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Abstract

Due to their high power density and good efficiency, permanent magnet syn-

chronous machines (PMSM) have been increasingly employed in medium-power

applications such as vehicular propulsion (electrical/hybrid vehicles), industrial

drives and power generation. Since high temperatures can significantly shorten

the lifetime of the motor components, there is a growing trend towards real-time

monitoring of the internal temperatures during operation. Therefore, the tem-

perature at some key points within the motor needs to be measured to guarantee

optimal utilization of the machine, i.e. maximizing its efficiency while assur-

ing safer operation modes. While the stator temperature can be easily accessed

by embedding thermal sensors, rotor temperatures are difficult to measure in

practice. As an alternative to conventional direct/indirect measurement ap-

proaches, model-based methods have been investigated in the past decades. In

this work, the feasibility of using the Kalman algorithm is investigated, as a

thermal observer for temperature estimation.
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1
Introduction

This work presents the design, application, and evaluation of a Kalman fil-

ter algorithm, based on a thermal model solved by the Finite Element Method

(FEM), as a thermal observer for temperatures estimation in an electric motor.

This research is part of an applied research project aimed at future industrial

applications of Digital Twins for monitoring, control optimisation and predic-

tive maintenance of this type of devices and fits into the relentless trend toward

electric vehicles and cleanest electric power generation (wind, waves, hydro and

nuclear). Due to their high-power density and good efficiency, permanent mag-

net synchronous machines (PMSM) have been increasingly employed in several

industrial applications, including medium-power applications such as vehicular

propulsion (electrical/hybrid vehicles), industrial drives and power generation

[5]. However, under working conditions (particularly in the case of motors)

the temperatures of such devices can rise (due to friction and ohmic heating),

and then significantly shorten the lifetime of the motor components (mainly the

permanent magnets but also others as attached/embedded electronic circuitťs

components and plastic isolators). This is one of the main reasons boosting

the growing trend towards real-time monitoring of the internal temperatures

during operation. Therefore, the temperature at some key points within the

motor needs to be measured to guarantee optimal utilization of these machines.

This redounds in maximizing its efficiency, allows to extend the operational

cycles, also extends the life span of the machines, while assuring safer opera-

tion modes. However, among the different parts of the motors, some are easily

accessible, though not all. For instance, while the stator temperature can be
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easily accessed by standard embedding thermal sensors, rotor temperatures are

difficult to measure in practice, since the installation of a thermal sensor there is

a difficult task. In this context, model-based methods have been investigated in

the past decades, as an alternative to conventional direct/indirect measurement

approaches, accumulating a considerable experience that contributes to what

we now call Digital Twins. In particular, estimators for electrical motor temper-

atures have been presented for engineering applications [20], [6], [21], [22], [10]

using different strategies.

In the present work, a Kalman filter is proposed and implemented in order

to assess the feasibility of using this strategy to develop an improved thermal

observer, which eventually can be used for permanent magnet synchronous

motors, even in presence of input uncertainties. The motor model consists of a

Finite Element representation of the corresponding physical thermal transport

equations after applying an order reduction method. On the other hand, it is well

known that in the case of complex systems (geometry, diversity of constituent

materials, changing parameters of those materialťs properties, etc.), models of

high complexity are required to obtain a proper description of the physical

system. Doing that, it is generally assumed similitude between the real system

and the model, and between the testing and operational conditions. Then, the

models must be devised with the best-physics approach that is relevant to each

particular machine [8].

Due to the motor model complexity, we decided to take two steps back and

start studying a rather simple system to test first the Kalman filter. We chose then

to start with a simple homogeneous solid bar model, which could be formulated

using the same methods as in the motor model but having a simpler structure.

Once developed the desired robust temperature observer for the bar; this so-

lution was scaled until reaching the ultimate goal, which is the development

of a robust temperature observer that can be used for simulating, monitoring

and optimizing the permanent magnet synchronous motors. In Chapter 2 the

Heat Transfer Model is described, along with the used strategies required for its

Finite Element Method (FEM) solution, which are the space domine discretiza-

tion and the formulation of the problem in its strong and weak forms, to finally

obtain a linear model allowing the construction of an approximate solution for

the analysed thermal models. It was applied to the metal bar model and to the

electric motor model, to this last it was also used an order reduction method (in

a previous work) to be able to run the designed algorithms in an efficient way

2



CHAPTER 1. INTRODUCTION

[13]. The model time discretization is also presented within this chapter since it

is necessary to solve the FEM problem.

The Kalman filter main aspects are discussed in Chapter 3, where the ar-

guments for using an offset-free Linear Kalman filter are exposed, while the

Kalman filter implementation to both models (the bar model and the motor

model) is shown in Chapter 4 where the main results of this work are presented.

It is worth noticing that the classic Kalman filter has some limitation in the case

of uncertain input conditions, so an augmented state Kalman filter was applied

to overcome these situations. Finally, both are compared and quantitative results

on their performance under different conditions and using different positions

for the read back sensors are discussed.

3





2
The Heat Transfer Model

The physical phenomena related to electric motors (mechanics, electromag-

netism, thermodynamics, etc.) can be modeled by partial differential equations

(PDEs). Those systems are often featured by complex geometries, possibly

involving different materials, which implies complex border conditions. This

complicates the solution by classical analytical methods. A widespread way

to address this kind of problems is the Finite Element Method (FEM), a nu-

merical approach which solves general differential equations obtaining accurate

approximated solutions.

In the FEM, the computational domain is divided into smaller parts, the

so-called finite elements. Within each finite element one seeks to approximate

the behavior of the variable under study to a simpler function. For instance,

referring to a specific body domain, the variable of interest may vary in a highly

non-linear manner over it but if the finite elements are small enough, it can be a

good approximation to assume that the variable varies in a linear fashion over

each element [14]. Thus an approximate solution in the entire computational

domain can be obtained.

The Finite Element Method is composed of the following phases [3]:

1. Domain discretization

2. Choice of interpolating function

3. Formulation of the system of ordinary differential equations

4. Solution of the system of equations

In the following sections the first three phases are going to be resumed.

5



2.1. SPACE DOMAIN DISCRETIZATION

2.1 Space domain discretization

In this work we consider the convective heat transfer problem and we are

interested in the temperature distribution within a body that might be com-

posed of different materials. Each with different properties such as thermal

conductivity, heat capacity, density, etc.

The whole body domain Ω is divided into regions, respecting common ma-

terials properties and characteristics. Then, each region is subdivided into

elements, geometric entities suited to fill the regions (filling entirely Ω), which

cannot intersect.

In the one dimensional case, where the domain is a curve, the elements

are line segments (Figure 2.1a), in two dimensions the domain is a surface and

the elements are polygons (Figure 2.1b) while in three dimensional case, the

domain is a volume and the elements are, for instance, hexahedra or tetrahedra

(Figure 2.1c).

y

vw

(a)

y

y

vw

(b)

y

y

vw

(c)

Figure 2.1: Finite Element Samples

The idea behind FEM is to determine the values of the variable under study

at certain points (called nodes) in each element and find an approximation of the

function we are looking for by interpolating between the elements nodes. The

nodes are often located at the edges of each element, in Figure 2.1 the nodes are

the highlighted points.

2.2 Interpolating functions

The interpolating (or base) functions are an approximation about how the

variable changes within each element. Typically these functions are polynomials

of any order (linear, quadratic, cubic, etc.). However, it is preferable to choose

1st or 2nd order polynomials, as higher order increase the complexity of the

formulation and the computational burden, even though the approximation in

the problem description might improve.
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CHAPTER 2. THE HEAT TRANSFER MODEL

Letting𝑇 be the unknown analytical solution, the approximation function𝑇★

in the FEM is made of linear combinations of basis functions 𝜙 𝑗 defined within

each element:

𝑇★(𝑥, 𝑦, 𝑧, 𝑡) =

𝑁∑

𝑗=1

𝜃𝑗(𝑡) 𝜙 𝑗(𝑥, 𝑦, 𝑧), (2.1)

where 𝜃𝑗 are the unknown nodal values (𝑁 in total) that are to be determined

in the solution process.

Each 𝜙 𝑗 is associated with one node of the FE mesh and it has compact and

local support. They are nonzero only over the elements which touch the node

they are associated with, i.e. the 𝑗-th node, everywhere else they are equal to

zero[14]:

𝜙 𝑗(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = 1 if 𝑖 = 𝑗 (2.2)

𝜙 𝑗(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = 0 if 𝑖 ≠ 𝑗 (2.3)

𝑖 , 𝑗 = 1, 2, 3, ..., 𝑁 . (2.4)

Assuming a locally linear behaviour of 𝑇 within an element, for a the 1-

dimensional problem, the approximation functions within a mesh of 5 node are

shown in Figure 2.2a. The 2D case is shown instead in Figure 2.2b.

In the present work linear interpolating functions are adopted. As a conse-

quence, 𝑇★ is a piecewise linear function. This remark will be important later,

when the weak formulation of the problem is presented.

2.3 Formulation of the problem

2.3.1 Heat equation - Strong form

The temperature distribution is a variable that depends both on time and

space, 𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡). The differential equation associated with thermal con-

duction is given by the law of conservation of energy and Fouriers law of heat

conduction. The resulting equation is:

𝑐𝜌
𝜕𝑇

𝜕𝑡
− ∇ · (𝜅∇𝑇) = 𝑄 in Ω (2.5)

where 𝑇 is the continuum temperature, Ω is the problem domain, 𝑐 [J/kg-

K] represents specific heat, 𝜅 [W/K-m] is the thermal conductivity, 𝜌 [kg/m3]

7



2.3. FORMULATION OF THE PROBLEM
Our First FE Solution (Example 2.1) (cont’d)

•

– – –

𝑥
𝜙1 𝜙2 𝜙3 𝜙4 𝜙5

•

•

•
•

e=1       e=2      e=3      e=4 
𝑥 

1 

1 

1 

1 

1 

𝜙1 

𝜙2 

𝜙3 

𝜙4 

𝜙5 

(a) 1-D
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✕ ✐♥ t❤❡ ♣♦✐♥t ✭s❛♠❡ ❛s ❜❡❢♦r❡✮✳ ❚❤❡ ❜♦✉♥❞❛r② ♦❢
t❤❡ s✉♣♣♦rt ❛r❡❛ ✐s ✐♥ t❤✐s ❝❛s❡ ❛ ❧✐♥❡✳

✵

✶

x

y
z

❼ ✸❉
❊✈❡♥ ✐❢ ❤❛r❞ t♦ ❞r❛✇✱ t❤❡ ❜❛s✐❝ ✐❞❡❛ ✐s t❤❡ s❛♠❡✿

✕ ❢♦r t❤❡ ♣❛rt ♦✉ts✐❞❡ t❤❡ s✉♣♣♦rt

✕ ❛t t❤❡ ♥♦❞❡ ✭s❛♠❡ ❛s ❜❡❢♦r❡✮✳ ❚❤❡ ❜♦✉♥❞❛r② ♦❢
t❤❡ s✉♣♣♦rt ✐♥ t❤✐s ❝❛s❡ ✐s ❛ s✉r❢❛❝❡✳

✹✳✹✳✷ ❙✉♣♣♦rt

❚❤❡ ❡❧❡♠❡♥ts ✇❤❡r❡ ❢♦r♠ t❤❡ s✉♣♣♦rt ♦❢ ♥♦❞❡ ✳

❼ ✐♥ ✶❉ t❤❡ s✉♣♣♦rt ✐s ❛ s❡❣♠❡♥t ❣✐✈❡♥ ❜② t❤❡ ✉♥✐♦♥ ♦❢ t✇♦ s❡❣♠❡♥ts✳ ■♥
♦✉r ❝❛s❡ ❛♥❞ ❢♦r♠ t❤❡ s✉♣♣♦rt ♦❢ ♥♦❞❡ ✳

✵

✶

✵
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r♦✉♥❞✐♥❣ ❛ ♥♦❞❡✱ ✐✳❡✳ ❛ s✉r❢❛❝❡✳

(b) 2-D

Figure 2.2: Linear interpolating functions

density, of the body materials. 𝑄 [W/m3] represents an external or internal heat

source. For a complete formulation, boundary conditions have to be specified.

In this work heat transfer boundary conditions are considered. As the bodies

under study are assumed to be surrounded by air, there is heat flow between

the body and the fluid. To formulate the boundary conditions in the body

surface in contact with the air, we refer to the Newton’s cooling law. Such law

states that the rate of heat loss of a body is proportional to the difference in the

temperatures between the body and its surroundings:

−𝜅∇𝑇 · �̂� = 𝜆(𝑇 − 𝑇amb), (2.6)

being 𝜆 the heat transfer coefficient [W/m2-K] and �̂� the unit vector at the body

boundary, pointing outward.

Eq. 2.5 and 2.6 constitute what is referred as the strong form of convective

heat transfer.
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CHAPTER 2. THE HEAT TRANSFER MODEL

2.3.2 Heat equation - Weak form

The FEM requires the reformulation of the strong form into an integral form

called the weak form. There are a number of different ways that can be used to

derive the weak form of a differential equation [3]. For the differential equations

studied in this work, we exploit to use the Method of Weighted Residuals

(MWR). The MWR is based on the idea that the best approximation 𝑇★ of 𝑇 is

the one ensuring the zeroing of the residual:

𝑟 = 𝑐𝜌
𝜕𝑇★

𝜕𝑡
− 𝜅∇2𝑇★ −𝑄 (2.7)

along the problem domain [3].

The MWR minimizes the residuum 𝑟 in a weighted integral sense:

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝑟𝑑Ω =

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗

(
𝑐𝜌

𝜕𝑇★

𝜕𝑡
− 𝜅∇2𝑇★ −𝑄

)
𝑑Ω =

=

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝑐𝜌
𝜕𝑇★

𝜕𝑡
𝑑Ω −

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝜅∇
2𝑇★𝑑Ω −

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝑄𝑑Ω = 0

(2.8)

with test functions 𝑤 𝑗 = 𝑤 𝑗(𝑥, 𝑦, 𝑧). The MWR finds the solution 𝑇★ that zeros

𝑟 (in eq. 2.7) by actually solving eq. 2.8.

Due to the choice of linear 𝜙 𝑗’s, ∇2𝑇★ can not be evaluated properly since𝑇★ is

piecewise linear. Therefore, the second term of eq. 2.8 needs to be reformulated.

Integrating by parts the 2nd term of eq. 2.8, we get:

−

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝜅∇
2𝑇★𝑑Ω =

𝑁∑

𝑗=1

∫

Ω

𝜅∇𝑤 𝑗∇𝑇
★𝑑Ω −

𝑁∑

𝑗=1

∫

Σ

𝜅𝑤 𝑗∇𝑇
★ · �̂�𝑑Σ (2.9)

The last term of eq. 2.9 is called boundary integral since it is evaluated at

the domain boundary (Σ). Notice that its argument coincides with the problem

boundary conditions shown in eq. 2.6. Hence, eq. 2.9 can be rewritten as:

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝜅∇
2𝑇★𝑑Ω =

𝑁∑

𝑗=1

∫

Ω

𝜅∇𝑤 𝑗∇𝑇
★𝑑Ω +

𝑁∑

𝑗=1

∫

Σ

𝑤 𝑗𝜆(𝑇
★ − 𝑇amb)𝑑Σ (2.10)

9



2.3. FORMULATION OF THE PROBLEM

Finally, substituting eq. 2.10 in 2.8, we get:

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝑐𝜌
𝜕𝑇★

𝜕𝑡
𝑑Ω +

𝑁∑

𝑗=1

∫

Ω

𝜅∇𝑤 𝑗∇𝑇
★𝑑Ω+

−

𝑁∑

𝑗=1

∫

Σ

𝑤 𝑗𝜆(𝑇
★ − 𝑇amb)𝑑Σ −

𝑁∑

𝑗=1

∫

Ω

𝑤 𝑗𝑄𝑑Ω = 0 (2.11)

Eq. 2.11 represents the weak form we were looking for. This form is referred

as weak due to its lower differentiability requirements compared to the original

weighted residual statement (eq. 2.8). The weak form allows us to work with

piecewise linear approximated solutions.

2.3.3 Construction of the approximate solution

We already have all the ingredients needed to construct our solution. Sub-

stituting the approximate solution 𝑇★ given in eq. 2.1 into our weak formulation

eq. 2.11 we obtain:

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Ω

𝑤 𝑗𝑐𝜌𝜙𝑖
𝜕𝜃

𝜕𝑡
𝑑Ω +

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Ω

𝜅∇𝑤 𝑗∇𝜙𝑖𝜃𝑖𝑑Ω+

+

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Σ

𝑤 𝑗𝜆𝜙𝑖𝜃𝑖𝑑Σ =

𝑁∑

𝑗=1

∫

Ω

𝑄𝑤 𝑗𝑑Ω +

𝑁∑

𝑗=1

∫

Σ

𝑤 𝑗𝜆𝑇amb𝑑Σ (2.12)

Among the MWR, the most commonly used is the Galerkin method in which

the test functions 𝑤 𝑗 are chosen to be equal to the interpolating functions 𝜙 𝑗[3].

That is,

𝑤 𝑗 = 𝜙 𝑗 for 𝑗 = 1, 2, 3, ..., 𝑁 (2.13)

From this last equation, the following system of ODE is formulated

𝑐𝜌𝑫𝜽¤ + (𝜆𝑯 + 𝜅𝑲)𝜽 = 𝒒 (2.14)

with

10



CHAPTER 2. THE HEAT TRANSFER MODEL

𝑫 =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Ω

𝜙 𝑗𝜙𝑖𝑑Ω 𝑲 =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Ω

∇𝜙 𝑗∇𝜙𝑖𝑑Ω

𝑯 =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Σ

𝜙 𝑗𝜙𝑖𝑑Σ

𝒒 = 𝑄𝒒in + 𝜆𝑇amb𝒒conv 𝒒conv =

𝑁∑

𝑗=1

∫

Σ

𝜙 𝑗𝑑Σ 𝒒in =

𝑁∑

𝑗=1

∫

Ω

𝜙 𝑗𝑑Ω

where 𝜽 ∈ ℜ𝑁 is the vector of nodal unknowns temperatures of the FE mesh.

𝑫, 𝑯 and 𝑲 are 𝑁 × 𝑁 symmetric matrices. The vector 𝒒 correspond to the

excitation/inputs of the thermal model.

In this way the original problem with, in principle, infinitely many unknowns

(a continuous distribution), has been replaced by a problem with a finite number

of them (𝑁). In general, the more unknowns (a finer spacial discretization),

the more accurate the approximate solution but the higher the computational

burden.

2.4 Thermal model of an electric machine

An accurate thermal model of the Permanent Magnet Synchronous Motor

(PMSM) is crucial in the design of a model based state observer. Starting from

the Finite Element Analysis (FEA) explained along the previous section, in this

section the thermal model of the PMSM studied in this work is presented.

Experts in FEA from the company NewTwen developed an accurate FE model

of the motor that was provided to the author. The real motor, shown in Figure 2.3,

is composed of different parts, each made of different materials. The given

model is characterized by five domains (Ωj, 𝑗 ∈ [1, 5]): the rotor (Ω1) made of

aluminum, the stator (Ω2) made of iron, the winding (Ω3) made of copper, the

printed circuit board (PCB) (Ω4) made of plastic and the air gap between the

rotor and stator (Ω5). All these domains are depicted in Figure 2.4.

It is worth to mention that for a complete analysis, the physics of fluid

dynamics should be considered to model the heat transfer in the air gap in

both the stator and rotor. Instead of modelling the air gap as if it were a solid

between the rotor and stator with an effective thermal conductivity that captures

11



2.4. THERMAL MODEL OF AN ELECTRIC MACHINE

both conduction and convection effects. However, the latter was the approach

followed in this case since multiphysics simulations involving fluids dynamics

have numerical issues, which make the problem difcult to solve [21].

Figure 2.3: PMSM studied

(a) Motor (b) Rotor. Aluminum (c) Stator. Iron

(d) Winding. Copper (e) Air gap. Air (f) PCB

Figure 2.4: Motor domains

For this system with five domains, the system of ODE presented in eq. 2.14

becomes:

𝑫M𝜽¤ + (𝑯M + 𝑲M)𝜽 = 𝒒M (2.15)

where the matrices 𝑫M, 𝑲M, 𝑯M and the vector 𝒒M are defined as:

12



CHAPTER 2. THE HEAT TRANSFER MODEL

𝑫M =

5∑

𝑙=1

𝜌𝑙𝑐𝑙𝑫𝒍 𝑐𝑙 , 𝜌𝑙 specific heat and density of 𝑙th material

𝑲M =

5∑

𝑙=1

𝜅𝑙𝑯𝒍 𝑘 thermal conductivity of 𝑙th material

𝑯M = 𝜆𝑯

𝑫𝒍 =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Ω𝑙

𝜙 𝑗𝜙𝑖𝑑Ω𝑙 for 𝑙 = 1, 2, 3, 4, 5

𝑲𝒍 =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫

Ω𝑙

∇𝜙 𝑗∇𝜙𝑖𝑑Ω𝑙

𝒒M = 𝛼𝐼2𝒒in + 𝜆𝑇amb𝒒conv 𝛼 = 1 + 0.004(𝑇Cu − 𝑇amb)

(2.16)

In the definition of 𝒒M, 𝐼 is the current that flows through the stator winding

and 𝛼 is the copper electrical resistivity, that depends linearly on the temperature

of the copper (𝑇Cu).

Due to the complex geometry of the motor, and the size of the finite ele-

ments (tetrahedra of size in the order of mm), the system of equations 2.15 has

thousands of nodal temperatures to be found. Solving such a system by conven-

tional simulation methods is very time-consuming. To perform simulations in a

reasonable time, as well as being able to perform the model calibration and pos-

terior validation, Model Order Reduction (MOR) techniques were implemented

by the developers of the motor model.

MOR is a popular method to overcome the computational demand required

to solve high dimensional problems. By MOR, a small dimensional approxi-

mated system can be derived, from a complex high fidelity one, so that it can

reliably replace the original system during the simulation [2]. More specifically,

what it was done was a Parametric Model Order Reduction (PMOR), whose

main goal is to preserve parameters in the system as symbolic quantities in the

reduced-order model. Thus, a change in parameters does not require to perform

again the order reduction, but simply the evaluation of the reduced-order model

for the new parameter values[2].

The most common approach to obtain a reduced-order model of a system as

13



2.5. THERMAL MODEL OF A METAL BAR

the one in eq. 2.15 is via projection, i.e., by projecting the dynamics of full-order

model (of dimension 𝑁) on a lower-dimensional subspace (of dimension 𝑑),

where 𝑑 ≪ 𝑁 . This is followed by re-projecting the reduced dynamics onto the

original space to obtain the approximation. The approach followed by the model

designers is similar to what is explained in [2] and [19], where readers may find

further information. Once the model was reduced, calibrated and validated, the

results were provided to the author of this work to design the desired observer.

Since the reduced order model and the original one share the same pa-

rameters and structure but different dimension, from now on there will be no

distinctions between them.

Even though the motor model dimension was reduced, the motor geometry

and properties makes complex the design of a robust temperature observer. In

view of this, in the present work it is proposed the study of the one dimensional

heat transfer problem by using as a system a metal bar model.

2.5 Thermal model of a metal bar

Our reference system is an aluminum bar of rectangular cross section. Start-

ing from the general 3-D formulation carried out is section 2.3, we will focus

on the study of one dimensional convective heat transfer. Specifically, we are

interested in how the temperature changes over time after a heat source has been

placed on one side of the bar, before and after the steady state situation has been

reached.

In reality one cannot think of a one-dimensional heat transfer problem, but

we could assume that the thickness of the bar is small in relation to its length so

that temperature variations along the bar axis are much larger than transversal

variations. Moreover, it is assumed that the rod is sufficiently thin so that the

temperature within any particular cross-section is constant. As an example,

Figure 2.5 shows a graphic representation of the bar discretised by 𝑁 = 10

nodes and 𝑚 = 9 elements.

The system of ODEs for this body has exactly the same structure presented

in eq. 2.14, consisting of 𝑁 = 10 unknowns and only 4 parameters 𝜌, 𝑐, 𝜆 and 𝑘.

In fact, we are working with only one material, aluminum.

In this case everything is one dimensional and we choose linear shape func-

tions (as those of Figure 2.2a).

As it is depicted in Figure 2.6, the element e4 goes from node n4 to n5 and the
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Figure 2.5: Graphic representation of aluminum bar with thermal source at left
side

element e4 goes from node n5 to n6. Two consecutive elements have one node in

common.
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Figure 2.6: 1D interpolating function for the aluminum bar

Then, the corresponding shape functions associated to node n5 are:

𝜙e4

5
=

𝑥

𝑑𝑙
, (𝑥 ∈ e4)

𝜙e5

5
= 1 −

𝑥

𝑑𝑙
, (𝑥 ∈ e5)

hence

𝜙5 = 𝜙e4

5
+ 𝜙e5

5

the superscripts e4 and e5 denotes that these shape functions are for local ele-

ments and the subscript 5 denotes the node they are associated with.

15



2.6. MODELS TIME DISCRETIZATION

Therefore, for two consecutive elements having node 𝑖 in common:

𝜙=𝜙
e𝑘
𝑖
+ 𝜙e𝑘+1

𝑖
(2.17)

With the basis functions defined, the system of ODEs characterizing the

aluminum bar thermal behavior is given by:

𝑐𝜌𝑫B𝜽B
¤ + (𝜆𝑯B + 𝜅𝑲B)𝜽B = 𝒒B (2.18)

with

𝑫B =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫ 𝐿

0

𝜙 𝑗𝜙𝑖ℎ𝑤𝑑𝑙 𝑲B =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫ 𝐿

0

∇𝜙 𝑗∇𝜙𝑖ℎ𝑤𝑑𝑙

𝑯B =

𝑁∑

𝑗=1

𝑁∑

𝑖=1

∫ 𝐿

0

𝜙 𝑗𝜙𝑖(2𝑤 + 2ℎ)𝑑𝑙

𝒒conv =

𝑁∑

𝑗=1

∫ 𝐿

0

𝜙 𝑗(2𝑤 + 2ℎ)𝑑𝑙 𝒒in =

𝑁∑

𝑗=1

∫ 𝐿

0

𝜙 𝑗ℎ𝑤𝑑𝑙

𝒒B = 𝑄𝒒in + 𝜆𝑇amb𝒒conv

The models obtained in eqs. 2.18 and is the model required to start with the

design of our robust model-based temperature estimator.

2.6 Models time discretization

The discretization problem consists of finding a discrete-time system of equa-

tions (Ordinary Difference Equations) such that its solution approximates the

solution of the continuous-time system.

Starting from a continuous-time system, ΥCT, formulated in state-space

ΥCT =

{
𝒙¤ (𝑡) = 𝚽𝒙(𝑡) + 𝚪𝒖(𝑡)

𝒚(𝑡) = 𝚿𝒙(𝑡) +𝛀𝒖(𝑡)
(2.19)

the state evolution equation

𝒙¤ (𝑡) = 𝚽𝒙(𝑡) + 𝚪𝒖(𝑡)
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can be integrated to yield different representation of the system matrices 𝚽, 𝚪,

𝚿 and 𝛀, depending on the discretization method used.

In Table 2.1 are summarized the formulas which directly relate the state-space

matrices of the continuous-time model to those of the discrete-time counterpart.

The sampling period is identified as 𝑇𝑠 . In this table are presented the results of

using Backward and Forward Euler as well as the Exact discretization method.

The formers are based on the Euler’s integration methods. The later is based on

the implementation of an Analog to Digital Converter and a Zero-Order Holder

at the output and input of the plant respectively to convert it into a sampled data

system. This approach is explained in details in [7].

It is important to mention that in order to capture the system dynamics, 𝑇𝑠

has to be chosen respecting the system characteristics modes. However, when

using the Forward Euler method special attention has to be payed since a wrong

choice of 𝑇𝑠 can lead to instabilities of the discretized system. A 𝑇𝑠 suitable for a

system discretized with Backward Euler can be inappropriate (too large) for the

same system but discretized with Forward Euler method.

Forward Euler Backward Euler Exact

𝑨 I −𝚽𝑇𝑠 (I −𝚽𝑇𝑠)
−1 𝒆𝚽𝑇𝑠

𝑩 𝑇𝑠𝚪 (I −𝚽𝑇𝑠)
−1𝑇𝑠𝚪

∫ 𝑇𝑠

0
𝒆𝚽𝑇𝑠𝚪𝑑𝜏

𝑪 𝚿 𝚿(I −𝚽𝑇𝑠)
−1

𝚿

𝑱 𝛀 𝛀 +𝚿(I −𝚽𝑇𝑠)
−1𝑇𝑠𝚪 𝛀

Table 2.1: Discretization of a continuoustime statespace modelΥc = (𝚽, 𝚪,𝚿,𝛀)
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3
Kalman Filter

As it was mentioned in chapter 1, the main interest of this research project is to

design a model-based temperature observer capable of estimating temperatures

at many different points of a Permanent Magnet Synchronous Motor (PMSM).

With the help of only few sensors placed on the machine, the estimator needs to

be robust enough to overcome mild model mismatches, uncertainties in model

parameters and uncontrolled system inputs.

A state observer is a dynamical system that provides an estimate of the state

vector based on the available data: the system outputs (sensor measurements)

and inputs, as it is shown in Figure 3.1.

The top branch of the diagram in Figure 3.1 shows the operation of the

physical system (denoted by "true system"). In our case, the actual PMSM.

The input to the PMSM (𝒖𝑘) is the electrical current that it experiences and the

temperature of the external environment. The output (𝒚𝑘) is the temperature at

accessible points where thermal sensors are placed. Inside the PMSM there are

some points where a thermal sensors cannot be placed (or is not desired), i.e.

those temperatures cannot be measurable. In those inaccessible points is where

the temperature has to be estimated.

The bottom branch of Figure 3.1 shows the operation of the state estimator.

It is based on a model of the physical system and an algorithm that drives the

state estimates �̂�𝑘 towards the actual states 𝒙𝑘 .

Kalman filtering provides an elegant and powerful solution as far as state

estimation is concerned. The Kalman filter (KF) is the optimum method to

estimate the unmeasured state 𝒙𝑘 of the corresponding physical system, in real
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Figure 3.1: The model-based estimation approach

time, in a dynamic environment, given knowledge of the system´s measured

input/output signals. The KF comprises a set of recursive equations that are

repeatedly evaluated as the physical system operates [18].

We will not directly derive these equations here, rather the following discus-

sion will be directed to their introduction and practical implementation. The

reader is referred to Kalman`s original paper [9] and related textbooks like [17]

and [4] for further derivation details.

3.1 Linear Kalman Filter

For the design of the linear KF we will assume that the physical system

under study can be modeled as linear time invariant system represented in the

following system of difference equations in its state-space form,

Υ:

{
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 +𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘

(3.1)

where 𝒙𝑘 ∈ ℜ𝑛 is the system state vector at time index 𝑘. The known/determin-

istic input to the system is 𝒖𝑘 ∈ ℜ𝑝 , and 𝒘𝑘 ∈ ℜ𝑛 is stochastic "process noise"

or "disturbance" that models some unmeasured input which affects the state of

the system [18]. The output of the system 𝒚𝑘 ∈ ℜ𝑚 , is computed as a linear

combination of states and input plus 𝒗𝑘 ∈ ℜ𝑚 , which models "sensor noise"

that affects the measurement of the system output but does not affect the system

state [18]. The matrices 𝑨 ∈ ℜ𝑛×𝑛 , 𝑩 ∈ ℜ𝑛×𝑝 , 𝑪 ∈ ℜ𝑚×𝑛 describe the dynamics

of the system.

Certain assumptions are made when deriving the KF equations. First of
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all, both 𝒘𝑘 and 𝒗𝑘 are assumed to be mutually uncorrelated white Gaussian

random processes, with zero mean and covariance matrices 𝑸𝑤 = 𝑸T
𝑤 ≥ 0 and

𝑹𝑣 = 𝑹T
𝑣 > 0 with known value:

E
[
𝒘𝑠𝒘

T
𝑘

]
=

{
𝑸𝑤 𝑠 = 𝑘

0 𝑠 ≠ 𝑘
; E

[
𝒗𝑠𝒗

T
𝑘

]
=

{
𝑹𝑣 𝑠 = 𝑘

0 𝑠 ≠ 𝑘
(3.2)

and E
[
𝒘𝑘𝒙

T
0

]
= 0 ∀ 𝑘 > 0, where 𝒙0 is the state initial condition. The

assumptions on the noise processes 𝒘𝑘 and 𝒗𝑘 are rarely (never) met in practice,

but the consensus of the literature is that the method still works very well

[18], [4].

The KF goal is to find the minimum mean squared error estimate �̂�𝑘 of

the true state 𝒙𝑘 , using the input/output data {𝒖0, 𝒖1, . . . , 𝒖𝑘}, {𝒚0
, 𝒚

1
, . . . , 𝒚𝑘},

the physical system model (eq. 3.1), and the assumptions on 𝒘𝑘 and 𝒗𝑘 . The

KF algorithm is a set of recursive operations that returns, at each iteration, an

estimate of the state itself, and also the covariance matrix 𝚺�̃� ,𝑘 = E
[
�̃�𝑘 �̃�

T
𝑘

]
of

the state estimate error �̃�𝑘 = 𝒙𝑘 − �̂�𝑘 . The covariance matrix 𝚺
+
�̃� ,𝑘

indicates the

uncertainty of the state estimate �̂�+𝑘 . A summary of the KF solution is presented

in Algorithm 1.

During each sampling interval, before any system measurements are made,

the prediction phase is carried out. The discrete-time KF computes the prediction

of the state �̂�−𝑘 and the error covariance matrix 𝚺
−
�̃�,𝑘 ; based on the estimate ob-

tained in the previous iteration, �̂�+𝑘−1
, and the model system dynamics (eq. 3.1).

Later, after measuring the system output 𝒚𝑘 , comes the update phase. The predic-

tions �̂�−𝑘 and 𝚺
−
�̃�,𝑘 are updated, based on the new information just arrived. Then,

it is obtained the state estimate we are looking for, �̂�+𝑘 and the corresponding

error covariance matrix 𝚺
+
�̃�,𝑘

. �̂�+𝑘 and 𝚺
+
�̃�,𝑘

are then more accurate than �̂�−𝑘 and

𝚺
−
�̃�,𝑘 as they incorporate knowledge gleaned from the measurement 𝒚𝑘 .

The information that comes with each measurement is represented in the

difference between the sensor measurement 𝒚𝑘 and the predicted one �̂�𝑘 , called

the innovation 𝒆𝑘 . 𝒆𝑘 may be nonzero due to measurement noise, an incorrect

state prediction �̂�−𝑘 , or an inaccurate model. We see in Algorithm 1, that the

Kalman gain vector 𝑳𝑘 multiplies the innovation when calculating the state-

estimate update, 𝑳𝑘𝒆𝑘 . How large or small is this update depends on a series of

considerations:
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Algorithm 1 Linear Kalman filter summary [18]

Initialization:
for 𝑘 = 0 do

�̂�+0 = E [𝒙0]
𝚺
+
�̃�,0

= E
[
(𝒙0 − �̂�+0 )(𝒙0 − �̂�+0 )

T
]

end for
Computation:

for 𝑘 = 1, 2, . . . do
{PREDICTION}
State estimate time update:

�̂�−𝑘+1
= 𝑨�̂�+𝑘 + 𝑩𝒖𝑘

Error covariance time update:
𝚺
−
�̃�,𝑘+1

= 𝑨𝚺+
�̃�,𝑘

𝑨T +𝑸𝑤

Kalman gain matrix calculation:

𝑳𝑘+1 = 𝚺
−
�̃�,𝑘+1

𝑪T
[
𝑪𝚺−

�̃�,𝑘+1
𝑪T + 𝑹𝑣

]−1

Innovation calculation:
𝒆𝑘+1 = 𝒚𝑘+1

− �̂�𝑘+1
= 𝒚𝑘+1

− 𝑪�̂�−𝑘+1

{UPDATE}
State estimate measurement update:

�̂�+𝑘+1
= �̂�−𝑘+1

+ 𝑳𝑘+1𝒆𝑘+1

Error covariance measurement update:
𝚺
+
�̃� ,𝑘+1

= (I − 𝑳𝑘+1𝑪)𝚺−
�̃� ,𝑘+1

end for

• The state-estimate update is directly proportional to 𝒆𝑘 , the larger (smaller)
𝒆𝑘 the larger (smaller) tends to be the update;

• If �̂�−𝑘 is very uncertain (𝚺−
�̃�,𝑘 is "large"), the values in 𝑳𝑘 tend to be large,

forcing a large state-estimate update;

• If �̂�−𝑘 is certain (𝚺−
�̃�,𝑘 is "small"), the values in 𝑳𝑘 tend to be small, reducing

the state-estimate update;

• If 𝑹𝑣 is large (large sensor noise), the values in 𝑳𝑘 tends to be small,
reducing the state-estimate update.

A covariance matrix is "large" ("small") the larger (smaller) its singular values

are.

3.1.1 Kalman Filter as a dynamical system

With the intuition developed in the previous section, it is clear that the KF is

a (synthetic) dynamical system, Υ̂, that evolves in time and whose inputs are the
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CHAPTER 3. KALMAN FILTER

measured (sampled) inputs and outputs of the physical system. In this section

we will talk about the characteristics of Υ̂ and how they are related to those of

the physical system model Υ.

Starting from Υ: [𝑨, 𝑩, 𝑪 , 0] (eq. 3.1) and the assumptions done about pro-

cess and sensor noises (eq. 3.2), Υ̂ is a closed loop system with the following

dynamical model:

Υ̂:

{
�̂�+𝑘+1

= (I − 𝑳𝑘𝑪)𝑨�̂�+𝑘 + (I − 𝑳𝑘𝑪)𝑩𝒖𝑘 + 𝑳𝑘𝒚𝑘

�̂�𝑘 = 𝑪�̂�+𝑘
(3.3)

considering 𝑫𝑘 = 0 for both Υ̂ and Υ, for simplicity.

In order to design a suitable KF it is necessary to verify that it has the

following features. The filter has to be simultaneously time invariant, or at least

asymptotically time invariant, and asymptotically stable [1].

The time invariance, or asymptotic time invariance, arises when for any

nonnegative symmetric initial condition𝚺�̃� ,0, one has a constant error covariance

as time tends to infinity, i.e.

lim
𝑘→∞

𝚺�̃� ,𝑘 = �̄� (3.4)

and �̄� is the unique symmetric positive semidefinite solution of the discrete

algebraic Riccati equation [1]. With �̄� a constant, the Kalman gain 𝑳𝑘 tends to a

constant value �̄�.

The asymptotic stability of Υ̂ is guaranteed if all its eigenvalues are inside

the unitary circle. That is,

|𝜎(𝑨 − �̄�𝑪𝑨)| < 1 (3.5)

The Υ̂ is provided with these two key features if the system Υ (eq. 3.1) is both

detectable and stabilizable [1].

Observing the dynamics of �̃�𝑘 :

�̃�𝑘+1 = (I − 𝑳𝑘𝑪)𝑨�̃�𝑘 + (I − 𝑳𝑘𝑪)𝒘𝑘 − 𝑳𝑘𝒗𝑘 (3.6)

it converges asymptotically to zero, what is desired from an asymptotic observer,

if the asymptotic stability of Υ̂ is met.
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3.2. OFFSET-FREE LINEAR KALMAN FILTER

3.2 Offset-free Linear Kalman filter

The performance of the KF is related to the model accuracy. The KF approach

takes into account model mismatches with the inclusion of the process noise 𝒘𝑘 .

However, in practice, modeling error and unmeasured disturbances can lead to

steady-state offset, overall when the assumptions 3.2 are not met, which occurs

in most cases.

An approach to eliminating steady-state offset involves augmenting the pro-

cess model to include a constant step disturbance [16]. The knowledge of the

physical system might suggest the presence of such unmeasured disturbance,

but the inclusion of such an unmeasured disturbance in the physical system

model could also be a convenient way to account for a model-plant mismatch.

Let’s think of a new plant model, Υ′, in which the model mismatches are

unknown additive quantities affecting the nominal values of the dynamical

model matrices 𝑨 and 𝑩.

Υ
′:

{
𝒙𝑘+1 = (𝑨 + 𝚫𝑨)𝒙𝑘 + (𝑩 + 𝚫𝑩)𝒖𝑘 +𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘

(3.7)

Now, let’s think of designing a KF starting from such a model with unknown

quantities 𝚫𝑨 and 𝚫𝑩. The error dynamics would be the one modeled in the

following way:

�̃�𝑘+1 = (I − 𝑳𝑘𝑪)𝑨�̃�𝑘 + (I − 𝑳𝑘𝑪)𝒘𝑘 − 𝑳𝑘𝒗𝑘+

+ (I − 𝑳𝑘𝑪)𝚫𝑨𝒙𝑘 + (I − 𝑳𝑘𝑪)𝚫𝑩𝒖𝑘 (3.8)

it is appreciated that the asymptotic stability of �̃�𝑘 is not guaranteed, due to the

addition of two term which are function of 𝒙𝑘 and 𝒖𝑘 . In steady state, when

the input, the state and the Kalman gain become constants, 𝒖∞, 𝒙∞ and 𝑳∞

respectively, there will exist a nonzero offset given by,

𝑎 = (I − 𝑳∞𝑪)𝚫𝑨𝒙∞ + (I − 𝑳∞𝑪)𝚫𝑩𝒖∞ (3.9)

which will be equal to zero only if 𝒙∞ ∈ Ker((I − 𝑳∞𝑪)𝚫𝑨) and 𝒖∞ ∈ Ker((I −

𝑳∞𝑪)𝚫𝑩), a very special and almost improbable case.

The appearance of this steady-state offset motivated us to use one of the

approaches commonly used in Model Predictive Control to design offset-free
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controllers, as in [16], [12] and [15]. In order to remove steady-state error, this

approach contemplates the design of a model, starting from the original system,

which includes a replicate of the constant nonzero disturbance model, resulting

in a new model with augmented state. The augmentation of Υ (eq. 3.1) results

in the following system model:

Υaug:





[
𝒙𝑘+1

𝒅𝑘+1

]

=

[
𝑨 𝑩𝑑

0𝑛𝑑×𝑛 I𝑛𝑑×𝑛𝑑

] [
𝒙𝑘

𝒅𝑘

]

+

[
𝑩

0𝑛𝑑×𝑝

]

𝒖𝑘 +𝒘a,𝑘

𝒚𝑘 =

[
𝑪 𝑪𝑑

] [𝒙𝑘

𝒅𝑘

]

+ 𝒗a,𝑘

(3.10)

with 𝒅𝑘 ∈ ℜ𝑛𝑑 , 𝑩𝑑 ∈ ℜ𝑛×𝑛𝑑 and 𝑪𝑑 ∈ ℜ𝑚×𝑛𝑑 . The process and sensor noises

𝒘a,𝑘 ∈ ℜ𝑛+𝑛𝑑 and 𝒗a,𝑘 ∈ ℜ𝑝 meet the conditions set out in 3.2 with covariance

matrices 𝑸a,𝑤 ∈ ℜ(𝑛+𝑛𝑑)×(𝑛+𝑛𝑑) symmetric positive semidefinite and 𝑹a,𝑣 ∈ ℜ𝑝×𝑝

symmetric positive definite, respectively. 𝑩𝑑 and 𝑪𝑑 determine the effect of the

disturbance on the states and the output of the system.

In a more general way, with a state variable 𝒛𝑘 =

[
𝒙𝑘

𝒅𝑘

]

, Υaug can be written

as follows:

Υaug:

{
𝒛𝑘+1 = 𝑨a𝒛𝑘 + 𝑩a𝒖𝑘 +𝒘a,𝑘

𝒚𝑘 = 𝑪a𝒛𝑘 + 𝒗𝑘

(3.11)

Since 𝒅𝑘 is assumed to remain constant, it is inherently not asymptotically

stable. Hence, this portion of the augmented state needs to be necessarily

observable.In other words, if (𝑨a, 𝑩a) is not fully observable, it has to be at least

detectable, with non observable states different from 𝒅𝑘 . Otherwise, the design

of an asymptotic state observer is meaningless. Authors in [15] present the main

results regarding the detectability of augmented system models as Υaug:

1. The pair (𝑨a, 𝑩a) (eq. 3.11) is detectable (observable) if and only if the pair
(𝑨, 𝑪) (eq 3.1) is detectable (observable) and

rank
[
(I − 𝑨) −𝑩𝑑

𝑪 𝑪𝑑

]
= 𝑛 + 𝑛𝑑 (3.12)

2. There exist matrices (𝑩𝑑 , 𝑪𝑑) such that condition 3.12 holds if and only
if the number of outputs is greater than or equal to the number state
disturbances (𝑛𝑑 ≤ 𝑝).

Referring to Υaug, 𝒛𝑘 can be estimated from 𝒚𝑘 by using a KF designed for
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Υaug, as it was explained in section 3.1. Thus, 𝒙𝑘 and 𝒅𝑘 are estimated as follows,

�̂�+𝑘+1
=

[
�̂�+𝑘+1

�̂�
+

𝑘+1

]

= (I − 𝑳a,𝑘𝑪a)𝑨a�̂�
+
𝑘 + (I − 𝑳a,𝑘𝑪a)𝑩a𝒖𝑘 + 𝑳a,𝑘𝒚𝑘 (3.13)

We remind that the asymtoptic that asymptotic stability of the Υaug is ensured

if the eigenvalues of the matrix (I − 𝑳a,𝑘𝑪a)𝑨a are all stable. Stability of the

augmented system, guarantees asymptotic stability of the estimation error �̃�𝑘 ,

as it can be noticed

�̃�𝑘+1 = (I − 𝑳a,𝑘𝑪a)𝑨a�̃�𝑘 + (I − 𝑳a,𝑘𝑪a)𝒘a,𝑘 − 𝑳a,𝑘𝒗a,𝑘 (3.14)
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4
Kalman filter and the Heat Transfer

Finite Element Model

4.1 Aluminum bar - Temperature observer simulation

The goal of the following simulations is to implement and analyze the per-

formance of the Linear Kalman filter, both in the classic and in the augmented

state form, estimating the temperatures along a synthetic aluminum bar. More-

over, we aim to use the less amount of temperature "sensors" (readout points) as

possible.

In the simulation environment, the plant is the continuous time 1-D heat

transfer finite element model, with 𝑁 nodes and 𝐸 finite elements. The state

space representation of this system is:

ΥB :

{
𝜽¤ (𝑡) = 𝚽𝜽(𝑡) + 𝚪𝒖

𝑻(𝑡) = 𝚿𝜽(𝑡)
(4.1)

with

𝚽 = −(𝑐𝜌𝑫B)
−1(𝜆𝑯B + 𝜅𝑲B), 𝚪 = (𝑐𝜌𝑫B)

−1
[
𝒒in 𝜆𝒒conv

]
,

𝚿 = I𝑁×𝑁 , 𝒖 =

[
𝑄in 𝑇amb

]

where 𝚽 ∈ ℜ𝑁×𝑁 and 𝚪 ∈ ℜ𝑁×2. The values of 𝑐, 𝜌 and 𝜅 are those shown in

Table 4.2. While 𝜆=7.71 W/m2-K (between aluminum and air), this is the value
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reported by NewTwen experts after calibrating the motor model parameters.

Regarding the matrices 𝑫B, 𝑲B, 𝑯B and the vector 𝒒conv, they are determined

as shown in eq. 2.18, using the bar geometrical characteristics listed in Table 4.1.

The model input 𝒖 ∈ ℜ2 is a vector than comprises a manipulated and a

non-manipulated component. The former is the amount of heat provided to the

bar on its leftmost edge, 𝑄in, and the latter is 𝑇amb, related to the heat exchanges

with the ambient. Since 𝑄in acts exclusively in the first node of the FE mesh

(𝑥=0cm), 𝑞in ∈ ℜ𝑁 in eq. 4.1 is a vector with zeros in all its entries but the first

one. Then, when it is desired to add new manipulated heat sources acting in

node 𝑗, it is only needed to create a vector of dimension N full of zeros with

only the 𝑗-th entry equal to one, and concatenate it horizontally with the matrix[
𝑞in 𝜆𝑞conv

]
.

Length, 𝐿 (m) Height, ℎ (m) Width, 𝑤 (m)

0.5 0.001 0.001

Table 4.1: Aluminum bar geometric characteristics

Density,
𝜌 (kg/m3)

Specific
heat capacity,
𝑐 (J/kg-K)

Thermal
conductivity,
𝜅 (W/m-K)

2700 900 210

Table 4.2: Aluminum bar properties [11]

4.1.1 Model validation

Since the 1-D heat transfer model has been developed for an ideal body and

there doesn’t exist a physical bar, the calibration of this model is meaningless.

However, we are using the experimental values of the aluminum properties,

listed Table 4.2 and it is important to notice that the bar in much longer than

thicker and then the 1-D heat transfer approximation is appropriate.

In what regards the model validation, in the absence of a real system to

compare with, it is still important to consider the convergence and stability of

the model solution. As it was mention is chapter 2, the finer the size of the

finite elements, the more the approximated solution approaches the true one.
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In principle, the smaller the elements, the better. Nevertheless, if the elements

dimensions are too small, the solution might become unstable due to numeric

dispersion.

To determine the appropriate spacial discretization step 𝑑𝑥, we obtained the

solution of the model ΥB (eq. 4.1) for different 𝑑𝑥 using Simulink and setting

𝑄in= 500mW and 𝑇amb= 25oC. As can be seen in Figure 4.1, in steady state, as 𝑑𝑥

decreases the temperatures profile (mathematically) tends asymptotically to the

actual true solution which is the limit when 𝑑𝑥 → 0.

Now, having a look at the temperature time evolution at 𝑥= 10 cm, it can be

seen in Figure 4.2 that in the first 20 s the curves corresponding to 𝑑𝑥= 10 cm

and 𝑑𝑥= 5 cm goes below the ambient temperature (amplification in Figure 4.2b).

This behavior is not proper of this phenomena, hence these 𝑑𝑥’s don’t guarantee

convergence of the solution to the actual one. It is observed, as before, that

the smaller 𝑑𝑥 the temperature trajectories approach asymptotically the unique

solution. If we would have decreased 𝑑𝑥 beyond 0.1 cm, the solution would not

improve considerably. In view of this results, a good trade-off between solution

convergence and simulation time is met when 𝑑𝑥= 0.5 cm, which is the spacial

discretization step used in all the simulations performed in this work.

Figure 4.1: Ground truth temperatures for different 𝑑𝑥 at steady state (after 500
s). Tamb = 25oC, 𝑄in= 500mW
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(a) (b)

Figure 4.2: Bar model temperature trajectories at 𝑥 = 10 cm for different 𝑑𝑥

4.1.2 Kalman filter implementation

As we explained in chapter 3, section 3.1.1, the success of the KF lies in the

fidelity of the plant model and in its stabilizability and detectability. The bar

model presented in eq. 4.1 is stabilizable. The system as it is, is completely

observable, because the output 𝑻(𝑡) is equal to the states vector 𝜽(𝑡). However,

we want to study the observability in the worse case, when there is only one

temperature measurement available. That is, when the matrix 𝚽 is a row vector

of 𝑁 entries full of zero except for the entry that correspond to the node where

the temperature wants to be known. After doing so the resulting system is still

detectable. Hence, it has sense to apply the KF approach for our observer design

having at least one temperature measurement.

Classic Linear Kalman Filter

The linear KF requires a discrete time linear model of the plant, access to the

plant inputs and to at least one temperature measurement. The system model,

ΥKF, used to develop the linear KF was constructed from ΥB modifying the

matrix 𝚽 to get the temperatures readout only from the 𝑚 nodes of interest and

not of all nodes along the bar. Then, 𝚽 ∈ ℜ𝑚×𝑁 . With the ΥKF available, it was

discretized using the Exact discretization method (see Table 2.1) with sampling

time of 100ms, obtaining Υdt
KF

= {𝑨, 𝑩, 𝑪}

Finally, the Linear KF filter was implemented in Matlab & Simulink, it was

programmed following the algorithm detailed in Algorithm 1.
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Augmented state Linear Kalman Filter

In view of possible input uncertainties, or disruptions on a defined node of

an external input with unknown magnitude, it was decided to implement an

augmented estate Linear KF. To do so, the discrete time modelΥdt
KF

was modified

adding as much states as inputs we consider to be uncertain, as explained in

section 3.2. The augmented state discrete time system is in turn:

Υ
dt
aug:





[
𝜽𝑘+1

𝒅𝑘+1

]

=

[
𝑨 𝑩𝑑

0𝑛𝑑×𝑁 I𝑛𝑑×𝑛𝑑

] [
𝜽𝑘

𝒅𝑘

]

+

[
𝑩

0𝑛𝑑×𝑝

]

𝒖𝑘

𝒚𝑘 =

[
𝑪 0𝑚×𝑛𝑑

] [
𝜽𝑘

𝒅𝑘

]

notice that in this model, in comparison with the one in eq. 3.10, 𝑪𝑑 = 0𝑚×𝑛𝑑 . This

was done since any disturbance, from those considered in this work, acts directly

on the output. The augmented KF was implemented in Matlab & Simulink, it

was programmed following the algorithm detailed in Algorithm 1 using the

model Υdt
aug.

In Figure 4.3 it is shown the Simulink scheme developed and used for all

the simulations concerning the aluminum bar temperature observer. Unless it

is specified, the plant inputs are 𝑄in= 500mW and 𝑇amb= 25𝑜C.
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Figure 4.3: Simulink scheme developed for aluminum bar temperature observer
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Figure 4.4: Classic KF implementation result. Actual and estimated temper-
atures along the bar at steady state. Red dot marks the temperature readout
location

4.1.3 Classic Kalman Filter - Initial condition mismatch

In this section we will discuss the performance of the Linear Kalman filter

to overcome initial condition mismatches. In this opportunity there is only one

sensor available and it is positioned in the rightmost edge of the bar (𝑥 = 50 cm).

To show the capability of the Classic Linear KF to overcome initial conditions

discrepancies, for the plant it was set 𝒙(𝑡 = 0) = 𝑇amb=25 oC. On the other hand,

for the KF, �̂�(𝑡 = 0) = 𝑇amb + 20oC.

As it can be seen in Figure 4.4, lack of knowledge of the plant initial con-

ditions doesn’t prevent the KF from providing correct temperature estimation

for all points along the bar at steady state. Although, as can be appreciated in

Figure 4.5, where 𝑞 are the entries of 𝑸𝑤 main diagonal, the time required for

the estimation error to reach steady state increases as the uncertainty about the

model increases, i.e. as 𝑞 is bigger. Then, the higher the confidence in the model,

the better the estimation of the temperature trajectories, obtaining not only good

steady state results. This results were obtained considering zero measurement

noise, therefore the diagonal entries (𝑟) of 𝑹𝑣 are all close to zero (𝑟 = 1 × 10−9)
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Figure 4.5: Classic KF implementation result. Temperature trajectories at 𝑥 =
25cm for different 𝑸𝑤 . Sensor placed at 𝑥 = 50cm
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4.1.4 Input uncertainties

Up to now the Kalman Filter has been feed with exactly the same plant in-

puts. This ideal situation is never met in reality, since KF inputs are quantities

susceptible to uncertainties. For instance, while measuring the ambient temper-

ature, it is possible that the temperature sensor readout are different from the

one experience by the plant, because the sensor and the system might be far

apart, the sensor could have some defect, or any other reason. It is also possible

existence of another internal or external heat source not considered in the model

formulation, like proximity of the plant to a functioning machine, sunbeams

warming known parts of the plant, etc. These are uncontrollable inputs that

may affect the system state and hence its state estimation. In order to built a

KF robust against this kind inputs uncertainties, it was implemented the state

augmentation explained in section 3.2.

In order to implement this approach, it is important to identify where the

uncertainties come from and how they modify the system state to choose the

right 𝑩𝑑. To this end, it will be useful to write the input matrix 𝑩 in a more

convenient way. Each column of this matrix is associated with one input, then 𝑩

could be written as 𝑩 =

[
𝒃in 𝒃conv

]
, first column related to 𝑄in and the second

one to 𝑇amb.

Uncertainties in 𝑄in

We want to model disturbances acting on 𝑄in, then 𝑩𝑑 = 𝒃in is the most

appropriate choice.

As for the previous tests, the KF input was 500mW but the actual plant in-

put is now equal 1 W, 100% different. In Figure 4.6 it is shown the actual and

estimated temperatures along the bar at steady state. The temperatures estima-

tions were determined from measurements done placing a sensor in position

𝑥= 25cm, the red bold dot in the graph. It is clear that the classic KF is not able

to overcome this important input discrepancy, with estimation errors reaching

almost 30 % before (see Figure 4.6a). The augmented state KF does a much better

job with estimation errors practically imperceptible. This is not surprising since

the classic KF doesn’t have the information the augmented one has by means 𝑩𝑑

about how the unknown input affects the state.

At the same time, the augmented KF is able to estimate correctly the amount

of heat (Δ𝑄in) provided to the bar that was missing in the KF input, as it is
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evidenced in Figure 4.7. In this figure it is also shown that the time to reach

steady state decreases as long as the confidence in the model increases, it is as

the diagonal entries of 𝑸𝑤 decrease.

(a) Temperature estimation along the bar (b) Estimation error along the bar

Figure 4.6: KFs performance comparison at steady state for 𝑄in uncertain. Plant
input: 1W, KF input: 0.5W. Temperature readout location marked as a red dot

(a) Uncertainty estimation (b) Estimation error

Figure 4.7: Estimation ofΔ𝑄in for different𝑸𝑤 . Temperature readout @ 𝑥= 25cm

It is important to notice that in addition to the variations on 𝑸𝑤 , the location

of the sensors modifies the time required to reach zero estimation error. In

Figure 4.8 it is presented the temperature trajectories at 𝑥= 0 cm for different 𝑸𝑤

when the only available sensor is placed in two different points, 𝑥= 50 cm and 𝑥=

25 cm. For a 𝑸𝑤 = I (worse scenario shown), a sensor located in the mid position

of the bar allows us to reach steady state close to 100 s, while a sensor positioned

in the rightmost edge of the bar increases that time to 300 s. If we look at
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Figure 4.6a, the rightmost node that initially was at ambient temperatures as all

the rest, doesn’t modify its temperature considerably at steady state compared

with its initial condition. Hence, the amount of information that a sensor located

there carries will be less than a sensor positioned closer to the heat source.

(a) Temperature readout at 𝑥 = 50cm (b) Temperature readout at 𝑥 = 25cm

Figure 4.8: Temperature trajectories at 𝑥 = 5 mm for different 𝑸𝑤 and for two

different location of temperature readout. Plant 𝑞in= 1W, KF �̂�in= 500 mW

Uncertainties in 𝑇amb

We would like to include possible uncertainties on Tamb then 𝑩𝑑 = 𝒃conv. As

for the previous tests, in the following simulation results, the KF Tamb is 25oC

but the actual plant Tamb is equal to 50 oC, one more time 100% different.

In Figure 4.9 is presented the temperature profile along the bar at steady

state, once placed a sensor in position 𝑥= 25cm. It can be noticed that the classic

KF is not able to overcome important discrepancies in the ambient temperatures,

while the augmented KF estimation overlaps the plant output.

As happened before, the augmented KF is able to estimate correctly, with

negligible estimation error, the value of the temperature difference Δ𝑇amb be-

tween the bar ambient temperature and the one provided to the KF, as it is

depicted in Figure 4.10. In this figure it is also shown that the time to reach

steady state decreases as long as the confidence in the model increases. A good

feature that this figure is representing is the capability of the observer to provide

estimation errors smaller than 10 % in less than 100 s, which is indeed a nice

property considering that the dynamics of the temperature is not so fast.
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(a) Temperature estimation along the bar (b) Estimation error

Figure 4.9: KFs performance comparison at steady state for Tamb uncertain.

Plant Tamb: 50oC, KF �̂�amb: 25𝑜C. Sensor @ 𝑥= 25cm, red dot

(a) Uncertainty estimation (b) Estimation error

Figure 4.10: Estimation of the disturbance state associated with Tamb for different
𝑸𝑤 . Temperature readout @ 𝑥= 25cm
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Uncertainties in 𝑄in and 𝑇amb

In order to prevent both 𝑄in and 𝑇amb disruptions, 𝑩𝑑 = 𝑩. In these simula-

tions the plant inputs were 𝑄in= 1W and 𝑇amb= 50𝑜C while the KF was feed with

𝑄in= 1W and 𝑇amb= 50𝑜C.

We have seen before that with one input uncertain and one sensor, the

augmented KF has been able to estimate perfectly the temperatures along the

time (after 100 s) for all nodes along the bar. In this section we are including

discrepancies between the plant and the KF for all two inputs. According to what

was explained in section 3.2, it is needed at least as many sensors as disturbances

to estimate correctly all the states (including the disturbances).

To study preliminary how the number of sensor and their locations modify

the augmented KF performance, it was obtained the augmented state estima-

tions using one sensor located each time at 𝑥 = 12.5, 25, 37.5 and 50 cm. The

results of these simulations are shown in Figure 4.11, where is it noticed that

the smaller estimation error (> 5%) is obtained when the sensor is at 𝑥= 25cm.

Consequently, it was possible to find good enough temperatures estimation even

with only one sensor placed in a coordinate.

Later, adding a 2nd sensor, the situation improves unquestionably obtaining

a practically zero estimation error at steady state. This last curve (in yellow) is

showed overlapping the true values temperature in Figure 4.11a. The colored

dots mark the sensor locations and the resulting estimation is drawn with the

same dot color. Note that the sensor at 𝑥= 12.5cm was used to produce the

estimation in orange and also the one in yellow, for that reason its edge is orange

and its filling yellow.

If the requirement in the number of sensors is not met, the disturbance

states (intrinsically non asymptotically stable) become unobservable and the

estimation provided by the observer is not unique. As we saw, changing the

sensor location the estimation changes.

The estimation of Δ𝑄in and Δ𝑇amb with their respective estimation error are

plotted in Figure 4.12. None of the estimations reached the actual value except

for the one with two sensor and all the estimations were above 20 %.
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(a) Temperature along the bar (b) Temperature along the bar (2 sensors)

(c) Estimation error

Figure 4.11: KFs performance comparison at steady state for Tamb and 𝑄in

uncertain with different temperature readout locations. Plant inputs Tamb =

50oC, 𝑄in = 1W KF inputs: �̂�amb: 25𝑜C, �̂�in = 500mW.
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(a) Δ𝑄in estimation (b) Δ𝑄in estimation error

(c) ΔTamb estimation (d) ΔTamb estimation error

Figure 4.12: Estimation of disturbances associated with𝑄in and Tamb for different
temperature readout locations
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Known and unknown external inputs

We have discuss up to this point the capability of the augmented state KF to

overcome uncertainties in 𝑄in and Tamb. In this apart we will include both

uncertainties sources in the state augmentation as well as a external heat source

acting on a known node but of unknown magnitude.

For the following simulation results we consider for the KF: 𝑄in= 500mW

and Tamb= 25oC; for the bar 𝑄in= 1W and Tamb= 50oC. It is considered that the

bar experiences an external heat of 500mW at 𝑥=37.5cm (node 75). In the bar

model the inclusion of a 3rd input is done adding a 3rd column (𝒃ext) in the

input matrix 𝑩 as explained at the beginning of this chapter.

Once again, in this section we study the impact of the number of sensors in

the quality of the estimation and as it can be appretiated in Figure 4.13, the more

sensors the more accurate the estimation. Notice in Figure 4.13a that with one

sensor the estimator doesn’t not even notice the presence of the external input,

it does a not that bad job estimating the temperatures close to the node where

𝑄in is present but the estimation error considerably increases as the distance to

the sensor increases.

On the other hand, the inclusion of a 2nd sensor improves the observer

performance being able to emulate the curve peak center ar 𝑥= 37.5cm an doing

a really good estimation (>2 %) from 𝑥= 0 cm to 𝑥= 25cm where the estimation

error is greater that 2 % but smaller than 10 %.

(a) Temperature estimation along the bar (b) Estimation error

Figure 4.13: Augmented KF performance at steady state for Tamb and 𝑄in uncer-
tain and an external heat source of unknown magnitude, with different number
of temperature readouts. Plant inputs Tamb = 50oC, 𝑄in = 1W, 𝑄ukn = 500mW.

KF inputs: �̂�amb: 25𝑜C, �̂�in = 500mW.
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(a) Δ𝑄in estimation (b) Δ𝑄in estimation error

(c) ΔTamb estimation (d) ΔTamb estimation error

(e) Δ𝑄ukn estimation (f) Δ𝑄ukn estimation error

Figure 4.14: Estimation of disturbance states associated with 𝑄in, Tamb and the
unknown magnitude of external heat source for different number of temperature
readouts

Apparently, the addition of a 3rd sensor solves all the problems and provides

zero estimation error. This is not completely true. The last simulations are

intended to show that the location of the sensors is very important. Maintaining
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the input conditions, the three sensors originally located at 𝑥= 10, 12.5 and 15

cm were moved to 𝑥= 40, 42.5 and 45cm. The results are shown in Figure 4.15a.

The second sensor set is not able to provide enough information about the head

distribution along the bar, they reproduce perfectly the temperatures dynamics

of all nodes after 𝑥= 37.5 cm but for nodes at 𝑥 < 37.5 cm the estimation get worse

since those sensors are not sensing the influence of the leftmost heat source.

On the other side, those sensors between the two heat sources are carrying

enough information allowing the KF to estimate correctly the temperatures,

Δ𝑄in, Δ𝑇amb and 𝑄ukn, the magnitude of the heat source acting at 𝑥= 37.5 cm

(Figure 4.16).

(a) Temperature estimation along the bar (b) Estimation error

Figure 4.15: Augmented KF performance at steady state for Tamb and 𝑄in un-
certain and an external heat source of unknown magnitude. Fixed number of
temperature readouts but different locations. Plant inputs Tamb = 50oC, 𝑄in =

1W, 𝑄ukn = 500mW. KF inputs: �̂�amb: 25𝑜C, �̂�in = 500mW.
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(a) Δ𝑄in estimation (b) Δ𝑄in estimation error

(c) ΔTamb estimation (d) ΔTamb estimation error

(e) Δ𝑄ukn estimation (f) Δ𝑄ukn estimation error

Figure 4.16: Estimation of disturbance states associated with 𝑄in, Tamb and the
unknown magnitude of external heat source for Fixed number of temperature
readouts but different locations
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4.2 PMS Motor - Temperature observer simulation

The goal of the following simulations is to implement and analyse the perfor-

mance of the Linear Kalman filter, both classic and augmented state, estimating

the temperature at eight points of interest of the PMS motor studied previ-

ously by the company NewTwen. As for the bar case, using the less amount of

temperature sensors as possible.

In this simulations the plant is the reduced order continuous time 3-D heat

transfer finite element model built for the motor in Figure 2.3. The model before

reduction counts with 𝑁 𝑓 = 21046 nodes and a representation in state space as

follows:

ΥM =

{
𝜽¤ (𝑡) = 𝚽𝜽(𝑡) + 𝚪𝒖

𝑻(𝑡) = 𝚿𝜽(𝑡)
(4.2)

with

𝚽 = −(𝑫M)−1(𝑯M + 𝑲M), 𝚪 = (𝑫M)−1
[
𝒒in 𝜆𝒒conv

]
,

𝚿 = I𝑁×𝑁 , 𝒖 =

[
𝛼𝐼2 𝑇amb

]

where 𝜽(𝑡) ∈ ℜ𝑁 𝑓 , the matrices 𝑫M, 𝑲M, 𝑯M and the vectors 𝒒in, 𝒒conv are

obtained as in eq. 2.15.

Due to the important amount of states, this system representation becomes

non tractable as the temperatures are to be estimated node wise. In addition,

the model calibration and validation would be an endless process. For that

reason, as mentioned in section 2.4, the developers of the model used MOR

techniques to obtain a state 𝒙(𝑡) ∈ ℜ𝑁r with 𝑁r«𝑁 𝑓 related with the full order

one as 𝜽(𝑡) = 𝚲𝒙(𝑡), where the columns of 𝚲 ∈ ℜ𝑁 𝑓×𝑁r represent the basis for

the reduced subspace [19].

After the MOR, the number of states was reduced to 𝑁r= 17 and the repre-

sentation of the reduced order model in state space is:

Υr :

{
𝒙¤ (𝑡) = 𝚽r𝒙(𝑡) + 𝚪r𝒖

𝑻(𝑡) = 𝚿r𝒙(𝑡)
(4.3)
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with

𝚽r = 𝚲
T
𝚽𝚲, 𝚪r = 𝚲

T
𝚪,

𝚿r = 𝚿𝚲, 𝒖 =

[
𝜆𝐼2 𝑇amb

]

Comparing the systems ΥM and Υr, both have as output the temperature of

all the nodes in the FE mesh, 𝑻(𝑡). Nonetheless, the states of ΥM are the nodal

temperatures itself while those of Υr don’t have a clear physical meaning.

4.2.1 Model validation

Once obtained the reduced order model, which is the one used for the

simulations developed in this work, it is required to calibrate and validate it

in order to obtain the most appropriate parameters set that makes the model

fit the real system behavior. The parameters are those related to the materials

properties (𝑐, 𝜆, 𝜅).

As far as the motor is concerned, the calibration and validation of its model

was performed in advanced by the model developers. The resulting material

parameters are presented in Table 4.3. The determined heat transfer coefficient,

between aluminum (rotor) and air, is 𝜆 = 7.71 W/m2-K.

Domain Material Density,
𝜌 (kg/m3)

Specific
heat capacity,
𝑐 (J/kg-K)

Thermal
conductivity,
𝜅 (W/m-K)

Air gap Air 1.204 1068 0.009
Rotor Aluminum 2700 1349 121.4
Stator Iron 7870 220 38.29
Winding Copper 8940 470 173.6
PCB Nylon 1150 1903 0.132

Table 4.3: Motor model parameters after calibration

4.2.2 Kalman filter implementation

We choose four points in the motor structure whose temperatures are used as

ground truth to compare the KFs estimations with. The nodes are: 8624, (frontal

flange), 100 (shaft), 3944 (rotor external surface) and 15520 (winding interior). At

the same time, a fifth node (6587) was chosen to act as the place where a fictitious
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thermocouple is, the location of this node coincides with the place where thermal

sensors are usually placed in commercial motors. The temperature readout from

the sensor node is the one used by the KFs to determine its estimates. Those

points are highlighted in red in Figure 4.17.

(a) Thermocouple (b) Frontal flange (c) Rotor external surface

(d) Shaft (e) Winding interior

Figure 4.17: Ground truth thermal points in the motor

To obtain as output, 𝒚(𝑡), the temperatures at the nodes of interest and not at

all nodes of the FE mesh, the matrix 𝚿r in system Υr needs to be modified. The

𝑖-th row of 𝚲 is responsible for the transformation of 𝒙(𝑡) into the temperature

at 𝑖-th node in the motor mesh. Then, to obtain the temperatures at the 𝑚 nodes

of interest, it is only needed to gather the corresponding 𝑚 rows of 𝚲 in a new

matrix 𝑽 ∈ ℜ𝑚×𝑁r and multiply it by the state 𝒙(𝑡), i.e. 𝒚(𝑡) = 𝑽𝒙(𝑡). Hence the

continuous time system used as physical system is:

Υr :

{
𝒙¤ (𝑡) = 𝚽r𝒙(𝑡) + 𝚪r𝒖

𝒚(𝑡) = 𝑽𝒙(𝑡)
(4.4)

with

𝚽r = 𝚲
T
𝚽𝚲 𝚪r = 𝚲

T
𝚪 𝒖 =

[
𝜆𝐼2 𝑇amb

]
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Classic Linear Kalman Filter

The linear KF requires a discrete time linear model of the plant, access to the

plant inputs and to temperature measurements. Consequently, the system Υr

(of eq. 4.4) was discretized using the Exact discretization method (see Table 2.1)

with sampling time of 100ms, obtaining Υdt
r = {𝑨, 𝑩, 𝑪}.

The success of the KF lies in the fidelity of the plant model and in its stabiliz-

ability and detectability. All the modes of the system are such that their modulus

are inside the unit circle, hence in case of non observability and/or controllabil-

ity, the non observable and/or non controllable subsystems are asymptotically

stable. So, no matter the number of sensors or their locations, the system is

detectable and stabilizable.

In the following simulations we will use primarily the thermocouple node

as temperature measurement point but, when it is required the addition of a

second sensor, the node in the frontal flange will be used as well. The sensor

choice is done gathering in𝑽 the rows of 𝚲 that correspond to the node we want

to measure on.

Figure 4.18 shows the singular values (in logarithmic scale) of the observabil-

ity matrix of Υdt
r obtained using each of the just mentioned sensors separately

and both of them together. It is appreciated that with one sensor, regardless its

position, the singular values are practically the same and most of them consider-

ably smaller than 1. In fact, there is only one greater than one. With two sensors,

the singular values increase some orders of magnitude, but this increment is not

significant since there are only two > 1, all the rest are still much smaller than

one. In principle, the sensor location should be reconsidered to reach higher

observability degree. Nevertheless, we will emulate the case in which the sensor

location is given by the manufacturer, as is the case of the thermocouple, and

we will add a second sensor in an accessible position.

Finally, the linear KF filter was implemented in Matlab & Simulink and

programmed following the algorithm detailed in Algorithm 1.

Augmented state linear Kalman Filter

To account for possible input uncertainties, it was decided to implement an

augmented state linear KF. To do so, the discrete time model Υdt
r was modified

adding as much states as inputs we consider to be uncertain, as explained in

section 3.2. The augmented state discrete time system is in turn:
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Figure 4.18: Singular values of Υdt
r observability matrix for different sensors

choice

Υ
dt
aug:





[
𝒙𝑘+1

𝒅𝑘+1

]

=

[
𝑨 𝑩𝑑

0𝑛𝑑×𝑁r I𝑛𝑑×𝑛𝑑

] [
𝒙𝑘

𝒅𝑘

]

+

[
𝑩

0𝑛𝑑×𝑝

]

𝒖𝑘

𝒚𝑘 =

[
𝑽 0𝑚×𝑛𝑑

] [𝒙𝑘

𝒅𝑘

]

with 𝑛𝑑 being the number of disturbances. Notice that in this model, in compar-

ison with the one in eq. 3.10, 𝑪𝑑 = 0𝑚×𝑛𝑑 . This was done since any disturbance,

from those considered in this work, acts directly on the output.

According to [15], the observability (detectability) of the augmented state

system is granted if the following conditions hold true: 1) Υdt
r is observable

(detectable), 2) the number of sensors is at least the number of disturbances and

3)

rank(𝑴) = rank

[
(I − 𝑨) −𝑩𝑑

𝑪 0𝑛𝑑×𝑛𝑑

]

= 𝑁r + 𝑛𝑑 (4.5)

Regarding 1), the detectability of Υdt
r is granted. In what respect the number

of sensors, we will consider at most two input disturbances so, with two sensors

available 2) holds. About 3), the lank of rank of that matrix is prevented if Υdt
r

is detectable and the columns of
[
𝑩𝑑 0𝑛𝑑×𝑛𝑑

]T

are linearly independent. The

latter, is always true for the two kind of disturbances studied in this work, since
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we start from the premise that the disturbances sources are completely known.

The augmented state linear KF filter was implemented in Matlab & Simulink

and programmed following the algorithm detailed in Algorithm 1 using the

system Υdt
aug.

In Figure 4.3 it is shown the Simulink scheme developed and used for all the

simulations concerning the motor temperature observer. Unless it is specified,

the motor inputs are 𝐼(𝑡)= 1 A and 𝑇amb= 24.75 𝑜C.
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Figure 4.19: Simulink scheme developed for PMS motor temperature observer
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4.2.3 Input uncertainties

As it was consider in the case of the bar, section 4.1.4, we will study the

capability of the classic and augmented state KFs overcoming input uncertainties

when the motor, a system more complex than the bar, is concern.

In this opportunity, we will let the plant and the KF inputs to be different.

First, we consider two separate cases, differences in the current (𝐼(𝑡)) and then

discrepancies in the ambient temperature (𝑇amb). Lastly, variations in both the

current and the ambient temperature are examined.

To implement the augmented state KF, it is important to identify where the

uncertainties come from and how they modify the system state to choose the

right 𝑩𝑑. As it was done for the bar, 𝑩 can be written as 𝑩 =

[
𝒃in 𝒃conv

]
, where

the first column is related to 𝐼(𝑡) and the second one to 𝑇amb.

Uncertainties in 𝐼(𝑡)

To overcome disturbances acting on 𝐼(𝑡), 𝑩𝑑 = 𝒃in is the right choice. The

difference between the motor current and the one provided to the KFs is 0.1 A (10

% of difference). In principle, with one sensor the detectability of the augmented

system is obtained and the augmented state KF should be able to prevail over

this discrepancy. However, when running the simulations considering only the

thermocouple readout, there is no difference between the classic and augmented

state KFs. For that reason it was decided to include the other available sensor,

the one in the frontal flange, and re-run the simulations. As it can be seen

in Figure 4.21, for both KFs, 10% discrepancy in the input current does not

impact considerably the temperature estimations, at least in the nodes whose

temperatures are taken as ground truth. Along the time, the estimation error

does not represent more than 0.1 % of the measurements.

Taking into consideration the estimation of the 𝑁r = 17 states of the reduced

order system, the augmented state KF reaches an important improvement com-

pare with the classic KF estimation, as can be appreciated in Figure 4.22 and

4.23. In most of the cases, the classic KF commits an error of 100 %, there are

some estimates with even higher errors, while the augmented state KF makes

considerably smaller errors.

It is important to point out that there is one state, 𝑥1, whose estimation is

done accurately by both classic and augmented state KFs. This well done esti-
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Figure 4.20: Singular values of matrix 𝑴 (eq. 4.5)for different sensors choices

mation is the one allowing the classic KF to estimate correctly the temperatures

at the interest points, because the weight associated with 𝑥1 (in the linear trans-

formation from the reduced space to the full order one) is at least 3 orders of

magnitude higher than all the others.

It is still an open question why with a sensor it was not possible to observe

differences between the classic and the augmented state KFs responses. The

answer is related to the observability of the augmented state system. With only

one sensor, the matrix 𝑴 (eq. 4.5) losses its rank, while the conjunction of two

sensors recovers the rank of 𝑴 . Referring to Figure 4.20, where the singular

values of 𝑴 are presented in logarithmic scale, it can be seen that regardless the

number of sensors or their location, the singular values are all the same but the

smaller one, whose value increases in five orders or magnitude when the second

sensor is included.
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(a) Rotor external surface (b) Rotor ext. surface - Rel. error

(c) Shaft (d) Shaft - Rel. error

(e) Winding interior (f) Winding interior - Rel. error

Figure 4.21: Temperatures estimation. KFs performance comparison for 𝐼(𝑡)

uncertain, 𝑸𝑤 = I. Plant 𝐼(𝑡): 1 A, KF 𝐼(𝑡): 1.1 A.
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Figure 4.22: 𝒙(𝑡) estimation. KFs performance comparison for 𝐼(𝑡) uncertain,

𝑸𝑤 = I. Plant 𝐼(𝑡): 1 A, KF 𝐼(𝑡): 1.1 A.
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Figure 4.23: 𝒙(𝑡) estimation error. KFs performance comparison for 𝐼(𝑡) uncer-

tain, 𝑸𝑤 = I. Plant 𝐼(𝑡): 1 A, KF 𝐼(𝑡): 1.1 A.
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Uncertainties in 𝑇amb

To overcome disturbances acting on𝑇amb, 𝑩𝑑 = 𝒃conv. The difference between

the motor ambient temperature and the one provided to the KFs is 5 oC (20 % of

difference). As it happened when analyzing uncertainties in 𝐼(𝑡), with only one

sensor there is no difference between both KFs estimations and this behavior is

associated with the lack of rank of the matrix 𝑴 . Then, two sensors were used

to estimate the temperatures in the winding, shaft and external surface of the

rotor.

In Figure 4.24, it can be noticed that both KFs estimations are good enough

with an estimation error not greater than 0.2 % in the nodes considered as

ground truth. However, the estimations of the augmented state KF have smaller

errors compare with the classic KF response. At the same time, it worth to notice

that the most affected part of the motor by changes in the ambient temperature

is the rotor external surface, since it is in direct contact to the air, and in fact, is

in this node where the classic KF makes the bigger errors.

Analyzing the estimates of 𝒙(𝑡), shown in Figures 4.25 and 4.25, the classic KF

makes errors at steady state between 0.1 % and 400 %. Nevertheless, this does not

prevent him from making errors of less than 0.5 % estimating temperatures. The

reason is the same explained in the previous case, when 𝐼(𝑡) was uncertain, both

KF estimate well 𝑥1, the state that matters most in the transformation between

the reduced order space and the temperatures space.

Uncertainties in 𝐼(𝑡) and 𝑇amb

In order to provide a complete analysis of the approach, it was intended to

study the case where the two uncertainties act simultaneously on both inputs.

However, with the two sensors considered up to now the matrix 𝑴 was rank

deficient. By adding a third sensor, the external node of the rotor, the matrix 𝑴

still did not recover its rank. To study this case, a detailed analysis on where to

place the sensors must be made.
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(a) Rotor external surface (b) Rotor ext. surface - Rel. error

(c) Shaft (d) Shaft - Rel. error

(e) Winding interior (f) Winding interior - Rel. error

Figure 4.24: Temperatures estimation. KFs performance comparison at steady

state for Tamb uncertain, 𝑸𝑤 = I. Plant Tamb: 29.7oC, KF �̂�amb: 24.7𝑜C.
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Figure 4.25: 𝒙(𝑡) estimation. KFs performance comparison at steady state for

Tamb uncertain, 𝑸𝑤 = I. Plant Tamb: 29.7oC, KF �̂�amb: 24.7𝑜C.
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Figure 4.26: 𝒙(𝑡) estimation error. KFs performance comparison at steady state

for Tamb uncertain, 𝑸𝑤 = I. Plant Tamb: 29.7oC, KF �̂�amb: 24.7𝑜C.
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5
Conclusions and Future Works

Having developed a detectable and stabilizable model of the solid bar and the

Permanent Magnet Synchronous Motor, the systems whose temperatures want

to be estimated, and knowing perfectly the plant inputs, the Linear Kalman

filter (KF) algorithm constitute a good solution as thermal observer with only

one sensor available, even if the initial conditions of the physical system are

unknown. Reaching almost negligible estimation errors at steady state. With a

right choice of the process noise covariance matrix and an appropriate location

of the temperature sensor, it is possible to obtain an accurate estimate of the

temperature trajectories even during part of the transient period, before the

steady state condition is reached.

Additional requirements to the observer were posed, it needed to provide

good estimates even with non perfect knowledge of the plant inputs and in

the presence of localized external heat sources of unknown values. To face

these possible inconveniences, it was implemented a state augmentation of the

original system to include a model of the unknown values inputs acting on the

system and develop a linear KF based on that new model, an augmented KF.

For the augmented state system, we assumed to know perfectly the nature of

uncertain inputs.

In the bar model case, the plant inputs were 100% higher than those of the

KFs. For this rather simple system, the use of only one sensor was enough to

reach negligible estimation errors in this test, when the augmented KF is used,

since the detectability of the augmented system is reached wherever the sensor

is located. Moreover, with a right choice of the process noise covariance matrix,
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and an appropriate location of the temperature sensor, it is possible to obtain

an accurate estimate of the temperature trajectories, even before the steady state

condition is reached. On the other hand, the classic KF was not capable of

overcoming this huge input mismatches.

For the motor reduced order model test, the imposed differences between the

plant and KFs input current was 10% (higher in the motor) while the ambient

temperature difference was of 20% (also higher in the motor). The results were

satisfactory implementing any of both the classic and augmented KF, with the

help of two sensors. Both KFs are good enough estimating the temperature

at one point in the motor shaft, another in the winding and a last one in the

rotor external surface, reporting estimation errors smaller than 1% on each

case. Even though the classic KF was not able to estimate correctly most of

the states of the reduced order model, task that the augmented KF was able

to perform satisfactorily, it was able to estimate with high accuracy the state

of greatest importance (which is the one with the highest weight in the linear

transformation from the reduced order space to the full order one).

Special attention has to be paid deciding both, the number of sensors and

their location. In the motor case, the detectability of the augmented system was

not granted with one sensor and one disturbance, because the considered sensor

positions limited the observation degree of the system states. On the other hand,

two sensors were sufficient to get smaller estimation errors implementing the

augmented KF, than those obtained with the classic KF.

Increasing the number of disturbances to two and three, the augmented state

KF was able to correctly estimate the temperatures for the bar case. With the

right number of sensors and correctly positioning them, the estimation error

was considerably smaller than 0.1%. In what regards the motor, the inclusion

of two simultaneous input disturbances was studied as well, but the results

were not satisfactory neither considering two nor three sensors, due to the not

convenient location of them. In this sense, it is recommended to continue this

study making systematic tests varying the number and positions of the sensors

in order to asses if the augmented KF is useful in this case.
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