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Abstract 

 

 

 

 

Tuning the pore architecture in 3-D polymeric scaffolds for tissue engineering 

is crucial for providing optimal frameworks for the seeded cells to organize into a 

functional tissue. 

Directional thermally induced phase separation (dTIPS) is a versatile and cost 

effective self assembly method for fabricating highly porous scaffolds of different 

materials, having fully tailorable porosity, and strongly anisotropic pore architectures.
 

Consequently, dTIPS scaffolds represent an ideal support for the growth of biological 

tissues that exhibit gradient morphology, such as bone, tendons, ligaments, nerves, 

liver, pancreas, and in particular blood vessels. The reconstruction of vascular grafts is 

in fact a prerequisite when the growth of thick tissues is needed. 

In the present work, we investigated the effect of the process parameters, such as 

cooling temperature (-30°C ≤ Tc ≤ +5°C), cooling time (2.5 h ≤ tc ≤ 32 h), and 

polymer concentration (1.5 to 6.5 wt%), on the pore microstructure of poly(L-lactic 

acid) (PLLA) 3-D scaffolds made by dTIPS. The scaffolds exhibited highly ordered 

dendritic domains, which are expected to act as guiding patterns for blood vessel 

sprouting. The same showed overall porosities up to 95%, and a degree of 

interconnectivity over 90%. By controlling the cooling regime, and polymer 

concentration we were able to tune the pore diameter up to 260 μm, while keeping the 

peculiar pore hierarchy unaltered. Specifically, pores of few tenths of microns were 

obtained at the largest tc, PLLA concentrations, and smallest Tc. On the other side, at 

the smallest tc and polymer concentrations, and keeping the system at Tc slightly 

below the solution freezing point, we managed to push the pore diameter up to 260 

μm. Scaffold compression modulus ranged between 1 to 8 MPa, with largest values 

recorded for samples with the smallest pore diameter, as expected. Finally, scaffolds 

were seeded with mesenchymal stem cells (MSCs) by means of vacuum-aided 



ii 

 

method. The biological validation assessed after 7 days of culture in vitro evidenced 

massive scaffold colonization.  

In summary, we showed the possibility to scale up and down the pore architecture in 

dTIPS scaffold by one order of magnitude, by simple adjustments of the process 

parameters. This may allow creating a gradient porosity for in-growth of vascular 

tissue at any length scale (from macro to micro vessels) in one single construct. 
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In ingegneria tissutale, regolare l’architettura dei pori in scaffold 

tridimensionali polimerici è un fattore cruciale per fornire una struttura ottimale alle 

cellule seminate in modo tale che queste si organizzino in un tessuto funzionale. 

La directional thermally induced phase separation (dTIPS) è un metodo di self 

assembly versatile ed economico per la fabbricazione di scaffold ad alta porosità a 

partire da diversi materiali, avente la possibilità di regolare completamente la porosità 

ed di ottenere strutture porose fortemente anisotropiche. 

Di conseguenza, scaffold ottenuti tramite dTIPS rappresentano un supporto ideale per 

la crescita di tessuti biologici che mostrano morfologia anisotropia, come ossa, 

tendini, legamenti, nervi, fegato, pancreas ed in particolare vasi sanguigni. La 

ricostruzione di innesti vascolari è infatti un prerequisito quando l’obiettivo è la 

crescita di tessuti spessi. 

Nel presente lavoro, abbiamo investigato gli effetti delle variabili di processo, come la 

temperatura di raffreddamento (-30°C ≤ Tc ≤ +5°C), tempo di raffreddamento (2.5 h ≤ 

tc ≤ 32 h), e la concentrazione del polimero (da 1.5 a 6.5 wt%), sulla microstruttura 

dei pori di scaffold tridimesionali in poly(L-lactic acid) (PLLA) ottenuti per dTIPS. 

Gli scaffold hanno mostrato zone dendritiche ad elevato ordine, alle quali spetta il 

compito di fungere da struttura guida per i vasi sanguigni in crescita. Gli stessi hanno 

mostrato porosità totale fino al 95%, ed un grado di interconnessione maggiore del 

90%. Controllando il regime di raffreddamento, e la concentrazione del polimero 

siamo stati in grado di regolare il diametro dei pori fino ad un massimo di 260 m, 

mantenendo inalterata la sovrastruttura dei pori. Nello specifico, pori di poche decine 

di micron sono stati ottenuti con la maggiore tc, concentrazione di PLLA, e la minor 

Tc. Dall’altro lato, alla minore tc e concentrazione di polimero, e mantenendo il sistema 

alla Tc appena al di sotto della temperatura di congelamento, siamo riusciti a spingere 

il diametro dei pori fino a 260 m. Il modulo di compressione degli scaffold è variato 
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tra gli 1 e 8 MPa, con i valori maggiori registrati, come da previsione, per i campioni 

con il diametro dei pori minore. Infine, gli scaffold sono stati seminati con cellule 

staminali mesenchimali (MSCs) tramite il metodo di vacuum-aided. La validazione 

biologica valutata dopo 7 giorni di cultura in vitro ha evidenziato una massiccia 

colonizzazione dello scaffold. 

Riassumendo, abbiamo mostrato la possibilità di aumentare o diminuire la struttura 

dei pori di un ordine di grandezza in scaffold ottenuti tramite dTIPS, tramite semplici 

variazioni dei parametri di processo. Questo può permettere la realizzazione di 

porosità lungo un gradiente per la crescita di tessuto vascolare a qualsiasi scala di 

grandezza (da vasi micro a macro) in una sola struttura. 
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Chapter 1 

 

Introduction 

 

 

 

 

1.1 Regenerative medicine and tissue engineering 

 

Recent advances in the knowledge of molecular and cellular mechanisms of 

diseases allowed the application of new efficient treatments against organ damage. 

Nevertheless, none of these treatments demonstrated to be decisive. The finding that a 

few stem cells are resident within each organ and can be activated when cell death 

occurs opened unexpected perspectives to highly innovative cell treatments 

potentially able to induce the reconstruction of the injured areas, rescuing the organ 

function. First attempts to inject stem cells within damaged organs confirmed only in 

part experimental data showing that several problems are still open in these so called 

cellular and molecular therapies. A new exciting and promising field, complementary 

to these therapeutic strategies, is represented by tissue engineering. 

Tissue engineering and regenerative medicine are often (and imprecisely) 

interchanged. They both share some of the knowledge and methods at the base of 

tissue science, but the second also includes self-healing through endogenous 

recruitment or exogenous delivery of appropriate cells, bio-molecules, and supporting 

structures. 

Since the term tissue engineering was firstly introduced in the late eighties, 

enormous progresses have been made, from the better understanding and harnessing 

of structure-function correlations in living organisms until the commercialization of a 

first-generation tissue-engineered medical products. 
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1.2 The tissue engineering approach 

 

Officially coined at a National Science Foundation (NSF) workshop in the fall 

of 1987, the term tissue engineering (TE), refers to "the application of principles and 

methods of engineering and life sciences toward fundamental understanding of 

structure-function relationships in normal and pathological mammalian tissues and the 

development of biological substitutes to restore, maintain or improve tissue function" 

[1]. 

The goal of tissue engineering is to repair or replace damaged organs or tissues 

by delivering functional cells, supporting scaffolds, growth promoting and signal 

molecules or their encoding DNA to areas in need. 

Tissue engineering has evolved from the use of biomaterials, which may repair 

or replace diseased or damaged tissue, to the use of controlled three-dimensional 

constructs, usually denominated scaffolds, in which cells can be seeded before 

implantation. These living tissue structures must tend to be functionally, structurally 

and mechanically equal to the tissue that must be replaced. The classic tissue 

engineering strategy is to isolate specific cells through a biopsy from a patient, to 

grow them on a bi-dimensional (2D) or three-dimensional (3D) bio-mimetic scaffold, 

under precisely controlled culture conditions, to deliver the construct to the desired 

site in the patient's body and to direct new tissue formation into the scaffold that can 

be degraded over time [2]. In order to achieve successful regeneration of damaged 

organs or tissues based on tissue engineering concepts, several critical elements 

should be considered, including the biomaterial scaffold that serves as a mechanical 

and biological support for cell growth and differentiation [2-4]. 

Strategies of TE can be classified as in vivo and in vitro. The first approach 

(also referred to as in situ generation), aims to create replacement tissue in the natural 

milieu. The goal can be accomplished by either cell transplantation [5-7], 

implantation or catheter-based  injection of cell seeded/unseeded scaffold [8-12], or 

through self-repair and healing promotion by delivery of or active molecules [13,14]. 

It is feasible and simpler but can be limited by poor control on graft development and 

outcome. 

Among the three pillars (scaffold, cells, bioactive molecules) which sustain 

tissue engineering, the function of the scaffold is crucial. This role is even 
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fundamental in the in vitro approach, where the resolution of problems related to the 

availability of suitable "biologized" scaffolds is preliminary to any further advance in 

the reconstruction of functionally efficient strips of tissue destined  to be engrafted in 

damaged organs. 

 

1.3 The Scaffold 

 

As seen, the scaffold plays a key role in the strategies dictated by TE. It is not 

surprising, at this point, to notice how much attention and expectations are put into 

scaffold design and characterization, from the choice of the material to the biological 

testing.  

Scaffolds may be composed of polymers, metals, ceramics or composites. 

Scaffold characteristics include high porosity, large surface area, structural strength, 

specific two or three-dimensional shape and biodegradability, if needed. Scaffolds 

can be manufactured in many forms to give the required characteristics for a variety 

of applications [15]. They can be tubular and flexible for nerves, blood vessels and 

intestine; stiff and opportunely shaped to match different types of bones and 

cartilage; jelly, in order to perfectly fit the wound that needs to be healed, and so on.  

Regardless its physical characteristics, a supporting scaffold has the main 

function to physically entrap cells into the specific area to be repaired, direct the 

spatial orientation of the extra-cellular matrix (ECM) components,  sustain and guide 

the growth of cells, and eventually provide part or all of the signals that are needed 

for cell proliferation, differentiation and cell-to-cell interaction [2,15]. An ideal 

device should mimic the extracellular matrix and, when biodegradable, it must be 

resorbed once the new tissue has formed around it [16].  

It must be designed by considering that the composition, structure and, 

therefore, the mechanical properties of the extracellular matrix can be specific to 

each organ or tissue [17,18]. In this optics, the adoption of decellularized ECM 

constructs can, better than any other support, fit this requirements. 

In summary, the term scaffold is usually referred to a 3D construct that must 

fulfill several requirements:  

- it must be biocompatible. 

- it must be able to bond with the host tissue without leaving any scar or non-
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adherent tissue, which means to be a class A bioactive material. 

- it should exhibit surface textures able to facilitate such bonds allowing a strong 

adhesion with cells and eventually the adsorption of biological metabolites.  

- its spatial structure (i.e., the scaffold architecture) must act as a template for 

tissue 3D growing up and it should consist of a thick web of interconnections and 

present a suitable porosity. Interconnections and porosities diameters ranging from 

30 to 80 μm and 50 to 300 μm respectively are sufficient for cells settlement to take 

place as well as for tissue development and vascularization and for nutrients/drugs 

delivering [24]. 

- its rate of degradation (if occurring) should ideally equal that of tissue 

regeneration. The degradation products should be non-toxic and easily ejectable from 

the body.  

- eventually, the dissolution process should stimulate the biochemical activity of 

the regenerating tissue in order to promote an efficient cells proliferation and 

differentiation (bioactivity). 

- scaffold mechanical properties should guarantee tissue regeneration even for 

regions subdued to static or dynamic loads. 

- scaffolds processing should allow their fabrication in different shapes in order 

to fit the damaged regions. 

- finally, the materials must possess the requirements imposed by the 

International Standards Organization (ISO) and from the Food and Drug 

Administration (FDA). 

An impressive number of different scaffolding philosophies for organogenesis 

have emerged to face the challenge of creating a biologized scaffold, and they can be 

enclosed in four main categories: (i) ex-novo fabrication of 3D bio-mimetic 

scaffolds, (ii) cell-sheet engineering, (iii) encapsulation devices, (iv) 

decellularization of pre-existing organic constructs and organ templating.  

A brief introduction to these approaches is now presented. The scaffolding 

methodology adopted in the current work belongs to first, and wider of the 

mentioned categories, and will be discussed in detail in §1.4.  
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1.3.1 Cell sheet engineering 

 

Cell-sheet engineering is centered on the use 2D support made of biocompatible 

thermo-responsive polymers like poly (N-isopropyl acrilamide) (PNIPAM), that can 

change their physical properties once they are subjected to a temperature change. 

These materials are biocompatible but non-biodegradable and thus serve as pure 

support for the constitution of 2D cell sheets. In particular, their temperature-driven 

water affinity is exploited for culturing and assembling cellular mono-layers to create 

a thick tissue (cell-sheet® engineering) [18]. This pioneering technology has been 

systemically applied to several of applications such as cornea [19] in clinical trials 

and myocardium [20] in preclinical trials. The main advantages of the cell-sheet 

engineering include the non damaging nature of the cultured cell/tissue harvesting 

method, the possibility to obtain homogeneous and cell dense tissues,  and to 

perform suture-less implantations. The difficulty to pre-assemby thicker tissues in 

vitro represent the main limitation of this method. Beside the time consumption 

(each cell layer is about 30 µm thick), cell death was demonstrated to take place in 

the core layers, due to poor perfusion. [21] On the other side, in situ approach would 

require multiple surery which is unlikely for the recipients.  

 

1.3.2 Cell encapsulation 

 

Encapsulation devices have been experimented for over several decades and 

principally served as immune-isolating vectors during allogenic or xenogenic cell 

transplantation [22,23] without the need for immunosuppression and its 

accompanying effects, or for drug delivery and controlled-release purposes [24]. 

Encapsulation is a process through which cell or factors are physically entrapped 

within a semi-permeable membrane or within a homogenous solid mass [22,24,25]. 

The biomaterials typically used for encapsulation are hydrogels, which are formed by 

covalent or ionic crosslinking of water-soluble polymers. One important feature of 

encapsulation is the possibility of scaffold  self-assembling from liquid monomers to 

solid polymer meshwork upon initiation, upon ionic strength, temperature, light, or 

pH. Provided that the conditions inducing the hydrogel formation or the 

polymerization are compatible with living cells, encapsulation allows to  perform 
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scaffold fabrication and cell seeding at once, since cells and liquid biomaterials can be 

mixed before initiation of polymerization. Other relevant advances are the 

homogeneity of cell distribution in the hydrogel and excellent cell viability. 

Moreover, this self-assembled approach enables injectable application where the 

polymerization can be initiated after injection, thus allowing scaffold shaping to fit 

the wound. However, a great limit of this technique is related to the lack of adequate 

mechanical properties which prevent this scaffolds from being used in load bearing 

tissue repair/reconstruction. 

 

1.3.3 Organ templating 

 

A cellular extra-cellular matrices (ECMs) can be collected from allogenic or 

xenogenic tissues to act as template for addressing cell growth and differentiation. 

This approach has recently emerged as revolutionary and powerful and tool for TE. It 

has been used for the reconstruction of many tissues, such as heart valves [26], 

vessels [27], nerves [28], tendon and ligament [29]. This scaffolding method consists 

in removing the allogenic or xenogenic cellular antigens from the tissues which may 

provoke immunogenicity upon implantation, while preserving the ECM components, 

which are common among species and therefore immunologically tolerated. The 

major advantage of this scaffolding approach is surely resides in the excellent 

mimetic mechanical and biological properties of the decellularized ECM. 

Moreover, the presence of residual growth factors in the decellularized matrix 

may further facilitate cell growth and remodeling [30]. Concerns about this method 

include in primis, the risk of immunogenic reaction and rejection of the implant, due 

to incomplete removal of cellular components [31]. In addition, many of the issues 

related to synthesized porous scaffold continue to persist for this approach. Cell non-

uniform distribution within the decellularized ECM, and in some cases, the need of 

vascular networks, may lead to the constitution of inhomogeneous tissues. 
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1.4 Fabricating novel 3D bio-mimetic porous scaffolds 

1.4.1 Introduction 

 

Ex-novo fabrication of 3D scaffolds is probably the more challenging but 

extensively investigated area of TE.  

The principal advantage of this approach relies in the possibility to fully design 

the supporting device, thus conferring to the scaffold predictable shapes, mechanical 

properties, compartmentalization, surface topologies and functionalities for any 

given application.  

If, on one side, the all-around tailoring ability makes this approach potentially 

suitable for reconstructing every type of tissue, it also undiscloses thousands of new 

question about which the correct paradigm should be.  

Another issue is related to the integration of the engineered scaffolds with the 

cellular systems. The in vitro scaffold passive culturing is generally a time-

consuming and poorly efficient practice, and tends to produce inhomogeneous cell 

engraftments and tissues.  

The adoption of dynamic bioreactors and perfusion chambers (§1.6) can only 

partially meet the need of  higher cell seeding efficiency, while introducing new 

problems related to the cost of the apparatuses, as well as the low cell viability. 

Furthermore, cell death can occur in the core region of the synthesized tissue, due to 

the lack of a vascular net and poor perfusion. This hurdle, which also afflicts the 

other scaffolding approaches, is what mostly prevents 3D scaffolds to be 

systematical used in organ repair. 

 

1.4.2 Scaffold fabrication methods  

 

The scaffold suitability for a given clinical application is not only determined 

by the choice of the material with the proper physico-chemical and mechanical 

properties, but also strongly depends on the processing routes applied to the chosen 

materials [2, 32-35] 

Materials processing can be performed by a multitude of techniques. The 

extent to which new materials can be created, engineered and shaped is only limited 
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by imagination. 

Some of the most currently in vogue routes for scaffold manufacturing, which 

can be easily found in literature, are: foaming techniques (solvent casting and 

particulate leaching [36], phase separation [37], gas foaming [38], etc.); bottom-up 

strategies like rapid prototyping (3D printing [39], pressure assisted micro-syringe 

[40], etc.), soft-lithography (micro-molding [41], micro-fabrication [42], spin casting 

and membrane lamination [41,43], etc.), and self-assembly (pneumatic [44] and 

electrical fiber spinning [45], emulsification/freeze-drying processes [46], fiber 

bonding [47], etc.); top-down approaches (selective laser sintering [48], etc.), and so 

on. Some of the mentioned techniques represent the core subject of this work, and 

will be later and more in depth discussed.  

 

1.4.3 Degradation  

 

Once implanted, the biodegradable material-based device should maintain its 

mechanical properties until it is no longer needed and then be absorbed and excreted 

by the body [49]. Controllable degradation of substrate scaffold is important to the 

ultimate clearance of the synthetic implant materials within an engineered tissue 

[50,51]. Simple chemical hydrolysis of the hydrolytically unstable backbone is the 

prevailing mechanism for the polymer's degradation. This occurs in two phases. In 

the first phase, water penetrates the bulk of the device, preferentially attacking the 

chemical bonds in the amorphous phase and converting long polymer chains into 

shorter water-soluble fragments. Since this takes place in the amorphous phase 

initially, there is a reduction in molecular weight without a loss in physical 

properties, being the device matrix is still held together by the crystalline regions. 

The degradation of the physical properties occurs as water begins to fragment the 

device. 

 In the second phase, enzymatic attack and metabolization of the fragments 

occurs, resulting in a rapid loss of polymer mass. This type of degradation, i.e., when 

the rate at which water penetrates the device exceeds that at which the polymer is 

converted into water-soluble materials, resulting in erosion throughout the device, is 

called bulk erosion. All of the commercially available synthetic devices and sutures 

degrade by bulk erosion.  
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A second type of biodegradation, known as surface erosion, occurs when the 

rate at which the water penetrates the device is slower than the rate of conversion of 

the polymer into water-soluble materials. Surface erosion results in the device 

thinning over time while maintaining its bulk integrity. Polyanhydrides and 

polyorthoesters are examples of materials that undergo this type of erosion, i.e., 

when the polymer is hydrophobic, but the chemical bonds are highly susceptible to 

hydrolysis. In general, this process is referred to in the literature as bio-erosion rather 

than biodegradation [52].  

Generally, the degradation-absorption mechanism is the result of many 

correlated factors, including:  

– the chemical stability of the polymer backbone.  

– the presence of catalysts, additives, impurities, or plasticizers.  

– the geometry of the device. 

Balancing these factors by tailoring an implant to slowly degrade and transfer 

stress at the appropriate rate to surrounding tissues as they heal is one of the major 

challenges facing researchers today.  

 

1.5 Cell sources for tissue engineering 

1.5.1 Introduction 

 

The reconstruction of a given tissue type needs several aspects to be 

considered, including, the function of the tissue, the mechanical requirements, such 

as load and flexibility, the specific environment in which the tissue is located, etc. 

Among them, the identification of a suitable cell source for obtaining the specialized 

cell types within the tissue, is priority. 

The ideal cell required for tissue engineering must show good self-regenerative 

potential, the ability to functionally replace the damaged tissue and must be readily 

available in desired quantity. 

The versatility of TE provides for addition of cells sourced from the same 

recipient (autologous cells), from a genetically non-identical individual of the same 

species, (allogeneic cells), and  from an individual belonging to another specie 

(xenogeneic cells, e.g., from pigs to human [53]), to the produced devices. 
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Safety issues to recipients of autologous cells implants (autografts) are 

generally limited to acquisition of adventitious agents (microbial, viral, etc.). On the 

other hand, the possibility of allogeneic or xenogeneic cells implants (allografts and 

xenografts, respectively) opens to the risk of transmission of pathogens from 

nonautologous donors (§1.7). 

 Among others, the use of stem cells (§1.5.2) has catalyzed enormous attention 

in TE, due to the unique properties which characterize these cells respect to 

differentiated cell models. In particular, the possibility to derive different tissue types 

from one single stem type, offers unprecedented possibilities in the optics of organ 

reconstruction. Stem cells for TE include adult stem cells, such as bone marrow 

stromal (mesenchymal) stem cells, embryonic stem (ES) cells or germ (EG) [54]. 

However, the most appropriate mixture of growth factors and physical stimuli to be 

combined to lead undifferentiated cells to a specific phenotype is still under debate.  

 

1.5.2 Stem cells: definition and classification 

 

Stem cells are a population of immature tissue precursor cells which are 

capable of self-renewal or proliferation as well as of differentiation into a spectrum 

of different cell types, under specific conditions [55]. In general, they possess the 

following characteristics: i) high capacity for self-regeneration, and ii) the highest 

potential for differentiation, iii) the ability to be cultured ex vivo and used for tissue 

engineering, and iv) plasticity (the ability to trans-differentiate [56].  

On the basis of their potential towards differentiation , stem cells may be 

classified into four categories: 1) totipotent, 2) pluripotent, 3) multipotent and 4) 

monopotent or oligopotent.  

Totipotent stem cells have the potential to differentiate into cells of all three 

embryonic layers: endoderm (interior stomach lining, gastrointestinal tract, the 

lungs), mesoderm (muscle, bone, blood, urogenital), or ectoderm (epidermal tissues 

and nervous system). If implanted in a functional uterus, a totipotent cell can 

generate an entire body, provided with a central and peripheral nervous system. In 

mammals, the only totipotent stem are zygotes at an early stage of cell division 

(blastomeres). With the progression of differentiation, zygotes tend to form cell 

layers inside and outside of the embryo.  
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The cells belonging to the inner layers are called pluripotent Pluripotent stem 

cells can give rise to any fetal or adult cell type. However, alone they cannot develop 

into a fetal or adult animal because they lack the potential to contribute to extra-

embryonic tissue, such as the placenta [57]. As they continue to divide and to further 

specialize, they become the specific-tissue progenitors. At this stage, they are 

multipotent cells, since they can differentiate into different cell types within a given 

organ. For example, blood stem cells or multipotent hematopoietic stem cells can 

differentiate into red cells, white cells or platelets.  

Finally, monopotent or oligopotent stem cells, can only lead to one or a few 

types of specialized cells. However, they have the property of self-renewal which 

distinguishes them from non-stem cells (e.g. muscle stem cells). 

 

1.5.3 Stem cell sources: embryonic and adult stem cells 

 

On the basis of their origin and biological properties, stem cells can be also 

classified into embryonic stem cells and adult stem cells 

Embryonic stem cells derive from the internal layer of the blastocyst (a post-

zygotic early embryonic stage) [58]. These cells possess the ability to proliferate in 

an undifferentiated state for long culturing periods. Moreover, a single ESC can 

develop in more than 200 cell types and, therefore, in different tissues or organs, 

under favorable conditions, due to their  powerful differentiation capacity [59]. ESCs 

can be harvested from three sources: aborted fetuses, embryos discarded after in vitro 

fertilization and embryos specifically created in laboratory for stem cells production. 

In vitro differentiation of human embryonic stem cells in cardiomyocites was 

demonstrated by Kehat et al [60].  

Adult stem cells are undifferentiated cells that reside in a specialized tissue or a 

developed body and are able to specialize into any of the cells of the tissue or body 

from which they originate. Due to their ability to self-regenerate, these cells 

constitute a repair system which allows tissues to maintain their stability and 

function, by replenishing specialized cells, but also maintaining the normal turnover 

of regenerative organs (such as blood, skin or intestinal tissues, etc.). Sources of 

adult stem cells include self-regenerating tissues such as bone marrow, blood, 

epidermis, but even tissues such as brain or liver. 
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1.5.4 Humans stem cells: ethical and clinical issues 

 

There exist several ethical problems associated with the collection of human 

embryonic stem cells (hESCs), mainly related to the inevitable destruction of the 

originary source (i.e., the embryo) [54]. The tout court equalization of the human 

embryo state to the adult state, has raised a controversial dispute within the scientific 

(and not) community, leaving unresolved fundamental moral and legal issues related 

to the usage of hESCs, beside affecting either the liberty of research and religious 

beliefs of the individual researcher. The decision to carry out experimentation on 

hESCs is delegated to the single countries. It's worthy to mention US recent change 

of policy, with the settlement of the new democratic government. The US adoption 

of a regulated liberalization in the use hESC could serve as a guide model and 

hopefully have resonance in other countries, including Italy. Other potential barriers 

to the use of these cells relate to the need for the receivers to undergo 

immunosuppressive therapies, due to embryonic stem cells to be potentially 

allogeneic. The uncontrolled differentiation of these cells may also represent a hurdle 

to their extensive use [61].  

Adult stem cells do not involve the previously mentioned ethical or 

immunological concerns, as, in this case, donor and recipient coincide and none of 

them has to (or at least shouldn’t) be sacrificed. However, respect to their embryonic 

counterpart, the capacity for proliferation and differentiation is lower. Furthermore, 

they are often difficult to identify, isolate and purify and are often not sufficiently 

numerous for clinical transplantation without in vitro expansion. This also may 

represents a problem since adult stem cells do not replicate indefinitely in culture 

[62]. 

 

1.6 Bioreactors 

 

A widely supported finding is that the three-dimensional architecture of a 

tissue is not only determined by the scaffold structural and chemical stimuli, but also 

depends on subjecting the cells to physiological stress during cultivation. Growing 

blood vessels, for example, must be exposed to compression, shear stresses and a 

pulsated flow of the culture medium to acquire their mechanical properties [16,63]. 
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In order to match most of these requirements, cell seeded scaffolds are often treated 

in bioreactors until the tissue or organ is fully developed. To improve the results of 

the in vitro approach and manage to grow three-dimensional living constructs that 

contain more than a few layers of cells, researchers have implemented various types 

of bioreactors, each one simulating a different fluido-dynamical state and thus 

characterized by a different geometry of the container. A typical and largely diffused 

container for dynamic culturing is the spinner flask, which is nothing but a shaken 

flask (usually at 50 rpm). In such containers, the cell constructs are subjected to 

turbulent mixing in presence of proper fluids that provide a well-homogenized 

environment around the cells, thus minimizing the settling of stagnant layer nearby 

 

 

Fig. 1.6.1: A diffused design of dynamic bioreactor: Spinner flask 

 

the surface. It been shown that the cultivation of cardiac cell constructs in spinner 

flask produces engineered tissues that are superior in almost every aspect (aerobic 

metabolism of cells, DNA content, metabolic activity and morphological appearance) 

compared to tissues grown in static conditions [64]. The spinner flask, however, may 

not be the best device for the cultivation cells. The turbulent flow of fluid to the 

surface of the cell constructs is usually characterized by local vortexes 

that can destroy the implanted cells. 

More complex bioreactors combined with mechanical signals such as stretching 

or compression, have proven to their effectiveness in enhancing the proliferation and 

distribution of seeded human cardiac cells through the entire volume of the scaffold, 

by further stimulating the formation and organization of ECM graft [65,66]. These 

encouraging achievements, however, must face some difficulty. Many bioreactors are 

unable to provide sufficient oxygen and nutrients to tissue growth. The growth in a 

bioreactor typically stops once the tissue has reached a thickness of 100μm, 
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corresponding to about 6-10 layers cellular [21,67]. Beyond this thickness, the cells of 

the central layers are too far away because the addition of fresh medium can take hold 

there. Therefore future bioreactors for tissue engineering should combine perfusion 

and mechanical stimulation, for example allowing adjustable movement pulsatile and 

variable levels of pressure.  

  

 

 

1.7 Safety concerns and regulatory issues: the role of FDA 

 

Multidisciplinary character of TE raised intrinsic concerns about validity and 

safety of TE therapies. In fact, although acellular biomaterials or drugs have many 

predicates, virtually all TE therapies have no predicates. Consequently, no standards 

exist by which these strategies may be assessed for safety and effectiveness prior to 

their application.  

Despite the lack of standards for assessment, the responsibility of U.S. Food and 

Drug Administration (FDA) to protect the public from health risks associated with 

investigational therapies remains unchanged.  

FDA’s responsibility requires that new therapies approved for use in the United 

States be safe and effective.  

Safety criteria for medical devices require that probable benefits to health 

outweigh probable risks of the therapy itself, or the untreated diseases. For example, 

many systems for cell culture contain animal-derived components, and other 

biological or chemical contaminants may derive from the scaffold material or result 

from the combined cell-scaffold action upon interaction. In addition, if allogenic or 

xenogenic cells are included, transmission of adventitious agents may occur. Both the 

patient and the working staff must be protected from possible pathogens.  

In the effort to guarantee as much as possible the safety of TE therapies,  FDA 

has applied several standards, principally from the Center of Biological Evaluation 

and Research (CBER) [68], which establish precise regulatory respect to media 

components, tissue acquisition, implant handling and storage, and safety validation of 

the final products. 



15 

 

For non-autologous therapies, safety standards have been established for 

conventional banking of human and non-human tissues or tissue extracts. For 

allogeneic tissues, these standards are similar to blood banking, and require the 

screening of donors for multiple pathogens like HIV, and hepatitis type B and C [68-

70].  

In addition to safety issues regarding pathogen transmission, in the case of xenogeneic 

tissues, immunogenicity and stability of transgenic vectors must be assessed [71]. 

This subject deserves great attention, since the use of xenogeneic tissues holds 

potentials of enormous supply of tissues from many different species or transgenic 

animals.  

Effectiveness criteria for devices should demonstrate that use of the device for 

its meant uses, and conditions for use, restore as much as possible of the physiological 

deficiency caused by the disease in a significant portion of the target population [72]. 

Tissue-engineered devices may require assessments different from those for 

nonliving, non-resorbable implants (ceramic or metallic hip and knee joints, 

polymeric vascular grafts, etc.) These kind of prosthetic devices are meant to remain 

and interface indefinitely with the host tissue and their efficacy is typically stable, and 

durable. On the other hand, most tissue-engineered implants are constituted by a 

resorbable and a cellular component. Although well-characterized standards exist for 

the breakdown of acellular biodegradable polymers (e.g., poly(L-lactic acid) [73], 

addition of cells to either FDA approved or non approved polymers may require both 

preclinical and clinical assessments.  

These regulatory standards apply to tissue-engineered therapies just as for 

conventional medical devices, drugs, or biologics. However, the composite nature of 

most TE therapies complicates FDA’s evaluation of their safety and effectiveness. For 

this reason, FDA will be asked to provide new approaches for establishing standards 

and regulatory protocols for TE. 

 

1.8 Aim of the present work  

 

Background 

The emergence of TE as an academic discipline and global industry, has 

opened unprecedented possibilities for the development of advanced therapies in the 
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treatment of congenital and acquired diseases [1,2,3,4,74]. Up to date, encouraging 

results have been obtained in fully reconstructing hard tissues, such as bone [75] and 

cartilage [76], and flat soft tissues, such as cornea [77] and skin [78], while more 

complicated soft tissues (heart, as an example) are far more challenging to be 

replicated in vitro. Several TE strategies have been successfully proposed for tissue 

reconstruction (§1.3), such as the overlaying of several bi-dimensional sheets of 

differentiated cells, cell entrapment in self-assembling hydrogels, and cell 

engraftment on pre-constituted decellularized templates. The other approach, as said, 

relies in the use of biodegradable bio-mimetic 3D scaffolds, and constitutes the 

subject of this work.  

Set in this scenery, my research proposed to tailor and to test biocompatible 

polymer based constructs, destined to host, address and sustain the proliferation of 

human cellular colonies in vitro. 

 

Description of the work 

The work has been done at National Institute for Material Science (NIMS) in 

Tsukuba City, Japan.  

Preliminary experiments aimed at reproducing and mastering the scaffold 

fabrication techniques: thermally induced phase separation.  

 The work carried out after this initial period was focused on the further 

development and optimization of the fabrication technique as well as to the 

overcoming of the several problems related to the fabrication routes. These scaffolds 

were subjected to deeper characterizations (mechanical and biological viability) 

while ameliorations were brought to the synthesis protocols. 

 

Scaffolds by thermally induced phase separation (TIPS) 

One of the main unresolved problems of TE is the difficulty in reconstructing 

healthy thick tissues. Usually, if constructs do not allow oxygen perfusion, no more 

than three cell layer can grow in vitro without occurring of necrosis in the core layers 

[21]. As a result, while a number of bio-supports processed by many different 

techniques have been successful in hosting a multitude of cell systems, while only 

few of them have proven their potential capability in maintaining cell cultures over 

time [79,80].  

No flourishing civilization could exist far from a river. For these same reasons, 
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beside the capability of supporting cell growth, expansion, and differentiation, the 

scaffold should primarily guarantee perfusion, vascularization, growth factor 

delivery, and all those processes responsible for cellular long term retention [81,82]. 

This convictions animated my research on 3D scaffolds for TE, in the effort to 

incorporate in a single construct the information able to trigger the specific tissue 

reproduction. Such a scaffold should be able to exhibit hierarchical porosities, at the 

millimetre scale to help nutrition and vascularization, at the micrometer scale to 

accommodate cells, and at the nanometre scale to favour the expression of extra-

cellular matrix components, with the desired chemical and mechanical functions 

[83]. Most of these requirements were matched with the adoption of directional 

Thermally Induced Phase Separation as synthesis method. 
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Chapter 2 

 

Materials and methods 

 

 

 

 

2.1 TIPS 

 

The main limiting factor of 3D scaffolds for growing in vivo healthy thick 

tissues is represented by the lack of perfusion into the core regions of the construct, 

resulting in poor colonization and cells confinement on the cortical layers of the 

scaffold. The lack of a suitable pore arrangement able to facilitate capillary diffusion 

of growth factors and nutrients, is among the principal causes, together with the 

scaffold inability to host more organized structures like blood vessels [15,81]. 

In this research, a multitude of attempts were done, all aimed at the 

implementation of original solutions to the optimal architecture dilemma [83]. With 

respect to poly(lactic acid) (PLLA) a large number of processing techniques have 

been reported, including gas foaming [84], solvent casting and particulate leaching 

[85], fiber bonding [47], electrospinning [86,87], soft-lithography [41], and phase 

separation [88]. In particular, lactide-based scaffolds made by thermally induced 

phase separation (TIPS) have demonstrated their suitability to host cell systems. 

Their multi-scale porosity is potentially capable of supporting cell-matrix interaction 

at any biological level (Fig. 2.1.1) [83,89]. 

As schematically shown in Fig. 2.1.2, TIPS is basically a three step process in 

which a homogeneous polymer-solvent solution is brought to phase separate upon 

the application of a thermal gradient into a polymer-rich phase and a solvent-rich 

phase. Porosity is obtained by leaching out the solvent phase by exposing to a second 

specific solvent that acts as a non-solvent for the polymer. The driving force of the 

process relies in the alteration of the thermodynamic equilibrium imposed by the 

under cooling that causes polymer solubility to decrease within the solvent phase 

undergoing solidification. 
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Fig. 2.1.1: Scaffolds made by thermally induced phase separation provide for a multi-scale porosity in 

a single construct, which make them suitable for supporting a variety of biological functionalities 

 

A number of ternary systems have been investigated for producing polymeric 

structures by TIPS [90,91]. In particular, for PLA-based systems, the use of dioxane 

as the polymer solvent turned out to be the election choice, due to its relatively high 

melting temperature (T = 11.8°C) and ease of removal. Moreover, it has been 

demonstrated that dioxane can crystallize into different geometries depending on its 

concentration within the polymer solution and quenching conditions [89].
 
The ability 

to control solvent shaping under solidification is crucial because crystallite geometry 

and order act as template for porosity. It has been observed that the imposition of  an 

anisotropic thermal gradient to the polymeric solution can force dioxane 

crystallization along specific directions, thus conferring a higher degree of order to 

the whole system at a macroscopic level [92]. Several research groups managed to 

obtain densely packed arrays of parallel micro channels by applying uni-directional 

TIPS to mixed PLA and PLGA solutions in dioxane [93-95]. 
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Fig 2.1.2: Step-preparation of PLLA porous scaffold by thermally induced phase separation. 

 

However, this configuration may represent an obstacle for intense cell-to-cell 

signalling between adjacent channels, or even result in short-term cells viability in 

the case of inadequate nutrient supply/diffusion through the micro-cavities of the 

inner walls. In addition, cells constriction to a mono-dimensionally ordered 

displacement may impede cells arrangement into more complex structures or prevent 

vessels capillary sprouting. 

In this optics, the set of TIPS conditions identified and adopted in the present 

work, corresponds to a porosity arrangement that more than others would better 

support diffusive phenomena as well as suit blood vessels accommodation, thus 

easing angiogenesis promotion.  

 

 

2.2 Scanning Electron Microscopy (S.E.M.) 

 

Essential components of all SEMs include the following: 

- Electron Source ("Gun") 

- Electron Lenses 

- Sample Stage 

- Detectors for all signals of interest 

- Display / Data output devices 

- Infrastructure Requirements: 



22 

 

 Power Supply 

 Vacuum System 

 Cooling system 

 Vibration-free floor 

 Room free of ambient magnetic and electric fields 

SEMs always have at least one detector (usually a secondary electron detector) 

 

 

 

Fig 2.2.1: Schematic drawing of the electron and x-ray optics of a combined SEM-EMPA 

 

In a typical SEM, an electron beam is thermionically emitted from an electron gun 

fitted with a tungsten filament cathode. Tungsten is normally used in thermionic 

electron guns because it has the highest melting point and lowest vapour pressure of 

all metals, thereby allowing it to be heated for electron emission, and because of its 

low cost. Other types of electron emitters include lanthanum hexaboride (LaB6) 

cathodes, which can be used in a standard tungsten filament SEM if the vacuum 

http://en.wikipedia.org/wiki/Thermionically
http://en.wikipedia.org/wiki/Electron_gun
http://en.wikipedia.org/wiki/Tungsten
http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Lanthanum_hexaboride
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system is upgraded and field emission guns (FEG), which may be of the cold-cathode 

type using tungsten single crystal emitters or the thermally-assisted Schottky type, 

using emitters of zirconium oxide. 

The electron beam, which typically has an energy ranging from 0.5 keV to 40 

keV, is focused by one or two condenser lenses to a spot about 0.4 nm to 5 nm in 

diameter. The beam passes through pairs of scanning coils or pairs of deflector plates 

in the electron column, typically in the final lens, which deflect the beam in the x and 

y axes so that it scans in a raster fashion over a rectangular area of the sample surface. 

When the primary electron beam interacts with the sample, the electrons lose 

energy by repeated random scattering and absorption within a teardrop-shaped 

volume of the specimen known as the interaction volume, which extends from less 

than 100 nm to around 5 µm into the surface. The size of the interaction volume 

depends on the electron's landing energy, the atomic number of the specimen and the 

specimen's density. The energy exchange between the electron beam and the sample 

results in the reflection of high-energy electrons by elastic scattering, emission of 

secondary electrons by inelastic scattering and the emission of electromagnetic 

radiation, each of which can be detected by specialized detectors. The beam current 

absorbed by the specimen can also be detected and used to create images of the 

distribution of specimen current. 

These signals include secondary electrons (that produce SEM images), 

backscattered electrons (BSE), diffracted backscattered electrons (EBSD that are used 

to determine crystal structures and orientations of minerals), photons (characteristic 

X-rays that are used for elemental analysis and continuum X-rays), visible light 

(cathodoluminescence--CL), and heat. Secondary electrons and backscattered 

electrons are commonly used for imaging samples: secondary electrons are most 

valuable for showing morphology and topography on samples and backscattered 

electrons are most valuable for illustrating contrasts in composition in multiphase 

samples (i.e. for rapid phase discrimination). X-ray generation is produced by 

inelastic collisions of the incident electrons with electrons in discrete ortitals (shells) 

of atoms in the sample. As the excited electrons return to lower energy states, they 

yield X-rays that are of a fixed wavelength (that is related to the difference in energy 

levels of electrons in different shells for a given element). Thus, characteristic X-rays 

are produced for each element in a mineral that is "excited" by the electron beam. 

http://en.wikipedia.org/wiki/Field_emission_gun
http://en.wikipedia.org/wiki/Cold-cathode
http://en.wikipedia.org/wiki/Walter_H._Schottky
http://en.wikipedia.org/wiki/Zirconium_oxide
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Electronvolt
http://en.wikipedia.org/wiki/Raster_scan
http://en.wikipedia.org/wiki/Elastic_scattering
http://en.wikipedia.org/wiki/Inelastic_scattering
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://serc.carleton.edu/research_education/geochemsheets/bse.html
http://serc.carleton.edu/research_education/geochemsheets/ebsd.html
http://serc.carleton.edu/research_education/geochemsheets/xrays.html
http://serc.carleton.edu/research_education/geochemsheets/xrays.html
http://serc.carleton.edu/research_education/geochemsheets/semcl.html
http://serc.carleton.edu/research_education/geochemsheets/xrays.html
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Electronic amplifiers of various types are used to amplify the signals which are 

displayed as variations in brightness on a cathode ray tube. The raster scanning of the 

CRT display is synchronized with that of the beam on the specimen in the 

microscope, and the resulting image is therefore a distribution map of the intensity of 

the signal being emitted from the scanned area of the specimen. The image may be 

captured by photography from a high resolution cathode ray tube, but in modern 

machines is digitally captured and displayed on a computer monitor and saved to a 

computer's hard disk. 

The SEM is also capable of performing analyses of selected point locations on the 

sample; this approach is especially useful in qualitatively or semi-quantitatively 

determining chemical compositions (using EDS), crystalline structure, and crystal 

orientations (using EBSD). The design and function of the SEM is very similar to the 

EPMA and considerable overlap in capabilities exists between the two instruments. 

SEM analysis is considered to be "non-destructive"; that is, x-rays generated 

by electron interactions do not lead to volume loss of the sample, so it is possible to 

analyze the same materials repeatedly. 

The SEM is routinely used to generate high-resolution images of shapes of 

objects (SEI) and to show spatial variations in chemical compositions: 1) acquiring 

elemental maps or spot chemical analyses using EDS, 2)discrimination of phases 

based on mean atomic number (commonly related to relative density) using BSE, and 

3) compositional maps based on differences in trace element "activitors" (typically 

transition metal and Rare Earth elements) using CL. The SEM is also widely used to 

identify phases based on qualitative chemical analysis and/or crystalline structure. 

Precise measurement of very small features and objects down to 50 nm in size is also 

accomplished using the SEM. Backescattered electron images (BSE) can be used for 

rapid discrimination of phases in multiphase samples. SEMs equipped with diffracted 

backscattered electron detectors (EBSD) can be used to examine microfabric and 

crystallographic orientation in many materials. [96-99] 

2.3 Materials for scaffold synthesis 

 

The choice of the material destined to 3D scaffold ex-novo fabrication for TE is 

a crucial issue and mainly depends on the kind of application required, i.e. the type 

of tissue to mimic. The past several years have witnessed the explosion of the 

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Photograph
http://en.wikipedia.org/wiki/Visual_display_unit
http://en.wikipedia.org/wiki/Hard_disk_drive
http://serc.carleton.edu/research_education/geochemsheets/eds.html
http://serc.carleton.edu/research_education/geochemsheets/ebsd.html
http://serc.carleton.edu/research_education/geochemsheets/techniques/EPMA.html
http://serc.carleton.edu/research_education/geochemsheets/elementmapping.html
http://serc.carleton.edu/research_education/geochemsheets/eds.html
http://serc.carleton.edu/research_education/geochemsheets/bse.html
http://serc.carleton.edu/research_education/geochemsheets/semcl.html
http://serc.carleton.edu/research_education/geochemsheets/bse.html
http://serc.carleton.edu/research_education/geochemsheets/EBSD.html
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material science applied to tissue engineering [96]. Many natural substances are 

proving valuable, while the world of synthetic materials, mostly polymeric, has 

completely opened up.  

In comparison to attachment of adherent cells to a rigid and smooth surface, 

greater extent of attachment, survival, and function can be achieved by cell adhesion 

on and porous (either soft or stiff) and roughness-controlled substrates, that resemble 

the macro-molecular structure of extra-cellular matrix [97-99]. Base materials used 

as substrates in TE may be divided into natural (collagen, albumin, hyaluronic acid, 

fibrin, chitosan, silk, alginate, ecc.), synthetic (poly-lactide acid, poly-glycolide, 

poly- caprolactone, poly-N-isopropyl acrilamide, hydroxyapathite, ceramic glasses, 

ecc.), and semi-synthetic or hybrid materials.  

Each material is accompanied by a series of pros and cons which determine its 

usage or not for a specific application. The advantage of naturally derived polymers 

resides in their close compatibility with ECM environments, thus providing better 

supports for ex-vivo cultures of cells. However, they typically lack the necessary 

mechanical integrity for fabrication into scaffolds or other differently shaped 

polymer structures. They also suffer from the limitation of sufficient supply and 

source variation, which limits their use for TE. Some naturally derived polymers 

might also be immunogenic. Synthetic biocompatible and/or biodegradable polymers 

are widely used in surgical sutures and constructs for ex-vivo cell culturing, 

expansion and transplantation [100-102]. The most widely used synthetic bio-

polymers belong to the poly (α-hydroxy acid) family of polymers, including 

poly(lactic acid) (PLA), poly(glycolic acid) (PGA),  poly(D,L-lactide-co-glycolide) 

(PLGA), and their modified derivatives. Because of the wide range of the desirable 

physical properties, synthetic polymers can be precisely constructed in various 

formats of defined shape, morphology, and composition [103,104]. Their bio-

degradation can be controlled by their design and fabrication [105]. However, initial 

interaction between degradable scaffolds and seeded cells, as well as initial host 

response to tissue engineering devices, presents a critical challenge in the design of 

the synthetic polymers [99,106-108]. Finally, hybrid polymers are generally designed 

to achieve the desirable physical properties of synthetic polymers and the 

biocompatibility of natural bio-polymers. This may be achieved by chemically 

coupling bio-active components of natural substrates with synthetic polymers or 

chemically modifying bio-polymers to introduce desired physical properties 
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[99,109,110]. 

As for the present work, it was almost entirely based on the use and 

engineering of lactide derived biodegradable polymers as base materials. 

The reasons underlying this choice are not to be enclosed in a simple imitative 

model related to the widespread usage of these materials, at least not directly. 

Inevitably, the adoption of a "trendy" technological standard allows, more than 

others, to have at one's disposal a vast and readily available source of knowledge and 

tools that only experience could provide otherwise. In this optics, the access to a 

consolidated technological apparatus, like that of lactide-based polymers industry, is 

a necessary prerequisite for granting a solid starting base for any further 

advancement and contribution to the existing knowhow. 

Poly( lactic acid) (PLA) 

Poly(lactic acid), or polylactide, is a biodegradable, thermoplastic, aliphatic 

polyester. It is obtained by the ring-opening polymerization of lactide, the dimer of 

lactic acid (Fig. 2.3.1), which is produced from the bacterial fermentation of 

agricultural products and by-products.  

 

 

 

Fig 2.3.1: Synthesis of poly(lactic acid) (PLA) [111]. 

 

Lactide exists as two optical isomers, D and L. L-lactide is the naturally 

occurring isomer, and DL-lactide is the synthetic blend of D-lactide and L-lactide. 

The homo-polymer of L-lactide (PLLA) is a semi-crystalline polymer. These types 

of materials exhibit high tensile strenght and low elongation, and consequently have 

a high modulus that makes them more suitable for load bearing applications, such as 

in orthopedic fixation and sutures [102]. Poly(D,L-lactide) (PDLA) is an amorphous 

polymer exhibiting a random distribution of both isomeric forms of lactic acid, and 

accordingly is unable to arrange into an organized crystalline structure. This material 

has lower tensile strength, higher elongation, and a much more rapid degradation 
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time, making it more attractive as a drug delivery system[112-114]. 

PLA is about 37% crystalline, with a melting point of 175-178°C and a glass 

transition temperature of 60-65°C [49,115]. The degradation time of PLLA is much 

slower than that of PDLA, requiring more than a years to be completely adsorbed 

[116]. Co-polimers of L-lactide and DL-lactide have been prepared to disrupt the 

crystallinity of L-lactide and accelerate the degradation process [117,50]. 

With respect to soft and hard tissue repair, PLA has always been one of the 

most diffused biomaterials [118-121]. Until the late 1980s, application of PLA was 

limited to medical uses due to its high price. However, decreases in the production 

cost of lactic acid together with the improvements in the polymerization process, 

have led its commercial-scale production. Due to its chemical and mechanical 

stability, PLA is currently used in several biomedical and foodservice applications, 

while its “green” nature makes it a promising replacement for plastics like 

polyethylene terephthalate (PET) and polyvinyl chloride (PVC) for the sustainable 

packaging market [120]. Unlike most commercial polymers, the cost of PLA is not 

dependent on the production and price of oil, and is only determined by that of 

agricultural products like corn, tapioca, sugar cane and sugar beet. PLA is 

biodegradable in vivo, in the environment and in compost. Finally, high molecular 

weight PLA is rarely effected by fungi, mold, or other microbes at ordinary 

temperatures. 

 

 

Poly (lactic-co-glycolic acid) (PLGA) 

Poly(lactic-co-glycolic acid) is obtained by the co-polymerization of  the PLA 

and PGA monomers (see Fig. 2.3.2), through which it is possible to extend the range 

of homo-polymer properties of the starting materials [121]. 

Copolymers of glycolide with both L-lactide and DL-lactide have been 

developed for both device and drug delivery applications [102,113]. It is important to 

note that there is not a linear relationship between copolymer composition and the 

mechanical and degradation properties of the materials. As an example, a 50:50 

lactide-co-glycolide copolimer degrades faster than the base homopolymers [122].  
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Fig 2.3.2: Synthesis of poly(lactic-co-glycolic acid) (PLGA) [111]. 

 

This phenomenon is due to the disruptive activity exerted by the glycolic 

monomer which alters the regularity of the PLA polymer chain [117], resulting in a 

globally amorphous copolymer, i.e. PLGA. 

PLGA shows important advantages and drawback respect to PLLA. It’s much 

softer, easier to be degraded and  re-adsorbed by cells, with a much lower 

inflammatory response. Unfortunately, as the scaffold is required to be mechanically 

self-sustainable, even in the biological environments, in this work PLLA was 

generally preferred respect to pure PLGA for scaffold fabrication. 

In this work, the use of PLGA was limited to smooth film production or as 

base material for producing composite scaffolds, due to the possibility to enhance its 

weaker mechanical properties in vitro by nano-ceramics addition, while still 

preserving its higher suitability towards cellular systems. 

 

2.4 Porosity measurements  

 

Porosity measurements were performed onto round samples obtained from 

collected scaffold. Samples average thickness was measured by means of a dial 

micrometer (Rambold, Germany). The weight of each sample Ws was first measured 

using an analytical balance in order to get polymer’s effective volume Vo : 

 

 

 

 

being ρ0 the measured density of the purchased polymer, equal to 1.27 g*cm
−3

. 
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Scaffold open porosity, the only relevant for cell viability considerations, was 

derived by subtracting the value for scaffold closed porosity from that of the total 

porosity, both calculated using a density balance and applying Archimedes’ 

principle, through the following relationship: 

 

 

                                                                                                 

 

 

where ρ is the density calculated as the ratio of the weight and the volume of 

PLLA samples.  

The high hydrophobicity of PLLA added to capillary forces deriving from the 

sub-100 µm pore size make it impossible for water to spontaneously penetrate into 

the scaffold.  

If we consider the extremely low weight to apparent volume ratio for these 

structures it’s easy to imagine how they would receive a strong up thrust once 

immersed in the fluid, proportional to Vtot,, i.e., the volume occupied by the polymer 

and the total air (scaffold's total porosity): 

 

              

                                                                  

 

 

and: 

  

     
    

       
                                                                                       

 

 

where W'' is the measured net up thrust, UTtot the total air contribution and '' is 

the fluid density, equal to 1.0 g*cm
-3

,in this case water. The samples were then 

immersed into absolute ethanol where they sank after around 30 minutes. the 

samples ware left soaking for 2 hours in order to ensure complete ethanol permeation 
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into the scaffolds. The difference between the expected scaffold weight in ethanol 

(Ws –        with respect to that measured after scaffold sinking in ethanol, W' was 

due to the up-thrust exerted by ethanol on the air trapped inside the scaffold 

(UTclosed), and thus is directly proportional to the scaffold closed porosity Vclosed, 

being: 

 

 

                                                                          

 

 

 

And: 

 

 

        
       

       
                                                                                 

 

In which W’ is the soaked scaffold weight in ethanol and ρ’= 0.8 g/cm
3
 is 

ethanol density. The interconnected porosity was calculated as: 
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Fig 2.4.1:Analitical balance for porosity measurements 

 

2.5 Lithography 

 

Photolithography (or "optical lithography") is a process used in microfabrication to 

selectively remove parts of a thin film or the bulk of a substrate. It uses light to 

transfer a geometric pattern from a photo mask to a light-sensitive chemical 

"photoresist", or simply "resist," on the substrate. A series of chemical treatments then 

either engraves the exposure pattern into, or enables deposition of a new material in 

the desired pattern upon, the material underneath the photo resist. In complex 

http://en.wikipedia.org/wiki/Microfabrication
http://en.wikipedia.org/wiki/Substrate_(printing)
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Photo_mask
http://en.wikipedia.org/wiki/Photosensitive
http://en.wikipedia.org/wiki/Photoresist
http://en.wikipedia.org/wiki/Chemical_engineering
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integrated circuits, for example a modern CMOS, a wafer will go through the 

photolithographic cycle up to 50 times. 

Photolithography shares some fundamental principles with photography in that the 

pattern in the etching resist is created by exposing it to light, either directly (without 

using a mask) or with a projected image using an optical mask. This procedure is 

comparable to a high precision version of the method used to make printed circuit 

boards. Subsequent stages in the process have more in common with etching than to 

lithographic printing. It is used because it can create extremely small patterns (down 

to a few tens of nanometers in size), it affords exact control over the shape and size of 

the objects it creates, and because it can create patterns over an entire surface cost-

effectively. Its main disadvantages are that it requires a flat substrate to start with, it is 

not very effective at creating shapes that are not flat, and it can require extremely 

clean operating conditions. 

The steps involved in the photolithographic process are wafer cleaning; barrier layer 

formation; photoresist application; soft baking; mask alignment; exposure and 

development; and hard-baking. 

2.5.1 Wafer cleaning, barrier formation and photoresist application 

In the first step, the wafers are chemically cleaned to remove particulate matter on the 

surface as well as any traces of organic, ionic, and metallic impurities. After cleaning, 

silicon dioxide, which serves as a barrier layer, is deposited on the surface of the 

wafer. After the formation of the SiO2 layer, photoresist is applied to the surface of 

the wafer. High-speed centrifugal whirling of silicon wafers is the standard method 

for applying photoresist coatings in IC manufacturing. This technique, known as 

"Spin Coating", produces a thin uniform layer of photoresist on the wafer surface. 

2.5.2 Positive and negative photoresist 

 

There are two types of photoresist: positive and negative. For positive resists, the 

resist is exposed with UV light wherever the underlying material is to be removed. In 

these resists, exposure to the UV light changes the chemical structure of the resist so 

that it becomes more soluble in the developer. The exposed resist is then washed 

away by the developer solution, leaving windows of the bare underlying material. In 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/Wafer_(electronics)
http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Resist
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Optical_mask
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Etching
http://en.wikipedia.org/wiki/Lithographic_printing
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other words, "whatever shows, goes." The mask, therefore, contains an exact copy of 

the pattern which is to remain on the wafer. 

 

Negative resists behave in just the opposite manner. Exposure to the UV light 

causes the negative resist to become polymerized, and more difficult to dissolve. 

Therefore, the negative resist remains on the surface wherever it is exposed, and the 

developer solution removes only the unexposed portions. Masks used for negative 

photoresists, therefore, contain the inverse (or photographic "negative") of the pattern 

to be transferred. The figure below shows the pattern differences generated from the 

use of positive and negative resist. 

Negative resists were popular in the early history of integrated circuit processing, but 

positive resist gradually became more widely used since they offer better process 

controllability for small geometry features. Positive resists are now the dominant type 

of resist used in VLSI fabrication processes. 

 

 

Fig. 2.5.2.1: Example of working process for positive and negative photo-resist 
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2.5.3 Soft-baking 

Soft-baking is the step during which almost all of the solvents are removed from the 

photoresist coating. Soft-baking plays a very critical role in photo-imaging. The 

photoresist coatings become photosensitive, or imageable, only after softbaking. 

Oversoft-baking will degrade the photosensitivity of resists by either reducing the 

developer solubility or actually destroying a portion of the sensitizer. Undersoft-

baking will prevent light from reaching the sensitizer. Positive resists are 

incompletely exposed if considerable solvent remains in the coating. This undersoft-

baked positive resists is then readily attacked by the developer in both exposed and 

unexposed areas, causing less etching resistance. 

2.5.4 Mask alignment and exposure 

One of the most important steps in the photolithography process is mask alignment. 

A mask or "photomask" is a square quartz plate with a patterned emulsion of metal 

film on one side. The mask is aligned with the wafer, so that the pattern can be 

transferred onto the wafer surface. Each mask after the first one must be aligned to the 

previous pattern. 

Once the mask has been accurately aligned with the pattern on the wafer's surface, the 

photoresist is exposed through the pattern on the mask with a high intensity ultraviolet 

light. There are three primary exposure methods: contact, proximity, and projection. 

They are shown in the figure below. 

 

Fig.2.5.4.1: Three principal methods of exposure: (from left to right) Contact, Proximity, Projection 
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2.5.4.1 Contact printing 

In contact printing, the resist-coated silicon wafer is brought into physical contact 

with the glass photomask. The wafer is held on a vacuum chuck, and the whole 

assembly rises until the wafer and mask contact each other. The photoresist is exposed 

with UV light while the wafer is in contact position with the mask. Because of the 

contact between the resist and mask, very high resolution is possible in contact 

printing (e.g. 1-micron features in 0.5 microns of positive resist). The problem with 

contact printing is that debris, trapped between the resist and the mask, can damage 

the mask and cause defects in the pattern. 

2.5.4.2 Proximity printing 

The proximity exposure method is similar to contact printing except that a small gap, 

10 to 25 microns wide, is maintained between the wafer and the mask during 

exposure. This gap minimizes (but may not eliminate) mask damage. Approximately 

2- to 4-micron resolution is possible with proximity printing. 

2.5.4.3 Projection printing 

Projection printing, avoids mask damage entirely. An image of the patterns on the 

mask is projected onto the resist-coated wafer, which is many centimeters away. In 

order to achieve high resolution, only a small portion of the mask is imaged. This 

small image field is scanned or stepped over the surface of the wafer. Projection 

printers that step the mask image over the wafer surface are called step-and-repeat 

systems. Step-and-repeat projection printers are capable of approximately 1-micron 

resolution. 

2.5.5 Development 

One of the last steps in the photolithographic process is development. Fig.2.5.5.1 

below, shows response curves for negative and positive resist after exposure and 

development. 
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Fig.2.5.5.1: (a) Resist exposure characteristics (b) Resist after development 

 

At low-exposure energies, the negative resist remains completely soluble in the 

developer solution. As the exposure is increased above a threshold energy Et, more of 

the resist film remains after development. At exposures two or three times the 

threshold energy, very little of the resist film is dissolved. For positive resists, the 

resist solubility in its developer is finite even at zero-exposure energy. The solubility 

gradually increases until, at some threshold, it becomes completely soluble. These 

curves are affected by all the resist processing variables: initial resist thickness, 

prebake conditions, developer chemistry, developing time, and others. 

2.5.6 Hard-baking 

Hard-baking is the final step in the photolithographic process. This step is necessary 

in order to harden the photoresist and improve adhesion of the photoresist to the wafer 

surface. 

 

2.5.7 Soft-lithography for tissue engineering 

Photolithographic technologies offer a broad and unique tool for scaffolds the 
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design and fabrication of complex geometries and working devices operating at the 

micro and nano-scales [123,124]. The recent years have witnessed an impressive 

explosion and growth of photolithography even in the area of TE, usually referred to 

as soft-lithography [40], since it also deals with materials, generally plastics, softer 

than silicon and others. In particular, soft-lithography comprises a set of techniques 

(spin casting and lamination [43], replica moulding [48], microfabrication [42], 

capillary micromoulding [41], etc.), which rely on the use of an elastomeric stamp or 

replica for transferring a particular pattern over a suitable biocompatible or 

biodegradable polymer. The replica can be prepared by casting the liquid pre-

polymer of an elastomer (like PDMS) over a master exhibiting a pre-designed 

patterned decoration on its surface. In this way, multiple copies of the highly 

complex structures in the master can be promptly obtained with nanometer 

resolution. A complex 3D architecture can be finally achieved by stacking the 

produced membranes in different orientations [48,43]. 

The incredible spatial resolution that can be achieved by these techniques 

(down to 100 nm) are such to confer to the engineered scaffold the highest aspect 

ratio which characterize living organs, below which only self assembly processes can 

arrive.  

 

2.6 Cell culture 

 

Human Mesenchymal Stem Cells (hMSC) were purchased from LONZA Group Ltd 

(Basel, CH) and cultured in Mesenchymal Stem Cell Basal Medium (MSCBM) 

according to manufacturer instructions. Human Umbilical Vein Endothelial Cells 

(HUVEC) were purchased from LONZA Group Ltd (Basel, CH) and cultured in 

Endothelial Basal Medium (EBM-2) according to manufacturer instructions. Before 

the setting up of hMSC-HUVEC co-culture, hMSC were stained with a vital dye to 

distinguish them from HUVEC. For this reason, hMSC were washed in sterile 

phosphate buffer saline (PBS) and incubated for 30 minutes in complete growth 

medium with Vybrant™ Red vital dye (concentration: 4 ml/ml). After two washings 

in PBS, stem cells were cultured for 24 hours in complete growth medium. 

 

 

 



38 

 

2.7 Cryostat 

 

Cryostat are used in medicine to cut histological slides. They are usually used in a 

process called frozen section histology. 

The cryostat is essentially an ultrafine "deli-slicer", called a microtome, placed in 

a freezer. The cryostat is usually a stationary upright freezer, with an external wheel 

for rotating the microtome.  

The temperature can be varied, depending on the tissue being cut - usually from 

minus 20 to minus 30 degree Celsius. The freezer is either powered by electricity, or 

by a refrigerant like liquid nitrogen. Small portable cryostats are available and can run 

off generators or vehicle inverters. To minimize unnecessary warming all necessary 

mechanical movements of the microtome can be achieved by hand via a wheel 

mounted outside the chamber. Newer microtomes have electric push button 

advancement of the tissue. The precision of the cutting is in micrometres. Tissue are 

sectioned as thin as 1 micrometre. Usual histology slides are mounted with a thickness 

of about 7 micrometres. Specimens that are soft at room temperature are mounted on 

a cutting medium (often made of egg white) on a metal "chuck", and frozen to cutting 

temperature (for example at -20 degrees C). Once frozen, the specimen on the chuck 

is mounted on the microtome. The crank is rotated and the specimen advances toward 

the cutting blade. Once the specimen is cut to a satisfactory quality, it is mounted on a 

warm (room temperature) clear glass slide, where it will instantaneously melt and 

adhere. The glass slide and specimen is dried with a dryer or air dried, and stained. 

The entire process from mounting to reading the slide takes from 10 to 20 minutes, 

allowing rapid diagnosis in the operating room. The cryostat can be used to cut 

histology and tissue slide outside of medicine, but the quality of the section is poor 

compared to standard fixed section wax mounted histology. 

 

  

http://en.wikipedia.org/wiki/Deli_slicer
http://en.wikipedia.org/wiki/Microtome
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Chapter 3 

 

Experimental 

 

 

 

 

3.1 Sample realization 

3.1.1 Scaffold synthesis by thermally induced phase separation 

At the beginning of this work, the initial setup consisted of: 

- A chiller (Thomas® TRL107SLC) 

- A dewar 

- An aluminum holder (hollow cylinder) 

 

The heat exchanger part of the chiller is a circular serpentine connected to the 

compressor by a bendable tube. This serpentine is placed inside the dewar. Ethanol 

has been used as heat exchange liquid. 

 

Commercial PLLA (Mwa = 100,000 ÷ 150,000, Aldrich, USA) was dissolved 

in 1,4 dioxane (Aldrich, USA) at the fixed concentration of 4 wt%. The solution was 

cast into a circular teflon mold and left freezing for 4 days in a cold room at 

temperatures of  -50°C. For directional gradient induced TIPS, the solution-

containing mold was placed on top of the aluminum holder set at -30°C. After 

solidification, the sample was immersed into an 80% wt ethanol aqueous solution to 

leach out the solvent. It is worth to mention that, as the congealed solution was 

removed from the freezing chamber, its internal structure was completely formed and 

fixed in the solid state so that the ethanol bath temperature can only influence the 

speed of the dioxane extraction process. Nevertheless, under too high extracting 

temperatures, e.g. room temperature, dioxane change of state may occur, leading to 

localized polymer re-dissolution and loss of the pre-formed scaffold architecture. To 

avoid an excessively slow process while still preserving scaffold features, the 

extraction temperature was set -18°C for four days. Ethanol solution was finally 

removed by letting the scaffold in air for one day at room temperature. 
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One of the critical factor to obtain a good structured scaffold is the perfect 

perpendicularity between the polymer solution surface and the applied thermal 

gradient. 

To obtain this condition then, the aluminum holder must be accurately horizontally 

positioned. 

The need of manually positioning the sample mold, other operations and most of all 

the round shaped internal bottom of the dewar makes this task not easy. 

As said before, the time between the mold positioning and the start of freezing is 

really short, so it’s not possible to check the horizontality after positioning the mold. 

Moreover, removing the cap for too long leads to a rise of the bath temperature and 

increase of humidity, resulting in water condensation on the metal holder and 

alteration of the thermal interface. 

It is clear then, why some efforts have been made to researched a method to fix the 

holder in a horizontal position. 

 A first option was to weld a thin metal plate on the internal bottom surface of 

the dewar. This solution was put aside because of the high probability of damaging 

the dewar, in fact the heat of the welding can easily pierce the bottom of the dewar. 

 A second, mechanical, solution is represented in fig.3.1.1.1. 
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Fig.3.1.1.1: Scheme of the first device designed, aimed to obtain a horizontal plane inside the dewar 
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Three screws are used to aid the regulation of the horizontality of the support for the 

aluminum holder. 

Despite the easiness of the regulation this method wasn’t free from issues. To permit 

the escape of the three screws  it would have been needed a radical modification of 

the dewar cap, additionally the structure was not stiff enough to support the combined 

chiller serpentine and aluminum holder weight without some uncontrollable 

displacements. 

 Finally the method that has been chosen is represented in fig.3.1.1.2. 

An aluminum ring is conjunct on top of an inox steel ring of the same diameter 

through the use of screws. Both plates were perforated in several points to create a 

pattern able to permit the diffusion of convectional flows inside the ethanol bath. 

The so composed structure is fixed in horizontal position by a three-point-anchorage. 

Three inox steel spheres are pushed against the internal wall of the dewar by lowering 

the screws making the whole system fixed to the dewar. 

The role of the steel ring is of giving weight and thus stability. 
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Fig.3.1.1.2: Scheme of the device utilized to flatten the bottom of the dewar 
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3.1.2 Used molds 

 

In this work three types of molds have been used: 

- a small beaker-like Teflon mold 

- three Teflon molds of different geometrical shape 

- a new Teflon reactor (described in § 3.1.3) 

 

The small beaker molds were used at the beginning of the work and they also resulted 

convenient during the optimization of the process because of the possibility of utilize 

more than one per time thanks to their limited size and amount of chemicals required. 

 

 

 

Fig. 3.1.2.1: Scheme of the three different Teflon molds 

 

When the mold is putted inside the chiller, the solution in contact with the cold walls 

of the mold solidifies in a first amorphous layer and then in an ordered structure. 
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This amorphous layer reduces the amount of the sample that can be used so it was 

decided to try using new molds (Fig.3.1.2.1) to increase the ordered area. 

These new molds share the same base area and maintain the same bottom and wall 

thickness of the beaker-like molds to prevent uncontrolled behavior changes of the 

system. 

Furthermore we investigated any possible influence of the mold geometry respect of 

the order/disorder of the structure of the scaffolds. 

 

3.1.3 Design of a new reactor 

 

Due to the non significant differences between the previous mold types, it was 

designed a new reactor utilizing a different approach. 

The concept was to maximize the thermal insulation of the walls and the 

conductivity of the bottom, improving the control of the system by direct temperature 

measurement of the bottom. 

Since the working temperatures were quite low, it was decided to maintain the 

structure of the reactor as simple as possible, thus with the minimum of different 

materials to avoid thermal deformation problems. 

Another parameter that influenced the design was the small amount of available 

materials. 

The final solution was to utilize a Teflon rod and silicon wafers. 

The device has completely been realized by machining the Teflon rod. 

As shown in Fig.3.1.3.1, the reactor has a cylindrical geometry to reduce the 

loss of material during the machining and because a circular shape of the mold 

seemed the one with the best results. 

The reactor is composed of five components: 

- the Teflon body: 

o bottom part 

o middle part 

o cap 

- a poly-carbonate O-ring 

- a silicon wafer 
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Fig. 3.1.3.1: Scheme of the three parts of the Teflon reactor 

 

The bottom part presents a lower half composed of many foot stands and an 

upper half with a lodging in which the silicon wafer allocates. 

The hole through the entire piece, combined with the many small foot stands, allow a 

good circulation of the liquid that acts as heat exchanger. 
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Right under the level of the wafer there are four holes, which go through all the length 

of the wall, permitting the escape of air during the immersion of the reactor in the 

dewar, avoiding bubbles and a low efficiency in the extraction of heat. 

 

 

 

Fig. 3.1.3.2: 3D model of the assembled reactor 

 

The middle part has a one inch hole through all the length of the piece that is 

the actual mold in which the solution is poured in. 

On the bottom from the inside there are the O-ring lodging and going to the outside an 

air space that aids the thermal insulation. 

From one point at the internal end of the air chamber departs one hole that reaches the 

top of the piece. This hole permits the insertion of a thermocouple that can measure 

directly the temperature of the silicon wafer. 

The cap has one hole through all the length to avoid compression of the fluids 

(the mold isn’t completely filled with the scaffold forming solution) inside the mold 

during the closing down of the reactor or the decompression due to the low 

temperature during the chilling. 
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Fig. 3.1.3.3: Exploded view of the 3D model of the reactor 

 

3.1.4 Optimization of the process 

 

In this work several process parameters has been varied to investigate any change in 

the structure, morphology and mechanical properties of the scaffolds so obtained. 

We started from the following set-up and then changed one parameter per time. 

After finding the best value of the changed parameter by visual analysis (SEM) of the 

scaffold structure, this value was adopted in the set-up for the next parameters. 
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From bibliography, the starting parameter we adopted were: 

- Polymer (PLLA) concentration: 4,6 % wt in 1,4-dioxane 

- Time of chilling: 4 days 

- Temperature of chilling: -50 C° (temperature imposed to the 

chiller) 

- Time of leaching: 4-5 days 

 

The time of chilling has been varied as follows: 

- 32 hours 

- 28 hours 

- 24 hours 

- 20 hours 

- 16 hours 

- 12 hours 

 

After noticing that a good structure could be obtained after 12 hours we also 

investigate 

- 8 hours 

- 2,5 hours 

 

The leaching time has been varied as follows: 

- 48 hours 

- 44 hours 

- 40 hours 

- 36 hours 

- 32 hours 

- 28 hours 

 

The chilling temperature was investigated in this range (temperature imposed to the 

chiller): 

- - 70 C° 

- - 60 C° 

- - 50 C° 

- - 40 C° 
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- - 30 C° 

- - 20 C° 

 

As happened many times in science, serendipity came in our help. In fact, during a 

trial set-up without expectations of any significant results, we obtained an exceptional 

good structure at a high temperature respect of the above mentioned, thus we decided 

to focus on the following temperatures: 

- - 40 C° 

- - 30 C° 

- - 20 C° 

- - 10 C° 

 

The polymer concentration has been varied as follow: 

- 4 %wt 

- 3.5 %wt 

- 3 %wt 

- 2.5 %wt 

- 2 %wt 

 

Futhermore we investigate the effect of the mold’s shape: 

- Small beaker 

- Circular 

- Square 

- Exagonal 

- New reactor 
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3.1.5 Realized scaffolds 

 

The scaffolds realized during this work are listed in Tab.3.1.5.1. 

 

NAME Material CONCENTRATION Mold type TIPS T TIPS 

Time 

Leach

ing 

Time 

T26 PLLA 
0.11g in 2,3mL 

Dioxane 

Small 

Teflon 

beaker 

-26±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3g 3 days 

T27 PLLA 
0.11g in 2,3mL 

Dioxane 

Small 

Teflon 

beaker 

-26±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3g 3 days 

T28 PLLA 
0.11g in 2,3mL 

Dioxane 

Small 

Teflon 

beaker 

-28±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

46h 
3,5 

days 

T29 
PLLA/Ce

O2 

0.11g in 2,3mL 

Dioxane + 0.01g CeO2 

Small 

Teflon 

beaker 

-28±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

46h 
3,5 

days 

T30 

A 

round 

B 

square 

C 

hexag 

 

PLLA 
0.17g in 3,3mL 

Dioxane 

New 

molds of 

494 

mm
2
surfac

e area 

-28±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3,5gg 3 days 

TIPS 

Si 
PLLA 

0,337g in 7,4 ml 

Dioxane 

Teflon 

reactor 

with Si 

wafer 

-58±1°C (Bagno 

EtOH) (-50 set) 

- Fatta taratura a un 

terminale 

48h 4 days 

T31 PLLA 
4ml of 5,1g in 10,9 ml 

Dioxane solution 

New 

square 

teflon 

mold 

-29±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3gg 4 days 

T32 PLLA 
2,5ml of  5,1g in 10,9 

ml Dioxane solution 

New 

circular 

teflon 

mold 

-29±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3gg 4 days 

T33 PLLA 
4ml of 5,1g in 10,9 ml 

Dioxane solution 

Small 

Teflon 

beaker 

-29±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3gg 4 days 
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T34 
PLLA/Ce

O2 

0,15g+0,02g CeO2 in 

3,6ml Dioxane 

Small 

Teflon 

beaker 

-30±1°C (Al) (-50 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

3,5g 4 days 

TIPS 

Si X 2 
PLLA 

0,15g in 3,6 ml 

Dioxane 

New 

Teflon 

Reactor 

9±1°C (Al) (-35 set) 

- Fatta taratura a due 

terminali 

- In livella 

1g 
4,5 

days 

T35 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-25 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

21h 4 days 

T36 PLLA 
0,15g in 3,6 ml 

Dioxane 

New 

circular 

teflon 

mold 

-10±1°C (Al) (-25 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

21h 4 days 

TIPS 

Si X 3 
PLLA 

0,3g in 7,2 ml 

Dioxane 

New 

Teflon 

Reactor 

10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

16h 3 days 

T37 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

16h 4 days 

T38 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T39 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

24h 4 days 

T40 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

12h 4 days 

T41 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

28h 4 days 

T42 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

32h 4 days 

TIPS 

Si X 4 
PLLA 

0,3g in 7,2 ml 

Dioxane 

New 

Teflon 

Reactor 

10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

20h 3 days 
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T43 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 28h 

T44 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 32h 

T45 PLLA 
0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

8h 4 days 

T46 
PLLA/Ce

O2 

0,15g in 3,6ml 

Dioxane with 

dispersed CeO2 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

24h 5 days 

T47 e 

bis 
PLLA 

0,13g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T48 e 

bis 
PLLA 

0,11g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T49 e 

bis 
PLLA 

0,09g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T50 e 

bis 
PLLA 

0,07g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 6 days 

TIPS 

Si X 5 
PLLA 

0,3g in 7,2 ml 

Dioxane 

New 

Teflon 

Reactor 

10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

20h 3 days 

T51 e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

TIPS 

Si X 6 
PLLA 

0,3g in 7,2 ml 

Dioxane 

New 

Teflon 

Reactor 

10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

20h 3 days 

T52 e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-5±1°C (Al) (-20 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 
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T53 e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

0±1°C (Al) (-10 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T54 e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-20±1°C (Al) (-40 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T55 e 

bis 
PLLA 

0,10g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-8±1°C (Al) (-30 set) 

- Fatta taratura a tre 

terminali 

- Asciugato l’holder di 

Al 

20h 4 days 

T55’ e 

bis 
PLLA 

0,10g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

20h 4 days 

T37’ e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

16h 4 days 

T42’ e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

32h 4 days 

T47’ e 

bis 
PLLA 

0,15g in 3,6 ml 

Dioxane 

Small 

Teflon 

beaker 

-10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

20h 4 days 

TIPS 

Si X 7 

PLLA/Ce

O2 

0,3g in 7,2 ml 

Dioxane with 

dispersed CeO2 

New 

Teflon 

Reactor 

-10±1°C (Al) (-30 set) 

- Fatta taratura a due 

terminali 

- In livella 

20h 4 days 

 

Tab.3.1.5.1: Realized scaffolds list 

 

 

3.1.6 Design of lithographic mask 

 

One of the reasons why we chose to use a silicon wafer as the bottom of the 

mold in the new reactor (§3.1.3) is because of the possibility of developing a 

lithographic pattern on it. 

The structure of the scaffold that we pursue is given by the dissolution of the polymer 

solvent, after that this is frozen. The solvent crystallize with the mechanism of 

formation and the shape of dendrites. 

With this lithographic pattern we tried to trigger the formation of an organized pattern 

of dendrites in the chilling sample to obtain a better structure of the scaffold that 

could be more suitable for cells. 
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Fig. 3.1.6.1: Scheme of the photolithographic pattern for the reactor 

 

After producing a good amount of scaffolds, the dimensions and distances between 

near pore channels has been analyzed thus has been decided to realize a 

photolithographic mask structured as in Fig.3.1.6.2 a) and b). 

 

 

(a) 

 

(b) 

Fig. 3.1.6.2: Scheme of the photolithographic mask; a) dimensions, b) pattern subdivision 

 

We designed various patterns to obtain square pillars with different size of the square 

side and different distance between the center of the squares. 
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Some of the patterns are positive to obtain wells instead of pillars (used photo-resist is 

negative). 

We also designed one pattern with a cross shape to mimic the dendrite shape. 

 

Match between patterns: 

- Influence of pillar size: 

o A,B and D 

o L and M 

- Influence of the shape: - B and C 

- Influence of the spacing: 

o  A,I,M and N 

o B and L 

- Influence between P/N: 

o A and G 

o B and E 

o F and L 

o D and H 

. 

The pattern design is explained in Tab.3.1.6.1 

 

Letter Side [m] Spacing [m] (from 

center to center) 

Positive / 

Negative 

Shape 

A 50 250 N Square 

B 100 250 N Square 

C 100 250 N Cross 

D 20 250 N Square 

E 100 250 P Square 

F 100 300 P Square 

G 50 250 P Square 

H 20 250 P Square 

I 50 150 N Square 

L 100 300 N Square 

M 50 300 N Square 

N 50 500 N Square 

 

Tab. 3.1.6.1: Photolithographic mask design 
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3.1.7 Realization of the photo mask 

 

A small amount of SU-8 was deposited on top of the silicon wafer. Immediately after 

the resist has been homogeneously distributed by spin coating technique. 

Spin-coating followed this path: from 0 to 3000 rpm in 5 sec, 3000 rpm constant per 

30 sec, from 3000 to 5000 rpm in 1 sec, 5000 constant per 5 sec and finally from 5000 

to 0 rpm in 5sec. Soft backing was run for 20 min at 45 °C. 

The edges of the wafer has been trenched removing the external ring with different 

thickness. The exposure was held for 70 seconds at 18,8 watt. 

Hard backing has been performed at 65 °C for 90 seconds and then at 90 °C for 5 

minutes. 

Finally, the wafer has been stirred in SU-8 developer for 15 minutes, rinsed in clean 

SU-8 developer for 60 seconds and dried with compressed air. 

 

 

 

Fig. 3.1.7.1: Picture of trials of pattern N and L 
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3.2 Scaffolds characterization 

 

3.2.1 Morphology and mechanical characterization 

 

3.2.1.1 Scanning electron microscopy (SEM) 

 

Scaffold morphology was mainly determined by optical and scanning electron 

microscopy (SEM) observations. The non-biologically treated scaffolds were 

mounted on aluminum stubs using adhesive conducting carbon tape and platinum 

sputtered for 40 seconds (EMITECH K500X, United Kingdom), prior to be observed 

in a field-emission scanning electron microscope (FE-SEM, HITACHI HIGH 

SU8000, Japan; FE-SEM, HITACHI HIGH S4800, Japan) operating at acceleration 

voltages of 1 ÷ 10 KV. Once cell seeded, PLLA scaffolds were subdued to cell 

fixation and dehydration prior to SEM investigation, to avoid damage of the UH 

vacuum chamber of the microscope. Briefly, cells were fixed by covering the 

scaffold with glutaraldeide (GA) 2,5% in self made phosphate buffer (PB) 0,1 M at 

pH 7.2 for 2 h and then washed several times in PB. The construct was further 

washed in PB and subsequently kept in PB-EtOH solution at increasing EtOH 

concentrations from 30% to 100%. Once dried in air, the sample was finally ready 

for metallization. 

 

3.2.1.2 Compression test 

 

Scaffold mechanical properties were investigated by means of compression 

testing. The main round sample was cut into cubes of 5-6 mm edge, being the pore 

channels side oriented either along or perpendicular to the sample holder. The cubes 

were mounted on a EZ-S 500N (SHIMADZU, Japan) universal tensile tester, inside 

an environmental chamber (CHROMO CHAMBER M-600FN, TAITEC, Japan) set 

at 37°C and compressed at speed rate of 3 mm·min
-1

. For each test, the tensile 

strength was normalized to the average sectional area of the relative sample. For each 

sample, the compression modulus (E) was obtained by averaging the measurements 

performed in triplicate or quadruplicate, being E derived from the elastic portion of 

the compression diagram in each measurement. Data plot and fitting were made 

using Microcal Origin 8.0 software. 
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Fig. 3.2.1.2.1: Utilized compression test machine 

 

 

 

3.2.1.3  Porosity measurements 

 

The procedure used to measure porosity is described in §2.4 

 

3.2.2 Biological validation 

 

The biological validation of the scaffolds was performed by two different techniques. 

In a first attempt, the cells were seeded onto 3D scaffolds using a novel, vacuum-

based technique aimed at obtaining inner layer perfusion, while in a second set of 

experiments, thin scaffold sections were obtained by cryostat processing and then 

seeded with the cells. Both procedures allowed the setup of cell cultures up to 7 days. 
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Fig. 3.2.2.1: Utilized cryostat 

 

 

 

3.2.2.1  Sample preparation for cryostat 

 

After removing the top and bottom part by cutting with a sharp blade, to obtain 

exposed channels on both the surfaces, the scaffold, has been gently ripped along the 

diameter. Then the sample has been immersed in an aqueous solution with 30% wt of 

sucrose solution. 

Once the scaffold had sunk in the solution, it could be treated to obtain a suitable 

sample for the cryostat. 

A small dewar has been filled with a small quantity of grinded dry ice and hexane. 

The scaffold has been placed on a small plate ladle with a small quantity of solution 

and put in contact with the surface of the melting dry ice. 

After freezing, the sample has been moved inside of rectangular shape metal ladle and 

covered with OCT (Optimal Cutting Temperature compound), immersed again in the 

dry ice and, when frozen, moved on top of the sample holder, previously covered with 

a layer of OCT, and placed inside the cryostat (Fig.3.2.2.1.1) (LEICA, Germany), 

kept at the fixed temperature of -20 °C to avoid re-melting of the including agent . 
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In order to obtain a more stable attachment of the sample to the holder, a small metal 

cold weight is pressed against the sample during the OCT hardening. 

When the sample froze it has been cut in slices of 60 m of thickness. The slices have 

been placed on petri-dish or microscope slide for a firs observation. 

 

3.2.2.2  Cell seeding on thin sections 

 

HUVEC and Vybrant-stained hMSC were co-cultured in EBM-2 medium onto poly-

styrene dishes or onto TIPS scaffold sections for 7 days. At this timepoint, the cells 

were washed twice in sterile PBS and fixed with a solution containing 

paraformaldehyde (PFA, concentration 4% in PBS) for 30 minutes at 4°C. 

Subsequently, cell membrane was permeabilized with TRITON X-100  

(SIGMA-Aldrich, Concorezzo, Italy) for 2 minutes, washed twice in PBS and 

incubated with 5% Bovine Serum Albumin (BSA) to avoid unspecific antibody 

staining. 

 

 

3.2.2.3  Sample preparation for 3D cell seeding 

 

The scaffold has been cut with a sharp blade removing the top and bottom part 

exposing the pore channels. Afterwards, it has been washed several times with 

ethanol, sterilized by UV light for 5 minutes per side and soaked in sterile cell 

medium at 37°C, 5% CO2. 

 

3.2.2.4  3D Cell seeding 

 

To achieve complete scaffold colonization, Vybrant-stained hMSC and HUVEC 

were forced to enter scaffold inner layers using a vacuum-based technique. Cells can 

access the inner part of the scaffold directly from the axial pores or by sliding 

through the surface ends of the lateral branches. However, as shown schematically in 

Fig.3.2.2.4.1, the infiltration process can be very different if performed from the 

bottom or the top scaffold surface, given the oriented fishbone structure of the pores. 

Referring to the fishbone cross section, the two possible mechanisms proposed are 
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visually described in Fig.3.2.2.4.1. When cells are forced within the scaffold from 

the top side, the surface terminal lamellae act like a multi-funneled structure, whose 

effect is to convoy the cell flux mainly into the vertical channels (Fig.3.2.2.4.1(a)). 

When cells are infiltrated from the bottom side (Fig.3.2.2.4.1(b)), the reverse-funnel 

configuration facilitates cell migration from the backbone channels to the side 

branches, leading to a more uniform cell distribution within the construct. Therefore, 

to improve an even cell distribution, the scaffold was positioned with its back face 

adjacent to the syringe inlet, both during normalization and seeding steps. 

3D dTIPS scaffold was positioned in a plastic syringe and locked by mean of PTFE 

rings. 

3D co-culture onto TIPS scaffolds was performed in EBM-2 medium for 7 days. At 

this timepoint, the cells were washed twice in sterile PBS and fixed with a solution 

containing paraformaldehyde (PFA, concentration 4% in PBS) for 30 minutes at 4°C. 

Subsequently, cell membrane was permeabilized with TRITON X-100  

(SIGMA-Aldrich, COncorezzo, Italy) for 2 minutes and incubated with 5% Bovine 

Serum Albumin (BSA) to avoid unspecific antibody staining. 

 

 

(a) 

 

(b) 

 

Fig. 3.2.2.4.1: Schematics of cellular infiltration mechanisms upon the application of a pressure 

gradient: (a) top surface inlet, (b) back surface inlet. 
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(a) 
 

(b) 

 

(c) 

Fig. 3.2.2.4.2: Scheme of the syringe cell seeding procedure: a) set-up; b) aspiration; c) expulsion 
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In Fig.3.2.2.4.2 is represented the syringe set-up and procedure utilized for the cell 

seeding. 

Fig.3.2.2.4.3 shows a dTIPS scaffold after 7DIV of cells culturing, after extraction 

from the culture dish (Fig. 3.2.2.4.3(a)) and after immersion in PFA for cell fixation. 

 

 

(a) 

 

(b) 

Fig. 3.2.2.4.3: Pictures of the scaffolds after cells seeding a) as extracted from the culture dish and b) 

soaked in PFA for cell fixation 

 

Dark pink regions visible in both figures over the samples correspond to the cell 

colonized areas, whose intensity can be related to the cell density within the 3D PLLA 

scaffolds. 

 

3.2.2.5  Immunofluorescence 

 

The samples were incubated for 2 hours with primary antibodies directed 

against alpha smooth muscle actin (ASMA) or von Willenbrand Factor (vWF). The 

first antibody was intended to stain actin filaments, thus highlighting cell morphology, 

while the latter is directed against a protein (vWF) exclusively expressed in 

endothelial cells. 

After massive washing in PBS, the samples were incubated with appropriate 

FITC-labelled secondary antibody. Nuclei were counterstained with 4’,6’-diamidino-

2-phenylindole (DAPI) for 2 minutes. The occurrence of specific signals was 

visualized under LEICA TCS-5 confocal microscope. 
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Chapter 4 

 

Results and discussion 

 

 

 

4.1 Morphological characterization 

 

4.1.1 Scaffold structure 

 

The processing method was directional TIPS to enhance the ordered 

configuration in the scaffold porosity. The scaffolds were initially fabricated by 

dTIPS from 6.4 wt% PLLA/dioxane solutions. The solution was put on a cold plate 

kept at -40°C, and thus the thermal gradient was applied from the bottom to the top 

of the solution free surface, in the perpendicular direction. 

During the work we varied the process parameters but the structure itself didn’t 

change. What changed were the dimensions of each part of this structure. 

 The scaffold’s macrostructure that can be observed const of a peripheral 

region, bottom, external borders and sometimes external ring on the surface, of non 

ordered units of the microstructure and a core region of highly ordered structure. 

The disorder of the peripheral region was due to the contact with the walls of the 

mold. 

Forcing the thermal gradient to only occur in the perpendicular direction 

resulted in the dioxane crystals coordination into densely packed vertical arrays. 

After the sample reached the thermal equilibrium at -40°C, the dioxane crystals were 

then dissolved in an EtOH/H2O bath at -18°C, and their fingerprints were left in the 

polymeric matrix.  

The processing was reliable and reproducible. The resulting porosity was 

characterized by a long-range ordered hierarchical structure. 

Fig.4.1.1.1 shows the SEM micrographs of the morphology of obtained scaffolds.  
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(a) 

 
(b) 

 
(c) 

Fig.4.1.1.1: SEM micrographs of scaffolds obtained by directional TIPS carried out at -40°C onto 6.4% 

PLLA in 1,4 dioxane solutions: (left to right, starting from the left upper corner) a) cross sectional view; b) 

top view of a PLLA scaffold prepared by dTIPS, 4,5 cm in diameter and 0.6 mm thick showing the circular 

pore arrangement observable at the macro-scale; c) top zoomed views of surface morphology resulting 

from the protrusion of the lamellae on the surface 

 

Starting from the cross sectional view (Fig.4.1.1.1 a)), one can observe an array 

of straight parallel channels of about 20 µm diameter (inset of Fig.4.1.1.1 a)) going 

across the entire scaffold thickness. Each channel exhibits side tubular branches of 

comparable diameter departing from the whole channel length at about 45 to 70 

degrees with respect to the channel axis.  

As a result, the observed cross sections assume a typical multiple fishbone-like pore 

arrangement, as depicted in the figure. 

The holes in Fig.4.1.1.1 correspond to the top (Fig.4.1.1.1 b) and c)) surfaces channel 

terminations. As visible, the channel section is characterized by a three-poled 

stingray-like shaped section.  

The pores are arranged in concentrical rows, which confer the scaffold a typical 
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surface fibrous texture on the 80 µm scale (Fig.4.1.1.1 b)). This peculiar arrangement 

is nothing but the consequence of the circular symmetry impressed by mold inner 

walls, which are responsible for triggering the heterogeneous nucleation of the 

solvent. 

Finally, if we observe the fracture line shown in the picture, it is possible to notice 

how the tail channel density in the cross section varies depending on the fracture 

plane orientation. In particular, the channels appear more densely packed in fracture 

planes perpendicular to the pore rows (radial direction) and less dense in those 

tangent to the row direction. 

In the case of directional TIPS,  the highly ordered configuration deriving from 

the processing conditions allowed a rational study of the scaffold morphology. From 

the combined electronic and optical microscopy analysis of the samples, it was 

possible to model the scaffold pore architecture and identify the single repetitive pore 

unit.  

The structure as a whole can be assumed as the stack of parallel planar fibers 

intimately in contact, each one representing an array of dendritic units co penetrating 

each other (Fig.4.1.1.2 a)). 

The single pore dendrite unit is evidenced in the SEM micrograph of 

Fig.4.1.1.2 b) and schematized by the simplified model of Fig.4.1.1.2 c), as the 

superposition of a number of polymeric lamellar layers (three, in Fig.4.1.1.2 b)), 

whose amount depends on the scaffold thickness. 

Each section of the pore unit, is constituted by three main lamellae which 

depart from the stingray sectioned central channel. Two of the lamellae elongate 

from the stingray wings in the row direction (y direction), towards the first 

neighboring pore unit, while the third one (generally shorter) departs from the 

stingray tail in the radial direction (x direction). 
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Fig:4.1.1.2: a) Exploded view of the schematics of the scaffold; b) SEM visualization of a surface 

terminating single PLLA dendritic unit obtained by dTIPS; c) Schematics of a three-layered segment of 

the unit: growth (z), in-row (y) and row-to-row (x) directions are indicated together with the 20° ÷ 45° 

lamellar bending. 

 

Referring to Fig.4.1.1.2 c), the parameters d and D were defined as the 

diameter of the minor pole of the channel section (stingray tail), and the channel 

cross-sectional largest dimension (stingray wing-to-wing aperture), respectively. 

The diagonal side channels observed in Fig.4.1.1.1 a) correspond to the inter-space 

between two adjacent lamellae in the vertical direction z. In this case their diameter 

is about 20 µm, thus comparable with d, but can decrease to 15 ÷ 18 µm in case of 

pronounced lamellar bending.  

The observation of the cross sections of the dTIPS samples, constantly 

evidence how, at the micron scale, the fracture of the scaffold tends to occur in 

correspondence of the necking point of the stingray tail, thus leaving the tail channel 

well exposed on the section plane. The tail channel diameter corresponds to d and 

can be easily measured. 

However, it must be noted that the main channel aperture D, which is always 

about three times larger than d, is the effective parameter that must be considered for 

cell accommodation evaluations. 

In Fig.4.1.1.3 are reported some examples of a well ordered structure, in 
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Fig.4.1.1.4 instead an example of a disordered structure. 

 

 

 

(a) 

 

(b) 
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(C) 

 

(d) 

Fig.4.1.1.3: Examples of well ordered structure of dTIPS scaffolds: a) TIPS 30 cross section; b) TIPS 

30 cross section; c) TIPS 39 cross section; d) TIPS Si X 2 surface 
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(a) 

 

(b) 

Fig.4.1.1.4: Examples of non ordered structure of dTIPS scaffolds: a) TIPS 49 cross section; b) TIPS 

49 cross section 
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4.1.2 Porosity measurements 

 

Porosity measurements were conducted as described in §2.4. 

 

The porosity values found for these scaffolds are reported in Tab.4.1.2.1. 

 

TIPS Ws [g] W' [g] W" [g] open [%] tot [%] closed [%] 

T37' 0.03505 0.013 0.4883 94.73345 94.72658 -0.00686 

T42' 0.05431 0.0156 0.7328 93.85251 94.56699 0.714477 

T47 0.05209 0.017 0.7935 94.81279 95.14945 0.336659 

T47' 0.04906 0.0162 0.7877 95.09119 95.38339 0.292208 

T48 0.03893 0.0144 0.6332 95.43801 95.43934 0.001333 

T49 0.03212 0.0122 0.6648 96.42714 96.37098 -0.05615 

T50 0.02447 0.0095 0.462 96.15341 96.03928 -0.11413 

T54 0.03645 0.014 0.4927 94.69668 94.57606 -0.12063 

T51 0.03065 0.0114 0.4236 94.70281 94.6871 -0.01571 

T52 0.0357 0.0136 0.5083 94.92188 94.83268 -0.0892 

T53 0.04065 0.0101 0.5644 93.68854 94.70988 1.021341 

T55 0.03054 0.0122 0.6441 96.60189 96.43554 -0.16635 

 

Tab.4.1.2.1: Measured values of porosity of selected scaffolds obtained by dTIPS 

 

As shown in Tab.4.1.2.1, values of total porosity settles around 94,5% ÷ 96,5% that 

is in line with values from other works on TIPS scaffold in bibliography. 

Open porosity values are ,almost in every case, bigger than total porosity, that of 

course is not possible.  

This error is due to air micro bubbles trapped under the scaffold during the W’ 

measurements. 

This is a clear sign of the really good interconnection of the porosity in the scaffolds 

and, with a good approximation is possible to affirm that open porosity assets around 

97% ÷ 98% of the total porosity. 

Therefore close porosity must be the remaining 2% ÷ 3%. 
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4.2 Mechanical characterization 

 

The mechanical properties of dTIPS scaffolds made during this work have been 

obtained by mean of compression test. 

The scaffolds has been cut into cubes of approximately 5 mm of side and then 

subjected to compression. 

The compression has been actuated both in the direction of the pore channels and in 

the direction perpendicular to them. 

An example of the mechanical behavior of the scaffolds in reported in Fig.4.2.1 and 

Fig.4.2.2. 

 

 

 

Fig.4.2.1: Stress-strain graphs of TIPS 54 in channel direction and perpendicular to channel direction 
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Fig.4.2.2: Stress-strain graphs of TIPS 37, TIPS 38, TIPS 39, TIPS 40, TIPS 41 and TIPS Si X 2 in 

channel direction 

 

From Stress-strain graphs is possible to notice how the behavior of dTIPS scaffolds 

aligns with the behavior of cellular materials. 

It’s quite easy to recognize a first linear elastic deformation, a plateau and the final 

densification. 

 

Estimations of the Young’s modulus have been made possible through the analysis of 

the Stress-strain curves as shown in Fig.4.2.3. 

Multiple samples of the same scaffold have been tested and arithmetical means have 

been calculated from the obtained values. 

Calculated values of dTIPS scaffolds Young’s modulus along the channel direction 

have been reported in Tab.4.2.1. 
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Fig.4.2.3: Linear fitting of the stress-strain curve of TIPS 38 along the direction of the channels 

 

 

 

NAME Young’s modulus [MPa] NAME Young’s modulus [MPa] 

T37' 2.93 T47 1.99 

T38 5.3 T51 3 

T39 6.79 T52 2.5 

T40 2.05 T53 2.89 

T41 6.62 T54 3.22 

Tsi X2 3.41   
 

Tab.4.2.1: Calculated values of dTIPS’s Young’s modulus of selected scaffolds along channel 

direction 

 

 

Young’s modulus values calculated for dTIPS scaffold assets between values of 2 

MPa and 7 MPa. These values are in line with other works on TIPS scaffolds reported 

in bibliography. 
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4.3 Influence of process parameters variation 

 

4.3.1 Influence of the chilling temperature 

 

The effect of chilling temperature has been observed by mean of changes in 

morphology, porosity and mechanical properties. 

In Fig.4.3.1.1 the behavior of total porosity in function of the chilling temperature is 

presented. 

 

 
 

Fig.4.3.1.1: Total porosity trend in function of chilling temperature 

 

As shown in Fig.4.3.1.1, the slight variation of porosity is not enough to be 

considered significant even if an increase of porosity with of the chilling temperature 

can be noticed. 

As previously mentioned, the mechanism of formation of the porosity results 

in dendrite-like cavities, which are the fingerprints of the crystallized solvent after 

leaching. 

What can be expected from such mechanism is the formation of a larger 

microstructure with the increase of the temperature. 

This phenomenon is clearly showed in Fig.4.3.1.2 and Fig.4.3.1.3. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig:4.3.1.2: a) TIPS 54, 110 m, -20 °C; b) TIPS 52, 150 m, -5 °C; c) TIPS 53, 200 m, 0 °C; d) TIPS Si X 2, 250 m, 9 °C 
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Fig.4.3.1.3: Total porosity trend in function of chilling temperature 

 

 

 

As is clearly observable, the dimension of the pore channels increase of almost 

150% going from the chilling temperature of -20 °C to 10 °C, that is just below the 

freezing point of 1,4-dioxane. 

 

In Fig.4.3.1.4, the behavior of the Young’s modulus in function of the chilling 

temperature is shown. 
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Fig.4.3.1.4: Young’s modulus trend in function of chilling temperature 

 

The chilling temperature appears not to have significant influence on scaffolds’ 

mechanical properties or at least it was not possible to find any simple correlation 

between these two parameters. 

 

 

4.3.2 Influence of the chilling time 

 

The effect of chilling time has been observed by mean of porosity measurements 

and mechanical properties. 

In Fig.4.3.2.1, the behavior of total porosity in function of the chilling temperature is 

presented. 

As shown in Fig.4.3.2.1, even in this case, variation of porosity as function of 

the chilling time is slight or not significant within the range considered.  
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Fig.4.3.2.1: Total porosity trend in function of chilling time 

 

 

 

 
 

Fig.4.3.2.1: Young’s modulus trend in function of chilling time 
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The variation in the porosity values as a function of the chilling time, was also 

found to be extremely is low in comparison to other works. Nevertheless, a deep 

difference in the pore size was observed between the samples obtained after 2,5h. 

 

In Fig.4.3.2.1 is reported the behavior of the Young’s modulus in function of a 

decreasing chilling time. 

The values of Young’s modulus vary in a range from 2 MPa to 7 MPa in 

accordance with values in other works on TIPS scaffolds. 

A clear increase of the elastic modulus is observed with the increase of the 

chilling time. 

This trend has to be imputed to the longer time at disposition for the expulsion of 

polymer, inside the solvent solution, during the freezing. The more polymer expelled 

the more the walls of the channel are micro-porosity free. Moreover, a prolonged 

expulsion of polymer causes the restriction of the pore lumen, accompanied by a 

thickening of the pore walls and thus an overall increase of the mechanical strength. 

 

4.3.3 Influence of the leaching time 

 

The optimization of the leaching time parameter resulted very difficult and in the 

end impossible. 

During this work we tried to reduce the original chilling time of 4 days but it quickly 

appeared impossible to find a repeatable time for good results. 

The most influent factor was the mold type utilized. The small beaker and the 

three geometric new molds (circle, square, hexagon) have a fixed bottom, so the 

diffusion of the EtOH aqueous solution during the leaching happened only from the 

top of the mold. 

This fact, most of the times, made impossible the extraction of the scaffolds from the 

molds, extending the leaching time and creating a concentration gradient of dioxane 

inside the scaffold. 

Forcing the extraction when the scaffold was still partially frozen always led to the 

damaging of the scaffold itself. 

As show in Fig.4.3.3.1 this could happen by ripping the frozen part from the defrosted 

part or, in the worst case, by the re-dissolution of the polymer in the dioxane high 
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concentration region that led to a shrinkage of the structure and the loss of micro-

structural order. 

 

 

 

 

Fig.4.3.3.1: Damaged scaffold after premature extraction from small beaker mold 

 

 

The leaching time for these two types of molds varied from 6 to 3 days. 

With the new reactor, the leaching process is sensibly shorter respect to the other to 

types. 

This fact it’s due to the possibility of removing the bottom part of the reactor and so 

permitting the diffusion of the EtOH aqueous solution from both the top and bottom 

surfaces. 

An average leaching time with the reactor assets around 2 days. 
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4.3.4 Polymer concentration 

 

The effect of the polymer concentration has been observed by mean of porosity 

measurements. 

In Fig.4.3.4.1 is presented the behavior of total porosity in function of the polymer 

concentration. 

 

 
 

Fig.4.3.4.1: Total porosity trend in function of the polymer concentration 

 

With respect to the PLLA wt% range here investigated, the values are in good 

accordance with literature values acquired at similar thermal conditions. 

The slight differences in the porosity values registered for the different samples 

(within 0.1%) are to be addressed to the very low concentration range explored in the 

work as compared to analogous works. 

Despite the small values variation is still possible to advise a decreasing trend of the 

total porosity with the rise of polymer concentration. 

This is totally comprehensible if we consider that for the same solution volume, an 

increase of the amount of polymer implies a reduction of the solvent content, and thus 

a reduction of the void content after leaching. 
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4.3.5 Mold geometry 

 

As described in §4.3.3 the mold geometry highly affects the efficiency of the 

leaching process. Depending on the possibility of opening the bottom of the mold the 

leaching process is shortened or extended. 

Another crucial factor that we observed was the facilitation of the formation of an 

ordered structure. 

What we noticed was that both the circular molds (small beaker and circular mold 

with increased area), and in less measure the square mold promote the ordered 

structure formation. 

The hexagonal mold instead, showed a low attitude at favoring the formation of 

any ordered structure. 

Fig.4.3.4.1 shows two examples of non ordered structures obtained with the 

hexagonal mold. 

 

 

(a) 

 

(b) 

 

Fig:4.3.1.2: a) TIPS 30 C cross section; b) TIPS 30 C cross section 

 

The best results have been obtained with the new reactor. Both the possibility of 

removing the bottom and the improved thermal insulation helped in the obtaining of a 

very well ordered structure. 
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4.4 Biological validation 

 

4.4.1 Preparation of hMSC / HUVEC co-culture as stem cell 

differentiation system in standard poly-styrene dishes 

 

Before setting up three-dimensional co-cultures, human Mesenchymal Stem 

Cells (hMSC) and human Umbilical Vein Endothelial Cells (HUVEC) were co-

cultured in Endothelial Basal Medium 2 (EBM-2) onto standard culture poly-styrene 

dishes. Preliminary experiments showed that it was indeed possible to distinguish 

red-labelled hMSC and HUVEC on the basis of alpha smooth muscle actin (SMA, 

green), which is expressed in both cell types (Fig.4.4.1.1) and von Willenbrand 

Factor (vWF, green) which is known as an esclusive endothelial cell marker.  

 

 

 

Fig:4.4.1.1: Setup of co-culture differentiation system between hMSC and HUVEC cells: Alpha 

smooth muscle actin (green) expression in vybrant hMSC (red) and human umbilical vein endothelial 

cells, co-cultured in standard conditions. Nuclei are counterstained in blue. The picture shows the 

cytoskeleton arrangement in the two human cell types tested 

 

Seven day co-culture in standard dishes demonstrate that hMSC acquire vWF 

expression when co-cultured with HUVEC cells in EBM-2 medium (Fig.4.4.1.2). 
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Fig:4.4.1.2: hMSC endothelial differentiation in co-culture system: Expression of endothelial-specific 

marker von Willenbrand Factor (vWF, green) in human Mesenchymal stem Cells (hMSC, red), co-

cultured for 7 days with human umbilical vein endothelial cells (HUVEC) in standard culture 

conditions. The presence of red cells showing vWF green staining demonstrates stem cell succesfull 

differentiation towards the endothelial phenotype 
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4.4.2 3D cell co-culture and stem cell differentiation towards endothelial 

phenotype 

 

Scaffold thin sections were sterilized by ethanol washings and soaked in 

Endothelial Basal Medium 2 (EBM-2) for 24 hours. At this time-point, human 

mesenchymal stem cells (hMSC) were stained with red Vybrant vital dye and mixed 

with human umbilical vein endothelial cells (HUVEC) in 1:5 ratio. 

Therefore, they were co-seeded onto the scaffolds and on thin sections. Scanning 

electron microscope (SEM) micrographs taken after 7 days showed the ability of 

human cells to adhere functionally and survive onto the scaffolds and thin sections as 

demonstrated by the massive secretion of extracellular matrix (ECM) all over the 

structure (Fig. 4.4.2.1).  

 

 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig:4.4.2.1: Human mesenchymal stem cells (hMSC) and human umbilical vein endothelial cells co-cultured 

for 7 days onto TIPS scaffold thin sections show the ability to adhere functionally, bridge over the pores and 

grow inside the channels a), b). SEM micrographs display the massive production of extracellular matrix 

(ECM) c), d). 

 

 

Nuclei staining demonstrated cell massive colonization of 3D porous structure 

and their aligninment inside the pores. Immunofluorescence analysis for Vybrant 

vital dye (Fig.4.4.2.2 red) and von Willenbrand Factor (vWF, green) further 

demonstrated the successful setup of co-cultures within 3D scaffolds and thin 

sections (Fig.4.4.2.2). Finally, when deeper examination of 3D co-culture specimens 

was conducted, human mesenchymal stem cell differentiation towards endothelial 

phenotype was confirmed on 3D scaffolds and thin sections, as shown by vWF 

staining (green) in vibrant-labelled cells (red, Fig.4.4.2.3). 

As reported in previous investigations on 3D scaffolds, SEM and 

immunofluorescence analyses are known to underestimate cell presence in the 

samples. This is mainly due to specimen manipulation and processing. In particular, 

such problems derive from the severe dehydration required for sample preparation in 

the case of SEM analysis, while the peeling-off of exposed surface cellular layers is 
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known to occur when cells are exposed to the repeated washings required for 

immunofluorescence analysis. Moreover, the gold layer deposition required for SEM 

analysis causes cell flattening and consequent loss of important cellular features, 

which also makes it hard to distinguish cells from the underlying polymer substrate.  

 

 

 

 

Fig:4.4.2.2: Massive cell colonization of scaffold thin sections: Low magnification image of scaffold 

thin section seeded for 7 days with human mesenchymal stem cells (hMSC, red) and human umbilical 

vein endothelial cells (HUVEC). Von Willenbrand Factor (vWF) protein staining (green) in red cells 

accounts for successful stem cell differentiation towards endothelial phenotype 
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Fig:4.4.2.3: hMSC differentiate towards endothelial phenotype when co-cultured for 7 days onto TIPS 

thin sections with HUVEC cells: High magnification images showing scaffold thin section seeded for 7 

days with human mesenchymal stem cells (hMSC, red) and human umbilical vein endothelial cells 

(HUVEC). Von Willenbrand Factor (vWF) protein staining (green) in red cells accounts for successful 

stem cell differentiation towards endothelial phenotype 
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Chapter 5 

 

Conclusions 

 

 

 

 

5.1  Conclusions 

 

With this work we demonstrated that it is possible to tailor the pore architecture 

of 3D polymer scaffold made by dTIPS. 

Morphologic and geometric characteristics of such scaffolds are in the optimal range 

for promoting the adhesion and growth of a wide field of cells type. 

These scaffolds show a mean overall porosity value of 95% and a grade of pore 

interconnection over 90%. 

So far, experimental data show that small pore dimensions are obtained with the 

maximum cooling time, the lowest cooling temperature and the highest polymer 

concentration, in the range of investigated values. 

Maximum pore diameters instead, are obtained applying a short cooling time, keeping 

the cooling temperature right under the freezing point of the dioxane and lowering the 

polymer concentration. 

Young’s modulus evaluated from compression test of scaffold samples vary in the 

range of 1 to 8 MPa in according to similar works in bibliography. 

An increasing of the elastic modulus has been observed with the increase of the 

cooling time. 

Biological validation has been tested by mean of cell seeding on scaffold’s thin 

sections and directly on tridimensional sections up to 5 mm. 

After 7 DIV (days in vitro) of culture, a massive colonization has been detected on the 

thin sections and the tridimensional sections both. 
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5.2  Prospectives 

 

The principal aim of these scaffolds is the realization of a vascular framework inside a 

regenerated tissue. 

To obtain this goal, future research will try to obtain a vascularized tissue, stacking 

tissues obtained with scaffold thin sections, one on top of each other. 

More tests will be performed, trying to trigger the nucleation of dendrites, utilizing 

the reactor and the elaborated silicon wafer. 
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