
University of Padova

Department of Department ofMathematics

Master Thesis in Data Science

Conformance Checking of Large Process

Model: An Approach based on

Decomposition

Supervisor Master Candidate
Massimiliano de Leoni JiaweiMa
University of Padova

Academic Year
2021-2022

ii

iv

Acknowledgments

I would first like to thankmy supervisor, ProfessorMassimiliano de Leoni, who supported me
at the beginning during the internship, giving me suggestions and encouragement in spite of
some not expected difficulties, then, he guided throughout this thesis work.

I would also like to thank Data Science master course council and all teaching professors to
keep the courses up to date, always bringing out cutting-edge research results. I really enjoyed
and learnt a lot during these years of study, I firmly believe that the acquired knowledge are
valuable assets for my future.

v

vi

Contents

List of figures ix

List of tables xiii

1 Introduction 1

2 Preliminaries 3
2.1 Data Science . 3
2.2 Process Mining . 4

2.2.1 In a nutshell . 5
2.2.2 Process MiningManifesto . 7

2.3 Notations and Definitions . 9
2.3.1 Fundamental Notations . 9
2.3.2 Business Process Modeling and Petri Nets 10
2.3.3 Event Logs . 12

3 Decomposed Conformance Checking 15
3.1 Alignment-based conformance checking 15

3.1.1 Token Replay . 15
3.1.2 Alignment-based Conformance Checking 16

3.2 Decomposing Petri nets . 19
3.2.1 Why Decomposed Conformance Checking? 22
3.2.2 Valid Decomposition . 22
3.2.3 Total Border Agreement . 29
3.2.4 Decomposition Algorithms . 32

4 Stepwise Stitching Decomposed Replay 39
4.1 Stepwise Sub-alignments Stitching Algorithm 39

4.1.1 Algorithm . 40
4.2 Running Examples . 44

4.2.1 Example 1 . 44
4.2.2 Example 2 . 47
4.2.3 Example 3 . 49

5 RelatedWork 53

vii

5.1 Pseudo-alignments . 54
5.2 Recomposing Conformance Checking . 55

6 ProcessMining Tools 57
6.1 XES . 57
6.2 ProM . 58
6.3 Celonis . 63

6.3.1 Background . 63
6.3.2 Platform Architecture . 66
6.3.3 Core Components . 66

7 Experiments 69
7.1 Preliminary Steps . 69

7.1.1 Process Data Generator: PLG2 . 69
7.1.2 Conformance Checker: CoCoMoT 70

7.2 Implementation Details . 71
7.3 Data . 73
7.4 Results . 73

8 Conclusion 83

References 85

viii

Listing of figures

2.1 Intersection of other disciplines fromnumerous study areas that provide basis
for becoming a data scientist. Source: [1]. 4

2.2 A possible collocation of process mining, it is considered a link between data
science and process science. 5

2.3 The input, output and types of Process Mining. Source: [2]. 8
2.4 An example of Petri nets which will be used in later chapters. This system

net SN2 models a bank transfer process in which a client makes a bank trans-
fer from one account (sender account) to another account (receiver account).
The receiver account can be of a local bank or an overseas bank. Source: [3] . 11

3.1 This an example of token replay of a trace σ = ⟨a, d, c, e, h⟩ on a system
net SN . We skipped intermediate steps and go to calculate the final fitness:
fitness(σ, SN) = 1

2

(
1− 1

6

)
+ 1

2

(
1− 1

6

)
= 0.8333. Source: [1]. 16

3.2 Amount of data stored over the recent years and a future trend forecast. . . . 20
3.3 A case-based decomposition example, each sub-log can potentially processed

by many compute nodes or in a single node with a processor multi-core in
parallel. Doing sowe can gain a linear speed-up in terms of computation time.
Source: [1]. 21

3.4 A activity-based decomposition example, we divide the conformance check-
ing problem into smaller conformance checking problems: we properly de-
compose the Petri net and calculate the projection of the traces on each sub-
net. Then, we merge the local results to get a conformance evaluation on the
overall net. In this way we can potentially reach more than linear speed-up
in terms of computation time. This is our studying direction in this thesis.
Source: [1]. 21

3.5 A simple Petri net to show that the number of possible activity is n!, this is
much more than linear increase w.r.t. the number of activities n. However,
using the net decomposition we can incredibly reduce a lot the complexity of
the initial net. 23

3.6 An example system net SN1 and it is a valid decomposition. 26
3.7 An example of maximal decomposition. Source: [4] 34
3.8 An illustrationofRPSTbasedSESEdecomposition: fromthe transformation

inworkflow graph (without distinction between the places and transitions) to
the computation of RPST. Source: [5]. 35

ix

3.9 An illustration of the bridging operation: a new bridging subnetB1 is created
and the final decomposition is valid. Source: [5] 37

4.1 The system net SN1 and it is a valid decomposition. Source: [6]. 45
4.2 The system net SN2 and it is a valid decomposition. Source: [3]. 47
4.3 The system net SN3 and it is a valid decomposition. 50

5.1 Iterative recomposing conformance checking framework. Once terminated
the return value is either the exact or interval decomposed conformance met-
ric. Source: [3]. 56

6.1 Meta model of XES standard. Source: [1] 59
6.2 The main components of ProM, this modularization makes this framework

highly extensible. Note also the separation between the actual algorithms’ im-
plement and the results visualization. Interactive user interface is provided by
the library UITopia. 60

6.3 The main sections of the UITopia user interface. 64
6.4 ProM packages’ development life-cycle: from the local programming to their

official release. 65
6.5 Celonis Process Analytics application illustration. 67
6.6 Overview of Celonis platform architecture. 67

7.1 PLG2 application UI for generating random processes and event logs. 70
7.2 An illustration of the stepwise stitching algorithm plug-in in ProM. 72
7.2 Cont.) An illustration of the stepwise stitching algorithm plug-in in ProM. . 73
7.3 Three Petri net randomly generated by PLG2. 74
7.4 . 75
7.5 Some statistics about recomposing method. 77
7.6 Summary of computation time. The total time of the recomposing algorithm

is the sum of the first net decomposition and replay time plus recomposing
time, that is the time spent on recomposing and replay again. To make the
comparisons as fair as possible we calculated the stitching time as the sum of
the time required by our stitching plug-in plus estimated time really served to
find out necessary next-best sub-alignments. Specifically, to approximate the
latter amount of time we have just calculated the average time for finding one
sub-alignment and then we have multiplied it by average number of attempts
that the stitching algorithm required to reach the non-conflict sub-alignments
property. 78

x

7.6 (Cont.) Summary of computation time. The total time of the recomposing
algorithm is the sum of the first net decomposition and replay time plus re-
composing time, that is the time spent on recomposing and replay again. To
make the comparisons as fair as possible we calculated the stitching time as
the sum of the time required by our stitching plug-in plus estimated time re-
ally served to find out necessary next-best sub-alignments. Specifically, to ap-
proximate the latter amount of time we have just calculated the average time
for finding one sub-alignment and then we havemultiplied it by average num-
ber of attempts that the stitching algorithm required to reach the non-conflict
sub-alignments property. 79

7.7 Percentage of solved and accepted traces recorded for stitching and recompos-
ing algorithms respectively. A solved trace is a not perfect fitting trace (positive
costs) for which the stitching algorithm successfully found out correct sub-
alignments to be merged. We recall that a trace is rejected by the recomposing
algorithm when its number of border conflicts surpasses a prefixed threshold,
the number of accepted traces counts howmany traces forwhich recomposing
algorithm succeeded to align. We computed these values by firstly counting
the number of distinct not perfect fitting trace for each event log, then, we
compute the ratio. 81

7.8 The plot on the top is related to fitness intervals computed by the stepwise
stitching algorithm, on the bottom, it is shown intervals returned by the re-
composing method. True fitness values are indicated by star symbols. 82

xi

xii

Listing of tables

7.1 Dataset summary table. Noise refers to each noise category we described in
Section 7.1.1. 74

xiii

xiv

1
Introduction

Process Mining is a very active research area in recent years and this interest is still increasing,
attracting attention in both academic world and industry, due to its enormous potentials in
improving any process occurring around us. Interestingly, sometimes we do not even realize
that we are surrounded by processes–from withdrawal of cash in bank to booking a doctor’s
appointment in hospital. Process mining is considered an intersection of many studies fields
such as computer science, data mining, economics and etc. In fact, it is often seen as a link
between data science and process science. A canonical division of the subject consists of three
study directions: (1) Process Models Discovery, (2) Conformance Checking and (3) Process En-
hancement and improvement.

The rush to digitalization all over the world is creating new processes, consequently, data to
be stored in somewhere, this phenomena refers to the notable “Big Data”. This data explosion
is challenging traditional process mining algorithms in all the aforementioned study areas, the
objective of this thesis is to tackle one of these challenges that is the evaluation of large process
models (conformance checking).

Conformance checking is the problem to pinpoint deviations between how processes are ex-
ecuted in reality and how processes are expected to be performed according to norms, regula-
tions and protocols. The executions are recorded in event logs, while the expected behaviors
are encoded in a process model. The complexity of the problem is exponential with respect to
the size of the model, this makes the problem not scale when models become very large. To
keep the problem tractable, one can decompose the model into parts for which conformance

1

checking is carried out.
Early works related to decomposed conformance checking had already obtained satisfactory

results, nevertheless, they are still lacking in performance for some use cases–for example, when
the number of sub-models is unavoidably big. In this thesis we propose a novel sub-solutions
merging algorithm which aims to overcome some weaknesses of the state-of-the-art methods
and to be a valid alternative to them. The thesis is organized in a way that we first provide
process mining fundamentals and go in-depth with the decomposed conformance checking
theory, then, we present our algorithm by formally defining it and proving its correctness. Fi-
nally, we test the new algorithm’s performance by using large synthetic dataset generated by an
appropriate tool, discussing pros and cons of the solution proposed.

2

2
Preliminaries

In this first chapter we aim to provide some process mining fundamentals which include his-
torical developments, objectives, basic notations and definitions, they are useful in the next
chapters.

2.1 Data Science

Data science is an emerging interdisciplinary science due to the data/information explosion
phenomenonoccurring in these days. As observed in [1] a data scientist is often asked to answer
a variety of data-driven questions:

• What happened (history)?

• Why did it happen (analysis)?

• What will happen (prediction)?

• What is the best that can happen (Recommendation)?

Wewould like add also that this is a very broad study field , differently from natural sciences
it is more application-oriented science so that the domain knowledge in most of the cases play
a crucial role.

The basic knowledge required in Data Science are partially overlapping (sub)disciplines, the
Fig. 2.1 gives a illustration of this multidisciplinarity. Note that there are knowledge from

3

computer science (e.g. algorithms and databases) but also economics and psychology related
subjects are essential.

Figure 2.1: Intersection of other disciplines from numerous study areas that provide basis for becoming a data scientist.
Source: [1].

2.2 ProcessMining

Process mining belongs to a wider science named as process science and a possible definition is
the following, given in book [1]:

We use the umbrella term “process science” to refer to the broader discipline
that combines knowledge from information technology and knowledge from man-
agement sciences to improve and run operational processes.

Then, it is also provided a definition for process mining:

processmining can be viewed as the link between data science and process science.

4

This bridge between the two sciences is well-illustrated in Fig. 2.2. Once again we deduce that
a process mining expert should have a strong background knowledge of the field/sector he/she
is working in.

Figure 2.2: A possible collocation of process mining, it is considered a link between data science and process science.

2.2.1 In a nutshell

Early core business processes were simple and often manual:

• To create a product you would procure materials from a supplier, manufacture it and
store it;

• To fulfil a purchase, you would receive an order, retrieve the product, package it up and
ship it out;

• To pay a supplier, you would receive an invoice, arrange the payment, and send confir-
mation.

But as businesses have digitized every aspect of working life into IT systems, core processes
have become complex operational machinery in and of them- selves—too fast, frequent, inter-
connected and distributed to manage manually. Modern information systems such as ERP

5

(Enterprise Resource Planning) systems (SAP, Or- acle, etc) and BPM (Business Process Man-
agement) systems support processes in different organizations.

To concretize the ideas and emphasize the importance of the process science it is convenient
to make some examples. Processes are made up of several temporally ordered activities, some
probable examples of activities can be withdrawal of cash from an ATM, a doctor adjusting an
X–ray machine, a citizen applying for a driver’s license, submission of a tax declaration, and
receipt of an e–ticket number by a traveler. Speaking about common business processes they
includefinancial processes such asPurchase-to-Pay (P2P) andOrder-to-Cash (O2C), in addition
to these there are many others that are brought into play on a daily basis:

• Purchase-to-Pay (P2P):Refers to thebusiness processes that start frompurchasing/receiving
a good/service to pay the bills, for example raw material acquisition;

• Order-to-Cash (O2C): They are common sales processes so they begin with receiving
an order and finish with release payment receipt from customer side (clear invoice);

• Accounts Payable (AP): Refers to an account that represents a company’s obligation to
pay off a short-term debt to its creditors or suppliers, the business processes that involve
this type of operation have the same name. These processes are quite complex because
they vary significantly according to the business sector the companies belong to;

• Accounts Receivable (AR): are, in simple words, any money that your customers or
clients owe you for a service or product they bought on credit;

• Procurement Processes (PP): are processes of purchasing of raw materials, goods and
services necessary for the operation of a production activity;

• Order Management (OM): This system generates huge amount of data, most of them
are real-time and have to be elaborated quickly. Those data are of vital importance for
the business and so gaining insight into the generator processes would be very profitable
for companies;

• Inventory Management (IM): This is also a core component in a enterprise manage-
ment system, especially for those companies working in the commerce sector. Here each
product is tracked from arriving in warehouse to being shipped out, when dealing with
large number ofmaterials monitoring processes’ inefficiency can lead to a big loss for the
business.

These are just few examples, of course. In addition, different companies define certain pro-
cesses differently depending on their needs, the systems they use and other factors.

6

By their nature, processes are not static, nor do they always follow a standard path. Even the
most accurate systems can incur errors, and over time these deviations can become a (poten-
tially damaging) “new rule” . A successful application of process mining in the manufacturing
industry is the case of ASML (the leading manufacturer of wafer scanners in the world) [7],
in which process mining algorithms could answer many business questions in complex envi-
ronments as the wafer scanner qualification phase, moreover, concrete suggestions could be
yielded for process improvement.

2.2.2 ProcessMiningManifesto

One of the cornerstone works in this field is Process Mining Manifesto [8], the same paper
defines the word ”manifesto” as following:

A manifesto is a “public declaration of principles and intentions” by a group
of people. The goal of this task force is to promote the research, development,
education, implementation, evolution, and understanding of process mining.

The key contribution is to determine the macro division of the research directions at that time
and in the future, in this way researchers can focus on a specific area of their interest:

1. Discovery: Organizations use procedures to handle cases that are recorded by informa-
tion systems, it could happen that some of the cases include informal actions or not
following the standard company protocols. Therefore, it is important to discover/mine
actual processes. Starting point for process mining is an event log, it consists of traces
which are a sequence of events (e.g. purchasing a good till to pay the bills in a P2P pro-
cess). Process discovery techniques produce processmodels (e.g. petri nets) based on event
logs, one of the first and simplest algorithms isα-algorithm [9]. Formal definition of the
previous concepts will be stated latter in this chapter;

2. Conformance Checking: When built process models we need to evaluate them, so we
take a model and an event log as input then the modelled behavior and the observed
behavior (i.e., event log) are compared. Essentially, conformance checking is necessary,
for example

- to identify deviating cases,

- for auditing purposes,

- to judge the quality of a discovered process model,

- as a starting point for model enhancement or process adjustment.

7

(a) The standard process mining projects’ workflow. The
principal research directions are colored in red.

(b) Inputs and output of process mining
algorithms in each three major studying areas.

Figure 2.3: The input, output and types of Process Mining. Source: [2].

This is the area we have to focus on and in this thesis we illustrate issues and possible
solutions related to conformance checking challenges;

3. Enhancement: This is a cyclic procedure in which we discover amodel and domodel-log
conformance checking, after identified model deviations we go to the discovery step to
compute an improved model, then we repeat the cycle until we obtain a satisfactory re-
sult. In this phase we aim also to enrich the process with information about other no
control-flow perspectives, such as organizational perspective to mine social network (han-
dover of work) and time perspectivewhich focuses onwaiting times in-between activities,
for more details see [1].

The typical process mining project workflow is depicted in Fig. 2.3 where we can see all ele-
ments and concepts we’ve just described above.

Observed behavior and modelled behavior:

When doing conformance checking there are four quality dimensions for comparingmodel
and log which need to be considered:

• Fitness: Amodel with good fitness means thatmost of the behavior of the event log can
be observed in the model. This is the model metric of our interest in this thesis;

• Simplicity: It measures the complexity of a model, this can be thought as number of
events/activities embedded in the model;

8

• Precision: A model is precise if this allows “not too much” behavior, i.e. it can repro-
duce all event log but no more;

• Generalization: Very similar to the homonymmetricwhen dealingwith statisticalmod-
els, also here a model should also generalize and not restrict behavior to just the data in
the dataset.

The job of a data scientist is to balance all these metrics, since due to their definition very
often high value in one dimension means penalizing the opposite one, i.e. a perfectly fitting
modelmay not be simple and a precise model with not enough data has few generalization power.
For a detailed discussion on these four quality of process discovery algorithms see [10].

2.3 Notations andDefinitions

In this chapter, we present the preliminary definitions that will be used later in the thesis. Basic
concepts such as sets andmultisets will be recalled. Then, we present concepts commonly used
in process mining such as events, trace, event logs and process models.

2.3.1 Fundamental Notations

What follow are basic notations in process mining, mathematical formalities are necessary to
be more precise/without ambiguity in theorem statements and useful for proving theoretical
results.

Definition 2.1 (Multisets). LetX be a set, amultiset ofX is a mappingM : X → N. B(X)

denotes the set of allmultisets overX. LetMandM ′ bemultisets overX.M containsM ′ if and
only if ∀x∈XM(x) ⩾ M ′(x), this inclusion is denoted byM ⩾ M ′. The union ofM andM ′

is denotedM+M ′ that is ∀x∈X(M+M ′)(x) = M(x)+M ′(x). The difference betweenM
andM ′ is denotedM−M ′ and is defined by∀x∈X(M−M ′)(x) = max(M(x)−M ′(x), 0).

Remark. it is easy to see that (M −M ′)+M ′ only ifM ⩾ M ′. Amultiset can be thought as
a set containing elements with repetition, e.g. [x2, y2, z].

Definition 2.2 (Projection on sequences and multisets). Let X be a set and X ′ ⊆ X be a
subset of X, let σ ∈ X⋆ be a sequence over X and letM ∈ B(X) be a multiset over X. With
πX′(σ)we denote the projection of σ onX ′ that is a sequence with the only elements inX ′, e.g.
π{x,z}(⟨x, x, y, y, z⟩) = ⟨x, x, z⟩.Similarly, with πX′(M) we denote the projection of M on
X ′, e.g. π{x,z}([x

3, y2, z3]) = [x3, z3].

9

Sometimes, the projection is denoted by the symbol ↾X , e.g. ↾{x,z} ([x3, y2, z3]) = [x3, z3].

Definition 2.3 (Function domains and ranges). Let f ∈ X ⇀ X ′ be a partial function *.
dom(f) ⊆ X denotes the set of all elements from X that are mapped onto some value inX ′

by f . With rng(f) ⊆ X ′ we denote the set of all elements in X ′ that are mapped onto by
some value in X, in symbols, rng(f) = {f(x)| x ∈ dom(f)}.

2.3.2 Business ProcessModeling and Petri Nets

Regardingprocessmodels, there aremanydifferentprocessmodelling languages some examples
are

- Business Process Modelling Notation (BPMN);

- Event-Driven Process Chains (EPCs);

- UnifiedModeling Language (UML);

- Yet Another Workflow Language (YAWL).

In [1] there are more information about these models. Petri nets are very simple and math-
ematically well-studied models to represent the processes, so in this thesis we use them to illus-
trate some examples.

Definition 2.4 (Petri net). A Petri net is a tuple N = (P, T, F) with P the set of places,
T the set of transitions, P ∩ T = ∅ and a set of arcs or flow relations is defined as F =

(P × T) ∪ (T × P).

Places are typically visualizedby circles, whereas transitions are typically visualizedby squares
or rectangles. Taking as an example the Petri net in Fig. 2.4, we can denote this net N2 =

(P1, T1, F1) where the set of places is P2 = {p1, p2, · · · , p19}, the set of transitions is T2 =

{t1, t2, · · · , t18} and the set of arcs is F2 = {(p1, t1), (t1, p2), · · · , (t18, t19)}.
The state of aPetri net is called amarking, and corresponds to amultiset of places. Amarking

is typically visualized by putting as many so-called tokens (black dots) at a place as the place
occurs in the marking. So it is very intuitive to give the following

*A partial function is a standard function without specifying the it is domain that is a subset of X.

10

Figure 2.4: An example of Petri nets which will be used in later chapters. This system net SN2 models a bank transfer
process in which a client makes a bank transfer from one account (sender account) to another account (receiver account).

The receiver account can be of a local bank or an overseas bank. Source: [3]

Definition 2.5 (Marking, transition firing and reachability). Let N = (P, T, F) be a Petri
net. AMarkingM is a multiset of places (M ∈ B(P)).
For a node n ∈ P ∪ T (it can be a place or a transition), the set of input nodes is denoted by
•n = {n′| (n′, n) ∈ F}, vice versa, the set of output nodes is n• = {n′ (n, n′) ∈ F}.
A transition t ∈ T is enabled by a markingM if and only ifM ⩾ •t. The firing of an enabled
transition t in markingM is denoted as (N ,M)[t⟩(N ,M ′), whereM ′ = (M − •t) + t•, i.e.
the transition t fires consuming one token form each of input places in •t and producing one
token at each of the output places in t•.
AmarkingM ′ is reachable fromamarkingM if and only if there exists a sequence of transitions
σ = ⟨t1, t2, · · · , tn⟩ such that ∀0⩽i<n(N,M i)[ti+1⟩(N,M i+1) withM0 = M andMn =

M ′.

Since real-world processes either have an human-readable name or a company code for each
of the activities executable in them, then it was given the following

Definition 2.6 (Labelled Petri net and invisible transitions). A labelling function is l ∈ T ⇀

UA, where UA is some universe of activity labels and a labelled Petri net is defined as N =

(P, T, F, l). A transition t is called invisible if and only if it is not mapped to any activity label
by the labelling function. Otherwise, transition t is visible and corresponds to an observable
activity a = l(t).

The labels are used to link transitions in the Petri net to activities in an activity log. The
reachability condition can be rewritten for a labelled Petri net: (N ,M)[σv ▷ (N ,M ′) if and

11

only if there exists a sequence σ such that (N ,M)[σ⟩(N ,M ′)with l(σ) = σv. Always taking
as an example the Petri net in Fig. 2.4 we have that N2 = (P1, T2, F2, l2) with l2 a labelling
function that maps transition t1 onto activity label a, t2 onto b, etc. N2 is a labelled Petri net
and t10 is an invisible transition.
Typically, processes have an initial state and a well-defined final state, similarly, when replay-
ing an activity log on a Petri net, the Petri net needs to have an initial marking to start
with, and final markings to conclude whether the replay has reached a proper final mark-
ing. We say that a firing sequence is complete when it starts from a marking only containing
the initial place and ends at a marking only containing the final places (e.g. for the Petri net
N2 ,⟨t1, t3, t6, t10, t14, t4, t7, t8, t11, t12, t15, t17, t18⟩ is a complete firing sequence).

Definition 2.7 (Systemnet). A systemnet is a tripletSN = (N , I, O)whereN = (P, T, F, l)

is a labelled Petri net, I ∈ B(P) is the initial marking and O ∈ B(P) is the final marking.
universe of system nets is denoted by USN .

The net SN2 = (N2, I2, O2) in Fig. 2.4 is a system net, with an initial marking I1 = [p1]

and a final markingO1 = [p19].
Some other notations on system nets are useful:

Definition 2.8. Let SN = (N , I, O) ∈ USN be a system net withN = (P, T, F, l).

• Tv(SN) = dom(l) is the set of visible transitions in SN ;

• Av(SN) = rng(l) (range) is the set of observable activities in SN ;

• T u
v (SN) = {t ∈ Tv(SN)| ∀t′∈Tv(SN)l(t) = l(t′)⇒ t = t′} is the set of unique visible

transitions in SN ;

• Similarly, Au
v(SN) = {l(t)| t ∈ T u

v (SN)} is the set of corresponding unique observ-
able activities in SN .

2.3.3 Event Logs

The following is a fragment of an anonymized real-life event log contains events of sepsis cases
from a hospital. Sepsis is a life threatening condition typically caused by an infection. One case
represents the pathway through the hospital and the events were recorded by the ERP system
of the hospital:

12

<trace>
<string key="concept:name" value="A"/>

<event>
<boolean key="InfectionSuspected" value="true"/>
<string key="org:group" value="A"/>
<boolean key="DiagnosticBlood" value="true"/>
<boolean key="DisfuncOrg" value="true"/>
<boolean key="SIRSCritTachypnea" value="true"/>
<boolean key="Hypotensie" value="true"/>
<boolean key="SIRSCritHeartRate" value="true"/>
<boolean key="Infusion" value="true"/>
<boolean key="DiagnosticArtAstrup" value="true"/>
<string key="concept:name" value="ER Registration"/>
<int key="Age" value="85"/>
<boolean key="DiagnosticIC" value="true"/>
<boolean key="DiagnosticSputum" value="false"/>
<boolean key="DiagnosticLiquor" value="false"/>
<boolean key="DiagnosticOther" value="false"/>
<boolean key="SIRSCriteria2OrMore" value="true"/>
<boolean key="DiagnosticXthorax" value="true"/>
<boolean key="SIRSCritTemperature" value="true"/>
<date key="time:timestamp"
value="2014-10-22T11:15:41.000+02:00"/>
<boolean key="DiagnosticUrinaryCulture" value="true"/>
<boolean key="SIRSCritLeucos" value="false"/>
<boolean key="Oligurie" value="false"/>
<boolean key="DiagnosticLacticAcid" value="true"/>
<string key="lifecycle:transition" value="complete"/>
<string key="Diagnose" value="A"/>
<boolean key="Hypoxie" value="false"/>
<boolean key="DiagnosticUrinarySediment" value="true"/>
<boolean key="DiagnosticECG" value="true"/>

</event>
<event>

13

<float key="Leucocytes" value="9.6"/>
<string key="org:group" value="B"/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="Leucocytes"/>
<date key="time:timestamp"
value="2014-10-22T11:27:00.000+02:00"/>

</event>
<event>

<float key="CRP" value="21.0"/>
<string key="org:group" value="B"/>
<string key="lifecycle:transition" value="complete"/>
<string key="concept:name" value="CRP"/>
<date key="time:timestamp"
value="2014-10-22T11:27:00.000+02:00"/>

</event>
............

</trace>
<trace>
............

Intuitively, the event log contains as many traces as the information systems have recorded at
the time of data extraction. Each trace consists of ordered events which need to refer to a sin-
gle process instance, often referred to as cases. Then, each case is enriched by many attributes,
examples of typical attribute names are activity, timestamp, costs, and resource, here we have a
lot of domain-specific parameters which are variables and processes with data are called data-
aware processes [11]. Finally, note that there is an attribute named “lifecycle:transition” which
indicate the state of an event, example values are start, schedule, complete, etc.

Keeping inmind the concrete example, we give the formal definitions for the above concepts.

Definition 2.9 (Traces). Let SN = (N , I, O) ∈ USN be a system net. ϕ(SN) =

{σv| (N , I)[σv▷(N , O)} is the set of visible traces starting inmarking I and ending inmarking
O. ϕf (SN) = {σ| (N , I)[σ⟩(N , O)} is the corresponding set of complete firing sequences.

Definition 2.10 (Event log). UA denotes the universe of activities. An event log L is a multiset
of activity sequences/traces.

14

3
Decomposed Conformance Checking

In this chapter we enter into detail about conformance checking, decomposed conformance
checking when data increase considerably and the traditional algorithms are not able to handle
such amount of data to be processed. We recall that the conformance checking quality metric
studied throughout this thesis is fitness.

3.1 Alignment-based conformance checking

Conformance checking is one of the four main areas in Process Mining as we have already
mentioned in Chapter 2. Essentially, the goal is to evaluate the quality of discovered Petri
nets and identify process bottlenecks according to the four quality dimensions: simplicity, fit-
ness,generalization and precision. Many quantitative approaches are available and two of them
are very popular: token replay and alignment. We preferred the alignment-based approach
but we give also an overview of the other technique.

3.1.1 Token Replay

Replay simplymeans that we use both event log and a process model as input then we compare
the behaviors observed in the log and behaviors reproducible by the model. In Chapter 2 we
introduced the concept of firing sequence and token replay approach consists of taking a trace

15

Figure 3.1: This an example of token replay of a trace σ = ⟨a, d, c, e, h⟩ on a system net SN . We skipped intermediate

steps and go to calculate the final fitness: fitness(σ, SN) = 1
2

(
1− 1

6

)
+ 1

2

(
1− 1

6

)
= 0.8333. Source: [1].

from the log and try to replay this in the model. When replaying we take into account four
measures:

• Produced tokens (p);

• Consumed tokens (c);

• Missing tokens (m);

• Remaining tokens (r).

Then, given a system net SN and a trace σ, we define token replay fitness as:

fitness(σ, SN) =
1

2

(
1− m

c

)
+

1

2

(
1− r

p

)
.

Note that if m = 0 then
(
1 − m

c

)
= 1 and if r = 0 then

(
1 − r

p

)
= 1. So, we have

that 0 ≤ fitness(σ, SN) ≤ 1, one trace perfectly fits a model (fitness = 1) if there are no
missing and remaining tokens, on the other hand, one trace does not fit amodel (fitness = 0)
if number of missing tokens equals number of consumed tokens and number of remaining
tokens equals number of produced tokens (m = c, r = p). In Fig. 3.1 we show an example of
token replay fitness calculation.

3.1.2 Alignment-based Conformance Checking

Token-based replay seems to be a good method to evaluate discovered models, but that is
not a always-good method for any scenario, some of it is limitations are discussed in [12]

16

and in the same paper was introduced alignment-based replay for the first time. In this new
approach fitness of a trace is measured by “summing up costs of all missing steps for visible
activities”. We explain this concept by making a example. For the Petri net in Fig. 3.1 and the
trace σ = ⟨a, d, c, e, h⟩we can have the following alignment:

L a ≫ d c e h

M a c d ≫ e h

WherebyL andMwemeanLogmove andModelmove respectively. Intuitively, we try tomimic
an activity in themodel byusing an activity in the trace, if one activity cannot bemimicked then
we use the symbol “≫” which implies no step or log move on theM row, on the other hand, if
an activity in the trace cannot be mimicked by an activity in the model then we use the same
symbol on the rowL (modelmove). For an invisible activity in the discoveredmodel we use the
symbol “τ” on the L row. We say synchronous move if bothmodel and trace agree on an activity
move. Usually, the row on the top is always related to log moves and that on the bottom is
related to model moves, so in these thesis we keep this convention and omit the first column
from now on.

Using this simple case we can observe that there may be infinite alignments for a single trace,
for example, in the model we can always “go back” to the place p1 from the place p4 (loop),
looping over and over again we get a different alignment every time. it is easy to understand
that there are alignments that fit most for a trace-model pair, those with minimum number of
misalignments but this is not always the case (when a model move is not equivalent to a log
move). We will give formal definitions for these concepts.

Definitions and notations:

We can think of a move as a pair (l,m) where l refers to an activity in the trace and
m indicates a model activity.

Definition 3.1 (Legal moves). Let L be an event log and let A the set of activities in the log.
Let SN = (N, I,O) ∈ USN be a system net with N = (P, T, F, l).The set of all possible
legalmoves is defined asALM = {(a, (a, t))| a ∈ A ∧ t ∈ T ∧ l(t) = a}∪{(≫, (a, t))| a ∈
A ∧ t ∈ T ∧ l(t) = a} ∪ {(≫, (τ, t))| t ∈ ∧ t /∈ dom(l)} ∪ {(a,≫)| a ∈ A}.

An alignment consists of legal moves andmodels moves should bring the token in the initial
place to one of the final places.

17

Definition 3.2 (Alignment). LetL be an event log and letA the set of activities in the log. Let
σL ∈ L be a log trace and σM ∈ ϕf (SN) be a complete firing sequence of the system net
SN . An alignment of σL and σM is a not empty sequence γ ∈ ALM such that, ignoring all
non-syncmoves≫, the projection on the first elements yieldsσL and the projection on the last
elements yield s σM .

Among all possible alignments we would like to order them according to the number of
non-sync moves: both model and log moves. Generally, a model move is not equivalent to a
log move depending on if we are more “tollerant” to one over the other one. So, we give the
following general

Definition 3.3 (Cost of alignment). The cost function is a function δ ∈ ALM → Q≥0 such
that synchronous moves have cost zero, i.e. δ(a, (a, t)) = 0 for all a ∈ A, both model and log
moves have positive costs, i.e. δ(≫, (a, t)), δ(a,≫) > 0 with l(t) = a and a ∈ A, a move
in the model also has no costs if the transition is invisible, i.e. δ(≫, (τ, t)) = 0 if t /∈ dom(l).
The cost of a non-empty alignment γ ∈ ALM is the sum of all costs: δ(γ) =

∑
(a,m)∈γ δ(a,m).

The standard cost function that has unit cost for bothmodel and logmove is denoted by δ1.
Now we give the following straightforward

Definition 3.4 (Optimal alignment). Let L be an event log and let A the set of activities in
the log. Let SN ∈ USN be a non-empty system net (i.e. ϕ(SN) ̸= ∅). Given a trace σL ∈
L, an alignment γ ∈ ALM for σL is optimal if the cost associated with aligning σL and the
corresponding complete firing sequence of the system net σM ∈ ϕf (SN) is lower or equal
than any other alignment for σL.

We use λ(σL, SN) ∈ A → ALM to denote a deterministic function that map a trace
to one of it is optimal alignments. As an example, we take the Petri net in Fig. 3.1, the trace
σ = ⟨a, d, c, e, h⟩, the following are optimal alignments:

a ≫ d c e h

a c d ≫ e h

a ≫ d c e h

a b d ≫ e h

ù
It is possible to define an alignment-based fitness of a trace starting from an optimal

alignment and the associated cost, we also want it to be normalized: this is a value between
zero (maximal cost) and one (perfect fitness or cost zero). To do so we need the concept of

18

worst-case alignment in which there are no synchronous moves and only “moves in model
only” and “moves in log only”. Always considering the example in Fig. 3.1 we have the
following worst-case alignment for the trace:

a c d c e h ≫ ≫ ≫ ≫ ≫
≫ ≫ ≫ ≫ ≫ ≫ a d c e h

Following the usual notations we define:

• moveM(SN) = minσM∈ϕf (SN)

∑
t∈σM

δ(≫, (l(t), t)): this is the minimal costs of an
alignment between an empty log trace and a complete firing sequence of the system net.

• moveL(σL) =
∑

a∈σL
σ(a,≫): this is the costs of an alignment between σL and an

empty model trace or this equals to the length of the trace.

Definition 3.5 (Alignment-based fitness). Following the notations of this chapter, the
alignment-based fitness is defined as:

fitness(σL, SN, δ) = 1− δ(λ(σL, SN))

moveM(SN) +moveL(σL)
.

Then, it is possible to extend the fitness to the overall event log as follows:

fitness(L, SN, δ) = 1−
∑

σL∈L δ(λ(σL, SN))

|L| ×moveM(SN) +
∑

σL∈L moveL(σL)
.

Back to the same example we have that, considering the unit cost function δ1,
fitness(σ, SN, δ1) = 1− 2

6+5
≈ 0.82.

3.2 Decomposing Petri nets

Due to the boom of business investment in information technology and global digitalization
in recent years, the term “Big Data” began to pick up steam around the IT journals and scien-
tific articles. Looking at Fig. 3.2 data accumulation trend is unstoppable, the cloud computing
seems to be a possible solution for this problem. When talking about Big Data a notable char-
acterization of it is the so called the “four V’s of data”: Volume, Velocity, Variety, Veracity [13].

19

Figure 3.2: Amount of data stored over the recent years and a future trend forecast.

• The first characterize impressive amount of data to be processed;

• The second is the incredible growth rate of the data generation;

• The third refers to the different forms in which data are generated;

• The last one measures the different degrees of trustworthiness of the data.

In Process Mining large amount of data to be processed is a big challenge as well, especially
duringmodel discovery and conformance checking. Our focus is of course on the conformance
checking. It is proved that the complexity of conformance checking problems are exponential
when models’ size increase [4]. This may make traditional conformance checking algorithms
unacceptably slow or even infeasible. Fortunately, many techniques are developed to overcome
this problem, both in the field ofmodel discovery and in the field of conformance checking. We
can classify the methods in two categories for decomposition-based conformance checking:

• Case-based decomposition (called “vertical partitioning of the event log”): Fig. 3.3.
The idea is very easy to understand, the event log is divided in sub-logs or distributed
over a set of compute nodes, then the computation will be do in parallel. This approach
is very convenient to use when we have small process model and big event log;

• Activity-based decomposition: Sometimes, if the model is too big then conformance
checking even a single trace would be infeasible, in this case we have to move to the
activity-based approach. In this scenario we focus on decomposing process models (e.g.
Petri nets) into sub-models afterwords we do the conformance checking for each sub-
model taking into account only activity within the analysed model (i.e. trace projection
on the sub-model). Finally, we combine the local results to obtain a global conformance
evaluation. See Fig. 3.4. Comparing to the case-based method that can gain a linear

20

Figure 3.3: A case‐based decomposition example, each
sub‐log can potentially processed by many compute nodes or
in a single node with a processor multi‐core in parallel. Doing
so we can gain a linear speed‐up in terms of computation

time. Source: [1].

Figure 3.4: A activity‐based decomposition example, we
divide the conformance checking problem into smaller

conformance checking problems: we properly decompose
the Petri net and calculate the projection of the traces on
each subnet. Then, we merge the local results to get a

conformance evaluation on the overall net. In this way we
can potentially reach more than linear speed‐up in terms of
computation time. This is our studying direction in this thesis.

Source: [1].

21

speed-up in terms of computation time by using this activity-based approach we can po-
tentially reach higher speed-up rate. Thus, in this thesis we aim to give our contribu-
tion to improve existing activity-based decomposition algorithms.

3.2.1 WhyDecomposed Conformance Checking?

To illustrate computational issues related to conformance checking of big models and to show
a case in which we can gain more than linear speed-up, we use the example in Fig. 3.5a. After a
token is fired by the transition t0 a new token is produced in the place p2, then from this place it
can be consumed by one of the n parallel transitions. We canmeasure the complexity of a Petri
net by counting how many possible traces it admits. Thus, we have n! possible traces for this
very simple Petri net that is a lot more than a linear increase w.r.t n. However, if we are able to
split the net into two subnets with half of the parallel transitions for each then we can execute
the conformance checking simultaneously for each subnet. By doing so, the possible number
of traces would be reduced to (n

2
)!, we show this net splitting in Fig.3.5b. To appreciate more

this complexity reduction we suppose n = 8, then 8! = 40320 and (8/2)! = 4! = 24, the
difference is 40320/24 = 1680 times.

3.2.2 Valid Decomposition

Merging the local results into a global result for the original net is not easy task because we
would like that the final fitness to be as much as possible close to the true value, as we can
obtain by using some conformance checking techniques on the overall net.
To reach this goal, we have to

• properly decompose the overall Petri net and

• contrive local results merging techniques.

We discuss all these two topics in this chapter.
Ideally, a good decomposition is such that each subnet is well-separated/independent from

the others, in this way we can evaluate the single subnet without consider the results of the
remaining ones. If we take the decomposition example in Fig. 3.5b, that is not a good decom-
position because the subnetsS1 andS2 are not independent from each other, in particular they
share the place p2. To see this, consider the firing sequence ⟨t0, tn⟩ that is a perfect fitting trace

22

(a) A very simple Petri net with n parallel activities.

(b) A possible net decomposition.

Figure 3.5: A simple Petri net to show that the number of possible activity is n!, this is much more than linear increase w.r.t.
the number of activities n. However, using the net decomposition we can incredibly reduce a lot the complexity of the

initial net.

23

for the net in Fig. 3.5a, however, if we project this trace on the three subnets then we get re-
spectively: ⟨t0⟩, ⟨t0, tn⟩ and ⟨t0⟩. We observe that the projected trace of the subnet S1 cannot
be perfectly replayed by the net, whereas the other projected traces are perfect fitting traces for
their respective subnet, it is very hard to join them together to get a cost zero alignment for the
overall net.
To overcome issues related to common places and other ambiguities in [4] the authors studied
the problem and they introduced the concept of valid decomposition and border activities.

Definition 3.6 (Valid decomposition). LetSN ∈ USN be a systemnet with labeling function
l. D = {SN1, SN2, · · · , SNn} ⊂ USN is a valid decomposition if

• SN i = (N i, I i, Oi) is a system net withN i = (P i, T i, F i, li) for all 1 ≤ i ≤ n,

• li = l ↾ti for all 1 ≤ i ≤ n,

• P i ∩ P j = ∅ for all 1 ≤ i ≤ j ≤ n,

• T i ∩ T j ⊂ T u
v (SN) 1 ≤ i ≤ j ≤ n and

• SN =
∪

1≤i≤n SN
i.

D(SN) denotes the set including all valid decompositions of SN .

In addition to null intersection of all places in the net, we should ensure also that each place
and invisible transition resides in just one subnet, if there aremultiple transitionswith the same
label, they should reside in the same subnet. Only unique visible transitions can be shared
among different subnets. Moreover, each edge appears in precisely one of the subnets.
We illustrate an example of valid decomposition in Fig. 3.6.In this case the valid decomposition
isD = {S1, S2, S3, S4}.
From the definition we observe, unlike the places, some transitions can be shared among the
subnets, they are activities on the borders. This a concept strictly related to the decomposition
and it is very important for developing local results merging algorithms, since we need them to
satisfy a certain condition.

Definition 3.7 (Border activities). Let SN = (N, I,O) ∈ USN be a system net with
N = (P, T, F, l) and let D = {SN1, SN2, · · · , SNn} ∈ D(SN). The set of bor-
der activities of the valid decomposition D is defined as Ab(D) = {l(t)| t ∈ T i ∩
T jforsomepositiveindicesi, j ≤ n}.
Let a ∈ rng(l) be an observable activity. The set of subnets containing a as a border activity
is denoted by SNb(a,D) = {SN i|SN i ∈ D ∧ a ∈ Ab(SN

i)}.

24

The valid decompositionD1 have the border activitiesAb(D1) = {a, g, d}.

Remark. Some properties immediately follow from the definition:

• Ab(D) ⊂ Au
v(SN), i.e. a border activity can only be an activity that has a unique label;

• if a is a non-unique activity then it must be that |SNb(a,D)| = 1. On the other way, if
a is a border activity then |SNb(a,D) > 1|;

A valid decomposition guarantees that a trace that is fitting the systemSN is also fitting each
subnet SN i in which SN is decomposed and vice versa. See the following theorem proved
in [4]:

Theorem 3.8 (Decomposed conformance checking). LetL be an event log and letA the set of
activities in the log. Let SN = (N, I,O) ∈ USN be a system net with Av(SN) = A and
D = {SN1, SN2, · · · , SNn} be an any valid decomposition of SN . Then, a trace σL ∈ L

is a perfect fitting trace for the system netSN if and only if σL ↾Av(SN i) is a perfect fitting trace
for the subnet SN i for all 1 ≤ i ≤ n.

Proof. We adopt the same notations introduced in this chapter.
(⇒) Let σM be a complete firing sequence in an optimal alignment for the trace σL, i.e.
(N,Minit)[σM⟩(N,Mfinal). it is trivial that the projected firing sequence on each subnet
σM ↾Av(SN i) is a perfect firing sequence.
(⇐) Let σi

M be a complete firing sequence in an optimal alignment for the projected trace
σL ↾Av(SN i) on the subnet SN i for all 1 ≤ i ≤ n, i.e. (N,M i

init)[σ
i
M⟩(N,M i

final) for all
1 ≤ i ≤ n. Since, due to the definition of a valid decomposition, the different subnets only
share unique visible border transitions, moreover, these transitions move synchronously with
the corresponding activities in the trace σL (l(t) = a), then we can easily stitch together all
sub-alignments, for example by using the alignment stitching algorithm presented in [6], the
merging result will be a valid alignment and equal to σL (see the Chapter 5 for detailed infor-
mation).

By applying this powerful theorem, given a decomposed system net and after evaluate each
sub-log on the respective subnet, we can already compute the percentage of fitting traces in
the overall log, without complex results analysis. The remaining traces need to be further
evaluated. Consider the perfect fitting trace ⟨a, b, d, f, j, k,m, e⟩ for the system net SN1,
if we decompose the net as in Fig. 3.6b then we have the following optimal alignment and

25

(a) The system net SN1. There two invisible activities that we denote with τ1 and τ2, they reside in S4 and S3

respectively.

(b) A valid decomposition of SN1

Figure 3.6: An example system net SN1 and it is a valid decomposition.

26

sub-alignments:

(Optimal alignment:)

a b d f j k m e

a b d f j k m e

(Optimal sub-alignments:)

S1:
a

a
S2:

a b d

a b d
S3:

d e

d e
S4:

d f τ j k m

d f τ1 j k m

Adapted cost function:

Sometimes knowing simple percentage of fitting trace in an event log is not sufficient, we
need also to know the overall cost of a single trace’s optimal alignment.
Take the trace ⟨a, b, f, j, k,m, e⟩, optimal alignment and sub-alignments are:

(Optimal alignment:)

γ :
a b d f j k m e

a b ≫ f j k m e

(Optimal sub-alignments:)

γ1:
a

a
γ2:

a b d

a b ≫
γ3:

d e

≫ e
γ4:

d f τ j k m

≫ f τ1 j k m

We have that the optimal alignment γ has the cost δ1(γ) = 1, the optimal sub-alignments
have the costs δ1(γ1) = 0 and δ1(γ2) = δ1(γ3) = δ1(γ4) = 1. Intuitively, to obtain the overall
cost we cannot simply sum up the sub-alignments’ costs because in this way we would count
multiple (three) times the same misalignment in the activity d. Motivated by this example the
cost function is adapted in [3] as follows:

Definition 3.9 (Adapted cost function). LetD = {SN1, SN2, · · · , SNn} ∈ D(SN) be a
valid decomposition of the subnet SN and δ ∈ ALM → Q be a cost function. The adapted
cost function δD ∈ ALM → Q for decomposition D is defined as follows:

δD(a,m) =

δ(a,m)

|SNb(α(a,m),D)| , if α(a,m) ̸= τ

δ(a,m), otherwise.

27

Where the function α ∈ ALM → A ∪ {τ}maps a move to its associated activity, i.e. for all
t ∈ T and a ∈ A, α(a, (a, t)) = a, α(≫, (a, t)) = a, α(≫, (τ, t)) = τ and α(a,≫) = a.

The concept of adapted fitness follows the adapted cost function:

Definition 3.10 (Decomposed fitness metric). Let SN = (N, I,O) ∈ USN be a system
net with N = (P, T, F, l) and let D = {SN1, SN2, · · · , SNn} ∈ D(SN) be a valid
decomposition. Let Ai

v := Av(SN
i) be the set of visible activity of the subnet SN i for all

1 ≤ i ≤ n.
The decomposed fitness metric of a trace σL ∈ L under decompositionD is defines as:

fitnessD(σL, SN, δ) = 1−
∑

i∈{1,··· ,n} δD(λ(σ
i
L, SN

i))

moveM(SN) +moveL(σL)
,

where σi
L := σL ↾Ai

v
.

Extending the above definition to the overall event log L:

fitnessD(L, SN, δ) = 1−
∑

σL∈L
∑

i∈{1,··· ,n} δD(λ(σ
i
L, SN

i))

|L| ×moveM(SN) +
∑

σL∈L moveL(σL)
.

Back to the example trace ⟨a, b, f, j, k,m, e⟩ of this paragraph, it is quite straightforward
to compute its fitness for the unit cost function (worst-case model moves are ⟨g, τ2, e⟩):
1− 1

2+7
≈ 0.89. Then, fitnessD(⟨a, b, f, j, k,m, e⟩, SN, δ1) = 1− 3/3

2+7
≈ 0.89, this value

is as same as the result calculated by doing the conformance checking on the original net SN .

Adapted cost function as a lower bound for misalignment costs:

We have already discussed about local results that do not take into account overall
net structure; a sub-alignment with minimum costs for a subnet may result expensive when it
is viewed globally. Thus, we can deduce that decomposed optimal costs are lower bound for
the overall optimal costs.

Theorem 3.11 (Lower bound for overall optimal costs). Let SN ∈ USN be a system net and
letD = {SN1, SN2, · · · , SNn} ∈ D(SN) be a valid decomposition. LetAi

v := Av(SN
i)

be the set of visible activity of the subnet SN i for all 1 ≤ i ≤ n.
For any trace σL ∈ L, decomposed costs given by aligning σL in the subnets are lower bound

28

for the overall costs by aligning it in the overall net:∑
i∈{1,··· ,n}

δD(λ(σ
i
L, SN

i)) ≤ δ(λ(σL, SN)),

where σi
L := σL ↾Ai

v
.

Furthermore, the decomposed fitness is an upper bound for the overall fitness:

fitness(σL, SN, δ) ≤ fitnessD(σL, SN, δ).

Proof. Weprove the lowerboundby contradiction, theupper bounddirectly followedbyusing
the fitness definitions.
Suppose that ∑

i∈{1,··· ,n}

δD(λ(σ
i
L, SN

i)) > δ(λ(σL, SN)).

And let σM the firing sequence obtained by projecting the last element of an optimal align-
ment γ for the trace σL, let γ1, γ2, · · · , γn be some optimal sub-alignments for the projected
traces σ1

L, σ
2
L, · · · , σn

L. Then, it is possible, thanks to how we define a valid decomposition, to
construct a new set of sub-alignments γ′

1, γ
′
2, · · · , γ′

n that use the σi
M ’s, with σi

M = σM ↾T i .
Applying the definition of adapted cost function it must be that

δ(λ(σL, SN)) =
∑

i∈{1,··· ,n}

δD(γ
′
i) <

∑
i∈{1,··· ,n}

δD(λ(σ
i
L, SN

i)).

Thus, there must be a index ī ∈ {1, 2, · · · , n} such that δ(γ′
ī) < δ(γī), this is a contradiction

because γī is supposed to be an optimal sub-alignment.

3.2.3 Total Border Agreement

To compute the costs of an alignment the method of decomposed costs does not always work.
Let’s consider again the system net SN1 in Fig. 3.6a, the valid decomposition in Fig. 3.6b

and a new trace σ1
1 = ⟨a, g, b, d, c, d, f, j, e, h,m⟩. We change the cost function to another

one that maps model moves to 10 costs and log moves to 3 costs. Then, we have the following
optimal alignment and sub-alignments:

(Optimal alignment:)

29

γ :
a g b d c d f j ≫ e h τ m

a ≫ b d ≫ ≫ f j k e ≫ τ1 m

(Optimal sub-alignments:)

γ1:
a g

≫ g
γ2:

a b d c d

a b d ≫ ≫
γ3:

g τ d d e h

g τ2 ≫ d e h

γ4:
d d f τ j ≫ m

d ≫ f τ1 j k m

The costs are: δ(γ) = 22, δ(γ1) = 3, δ(γ2) = 6, δ(γ3) = 3 and δ(γ4) = 13. According to
the Defnition 3.9 we have that total adapted cost is equal to 6/2(border activity a)+3(activity
c)+9/3(border activity d)+10(activity k)= 19 ̸= δ(γ), this is lower bound for the true costs
(see Theorem 3.11).

We note two problems related to local optimality; the first one is that γ3 did not know about
the mutually exclusivity between the activity a and the activity g, in fact, it contains the firing
transition g that is not a correct firing for the overall net. Secondly, the border activity a has
different move type in the sub-alignments γ1 and γ2 (log move against sync move), due to how
we calculate the adapted costs we just divided the costs caused by misalignment of the activity
a by the number of subnets which contain it, not caring about the fact that in γ2 there is a sync
move.

Having the property that all border activities agree in terms of move types across all subnets
is a key characterization for merging sub-alignments.

Definition 3.12 (Total border agreement). LetSN = (N, I,O) ∈ USN be a system net with
N = (P, T, F, l) and letD = {SN1, SN2, · · · , SNn} ∈ D(SN) be a valid decomposition.
LetAi

v := Av(SN
i) be the set of visible activity of the subnet SN i for all 1 ≤ i ≤ n.

Let a ∈ Ab(D) be a border activity, aLM = {(a, (a, t)), (≫, (a, t)), (a,≫)} denotes all legal
moves for activity a (sync move, model move and log move).
Given a trace σL ∈ L, let γ1, · · · , γm be optimal sub-alignments respectively for the trace in
the subnets SN1, · · · , SNm ∈ SNb(a,D) which are subnets containing a as a border activ-
ity. The set of sub-alignments γ1, · · · , γn are said to be under border agreement on the border
activity a if γi ↾aLM

= γj ↾aLM
, for all SN i, SN j ∈ SNb(a,D).

The set of sub-alignments γ1, · · · , γn are under total border agreement (t.b.a.) if border agree-
ment is achieved one by one on all the border activities in γ1, · · · , γn following the order of

30

their occurrences across γ1, · · · , γm, starting with the first occurring border activity in subnet
SN i ∈ D.

The intuition that t.b.a. leads to a good sub-alignments merging condition is proved by the
next theorem, presented in [3].

Theorem 3.13 (Exact value for decomposed fitness metric under t.b.a.). Let SN =

(N, I,O) ∈ USN be a system net and let D = {SN1, SN2, · · · , SNn} ∈ D(SN) be a
valid decomposition. LetAi

v := Av(SN
i) be the set of visible activity of the subnet SN i for

all 1 ≤ i ≤ n. Given a trace σL ∈ L, let γ1, · · · , γn be optimal sub-alignments respectively
for the trace in the subnets SN1, · · · , SNn ∈ D.
Suppose γ1, · · · , γn are under t.b.a. , then the decomposed fitness metric coincide with the
standard fitness computed with the overall trace on the system net SN :

fitness(σL, SN, δ) = fitnessD(σL, SN, δ).

Moreover, if for all the log traces inL, their corresponding set of sub-alignments is under total
border agreement then

fitness(L, SN, δ) = fitnessD(L, SN, δ).

Proof. We have only to prove that, under t.b.a., the costs and adapted costs associated with an
optimal alignment and optimal sub-alignments respectively of a trace σL ∈ L coincide.
The proof is done by using the sub-alignment stitching rules in [6]; it was proved that if there is
no conflicts between two sub-alignment thenwe can stitch them together and the adapted costs
equals the standard costs. Thus, if we prove that we can always stitch together sub-alignments
under t.b.a. then we are done.
By contradiction, because we have a valid decomposition then the conflicts should be on the
borders, but the fact that two sub-alignments that do not agree on a border activity, the subnets
involved are not necessarily in order as γ1, · · · , γn, breaks the t.b.a. property.

Obviously, the sub-alignments illustrated in this subsection do not satisfy t.b.a. property
and, indeed, the two fitness metrics do not coincide. As an example of sub-alignments which
are under t.b.a. and soTheorem3.13 holds true, we consider again the trace ⟨a, b, f, j, k,m, e⟩
and the alignments:

(Optimal alignment:)

31

γ :
a b d f j k m e

a b ≫ f j k m e

(Optimal sub-alignments:)

γ1:
a

a
γ2:

a b d

a b ≫
γ3:

d e

≫ e
γ4:

d f τ j k m

≫ f τ1 j k m,

we colored in green the moves involving border activities. Clearly, the t.b.a property is satisfied
for the sub-alignments above.

An upper bound cost function for misalignment costs:

Sometimes we do not need to compute the exact costs/fitness but an interval in which the
precise values is contained suffices, this is because we can save a lot of computation time and
also we may be not interested in calculating the exact scores. In the Section 3.2.2 we defined a
lower bound cost function, in the paper [3] the authors introduced a new cost function that
can be easily showed to bound from above the true cost function (also here we use the usual
notations):

costD(σL, SN, δ) =

∑

i∈{1,··· ,n} δD(λ(σ
i
L, SN

i)), if under t.b.a;

moveM(SN) +moveL(σL), otherwise.

3.2.4 Decomposition Algorithms

As we have been assuming to have a valid decomposition as an hypothesis all times, now we
briefly show two notable Petri net decomposition techniques which return a valid decomposi-
tion set given a Petri net in input.

Maximal decomposition:

The idea of this decomposition strategy is quite easy-to-understand but the actual al-
gorithm implementation may result tricky at first sight, refer to [4] for a detailed explanation
of this method.

The objective of this technique is to find subnets whose “size” is as small as possible. The al-
gorithm begins supposing that there are no isolated places, but even they may appear in some

32

cases they can be removed, since, using a simple theoretical trick, they do not influence the final
conformance checking result. Recalling that for a valid decomposition each edgewill end up in
precisely one subnet, the construction of the maximal decomposition is based on partitioning
the edges which “connect” via undirected path involving as few as possible transitions/places,
paying attention to the invisible transitions which must not be shared by multiple subnets. To
satisfy the requirement that visible transitions with the same label must reside in one subnet,
after partitioning the edges into sets of connected edges, the sets that share non-unique observ-
able activities are merged.

In [4] there is proved thatmaximal decomposition is valid, moreover, a straightforward algo-
rithm to construct a maximal decomposition is quadratic in the number of edges.
For an example of maximal decomposition see Fig. 3.7.

Signle-Entry Single-Exit (SESE) decomposition:

Another well-studied decomposition technique is based on Refined Process Structure
Tree (RPST) [14], that is a hierarchical structure containing all single-entry and single-exit
subnets of a model.

The starting point for building a SESE decomposition is to consider a Petri net model as a
graph with only nodes, without making distinction between places and transitions (workflow
graph).Afterwards, a SESE of a graph (V,E) is a set of edges S ∈ E such that the sub-graph in-
duced by S has exactly two boundary nodes: one entry and one exit. As we have just mentioned,
a RPST is created on the model previously to a SESE decomposition because recent develop-
ments considerably reduced its implementation effort [15]. See the Fig. 3.8 for an example of
RPST and an associated SESE decomposition.

Because we do not make distinction between a place and a transition, it may happen that a
place becomes a border node and this is not desirable since it does not obey the definition of
a valid decomposition. To overcome this, the concept of bridge was introduced. Once a SESE
decomposition is computed, the bridging operation consists of

1. removing boundary places together with the arcs connected to them,

2. creating additional subnets for each boundary place, they are made up of all the transi-
tions connected with the boundary place along with the border place.

For instance, the initial SESE decomposition in Fig. 3.9b is not valid since the place p is
on the borders. Then, the place is removed from the subnets S1 and S2 along with the arcs

33

(a) The initial Petri net.

(b) The maximal decomposition of the Petri net.

Figure 3.7: An example of maximal decomposition. Source: [4]

34

(a) A Petri net to be decomposed.

(b)Workflow graph associated with the Petri net.

(c) RPST.

Figure 3.8: An illustration of RPST based SESE decomposition: from the transformation in workflow graph (without
distinction between the places and transitions) to the computation of RPST. Source: [5].

35

linked to it, after that, there is created a new bridging subnet B1 which contains the place p
and all transitions connected with p as has been shown in Fig. 3.9c. For detailed analysis on
this decomposition approach refer to [5].

36

(a) The initial Petri net with a SESE decomposition.

(b) A SESE decompostion.

(c) A SESE decomposition with bridging.

Figure 3.9: An illustration of the bridging operation: a new bridging subnetB1 is created and the final decomposition is
valid. Source: [5]

37

38

4
Stepwise Stitching Decomposed Replay

The promising recomposing conformance checking [3] and methods based on pseudo-
alignment [6] work very well in most of cases: they can actually accelerate models evaluation
and make conformance checking possible where the traditional approaches fail. However
the existing techniques have some pitfalls as discussed in Section 4.1. This chapter discusses
a novel sub-alignments merging algorithm that aims to be a good alternative to the other
decomposed conformance checking algorithms.

4.1 Stepwise Sub-alignments Stitching Algorithm

Recomposing conformance checking and pseudo-alignments basedmethods have both advan-
tages and some limitations. The latter approach is very fast but obviously, the final results
would be not accurate—when the total border agreement property is not satisfied the merged
alignmentsmay not be replayed in themodel. About the recomposing approach the final align-
ments are true alignments, nevertheless thismethodhas onemajor drawback that is for complex
models (e.g. those with many back-loops or loops) the algorithm requires several recomposing
iterations to reach the total border agreement condition, the consequence is that computation
time sometimes could be long due to too many recomposing steps need to be pass through
and also recomposed subnets may be as larger as the original model. Finally, when processing
one trace in the log, if the number of border conflicts surpasses a prefixed threshold then all
sub-alignments are immediately merged and the final result is a pseudo-alignment.

39

In this section we present our contribution in creating a new sub-alignments merging algo-
rithm that is single-iteration (without recomposing the subnets) procedure. It is in the middle
between the aforementioned approaches. In other words, instead of immediately returning a
pseudo-alignment when encountering border conflict issues, our algorithm tries to continue with-
out recomposing by stitching problematic subnets, solving one conflict step by step.

4.1.1 Algorithm

We learnt that total border agreement is required for exact fitness calculation (see Theo-
rem 3.13), in [3] the authors presented the idea of recomposing the subnets which do not agree
on a bordermove. Our objective is to create an algorithm that does not requiremultiple recom-
posing and restart iterations in order to possibly reduce the computation time.

Thus, we still rely on the concept of total border agreement but instead of recomposing we try
to keep the first net decomposition andfind out sub-alignments for which such condition is satisfied.
In otherwords, for each subnets group inwhich there is at least one conflictual bordermovewe
strive to search next-best sub-alignments, in terms of misalignment costs, for which all border
moves will agree. In doing so we have two problems:

1. sub-alignments search space is generally big (we know that in some cases they are infinite
legal alignments) and,

2. it is difficult to find out no conflictual sub-alignments for all border activities involved at
once, namely, if we only focus on one border move issue separately then solving that conflict
we may create a new one.

Our solution for these problems is to solve the conflicts one at a time but when solving a
conflict we “freeze” the other border moves so that we will not create new border disagreement. To
put it in another way, when we do the problematic sub-alignments adjustment we carefully
choose next-best alignments by only modifying non-border transition moves and the border
transition we are analysing in that moment. Practically, given a wrong border move, each time
we fix one sub-alignment with the wrong movem and try to adjust the others by settingm as
the best move. Nevertheless, in order to decide which is the best border move for each border
conflict we heuristically select the one which is less “distant” from the optimal sub-alignment/sub-
alignment with minimum delta costs.

Let SN be a system net, L be an event log and D = {SN1, · · · , SNn} ∈ D(SN) be a
valid decomposition. Let δ be a cost function.

40

Delta costs: The delta costs between a trace alignment γ and other one γ̄ is the difference
between costs of γ̄ and costs of γ, this is denoted by∆δ(γ, γ̄) := δ(γ̄)− δ(γ). We also define
delta costs between an alignment γ and an empty alignment to be infinite, i.e. ∆δ(γ, ∅) =

+∞.

Next-best alignment with border move constraints (case of two subnets):
Given two subnets SN i and SN j be two subnets of SN under the valid decomposition D,
let γi, γj be alignments of SN i and SN j respectively. Suppose that there is a border conflict
between the two alignments associated with an activity a, letmi,mj be legal moves associated
with a in γi and γj respectively and nextδ(γi) be a next-best sub-alignment of SN i w.r.t γi, in
terms of misalignment costs and in increasing costs order, similarly for SN j . We define next-
best sub-alignments with border constraints nextδ(γi, γj; a) as a pair (γ̄i, γ̄j) such that

• If∆δ(γ
i, nextδ(γ

i)) ̸= +∞ or∆δ(γ
j, nextδ(γ

j)) ̸= +∞:

1. border moves not involving activity a are the same as in γi and γj ,

2. let m̄i, m̄j be legal moves associated with a in γ̄i and γ̄j respectively, m̄ :=
m̄i = m̄j and ∆δ(γ

i, nextδ(γ
i)) ≤ ∆δ(γ

j, nextδ(γ
j)) if, and only if, the ac-

tivity a has a legal move m̄ in nextδ(γ
i), or equivalently, ∆δ(γ

j, nextδ(γ
j)) ≤

∆δ(γ
i, nextδ(γ

i)) if, and only if, the activity a has a legal move m̄ in nextδ(γj).

• Otherwise: nextδ(γi, γj; a) = ∅.

Next-bestalignmentwithbordermoveconstraints (caseofmultiple subnets
): This is a general case and we use the similar notations as before, moreover, we defineC ⊂
{1, · · · , n} as the set of indices for which the referred subnets are in conflict caused by activity
a. We define next-best sub-alignments with border constraints nextD,δ(C; a) as a set (γ̄i)i∈C

such that

• If there exists z ∈ C such that∆δ(γ
z, nextδ(γ

z)) ̸= +∞:

1. border moves not involving the activity a are the same as in (γ̄i)i∈C ,

41

2. let (m̄i)i∈C be legal moves associated with a in (γ̄i)i∈C respectively, m̄ := m̄i =
m̄j for all i, j ∈ C and ∆δ(γ

i, nextδ(γ
i)) ≤ maxj∈C,j ̸=i ∆δ(γ

j, nextδ(γ
j))

if, and only if, the activity a has a legal move m̄ in nextδ(γ
i) for all i ∈ C , or

equivalently, ∆δ(γ
j, nextδ(γ

j)) ≤ maxi∈C,i ̸=j ∆δ(γ
i, nextδ(γ

i)) if, and only
if, the activity a has a legal move m̄ in nextδ(γj) for all j ∈ C .

• Otherwise: nextD,δ(C; a) = ∅.

Note that in thismin-max case we again heuristically decided to pick the border move type
which shifts as less as possible the previous sub-alignments with lower costs.

Due to the iterative nature of our algorithmwe call it Stepwise Stitching Decomposed Re-
play algorithm. We give the pseudo-code of the stitching algorithm for a single trace in Algo-
rithm 1. The algorithm extension to the overall log is straightforward.

Algorithm1 “Stepwise StitchingDecomposedReplay” algorithm for a single trace in the event
log
Input: System net SN , a trace/case σL ∈ L, a valid decomposition D =
{SN1, · · · , SNn} ∈ D(SN) and a cost function δ.

Output: A pseudo-alignment γ between the trace σL and the model SN
A. Compute Γ := (γi)i∈{1,··· ,n} optimal alignments
between the subnets and the projected trace (σi

L)i∈D.

Let Λ = {a ∈ Ab(D)| there exist subnets containing a such that there is no
between them in the border activity a (SNb(a) ̸= ∅)}.
B.
for a ∈ Λ do

Let I(a) ⊆ {1, · · · , n} be the set of indices referring to SNb(a).
if nextD,δ(I(a); a) ̸= ∅ then

Update Γ according to nextD,δ(I(a); a).
else

break.
end if

end for

C. γ←merge the sub-alignments in Γ using the pseudo-alignments stitching rules in [6].
return γ.

42

Correctness: The algorithm is certainly correct according to the output requirement
(pseudo-alignment), because during each iteration in the step B we solve one border conflict
without affecting others border moves, after this step sub-alignments in Γmay satisfy the con-
dition of total border agreement or not, nevertheless, they can be always merged using the
pseudo-alignments stitching rules presented in [6] and the result is either an alignment or a
pseudo-alignment.

Termination: Both step A and step C are of course finite, for the first step we can apply
already existing conformance checking algorithms. Regarding the step B, Γ is finite and the
calculation of next-best sub-alignments is always possible, the worst-case is the empty set. We
can conclude that our algorithm can be terminated for any input data since all its steps are finite.

Important remarks:

• Thanks to the idea of next-best sub-alignments as we previously defined, the step B
should have a restricted alignments research space since we freeze border activities not
involved during a comparison. This a key difference between our new algorithm and a
naive one in which we could simply compute all possible sub-alignments combinations,
of course setting certain search bounds on the conformance checker, and try to merge
them, this very naive method is stopped when a merging operation succeeds.

Always about the step B when iterating on the problematic border activities Γ we can
arbitrary order them, the final outcome will be the same if next-best sub-alignments are
not empty, otherwise, we would obtain a different pseudo-alignment according to the
order we have chosen at the beginning.

• We recall thatTheorem. 3.8 claims that a trace is a perfect fitting trace if andonly if validly
decomposed traces are perfect fitting traces for respective subnets. Since in a perfect fit-
ting trace scenario all moves, either bordermoves or not, are syncmoves this implies that
the total border agreement property is satisfied, thus, in this case our algorithm correctly
returns optimal alignments of all perfect fitting traces.

• We have already presented in Section 3.2.3 a misalignment costs upper bound for a sin-
gle trace/case σL which are simply the costs of a worst-case alignment (moveM(SN) +
moveL(L)). Applying the adapted cost function for decomposed conformance check-
ing, if one of the termination conditions of the recomposing replay is reached then a fit-
ness interval is returned (see Section5.2). Since inour algorithmonlypseudo-alignments
or valid alignments are guaranteed (the optimality is not) then when calculating fitness
intervals the upper bound values are less or equal than the ones we would get by using the
recomposing approach, fortunately lower bounds will be always correctly returned. This

43

is not a so big flop because, for example, if a log fitness is between [0.90, 0.95] and our
algorithm returns an interval that is [0.90, 0.93], in addition to the indication of mis-
alignments (pseudo-alignments), this is useful enough to identify process bottlenecks
and fix them.

4.2 Running Examples

In this section we present some running examples that hopefully help to better grasp the main
ideas of the new sub-alignments merging algorithm.

4.2.1 Example 1

The system net and a its valid decomposition are illustrated in Fig. 4.1. We have also the follow-
ing input data:

Trace: ⟨a1, a2, a3, a4, a5, a6, a7, a8⟩,
Cost function: δ(model move) = 3, δ(log move) = 5.

The following is an optimal alignment among the system net and the given trace:

γ1 :
a1 τ a2 a3 a4 τ a5 a6 τ a7 a8

t1 t2 ≫ t4 t5 t6 t7 ≫ t9 ≫ t11
, δ(γ1) = 15.

Step A:

Then, we have the following optimal sub-alignments:

γa
1 :

a1

t1
, γb

1 :
a1 τ a2 a3 a4 a6

t1 t2 t3 ≫ t5 ≫
,

γc
1 :

a2 a3 a4 τ a5

≫ t4 t5 t6 t7
, γd

1 :
a5 a6 ≫ τ a7 a8

t7 t8 t7 t9 t10 ≫
,

γe
1 :

a7 a8

t10 ≫
.

The sub-alignments costs are: δ(γa
1) = 0, δ(γb

1) = 10, δ(γc
1) = 5, δ(γd

1) = 8, δ(γe
1) = 5. We

then colored in green the border move conflicts.

44

(a) The system net SN1.

(b) A valid decomposition of SN1

Figure 4.1: The system net SN1 and it is a valid decomposition. Source: [6].

45

Step B:

Solving the conflict in the activity a2:
Fixing the border move as inN1b (a2|t3):

γ̄c
1 :

a2 a3 a4 τ a5 ≫ ≫ ≫
t3 t4 t5 t6 t7 t5 t6 t7

, δ(γ̄c
1) = 9, ∆δ(γ

c
1, γ̄

c
1) = 4.

Fixing the border move as inN1c (a2| ≫):

γ̄b
1 :

a1 τ a2 ≫ a3 a4 a6

t1 t2 ≫ t3 ≫ t5 ≫
, δ(γ̄b

1) = 18, ∆δ(γ
b
1, γ̄

b
1) = 8.

Since∆δ(γ
b
1, γ̄

b
1) > ∆δ(γ

c
1, γ̄

c
1) then update the sub-alignment γc

1.

Solving the conflict in the activity a3:
Fixing the border move as inN1b (a3| ≫):

γ̄c
1 :

a2 a3 a4 τ a5

t3 ≫ t5 t6 t7
, δ(γ̄c

1) = 5, ∆δ(γ
c
1, γ̄

c
1) = −4.

Fixing the border move as inN1c (a3|t4):

γ̄b
1 :

a1 τ a2 ≫ a3 a4 a6 ≫
t1 t2 t3 t1 t4 t5 ≫ t5

, δ(γ̄b
1) = 11, ∆δ(γ

b
1, γ̄

b
1) = 1.

Since∆δ(γ
b
1, γ̄

b
1) > ∆δ(γ

c
1, γ̄

c
1) then update the sub-alignment γc

1.

Solving the conflict in the activity a6:
Fixing the border move as inN1b (a6| ≫):

γ̄d
1 :

a5 a6 τ a7 a8

t7 ≫ t9 t10 ≫
, δ(γ̄d

1) = 10, ∆δ(γ
d
1 , γ̄

d
1) = −2.

Fixing the border move as inN1d (a6|t8):

γ̄b
1 :

a1 τ a2 a3 a4 a6 ≫ ≫ ≫
t1 t2 t3 ≫ t5 t8 t2 t3 t5

, δ(γ̄b
1) = 14, ∆δ(γ

b
1, γ̄

b
1) = 4.

Since∆δ(γ
b
1, γ̄

b
1) > ∆δ(γ

d
1 , γ̄

d
1) then update the sub-alignment γd

1 .

46

(a) The system net SN2.

(b) A valid decomposition of SN2

Figure 4.2: The system net SN2 and it is a valid decomposition. Source: [3].

Step C:

Now we can stitch all sub-alignments to obtain the following optimal alignment:

γ̄1 :
a1 τ a2 a3 a4 τ a5 a6 τ a7 a8

t1 t2 t3 ≫ t5 t6 t7 ≫ t9 t10 ≫
, δ(γ̄1) = 15.

Note that this is a different optimal alignment w.r.t. γ1.

4.2.2 Example 2

The system net and a its valid decomposition are illustrated in Fig. 4.2. We have also the follow-
ing input data:

47

Trace: ⟨a, b, e, i, l, d, g, h, n, j, k, p, q⟩,
Cost function: δ(model move) = 1, δ(log move) = 1.

The following is an optimal alignment between the system net and the given trace:

γ2 :
a b e i l d g h n j k ≫ p q

a b e i l d g h ≫ j k n p q
, δ(γ2) = 2.

Step A:

Then, we have the following optimal sub-alignments:

γ1
2 :

a

a
, γ2

2 :
a b

a b
, γ3

2 :
a d

a d
,

γ4
2 :

b e i l

b e i l
, γ5

2 : , γ6
2 :

d g h n j k ≫
d g h ≫ j k n

γ7
2 :

l p

l p
, γ8

2 :
n p

n p
, γ9

2 :
p q

p q
.

The sub-alignments costs are: δ(γ1
2) = 0, δ(γ2

2) = 0, δ(γ3
2) = 0, δ(γ4

2) = 0, δ(γ5
2) =

0,δ(γ6
2) = 2,δ(γ7

2) = 0,δ(γ8
2) = 0,δ(γ9

2) = 0. We then colored in green the border move
conflicts.

Step B:

Solving the conflict in the activity n:
Fixing the border move as in SN6 (n| ≫,≫ |n):

γ̄8
2 : impossible ,∆δ(γ

8
2 , γ̄

8
2) = +∞.

Fixing the border move as in SN8 (n|n):

γ̄6
2 :

d g h ≫ ≫ n j k

d g h j k n ≫ ≫
, δ(γ̄6

2) = 4, ∆δ(γ
6
2 , γ̄

6
2) = 2.

Since∆δ(γ
8
2 , γ̄

8
2) > ∆δ(γ

6
2 , γ̄

6
2) then update the sub-alignment γ6

2 .

48

Step C:

Now we can stitch all sub-alignments to obtain the following optimal alignment:

γ̄2 :
a b e i l d g h ≫ ≫ n j k p q

a b e i l d g h j k n ≫ ≫ p q
, δ(γ̄2) = 4.

In this second example we obtained a true alignment (it can be replayed) but not an optimal
one.

4.2.3 Example 3

The system net and a its valid decomposition are illustrated in Fig. 4.3. We have also the follow-
ing input data:

Trace: ⟨a, g, b, d, c, d, f, j, e, h,m⟩,
Cost function: δ(model move) = 10, δ(log move) = 3.

The following is an optimal alignment between the system net and the given trace:

γ3 :
a g b d c d f j ≫ e h τ m

a ≫ b d ≫ ≫ f j k e ≫ τ1 m
, δ(γ3) = 22.

Step A:

Then, we have the following optimal sub-alignments:

γ1
3 :

a g

a ≫
, γ2

3 :
a b d c d

a b d ≫ ≫

γ3
3 :

g d d e h

≫ d d e h
, γ4

3 :
d d f τ j ≫ m

d ≫ f τ1 j k m
.

The sub-alignments costs are: δ(γ1
3) = 3, δ(γ2

3) = 6, δ(γ3
3) = 3, δ(γ4

3) = 13. We then
colored in green the border move conflicts.

49

(a) The system net SN3. There two invisible activities that we denote with τ1 and τ2, they reside in S4 and S3

respectively.

(b) A valid decomposition of SN3

Figure 4.3: The system net SN3 and it is a valid decomposition.

50

Step B:

Solving the conflict in the activity d:
Fixing the border move as in SN2 − SN4 (d|d, d| ≫):

γ̄3
3 :

g d d e h

≫ d ≫ ≫ h
, δ(γ̄3

3) = 9, ∆δ(γ
3
3 , γ̄

3
3) = 6.

Fixing the border move as in SN3 (d|d, d|d):

γ̄2
3 :

a b d ≫ c d

a b d a c d
, δ(γ̄2

3) = 10, ∆δ(γ
2
3 , γ̄

2
3) = 4.

γ̄4
3 :

d d f τ j ≫ m ≫ τ ≫ ≫ ≫
d d f τ1 j k m f τ1 j k m

, δ(γ̄4
3) = 50, ∆δ(γ

4
3 , γ̄

4
3) = 37.

Since∆δ(γ
3
3 , γ̄

3
3) < max(∆δ(γ

2
3 , γ̄

2
3),∆δ(γ

4
3 , γ̄

4
3)) then update the sub-alignment γ3

3 .

Step C:

Now we can stitch all sub-alignments to obtain the following optimal alignment:

γ̄3 :
a g b d c d f τ j ≫ e h m

a ≫ b d ≫ ≫ f τ1 j k ≫ h m
, δ(γ̄3) = 22.

Also in this third example the final result is satisfactory, we have just calculated an overall opti-
mal alignment.

51

52

5
RelatedWork

For the part of process mining overview we mainly refer to [1] which is an introduction book
for anybody who wants to get started in this study field, either for a student or a professional,
there are both theoretical results and practical advices. In [8, 2] best practices and challenges
are analysed by the authors, most importantly, they defined the core research areas in process
mining.

The seminar paper [16] provide basis of conformance checking focusing on the use ofmodel
replay to determine the fitness of an event log. In some situations alignment-based confor-
mance checking was proved to be superior to the token-based approach [12]. In [10] the four
model quality dimensions (replay fitness, precision, generalization and simplicity) are deeply
analysed showing that all four quality dimensions are necessary, the major contribution was
to create a configurable algorithm for a weighted average over the four quality dimension, at
the end the algorithm is guaranteed to produce sound process models. While traditional con-
formance checking methods/tools such as [17, 18] only focus on the control-flow perspective,
ignoring the other perspectives, such as data, resources and time, a multi-perspective confor-
mance checker is presented in [19].

Discussing about decomposed conformance checking, several approaches have been pro-
posed to decompose conformance checking in the literature [5, 6, 20]. Their experimental
results showed an immense reduction in computation time over the existing monolithic ap-
proach, but these approaches only remain at the level of sub-logs and subnets, the conformance
between the overall process model and event log is not computed. A complete divide et impera

53

conformance checking approach based on the total border agreement [4] and subnets recom-
posing idea is proposed in [3], given that our work is mainly inspired by this paper and [6], we
dedicated the next sections in this chapter for them, to write more about their relevant con-
tributions. Decomposing large graphs into smaller fragments is a topic widely studied in the
literature. Previously to the maximal decomposition studied in [4] in [21] it is shown the con-
cept of “passages” which can be used to decompose both process discovery and conformance
checking problems. SESE (Single-Entry and Single-Exit) decomposition is analysed in depth
and in order to be a valid decomposition the authors proposed the idea of bridging, in which
twowrongly decomposed subnets are linked together by an additional artificial subnet. Finally,
data-aware process models decomposition is examined in [11] that is a natural extension of de-
composition of process models without variables, specifically, the variables are considered as
normal places and enriched Petri nets are then decomposed by using SESE approach.

Although in most of cases replaying sub-logs and subnets should be less computation in-
tensive w.r.t. replaying the overall log, in [22] it has been shown there are cases in which the
decomposed replay may take way more time. So, in this work it has been proposed an alter-
native decomposed replay which is faster than the monolithic replay even for the problematic
cases.

5.1 Pseudo-alignments

Sometimes there is noneed of precise alignment between a trace and themodel, also approxima-
tion is accepted, so the the authors of paper [6] proposed the concept of pseudo-alignment for
ease of sub-alignmentsmerging. In our opinion themost important contributions in this work
is the creation of two merging rules: alignment stitching rules and pseudo-alignment stitching
rules. The first rules are applicable when the property of total border agreement is satisfied and
final result is a true alignment, whereas the latter ones are more general rules and can be always
applied, the outcome is a true alignment if the aforementioned property is satisfied otherwise
result is a so-called pseudo-alignment.
Both two stitching rules consist of three cases:

1. when the trace and all decomposed alignments have been dealt with completely;

2. when all relevant decomposed alignments agree on an activity in the trace;

3. when all relevant decomposed alignments agree on a next model move.

54

The key difference between the two set of rules is that when there is no border agreement
then worst-case is preferred:

• in case of activity conflicts, the most ex- pensive of the conflicting legal moves is added
to the resulting pseudo alignment;

• in case of model move conflicts, one of these model moves is selected, and added to the
pseudo-alignment.

5.2 Recomposing Conformance Checking

When encountering a border conflict, instead of selecting the worst-case move, it is possible to
solve the conflict by recomposing the problematic subnets.

In the original paper the authors went beyond a simple subnets recomposing, they proposed
an iterative conformance checking procedurewhich is depicted in Fig. 5.1. The primary objective
is to have a framework that automaticallymerge the subnets in conflict and then restart the con-
formance checking process with the new decomposition, which is still a valid decomposition.
Many algorithm termination conditions are illustrated and once early terminated the returned
result will be a fitness interval which is easy to calculate as we have shown in Section 3.2.3. The
termination conditions are as follows:

• All log traces have been either alignedunder total border agreement or have been rejected
because of the number of border conflicts is over a given threshold;

• Surpassing the overall time threshold;

• Having aligned a target percentage of traces in the log under total border agreement or
the overall fitness interval value is narrow enough;

• The maximum number of iterations is reached.

55

Figure 5.1: Iterative recomposing conformance checking framework. Once terminated the return value is either the exact
or interval decomposed conformance metric. Source: [3].

56

6
Process Mining Tools

In this chapter we present tools to work with event data and to implement process mining
algorithms, because we believe that theoretical results are also driven by empirical observations.
We illustrate both a open-source software, which is the one we use for our later experiments,
and a promising commercial platform for real-world process mining projects. Furthermore, an
overview of an event data standard is provided.

6.1 XES

Any data analysis must start with data. Whereas many data format are available for event data
such as simple CSV or XML documents, but until 2010 the de facto standard for storing and
exchanging event logs was MXML (Mining eXtensible Markup Language). Due to several
extensibility limitations,XES became the successor ofMXML. In September 2010, the format
was adopted by the IEEE Task Force on Process Mining and turned into the de facto exchange
format for process mining and now it aims to be an official IEEE standard. XES is also a tag-
based language and this standard provides a common XML format for interchange of event
data between information systems. See the official web site * for more information.
Whole standard can be described through ametamodel usingUML (UnifiedModelingLan-

guage) class diagram see the Fig. 6.1. Basically, an XES file contains one even log consisting of

*https://xes-standard.org

57

any number of traces which in turn includes any number of events. The log, its traces, and
its events may have a certain number of attributes, nested attributes are allowed. Examples of
attributes are timestamp, resource and other customized properties. A example of XES file has
been already shown in Chapter 2.

XES supports the classifier concept [1] which is a function that maps the attributes of an
event onto a label used in the resulting process model, this can be seen as the “name” of the event,
thus two events are considered the identical if they have same classifier. XES allows an arbitrary
number of classifier, e.g. time:timestamp, concept:name or org:resource.
Programming framework we will describe later fully support XES standard and this is also the
data format for experiments done in this thesis.

6.2 ProM

ProMTool † is the de factor process mining framework in the academic world, it is fully open-
source, highly extensible and based on JVM (Java VirtualMachine), this is the tool used in this
thesis.

The Fig. 6.2 is an overview of this software and that is very useful to illustrate its main com-
ponents. Basically we have the following modules:

• ProM core: This component includes the most important implementations of ProM,
such as some fundamental definitions and algorithms (e.g. event log, Petri net or BPMN
model), it helps to abstract those low-level concepts and make the framework more ex-
tensible. This ease of development should significantly lower the barriers of entry for
new developers. All the other components need to communicate with the core compo-
nent.

• Plug-in Manager: Every algorithm that has to be implemented will become a plug-in.
As the name suggest, all plug-ins are ready-to-use subprogram which receive in input
some objects (e.g. Petri net, event log ect.) and return other objects, they may be a trans-
formation of those in input. The following is a “Hello World” plug-in example which
simply print a string on the UI once started:

package org.processmining.plugins.gettingstarted;

import org.processmining.contexts.uitopia.annotations.UITopiaVariant;
import org.processmining.framework.plugin.PluginContext;

†http://www.promtools.org/doku.php

58

Figure 6.1: Meta model of XES standard. Source: [1]

59

Figure 6.2: The main components of ProM, this modularization makes this framework highly extensible. Note also the
separation between the actual algorithms’ implement and the results visualization. Interactive user interface is provided by

the library UITopia.

60

import org.processmining.framework.plugin.annotations.Plugin;

public class HelloWorld {
@Plugin(

name = "My Hello World Plugin",
parameterLabels = {},
returnLabels = { "Hello world string" },
returnTypes = { String.class },
userAccessible = true,
help = "Produces the string: 'Hello world'"

)
@UITopiaVariant(

affiliation = "My company",
author = "My name",
email = "My e-mail address"

)
public static String helloWorld(PluginContext context) {

return "Hello World";
}

}

Each plug-in is called with a PluginContext parameter. The idea of the PluginContext
is that it provides all the necessary interfaces to communicate with:

– the framework;
– other plug-ins;
– the user.

Plug-ins can be executed in various contexts, such as a GUI, or a script context.
When the ProM framework is started, a main plug-in context is automatically created.
This main plug-in context is used to derive new contexts from in order to execute plug-
ins. When a plug-in is executed by the framework, the framework first instantiates a
PluginContext object. The implementing type of this context can for example be the
GUI context, or a command line context.

• Package Manager: The reusability is the main objective for developers, a package con-
tains relatedmethods/objects about a certain algorithm to be implemented, for example
org.processmining.decomposedreplayer is the package in which we can find de-
composed conformance checking algorithms. When the number of plug-ins/packages
is rapidly increasing then a central package management system is needed and here is

61

where the PackageManager comes into play, in order to avoid conflicts among different
packages, also to have a better organization of works done so that developers do not have
to write a piece of code twice.

• ConnectionManager: The connections are also key objects in the framework, they are
mapping from a set of labels to objects so that we can connect one plug-in to another by
passing the results of the source method to a second algorithm or even to the same one.
A example of a call to the ConnectionManager is the following:

Connection c = new MarkedNetConnection(petrinet,
new Marking(state));

context.addConnection(c);

Then we can retrieve the object by calling the method:

context.getConnectionManager().addConnection(context, c);

In the ProM framework relations between objects are stored in connections
as well. Adding connections or checking for the existence thereof is again
done through the connection manager, which can be accessed always by calling
context.getConnectionManager().

• Provided Object Manager: In general, as soon as plug-ins are invoked, their results
are available as provided objects. All objects in the framework are handled by the pro-
vided object manager, which can be accessed through the context. However, typically
plug-ins only need a bit of the available functionality, namely to create and update pro-
vided objects. A provided object consists of a label and an object and to create one, the
createProvidedObjectmethod of ProvidedObjectManager should be called. For
example:

ProvidedObjectID id = context.getProvidedObjectManager()
.createProvidedObject("Example string", s, context);

Once the provided object is created, it gets an ID, which can be used to reference the
object later, for example to update, or to delete it. For example:

context.getProvidedObjectManager().deleteProvidedObject(id);

• UITopia: Thanks to the modularization, ProM 6 radically separates the UI from the
internal heavy lifting. UITopia is a completely redesigned user interface, now users can
browser objects described above within a graphical window, which are hidden from the
user before the born of UITopia.
This brand-new user interface looks as made up with three main pages:

62

– Workspace:Here is where users can select, delete, import and export objects, such
as event logs, Petri nets ect. ;

– Actions: All installed plug-ins are available in this page. Furthermore, the UI also
explicitly shows the dependencies of each plug-in (i.e., what object it requires to
execute), and the list of objects that will be created after execution;

– Visualizer: Finally, ProM 6 separates actual objects (e.g., a Petri net model) from
their visualization (i.e., the image of the Petri net on your screen). Thismeans that,
if we are no longer interested in viewing the result of your analysis, you can simply
close the visualizer – the actual object will still be in your workspace.

See Fig. 6.3 to have an idea of how this UI appears to the users.

Because this is a open-source project the contribution from developers all over the world is
important to keep it alive, so the community has designed a standard development architecture
that allows programmers to work first in a local mode, through a Java code editor (Eclipse is the
default choice since it is a integrated development environment (IDE) which offers a lot of use-
ful coding tools/plug-ins for Java developers), then push final code to the official SVN (Apache
Subversion) repository, this last step needs to be reviewed beforehand by ProM’s maintainers.
In the Fig. 6.4 all necessary steps are depicted.
For going deep into this framework refers to [23].

6.3 Celonis

Since process mining as a young research field is gaining more and more attention from scien-
tists and companies due to its enormous potential in industrial applications, it is important to
keep eyes on its real-world developments. So, in this section we present a commercial tool for
doing process mining in a non-academic setting.

6.3.1 Background

Celonis is a commercial process mining software developed in the homonymous German com-
pany. It was founded in 2011 by co-founders: Martin Klenk, Bastian Nominacher, and
Alexander Rinke, in 2012Celonis reinforced its credentials by becoming amember of the SAP
HANA Startup Focus Program organized by SAP–another German tech giant in the field of
ERP (Enterprise Resource Planning)–with which it has been in close collaboration for years,
advertised as a component of SAP’s software offering (Process Mining by SAP). Then Celonis

63

(a)Workspace

(b) Actions

(c) Visualizer

Figure 6.3: The main sections of the UITopia user interface.64

Figure 6.4: ProM packages’ development life‐cycle: from the local programming to their official release.

65

as a software product reached enough maturity so that it decided to become an independent
platform with a rich process mining functionalities.

It is not so surprising to notice that many of the services that Celonis platform EMS (Execu-
tionManagement System)provides share some similaritieswith other processmining softwares,
especially with the open-source application we talked about in Section 6.2. Of course in a com-
mercial product everything is simplified and made more intuitive for non-technical users, this
implies missing functionalities but also better UI.

6.3.2 Platform Architecture

The software can be installed either in a private datacenter (On-Premises) or hosted in a fully
managed cloud environment, the latter option is a SaaS (Software as a Service) solution and
this implies no hardware infrastructure maintenance, so that is the most common use case and
maybe the cheapest one since human resources for infrastructure management is very expen-
sive.

Regarding the high-level platform architecture we can look at Fig. 6.6. Some very powerful
features are available in this platform:

• Real-time data ingestion: Process data are updated continuously as the processes exe-
cute, this means small time lag between bottleneck discovery and taking action, in some
business cases timely actions are very valuable;

• Machine Learning Engine: Some Celonis’ services are also boosted by an internal ML
engine that helps to predict users’ needs;

• Ready-to-use applications since Celonis has been in the market for many years it has
created a very complete application suite (it is still in rapid expansion) which ease dif-
ficulties for process analysts to almost immediately start to analyse their business case,
without complex initialization steps. The Fig. 6.5 depicts a typical user interface for ex-
ploring process data, theUI is interactive in sense thatmany operations are allowed such
as filtering or move/adding/modifying graphical widgets.

6.3.3 Core Components

There are two core components which are fundamental in Celonis, they represent also the key
differentiatorswhich separate this platform from its competitors in the market:

66

Figure 6.5: Celonis Process Analytics application illustration.

Figure 6.6: Overview of Celonis platform architecture.

67

CoreMining Engine:

The Core Mining Engine leverages machine learning to analyse both system logs and
user interaction data to identify any bottlenecks and provide actionable insights to help resolve
them, this a low-level component and it is essential for the entire Celonis platform since it
has the implementation of all algorithms and concepts from newest process mining research
field. It can be considered the processing engine that uses the knowledge model to determine
conformance or non-conformance of the current process compared with the BPMN model
(conformance checking).

Automation Engine:

The Automation Engine assesses the insights provided by the Core Mining Engine
and takes action, efficiently automating workflows across all of the enterprises’ systems.
Automated tasks or actions are triggered to apply the control policy by sending tasks and
instructions to workers that ensure compliance with the policy, automating actions to help
workers perform their tasks more efficiently or orchestrating a series of steps to fully automate
a task.

68

7
Experiments

This chapter is related to experiments for verifying how good is the stitching algorithm we
presented in Chapter 4. In particular, we aim to test the algorithm giving it in input large
process models, as the decomposed conformance checking methods are mostly useful in these
cases. Wewill highlighte someof its advantages over the recomposing approach, but alsodiscuss
about its weaknesses.

7.1 Preliminary Steps

7.1.1 Process Data Generator: PLG2

In our experiments we leveraged on PLG2 (Processes and Logs Generator 2) [24] for randomly
generating process models, then, there is the possibility to simulate them so that we can also
create event logswith noise. PLG2 can be freely downloaded * as a JAR (Java ARchive) package
and it runs on a JVM (Java Virtual Machine).

The noise can be introduced at different level, we are only interested in errors at trace level,
specifically, we apply the following noise types:

• Missing head: the user has to specify the maximum size for a head and the software will
randomly choose the actual value between one and the provided value.

*https://plg.processmining.it

69

Figure 7.1: PLG2 application UI for generating random processes and event logs.

• Missing tail: similar to the head missing noise but acting on the end of traces.

• Missing event: it is the maximum number of missing event in each trace, the tool will
randomly choose the actual value between one and the provided value.

• Alien event: an alien event will be introduced into the trace in a random position.

• Double event: an event will be generated multiple times.

All these values are translated to probability form for ease of use, since absolute values need
to be defined dependently on the model size.

In Fig. 7.1 it is shown the user interface of PLG2 with some random processes generated
by the software. Note that number of gateways are includes also AND gates which will be
transformed into place-transition pairs when exporting models as Petri nets.

7.1.2 Conformance Checker: CoCoMoT

As already mentioned in Section 4.1 for the step A and B we need to decide a conformance
checking algorithm to compute optimal sub-alignments and next-best sub-alignments in case

70

of border conflicts.
We collaborated with the authors ofCoCoMoT (Computing ConformanceModulo Theories)

framework [25] and succeeded to add a new functionality of generating multiple alignments
at once, increasingly ordered according to their costs, it is the job of stitching algorithm to
discard sub-alignments not satisfying the next-best property. CoCoMoT is based on SMT
algorithmic framework [26] in which process logics are converted into SAT-based encodings
then conformance checking problems are translated and solved through a SMT solver. In the
original work CoCoMoT was proposed as a checker of multi-perspective processes but in our
experiments we stay at control-flow level.

Returning an optimal sub-alignment is an easy task for CoCoMoT but compute further
sub-alignments according to their costs is quite tricky. At the end, we decided to stop the algo-
rithm by setting a cost bound, namely, it generates all alignments up to including prefixed cost
threshold. The outputs will be written into a file and processed by the stitching algorithm.

The software is freely available † as an open-source project, currently it is a Python script.
The tool uses pm4py [27] to parse traces and as back-end SMT solver it leverages Yices 2 [28] or
alternatively Z3 [29], both written in C++ and employed by using Python bindings ‡.

7.2 Implementation Details

We implemented our stitching algorithm in ProM6.11. Since we require an external confor-
mance checker then we divided the algorithm into two plug-ins: the first receives in input an
event log and process model and it outputs SESE-decomposed subnets and sub-logs, the lat-
ter data are given in input to the CoCoMoT for calculating sub-alignments following the way
we described in Section 7.1.2 and, finally, a second stitching plug-in stepwise merge all sub-
alignments.

We coded the new plug-ins StepwiseStitchDecomposedRepalyPlugin1,2 as sub-
components under the packageDecomposedReplayer. We applied the sameoutput visualizer
as for the recomposing plug-in [30], for an illustration see Fig. 7.2.

All the experiments are done using a personal computer based on macOS Monterey,
equippedwith a processor Intel Core i5, 2,4GHzandquad-core, 8GBRAM. The recomposing
replayer seems to be optimized to use all cores of the processor, in order to make fair compar-
isons we restricted ProM to only consume one core at a time.

†https://github.com/bytekid/cocomot
‡https://github.com/SRI-CSL/yices2_python_bindings, https://github.com/z3prover/z3

71

(a) First part of the stepwise stitching plug‐in in ProM. In input are required an event log and an accepting Petri net (Petri
net with initial and final markings), it returns SESE‐decomposed nets and logs.

(b) Second part of the stepwise stitching plug‐in in ProM. In input are required an event log, an accepting Petri net,
decomposed nets and a list of sub‐alignments, it returns the replay results.

Figure 7.2: An illustration of the stepwise stitching algorithm plug‐in in ProM.

72

(c) Replay results visualizer. On the left side it is possible to scroll up‐down for inspecting each merged alignment, on the
right hand there are statistics about the event log and replay results. Note that pseudo‐alignments are highlighted with

bold red border.

Figure 7.2: Cont.) An illustration of the stepwise stitching algorithm plug‐in in ProM.

7.3 Data

For our experiments we generated three process models as depicted in Fig.7.3. We simulated
each model to produce three event logs consisting of 1000 traces: the first is with 5‰ of each
noise category we described in Section 7.1.1, the second log is with 10‰ noise and the third
one is noise-free. We report the data details in Table 7.1, in Fig. 7.4a and in Fig. 7.4b.

We made the models increasingly large to challenge the algorithms under evaluation, reach-
ing with the biggest model consisting of 120 activities and 52 gateways. Even if the model asso-
ciated with the datasets synthetic_2 is bigger than the first one but the simulator returned event
logs with shorter traces. We could of course “stress” more the algorithms, but the hardware
available would not carry that workload.

7.4 Results

During the experiments we recorded the number of subnets produced by the first stepwise
stitching plug-in, that is the same as in the recomposing algorithm (in this case the initial num-
ber of subnets), we show the results in Fig. 7.5a. The amount of noise did not influence the
SESE-decomposition method as we can easily understand and we also see that larger is the net

73

(a) Randomly generated Petri net 1.

(b) Randomly generated Petri net 2.

(c) Randomly generated Petri net 3.

Figure 7.3: Three Petri net randomly generated by PLG2.

Synthetic Data Details
Dataset N. activities N. gateways Noise
Synthetic_1_5 56 30 5‰
Synthetic_1_10 56 30 10‰
Synthetic_1 56 30 0‰
Synthetic_2_5 79 38 5‰
Synthetic_2_10 79 38 10‰
Synthetic_2 79 38 0‰
Synthetic_3_5 120 52 5‰
Synthetic_3_10 120 52 10‰
Synthetic_3 120 52 0‰

Table 7.1: Dataset summary table. Noise refers to each noise category we described in Section 7.1.1.

74

(a) True fitness between the synthetic event logs and respective Petri nets.

(b) Event logs’ traces statistics: minimum trace length, average trace length and maximum trace length.

Figure 7.4

75

more subnets are generated.
The results in Fig. 7.5b confirm our intuition that both net size and data noise trigger the

recomposing step. Zero number of recomposing steps can be explained by the fact that, perfect
fitting traces implies perfect fitting sub-traces (see Theorem. 3.8) and certainly there are no
border conflicts among sub-alignments with only sync moves.

Looking at Fig. 7.6 we can really appreciate the speed-up offered by the stitching algorithm.
To make the comparisons as fair as possible we calculated the stitching time as the sum of the
time required by our stitching plug-in plus estimated time really served to find out necessary
next-best sub-alignments. Specifically, to approximate the latter amount of time we have just
calculated the average time for finding one sub-alignment and then we have multiplied it by
average number of attempts that the stitching algorithm required to reach the non-conflict
sub-alignments property. Here we underline some interesting facts:

1. In all the cases the first net decomposition and replay time is negligible with respect to
the total time, i.e. the recomposing algorithm spent all time to recompose and replay
again, when some border conflicts were found.

2. Larger models required more computation time and more noise caused extra merging
or recomposing time, except for the second case where the 5‰noise took the most long
processing time, this may be due to randomness of noise injection.

3. Stitching algorithm seems to perform better for the most noisy datasets (10‰ of noise
level) with respect to the recomposing method.

4. For the dataset synthetic_3_10 there was a speed-up of more than 5×, that was a great
improvement in terms of computation time.

5. For perfect fitting datasets the two algorithms performed similarly (very fast) in case of
the secondand thirddataset, except for thefirst synthetic dataset due to the time required
by the checker.

On the other side of the coin, we also observed during the experiments that the time spent on
finding sets of sub-alignments in addition to optimal ones really hampered overall performance
of our algorithm, the reason is quickly guessed: CoCoMoT isnot optimized tooutputmultiple
alignment along with a best one, it just returned a lot more sub-alignments than those really
needed, this is what we observed during the experiments.

There is another drawback regarding the stepwise stitching approach that is valid alignments
were not always guaranteed. However, It is empirically verified in Fig. 7.7 that there are signifi-
cant portions of traces for which the new algorithm could not compute some valid alignments.

76

(a) Number of subnets generated by using SESE‐decomposition. Both algorithms generated equal number of subnets.

(b) Number of recomposing steps occurred for each event log.

Figure 7.5: Some statistics about recomposing method.

77

(a) It is shown the computation time of each method: synthetic_1.

(b) It is shown the computation time of each method: synthetic_2.

Figure 7.6: Summary of computation time. The total time of the recomposing algorithm is the sum of the first net
decomposition and replay time plus recomposing time, that is the time spent on recomposing and replay again. To make the
comparisons as fair as possible we calculated the stitching time as the sum of the time required by our stitching plug‐in plus
estimated time really served to find out necessary next‐best sub‐alignments. Specifically, to approximate the latter amount
of time we have just calculated the average time for finding one sub‐alignment and then we have multiplied it by average

number of attempts that the stitching algorithm required to reach the non‐conflict sub‐alignments property.
78

(c) It is shown the computation time of each method: synthetic_3.

Figure 7.6: (Cont.) Summary of computation time. The total time of the recomposing algorithm is the sum of the first net
decomposition and replay time plus recomposing time, that is the time spent on recomposing and replay again. To make the
comparisons as fair as possible we calculated the stitching time as the sum of the time required by our stitching plug‐in plus
estimated time really served to find out necessary next‐best sub‐alignments. Specifically, to approximate the latter amount
of time we have just calculated the average time for finding one sub‐alignment and then we have multiplied it by average

number of attempts that the stitching algorithm required to reach the non‐conflict sub‐alignments property.

79

In our opinion, the problem is either in setting a too restrictive bound on the checker so that
our stitching algorithm has just exhausted all available sub-alignments and then it has been
stopped, or the issue resides in defining next-best alignments applying the rules we discussed in
Section 4.1, in this way we could have discarded useful sub-alignments. We need more time to
investigate on this, perhaps different heuristics are necessary. Nevertheless, the recomposing
algorithm rejected considerable amount of problematic traces as well, especially for the second
dataset, arriving to reject more than half of distinct not perfectly fitting traces in the worst case.

Finally, recalling the remarks we made in Section 4.1, whereas recomposing approach either
compute a single value fitness or a fitness interval in which the true fitness falls, our method in
case of unsolvable border conflicts only returns an approximated fitness interval. These claims
are confirmedby the results in Fig. 7.8. Fortunately, pseudo-alignments are indicated anyway so
that we can further analyse them and, in a real-world conformance problem, identify possible
process bottlenecks.

80

Figure 7.7: Percentage of solved and accepted traces recorded for stitching and recomposing algorithms respectively. A
solved trace is a not perfect fitting trace (positive costs) for which the stitching algorithm successfully found out correct
sub‐alignments to be merged. We recall that a trace is rejected by the recomposing algorithm when its number of border
conflicts surpasses a prefixed threshold, the number of accepted traces counts how many traces for which recomposing

algorithm succeeded to align. We computed these values by firstly counting the number of distinct not perfect fitting trace
for each event log, then, we compute the ratio.

81

Figure 7.8: The plot on the top is related to fitness intervals computed by the stepwise stitching algorithm, on the bottom,
it is shown intervals returned by the recomposing method. True fitness values are indicated by star symbols.

82

8
Conclusion

In this thesis we went through the state-of-the-art conformance checking with decomposition
approaches while motivating, by making examples, the relevant steps. Then, we gave our con-
tribution by proposing a novel decomposed conformance checking algorithm based on sub-
alignments stepwise stitching which has some advantages with respect to the other existing
methods. We formally defined our algorithm and proved its correctness, also running exam-
ples were provided for a better understanding of its main ideas.

The last part of this work is dedicated to the experiments in which we tested our algorithm
by using synthetic datasets generated by a notable process data generator, this was to simulate
a “Big Data” setting. The final results revealed both positive and negative aspects of the new
algorithm. While the weaknesses of our algorithmmight be overcame by only changing, under
the same framework, some heuristics we applied, its strengths are very valuable, especially for
what regarding the computation time.

Discussing about future work, firstly, we should further investigate and find the causes of
the sub-alignments mismatch issue detected during the experiments: there were still signifi-
cant portions of traces, with respect to the state-of-the-art method, for which our stitching
algorithm could not compute a valid alignment. More experiments should also be carried out
to extensively test our algorithm, using some real-world datasets. Wewill have to vary the initial
assumptions as we have just mentioned to see if the performance will be further improved, due
to the lack of time it was not possible. We can also work on the algorithm implementation side,
optimizing the conformance checker (Python) for sub-alignments computation and the stitch-

83

ing algorithm (Java) for parallel processing, integrate them to create an integrated software for
a better user experience. As a solution of this application integration issue, we can try to imple-
ment the algorithm in a different platform, based on Python (Pm4Py) instead of running it in
a JVM (ProM).

84

References

[1] W.M. v. d. Aalst, Process mining: data science in action. Springer, 2016.

[2] ——, “Process mining: Overview and opportunities,” ACM Transactions on Manage-
ment Information Systems (TMIS), vol. 3, no. 2, pp. 1–17, 2012.

[3] W. L. J. Lee,H.Verbeek, J.Munoz-Gama,W.M. v. d. Aalst, andM. Sepúlveda, “Recom-
posing conformance: Closing the circle on decomposed alignment-based conformance
checking in process mining,” Information Sciences, vol. 466, pp. 55–91, 2018.

[4] W. M. v. d. Aalst, “Decomposing petri nets for process mining: A generic approach,”
Distributed and Parallel Databases, vol. 31, no. 4, pp. 471–507, 2013.

[5] J. Munoz-Gama, J. Carmona, and W. M. v. d. Aalst, “Single-entry single-exit decom-
posed conformance checking,” Information Systems, vol. 46, pp. 102–122, 2014.

[6] H. Verbeek and W. M. v. d. Aalst, “Merging alignments for decomposed replay,” in
International Conference on Applications and Theory of Petri Nets and Concurrency.
Springer, 2016, pp. 219–239.

[7] A. Rozinat, I. S. de Jong, C.W.Günther, andW.M. v. d. Aalst, “Processmining applied
to the test process of wafer scanners in asml,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 39, no. 4, pp. 474–479, 2009.

[8] W. M. v. d. Aalst, A. Adriansyah, A. K. A. d. Medeiros, F. Arcieri, T. Baier, T. Blickle,
J. C. Bose, P. v. d. Brand, R. Brandtjen, J. Buijs et al., “Process mining manifesto,” in
International conference on business process management. Springer, 2011, pp. 169–
194.

[9] W.M. v. d. Aalst, T.Weijters, and L.Maruster, “Workflowmining: Discovering process
models from event logs,” IEEE transactions on knowledge and data engineering, vol. 16,
no. 9, pp. 1128–1142, 2004.

85

[10] J. C. Buijs, B. F. v. Dongen, and W. M. v. d. Aalst, “On the role of fitness, precision,
generalization and simplicity in process discovery,” inOTMConfederated International
Conferences” On theMove toMeaningful Internet Systems”. Springer, 2012, pp. 305–
322.

[11] M. d. Leoni, J. Munoz-Gama, J. Carmona, and W. M. Van Der Aalst, “Decompos-
ing alignment-based conformance checking of data-aware process models,” in OTM
Confederated International Conferences” On theMove toMeaningful Internet Systems”.
Springer, 2014, pp. 3–20.

[12] W.M. v. d.W. Aalst, A. Adriansyah, and B. vanDongen, “Replaying history on process
models for conformance checking and performance analysis,” Wiley Interdisciplinary
Reviews: DataMining and Knowledge Discovery, vol. 2, no. 2, pp. 182–192, 2012.

[13] D. Laney et al., “3d data management: Controlling data volume, velocity and variety,”
META group research note, vol. 6, no. 70, p. 1, 2001.

[14] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure tree,” Data &
Knowledge Engineering, vol. 68, no. 9, pp. 793–818, 2009.

[15] A. Polyvyanyy, J. Vanhatalo, andH.Völzer, “Simplified computation and generalization
of the refined process structure tree,” in International Workshop on Web Services and
FormalMethods. Springer, 2010, pp. 25–41.

[16] A. Rozinat andW.M. v. d. Aalst, “Conformance checking of processes based on moni-
toring real behavior,” Information Systems, vol. 33, no. 1, pp. 64–95, 2008.

[17] M. Weidlich, A. Polyvyanyy, N. Desai, and J. Mendling, “Process compliance measure-
ment based on behavioural profiles,” in International Conference onAdvanced Informa-
tion Systems Engineering. Springer, 2010, pp. 499–514.

[18] J. E. Cook and A. L. Wolf, “Software process validation: quantitatively measuring the
correspondence of a process to a model,” ACM Transactions on Software Engineering
andMethodology (TOSEM), vol. 8, no. 2, pp. 147–176, 1999.

[19] M. d. Leoni andW.M.VanDerAalst, “Aligning event logs andprocessmodels formulti-
perspective conformance checking: An approachbasedon integer linear programming,”
in Business process management. Springer, 2013, pp. 113–129.

86

[20] L. Wang, Y. Du, and W. Liu, “Aligning observed and modelled behaviour based on
workflow decomposition,” Enterprise Information Systems, vol. 11, no. 8, pp. 1207–
1227, 2017.

[21] W.M.VanDerAalst, “Decomposing processmining problems using passages,” in Inter-
nationalConference onApplicationandTheory ofPetriNets andConcurrency. Springer,
2012, pp. 72–91.

[22] H. Verbeek, “Decomposed replay using hiding and reduction.” in PNSE@ Petri Nets,
2016, pp. 233–252.

[23] B. F. Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and W. M. v. d. Aalst,
“The prom framework: A new era in process mining tool support,” in International
conference on application and theory of petri nets. Springer, 2005, pp. 444–454.

[24] A. Burattin, “Plg2: multiperspective processes randomization and simulation for online
and offline settings,” arXiv preprint arXiv:1506.08415, 2015.

[25] P. Felli, A. Gianola, M. Montali, A. Rivkin, and S. Winkler, “Cocomot: Conformance
checking of multi-perspective processes via smt,” in International Conference on Busi-
ness Process Management. Springer, 2021, pp. 217–234.

[26] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” inHandbook of model check-
ing. Springer, 2018, pp. 305–343.

[27] A. Berti, S. J. Van Zelst, andW.M.VanDer Aalst, “Processmining for python (pm4py):
bridging the gap between process-and data science,” arXiv preprint arXiv:1905.06169,
2019.

[28] B. Dutertre, “Yices 2.2,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 737–744.

[29] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2008,
pp. 337–340.

[30] W. L. J. Lee, H. Verbeek, J. Munoz-Gama, W. M. Van Der Aalst, and M. Sepúlveda,
“Replay using recomposition: Alignment-based conformance checking in the large.” in
BPM (Demos), 2017.

87

88

	List of figures
	List of tables
	Introduction
	Preliminaries
	Data Science
	Process Mining
	In a nutshell
	Process Mining Manifesto

	Notations and Definitions
	Fundamental Notations
	Business Process Modeling and Petri Nets
	Event Logs

	Decomposed Conformance Checking
	Alignment-based conformance checking
	Token Replay
	Alignment-based Conformance Checking

	Decomposing Petri nets
	Why Decomposed Conformance Checking?
	Valid Decomposition
	Total Border Agreement
	Decomposition Algorithms

	Stepwise Stitching Decomposed Replay
	Stepwise Sub-alignments Stitching Algorithm
	Algorithm

	Running Examples
	Example 1
	Example 2
	Example 3

	Related Work
	Pseudo-alignments
	Recomposing Conformance Checking

	Process Mining Tools
	XES
	ProM
	Celonis
	Background
	Platform Architecture
	Core Components

	Experiments
	Preliminary Steps
	Process Data Generator: PLG2
	Conformance Checker: CoCoMoT

	Implementation Details
	Data
	Results

	Conclusion
	References

