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Abstract

β-cells are speci�c cells located in pancreatic islets that produce and secrete in-
sulin. The secretion of insulin happens as a consequence of a electrical activity:
in the present thesis we analyse a mathematical model regulating that phe-
nomenon. This model depends on eight variables, which are recognized having
di�erent time scales and hence classi�ed as slow, medium or fast.
By varying some parameters of the model we remark the generation of mixed-
mode oscillations: small amplitude oscillations with a global return mechanism.
In order to explain it, a reduction of the model is performed and a 3d-model
is obtained. The study of the singularities of this system let us notice the ap-
pearance of mathematical objects called canards in their neighborhood. The
strong canard determines the funnel where simulations have to enter in order
to begin oscillating around the weak canard. Finally secondary canards in-
duce a discretization of the space and determine the number of small amplitude
oscillations of the solution of the system.
We �nd good agreement between our analytical studies and numerical simula-
tions.
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Chapter 1

Introduction

This thesis comes from my desire to work with biological applications of
Mathematics that I hope will be part of my future job. Professor Pedersen gave
me the opportunity to use a model that he constructed in 2010 in [1] to let me
follow my aspiration; human pancreatic β-cells are modellized in it, regarding
the process of insulin secretion.

Let us begin with a little introduction to the biological processes which are
interesting to concretely understand what this model aims to study.

1.1 Biological Preliminaries

When stimulated by glucose arriving, pancreatic β-cells induce insuline pro-
duction and secretion. Let us start by brie�y explaining this process.

Insulin Production and Secretion

During the assimilation process of food, levels of glucose in the blood grow
up; by consequence glucose methabolism of cells increases too and the over-
whelming energy activate the ATP (Adenosine TriPhosphate) production. The
increasing of the ATP/ADP ratio allows many ion channels to open and close
causing a periodic polarisation and depolarisation of the cell, which causes, in-
versely, other ion channels to open or close. We will clarify in the following
lines which channels play which roles during these operations. By the way, we
can claim that the presence of Calcium in the cell will provoke the secretion of
insulin.

Glucose methabolism stimulates also insulin gene transcription and mRNA
translation on ribosome attached to the rough endoplasmic reticulum. Messenger-
RNA connects amino acids into a a peptide chain called preproinsulin (the
preprohormone related to insulin). This chain will be cut in the endoplasmic
reticulum generating proinsulin and pass to the Golgi apparatus where it is put
into membrane-bound vesicles which contain a set of glycosylation enzimes too.
Thanks to them the prohormone will be cut in three active peptides and two
of them, connected by disul�de bonds, will �nally give birth to insulin. These
vesicles unleash their contents in the extracellular space by calcium-triggered
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exocitosis, as it was said before.1

Ion Channels Role

In this thesis we are �rstly interested in modelling the secretion, and not the
production, of insulin, so it will be useful to understand which channels take
part in this process and how their activation works.2

• Potassium outward channels (K+):

� ATP-dependent K+ channels, called KATP channels;

� Delayed-recti�er K+ channels, called KV channels;

� Large-conductance Ca2+-activatedK+ channels, called BK channels.

When open they let potassium exits from the cell by di�usion, otherwise
they keep it inside against the di�erential of concentration. At the equi-
librium state potassium channels are open. We will see that they have a
peculiarity in our system which is that they do not inactivate.

• Human Ether-à-go-go-Related Genes channels, called hERG channels.

They are K+ channels too but they let pass an inward �ow.

• Calcium channels (Ca2+):

� Transient T-type Ca2+ channels;

� Long-lasting L-type Ca2+ channels;

� P/Q-type Ca2+ channels.

When open they let calcium enters into the cell, otherwise they keep it
outside. At the equilibrium state they are all closed.

• Sodium channels (Na+).

They work exactly like Ca2+ channels.

We have to remember that, at rest, the interior of human β-cells has an
electrical potential of about −70 mV with respect to extracellular �uid. When
glucose enters the β−cell, increasing ATP provokes the closure ofKATP channels
and consequently a depolarization of the cell. T-type Ca2+ channels open at
−50 mV and close at −35 mV and in the order L-type (−40,−15 mV ) and P/Q-
type (−20, 0 mV ) do the same. Sodium channels contribute in depolarization
too, opening at −30 mV . As a�rmed in [5], hERG channels intervene to sustain
the process of spike-frequency adaptation and thus contribute to the control of
burst duration and they play a role in depolarisation and repolarisation too.
Finally KV and BK calcium-dependent channels provoke the repolarisation of
the cell.

1Everything written in these �rsts paragraphs can be easily found in any manual of molec-
ular biology. In particular I consulted [2].

2All data and functioning esplained in the following were found in Braun et al. [3]; Fall
et al. [4].
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Ion Channels Activity

I have used terms such as open, closed and inactivated to describe the state
of channels. Still we do not know what it does really mean. Hence let us look
to the ion channels con�guration, trying to understand how it changes during
the insulin secretion. This will be very usefull to better comprehend the model
that we are going to construct in the next chapter.

Figure 1.1: The �gure was taken from [2]. It is quite self-explanatory, voltage-
dependent channels can be in one of the represented state according to the phase
of polarisation/depolarisation the cell is going through. In this particular case
it is a Na+-permeable channel. More in details, when the membrane is depo-
larized, the energy of the open conformation is lower and so the channel has a
high probability of opening. But the free energy of the inactivated conformation
is lower still, and so, after a randomly variable period spent in the open state,
the channel becomes inactivated. Thus the open conformation corresponds to
a metastable state that can exist only transiently. The red arrows indicate the
sequence that follows a sudden depolarization, while the black arrow indicates
the return to the original conformation as the lowest energy state after the
membrane is repolarized.

First of all, not every channel has the same con�guration at the same instant,
even if they are selective for the same ion, and even if they are of the same type.
That is why it will be interesting to consider the probability of a channel to be
in a particular state (e.g. open), and therefore which percentage of channels is
actually in that state. In fact, trying to describe every singular channel is not
worthy, because of their great number: then a statistical approach is the only
valuable one. Every voltage-dependent channel has to cycle among the following
three states:

• closed

• open

• inactivated

For example, let us consider sodium channels shown in Figure 1.1. When
the cell depolarizes, voltage gets to reach the threshold value at which most
channels open, letting pass many ions. Hence sodium enters the cell, so electri-
cal potential decreases even more. With these hypothesis we could think that
the depolarisation will continue forever, since the voltage threshold to open is
already passed. Something has to stop depolarisation, in order to allow this
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methabolic process to happen only when it is necessary. Since the channels
cannot close, they are inactivated when passing through a second threshold.
Inactivation lasts for a su�ciently large time, called refractory time, in order
to permit the repolarization. During the repolarization, the voltage crosses the
�rst threshold again and forces channels to close back, restoring their initial
state. When the refratory time has passed, the whole process will start again,
allowing channels to reopen.

Calcium channels will behave the same way; potassium ones will work in-
versely, since these ions exit when channels are open.

The channels will follow the cycle closed-open-inactivated, "starting" (at
−70 mV ) from the closed or the open state dependently on their rest posi-
tion. This means that, roughly, at rest potassium (respectively sodium/calcium)
channels are open (resp. closed): when membrane depolarization occurs they
activate and they get closed (resp. open); by consequence depolarization accen-
tuates until channels are inactivated, so that they cannot open again until this
phase is terminated and potential is back to the initial value.

The last thing to understand is how a channel passes through these states.
We can represent it quite simply by thinking to a channel as a tube with two
doors: by looking to Figure 1.2 one of them controls the open and closed states
(which will represents the activation gate in our model) while the other one
controls the inactivation gate.

Figure 1.2: The �gure was taken from [2]. It is "ball-and-chain" model of rapid
inactivation for a voltage-gated K+ channel, such as hERG channels in our
model. When the membrane is depolarized, the channel opens and begins to
conduct ions. The open channel is then susceptible to occlusion (inactivation)
by the amino-terminal 19 amino acid "ball", which is linked to the channel
proper by a segment of unfolded polypeptide chain that serves as the "chain".
For simplicity, only two balls are shown; in fact there are four, one from each
subunit. A similar mechanism, using a di�erent segment of the polypeptide
chain, is thought to operate in Na+ and Ca2+ channels inactivation.

1.2 Structure of the Thesis

This short introduction clearly does not expect to be a comprehensive bio-
logical guide for the processes happening in human β-cells. It is simply intended
to get the reader a little more familiar with these biological notations, in order to
understand the functions of ionic channels, as long as causes and consequences
of the �ux through them. Hence, after this brief biological introduction, let us
explain how our mathematical work will proceed.
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In chapter 2 I will take into account a system of partial di�erential equations
built by Pedersen in [1] based on data taken by molecular biologists and brie�y
justify this construction. So this chapter will let us make a connection between
the biological subject previously introduced and its mathematical representa-
tion.

By studying a dimensionless version of the model, in chapter 3 we will notice
that we are working with a multi-timescale system, where the electrical potential
can be considered the fast variable of the system. Therefore this will justify
further fast-slow analysis.

In chapter 4 I will analyse this 8-dimensional model by varying some of the
parameters that appear in it and see how the electrical potential will assume
one of the following behaviours: it can tend to a stable value; otherway it can
stabilise to a periodic trend and this trend can presents spiking or bursting
oscillations. These bursting oscillations are characterized by small impulses -
or spikes - riding on top of an elevated voltage plateau [6]. From a biological
point of view it is interesting to remark that Scott et al. veri�ed that secretion
of insulin is much more e�cient during this last type of electrical activity [7].

Chapter 5 concerns general fast-slow analysis. The reader is introduced to
canard-induced Mixed Mode Oscillations (MMO) theory. In this chapter I will
also classify some types of singularities3: this will be fundamental to understand
mathematical analysis of the 3d-model, obtained thanks to a reduction of its
dimensions. I will give detailed explanations about canards in system with one
fast variable and two slow variables, but more exhaustive informations about it
can be found in [9; 10].

After that I am going to simplify the 8d-model by reducing its dimension, in
chapter 6. To this end I will study the real parts of the eigenvalues of the jaco-
bian relative to the system and observe that four of them are always negligibles.
This will let us construct a four dimensional model, paying attention to which
independent variables are better �tted to become dependent. Simulations will
show that it respects quite well the characteristics of the initial system.

In chapter 7 I will choose a three dimensional model which will try to preserve
to the best the behaviour of the previous 4d-model. This further reduction
would seem forced, but it is due to another type of reasoning that can be done
to variables with similar velocity. This reduction is performed in order to apply
the previously mentioned canard-induced MMO theory. Other simulations will
con�rm that the di�erent dynamics of the systems are still preserved even in
the 3-dimensional model.

Remarking that the potential is a fast variable with respect to the other two,
in chapter 5 I will study the 3d-model: I will be able to build the slow folded
surface where the derivative of the fast variable will vanish and slow variables
lead the �ow. We will see how Small Amplitude Oscillations (SAO), which occur
during bursting, are actually associated to the system crossing the folded surface
near a folded singularity - therefore place on a fold line - and rotating around the
weak canard. Conversely, Large Amplitude Oscillations (LAO) are associated
to another crossing of the fold surface near the second fold line, allowing the
global return mechanism to occur and solutions to close in periodic cycles.

Finally, a study on the number of SAOs and on the maximal canards will

3A more complete classi�cation will be displayed in appendix B, following the work of
Benoît [8].
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allow us to claim there is a link between our model with its MMO dynamics
and the canard theory, in the neighborhoor of the folded node we are going to
�nd.



Chapter 2

Construction of the Model

The aim of this chapter is to construct a plausible model which may reprensent
the temporal evolution of β-cell during insulin secretion. In order to do it, we
will proceed through two steps:

• �rst of all we will think to the cell structure as a circuit, following the
interpretation of Hodgkin and Huxley [11], Fall et al. [4] and others;

• after that we will set the parameters according to Pedersen [1] and Braun
et al. [3].

2.1 Circuit Modelling of a Cell

I am going to resume the work made by Fall et al. to build a model which
will describe cells as circuits, with membrane potentials, capacitors, resistances
and voltage-dependent ion channels in the following paragraphs.

Interested readers can take a look to [4; 12] to �nd a full tractation of the
model.

Potentials and Nernst Equation

First of all, the electrical potential through the cell membrane depends on
intracellular and extracellular ion concentrations. The membrane allows some
type of ion to cross through speci�c channels, sometimes by di�usion, so fol-
lowing the concentration gradient (which is a chemical potential), and some-
time against this gradient, employing energy as it happens in sodium-potassium
pump.

Let us consider whatever ion x. At the equilibrium potential, electrical and
chemical forces are balanced so that there is no �ow of x through the mem-
brane. This is regulated by the Nernst equation, which is derived in [4] from
the expression for the change in Gibbs free energy when one mole of an ion of
valence z is moved across a membrane.

Vx =
61.5

z
Log10

(
xout
xin

)
(2.1)
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Let's recall that the valence z is the charge of x (e.g. for Ca2+ z = +2).
This potential is called reversal potential or Nernst potential. It is assumed that
it is constant, for a given ion x.

Since all ions in this model have positive valence, looking to this formula we
can understand that, Nernst potential Vx is positive when the outside concen-
tration of x is greater than the inside one (i.e. when the gradient is pointing
inside); otherwise it is negative. Reversal potential denotes the value of mem-
brane potential V at which ion �ow vanishes and it is measured in milliVolt
[mV ], so basically it is the equilibrium potential for one permeant ion.

Membrane Electrical Behaviour

The model is then seen as an electrical circuit where the cell membrane is a
capacitor, since phospholipid bilayer separates the ions on the inside from those
on the ouside of the cell. In order to "translate" the electrical circuit diagram
into ODEs, we use the traditional interpretation of each circuit element along
with Kirchho�'s law and since the membrane acts as a capacitor, the capacitive
current across the membrane can be written as:

Icap = C
dV

dt

Assuming that each ion channel is perfectly selective, the resulting potential
of the whole cell is given as a weighted sum of Nernst potentials for each ion
based on its conductance. Thanks to Ohm's law, current �ows down a voltage
gradient in proportion to the resistance in the circuit [4] and it can be expressed
as:

I =
V

R
= gV

The current which passes through a channel will be denoted by Ix and the
conductance of each ion channel by gx. I remember to the reader that conduc-
tance g can be seen as the inverse of a resistance R since it represents the facility
for a ion to pass through the channel that has a resistance.

Thanks to the previous formula and remembering that reversal potentials
are supposed constant for each ion x, I can write:

Ix = −gx(V − Vx)

where I chose a negative sign because positive charges are moving. Here V −
Vx represents the driving force across the membrane provided by the "ionic
battery".

By resuming, we modelised the cell with a circuit where:

• phospholipid bilayer acts as a capacitor;

• ionic permeabilities of the membrane act as resistors;

• electrochemical driving forces act as batteries driving the ionic currents.

All of these ionic and capacitative currents are arranged in a parallel circuit, as
shown in Figure 2.1.
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Vin

Vout

C
Na+ Ca2+ K+

membrane

Figure 2.1: The equivalent electrical circuit for an electrically active membrane.
The driving force for the ions is indicated by the symbol for the electromotive
force (e.g. potassium enters the cell), which is given by the di�erence between
the membrane potential V = Vin − Vout and the Nernst potential.

Kirchho�'s law of charge conservation dictates that capacitative current
must balance with ionic current, which implies that:

Icap =
∑
x

Ix

Finally we have:

C
dV

dt
= −

∑
x

gx(V − Vx)

Activation and Inactivation Gates

Channels can be thought to have gates that regulate the permeability of
the pore to ions. Hodgkin and Huxley in [11] established experimentally that
our gates are voltage dependent. Then channels can open and close depending
on the membrane potential, and of course ions crossing the membrane through
these same channels modify the membrane potential, so these variables are
interdependents. Channels are time-dependent too, in the sense that there is a
time delay which will slow down the respective variable.

All this can be modeled as di�erential equations where the fraction of open
gates fx is described by the general form:

dfx
dt

=
fx − fx,∞(V )

τx

where fx,∞(V ) denotes the equilibrium state and τx is a time delay constant.

Then, we have to include this new relationship in the di�erential equation
for membrane potential, since the conductance of channels surely depends on
the fraction of open channels fx.

Thus we will �nd:

C
dV

dt
= −

∑
x

fxgx(V − Vx)
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2.2 Parameters Setup

In 1952 Hodgkin and Huxley1 showed that insulin secretion from β-cells is
related to the electrical activity through the cell membrane and they thought
a mathematical model which respected this fact. Many models have been pre-
sented starting from this �rst one: as announced in the introduction of this
work, we will consider the model constructed by Pedersen in [1].

As I said before membrane potential is our �rst variable and it is derived by
using Ohm's law:

dV

dt
= −ITotal (2.2)

where each current has been divided by the membrane capacitance (estimated at
nearly 9.9 pF according to [1]) - such that currents are measured in picoAmpère
on picoFarad [pA/pF ] - and where:

ITotal = (IKV
+ IBK + IhERG + ICaT + ICaL + ICaPQ + INa + Ileak)

Each ion channel treated here activates at a certain equilibrium voltage,
so it let pass the ion for which it is sensible. After that, it is inactivated in
order to let repolarise the cell, and a caracteristic refractory time prevents it to
reopen before repolarisation. So for each channel of a speci�c ion x I indicate
with mx the fraction of activated open channels and with 1− hx the fraction of
inactivated channels.2 Then ion currents Ix can be rearranged like it follows:

Ix = gxmxhx (V − Vx) (2.3)

where g has been divided by the membrane capacitance, such as current, and is
so measured in nanoSiemens on picoFarad [nS/pF ].

Hence m and h belong to the interval [0, 1]: some channels are assumed
not to inactivate (which means that hx = 1) some to activate instantaneously
(mx = mx,∞), but in general activation mx and inactivation hx are supposed
to follow the �rst-order equations:

dmx

dt
=
mx,∞(V )−mx

τmx
dhx
dt

=
hx,∞(V )− hx

τhx

(2.4)

where τ is a time-constant of activation/inactivation and mx,∞ (respectively
hx,∞) is the steady-state voltage-dependent activation (respectively inactiva-
tion) function of the current.

As we cannot distinguish and count every channel in a deterministic way, it
is suitable to follow a statistical approach and suppose that these steady-state
functions are described with Boltzmann functions:

mx,∞(V ) =
1

1 + exp V−Vmx

nmx

hx,∞(V ) =
1

1 + exp V−Vhx

nhx

(2.5)

1See [11].
2Remember ions state classi�cation seen in the �rst chapter.
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The slope parameter n is negative for steady-state activation functions, pos-
itive for inactivation ones. At the beginning Nernst potential is greater than
the rest state potential (nearly −70 mV as I wrote before), so V − Vf < 0:
then the sign of this slope parameters leads that, at that moment, really a few
channels are open (since 0 < m� 1) and very few channels are inactivated too
(0 < 1− h� 1).

Let's describe mathematically each of these channels.

2.2.1 Calcium Channels

As stated in the preambule to this section, calcium in�ux through its chan-
nels generates a current that can be expressed like:

ICaT = gCaT mCaT hCaT (V − VCaT )

ICaL = gCaL mCaL hCaL (V − VCaL)

ICaPQ = gCaPQ mCaPQ (V − VCaPQ)

(2.6)

The total calcium current activates rapidly (in less than 1ms): it is then
assumed that all calcium channels activate instantaneously. Therefore, the ac-
tivation function is simply given by the steady-state activation function:

mCaT = mCaT,∞(V ) =

(
1 + exp

V − VmCaT
nmCaT

)−1
mCaL = mCaL,∞(V ) =

(
1 + exp

V − VmCaL
nmCaL

)−1
mCaPQ = mCaPQ,∞(V ) =

(
1 + exp

V − VmCaPQ
nmCaPQ

)−1
(2.7)

The low-voltage T-type channels contribute to the depolarisation of the
membrane and were found to inactivate faster than the L- and P/Q-type. This
means that they are responsible for the fastest componenent of total calcium
current inactivation, that acts with a time constant of τhCaT = 7ms.

The high-voltage P/Q-type channels are assumed not to inactivate because
they need a long time, which overcomes action potentials duration.

Finally high-voltage L-type channels inactivate with a time constant of
τhCaL = 20ms.

Their inactivation is given by the di�erential equation introduced before:

dhCaT
dt

=
hCaT,∞(V )− hCaT

τhCaT
dhCaL

dt
=
hCaL,∞(V )− hCaL

τhCaL

(2.8)

where

hCaT,∞(V ) =

(
1 + exp

V − VhCaT
nhCaT

)−1
hCaL,∞(V ) = max

(
0,min

(
1, 1 +

mCaL,∞(V ) (V − VCa)

Φ

))
(2.9)
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where Φ = 57 mV is a normalisation factor and max−min have to appear just
to con�ne hCaL to the interval [0, 1].

This choice is justi�ed since inactivation function of the total calcium cur-
rents showed a U-shaped voltage dependence with maximal inactivation at
−10 mV : but we also know that P/Q-type do not inactivate and that T-type
inactivate much earlier (about −35mV ). So we can think that the U-shaped
inactivation function re�ects inactivation of the only L-type Ca2+ current. The
amount of inactivated channels (1 − hCaL,∞) is �nally assumed to be propor-
tional to the activated L-type Ca2+ current: mCaL,∞(V ) (V − VCa).

2.2.2 Potassium Channels

As we know, potassium channels are responsible for the out�ux of K+: at
rest state they are open. When voltage-dependent potassium channels activate
they get closed and after inactivation they keep closed, without the possibility
of getting opened before a refractory time has passed.

KATP Channels

First of all, ATP-sensitive potassium channels are obviously the very �rst
channel that activate; then the current they generate do not depend on percent-
age of activated or inactivated channels but just on intracellular ATP concen-
tration, because they are not voltage-dependent:

IK(ATP ) = gK(ATP ) (V − VK) (2.10)

KV Channels

The delayed rectifying potassium channels were assumed to activate on a
voltage-dependent timescale3:

τmKV =

{
τmKV,0 + 10 exp

(
min

(
Loge(3),−V+20mV

6mV

))
if V < 26.6 mV

τmKV,0 + 30 ms otherwise

(2.11)

We will assume that KV channels do not to inactivate because of its slow
inactivation kinetics (on the order of seconds). Then:

IKV
= gKV

mKV
(V − VK) (2.12)

dmKV

dt
=
mKV ,∞(V )−mKV

τmKV (V )

where

mKV ,∞(V ) =

(
1 + exp

(
V − VmKV
nmKV

))−1
3In appendix C I performed a brief study of this function in order to better understand

the velocity of mKV , as it will be clari�ed in chapter 6.
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BK Channels

Unlike other voltage-dependent channels, BK channels are controlled by
Ca2+ in�ux too. Calcium also triggers vesicles exocytosis and that is why BK
channels are fundamental in rapid repolarisation after this phenomenon. They
are also assumed not to inactivate (i.e. hBK = 1) since BK currents rapidly re-
polarize the membrane potential, while activation is given by the usual formula:

dmBK

dt
=
mBK,∞(V )−mBK

τmBK(V )
(2.13)

where

mBK,∞(V ) =

(
1 + exp

(
V − VmBK
nmBK

))−1
(2.14)

Since BK channels depends on calcium, we assume that the microdomain
Ca2+ concentration is proportional to the total Ca2+ current:

ICa = ICaT + ICaL + ICaPQ

Thanks to this, the steady-state function for BK channels is therefore assumed
to depend not on V only but to be proportional to −ICa(V ) +BBK too, where
BBK denotes basal, Ca2+-independent but voltage-dependent activation.

Finally we can deduct the expression for BK current:

IBK = (−ICa(V ) +BBK) ḡBK mBK (V − VBK) (2.15)

hERG Channels

They are K+ channels too but they let pass an inward �ow: Riz et al. con-
sidered them in their model since Rosati et al. proved that the inwardly recti�ed
current, that these channels generate, help in depolarization and repolarization
and that they may even sustain a process of spike-frequency adaptation and
thus contribute to the control of burst duration [13; 5].

Parameters of the steady-state activation and inactivation functions which
are used here were calculated by Rosati et al. too.

This current has the classical form:

IhERG = ghERG mhERG hhERG (V − VhERG) (2.16)

where

d

dt
mhERG =

mhERG,∞(V )−mhERG

τmhERG

mhERG,∞ =

(
1 + exp

(
V − VmhERG
nmhERG

))−1
d

dt
hhERG =

hhERG,∞(V )− hhERG
τhhERG

hhERG,∞ =

(
1 + exp

(
V − VhhERG
nhhERG

))−1
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2.2.3 Sodium Channels

Sodium channels contribute to the repolarisation of the cell.
Just as calcium channels, their activation is immediate, so the activation

function is given by the steady-state activation function:

mNa = mNa,∞(V ) =

(
1 + exp

(
V − VmNa
nmNa

))−1
Inactivation function follows the standard di�erential equation:

dhNa
dt

=
hNa,∞(V )− hNa

τhNa

where

hNa,∞(V ) =

(
1 + exp

(
V − VhNa
nhNa

))−1

2.2.4 Leak Current

The leak current summarizes all currents not modelled explicitly, such as cur-
rents mediated by exchangers, pumps, chloride channels, nonselective channels,
non-voltage-dependent cation channels.

It is simply expressed as:

Ileak = gleak (V − Vleak) (2.17)

2.2.5 Final Statements

The model presented in this chapter consists at last in a system of eight
non-linear di�erential equations with three kinds of variables: the membrane
potential V , activation functions mx and inactivation functions hx. Starting
from now I will call it the 8d-model.

Default values of the parameters are given in Table 2.1: they were gathered
by Pedersen in [1], where the reader can �nd any reference. Ion channels were
identi�ed using Polymerase Chain Reaction; speci�c blockers, targeted for each
ion channel, made possible to investigate the reaction in insulin secretion from
β-cells and to understand which channels play a role during this process4.

I remind the reader that the operational sign in front of each Nernst potential
(VK , VCa, VNa, Vleak) denotes the direction of the ion current as we remarked in
2.1.

Potential activation of singular channel represents the estimated potential
at which half of the gates, of that type, are open: as we said in the introduc-
tion we have, in order, Ca2+ T-type (−40 mV ), K+ hERG (−30 mV ), L-type
(−25 mV ), Na+ (−18 mV ) and P/Q-type (−10 mV ). Insulin is released as the
membrane reaches the maximum potential, activating BK and KV channels at
(0 mV ) and hERG channels too, since they do not inactivate before (−42 mV ).

Finally we have to notice that time constants τ in�uence directly the time
lapse before the reactivation of a channel. Concretely, our values vary between

4See [3].
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2 ms and 100 ms; if τ < 2 ms we can assume that the process happens instan-
taneously, the more τ increases and the more this delay increases too. We will
better understand this phenomenon in the next chapter.

Param Value U.M. Param Value U.M. Param Value U.M.

VK −75 mV gK(ATP ) 0.015 nS/pF τmBK 2 ms
VCa −65 mV gCaT 0.050 nS/pF τmhERG 100 ms
VNa 70 mV gCaL 0.140 nS/pF τhhERG 50 ms
VmCaT −40 mV gCaPQ 0.170 nS/pF nmCaT −4 mV
VhCaT −64 mV gNa 0.400 nS/pF nhCaT 8 mV
VmCaL −25 mV gKV 1.000 nS/pF nmCaL −6 mV
VmCaPQ −10 mV ḡBK 0.020 nS/pA nmKV −10 mV
VmNa −18 mV BBK 20 pA/pF nmBK −10 mV
VhNa −42 mV ghERG 0.200 nS/pF nmNa −5 mV
VmKV 0 mV gleak 0.015 nS/pF nhNa 6 mV
VmBK 0 mV τhCaT 7 ms nmhERG −10 mV
VmhERG −30 mV τhCaL 20 ms nhhERG 17.5 mV
VhhERG −42 mV τhNa 2 ms
Vleak −30 mV τmKV,0 2 ms

Table 2.1: Parameters gathered by Pedersen in [1]
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Chapter 3

Di�erent Time Scales of the

8d-Model

Scaled time will be very usefull in the following chapters, when they will let
us approximates faster and slower variables in di�erent ways. For now let us
understand which variables are faster and which ones are slower.

In the previous chapter we claimed that a bigger τx causes a bigger delay
to the associated (in)activation variable (hx) mx. We can understand why this
happens by rescaling the quantities into every equation of the 8d-model to obtain
a dimensionless model, following the idea of Vo et al. in [6].

First of all, we can rewrite equations 2.2 and 2.3 into a single equation:

dV

dt
=
∑
x

gx mx hx (V − Vx) (3.1)

and do the same thing for one of the equations in 2.4 and 2.5:

dmx

dt
=

1

τmx

((
1 + exp

V − Vmx

nmx

)−1
−mx

)
(3.2)

We do not need to do the same for the inactivation function hx since formulas
are nearly identical.

To nondimensionalize the 8d-model I will introduce the following dimension-
less variables and parameters, denoted by a hat:

V̂ =
V

Vmax
, V̂x =

Vx
Vmax

, t̂ =
t

tmax
, ĝx =

gx
gmax

, n̂x =
nx
Vmax

where

Vmax = max (|VK | , |VCa| , |VNa| , |VmCaT | , . . . ) = 75 mV

tmax = max (τhCaT , τhCaL, τhNa, τmBK , . . . ) = 100 ms

gmax = max
(
gK(ATP ), gCaT , gCaL, gKV , . . .

)
= 1 nS/pF

We can easily substitute the expressions just found into 3.1 and 3.2 to cal-
culate the equation of the dimensionless model:
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dV̂

dt̂
= tmax gmax

∑
x

ĝx mx hx (V̂ − V̂x)

dmx

dt̂
=
tmax
τmx

(1 + exp
V̂ − V̂mx
n̂mx

)−1
−mx

 (3.3)

If we make a comparison between the reciprocals of the constants which are
acting in the two equations we can see that:

δx :=
τx
tmax

∈ [0.02, 1]

ε :=
1

tmax gmax
= 0.01

(3.4)

And replacing them into the dimensionless system 3.3 we have:

ε
dV̂

dt̂
=
∑
x

ĝx mx hx (V̂ − V̂x)

δx
dmx

dt̂
=

(
1 + exp

V̂ − V̂mx
n̂mx

)−1
−mx

(3.5)

This implies that, as τx increase, the associated (in)activation variable be-
comes slower because of the increasing of δx; and also that V is twice faster
than the fastest among the other variables.

These observations will be usefull when I will study the 3d-system with the
slow-fast analisys method. It is important to remark that in the following pages
the parameter gKV will be changed and will take values in [0.05, 1.6] and of
course this will cause a variation of gmax and ε too. Precisely, we will have
ε = 0.025 > 0.02: this will not be a problem since in the 3d-model I will
choose not to keep the fastest variables among the remaining seven, so δx will
be containend into the interval [0.2, 1] and V will still be the fastest variable, as
needed for the analisys.



Chapter 4

Dynamics of the 8d-Model

In this chapter I will study the behaviour of the 8d-model built in chapter 2:
di�erent types of dynamics of the model will be pointed out by changing the
parameter gKV from the default value and running the simulation. The impor-
tance of this parameter in�uencing the dynamics of the model was shown in
[1]. From a biological point of view, increasing gKV means to let pass a greater
�ow through the KV -selective channels of the membrane; conversely reducing
it means to reduce that �ow as well.

Simulations were computed using Wolfram Mathematica language and all
notebooks can be furnished to the reader by contacting the author.

In order to let the system start with all channels neither activated nor inac-
tivated, I �xed initial conditions to:

(V, hCaT , hCaL, hNa,mBK ,mKV ,mhERG, hhERG) = (−49 mV, 1, 1, 1, 0, 0, 0, 1)

This choice will not really in�uence the study since waiting enough time
solutions will stabilize around limit cycles or to an equilibrium.

Finally, I chose to plot the simulations starting from t = 105 ms, to be sure
that the model reached a stable con�guration.

4.1 Spiking Behaviour

The �rst simulation is plotted in Figure 4.2 using default parameters of
Table 2.1. It exhibits spiking solution for the membrane potential V as it can
be seen in the �rst graphic of the image: it oscillates from −67.9 mV , when the
cell is totally polarized, to −8.45 mV , during the maximal depolarization.

Figure 4.1: Simulation of hCaL with
respect to hNa with default values of
parameters indicated in Table 2.1.
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Figure 4.2: Simulations of V, hCaT , hCaL, hNa,mBK ,mKV ,mhERG, hhERG with
default values of parameters indicated in Table 2.1.

As activation gates open and inactivation gates close during the temporal
evolution, the system is pushed to spike when most of them change of con�gu-
ration.

Even more, all variables seems to be periodic with the same period (frequency
of 4.63 Hz); so plotting the simulation in the xy−plane with x and y whatever
of the eight variables of the model, we will incur in a limit cycle. See for example
Figure 4.1.

We can remark that hhERG and, in particular, mhERG have spikes less steep
than the other ones, which means that they have a smaller reaction to rapid
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changes. As stated in the previous chapter, this shows concretely that mhERG

and hhERG are slower than the other variables in the system.

4.2 Stable Behaviour

By reducing gKV from 1 nS/pF to 0.05 nS/pF we can see that a stable
solution appear (Figure 4.3). We can also remark that same would happen with
gKV = 1.6nS/pF .

Figure 4.3: Simulations of V, hCaT , hCaL, hNa,mBK ,mKV ,mhERG, hhERG with
default values of parameters indicated in Table 2.1 and gKV = 0.05 nS/pF .
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4.3 Bursting Behaviour

The last type of solutions is even the most interesting one: by choosing
gKV = 0.2 nS/pF , for example, we can see bursting oscillations of the voltage
potential

Figure 4.4: Simulations of V, hCaT , hCaL, hNa,mBK ,mKV ,mhERG, hhERG with
default values of parameters indicated in Table 2.1 and gKV = 0.2 nS/pF .

As stated before, bursting is an interesting phenomenon since molecular
biologists revealed an amelioration on insulin secretion when the membrane
potential behaves that way [7].

Thanks to calculations made in chapter 3, the reduction of gKV (and so of
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gmax) reduces the velocity of V and not that of the other variables. Yet, ε will
reach the value of 0.025 at most, remaining a fast variable.

This time we can see that voltage potential oscillates from −61.1 mV , when
the membrane is polarized, to −3.95 mV , when it is depolarized. Variables are
obviously still periodics but the presence of the bursting phenomenon increased
the period: in fact frequency is reduced to 2.46 Hz.

Figure 4.5: Simulation of hCaL with respect to hNa with default values of
parameters indicated in Table 2.1 and gKV = 0.2 nS/pF .

Aiming to respect the parallelism with the spiking behaviour I decided to
show the same limit cycle seen in Figure 4.1 for the bursting case too: in Fig-
ure 4.5 we can remark that small oscillations appeared in this new limit cycle.

In the next chapters, our analysis will aim to understand the genesis, the be-
haviour and the main characteristics of these oscillations related to our model.
But �rst of all, let us talk of the theory that will permit that analysis in chap-
ter 5.
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Chapter 5

Geometric Singular

Perturbation Theory

In chapter 3 we have seen that the 8d-model consists of variables with dif-
ferent time scales. This suggests that Geometric Singular Perturbation Theory
(GSPT) could be a powerful tool to help us analysing our model. Before doing
that I will dedicate this chapter to expose this theory and introduce the reader to
concepts like Mixed Mode Oscillations (MMOs) and Canard Theory. Desroches
et al. published a general work [9] on this subject, explaining MMOs for slow-
fast systems. An important reference concerning speci�cally canard-generated
MMOs is [10].

We refer to MMOs as complex patterns that arise in dynamical systems, in
which oscillations with di�erent amplitudes are interspersed: in fact oscillations
are created by di�erent mechanisms and their amplitude may have variations.

Historically, MMOs have �rst been observed in chemical reactions and dis-
covered in 1970s with the Belousov-Zhabotinsky (BZ) reaction [14].

As suggested by their names, MMOs consist of a periodic series of oscilla-
tions: a number s of Small Amplitude Oscillations (SAO) alternated with a
number L of Large Amplitude Oscillations (LAO). The notation to represent
such an MMO is Ls. In this work we will always have L = 1.

The mathematical modeling of systems where MMOs occur result in nonlin-
ear ordinary or partial di�erential equations and there are several mechanisms
which can produce MMOs. One can �nd a list of those mechanisms in [15]
made by Brøns et al.. In order to understand our model we are interested in
canard-generated MMOs. They were �rst discovered in Van der Pol equation
and they consist of a limit cycle - born in a Hopf bifurcation - that experiences
the transition from a small, almost harmonic, cycle to a large relaxation oscil-
lation. This transition, also called canard explosion, occurs through a sequence
of intermediate limit cycles, called canards cycles, which can be asymptotically
stable but still very hard to be observed in experiment or simulation because
of sensitivity to the control parameter and, of course, to noise too. A repre-
sentation of this phenomenon is shown in Figure 5.4: a small cycle is shown in
(b), relaxation oscillations are periodic orbits that alternate between epochs of
slow and fast motion (d), during the canard explosion in (c) we �nd an unstable
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canard, born in a Hopf bifurcation.1

If we want to understand canard explosion, it is very important to consider
the trajectory called maximal canard : it follows a slow manifold for a substan-
tial time and distance from its stable to its unstable part, passing through a
bifurcation. As we already said, this may happen only in the vicinity of a Hopf
bifurcation.

In fact, in 2d-systems maximal canards occur for discrete values of the con-
trol parameter [16], but in 3d maximal canards are robust and are therefore
persistent under small parameter changes [17].

Canards were �rst recognized and named by Benoît ([18; 8]). A group of
French mathematicians of Strasbourg used nonstandard analysis to study slow-
fast systems and �gured out the existence of such elements. One can �nd a
complete dissertation of nonstandard analysis in [19].

After having considered this approach, in order to study canards, I decided to
follow the geometric approach of GSPT � also called Fenichel Theory � based on
the works of Brøns et al. [10], Szmolyan and Wechselberger [20], Wechselberger
[21] and, of course, Fenichel [22].

5.1 3d-System

In this section we will construct and study a generic 3d-system following
mainly [9; 23].

We consider the three-dimensional fast-slow system of singularly perturbed
ordinary di�erential equations in standard form:

εẋ = f(x, y, z)

ẏ = g1(x, y, z)

ż = g2(x, y, z)

(5.1)

with f, g1, g2 su�ciently smooth functions and small parameter 0 < ε � 1. In
this system x is the fast variable and y, z are the slow variables (since f, g1, g2
do not depend on ε, which is a small parameter, and hence ẋ has to be much
greater than ẏ, ż.

Let t denote the independent variable of 5.1, which is referred to as the
slow time scale. By switching to the fast time scale τ = t/ε, one obtains the
equivalent system:

x′ = f(x, y, z)

y′ = εg1(x, y, z)

z′ = εg2(x, y, z)

(5.2)

where x′ denotes the derivative of x with respect to τ and ẋ the derivative of x
with respect to t.

As ε → 0 the trajectories of 5.2 converge during fast epochs to solutions of
the fast subsystem or layer equations:

x′ = f(x, y, z)

y′ = 0

z′ = 0

(5.3)

1A complete explanation of this �gure and its canards will be done in section 5.4.
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implying that the fast �ow is almost horizontal, following the principal direction
of the fast variable x.

Conversely during slow epochs trajectories of 5.1 converge to solutions of the
slow subsystem or reduced problem:

0 = f(x, y, z)

ẏ = g1(x, y, z)

ż = g2(x, y, z)

(5.4)

which is a di�erential-algebraic equation.
One goal of GSPT is to use the fast and slow subsystems 5.3 and 5.4 to

understand the dynamics of the full systems 5.2 and 5.1 for ε > 0. First of all,
the algebraic equation in 5.4 de�nes the so called critical manifold :

S := {(x, y, z) : f(x, y, z) = 0} (5.5)

S can be called the slow manifold too, since the slow �ow determined by 5.4
is constrained to lay on that manifold.

Assumption 1. S is supposed to be a smooth manifold.

Remark 1. The points of S are equilibrium points for the layer equations 5.3.

GSPT guarantees that normally hyperbolic invariant manifold (NHIM) S
persists as locally invariant slow manifolds Sε of the full problem 5.1 for suf-
�ciently small ε. Moreover the restriction of the �ow of 5.1 to Sε is a small
smooth perturbation of the �ow of the reduced problem 5.4 [22].2

Normal hyperbolicity is often di�cult to verify when there is only a single
time scale. However, in our slow-fast setting, S consists entirely of equilibria (of
the layer equations 5.3) and therefore the requirement of normal hyperbolicity
of a compact subset S0 ⊂ S is satis�ed as soon as all p ∈ S0 are hyperbolic
equilibria, i.e. if fx := ∂f/∂x is uniformly bounded away from the imaginary
axis for all p ∈ S0. In that case the critical manifold S0 is normally hyperbolic.

3

Therefore GSPT breaks down at points on the critical manifold where normal
hyperbolicity fails and we are interested precisely in the dynamics around those
singularities. This can happen at points on S where their projection onto the
space of slow variables is singular i.e. on the fold lines L, de�ned as the set of
equilibria of 5.3 with a zero eigenvalue:

L := {(x, y, z) ∈ S : fx(x, y, z) = 0}

The stability of points p ∈ S as equilibria of the layer problem 5.3 depends
on the sign of fx: the fold lines divide the critical manifold S into attracting
sheets Sa (where fx < 0) and repelling sheets Sr (where fx > 0).

Assumption 2. The critical manifold S is (locally) a folded surface, i.e.

S = Sa ∪ L ∪ Sr (5.6)

In other terms we suppose fxx 6= 0 for every point in the fold line L, obtaining:

L := {(x, y, z) ∈ S : fx(x, y, z) = 0, fxx(x, y, z) 6= 0} (5.7)

This ensures that S actually has a fold and not a de�ection tangent in L. A
representation of this hypothesis ful�lled is shown in Figure 5.1.

2Fenichel Main Theorem, justifying these and other results, is shown in appendix A.
3See e.g. [24; 25] for more details.
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Figure 5.1: Folded surface with fold lines, obtained from the 3d-model with
gKV = 0.15 nS/pF .

Without loss of generality, we assume that fz(p)|p∈L 6= 0 holds locally.
It follows by the implicit function theorem that S is locally given as a graph
z = φ(x, y). Hence the reduced problem 5.4 is projected onto the (x, y)-plane
obtaining:

−fxẋ = fyg1 + fzg2

ẏ = g1

∣∣∣∣∣
z=φ(x,y)

(5.8)

where the �rst equation is obtained by deriving the algebraic equation f = 0 �
that generates the folded surface � with respect to t. In fact this equation is no
more necessary after imposing the equivalent constraint z = φ(x, y); conversely
its derivative allow us to explicit the evolution of the fast variable onto the slow
critical manifold S.

Finally, desingularization (i.e. rescaling time by dt = −fxdt′) removes the
singular term on the fold and gives the desingularized system of 5.9:

ẋ = fyg1 + fzg2

ẏ = −fxg1

∣∣∣∣∣
z=φ(x,y)

(5.9)

Remark 2. The desingularized system 5.9 is equivalent to the original one 5.8
on the attracting sheets Sa but has opposite orientation on the repelling sheets
Sr due to the time rescaling: for every point p ∈ Sa by de�nition we have
fx(p) < 0, hence rescaling time by the factor −fx(p) > 0 does not change the
orientation; conversely on Sr −fx(p) is negative and then changes the direction
of the �ow. A graphical representation is shown in Figure 5.2.

5.2 Folded Singularities

Singularities of the desingularized system (i.e. points where ẋ = ẏ = 0)
can be classed as ordinary or folded. Ordinary singularities are true equilibria
onto S of the initial system 5.1 where g1 is vanishing (and g2 = 0 too � since we
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supposed fy and fz to be nonvanishing on the vicinity of L). Folded singularities,
on the other hand, are points along the fold lines L (hence where fx = 0) where
fyg1 + fzg2|z=φ(x,y) vanishes.
Assumption 3. By resuming we supposed that the fold points p ∈ L ⊂ S are
generic in the sense of singularity theory, that is:

f(p) = 0,
∂f

∂x
(p) = 0,

∂2f

∂x2
(p) 6= 0, D(y,z)f(p) has full rank

(5.10)

De�nition 5.1. A fold point p ∈ L satisfying:

fy(p)g1(p) + fz(p)g2(p) 6= 0 (5.11)

is a jump point if there exists a trajectory of 5.8 starting at some point q ∈ Sa
and ending at p.

Jump points play a fundamental role in relaxation oscillations: under con-
dition 5.11 the reduced system 5.8 becomes unbounded along the fold line L.
Thus trajectories of system 5.1 reaching the vicinity of L subsequently jump
away from the fold i.e. a fast transition away from the critical manifold S near
L almost parallel to the x-axis occurs. This jumping behaviour near L is part
of the mechanism leading to relaxation oscillations in system 5.1.

Thanks to GSPT, away from L there exist an attracting manifold Sa,ε and a
repelling manifold Sr,ε with Sa and Sr as their singular limits. Moreover Sa,ε is
locally invariant and the trajectories arrive in the vicinity of the fold line L after
�nite time. Then solutions are forced to jump away from the fold. If, after this
fast transition from the fold, a global return mechanism projects the trajectory
back onto the attracting manifold Sa,ε then periodic solutions are possibile and
a relaxation oscillation appears, as it happens e.g. in Figure 5.4/d.

To obtain true MMOs including small amplitude oscillations the reduced
�ow on the (x, y)-plane 5.8 has to possess a folded singularity.

De�nition 5.2. A fold point on p∗ ∈ L is also a folded singularity if 5.11 is
violated in p∗ i.e. if

fy(p∗)g1(p∗) + fz(p∗)g2(p∗) = 0 (5.12)

Lemma 5.1. It follows that folded singularities are equilibria of the desingular-
ized system 5.9.

Remark 3. Since the request is to satisfy an equation � rather than an inequality
such as for jump points � folded singularities typically are isolated points.

As it is known from the theory of dynamical systems there are di�erent
types of equilibria p∗ of the desingularized system 5.9. Let σ1 and σ2 denote
the eigenvalues of the Jacobian of 5.9 evaluated at a folded singularity p∗, with
|<(σ1)| > |<(σ2)|. We call p∗ a: folded saddle if σ1σ2 < 0, σ1,2 ∈ R;

folded node if σ1σ2 > 0, σ1,2 ∈ R;
folded focus if σ1σ2 > 0, =(σ1,2) 6= 0.
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The trajectories of the slow �ow that lie along the eigendirections of the
folded saddle or node connect the two sheets of the critical manifold through
the folded singularity in �nite time, even if it is slow. In these points the slow
�ow switches from incoming to outgoing. Such solutions are called singular
canards and their persistence under small perturbations can give rise to complex
dynamics. Of course, there are no canards for the case of a folded focus, since
there is no real eigendirections.

Figure 5.2: Phase portraits of the locally linearized slow �ow near a folded saddle
(a) and a folded node (b); the singular canards de�ned by the eigendirections
are shown as thick lines. The corresponding desingularized slow �ow is shown
in panels (c) and (d), respectively. The darker shaded region of Sa is the funnel.

Remark 4. If we consider the sum and product of these eigenvalues T := σ1+σ2
and ∆ := σ1σ2 we can observe that the previous conditions are equivalent to: folded saddle if ∆ < 0;

folded node if 0 < ∆ < 1
4T

2;
folded focus if 1

4T
2 < ∆.

De�nition 5.3. For the case of the folded node the strong singular canard γ̃s
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and the fold curve F bound a full shaded sector of trajectories that cross from
Sa to Sr by passing through the folded node. This sector is called the funnel of
the folded node.

Concretely, the funnel is limited by the strong singular canard γ̃s and the fold
line F , containing necessarily the weak singular canard. Similarly, the sector
contained in the funnel between strong and weak singular canards will be the
sector of secondary canards.

In the system we are going to study, most interesting folded singularities
are folded nodes. And furthermore, in this case, if T < 0 then the negative
eigenvalue is the greatest one and therefore trajectories of the slow �ow 5.4 on
S through p∗ move from the attractive manifold Sa to the repelling one Sr.
Hence we will talk about a singular canard. Conversely, when T > 0 these
trajectories go from Sr to Sa, generating a so-called faux canard [8].

Let us deeply analyse canards in the next section.

5.3 Canards

We already know that singular canards are trajectories of the reduced �ow
5.8 which pass at p∗ from Sa to Sr. Moreover we know that they persist under
perturbation of ε > 0. In geometric terms, a canard corresponds to the inter-
section of the manifold Sa,ε and Sr,ε extended by the �ow to the vicinity of the
folded singularity; with this approach we will calculate them in chapter 7. Ca-
nards are not unique since the corresponding invariant manifolds Sa,ε and Sr,ε
are not unique. By the way, for a �xed choice of the invariant manifolds we call
their intersections maximal canards. In other words maximal canards can be
seen as perturbations of singular canards which preserve the original behaviour.

Previously, we have also observed that jump points with a mechanism of
global return allow the generation of relaxation oscillations; conversely folded
singularities exhibit canards and small oscillations. In this section this type of
singularities is studied in order to understand the canard generation.

The following theorem was taken from [9] and describes canards generation,
depending on the type of folded singularity.

Theorem 5.2. For the slow-fast system 5.1, with ε > 0 su�ciently small, the
following hold:

1. There are no maximal canards generated by a folded focus.

2. For a folded saddle the two singular canards γ̃1,2 perturb to maximal ca-
nards γ1,2.

3. For a folded node let µ := σs/σw > 1. The singular canard γ̃s (the strong
canard) always perturbs to a maximal canard γs.

3.1. If µ /∈ N, then the singular canard γ̃w (the weak canard) also perturbs
to a maximal canard γw. We call γs and γw primary canards.

3.2. For a folded node suppose k > 0 is an integer such that

2k + 1 < µ < 2k + 3 and µ 6= 2k + 2 (5.13)

i.e. µ /∈ N. Then, in addition to γs,w, there are k other maximal
canards, which we call secondary canards.
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3.3. The primary weak canard of a folded node undergoes a transcritical
bifurcation for odd µ ∈ N and a pitchfork bifurcation for even µ ∈ N.

The proof of this theorem is based upon analysis of a canonical form of a
slow-fast system near a folded singularity (such as 5.2). After a rescaling of
coordinates (a blow-up), the canonical system becomes a regular perturbation
problem and the variational equation along the blown-up singular canards be-
comes a classical Weber equation. Together with 5.10, properties of the Weber
equation imply a transverse intersection of Sa,ε and Sr,ε for µ ∈ N and, hence,
existence of maximal canards (parts 2�3.1) for su�ciently small perturbations
0 < ε < 1. The proof of parts 3.2�3.3 is more involved and is based upon an
extension of Melnikov theory [21] to show the bifurcation of secondary canards
from the primary weak canard for µ− 1 ∈ N [9].

Assumption 4. The reduced system 5.4 possesses a folded node singularity p∗ ∈
L. Thus σs · σw > 0 and in particular we assume it to be an attractive folded
node i.e. σs > 0, σw > 0.

Figure 5.3: Secondary canards (red), primary strong canard (dashed bold blue),
primary weak canard (thick blue), fold line (green), and sector of weak canards
(light gray region). Secondary canards divide sector into subsectors which rep-
resent the domains of the MMO patterns 11 − 16.

Remark 5. Simple algebraic calculations on 5.13 gives us the maximal number
of secondary canard expressed like:

Smax =

⌊
µ− 1

2

⌋
(5.14)

where b · c denotes the �oor function.
The case of the folded node is the more interesting for our study, since in

chapter 7 we will �nd plenty of these singularities. We have already said in this
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case many other intersections of the invariant manifolds occur and among them
we �nd secondary canards too.

The presence of the secondary canard will divide their sector (shaded in
Figure 5.3) into subsectors between primary maximal canards γ̃w and γ̃s. Fur-
thermore, trajectories within each subsector will be forced to take a certain
number of turns around γ̃w when passing through p∗ resulting in SAOa [17].

The widths of the rotational sectors in Figure 5.3 are very similar, and de-
pend on ε. In fact all sectors are very small, except for the sector corresponding
to maximal rotation, which is bounded by the last secondary canard and the
primary weak canard.

The entry point of the trajecory in the sector of secondary canards in�uences
the amplitude of the SAOs too, and not only their number.Thus, if a trajectory
enters in close to a maximal canard the amplitude of the SAOs will be larger
than if the trajectory entered in between between two maximal canards [26].

5.4 Example: Van der Pol Equation

We are interested in applying GSPT to 3d-systems; still, in order to better
understand what we are going to do, we decided to follow the approach in [27]
and show a basic 2-dimensional example, applied to the Van der Pol equation,
where canard phenomenon was �rstly seen. These canards will be generated by
the appearance of a Hopf bifurcation instead of that of a folded node, still it
will be useful in order to start visualizing these mathematical objects.

As we already said in the introduction to this chapter, in 2d-system maximal
canards occur for discrete values of the control parameter, unlike in 3d maximal
where they are persistent under small parameter changes. This means that it
is complicated to "see" a canard in those systems: the parameter λ was �xed
near the well precised value 0.99349093 in order to show the canards4, which
is a value ε-distant from the fold happening at λ = 1. Anyway, this example
would like to help the comprehension of what we have just explained, allowing
a more immediate 2d-visualization.

Let us consider the system of equations:

εẋ = f(x, y) := y − x3

3
+ x

ẏ = λ− x
(5.15)

where 0 < ε� 1 and λ are parameters.

Rewriting 5.15 in terms of the slow time τ = εt, one �nds that the corre-
sponding "slow nullcline" is given by x = λ. As λ passes through 1, this slow
nullcline moves through the lower fold point of S, which triggers the onset of
the canard explosion, see Figure 5.4. Finally, for λ > 0 su�ciently "large", the
dynamics of 5.15 enters the relaxation regime [27]. Let us proceed with some
calculations, helping us to understand this �gure and its relationship with the
previously explained Geometric Singular Perturbation Theory (GSPT).

We can easily calcute the equilibrium of the reduced problem, obtained from

4See Figure 5.4.



36 Geometric Singular Perturbation Theory

5.15 for ε = 0:

0 = f(x, y)

ẏ = λ− x
(5.16)

and �nd that the only equilibrium is the point
(
λ, λ

3

3 − λ
)
.

The "fast nullcline" S for 5.15 is given by f(x, y) = 0. It is a S-shaped curve
and, moreover, a curve of equilibria for the layer problem:

x′ = f(x, y)

y′ = 0
(5.17)

obtained by putting ε = 0 in the slow system. S is normally hyperbolic away
from the local minimum and maximum p± =

(
±1,∓ 2

3

)
of the cubic, where S

has a fold with respect to the fast variable x. At p± normal hyperbolicity fails,
since:

fx(p±) = 1− x2
∣∣
p±

= 0

Hence p± are the fold points and naturally decompose the critical manifold
S into three branches: the dynamics will be unstable between them (where
fx > 0) and stable out of them (where fx < 0), as we can see in Figure 5.4/a.

Far from S the dynamics is entirely controlled by the direction of the fast
variable x, estimating that the �ow of the original system 5.15 will be almost
parallel to that direction.

On the other side, near the folded curve S we have to derive the equation
f = 0 and consider the projection of the reduced problem 5.16 onto the folded
curve:

− (1− x2)ẋ = ẏ

ẏ = λ− x

∣∣∣∣∣
S

Thus, we obtain the equation that describes the dynamics of the system on the
slow curve:

ẋ =
λ− x
x2 − 1

∣∣∣∣
S

(5.18)

The direction of the slow �ow on S is indicated in Figure 5.4 by blue and
red arrows. The slow �ow does depend on λ, because the direction of the slow
�ow is partly determined by the location of the equilibrium at x = λ on S.

When x = ±1 and λ 6= x the equation 5.18 is singular. Thus we can write
the desingularized reduced �ow by rescaling the time with the factor x2 − 1,
which gives us:

ẋ = λ− x|S (5.19)

As we already remarked and showed in Figure 5.2, this time rescaling reverses
the direction of time on the repelling branch Sr.
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Figure 5.4: Nullcline (dashed line) movement leading to a canard explosion: as
it passes through x = 1, one observes a transition from a stable equilibrium
(a) with λ = 1.5 via a family of solutions ((b) "headless canard", with λ =
0.9934909315, (c) "canard with head", with λ = 0.99349093) to a full-scale
relaxation oscillation (d) λ = 0.25. Every simulation was obtained with ε = 0.05
and with initial value x(0) = 0.75, y(0) = 0.5. The S-shaped nullcline is plotted
in blue (where it is stable) and red (where it is unstable), the equilibrium is the
big black dot at the intersection of the nullclines and �nally fold points p± are
the little green dots.

Let us focus on relaxation oscillations: in Figure 5.4/d we can observe that
the equilibrium is a source and that temporal evolution leads to a stable pe-
riodic orbit Γε (the black oriented curve). This orbit is composed of two fast
trajectories starting near the fold points p± concatenated with segments of S:
it follows the slow �ow on S until it reaches a fold point and then it jumps,
that is, it makes a transition to a fast trajectory segment that �ows to the other
branch of S. The same mechanism also returns Γε to the initial branch of S [9].

Furthermore, if we ask that ε = 0 a singular orbit Γ would appear, with
fast trajectories completely horizontal starting exactly from the fold points.
Krupa and Szmolyan showed that the cycle Γε is strongly attrancting and that
it approaches to Γ in the Hausdor� distance as ε → 0 [16]. And moreover,
Desroches et al. claims that Γε lies O

(
ε3/2

)
close to Γ.

Finally, let us focus on Hopf bifurcation and canard explosion. The unique
equilibrium of the Van der Pol system 5.15 is a source for |λ| < 1 and a sink
for |λ| > 1; a Hopf bifurcation occurs in λ = ±1. This means that, in this
equilibrium, the dynamical system has two purely imaginary eigenvalues cross-
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ing the imaginary axis with nonzero speed as λ is varied. As a result, a family
of periodic orbits arises from the bifurcation point. The Hopf bifurcation is
called supercritical if those periodic orbits are stable, subcritical if they are un-
stable. As we saw in Figure 5.4/d a family of stable periodic orbits exists in the
parameter interval |λ| < 1, therefore those Hopf bifurcations are supercritical.

The Hopf bifurcation at λ = 1 occurs when the equilibrium moves over the
fold point p+: it is simple to verify that the eigenvalues of 5.15 at the Hopf
bifurcation have magnitude O

(
ε−1/2

)
, so that the periodic orbit is born with

an intermediate period between the fast O(ε) and the slow O(1). The amplitude
of these periodic orbits grows rapidly (as we can see comparing Figure 5.4/b-c)
and it is called canard explosion.

5.5 Last Considerations

In our model we will face folded node type canard generated MMOs. Then it
is important to remember that the previous example referred to a singular Hopf
generated MMOs. The distinction between these two phenomena comes mainly
from the following fact: in the former case there is no equilibrium point of the
original system in the neighborhood where the small (subthreshold) oscillations
occur, while in the latter there is (we have just seen the equilibrium moving
through the point p+ and generating a canard in the previous example).

In fact, the folded node is an equilibrium of the desingularized �ow on the
critical manifold but not an equilibrium of the original fast-slow system. It
belongs to the fold and a whole family of solutions crosses through it from the
attracting to the repelling branch of the slow manifold [28]. Resuming what we
stated in this chapter, the folded node possesses a unique (strong) canard and
non-unique (weak / secondary) canards. The strong canard and the fold line
delineate a trapping region, called funnel. Then any solution that ends up in
the funnel passes near the folded node and is forced to enter the repelling sheet.

In the singular Hopf case, an equilibrium of the original fast-slow system
exists in the neighborhood of the curve of folds. In fact, a Hopf bifurcation
point is on the critical manifold but displaced from the fold by O(ε)-distance
(that is why in the previous example we found the canard in the vicinity of the
fold but not precisely on it).



Chapter 6

Reduction to a 4d-Model

If we want to apply the theory exposed in chapter 5 we have to reduce the ini-
tial 8d-model to a 3-dimensional system. Then, we have to �nd a clever method
to pass from eight to three variables without losing too much informations.

6.1 Resume of the Method

After having analised the real parts of the eight eigenvalues related to the
jacobian matrix of the 8d-system we will remark that four of them are nearly
always negligible, implying that their variables do not in�uence strikingly the
dynamics of the system.

Then we will be authorised to rewrite four of the system variables as function
of membrane potential V . Choosing which variables will still be independent
and which ones will be rewritten is not trivial, but I followed suggestions from
Izhikevich found in [29].

Previous reduction schemes for the Hodgkin-Huxley system1:

CV̇ = I − gKn4(V − EK)− gNam3h(V − ENa)− gL(V − EL)

ṅ = (n∞(V )− n)/τn(V )

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

(6.1)

have exploited the rapidity of sodium current activation to eliminate the sodium
activation as a dynamic variable. In fact computer simulations by Krinsky
and Kokoz [30] have shown that there is a relationship between the sodium
inactivation h and the potassium activation n, namely:

n(t) + h(t) ≈ 0.84

Then, plotting on the (n, h) plane reveals that the orbit is near the straight line:

h = 0.89− 1.1n

We can use this relationship in the voltage equation to reduce 6.1 to a three-
dimensional system.

1The entire construction of this model an be found in [11]
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The similar time scales of the sodium inactivation h and potassium activation
n have been used to combine h and n into a single recovery variable. Hence this
method will be useful for variables linked by similar time scales.

A similar approximation can be applied to really slow variables, such as
mhERG and hhERG, which can be seen pretty much like constants or slightly
steep linear functions.

For the fastest variables another approximation seems to be more reason-
able: since they are so fast we could suppose that their gates activate almost
instantaneously. From a mathematical point of view, this implies that these
variables could be near to their steady-state functions.

6.2 Eigenvalue Analysis of the 8d-Model

Let us come back to our 8d-model constructed in chapter 2 and consider
the jacobian matrix associated to the model in a generic point of the domain
D.2 The jacobian was calculated analitically using Mathematica and di�erent
behaviours seen in chapter 4 were reproduced choosing the values stated before
for gKV .

In the stable case, with gKV = 0.05 nS/pF the eigenvalues real part can be
seen in the barplot in Figure 6.1.

Figure 6.1: Barplot of the
eight eigenvalues real part
with gKV = 0.05 nS/pF
and default values of param-
eters indicated in Table 2.1.

It can be noticed that the absolute value of the real parts of four eigenvalues
are smaller than 0.02 and another is about to 0.04. Of course, all of them are
negative, which is obvious for a stable equilibrium.

During spiking and bursting the eigenvalues change as a function of time
and therefore we have to compute a more complex analysis: for both of these
cases we will plot three di�erent graphs. In the �rst one it will be shown
the curve of the potential evolving towards time. In the second graph we will
visualize the real part of the eight eigenvalues all along the evolution of the
system.3. The last graph will be a bar chart were we will plot those eigenvalues
in some "more interesting" points; those points were chosen, looking to both the
previous images, at speci�c instants in order to represent at best the possible
con�gurations of the cell: when it is depolarizing or repolarizing, when potential

2We can suppose D = (−80, 10) × (0, 1)7 since the membrane potential bounded to that
clamp in simulations and the other seven variables are bounded between 0 and 1 by construc-
tion.

3From this point until the end of the chapter I will write simply "eigenvalue" to indicate
the "real part of the eigenvalue" in order to speed up the reading and help the comprehension.



Eigenvalue Analysis of the 8d-Model 41

is almost-constant near to the rest state, or when it is oscillating on the plateau
generated from the bursting behaviour.

Figure 6.2: Up: plot of V . Down: eigenvalues real part variation. Default values
of parameters indicated in Table 2.1. Coloured circles and corresponding dashed
lines denote the points at which the eigenvalues will be plotted in Figure 6.3.

In the spiking case we consider default gKV = 1 nS/pF and study the eigen-
values along the evolution of the system, which can be seen in Figure 6.2/down.
Three instants where chosen to plot in Figure 6.3 the eigenvalues at di�erent
potentials V , plotted in Figure 6.2/up in a bar chart.
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Figure 6.3: Barplot of the eight eigenvalues real part with default values of
parameters indicated in Table 2.1.

When the cell is totally depolarized (black colour in the previous �gures) or
is repolarizing (red colour) �ve eigenvalues are smaller than 0.1, but during the
depolarization (highlighted in green), and in particular near to spiking phase,
one of them becomes positive, causing a destabilisation of the system, and its
absolute value can overstep 0.4. Then we can suppose that this dimension
cannot be eliminated very easily.

Figure 6.4: Plot of V with gKV = 0.2 nS/pF and default values of parameters
indicated in Table 2.1. Coloured circles denote the points were the eigenvalues
will be plotted in Figure 6.3.
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Finally, in order to study the bursting case, we consider gKV = 0.2 nS/pF
and look for the eigenvalues along the evolution of the system, which can be seen
in Figure 6.5. Three instants where chosen to plot in Figure 6.6 the real part of
the eigenvalues at di�erent potentials V , plotted in Figure 6.4 in a barplot.

Figure 6.5: Eigenvalues real part variation along the evolution of the bursting
system (gKV = 0.2 nS/pF ). Dashed lines indicate the time position corre-
sponding to the circles of the same colours in the previous �gure at which the
eigenvalues will be plotted in Figure 6.6.

Figure 6.6: Barplot of the eight eigenvalues real part with default values of
parameters indicated in Table 2.1.



44 Reduction to a 4d-Model

Looking to Figure 6.5 we can remark that eigenvalues become positive many
times during bursting activity, being constrained to the plateau interval and
repolarization phase at most: e.g. at the purple instant the system presents one
positive eigenvalue. This phenomenum obviously causes instability during long
periods, even though the system carries on oscillating from stable to unstable
con�guration (e.g. green and black instants present stability during and after
plateau little spikes, red instants presents two positive eigenvalues, therefore
instability).

During depolarization and repolarization the behaviour is similar to the one
we observed in simple spiking activity so it has not been shown in the barplot.

Looking to all the previous �gures of this chapter we can remark something
more about the 8d-model. First of all, one eigenvalue � the light green one �
is seen to be stable to the constant value of −0.5 in all types of activities; the
third one is almost constant too, being kept between −0.15 and −0.13. When
the membrane potential is in a constant or almost-constant condition all the
eigenvalues keep negative; conversely when depolarization becomes too steep,
then just before spiking activity, an eigenvalue change of sign and explodes
around 0.4 − 0.5. It can oscillates from one to the other sign during bursting
and another eigenvalue can change of sign too, even if this will not modify too
much the dynamics since the system was unstable yet.

Hence, we decided to neglect four of them, which seems very reasonnable
looking to spiking activities and a little more risky, but still acceptable, for the
bursting case (since during and after plateau-spikes the forth and �fth eigenval-
ues do not seem to be that negligible).

Now we know how many variables we should be able to eliminate; anyway
we still do not know which of them should be changed: the next section will
help us taking this decision.

6.3 Variables Reduction

As I stated before we should considerate the variables speed in order to
decide how to approximate them.

Velocity T.D.F. Value [ms]

Fast
τhCaT 7
τhNa 2
τmBK 2

Medium
τmKV (V ) (2, 32)
τhCaL 20

Slow
τhhERG 50
τmhERG 100

Table 6.1: Variables speed with default time delay factors (T.D.F.) from Ta-
ble 2.1. τmKV (V ) depends on V as we stated in chapter 2 (boundaries for this
variable can be found in appendix C).
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In chapter 3 we stated that the speed of the variable

x ∈ {hCaT , hCaL, hNa,mBK ,mKV ,mhERG, hhERG}

depends linearly on its time delay constant τx. Hence Table 6.1 allows us to
divide those variables in three cathegories. Remark that the fast variable V is
excluded from this analysis since all the other variables depend on it.

As supposed in the �rst section of this chapter let us try to approximate
fast variables with their steady-state functions. Simulations of each fast vari-
able depending with respect to V and their steady-state functions are shown in
Figure 6.7.

Figure 6.7: Fast time scaled variables simulations (blue) with their steady-state
functions (red).

Previous considerations lead us to this choice and plots in Figure 6.7 seem
to con�rm our suppositions. Anyway I bring a further study in appendix D: a
numerical non-linear interpolation was performed for both spiking and bursting
simulations using Boltzmann functions; the standard error could be considered
quite small and parameters found were really close to the steady-state function
ones. Both, standard error with respect to the data and distance between the
parameters, were seen to reduce in the bursting activity with respect to the
spiking.
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Thanks to Figure 6.8 we can also remark that medium-fast variables {hCaL,mKV }
seems not to be su�ciently near to their steady-state functions.

Figure 6.8: Medium time scaled variables simulations (blue) with their steady-
state functions (red).

Finally, let us consider slow variables {hhERG,mhERG}. As stated before,
since they are much more slow than the other it seems reasonable to approximate
them with a constant:

mhERG = 0.15

hhERG = 0.58

By the way, looking to Figure 6.9 I chose not to interpolate simulations this
time: hence we simulated spiking and bursting activity for one period respec-
tively every millisecond. We can easily remark that their are not uniformely
distributed at all and therefore consider to try a better approximation.

Thanks to a linear �tting of the bursting data I obtained the line:4

hhERG(V ) = −0.007V + 0.22 (6.2)

Figure 6.9 illustrates possible approximations and their steady-state func-
tions too: as it was expected they are really badly approximated by these func-
tions since they are too slow to be considered to activate instantaneously.

Anyway our �nal aim is to perform a fast-slow analysis, hence we should
preserve the fast-slow dynamics of the model: in order to do that one slow
variable must be kept. The slowest one will allow a major time scale skip and
therefore I chose to approximate hhERG as proposed in Equation 6.2.

4I chose to keep the �tting made on bursting - instead of spiking - activity since as we saw
before in bursting even non-linear approximations worked better. We could interpretate this
fact by considering that during bursting much more information is conserved for two reasons:
the period is longer than during spiking and bursting contains both the stable (plateau) and
the spiking behaviour.
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Figure 6.9: In this �gure slow time scaled variables simulations were evaluatesd
(blue dots interpolate with gray curves). We can also see their steady-state
functions (red) and constant values intended to approximate them (green). For
hhERG the interpolating linear function for the bursting case has been plotted
too (purple).

6.4 4d-Model

Hence in this chapter the initial 8d-system has been reduced to only four
variables:

V, hCaL, mKV , mhERG

We have obtained the new system of the form:

dV

dt
= −ITotal (V, hCaL,mKV ,mhERG)

dhCaL
dt

=
hCaL,∞(V )− hCaL

τhCaL
dmKV

dt
=
mKV ,∞(V )−mKV

τmKV (V )

dmhERG

dt
=
mhERG,∞(V )−mhERG

τmhERG

(6.3)

One more variable has to be reduced in the following, in order to apply
GSPT. Before doing that, let us brie�y verify that the three di�erent behaviours
we are interested of have been preserved during this �rst reduction of the model
and that these behaviours still depends on gKV .

In the following �gures we can see all those behaviiours. In particular we
obtain the:

• stable system for gKV = 1.8 nS/pF (Figure 6.10)
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• spiking activity for gKV = 1 nS/pF (Figure 6.11)

• bursting activity for gKV = 0.05 nS/pF (Figure 6.12)

Figure 6.10: Example of stable case for the 4d-model obtained with gKV =
1.8 nS/pF

Figure 6.11: Example of spiking activity for the 4d-model obtained with gKV =
1 nS/pF
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Figure 6.12: Example of bursting activity for the 4d-model obtained with gKV =
0.05 nS/pF
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Chapter 7

3d-Model

In this chapter I would like to obtain a 3-dimensional system by reducing
one dimension of the 4d-model, that we have already constructed, in order to
implement GSPT exposed in chapter 5. We will observe that stable, spiking and
bursting behaviour will still be present in the dynamics of the new system, jus-
tifying therefore its construction. Finally we will focus on the bursting activity
and show that it is due to canard-generated Mixed Mode Oscillations.

7.1 Choice of the Model

In chapter 6 we have already noticed that the four variable of the system 6.3
can be splitted in:

• one fast variable V

• two medium variables hCaL,mKV

• one slow variable mhERG

We can remark that two variables have the same speed. Therefore, remem-
bering the approach found in [29] and exposed in chapter 6 we can try to plot
mKV with respect to hCaL and to �t the data with a linear function.

As seen in Figure 7.1 linear interpolation gives us the function:

mKV (hCaL) = −0.12hCaL + 0.13 (7.1)

Thanks to the explicitation of mKV , there are no more risks of misunder-
standing the variables name; therefore, starting from now and until the end of
this chapter, I will use h and m in place of hCaL and mhERG.

We �nally obtain the three-dimensional system:

dV

dt
= −ITotal (V, h,m)

dh

dt
=
h∞(V )− h

τh
dm

dt
=
m∞(V )−m

τm

(7.2)
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Figure 7.1: Magenta line is the linear interpolation of spiking (gKV =
0.05 nS/pF ) and bursting (gKV = 1 nS/pF ) data. On the left side the plot
show also the spiking simulation, on the right side the bursting one.

Simulations are plotted in Figure 7.2, showing that the three types of dy-
namics are still preserved in this model.

Figure 7.2: Simulations for the 3d-model with default parameters and modifying
gKV : stable behaviour for gKV = 1 nS/pF (�rst row), spiking activity for
gKV = 0.5 nS/pF (second row) and bursting activity for gKV = 0.05 nS/pF
(third row).

7.2 Structure of the 3d-Model

If we follow the notation of chapter 3 and remember the de�nitions 3.4 we
have:

ε ≤ 0.025, δh = 0.2, δm = 1 (7.3)

Then we can claim that V is the fastest variable and rewrite the system in
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the form studied in chapter 5:

ε
dV

dt
= −ITotal (V, h,m)

dh

dt
=
h∞(V )− h

τh
dm

dt
=
m∞(V )−m

τm

(7.4)

This let us apply GSPT to our 3d-model. I decided to use default parameters
of Table 2.1 with gKV = 0.05 nS/pF , for the moment.

In order to simplify and obtain a system with the same notation of 5.1, we
de�ne:

f (V, h,m) := −ITotal (V, h,m)

g1 (V, h) :=
h∞(V )− h

τh

g2 (V,m) :=
m∞(V )−m

τm

(7.5)

We have to remark that g2 (respectively g1) does not depend on h (resp. m)
and that the dependence on m (resp. h) is linear. By expliciting f we can also
observe that it is linear with respect to both, h and m. Hence, when we ask
that f = 0 in order to calculate the folded surface S de�ned in Equation 5.5 we
can easily explicit m with respect to V and h: this leads us to the expression
m = φ (V, h) ∀ (V, h,m) ∈ S. Fold lines are obtained by asking fV = 0 too and
it gives us a similar condition where h = ψ (V ) ∀ (V, h,m)|m=φ(V,h) ∈ L. This
last simpli�cation is made possible by the fact that neither fh nor fm vanishes
on the fold lines and hence, by continuity, in a neighborhood of those lines.1. In
fact, we have that: f is linear with respect to h; m has been substituted by a
function of V and h which is, of course, still linear on h; and fh 6= 0 on the fold
lines. Then we can divide by fh, obtaining the expression for h in all points of
F .

More generally, this is permitted by the condition claimed in 5.10 for the
folded points, i.e.

D(h,m)f(p) has full rank

This condition is obviously weaker then the condition fh 6= 0 supposed before
since now we can accept that fh vanishes when fm does not. Anyway this is not
really important in our model since, even if fh would vanish somewhere on a
fold line, linearity in both � m and h � permits us to locally invert h = φ (V,m)
and then divide by fm in place of fh. Then for our system the two conditions
are equivalent, up to this simple expedient.

This one, and the other condition ∂2f(p)/∂V 2 6= 0, are obviously veri�ed
looking to Figure 7.4, where the folded surface S appears su�ciently regular to
satisfy them.

With all those conditions satis�ed, we can apply GSPT to the system 7.4
without any other hesitation.

1A more detailed analysis refering to this and the following conditions was done in ap-
pendix E. There, we have remarked that this regularity is not just local: it is true for all the
points of S in the range of evolution of the system i.e. for V ∈ (−70, 0).
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Figure 7.3: Fold lines are plotted in green. The other two equations for the
research of the equilibria are plotted too. The two big points are the singularities
of the system, determined by the intersections of the previous equations: the
blue one is a fold singularity while the red one is the ordinary one. Everything
was calculated using default parameters and gKV = 0.05; nS/pF, τmhERG =
100 ms.

First of all, let us proceed with the analysis by looking to the equilibria of
system 7.4 in the limit case when ε→ 0. By performing a numerical computation
we found two singularities: an attractive folded node and a saddle. Of course, as
it was said in chapter 5, in order to do that we had to project the system on the
(V, hCaL)�plane and desingularize it, �nding the slow desingularized problem of
the form of 5.9:

V̇ = V̇desing

ḣ = −fV g1

∣∣∣∣∣
m=φ(V,h)

(7.6)

where V̇desing = fhg1 + fmg2.

This system has three equilibria at points where V̇desing = 0 and at least one
of fV and g1 is vanishing. Only two of them are plotted since the third one is
out of the range of h ∈ (0, 1); anyway it is a folded focus then it is of no interest
for the analysis of canards and for the dynamics of the system.

As stated before the saddle is a real equilibrium of system 7.4 since it is not
on the fold and g1 = 0 (and g2 = 0 too, see section 5.2). On the other hand, the
attractive folded node lies on one of the fold lines and therefore represents the
point where the trajectories go from the attractive manifold Sa to the repelling
one Sr (see Figure 7.3).

In the next sections we found and studied singular canards of the system and
then maximal canards emerging on the general case where ε > 0. Before doing
that, let us see a 3d representation of the folded surface with those singular
points and a simulation of the system: MMOs composed by SAOs and a global
return mechanism (given by the LAO). All these objects are plotted (Figure 7.4)
for gKV = 0.05nS/pF and default parameters.



Singular Canards 55

Figure 7.4: Slow manifold S with its fold lines (green). The folded node (blue)
and the saddle (red) with a simulation (black) that shows small oscillations
starting near the folded node and relaxtion oscillations after having approached
the other fold line (gKV = 0.05nS/pF and default parameters). The simulation
is turning around the weak canard (dashed blue line3) but we will talk about
this in the next section.

7.3 Singular Canards

The next step of this study is the computation of singular canards. Remem-
bering once more what we stated in chapter 5, singular canards are determined
by the eigenvectors directions of the folded node. Thanks to this calculation, we
are able to show a representation of singular canards and the consequent funnel
(shadowed gray region) limited by the strong singular canard and the fold line
on the attractive manifold Sa (see Figure 7.5).

In Figure 7.6 we can also observe the simulation previously computed in
Figure 7.4 projected onto the 2d-plane (V, hCaL): we can see that it enters the
funnel and starts oscillating around the weak singular canard passing through
the folded node. After a few oscillations the system is attracted by the saddle
equilibrium and then pushed away from it following the eigendirection relative
to its "strong" eigenvalue (i.e. the greater eigenvalue in absolute value). Finally
the LAO permits the global return mechanism to occur and then the system
can repeat the cycle.

In order to better visualize that the oscillations of the simulation turn around
the weak canard, in Figure 7.7 gKV was reduced to the value 0.01nS/pF and
τm was increased to the value 200ms: as it was expected in Figure 7.7/d SAOs
rotate around the weak singular canard for a while, until they are attracted
from the saddle equilibrium of the system in Figure 7.7/c.

3This line has been extended to 3 dimensions calculating a point in the vicinity of the folded
node belonging to the 2d-eigenvector and therefore by continuity it is supposed to belong to
the folded surface S too. Thanks to the invertibility seen before, we can reobtain the third
coordinate of that point.
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Figure 7.5: Fold lines are plotted in green. The two big points are the singu-
larities of the system: the blue one is a fold singularity while the red one is the
ordinary one. Singular canards are plotted using dashed thicked lines (for the
strong γ̃s) and dot-dashed lines (relative to the γ̃w). Everything was calculated
using default parameters and gKV = 0.05; nS/pF, τmhERG = 100 ms.

Figure 7.6: Replot of Figure 7.5 with the previous simulation: SAOs rotate
around the eigenvector direction associated to the smallest eigenvalue, hence
around the weak canard. This time the eigenvectors direction at both singular-
ities are plotted, keeping the respective colours, and using dashed thicked and
dot-dashed lines for strong and weak eigenvectors.
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The same rotations obviously occur not only in the 2d-section, but also
in the original 3d-space. The maximal weak canard and the simulation with
gKV = 0.05 nS/pF and τmhERG = 100 ms were shown in Figure 7.4: in a 3d
plot it is more di�cult to remark that the simulation actually rotates around
this canard, but it still holds.

Figure 7.7: Replot of Figure 7.5 with gKV = 0.01 nS/pF, τmhERG = 200 ms
and simulation. Rectangles refer to the zoom applied in the following �gure of
the grid. The zoomed graphs help to better visualize the rotations around the
weak singular canard.

7.4 Maximal Canards

From Equation 5.14 we know that the eigenvalue ratio µ := σs/σw at the
folded node is a crucial quantity that controls the maximal number of oscillations
Smax. More generally it determines the dynamics in the neighborhood of the
folded node, since the direction of the �ow and the amplitude of those oscillations
are in�uenced too [26].

The ratio µ is linked to Smax thanks to the existence of secondary canards.
Before talking about this object, let us focus on the number of SAOs compu-
tationally calculated and the maximal number predicted by the already cited
Equation 5.14. The result is plotted in Figure 7.8 for di�erent values of τm by
increasing gKV until no more oscillations are found. We can observe that Smax
(denoted by red points) actually always overcomes the number of calculated
oscillations (plotted in blue), as it was expected. Those oscillations were cal-
culated on the limit cycle of the system evolved with that parameter, counting
the number of peaks all along a period evolution of V . The �rst peak was not
taken into account since it is the one that allow the return mechanism, i.e. it is
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the LAO.

By the way, not all the oscillations has been calculated, otherwise blue and
red points of Figure 5.3 would coincide. This is due to the fact that we just
explained: those oscillations are calculated on the limit cycle. Let us better
understand why this is a critical issue.

Figure 7.8: Red points denote the maximal number of secondary canards cal-
culated thanks to the formula 5.14; blue points denote the number of SAOs
computationaly calculated. Both plotted as function of gKV varying τmhERG
as indicated in title of every element of the grid.

As we said in chapter 5 secondary canards split the funnel � more precisely
they split the sector of secondary canards � in subsectors (remember Figure 5.3).
When the solution of the system enters the funnel, it enters in one of these
speci�c subsectors, which are determined by the maximal canards, primary and
secondary altogether.

We suppose to have k = Smax secondary canards and we denote the ith

secondary canard with ξi for i = 1, . . . , k, the primary strong canard with γs =
ξ0 and the primary weak canard with γw = ξk+1. If we consider a solution which
enters the funnel in the subsector limited by ξi and ξi+1 then the simulation will
accomplish i rotations around the weak canard for every i = 0, · · · , k, hence it
will produce i SAOs [26].

Then it is important to determine the position of these canards and verify
that the number of oscillations performed actually increases when the solutions
enter in the following subsector. This would grants us that canard-generated
MMOs actually lead the dynamics of the 3d-system studied and therefore the
similar dynamics of the initial 8d-model.

We already know from chapter 5 that, geometrically, maximal canards ap-
pear in the vicinity of a folded node as the intersection of Sa,ε and Sr,ε. There-
fore, in general, these manifolds intersect each other to form a curve that in
the neighborhood of the folded node. Hence, in order to make the visualization



Maximal Canards 59

more intuitive and the construction simpler, we decided to look for maximal ca-
nards (i.e. these intersections) constrained to a plane Σfn which passes through
the folded node and is transverse to the fold line F .

Figure 7.9: Folded surface S with the fold line F in green, the folded node p∗

(blue dot) and the saddle (red dot). The blue line was chosen in order to evolve
its points until they reach the plane Σfn transversal to F in p∗. Analogously,
points of the red line are pushed back to Σfn. As an example, one simulation
starting from each line is calculated until it touches the plane in the vicinity of
p∗.

In order to �nd these intersections onto Σfn we had to choose a line parallel
to F on Sa called La (plotted in blue in Figure 7.9) and a line transverse to F
on Sr called Lr (plotted in red). This approach is used in [26] where Desroches
et al. propose to �nd those intersections of the slow manifolds by de�ning a
Boundary Value Problem (BVP).

Then, in order to calculate Sa,ε constrained onto Σfn, we built a problem
that takes initial values in La and stops in Σfn. Through temporal evolution
those points get immediately out of Sa and proceed following the slow �ow along
Sa,ε until it falls on Σfn.

Analogously, we took a problem which starts from Σfn with �nal values on
Lr. Through temporal backward evolution we can repeat the same process done
for La and �nd Sr,ε too.

Remark 6. Both, La and Lr, have to be taken su�ciently near to the fold line
F , otherwise we could risk that their evolution does not follow the slow �ow.

The results of this numerical calculation are plotted in Figure 7.10 where
the blue curve represents the slow perturbed attracting manifold Sa,ε and the
red curve represents the repelling one. Their intersections, i.e. maximal ca-
nards, can be easily identi�ed and counted, thanks to the zoomed plot too (see
Figure 7.11).
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A second plot of these intersections was done in Figure 7.12 where we counted
the number of SAOs occuring at each of the points of the �rst �gure that
permitted this construction. For this �gure there was a computational problem
similar to that of Figure 7.8: after having reached the threshold of 6 SAOs the
calculator is unable to perceive the peaks, since they probably become too �at.
Then even after ξ5 only few solutions are coloured in red, i.e. recognized as
performing 6 SAOs.

This is not really a problem since canards were found in previous �gures
from the intersection between Sa,ε and Sr,ε and we know that the number of
SAOs is growing even if we are not capable of measure it.

Figure 7.10: Section on the plane Σfn of the attracting (blue curve) and repelling
(red curve) sheets obtained for gKV = 0.04 nS/pF, τm = 100 ms and default
parameters from Table 2.1. The black rectangle delimits the zoomed region of
Figure 7.11. The black dot is the folded node: rotations occur around a point
in an ε range from it.

Looking to Figure 7.8 we can remark that, for gKV = 0.04 nS/pF and
τm = 100 ms, we should �nd 7 secondary canards, which means 9 intersections
of the slow perturbed manifolds. Unfortunately, we were able to �nd only 8 of
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these intersections: starting from the upper one � around of m = 0.49, which
is the strong canard γs = ξ0 � and following the blue curve Sa,ε ∩ Σfn until ξ7.
The maximal weak canard γw = ξ8 was not found but clearly in Figure 7.11
the red spiral continue to turn after the blue has stopped. Then probably the
starting points of La were not su�cient to plot all the evolved curve onto Σfn.

Figure 7.11: Zoom of Figure 7.10 into its black rectangle.

Another question mark on the evolution of the chosen La onto the plane
Σfn is given in Figure 7.12: we can remark that when the points of Sr,ε crosses
those of Sa,ε they actually change of colour, as expected; in the meanwhile the
points of Sa,ε change a little bit "earlier", in the sense that the �rst SAO seems
to appear before entering the sector determined by the strong canard γs and
the �rst secondary canard ξ1. This cannot be a computational error like the
previos ones, since we count more SAOs than there actually are.

In conclusion, the absence of the last intersection determining the maximal
weak canard and this anticipated increasing of SAOs let us suspect about the
accuracy of the choice for La. Other choices for La were tried but no meaningful
ameliorations were found for the moment.
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Figure 7.12: Punctual replot of Figure 7.10 with dotted colours. Those colours
change progressively from purple to red and they represents the number of
SAOs occured for the simulation passing through that speci�c point. Purple
corresponds to 0 SAOs, red to 6.



Chapter 8

Conclusions

Even though this elaborate is a rather theorical work, it was almost my �rst
real approach to applied mathematics, and absolutely the �rst one compeed-
ing on biology and medecine. I truthfully enjoyed reading some chapters or
paragraphs of some biologic books and confronting my friends who study those
disciplines, in order to construct and improve my knowledges about cytology.
Of course, I studied it partially, but I loved this melting of sciences and hope
that � in the future � I will have the opportunity to work with this and many
sciences, from a mathematical point of view and maybe in an even more applied
environment.

Let us �nally resume rapidly the work and the results that were done during
the elaboration of this thesis project.

First of all, I studied the model suggested in [1], which aims to represent the
dynamics of β-cells. The previously cited studies in cytology permitted me to
roughly understand the idea behind this construction.

Next, I started learning how to use xppaut: it is a general numerical tool
for simulating animating and analyzing dynamical systems developped by the
University of Pittsburgh; it also includes a frontend to a continuation and bi-
furcation package called auto. At the beginning we thought about using this
tool in order to analyze our system and study its bifurcation. Unfortunately,
bifurcation analysis is quite complicated and we were not able to fully exploit
xppaut potential. Hence I decided to totally implement the system with Wol-
fram Mathematica since I am much more confortable with Wolfram language.
This thesis let me also improve my skills on the use of this last tool1.

The analysis of the fast-slow model made in chapter 4 let us detect its three
di�erent behaviours and a particular attention was devoted to bursting activ-
ity: ascertain the appearance of MMOs was of the main importance in this
work. Furthermore, these oscillations were seen to be related to the birth of
the mathematical objects called canards (chapter 7), as a result of the rotation
of the solution around the weak canard in the vicinity of a folded node2. The
maximal number of SAOs has been predicted thanks to Equation 5.14 and this
prediction happens to be coherent with the number of intersections obtained in
Figure 7.10. Finally, the number of oscillations performed by a particular solu-

1Of course all the notebooks are available to the reader: do not hesitate to contact me on
simone.battaglin@gmail.com.

2See Figure 7.7.

mailto:simone.battaglin@gmail.com
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tion is expected to depend on the speci�c subsector where the simulation enters
the funnel and this statement was almost perfectly veri�ed in Figure 7.12 by
computing that the number of SAOs increments at each crossing of a secondary
canard.

8.1 Suggestion for Future Developments

In the future this work could be improved in di�erent ways.
First of all, we could try to solve the technical problems appeared in the end

of the last chapter by better understanding, for example, how La and Lr should
be taken in order to succed in counting all the intersections. A 3d representation
of the evolution of these curves could be shown too, for the purposes of a better
visualisation.

Second, other parameters could be changed, trying to look for similar be-
haviour or the appearance of other phenomena, which were not expected in
our case. Even the choices taken in order to reduce the initial system to a 3-
dimensional one could be reinvented. Some changes were frequently tried in the
last months without �nding much interesting cases, but other approaches can
still be tried.

Lastly, the 3d-model could be thought as a slow-medium-fast system, and
not only a slow-fast like we did. In fact, values found in 7.3 could be interpreted
as splitting the system in two, but also in three, time scales. In the last weeks of
work I studied this possibile variation, but no interesting dynamics were found.
Therefore more work will be necessary to adapt the system to three di�erent
time scales.



Appendix A

Fenichel Theorem

Theorem A.1 (Fenichel Theorem). Suppose M = S0 is a compact normally
hyperbolic submanifold of the critical manifold S of 5.1. Let f, g1, g2 ∈ Cr, r <
∞. Then for ε > 0 su�ciently small the following hold:

(F1) There exists a locally invariant manifold Mε di�eomorphic to M . Local
invariance means that Mε can have boundaries through which trajectories
enter or leave.

(F2) Mε has a Hausdor� distance of O(ε) from M .

(F3) The �ow on Mε converges to the slow �ow as ε→ 0.

(F4) Mε is Cr-smooth.

(F5) Mε is normally hyperbolic and has the same stability properties with respect
to the fast variables as M (attracting, repelling or saddle-type).

(F6) Mε is usually not unique. In regions that remain at a �xed distance from
the boundary of Mε, all manifolds satisfying (F1-F5) lie at a Hausdor�
distance O(exp (−K/ε)) from each other for some K > 0 with K = O(1).

The normally hyperbolic manifold M has associated local stable and unstable
manifolds

W s
loc(M) =

⋃
p∈M

W s
loc(p) Wu

loc(M) =
⋃
p∈M

Wu
loc(p)

where W s
loc(p) and W

u
loc(p) are the local stable and unstable manifolds of p as a

hyperbolic equilibrium of the layer equations, respectively. These manifolds also
persist for ε > 0 su�ciently small: there exist local stable and unstable manifolds
W s
loc(Mε) and W

u
loc(Mε), respectively, for which conclusions (F1-F6) hold if we

replace Mε and M by W s
loc(Mε) and W s

loc(M) - or similarly by Wu
loc(Mε) and

Wu
loc(M).

We call Mε a Fenichel manifold. Fenichel manifolds are a subclass of slow
manifolds, invariant, on which the vector �eld has speed that tends to 0 on the
fasi time scale as ε→ 0.
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Appendix B

Points Classi�cation

In order to better understand the notation used in this thesis, let's resume
quickly the classi�cation of points in R3 with a slow folded surface S done by
Benoît in [8]. This classi�cation is made simply following the dynamic at that
point P i.e. looking to the �ow at P .

We remember that we are considering the fast-slow system 5.1:

εẋ = f(x, y, z)

ẏ = g1(x, y, z)

ż = g2(x, y, z)

and that the slow surface S and the fold L are de�nied by 5.5 and 5.7 respec-
tively:

S := {(x, y, z) : f(x, y, z) = 0}
L := {(x, y, z) ∈ S : fx(x, y, z) = 0, fxx(x, y, z) 6= 0}

There are �ve main types of points. A point P ∈ R3 can be a:

• P is a rapid point if P /∈ S

• P is a slow point if P ∈ S r L; in that case it can be:

� attractive if P ∈ Sa i.e. if fx(P ) < 0

� repulsive if P ∈ Sr i.e. if fx(P ) > 0

� singular for 5.4 if f, g1, g2 vanish together (which is of no interest
and does not happen in this work)

• P ∈ L is a "regular" folded point if (fxg1 + fyg2)fxx|P 6= 0; it will be at-
tractive or repulsive depending on the sign of this last term, as for previous
type

• P ∈ L is a "fronce" point - which can maybe be translated by "gathered"
- if fxx(P ) = 0

• P ∈ L is a pseudo-singular point if fxg1 + fyg2|P = 0
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Points that are interesting in canard generation are pseudo-singular points,
in particular folded nodes. That is why they are interesting for us and they
were treated in section 5.2.

A graphical visualisation for every type of point can be found in [8] but
it was not considered necessary since the points that are inspected were well
visualised in the previous pages. In order to simplify the comparison I chose to
follow the same order as Benoît.



Appendix C

Time Delay τmKV(V)

As stated in chapter 2 the delayed rectifying potassium channels were as-
sumed to activate on a voltage-dependent timescale:

τmKV =

{
τmKV,0 + 10 exp

(
min

(
Loge(3),−V+20mV

6mV

))
if V < 26.6 mV

τmKV,0 + 30 ms otherwise

(C.1)
This implies that τmKV is constantly equal to 32 ms for V > 26.6 and

V < −(20+6Loge(3)) ≈ −26.6; between this two values τmKV follows a negative
exponential trend (Figure C.1).

Figure C.1: Plot of τmKV with re-
spect to V with default parameters.
Let us remark that the parameters
used to de�ne this function were
never changed during this paper.

Discontinuity does not cause troubles since the membrane potential never
reaches 20 mV .
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Appendix D

Numerical Fitting for Fast

Variables

Here we will refer to Figure 6.7 and verify the intuition of the approximation
which has been made for fastest variables in chapter 6.

Numerical data obtained thanks to two type of simulations were �tted with
non-linear algorithm Levenberg-Marquardt. Other algorithms, such as Gauss-
Newton or conjugate gradient, were tried too but no signi�cantly better results
were found.

The aim was to approximate these three variables {hNa, hCaT ,mBK} with
their steady-state functions, which are three Boltzmann functions. Therefore I
chose a generic Boltzmann function:(

1 + exp

(
V − a
b

))−1
to interpolate simulated data.

Resulting parameters obtained from this interpolation were shown in Ta-
ble D.1 with a = Vx, b = nx with the committed standard error for every
variable.

In Figure D.1 we can see a plot of simulations, steady-state functions and
interpolated Boltzmann functions related to the parameters in Table D.1 for each
of the three variables during spiking (gKV = 1 nS/pF ) and bursting (gKV =
0.2 nS/pF ) activity.

Finally we can assume that the standard errrors obtained are acceptable and
therefore that variables {hNa, hCaT ,mBK} are quite well approximated by their
steady-state functions {hNa,∞(V ), hCaT,∞(V ),mBK,∞(V )} respectively.
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Var Param SS fct
Spiking Bursting

Estimate St. Err. Estimate St. Err.

hCaT
Vx 64 64.6459 0.2057 64.2214 0.1006
nx 8 9.2094 0.2833 8.1816 0.1095

hNa
Vx 42 41.6071 0.2472 42.0782 0.0551
nx 6 6.4200 0.1782 5.9900 0.0388

mBK
Vx 0 −8.9728 1.2104 −5.3059 0.5625
−nx 10 13.1754 0.5087 12.2707 0.2513

Table D.1: Parameters for the steady-state functions of hNa, hCaT , mBK and
the �tting Boltzmann functions based on simulations in the spiking and bursting
case calculated with Levenberg�Marquardt algorithm with Wolfram Mathemat-
ica. Respective standard error is shown too.

Figure D.1: Plot of steady-state functions (red curves) for the three fast variables
indicated in the �gure. On the left side we simulate the spiking activity (blue
cycles) with default parameters from Table 2.1 and �t them with a Boltzmann
function (dashed green curves). On the right side the same thing was done for
bursting activity (gKV = 0.2 nS/pF )
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Conditions on the Fold Points

The aim of this appendix is to verify the assumptions made on 5.10, i.e.:

∂2f

∂V 2
(p) 6= 0 and D(h,m)f(p) has full rank (E.1)

for every p ∈ L.
As we claimed in chapter 7 the function f of the system 7.5 is linear with

respect to h and m, hence we are able to write it such as:

f(V, h,m) = α(V ) + hβ(V ) +mγ(V ) (E.2)

Then we have:

fV (V, h,m) = a(V ) + hb(V ) +mc(V )

fh(V, h,m) = β(V )

fm(V, h,m) = γ(V )

where a, b, c are the derivative of α, β and γ respectively.
We have already seen in chapter 7 that the second condition of E.1 is equiv-

alent to ask that β and γ do not vanish together. Anyway we will see that on
the fold lines they do not vanish at all.

Figure E.1: Plot of the function γ(V ) in (−80, 20).

In the 3d model we simply have:

γ(V ) = −ghERG(0.22− 0.007V )(V − VK)
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where ghERG = 0.2 and VK = −75. Then γ(V ) will vanish only for V = −75
and V > 30, and both of these values are of no interest for us since V will
never reach those values in the folds (nor in the simulations of the system). The
function γ(V ) is shown in Figure E.1.

The function β(V ) has a more complex form, which is not interesting to be
written and depends on gKV , therefore its own expression vary in the di�erent
cases we have studied. Anyway the reasoning is not very di�erent: β also has
two zeros, one always positive disappears rapidly by increasing gKV , the other
one will always be less than −75. The function β(V ) is shown in Figure E.2.

Figure E.2: Plot of the function β(V ) in (−80, 20) with gKV = 0.05nS/pF .

Relatively to the �rst condition of Equation E.1, the second derivative was
calculated only onto the points of the fold lines. In fact since the surface is folded
with respect to V , there is no doubt that this derivative will vanish somewhere.
It is important that it does not happen on the fold lines.

In Figure E.3 we can observe all this and also what we were saying a few
lines ago i.e. the fold lines are contained between the following intervals in V :
(−60,−45) and (−35,−20). Therefore none of β and γ will vanish on them
neither.

Figure E.3: ∂2f
∂V 2 on the points of the fold lines with gKV = 0.05nS/pF .
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