

r
dm (2.6)

is the gravitational energy (Kip 2012, §3.1).
Equation (2.4) is known as the virial theorem for an ideal gas, and it gives us

a great insight into the stellar evolution. Let us define the total energy of a star
as

E = Ein + Egr < 0 , (2.7)

where we have neglected the kinetic energy from the bulk motion of the gas since
it is in hydrostatic equilibrium. As the star radiates energy from its surface, if
we assume that there is no internal source supplying the energy radiated then
it must be supplied by E, that is to say the star’s luminosity L must be the
opposite of the time derivative of E

L = −Ė > 0 . (2.8)

Expressing Ė by means of (2.3)

Ė = −Ėin =
1

2
Ėgr , (2.9)

we can see the implications of the virial theorem for a radiating star without an
internal energy source: as energy leaves its surface, the star contracts

Ėgr = −2L < 0 (2.10)

and gets hotter
Ėin = L > 0 . (2.11)

In other words, stars are systems with a negative heat capacity.
The main effect of the heating contraction predicted by the virial theorem is

Thermal equilibrium and
nuclear burning cycles that eventually the stellar interior reaches such high temperatures and densities

to start nuclear fusion reactions. These reactions release energy and act as an
internal energy source, supplying the energy lost from the surface as radiation
and neutrinos. Referring to the energy produced by nuclear fusion as Enuc, this
means

L = −Ėnuc, (2.12)

and implies that the total energy is not consumed and remains constant in time

Ė = Ėin = Ėgr = 0 . (2.13)
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In such stationary state the star cannot expand, contract, or change its tempera-
ture, and is said to be in thermal equilibrium.

Nuclear fusion is said to burn fuel into ash, the fuel being nuclides and the ash
being the fusion products, and each element burns at a different temperature,
which increase with the atomic number. The energy generation rate per unit
mass of a nuclear fusion reaction can be approximated as

εij = ε0XiXjρT
ν , (2.14)

where ε0 and ν are constants characterizing for the reaction, Xi is the mass
fraction of the nuclear species i, ρ is the density, and T is the temperature (Kip

2012, §18.3). The energy production rate couples with the negative heat capacity
of the star, creating a thermostatic effect that account for the stability of the
thermal equilibrium. If we assume that at some point Lnuc > L, then we will
have Ė > 0, and the star will react to keep the hydrostatic equilibrium. By the
virial theorem, this will lead to an expansion and a cooling of the star, which
will last until εij drops enough to get Lnuc = L.

As the fusion takes place, fuel is consumed and ashes are piled up, until the
fuel gets exhausted and the nuclear burning stop. The shutdown of the energy
source brings the star to a new heating contraction, which eventually raises the
central temperature until a heavier element is ignited. The star can undergo
several cycles of contraction and nuclear burning, each one grows a new smaller
core made out of the nuclear ashes, and will end up shaping the stellar interior
in an onion-like structure.

The brief stellar evolution laid out so far is characterized by three timescales,
Evolutionary timescales

the first of which is τhydro. The second timescale is related to the deviations from
thermal equilibrium, such as the shutdown of an internal energy source or the
subsequent heating contraction. It can be estimated by the Kelvin-Helmholtz
timescale

τKH =
Ein

L
≈

|Egr|

L
≈

GM2

2R
, (2.15)

which is the time needed by the star to radiate almost all of its internal energy.
The third timescale is given by the duration of the nuclear burning, which also
dictates the pace at which the chemical evolution unfolds. Since the nuclear
burning takes place in thermal equilibrium, so L = Ėnuc, the nuclear timescale
can be estimated as

τnuc =
Enuc

L
=

ηMfuelc
2

L
(2.16)

where Mfuel is the initial rest mass of nuclear fuel, and η is the fraction of the
fuel rest mass that is converted into energy by nuclear fusion.

For a star like the Sun, the Kelvin-Helmholtz timescale is around 109 yr, while
the nuclear timescale for hydrogen burning is around 1010 yr, so

τhydro ≪ τKH ≪ τnuc , (2.17)

and in general this trend holds for all the stars that burn hydrogen or helium in
the core (Kip 2012, §4.6).

With this general picture in mind, the life of a star can be summarized as
the very short collapse of a gas cloud into a compact object (or even nothing),
stalled by very long periods of nuclear burning.
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2.1.2 Main sequence

A star is said to be born when hydrogen burning (H-burning) is ignited at
its core and the energy produced fully supplies the energy lost as luminosity.
We refer to the core hydrogen-burning phase as the main sequence (MS) of a
star, with the starting point being the zero-age main sequence (ZAMS). The MS
is the longest evolutionary phase, as a star spends more than 90% of their life
burning hydrogen in the core, and thus it is the most common phase in which
stars are observed (Chiosi 1998).

Prior to the MS, the protostar evolves through a series of stages that last
between τhydro and τKH. As the star settles on the ZAMS, the stellar structure
quickly adjust to hydrostatic and thermal equilibrium on a time τKH, and is
almost uniquely determined by mass and composition (Kip 2012, §27-28).

Since stars on the ZAMS share conditions as near-homogeneity and total
Main sequence lifetime

equilibrium, they show some degree of self-similarity. In particular, if they have
the same relative mass distribution3, we can derive scaling relations involving
several stellar parameters, such as mass, radius and luminosity, which are called
homology relations (Kip 2012, §20). A classic homology relation that applies to
ZAMS stars is the M -L relation for a homogeneous radiative star with constant
opacity and an ideal-gas equation of state, that is

L ∝ µ4M3 (2.18)

where µ is the mean molecular weight. If we plug this relation in (2.14), and
make the very rough approximation that all the MS stars burns approximately
the same mass fraction of helium, we get

τnuc,H ∝
M

L
∝ M−2 (2.19)

which means that the MS lifetime is shorter at higher masses. Typical values for
the MS lenght range from ∼ 1010 yr for a 1 M⊙ star, to ∼ 106 yr for a 100 M⊙

star (Kip 2012, §30.3).
During the main sequence, massive stars burn hydrogen into helium via the

Core hydrogen-burning
CNO cycle (Kip 2012, §18.5), whose main reaction chain is

12C+ 1H → 13N+ γ
13N → 13C+ e+ + νe

13C+ 1H → 14N+ γ
14N+ 1H → 15O+ γ

15O → 15N+ e+ + νe

15N+ 1H → 12C+ 4He .

(2.20)

The nuclear burning releases enough energy to break the Schwarzschild criterion
(Kip 2012, §6.1) and to develope a convective core, while the radiative transport
remains active in the surrounding envelope. As helium builds up in the core and
radiation diffuses towards the surface, the stellar structure slowly changes leading
to an increase in radius and luminosity, and a decrease in the effective temperature

3By relative mass distribution we mean a function mapping r/R to m/M .
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(see Figure 3 and 4). Also, the central temperature Tc and the central density ρc

increase during the MS, constrained by the hydrostatic equilibrium4 to scale as

Tc ∝ M
2

3 ρc

1

3 . (2.21)

Major complications affect this scenario if the star is rather massive. As the
Convection and mass

losssize of the core increases with ZAMS mass, it can reach the point where it becomes
a relevant portion of the stellar structure. Since the core of massive stars is
convective, this enhances the impact of complex features such as semiconvection
and overshooting. Moreover, at higher masses the luminosity can rise to such an
extent that radiation pressure lifts the outermost layers of the star. Between
∼ 25 and ∼ 50 M⊙, the effect of the wind during the MS is to reduce the stellar
mass and to inhibit the growth of the helium core. Above ∼ 50 M⊙, the wind
became so strong that the whole outer envelope is ejected before the MS ends,
leaving a bare helium core. This drastically changes the evolution of the star,
and lead to the so-called Wolf-Rayet stars (Chiosi 1998; Woosley et al. 2002).

2.1.3 Post-main-sequence phases

When the core is depleted in hydrogen, the nuclear burning suddenly turns off
Hertzsprung gap

from the center to the outside, leaving a H-burning shell sitting above an inert
helium core. Due to the thermostatic effect of nuclear burning, the presence of
the shell H-burning couples the dynamical behavior of what is above and below
it, acting as a mirror. Whenever the core contract the envelope expands, and
vice versa. This effect takes place every time a burning shell is present and is
called the mirror principle.

The core, without an energy source, starts to contract and heat on a time τKH,
returning radiative. At the same time, the envelope expands and cools down.
This change of the envelope causes a sudden drop in the effective temperature
and starts to increase the envelope opacity, setting convection in motion. Doing
so, the star departs from the MS and jumps towards the Hayashi line, which is
the evolutionary track on the Hertzsprung-Russell (HR) diagram that the star
would follow if it was completely convective. This phase is called the Hertzsprung
gap since the transition is so quick that few stars are found in this phase (Kip

2012, §31.1).
When the star reaches the Hayashi line, it starts to climb the track as a red

Red giant branch and
core helium-burninggiant until the helium-burning (He-burning) is ignited in the core. The nuclear

burning halts the core contraction and makes it convective again, while the
shell H-burning makes the envelope contract due to the mirror principle. In this
process, the convective envelope is forced to recede and a radiative one takes its
place, while the star descends the Hayashi line and possibly increase its effective
temperature, making the so-called blue loop on the HR diagram (Chiosi 1998;
Kip 2012, §6.1). During this whole phase, helium is first being burned by the
so-called triple-α process

4He + 4He ⇆ 8Be
8Be + 4He → 12C+ γ

(2.22)

and then, when enough 12C is created, by
12C+ 4He → 16O+ γ . (2.23)

4This scaling relation can also be derived as an homology relation.
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regions belonging to the He-rich shell. As the bottom of the convective envelope
gets closer to the He-burning shell, the former starts to heat and eventually
reignites shell H-burning. The configuration in which two shells are burning
at the same time is thermally unstable and brings the star in a phase called
thermally pulsating asymptotic giant branch (TP-AGB). In this phase the shell
He-burning is normally quenched, while the shell H-burning goes on and adds
helium to the intershell region. Periodically the shell He-burning reignites in a
short-lived flash of increasing luminosity (they exceed ∼ 107 L⊙ in few cycles),
growing the CO core and quenching the shell H-burning. The violent periodic
variation in luminosity induces stellar pulsations and a dust-driven wind, which
peels off the degenerate core until the star becomes a white dwarf surrounded
by a planetary nebula (Kip 2012, §34.3).

The evolution of massive stars deviates from that of intermediate-mass star
Nuclear burning in

massive starsnear the end of E-AGB, if the mass loss has not already removed part of the
envelope. The main difference between the two path is that massive stars never
reach electron degeneracy in the core. Therefore, after the CO core starts to
contract, it goes on until the carbon-burning (C-burning) is ignited. The nuclear
burning reaction has several branches, the main ones being

12C+ 12C → 20Ne + 4He

→ 23Ne + 1H

→ 23Mg + n

(2.25)

and when the carbon gets exhausted, the cycle of contraction and burning repeats.
The star goes through neon burning

20Ne + γ → 16O+ α
20Ne + α → 24Mg + γ ,

(2.26)

then oxygen burning
16O+ 16O → 31S + n

→ 31P + 1H

→ 30P + 2H

→ 28Si + 4He ,

(2.27)

and finally silicon burning, which is a long chain of photodisintegration and
α-capture that produces iron. Note that neon and silicon burnings rely on
photodisintegration rather than nuclear fusion (Woosley et al. 2002).

The whole late evolution of massive stars is characterized by a complex
network of side reactions that results in a rich nucleosynthesis. The evolution
ends with the production of iron because elements beyond iron have decreasing
binding energy, and so their fusion cannot provide energy to support the core
contraction. Moreover, the nuclear burning stages beyond He-burning are very
short compared to those of hydrogen and helium. This is caused by the neutrino
luminosity, which at Tc ≳ 109 K increases to such an extent that it become the
main energy loss of the core. As Lν ≫ L, the nuclear timescale is given by

τnuc =
Enuc

Lν

(2.28)
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Table 1. Stellar parameters and lifetime of each nuclear burning stage in a 15 M⊙ star
(from Table I in Woosley et al. 2002)

T ρ L R τ
Burning stage 109 [K] [g cm−3] 103 [L⊙] [R⊙] [yr]
Hydrogen 0.04 5.8 28.0 6.24 1.1× 107

Helium 0.18 1.4× 103 41.3 461 2.0× 106

Carbon 0.83 2.4× 105 83.3 803 2.0× 103

Neon 1.63 7.2× 106 86.5 821 0.7
Oxygen 1.94 6.7× 106 86.6 821 2.6
Silicon 3.34 4.3× 107 86.5 821 0.05

and leads to shortening lifetimes as shown in Table 1.
In between the evolutionary paths of intermediate-mass and massive stars,

there is a possible hybrid path. If the CO core has a mass slightly below the
Super-asymptotic giant

branch Chandrasekhar mass, the contraction leads only to a partial degeneracy of
electrons. This allows the core to contract until it reaches Tc ∼ 109 K, and turns
on the neutrino cooling. As the outermost mildly-degenerate layers of the core
lose energy via neutrinos, they contract further and reach higher temperatures.
The subsequent ignition of a C-burning shell leads to a short-lived but highly
luminous flash, which releases enough energy to develop convection in the shell
and reduce the degeneracy in the layers below. Immediately after the first carbon
flash ends, the contraction resumes and lead to another carbon flash, which now
is able to expand subsonically inward and reach the core center. The second
flash, also called flame due to its subsonic front, leaves behind a core enriched in
neon, oxygen, and lighter elements. Following the second flash, a series of few
other flashes take place at increasing heigh, while the oxygen-neon (ONe) core
below grows in mass and contracts. When the carbon flashes stop, the stellar
structure is constituted by a mildly-degenerate ONe core, a CO shell, a He-rich
shell burning helium at its bottom, and an outer envelope (Nomoto 1984; Siess
2006; Doherty et al. 2017).

During the core contraction following the core He-burning, the envelope
develops convection down to the bottom, as in the E-AGB phase. When the
C-burning ends, the convective envelope bottom can extend till it gets close
to the He-burning shell, and then initiate a series of thermal pulses as in the
TP-AGB phase. Due to these similarities, this evolutionary phase is called
super-asymptotic giant branch (SAGB), and it mainly differs from the AGB for
the heavier cores and the shorter thermal pulsation period (Kip 2012, §34.8).

2.2. FORMATION OF THE COMPACT REMNANT

2.2.1 Core-collapse supernovae

The degenerate iron core grown in the late evolution of massive stars starts
Core collapse

to contract as it exceeds the Chandrasekhar mass. The contraction is quickly
turned into collapse at relativistic velocities by two processes. One is electron
capture

p + e− → n + νe , (2.29)
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which at ρ ≥ 107 g cm−3 reach the equilibrium with its inverse reaction, the
beta decay

n → p + e− + ν̄e , (2.30)

and start to neutronize matter. This process consumes electrons, and decrease
both degeneracy pressure and Chandrasekhar mass at the same time. Second one
is iron photodisintegration, which sets in at Tc ≳ 1010 K. At this temperature,
the photons in the tail of Planck distribution have enough energy to break up
iron nuclei into lighter elements. The photodisintegration drains a lot of energy
from the radiation field, and thus decreases the radiation pressure. As the
collapse increases temperature and density, the two processes become even more
impactful and speed up the collapse.

The collapse is abruptly stopped when the matter reaches nuclear densities
Bounce and stall

(ρ ≳ 1014 g cm−3), and nuclear forces together with neutron degeneracy pressure
sustain the gravitational pull. This sudden halt of the collapse generates a
bounce shock, that travels through the infalling matter and heats it. As the
shock moves outward, the infalling matter gets heated to the point where nuclei
disintegrate and a trail of neutrons and protons is left behind. In addition to the
energy drained by nuclei disintegration, electron-capture ensue in the post-shock
region, leading to a further energy loss by escaping neutrinos. About 10 ms after
the collapse, the shock loses enough energy to stall.

The collapsed core, called proto-neutron star (PNS), accretes matter and
Shock revival

contracts in the meanwhile. In doing so, the PNS pours a lot of neutrinos in the
post-shock region, and quickly compensates for the losses by neutrino cooling.
When neutrino heating ensues, it combines with several dynamical instabilities
that can develop in the region below the shock, such as the Rayleigh-Taylor
instability or the standing accretion shock instability (SASI). These instabilities
convert the energy from the neutrino heating into kinetic energy between 0.1 and
1 s after the collapse, and when the kinetic energy overcome the ram pressure of
the infalling matter the shock is revived. The time between the shock stall and
its launch, which depends on the kind of instability involved, determines how
much matter can be accreted onto the PNS.

The whole process is known as an iron core-collapse supernova (CCSN Woosley
et al. 2002; Janka 2012), and it shred a massive star producing a compact object
(namely a NS or a BH) and an ejecta. The mass ejected travels outward as a
shock wave, triggering stellar formation, enriching the interstellar medium with
heavy elements, and manifesting itself as a supernova remnant (SNR).

2.2.2 Electron-capture supernovae

While intermediate-mass stars generally end their life as white dwarfs, those
Degenerate

carbon-burningundergoing SAGB can still end up in a supernova. In a SAGB star, after the
carbon flashes cease, the partially-degenerate ONe core continues to contract.
The contraction is initially led by neutrino cooling, but as temperature drops
the neutrino production decreases. Since the core mass is still growing due to
the shell burning above it, at a certain point the mass growth takes the place of
neutrino cooling in leading the contraction. Mass growth not only makes the
core contract, but raises Tc and ρc, and opens a bifurcation in the evolution of
the star. If the mass of both CO shell and ONe core cannot grow above 1.37 M⊙,
then the contraction lead to a complete-degeneration and the star eventually
become a white dwarf. Instead, if the core as a whole manage to get above
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1.37 M⊙ then the contraction leads to ρc ≳ 1010 g cm−3, triggering the electron
capture by 24Mg, 24Na, and later 20Ne. These reactions decrease the degeneracy
pressure by electrons, and substitute the mass growth in leading the contraction.

Since the electron capture by 24Mg, 24Na, and 20Ne, is exothermic, it also
Electron capture and

ONe deflagation contributes to raise the core temperature. When the central temperature gets
above ∼ 109 K, oxygen and neon are ignited at the center. The subsequent
deflagration, however, does not release enough energy to either disrupt the core
or to halt the contraction. Instead, electron capture from heavy nuclei and free
electrons continues, and the collapse of the core accelerates. Since above the core
there is only a light loose envelope, in contrast to the dense onion-like structure
of massive stars, when the deflagration front reaches outward the envelope is
easily ejected.

There is a broad consensus that this process, called electron-capture supernova
(ECSN, Miyaji et al. 1980; Nomoto 1987; Siess 2007; Takahashi et al. 2013), ends
with an electron-capture driven collapse and the formation of a NS together
with a rather symmetric ejecta (Poelarends et al. 2008; Doherty et al. 2015).
Nevertheless, recent simulations have shown that the oxygen deflagration can
possibly overcome the contraction and disrupt the core, leaving no remnant
(Jones et al. 2016).

2.3. BIRTH PROPERTIES OF NEUTRON STARS

2.3.1 Mass

After the PNS settles down, the stellar core either became a NS or a BH.
In both cases the result is a compact object, since the NS have a radius that
is only few times that of a BH with the same mass. Therefore, to get a basic
understanding of the structure of a NS we have to take into account general
relativity.

Let us assume as a first-order approximation that NSs are spherically-symmetric
Tolman-Oppenheimer-

-Volkoff equation non-rotating bodies. By the Birkhoff’s theorem, we know that the spacetime
metric around such an object is given by the Schwarzschild solution to Einstein’s
vacuum field equations, Gµν = 0. The metric inside the object, on the other
hand, can be obtained solving the Einstein field equations

Gµν =
8πG

c4
Tµν , (2.31)

and matching the interior metric with the exterior metric at the body surface.
Working again with a first-order approximation, we can do this assuming that
the body is a perfect fluid with isotropic pressure and hydrostatic equilibrium,
so that

Tµν =
(

P +
ρ

c2

)

uµuν + Pgµν (2.32)

where P is the pressure, ρ is the rest-frame mass density, and uµ is the four-
velocity field. The resulting exterior metric have a degree of freedom which
can be fixed by expliciting the equation of state, namely P = P (ρ) (for the
full derivation see Wald 1984 §6.2). Having fixed the geometry of spacetime
and hence the mass distribution, we can exploit the local conservation of the
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Figure 6. The Crab Pulsar (bright spot at center), the NS residing in the center of the Crab
Nebula. Due to the fast rotation of the NS and its powerful magnetic field, the surrounding
matter is funneled into an axisymmetrical wind-powered nebula, whose structure clearly
shows a torus and two jets. The Crab Nebula (not fully shown) is widely recognized as the
SNR left from the birth of the Crab Pulsar. This composite image is made of observations
from Spitzer (infrared, in purple), Hubble (optical, in blue), and Chandra (X-ray, in white)
Space Telescopes. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared:
NASA-JPL-Caltech

stress-energy tensor, Tµν
;ν = 0, to obtain the equation of motion of the gas

dP
dr

= −
Gmρ

r2

(

1 +
P

ρc2

)(

1 +
4πr3P

mc2

)(

1− 2
Gm

rc2

)−1

(2.33)

called the Tolman-Oppenheimer-Volkoff (TOV) equation (Tolman 1939; Oppen-
heimer and Volkoff 1939). This equation is the general-relativistic analog of
(2.2), constraining the structure of the NS from the condition of hydrostatic
equilibrium.

Neutrons, being fermions, are able to become degenerate, and the conditions
Mass range

in NSs are such that their neutrons are highly degenerate. Similarly to degenerate
cores, the degeneracy pressure is what prevents in the first place the collapse of
a NS and sustains its hydrostatic equilibrium, but only if the mass is below a
critical value. The seminal work from Oppenheimer and Volkoff (1939) placed
the maximum value for NS mass to 0.7 M⊙. However, this result was obtained
assuming that neutrons do not interact, while in fact neutron-neutron interactions
are quite relevant since the physical conditions involved. When accounting for
the repulsion from strong interaction, and the removal of electron by production
of new particle such as pions or hyperions, the maximum mass increases. Recent
estimations gives values as high as 3 M⊙, which are in agreement with the
observed distribution from Galactic BNSs which is centered at 1.33 M⊙ and has
a dispersion of 0.09 M⊙ (Özel and Freire 2016).
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2.3.2 Natal kick

The hydrodynamical instabilities that arise during SN explosions can cause
Momentum-conserving

natal kick relevant asymmetries in the distribution of matter ejected. This implies that the
ejecta as a whole can carry away a relevant amount of linear momentum pej, and
if we assume that linear momentum is conserved during the explosion then the
compact remants should get recoiled. That is to say, if after the explosion holds

pns = pej (2.34)

where pns = vnsMns is the linear momentums of the NS, then the NS must
acquire a natal velocity equal to

vns =
pej

Mns

, (2.35)

commonly known as natal kick.
As shown by Scheck et al. (2006), a deeper understanding of this process can

be obtained through the Euler equation

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇P − ρ∇Φ, (2.36)

where Φ is the Newtonian gravitational potential. Integrating (2.36) over a
control surface Σ that encloses the PNS, we get its integral form

ṗns = −

∫

Σ

P n̂ dσ −

∫

Σ

ρ(v · n̂)v dσ +

∫

Mej

GMns

r

r3
dm (2.37)

which shows the different contributions to the kick, and if integrated over time
gives another estimate of vns. On the right hand side of (2.37), the first term
accounts for external pressure, the second accounts for the mass accreted or
ejected, and the third for the gravitational attraction of the surrounding matter.
The third term gives rise to the so-called gravitational tug-boat mechanism.
Equation (2.37) is an approximation since we are neglecting the viscous terms,
but several simulations have shown that it is a good approximation and indeed
linear momentum is conserved to a good degree (Wongwathanarat et al. 2013).

From the observational point of view, the distribution of natal kick magnitudes
Observational velocity

distribution is still a matter of debate. Historically, a well receive results is that the population
of Galactic pulsars shows a velocity distribution with one single peak at high
values (Lyne and Lorimer 1994), and the latest results showed that the natal
kick distribution can be fitted by a Maxwell distribution with σ = 265 km s−1

(Hobbs et al. 2005). Furthermore, also certain Galactic BNSs seems to need
strong kicks to be explained (Fryer and Kalogera 1997). However, the picture
where NSs receive only high kicks are in tension with results from both Galactic
pulsars (Arzoumanian et al. 2002; Verbunt et al. 2017) and Galactic BNSs
(Beniamini and Piran 2016). These results points toward a bimodal distribution
of velocities, with a peak at small values that can even dominate the distribution.
The scenario in which natal kicks can have both high and low magnitudes can
also account for other observations, such as those from the X-ray binaries6 (Pfahl
et al. 2002; Knigge et al. 2011), and is highly compatible with SN mechanisms
that produce low-mass ejecta like the ECSNe (van den Heuvel 2007).

6X-ray binaries are binary systems composed of a star and a compact object (either a BH or
a NS), in which there the compact object is accreting mass from the star. The binary manifests
as an X-ray source due to various physical processes taking place during the accretion



2.3 ] birth properties of neutron stars 21

Figure 7. The pulsar PSR J0002+6216, also known as the Cannonball Pulsar. The NS is
traveling away from the supernova remnant CTB 1 at more than 1000 km s−1, leaving
behind a glowing trail of shocked material. The NS was likely born in the same SN that
produced CTB 1. The position of the NS is marked with a green circle, while the geometrical
center of the SNR is marked with a green cross. Figure from Schinzel et al. (2019).

2.3.3 Spin and magnetic field

Assuming that both NS and progenitor star are a spherical body with a
Magnetic dipole model

moment of inertia equal to

I =
2

5
MR2 , (2.38)

if we roughly assume that during the SN the angular momentum is conserved

IΩ = InsΩns , (2.39)

then we have

Ωns = Ω
MR2

MnsRns
2 ⇒ Pns = P

MR2

MnsRns
2 (2.40)

where P is the period. Assuming typical values, such as

P ∼ 105 s, M ∼ 10 M⊙, R ∼ 6 R⊙,

Mns ∼ 1 M⊙, Rns ∼ 2× 10−5 R⊙,

we obtain
Pns ≈ 10−3 s , (2.41)

which is in agreement with the observed period of pulsars, ranging from 10−3

to 10 s. It is worth noting that P = 10−3 s is equivalent to 1000 rotations per
second.

In a similar way, if we assume that the magnetic flux is conserved during the
collapse

BR2 = BnsRns
2 , (2.42)



22 isolated neutron stars [ 2

where B is the magnetic field at the surface, using B ∼ 100 G as typical value
we get

Bns ≈ 1012 G , (2.43)

which is again coerent with the observations, and even not the strongest value
measured.

The coupling between rotation and the magnetic field is one of the main effects
Magneto-rotational

braking and
characteristic age

governing the evolution of a NS. If we assume that the strong magnetic field is
in first-order approximation a dipole, then a misalignment between the magnetic
and rotational axes leads to the emission of electromagnetic radiation. Assuming
a misalignement angle α, the energy carried away by the dipole emission can be
estimated with the Larmor formula

Ėdip = −
1

6c3
B2R6Ω4 sin2 α , (2.44)

and if we consider that the main energy reservoir involved in the motion is the
rotational kinetic energy

Erot =
1

2
IΩ2 (2.45)

which has time derivative Ėrot = IΩΩ̇, then from the energy balance we have

Ω̇ = −
B2R6Ω3 sin2 α

6Ic3
. (2.46)

Since the right hand side is negative, equation (2.46) shows the how the NS spin
slows down due to magneto-rotational braking.

From (2.46) we can get the classic vacuum magnetic dipole estimate for the
surface magnetic field

B ≈ 3.2× 109
√

PṖ G . (2.47)

Also, from the integration in time of (2.46) we can estimate the timescale on
which the spin slows down to a certain value

τc = −
1

2

Ω

Ω̇
=

1

2

P

Ṗ
, (2.48)

which can be used to estimate the NS age and is called characteristic age (Shapiro
and Teukolsky 1983, §10.5). This last estimate is reliable if the initial spin velocity
is much higher than the observed velocity, and the NS has not been spun-up (for
example, by mass accretion).







Chapter 3

Binary neutron stars

This Chapter presents the current models of the main evolutionary processes
in isolated binary stars. These binary processes are then integrated with the
single stellar evolution framework to outline two main scenarios for the formation
of BNSs.

Part of this Chapter is based on the lecture notes of Pols (2011) on binary
stars.

3.1. STELLAR EVOLUTION OF BINARY STARS

3.1.1 Grounding ansatz

As far as we know, BNS can form as a result of the stellar dynamics in
crowded environment such as star clusters, but this dynamical formation channel
seems not so efficient (Sadowski et al. 2008; Belczynski et al. 2018). Instead, we
know that almost every massive star belongs to a binary system, and we know
that they can evolve into NSs (Sana et al. 2012). Following these two premises
another formation channel emerges, namely the evolutionary channel, in which
binary stars evolve directly into BNSs through stellar evolution alone. This
formation channel is open to all those binaries that do not experience dynamical
interactions, such as all the field binaries (Tauris et al. 2017).

The formation of a BNS cannot be modeled within the bare framework
established in Chapter 2, and the reason is simple: stars interact when they
are together. Currently, we know ∼ 20 Galactic BNSs among the ∼ 3000 NSs
observed in our Galaxy (Manchester et al. 2005). Most of them are isolated field
binaries, hence they have been likely formed through the evolutionary channel.
By looking at their properties we see a trend in the semi-major axis: most orbits
are closer than few solar radii (Table 2). Also the observed BNS mergers point
in this direction, since they could not have been merged within a Hubble time
if they were formed with orbits wider than ∼ 4.5 R⊙

1. So, a simple question
arises: if they are born as binary stars, and stars during their evolution swell up
to 103 R⊙, how do they get so close?

The answer must lie in the fact that the evolution of binary stars is more than
the evolution of two single stars. We know through observations that there is
plenty of processes shaping both the stellar and orbital evolution of binary stars,
such as mass exchanges, common envelopes, kicks, and so on. These binary
processes provide a framework for the modelization of the evolutionary channel,
which must emerge as a certain combination of these interactions, and should
permit a binary star to survive up to two SNe until it becomes a BNS.

3.1.2 Mass transfer

To understand how mass can be exchanged between two stars, we need first
Roche potential

to understand the gravitational potential in a binary system. Let us restrict

1Assuming a circular orbit and both NSs weighting 1.36 M⊙.

25
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Table 2. Parameters of Galactic BNSs

Porb e a Mpuls Mcomp

Pulsar [days] [R⊙] [M⊙] [M⊙] Ref.
J0453+1559 4.072 0.113 15.998 1.559 1.174 a
J0737-3039 0.102 0.088 1.261 1.338 1.249 b
B1534+12 0.421 0.274 3.284 1.333 1.346 c
J1756-2251 0.320 0.181 2.696 1.341 1.230 d
B1913+16 0.323 0.617 2.801 1.440 1.389 e
J1913+1102 0.206 0.090 2.088 1.580 1.300 f
J1757-1854 0.184 0.606 1.903 1.338 1.395 g
J1906+0746 † 0.166 0.085 1.750 1.291 1.322 h
J1807-2500B †‡ 9.957 0.747 26.690 1.366 1.206 i
B2124+11C ‡ 0.335 0.681 2.829 1.358 1.354 j
J1755-2550 †⋆ 9.696 0.089 26.701 - - k
J1518+4904 ⋆ 8.634 0.249 24.714 - - l
J1811-1736 ⋆ 18.779 0.828 41.487 - - m
J1829+2456 ⋆ 1.176 0.139 6.542 - - n
J1930-1852 ⋆ 45.060 0.399 74.357 - - o
J1753-2240 ⋆ 13.638 0.304 33.519 - - p
J1411+2551 ⋆ 2.616 0.169 11.149 - - q
J1946+2052 ⋆ 0.078 0.064 1.072 - - r

Notes. † Not confirmed. ‡ Belongs to a globular cluster. ⋆ Semi-major axis is
computed assuming both components weight 1.36 M⊙ each.
References. (a) Martinez et al. (2015). (b) Kramer et al. (2006). (c) Fonseca
et al. (2014). (d) Faulkner et al. (2005). (e) Hulse and Taylor (1975). (f) Lazarus
et al. (2016). (g) Cameron et al. (2018). (h) van Leeuwen et al. (2015). (i) Lynch
et al. (2012). (j) Jacoby et al. (2006). (k) Ng et al. (2018). (l) Janssen et al.
(2008). (m) Corongiu et al. (2007). (n) Champion et al. (2004). (o) Swiggum
et al. (2015). (p) Keith et al. (2009). (q) Martinez et al. (2017). (r) Stovall et al.
(2018).

to circular orbits for the sake of conciseness2. To study of the dynamics inside
a binary, a smart frame of reference is the one located at the barycenter and
co-rotating with the stars, so that the bodies seem stationary. In such frame of
reference, if we assume that stars behave like point masses3, then the motion of
a mass particle can be formulated as a restricted 3 -body problem. From this
point of view, the mass particle moves in the Roche potential

Ψ = −
GM1

∥r− r1∥
−

GM2

∥r− r2∥
−

1

2
(ω × r)2 (3.1)

which includes the gravitational pull of the two stars and the centrifugal force.
Here r is the position of the particle, r1 and r2 are the positions of the two stars,
and ω is the angular velocity vector.

Let us assume that stars are made of an ideal fluid in hydrostatic equilibrium.
Roche lobe

An isolated star must satisfy (2.2), which can be recast in vectorial form as

∇P = ρ∇Φ (3.2)
2Close binaries are quickly circularized by tides.
3This is a reasonable approximation as long as the stellar structure is composed by a heavy

dense core, and a light lose envelope.
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Whenever the accretor is much smaller than its Roche lobe, the transferred mass
is collected on an accretion disk and from there it starts to spiral-in toward the
star. The mass transfer can also be triggered by a decrease of the semi-major
axis, which shrinks also the Roche lobe. This mass transfer process is known as
Roche lobe overflow (RLO, Pols 2011, §7).

The stability of the RLO is dictated by the reaction of the donor to the mass
Stability of RLO

loss. If after a small mass transfer the stellar radius get smaller than RL, then
the transfer is halted until the Roche lobe is crossed again, and the RLO is said
stable. Otherwise, when after a small transfer the stellar radius is still bigger
than the RL, the mass transfer continues and the RLO is said unstable. The case
of unstable RLO is complicated by the fact that mass loss can remove the star
from both its conditions of hydrostatical and thermal equilibrium, hence it can
trigger reactions on both a dynamical timescale τhydro and a thermal timescale
τKH.

Following Webbink (1985), let us evaluate the stability by means of three
parameters: the Roche mass-radius exponent

ζL =
d logRL

d logM
, (3.5)

the adiabatic mass-radius exponent

ζad =

(

d logR

d logM

)

ad

, (3.6)

and the equilibrium mass-radius exponent

ζeq =

(

d logR

d logM

)

eq

. (3.7)

Upon mass transfer, the star react either contracting or expanding. The reac-
tion first aim to reestablish the hydrostatic equilibrium, which happens on a
dynamical timescale τhydro through an adiabatic transformation characterized
by ζad. Then, the reaction proceeds to reestablish the thermal equilibrium on a
thermal timescale τKH, through a variation characterized by ζeq.

The stable and unstable cases of RLO emerge from the comparison between
these two exponent and ζL, which accounts for the variation of RL following a
change in the mass ratio. We can distinguish three different cases: the stable, the
thermally unstable, and dynamically unstable RLO (see Figure 10). The stable
case is characterized by ζL < min{ζad, ζeq}, which means that as the donor loses
mass, the effective radius of the Roche lobe decreases slower than the radius
needed for total equilibrium (it can even increase). When ζeq < ζL < ζad the
RLO is said thermally unstable. In this case, the Roche lobe decrease more
rapidly than the radius needed for thermal equilibrium and hence the mass
transfer proceeds. The mass transfer rate slowly varies on a thermal timescale,
and the process is self-regulating (hence is stable in practice). When ζad < ζL,
the RLO is said dynamically unstable. As the star loses mass, RL decreases so
fast that even the hydrostatical equilibrium is perturbed. This transfer triggers a
reaction on a dynamical timescale, which eventually leads to a runaway process
and the subsequent spiral-in of the two stars.

A second way to classify RLO is through the donor’s evolutionary phase.
RLO evolutionary cases
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where Md and Md are respectively the masses of donor and accretor, and its
time derivative is then

J̇

J
=

1

2

ȧ

a
+

Ṁd

Md

+
Ṁa

Ma

−
1

2

Ṁd + Ṁd

Md +Ma

(3.9)

In the case of a conservative transfer, that is to say

Ṁa = −Ṁd and J̇ = 0 ,

equation (3.9) gives
ȧ

a
= 2

(

Md

Ma

− 1

)

Ṁd

Md

. (3.10)

Since Ṁd < 0 by definition, (3.10) shows that ȧ is positive only if Md < Ma, and
hence that a mass transfer with Md > Ma lead to a shrinking orbit (Verbunt
1993).

In the case of a non-conservative transfer, that is to say

Ṁa = −βṀd and J̇ ̸= 0

where β is the ratio of mass accreted to mass lost from the donor, the binary
loses both mass and angular momemtum. We can quantify J̇ assuming that the
specific angular momentum lost is a fraction α of the specific angular momentum
of the binary

J̇

Ṁd + Ṁa

= α
J

Md +Ma

, (3.11)

so we can substitute it into (3.9) to get

ȧ

a
= −

Ṁd

Md

[

2− 2β
Md

Ma

− (1− β)(1 + 2α)
Md

Md +Ma

]

. (3.12)

However, even with an operative expression for ȧ we cannot draw many conclu-
sions, since both α and β deeply depends on the physics assumed for both star
and mass transfer (Verbunt 1993).

Please notice that this brief exposition is just a primer on mass transfer in
binary stars, since we have neglected the role of eccentricity, the effects on the
stars’ spin, and stellar processes such as the the accretor rejuvenation.

3.1.3 Common envelope

Alongside the mass transfer, there is another process that has a major role
CE formation

in shaping the evolution of a binary star: the common envelope (CE) process
(Paczynski 1976; Webbink 1984). During a CE phase, the binary is in a configu-
ration similar to a contact binary, but with the cores orbiting each other while
embedded in a decoupled common envelope (hence the name).

A binary star can get to a CE through different paths. The first one is a
dynamically unstable RLO, in which the donor expands way over the Roche lobe
until its envelope reaches and engulfs the other star. The second one is a RLO
in which the accretor is not able to adjust its structure to the accreted matter,
and eventually end up filling its Roche lobe. A third path is through orbital
instabilities, such as the Darwin instability or resonances, which can both lead
to a spiral-in or a collision of the stars.
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The physics underlying the process is still poorly understood, but hydrody-
namical simulations have built consensus on four main phases of the CE evolution.
Following Ivanova et al. (2013), the first phase is the formation of a common
envelope and the loss of corotation, which can take place on a timescale between

CE evolution
the dynamical and the thermal. The second phase is a fast spiral-in of the cores
on a dynamical timescale. During this plunge-in, the cores deposit energy in the
envelope through dissipative phenomena, and the envelope eventually starts to
expand. The third phase is a slow spiral-in taking place on a thermal timescale,
following by the fourth phase which is its termination. At the end of the process,
the two cores are either merged during the fast spiral-in or have successfully
ejected the envelope and formed a close binary.

Since the complexity posed by the process, a realistic analytical model is hard
Energy balance

to obtain. Reasonable predictions are obtained from a properly parametrized
energy balance, also known as αλ-formalism (e.g. Hurley et al. 2002). In this
formalism, the gravitational binding energy of the envelopes prior to the ejection
is

Ebin,in = −
GM1M1,env

λ1R1
−

GM2M2,env

λ2R2
(3.13)

where λ is a free parameter which accounts for the stellar structure and may
include the internal energy, Menv is the envelope mass, and R is the stellar radius
before the CE. Considering the orbital energy of the cores at the onset of CE

Eorb,in = −
GM1,coreM2,core

ain

(3.14)

and after it

Eorb,fin = −
GM1,coreM2,core

afin

, (3.15)

we can assume the difference between the two to be caused by energy deposition
into the envelope by dissipative mechanisms. Hence, if we assume that after
the CE event the whole envelope gets ejected, that is Ebin,fin = 0, the energy
balance reads

∆Ebin = −αCE∆Eorb (3.16)

where αCE is free parameter which accounts for the efficiency of the energy
deposition. This formulation can be corrected to account for the retention of
an envelope fraction. From (3.16) we can have a prediction of the binary’s
fate, whether it ends up in a merger or shrinked down to afin. Recent findings
have shown that the parameters αCE and λ are highly dependent on the stellar
structure and the physics behind the ejection, so they have turned out to be
quite a complication even if they were introduced as simplifications (Ivanova
et al. 2013).

3.1.4 Kicks

We have shown in Section 2.3.2 that the mass ejection during the SN explosion
can cause the NS to recoil, imparting the so-called natal kick. When a binary
star is considered, the effect of this instantaneous mass loss is twofold: it gives a
kick to the NS, but also removes mass and angular momentum from the binary.
We can idealize this process as the sum of two separate mass ejections, one
spherically symmetric and the other asymmetric. The first one imparts what
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is known as the Blaauw kick (Blaauw 1961; Boersma 1961), while the second
imparts the natal kick (see §2.3.2).

Starting from the symmetric ejection, let us notice that if we approximate the
Blaauw kick

SN to be istantaneous, then the positions of the stars are preserved. Since the
orbit gets widened by the mass ejection, the position prior the SN must become
the periastron of the orbit after the SN, that is to say

ain = afin(1− e) (3.17)

where ain is the stars’ distance prior the SN, afin and e are the semi-major axis
and the eccentricity after the SN. Under the assumption that also the orbital
velocity is conserved during the SN, given the velocity before

vin
2 =

GMtot

ain

(3.18)

and after the mass ejection

vfin
2 = G(Mtot −Mej)

(

2

ain

−
1

afin

)

(3.19)

where Mtot = M1 +M2 is the total mass prior the SN, and Mej is the ejected
mass, we can equate them to obtain

e =
Mej

Mtot −Mej

. (3.20)

This last equation gives us the final eccentricity, the final semi-major axis
upon substituting it in (3.17), and under the constrain e < 1 it shows that for
Mej ≥ Mtot/3 the binary unbinds (Verbunt 1993).

Regarding the asymmetric ejection, we have notice that it gives the star an
Natal kick

impulse likely due to linear momentum conservation. Calling vin the velocity
just before the SN, then the velocity just after the SN is

vfin = vin + vk (3.21)

where vk is the kick velocity. If we substitute the norm of vfin

vfin
2 = vin

2 + vk
2 + 2 |vin · vk| , (3.22)

into (3.19), we can obtain the semi-major axis after the SN

afin =
Gain

2GMtot − vfin
2ain

(3.23)

where we have assumed Mej = 0 for semplicity. The new eccentricity can be
obtained from the specific angular momentum

hfin = afin × vfin , (3.24)

since for its norm holds the relation

hfin
2 = GMtotafin(1− e2) (3.25)
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became the wave equations
□Aµ = 0 (3.28)

where □ = ∂ν∂ν is the D’Alembert operator. Since (3.28) is a set of homogeneous
differential equations, a solution can be given as a combination of plane waves.
Furthermore, since the gauge fixing spend 2 of the 4 degrees of freedom of Aµ,
a solution of (3.28) is left with only 2 degrees of freedom, which are the two
polarization modes.

Switching to weak-field gravity, GWs can be assumed to be small non-static
perturbations of the Minkowski metric, that is

gµν = ηµν + hµν . (3.29)

Assuming an empty spacetime, the Einstein field equations Gµν = 0 can be
safely linearized in hµν to get

□hµν + ∂µ∂νh+ 2∂α∂[µhν]α = 0 . (3.30)

As in the case of electromagnetism, these vacuum field equations have two
invariances, one of which is due to the diffeomorphism invariance and can be
fixed imposing the harmonic gauge ∂µhµν −

1
2∂νh = 0, with h being the trace of

hµν . Doing so, (3.30) becomes

□hµν = 0 (3.31)

which are wave equations as (3.28), and admit plane waves as solution as above.
Of the original 10 degrees of freedom of hµν , 4 has been fixed by the harmonic
gauge and other 4 can be fixed with the so-called transverse-traceless gauge,
leaving the plane waves with only 2 degrees of freedom which are two polarization
mode, as above.

Note that the transit of a GW does not set in motion a free particle, since
this would violate the equivalence principle. Instead, it can be detected as a
deviation in the geodesic motion of several free particles (such as the mirrors in
the Ligo/VIRGO interferometers).

From the linearized field equations in the presence of matter, we can get the
Quadrupole radiation

wave equations

□hµν = −
16πG

c4
Tµν (3.32)

which gives the GW metric in the far-limit as

hij(t,x) =
2G

rc4
Q̈ ij(t)

⏐

⏐

⏐

t=tR

, (3.33)

where
Qij(t) =

∫

xixjT 00(t,x) dV (3.34)

is the quadrupole moment of the source, r is the distance between source and
observer, and tR is the emission time (for the full derivation see Wald 1984).
Equation (3.33) shows that gravitational radiation can be emitted only by mass
distributions that have at least a quadrupole moment. This can be heuristically
explained by the fact that monopole radiation is prevented by the Birkhoff’s
theorem, dipole radiation is prevented by linear momentum conservation (since
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Figure 13. Main formation scenario for a merging BNS, according to Bhattacharya and
van den Heuvel (1991) and Tauris and van den Heuvel (2006). There are acronyms not yet
introduced, namely He-star (naked He core), HMXB (high-mass X-ray binary), and DNS
(double neutron star, same as BNS). Figure from Tauris et al. (2017).

In the first, the tidal interaction between the two stars generates a spin-orbit
Tidal evolution

coupling that allows the exchange of angular momentum between rotation and
revolution (Hut 1981). Moreover, depending on the structure of the stellar
envelope, tides dissipate energy and hence steadily evolve the orbit (Zahn 1975;
Zahn 1977).

The second process is due to the coupling between stellar winds and the
Magnetic braking

rotating magnetic field, in which the charged particles ejected from the star
are forced to follow the rotating magnetic field lines and thus extract angular
momentum. This process is thought to be efficient mainly in stars with convective
envelopes, but is poorly constrained (e.g. Rappaport et al. 1983).

3.2. FORMATION SCENARIOS FOR BINARY NEUTRON STARS

After having reviewed the major processes in the evolution of a binary star, it
is clear that the road leading to a close BNS could not be less straight. Indeed,
the progenitors of close BNSs are likely to be born close, but the interplay of
binary processes is so strong that patterns emerge when BNSs’ histories are
investigated.

The standard formation scenario for BNS is the one outlined by Bhattacharya
and van den Heuvel (1991) and Tauris and van den Heuvel (2006) (see Figure
13). In this scenario, the progenitor is a close binary system with two massive
stars. The two stars can experience several mass transfer episodes, after which
the more massive star goes SN and becomes a NS. In the latest reviews of this
scenario, it has been hypothesized that the progenitor of the first SN could be
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stripped of its envelope, leading to a weaker kick. After a period in which the
NS accretes mass through the winds of the companion, the other massive star
will eventually expand and engulf the NS in a CE. If a core has been established
prior to the CE, the binary composed by a NS and a stripped star may survive.
At this point, the other star can be stripped even more in a case BB RLO and
undergo an ultra-stripped SN (Tauris et al. 2015), or just go SN and turn into a
NS. If the system survives, a BNS is born.

The previous scenario, though, can be affected by a major issue, that is the
NS surviving a CE. There is a debate about whether the NS is able or not to
accrete enough matter during the CE to collapse to a BH. In order to avoid
this issue, another formation channel has been found, namely the “double-core”
channel (Brown 1995; Dewi et al. 2006). In this scenario, the progenitor is a
close binary system composed of two massive stars with a mass ratio around
unity. The two stars evolve almost at the same pace, and both reach the CE
phase with a well-established core. Then, if the system survives CE event and
the two SNe, a BNS is born.

The need for a mass ratio near unity undermines the double-core scenario,
since narrows substantially the windows for viable progenitors. Furthermore,
recent hydrodynamical simulations support the idea that NSs are not able to
accrete enough to collapse (MacLeod and Ramirez-Ruiz 2015) and tip the balance
toward the standard scenario. Note also we should not exclude a priori other
evolutionary paths besides these two, see (Tauris et al. 2017) for a review on the
formation of BNSs.

After a BNS is formed, its evolution unfolds quite linearly ruled only by the
GW decay. Indeed, when we look beyond the formation of a BNS, a macroscopic
trend emerges: BNS form on the timescale of stellar evolution and merge on
the timescale of gravitational radiation. That is to say, the BNSs’ formation
happens in few Myr, while their merger might take Gyr. This has a high impact
on the observational point of view because their formation can be at a very high
redshift, even if the merger takes place relatively nearby.





Chapter 4

Synthesis of stellar populations

This Chapter exposes the numerical methods employed to simulate and explore
the stellar evolution discussed in the previous Chapters. In particular, two codes
are presented: the population-synthesis code sevn with its updates, and a new
code for the generation of the initial conditions of a stellar population.

4.1. THE SEVN CODE

4.1.1 Overview

The term “population synthesis” refers to the simulation of the time evolution
of the stellar parameters of a given population of stars. In general, there are
three tasks to be performed during the synthesis of a stellar population. First,
we need to be able to simulate the evolution of every single star. Second, we need
to couple the evolution of the stars in binary systems through binary processes,
such as mass transfer, CE, and so on. Third, we need to create a set of initial
conditions that describes every star in the population at a given moment, which
will be the starting point for the simulation.

Usually, population-synthesis codes cannot rely on advanced codes (such us
Single stellar evolution

hydrostatic stellar evolution codes) to simulate the single stellar evolution of
large populations. Instead, two simplified methods are exploited: fitting formulae
or grid interpolation. In the first case, detailed stellar models are obtained with
a stellar evolution code, and the desired parameters are interpolated as functions
of time. The interpolated functions are then implemented in the population-
synthesis code, ready to be evaluated as a star age. In the second case, the stellar
parameters from the detailed stellar models are encoded in look-up tables, and
the population-synthesis code interpolates the tables on-the-fly. The advantage
of the second approach is its weaker bond to the stellar evolution code, so if a
change in the input stellar physics is needed, then only the tables have to be
replaced, without the need to change the code.

The sevn code is a population-synthesis code that simulates single and binary
stellar evolution through grid interpolation (Spera et al. 2015; Spera and Mapelli
2017; Spera et al. 2019). The version used for this thesis is provided by default
with a set of look-up tables encoding stellar evolutionary tracks from the parsec

code (Bressan et al. 2012; Tang et al. 2014; Chen et al. 2015). These tables span
a grid of masses and metallicities, the former in the interval [2, 500] M⊙ and
the later in [10−4, 4× 10−2]. The single tracks have been evolved from the PMS
phase to either the first pulses of the TP-AGB phase or the end of the C-burning,
and are provided for both ordinary stars and bare He cores. Figures 3, 4, and
5 have been obtained from these evolutionary tracks, and Figure 14 shows the
HR diagram of several other tracks. A thorough description of the input physics
and the implementation can be found in the papers mentioned above.

The code implements several prescriptions for core-collapse, pair-instability,
Prescriptions for SNe

and pulsational pair-instability SNe, as described in Spera et al. (2015) and
Spera and Mapelli (2017). For this thesis, only two prescriptions for CCSNe
have been used, namely the “delayed” and the “rapid” models from Fryer et al.
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Table 3. PDFs of mass ratios, periods, and eccentricities, from Table S3 in Sana et al.
(2012).

Variable PDF Exponent Domain
q qκ −0.10 [0.1, 1]

log(P/day) [log(P/day)]π −0.55 [0.15, 5.5]†

e eη −0.45 [0, 1)

Notes. † While Sana et al. gives [0.15, 3.5] as domain, I extend it
to account for the observed large binaries (e.g. Moe and Di
Stefano 2017 and references therein).

Table 4. Single, binary, higher orders fractions as a function of the stellar type, from Table
13 in Moe and Di Stefano (2017). The value of Fn indicates the fraction of stars per mass
bin that have n companions.

A/late B Mid-B Early B O-type
Fraction M1 ∈ [2, 5) M⊙ M1 ∈ [5, 9) M⊙ M1 ∈ [9, 16) M⊙ M1 ≥ 16 M⊙

Fn=0 0.41± 0.08 0.24± 0.08 0.16± 0.09 0.06± 0.06
Fn=1 0.37± 0.06 0.36± 0.08 0.32± 0.10 0.21± 0.11
Fn≥2 0.22± 0.08 0.40± 0.10 0.52± 0.13 0.73± 0.16

The weight of the star with mass below 0.5 M⊙ can be recovered by integrating
the full Kroupa IMF and comparing the areas below the curve.

As has been shown by Sana et al. (2012), a large fraction of young massive
Masses of binary stars

stars in the local Universe belong to binary systems and binary interactions play
role in their evolutions. To account for this, the code samples the initial pool of
single stars and combine them to form binary systems. The assembly of binary
stars is done by picking a random star, sampling the PDF of mass ratios given
by Sana et al. (see Table 3), and then finding the star that best fits the mass
ratio. As binaries get built, the code keeps track of the multiplicity fractions
per mass bin, and the process goes on until the values given by Moe and Di
Stefano (2017) are met (see Table 4). During this process the code forms also
triplets, but then the wider companion is discarded and only the internal binary
is keeped. This is done to avoid an overestimation of the binaries. With these
settings, the code ends up forming ∼ 106 binaries in a population with 6× 107

stars.

4.2.2 Orbital parameters

After the masses of single and binary stars are established, the code provides
the binary systems with orbital parameters. This is done again with the PDFs
given by Sana et al. (Table 3), which are consistent with the initial configurations
of binaries with young massive stars. This prescription is not compatible with
binaries composed only of intermediate- and low-mass stars, but this is of no
concern since these systems do not interfere with the results on BNSs.

First, the eccentricity is assigned to each binary. Then, the code generates
Eccentricities and

periodsas many periods as the binaries, and it assignes them verifying that the two
stars do not fill the Roche lobe. This check has a twofold effect: it avoids the
immediate coalescence of the system and introduces a correlation between the
various parameters of the binary. Indeed, one of the strong findings of Moe and
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Di Stefano is that the PDFs of mass ratios, eccentricities, and periods, are not
independent, and hence the naive common approach in which the PDFs of Sana
et al. are sampled separately is incorrect. This solution does not solve this issue,
as it would do the direct implementations of Moe and Di Stefano results, but at
least it mimics the correlation.







Chapter 5

Results

This Chapter presents the results obtained from the simulation of various
stellar populations with the methods presented above, focusing on BNSs and
their progenitors. Several parameters are explored, among which metallicity, SN
models, and the CE parameters. Each population starts with ∼ 106 binary stars,
and the fiducial model has Z = 0.02, CE parameters fixed to αλ = 0.5, and it
employees the delayed model of Fryer et al. (2012).

5.1. ECSNe AND NATAL KICKS IN BINARY STARS

If we were to consider only the ECSNe from single stars, we would find that
a few percent of NSs are produced from this type of SN. This is not obvious
at first, since the range of ZAMS masses leading to an ECSN is very narrow
(see Figure 15), but it becomes clear as we take into account the distribution of
ZAMS masses, namely the IMF. Indeed, since the IMF grows as a power law
toward lower masses, and the masses of ECSN progenitors are always lighter than
those of CCSN progenitors, the number of ECSN progenitors is still significant
compared to that of CCSN progenitors (Doherty et al. 2015).

However, we know that massive stars belong very often to close binary systems
and that they are prone to interact with the companion (Sana et al. 2012). Such
interactions, like mass transfer or CE episodes, deeply shape the stellar structure
and ultimately impact the growth of the stellar core. In doing so, binary
interactions affect the pre-SN structure of a star and open up new paths toward
ECSNe (Podsiadlowski et al. 2004).

As shown in Figure 18, the populations simulated with sevn show this kind
of behavior: the mass spectrum of ECSN progenitors broadens when binary
stellar evolution is taken into account. In my simulations, this effect can only be
attributed to mass transfers or CE episodes occurred during the life of a star,
since the other main cause for the broadening, namely the accretion-induced
collapse of a WD (Nomoto and Kondo 1991; Dessart et al. 2006), is not fully
implemented yet. Another feature of Figure 18 is the lack of ECSNe above
the mass spectrum for single stellar evolution, in contrast with the population
synthesis of Giacobbo and Mapelli (2019). This indicates that ECSNe from
lighter accreting stars are favored in my simulations.

The introduction of ECSNe in my models works together with the new
momentum-conserving kicks. A variety of NSs and ejecta masses emerges
from the binary stellar evolution, and this kick prescription couples it with
the stochastic behavior from the Maxwellian of Hobbs et al. (2005), which is
calibrated on CCSNe from isolated stars. As a consequence, the distribution of
NSs’ natal kicks is modulated through the properties of the SN and thus shows
a complex behavior that reflects the underlying stellar evolution.

The distribution of natal kicks in binary stars is not bimodal as that from
single stars, though (see Figure 19). Instead, it shows three visible peaks, two of
which are clearly related to ECSNe and CCSNe, respectively. The third peak
appears to be composed mainly of CCSNe, with a minor contribution from
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be randomly spread out (upper panel). The upper panel gives also a visual
representation for the two formation scenarios: the dots are indeed the BNSs
formed through the standard scenario, while triangles and squares are the BNSs
formed through the double-core scenario. In the fiducial model, the first scenario
produces 70% of the BNSs, while the second produces 27%, in agreement with
the findings of Vigna-Gómez et al. (2018).

Few variations of the fiducial models have been explored. Figure 22 presents
the P vs e diagram of the BNSs produced by these populations, where I have
highlighted the BNSs that merge within a Hubble time (hereafter merging BNSs).

The variation of Z changes both the distribution of BNSs over the diagram
and the number of BNSs. While the first effect is probably related to intertwined
evolutionary processes, the second effect can be linked to the shift toward lower
masses of the SNe mass spectrum.

The variations in the input physics, namely the change in the SNe model
and in the CE prescription, show different behaviors. The population simulated
with αλ = 0.1 clearly deviates from the fiducial model, whereas the population
with the rapid model does not. The CE process is indeed known as one of the
main uncertainties in the synthesis of binary compact objects (e.g. Dominik et al.
2012; Giacobbo and Mapelli 2018), and Figure 22 shows how severely its impact
can be, both on the number and the properties of BNSs. In addition to this, my
models use a fixed λα value, while it is widely recognized that λ and α can vary
depending on the stellar structure (e.g. Dewi and Tauris 2000).

5.4. BNSs FROM CONTINUOUS STAR FORMATION

In order to confront the synthetic BNSs with the Galactic BNSs in Table 2,
we must evolve the synthetic populations for a time equal to the Milky Way’s
age and take into account its star formation history. Since this task goes far
beyond the aim of this thesis, I have approximated this process simulating how
each BNS population would appear after 10 Gyr of constant star formation,
at a rate of 1 M⊙ yr−1. To do so, I have evolved the BNSs in Figure 22 with
equation (3.35) and (3.36) for 10 Gyr, then I have taken a snapshot every 100
Myr, and finally staked all the snapshots in one diagram. Since each population
has an initial total mass of ∼ 108 M⊙, each snapshot represents a burst of star
formation.

The result is shown in Figure 23, and despite its rough approach, it still makes
a reasonable comparison. To understand the plot, let us recall from (3.35) and
(3.36) that

da
dt

∝ −
1

a3

and
de
dt

∝ −
1

a4
.

These relations imply that BNSs with close orbit evolve quickly through GW
decay, while wider BNSs hardly evolve. Indeed, confronting Figure 22 with 23,
one can see that BNSs with a period above 10 days are frozen in place, while
those with periods below 0.1 days disappear right after spawning. Even if the
match is not perfect, I have found that my synthetic populations are compatible
with the Galactic population.
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BNSs formed with ECSNe might also play a role and deserves more investigation.
To summarize, we have multiple hints indicating that the sevn code has room
for improvement, so further work is needed before we can aim to assess the
nature of this last result.





Chapter 6

Summary and conclusions

This thesis investigates the demography of BNSs, focusing on the impact that
natal kicks and ECSNe have on BNSs. I have performed the study by means of
population synthesis with the sevn code (Spera et al. 2015; Spera and Mapelli
2017; Spera et al. 2019), which I have updated to include ECSNe and a new
prescription for momentum-conserving natal kicks (Giacobbo and Mapelli 2020).
Since its grid-based approach to single stellar evolution, the sevn code has been
coupled to a set of stellar evolutionary tracks generated with the parsec code
(Bressan et al. 2012; Tang et al. 2014; Chen et al. 2015). The set of initial
conditions of each simulation has been produced with a new Python code based
on observational constraints (Sana et al. 2012; Moe and Di Stefano 2017), which
I have developed in collaboration with Stefano Torniamenti. With this setup,
I have simulated the evolution of stellar populations with ∼ 106 binary stars
each. Each simulation was run with different parameters, such as metallicity,
SN model, and CE parameters.

Regarding binary stars, I have found that the interactions between the binary’s
components broaden the mass spectrum of ECSN progenitors, which is otherwise
very narrow (see Figure 18). Moreover, the introduction of a prescription for
momentum-conserving natal kicks couples the distribution of natal velocities to
the properties of the SNe. This coupling modulates the underlying observational
distribution and produces a multi-peaked distribution (see Figure 19) that can
relax the tension emerging from recent observational results (e.g. Hobbs et al.
2005; Verbunt et al. 2017).

Regarding progenitors of BNSs, I have found that their mass spectrum changes
with the metallicity (see Figure 20). However, few of them are produced through
ECSNe, contrary to what is found by other population-synthesis studies (e.g.
Giacobbo and Mapelli 2019; Kruckow et al. 2018). I have also found that almost
all of the progenitors go through mass transfer and CE episodes (see Figure 21),
which is in agreement with observations of massive binaries such as those of
Sana et al. (2012). In the fiducial model, around 70% of them become BNSs
through the standard scenario (no CE prior the first SN Bhattacharya and van
den Heuvel 1991; Tauris and van den Heuvel 2006), while around 27% go through
the double-core scenario (Brown 1995; Dewi et al. 2006, CE can happen before
the first SN).

Regarding BNSs, I have found that the uncertainties on the CE parameters
have a huge impact on the outcome of population synthesis (see Figure 22),
as already widely recognized (e.g. Dominik et al. 2012; Giacobbo and Mapelli
2018). The orbital properties of the fiducial population of BNSs are in a good
agreement with those of Galactic BNSs when a reasonable star formation is
taken into account (see Figure 23).

To assess the merger efficiency of the fiducial model, I have compared the
results from the sevn code with those from another population-synthesis code,
namely the mobse code (Mapelli et al. 2017; Giacobbo et al. 2018; Giacobbo
and Mapelli 2018; Mapelli and Giacobbo 2018). The simulations from mobse

vary in the prescription for the CE parameter λ and the initial conditions. I have
found that mobse has an overall higher merger efficiency (see Figure 24), which
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is caused in first approximation by the lower minimum mass needed to trigger a
SN, and hence a higher number of SN progenitors. In second approximation, I
have found that implementing a varying λ (e.g. Dewi and Tauris 2000) can raise
substantially the merger efficiency, while the uncertainties in the initial conditions
do not have a great impact, as already shown by de Mink and Belczynski (2015)
and Klencki et al. (2018).

The local MRD from the fiducial model simulated with sevn is ∼ 13.6 Gpc−3

yr−1, which is well below the observational estimate of 290-2810 Gpc−3 yr−1

from the LIGO/Virgo Collaboration (Abbott et al. 2020, see Figure 25). This
discrepancy can be due to several factors (e.g. low statistics effects on the
observational estimate, or poorly understood formation channels) and has been
already encountered by several other population-synthesis studies (Dominik et al.
2013; Chruslinska et al. 2018; Belczynski et al. 2018; Giacobbo and Mapelli
2018).

As a concluding remark, I emphasize that this thesis makes room for several
future developments. Among the results obtained, the lack of BNSs formed
through ECSNe and the low merger efficiency deserve further investigation, in
terms of both physics and software development.
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“ Today everybody is talking about virtual reality, but I think −frankly−
that virtual reality is a rather miserable idea. It simply means: let us reproduce
in an artificial digital medium our experience of reality.

I think that a much more interesting notion −crucial to understand what
goes on today− is the opposite: not virtual reality, but the reality of the virtual.
That is to say: reality −by this I mean efficacity, effectiveness, real effects−
produced, generated by something which does not yet fully exists, which is not
yet fully actual. ”

Slavoj Žižek
The Reality of the Virtual
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