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Introduction

Ecology is a branch of science which was born as far as the 4th century BC with Aristotle, had a
rapid growth in the 18th and 19th centuries, but established itself only in the last century [18]. In
fact, Darwin’s "Origin of Species" - which is among the most famous works in biology, was only
published in 1909. On the modelling side, the first mathematical model of inter-species competition -
known as Lotka-Volterra’s equations - were published in 1925-6 [10, 17]. Moreover, even if scientists
began systematically gathering data during the last fifty years [1], there is still a lack of big and
long-term macro-ecological dataset due to the fact that field ecological campaigns are time-consuming
and expensive process, that may even have to overcome both political obstacles and technical difficulties
[3]. For example the most studied and well-known ecological site - the Barro Colorado Island - although
studied for more than eighty years, had its species abundances systematically censused only from the
80’s [19]. All these considerations explain why there is not always enough data to have statistical
comparisons able to completely reject a theory or falsify an hypothesis.

Another critical aspect is the complexity of the system we want to model. In fact, we deal with
systems such as forests where plants, insects and birds coexist together interacting, migrating, dying;
all subjected to the laws of physics and chemistry and, at last, all influenced by random external events.
Thus there is little hope to have an unified model describing every detail for every ecosystem. Instead,
there are many successful models limited to the description of specific observables. For example, in
the case of inter-species competition, which is in itself a vast and multifaceted phenomenon, various
models are used to explain the observations. As we already said, historically the Lotka-Volterra model
of prey-predator interaction was the first attempt to describe the deterministic evolution of the coupled
prey-predator species, oscillating in their abundance -as shown by empirical observations. Another
break-through work was The theory of island bio-geography, published in 1967 by MacArthur and
Wilson [11]. In this book, a new stochastic oriented approach in modelling ecosystem dynamics was
introduced. Following this seminal work, the Neutral Theory of Ecology was developed in the year 2001
by Hubbell [8]. Both deterministic and stochastic approaches are valid and give useful insights on the
dynamics of the species abundance in a given ecological community.

Another remarkable achievement has been the discovery of common emergent macro-ecological patterns
[16]. In fact, although the diversity of shapes and forms, from deserts to forests to oceans, some common
properties in ecosystems are ubiquitously found and they are called emergent patterns.

In fact, emergence is a common property of complex systems, which are systems comprising a great
number of parts which interact together and act collectively. In the realm of ecology, a lot of results have
been achieved and some emergent patterns common across the most diverse communities have been
universally recognized. We are interested in two of them: the RSA (relative species abundance) and the
persistence time [16]. The first one is a description of the relative frequency of species abundances in
the ecosystem: the number of individuals for every species are counted and an histogram of the relative
frequency of species with a given abundance class is constructed. In the neutral hypothesis the RSA is
equivalent to calculate the distribution of the number of individuals per specie, that is the probability
for a specie to have n individuals (at stationarity). The persistence time distribution is instead the
probability that a species appears (by immigration or mutation) at t = 0 and migrates or goes extinct
at t.

Neutral theory in fact stems from MacArthur and Wilson’s idea of dynamical equilibrium between a
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CHAPTER 0. INTRODUCTION

local community communicating with a larger metacommunity. The theory gained a lot of attraction in
the physics academia because it treats ecological systems as thermodynamics treats physical systems:
its aim is to model population dynamics using only few parameters and treating all species at the same
trophic level as identical in order to reproduce the emerging patterns. The fact this theory presents a set
of hypothesis allowing to test their validity against the data. Moreover, thanks to its simple formulation,
it allows us to treat the results on the species abundance dynamics analytically and computationally.

In the first chapter we first give an overview of just the necessary mathematical concepts related to this
thesis (e.g. stochastic differential equations), with a brief explanations of their intuitive meaning. We
shortly introduce the generating functions, which will be exploited in the last chapter to compute the
persistence times and at last we present two algorithms we used to make the computations, highlighting
their strengths and limitations.

In the second chapter, we present the main mathematical framework of the Neutral Theory with
emphasis on their ecological meaning: the Birth-Death Master equation, Van Kampen’s system size
expansion and both Janzen-Connel and Chesson-Warner hypothesis. Then we study explicitly two
different models in one dimension, one analogous to the grand-canonical ensemble and one with a
more realistic ecological meaning, and the stochastic version of the Lotka-Volterra equations in two
dimensions.

Finally in the third chapter we analyze the persistence times for the ecological ensemble. We briefly
cover this subject from two points of view: we find an analytic expression for the persistence times
through the generating functions formalism and we show the results of our simulation against the
theory.

vi



Chapter 1

Mathematical and Computational
concepts

In this chapter we are going to illustrate how a Markov stochastic processes can be described by the
Chapman-Kolmogorov differential equations. We then present the Birth-Death Master equation, the
Fokker-Planck equation and the Liouville equation. We will then explain how an homogeneous process
becomes stationary and why this allows us to meaningfully compute the mean, the variance and the
time correlation function; we will introduce the generating function and its properties, highlighting its
value for studying the temporal evolution of a stochastic system. Lastly we will briefly present two
simulation algorithms, the Markov and the Gillespie algorithm, and explain their differences.

1.1 Stochastic differential equations

We are interested in studying processes whose intrinsic nature is probabilistic, and thus evolve in time
following probability laws.

This kind of process is called a stochastic process and can be described by a set of random variables
x(t) = (x1(t), x2(t).., xn(t)) [15, p 77-8]. We fully know this process if, for every possible state, we know
either all joint probability densities

p(x1, t1,x2, t2, ..) (1.1)

or either the conditional probability densities

p(x1, t1,x2, t2, ..,xi, ti|yj, τj , ..) =
p(x1, t1,x2, t2, ..,xi, ti;yj, τj , ..)

p(yj, τj , ..)
(1.2)

We define the sample space of the system as the set of all possible values assumed by the random
variables and we refer to continuous variables with x, y, z and to integer variables as n, m. We restrict
ourselves to stochastic processes which are also markovian.

A Markov process is a process described by a conditional probability which depends only on its most
recent state, and does not explicitly depend on the previously assumed states. This can be stated by
requiring the conditional probability assumes the form

p(x1, t1,x2, t2, ..,xi, ti|yj, τj , ..) = p(x1, t1,x2, t2, ..,xi, ti;yj, τj)

and is a way to express that the system is "memoryless", namely its evolution depends only on its
own current state and not its history. This condition is powerful because we can cast the conditional
probability in the form

p(x1, t1,x2, t2, ..,xi, ti,yj, τj) = p(x1, t1|x2, t2, ..,xi, ti,yj, τj)p(x2, t2, ..,xi, ti,yj, τj) =

= p(x1, t1|x2, t2)p(x2, t2|x3, t3) · .. · p(xi, ti|yj, τj)p(yj, τj)
(1.3)

1



CHAPTER 1. MATHEMATICAL AND COMPUTATIONAL CONCEPTS

by using the Markov property multiple times. By the considerations just made and the fact that,∑
B

P (A ∩B ∩ C..) = P (A ∩ C..)

we can write the integral formulation of the Chapman-Kolmogorov equation as

p(z, t|y, τ) =

∫
dxnp(z, t|x, t′)p(x, t′|y, τ).

This equation is the core of stochastic calculus. We can also express it in its differential form, and we
assume that for all ε > 0:

• lim
∆t→0

p(x,t+∆t|z,t)
∆t = W (x|z, t) uniformly in x, z, and t for |x− z| ≥ ε;

• lim
∆t→0

∫
|x−z|<ε dx

n(xi−zi)p(x,t+∆t|z,t)
∆t = Ai(z, t) +O(ε) uniformly in z, ε and t;

• lim
∆t→0

∫
|x−z|<ε dx

n(xi−zi)(xj−zj)p(x,t+∆t|z,t)
∆t = Bij(z, t) +O(ε) uniformly in z, ε and t;

• lim
∆t→0

∫
|x−z|<ε dx

n(xi−zi)(xj−zj)(xk−zk)p(x,t+∆t|z,t)
∆t = O(ε) are shown to vanish [7, p.48].

Now we can write the Chapman-Kolmogorov differential equation:

∂tp(z, t|y, τ) =−
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, τ)]

+
∑
i,j

1

2

∂2

∂zi∂zj
[Bij(z, t)p(z, t|y, τ)]

+

∫
dxn [W (z|x, t)p(x, t|y, τ)−W (x|z, t)p(z, t|y, τ)]

(1.4)

We note that a solution to the differential Chapman-Kolmogorov equation isn’t necessarily a solution
of the integral Chapman-Kolmogorov equation. It can be shown that a non-negative solution of the
differential equation exists and satisfies the integral one under some non restricting assumptions:

• A(x,t) and B(x,t) positive semi-definite;

• W(x|y,t) non-negative;

• the initial condition of the system is p(z,t|y,t) = δ(y-z).

From now on we assume these conditions to be always satisfied. In particular the initial condition
specified above represents the fact that the system can be found in a precise point of the state space.

The Chapman-Kolmogorov differential equation (to which we will refer only as the Chapman-Kolmogorov
equation) is made of three distinct terms that, when null in some combination, give rise to three main
classes of processes. We now briefly discuss them.

1.1.1 The jump process and the master equation (ME)

If we put the drift and the diffusion coefficients equal to zero, we obtain the pure jump process:

Ai(z, t) = 0 ∀i
Bij(z, t) = 0 ∀i, j

∂tp(z, t|y, τ) =

∫
dxn [W (z|x, t)p(x, t|y, τ)−W (x|z, t)p(z, t|y, τ)] (1.5)

2



1.1. STOCHASTIC DIFFERENTIAL EQUATIONS

We can write equation (1.5) in first order in ∆t:

p(z, t+ ∆t|y, t) = δ(y − z)

[
1−

∫
dxnW (x|y, t)∆t

]
+W (z|y, t)∆t (1.6)

and we see that if W (z|y, t) 6= 0 there is a finite probability that the process jumps from y → z
producing a discontinuity in the sample path (independently from the fact that the sample space is
continuous or not); instead if y = z the first term expresses the probability that the system will not
exit its state.

Equation (1.6) is important from a computational point of view because it can be used to obtain an
approximation of the transitional probabilities, by using the finite difference method, that we can
implement in an algorithm in order to simulate the evolution of a Markovian system (see subsection
1.3.1).

It’s also important to express the discrete version of this equation since we will be extensively using it
in the next chapters:

∂tP (n, t|n′, t′) =
∑
m

[
W (n|m, t)P (m, t|n′, t′)−W (m|n, t)P (n, t|n′, t′)

]
(1.7)

Its interpretation may be more clear noting that it represents the probability of a transition from
state n′ → n: we sum over all states m and each term of the summation is the difference between the
probability of entering the state n arriving from m minus the probability of the opposite transition.

Equation (1.7) is also called the Master Equation (from now on also called ME for brevity) and is of
fundamental importance in ecology because it is the simplest way of modelling the population of a
specie and is at the core of Neutral Theory.

1.1.2 The diffusion process and the Fokker-Planck equation (FPE)

If we assume the third term of Chapman-Kolmogorov equation (eq. (1.4)) to be zero, we obtain the
Fokker-Planck equation (from now on indicated as FPE for brevity)

W (z|y, t) = 0

∂tp(z, t|y, τ) = −
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, τ)] +

∑
i,j

1

2

∂2

∂zi∂zj
[Bij(z, t)p(z, t|y, τ)] (1.8)

This equation describes a process which has a drift and a diffusion component. There are no discon-
tinuities in its sample path because the is no jump term, nonetheless the sample path is nowhere
differentiable due to the presence of diffusion. This equation is important because many cases of interest
are described by a Master Equation that is often not tractable analytically so we resort to a Van
Kampen’s system size expansion of second order and obtain a Fokker-Planck equation, which maintains
in its formulation the key behaviour of the system.

1.1.3 Deterministic evolution and Liouville’s equation

If we assume that only the first term in the Chapman-Kolmogorov equation (eq. (1.4)) is nonzero we
get Liouville’s deterministic equation:

W (z|y, t) = 0
Bij(z, t) = 0 ∀i, j

∂tp(z, t|y, τ) = −
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, τ)] (1.9)

3



CHAPTER 1. MATHEMATICAL AND COMPUTATIONAL CONCEPTS

The importance of this equation lies in the fact that it describes a deterministic motion analogous
to what is found in classical mechanics. It does not describe the average evolution of the system, it
describes the system neglecting all fluctuations as if it were deterministic: in this sense we can think
of obtaining the Liouville equation by taking the Fokker-Planck equation and neglecting the diffusion
term of the process. By defining x(y, t) as the solution of the ordinary differential equation

dx(t)

dt
= A [x(t), t]

with initial conditions x(y, τ) = y, the solution to equation (1.9) with initial condition p(z, τ |y, τ) =
δ(z− y) is

p(z, t|y, τ) = δ [z− x(y, t)]

We do not report the proof which can be found in [7, p 54].

1.2 Ergodicity and expected values

The fact that a stochastic process is described by a stochastic differential equation is not enough to be
sure that the expected values of its random variables are well-defined. Intuitively we need the process
to reach a stationary state described by a stationary probability distribution so that, if the process is
not at equilibrium, we can be sure that after a certain relaxation time it has become stationary. If this
condition is satisfied then the expected values computed from successive realizations of the random
variables will converge, as the system evolves, to their stationary value.

1.2.1 Stationary process

We define a stationary process as a process which has reached equilibrium and thus successive realizations
of the random variable, xi and xj, follow the same probability distribution p(x, t|y, τ) but in general
they may not be independent, even if the process is markovian.

A stationary process thus is only governed by a one time probability distribution or a joint probability
distribution which are time-translation invariant (special case of eq. (1.1))[7, p. 57]

p(x1, t1 + ε;x2, t2 + ε; ..) = p(x1, t1;x2, t2; ..) = ps(x1;x2; ..) ∀ε

while conditional probabilities may still depend upon time differences. This allows us to set the initial
condition at time t = 0 for the two times conditional probabilities by substituting ε = −τ

p(x, t+ ε|y, τ + ε) = p(x, t− τ |y, 0)

and this is convenient for markovian processes, which can be expressed as a product of two times
conditional probabilities and a one time probability (as in equation (1.3)).

1.2.2 Homogeneity

In the special case of a Markov process with initial conditions (y, 0), we have that by defining the one
time probability and the conditional probability as realizations of the stationary distribution, we get [7,
p. 60]

p(x, t) = ps(x, t|y, 0)

p(x, t|y, 0) = ps(x, t|y, 0)

which we can be thought as a process forced in the initial condition by some external agent and then
allowed to relax back to its stationary state.

4



1.2. ERGODICITY AND EXPECTED VALUES

We can therefore define an homogeneous process as a Markov process that reaches stationarity indepen-
dently of its initial conditions, that is it satisfies

lim
t→∞

p(z, t|y, 0) = ps(z) (1.10)

and it becomes stationary fast enough. Clearly in the limit of t→∞ every conditional probability of
the kind of eq. (1.2) can be expresses as the product of stationary probability distributions.

Condition (1.10) is not enough to have an ergodic process because we need to reach a stationary state
fast enough: we discuss this detail in the next paragraph.

1.2.3 Ergodicity

A Markov process is said to be ergodic if condition (1.10) holds because it guarantees that every
probability distribution (which can be expressed as the product of conditional distributions and a one
time distribution) reaches stationarity and if this condition is sufficiently rapid. A way to measure the
speed of relaxation is to study the autocorrelation function, which is defined as

G(τ, T ) =
1

T

∫ T

0
dt x(t)x(t+ τ)

It can be shown[7, p.59] that for T →∞ the auto-correlation function converges in mean square to its
stationary value

lim
T→∞

〈(G(τ, T )− 〈G(τ, T )〉)2〉 = 0 −→ 〈G(τ)〉 = 〈x(t)x(t+ τ)〉s

If the process is stationary we have that the expected value of the mean does not change in time and
thus we can write the one time correlation function as

R(τ) = 〈x(t)x(t+ τ)〉s − 〈x〉2s (1.11)

and if the one time correlation function presents exponential behaviour R(τ) = Aexp(−τ/τc) where τc
is called the correlation time, the expected value of the mean converges in mean square to its stationary
value. This allows us to obtain an approximation of the stationary value by averaging the values
assumed by the random variable during a single realization of the process at stationarity (and not by
averaging different means obtained from different realizations of the process)

lim
T→∞

〈(x̄(T )− 〈x̄(T )〉)2〉 = 0 −→ 〈x(T )〉 = x̄(T ) =
∑
i

xi = 〈x〉s

1.2.4 Expected values

If a process is homogeneous then it reaches stationarity for t → ∞. If equation (1.10) holds then
computing the mean values of a stochastic process is valid in the sense that, as we make more and more
measurements, we get a progressively better estimate:

lim
n→∞

1

n

n∑
i=1

xi(ti) = 〈x〉s (1.12)

Most stochastic systems of interest satisfy eq. (1.10) reaching stationarity with exponential behaviour.
In order to get an estimate of this behaviour we can compute the one time correlation function

R(τ) =
∑
i

x(ti)x(ti + τ)−
∑
i

x2(ti) ∼ Aexp(τ/τc) (1.13)

5



CHAPTER 1. MATHEMATICAL AND COMPUTATIONAL CONCEPTS

by measuring our process at stationarity. This is just an estimate because the one time correlation
function approaches its stationary value in the mean square limit.

In the case of a Markov process at stationarity we can simplify our calculations by a lot. We simply
report the regression theorem[7, p.65] which states that in the case of a one-dimensional system with
variance ∆n2

s whose mean is given by a linear evolution equation of the type ˙x(t|x0) = −Ax(t|x0), the
one time correlation function at stationarity is given by

dR(t)

dt
= −AR(t) −→ R(t) = R(0) exp(−t/τc) (1.14)

with initial condition R(0) = ∆n2
s.

1.2.5 Generating functions

We define the generating function of a probability distribution as [7, p. 275]

G(s, t) =
∞∑
n=0

snP (n, t|n0, 0) (1.15)

where s and n are one-dimensional variables. The generating function has the following properties [7, p.
39, 276]:

• G(s, t = 0) = sn0

• G(s = 0, t) = P (n = 0, t) = 1− P(t), where P(t) is called the survival probability.

which are easy to verify.

The main advantage of the generating function is that it allows us to find the survival probability of
the system and from that we can study the persistence times distribution which is an emergent pattern
common to a lot of ecosystems (see sec. 3.2).

1.3 Algorithms and pseudocode

In order to simulate equation (2.1) we adopt two different algorithms, the finite difference method and
the Gillespie algorithm (also known as stochastic simulation algorithm, SSA).

1.3.1 Finite difference method

Referring to equation (1.6), which is the expansion truncated to first order in ∆t of equation (1.7), we
can rearrange its terms into a finite difference remembering the initial condition p(z,t|y,t) = δ(y-z):

p(z, t+ ∆t|y, t)− δ(y − z) = p(z, t+ ∆t|y, t)− p(z, t|y, t)
∆p(z, t+ ∆t|y, t)

∆t
=

[
−
∫
dxnW (x|y, t)δ(y − z) +W (z|y, t)

]
And for processes on a discrete state space

∆P (n, t+ ∆t|n′, t) = W (n|n′, t)∆t+
∑
m

W (m|n′, t)∆t δ(n′ − n)

The finite difference method makes an an approximation in first order ∆t of the transition rates, causing
the presence of a methodic error and creating a dependence upon ∆t which must be chosen finding a
compromise between the number of wasted draws and accuracy of the simulation. These are its own

6



1.3. ALGORITHMS AND PSEUDOCODE

disadvantages: reasonable values for ∆t are of the order of ∼ 10−1÷ 10−3, but as the interval is reduced
more draws are rejected; instead the methodic error is a source of uncertainty that is added to the
truncation error always present in the algorithms.

We can describe the pseudo-code used as:

1. define the transition probability from n’→n as P(n|n’)=W(n|n’)∆t;

2. draw a random number r from the uniform distribution in the interval [0,1];

3. check if r ≤P(n|n’): if so update the state, if not return to step 1).

The principal advantage of this algorithm is its easiness of implementation: it was mainly used at
the beginning to check the correctness of the simulation, in order to transition to the more powerful
Gillespie algorithm.

1.3.2 Gillespie algorithm

The Gillespie algorithm is used specifically to simulate Markov processes governed by a Master Equation
as (1.7). In order to do a simulation of the BDME (2.1) it’s necessary to associate to it a corresponding
differential equation

∂tP (n, t|n0, 0) = [P (n− 1, t)b(n− 1) + P (n+ 1, t)d(n+ 1)]− P (n, t) [b(n) + d(n)]

⇓ (1.16)
ṅ = [b(n)− d(n)]

instead for simulating the stochasticity for a system of two differential equations it’s necessary to
associate to it the corresponding BDME. We write the case for the Lotka-Volterra equations which will
be studied in sec. 2.5 {

ẋ = ak1x− k2xy
ẏ = k2xy − k3y

⇓ (1.17)

∂tP (x, y, t|x′, y′, t′) =


[P (x− 1, y, t)(x− 1) −P (x, y, t)x] ak1+
[P (x+ 1, y, t)(x+ 1)y −P (x, y, t)xy] k2+
[P (x, y − 1, t)x(y − 1) −P (x, y, t)xy] k2+
[P (x, y + 1, t)(y + 1) −P (x, y, t)y] k3

Its key concept is that a master equation can be thought as the result of R different independent
reactions whose probability of happening depends only on the current state of the system. It can be
shown that probability of a transition rnm to state n happening at time t+ τ from state m is given
by[5, chap. 4.2]

p(n, t+ τ |m, t) = W [n|m]e−Wmτ (1.18)

where W [n|m] are the transition rate from state m to state n and Wm =
∑
n
W [n|m] is the sum of all

transition rates exiting state m.

The main advantages of the Gillespie algorithm are that it doesn’t make approximations in ∆t for the
transition probabilities and the time step is automatically determined by the algorithm itself, depending
on the transition rates, resulting in an exact simulation of the stochastic process. We can describe the
pseudo-code used as:

1. compute the transition rates of the BDME;

2. draw a random number τ from the exponential distribution with mean Wm and update the time;

3. draw a random number r from the uniform distribution in the interval [0,1];

4. determine which transition is made by checking the first j such that r ≤
∑

jW [j|m]/Wm and
update the state.
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Chapter 2

Ecological concepts

In this chapter we are going to illustrate the main ecological ideas behind Neutral Theory: its
assumptions, its advantages and its disadvantages. Then we will introduce the Birth-Death Master
equation for the simple case of the grand-canonical ensemble and an ecological meaningful ensemble. For
both of them we will briefly explain the validity of the approximation in Taylor series of the birth and
death rates, find the expected value of the mean and variance, the theoretical RSA and its continuous
approximation obtained from the Fokker-Planck equation associated to the BDME.

2.1 Neutral Theory

Historically previous attempts at modelling inter-species competition were made by using systems
of ordinary differential equations which led to a deterministic evolution of the system. This kind of
approach has some flaws:

• it does not account for the intrinsic stochasticity of ecological systems;

• the number of parameters to estimate grows quadratic with system size;

• the problem becomes analytically intractable or computationally expensive as the system size
grows.

Thus the lack of ecological data prevents us to estimate accurately all the parameters needed and the
intractability prevents us from clearly understanding if and how universal patterns emerge from the
model.

Neutral Theory comes in rescue due to its assumption:

• it treats only species at the same trophic level, thus excluding from its domain prey-predator
competition;

• it is neutral, meaning species are competitively equivalent and their abundance is driven by
demographic stochasticity;

• it uses birth, death, immigration and speciation as the main drivers of population change;

• it is formulated in a stochastic framework.

It can be viewed as a thermodynamic approach to modelling population dynamics because each species
is thought as made of individuals all obeying the same probabilistic laws (all species have same birth and
death rates). We will show that using basic ecological processes such as birth, death, immigration and
speciation under the neutral hypothesis we are able to capture and model two emergent macro-ecological
patterns.

9
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We adopt a Master Equation to model population change. We define as n = (n1, n2, ..nS) the vector
whose components represent the population of the specie i, where S is the number of species. In order
to model species abundance dynamics we use Neutral Theory and therefore:

• we assume that the transition rates are only determined by birth, speciation and death;

• that the transition rates for each species are dependent only on their own abundance;

• we assume neutrality and therefore instead of treating the ME as a vector equation, since every
component of the vector is independent, we can just write the birth-death master equation in one
dimension;

• we identify the transition rates as b(n) for birth (and speciation is accounted in the term b(0))
and d(n) for death.

For clarity we stop expressing the initial condition dependence of the BDME and just write:

∂tP (n, t|n0, t
′) = [P (n− 1, t)b(n− 1) + P (n+ 1, t)d(n+ 1)]− P (n, t) [b(n) + d(n)] (2.1)

where the birth rate when the population is zero, b(0) > 0, means that there is a speciation rate that
prevents the extinction of the system.

If we assume that detailed balance holds, that is ∀n we have:

b(n)P (n)− d(n+ 1)P (n+ 1) = 0 (2.2)

then equation (2.1) is stationary since the right argument is identically zero. The stationary solution
is[7, p.237]

Ps(n) = P (0)
n∏
z=1

b(z − 1)

d(z)
(2.3)

where P (0) is chosen as to normalize the previous equation.

We can also write the BDME in its FP form by making a Van Kampen’s system size expansion[7,
p.250]. Assuming we have a large total population N, able to fluctuate in the interval [0,∞) we change
variables in eq (2.1) by putting x = n/N and write

∂P (x, t)

∂t
=

{
b(x− 1

N
)P (x− 1

N
, t)− b(x)P (x, t)

}
+

{
d(x+

1

N
)P (x+

1

N
, t)− d(x)P (x, t)

}
(2.4)

lastly we can expand in Taylor series around x and truncating in second order to get a FPE assuming
both b(x) and d(x) as smooth functions of x:

∂p(x, t)

∂t
=

∂

∂x
[(d(x)− b(x)) p(x, t)] +

1

2

∂2

∂x2
[(d(x) + b(x)) p(x, t)] (2.5)

Lastly we consider how we can approximate the birth and death rates. In general we do no know the
analytic expression for them and thus approximate them by expanding in a Taylor series assuming that
the population n is free to live in the interval [0,∞):

b(n)
n = b0 + b1

n + o
(

1
n2

)
d(n)
n = d0 + d1

n + o
(

1
n2

) (2.6)

The previous approximation is heuristically justified because we do not know the functional form of the
birth ad death rates and thus resolve to making an approximation that tries to get not only the gist of
the process, but also models subtler behavior without being too unrealistic by requiring the knowledge
of coefficients of greater order. Mathematically not imposing any kind of hard constraint neither on
the total population of the system and neither on the population of a single specie, leaving it able to
fluctuate in the range n ∈ [0;∞), means that we are modelling the behaviour of a metacommunity
composed of a large number of individuals. Finally there is an ecological meaning in this approximation:

10
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we can interpret the Taylor series as the spatial density of the birth rate, where the dependence from
space is implicit and it is expressed through the population density. The fact that species have a
birth rate dependent on their own spatial density is also postulated in two famous hypothesis: the
Janzen-Connell hypothesis and the Chesson-Warner hypothesis. The Janzen-Connel hypothesis assumes
that a specie, which has an advantage at the expense of another one, stays in the proximity of it;
for example predators stay in the proximity of a prey[9]. The Chesson-Warner hypothesis instead is
experimentally validated and assumes that species react to fluctuations in the environment and thus
their inter-species and intra-specie competition is affected. For example, in the case a specie is met
with favorable environmental conditions, then it will grow faster than other species that may be not
advantaged by these external conditions [4]. To model the Chesson-Warner one should introduce and
environmental noise: an aspect not considered in this work.

2.2 The 1D Grand-Canonical Ensemble

We study the BDME (eq. (2.1)) assuming a special case of the birth and death transition probabilities.
Considering the Taylor expansion of (2.6), we assume d0 = d > 0, d1 = 0 and b0 = b1 = b > 0 obtaining
the birth and death rates

b(n) = b(n+ 1) n ≥ 0 d(n) = dn n ≥ 0 (2.7)

which we can substitute in eq. (2.1) obtaining

∂tP (n, t|n0, 0) = [P (n− 1, t)bn+ P (n+ 1, t)d(n+ 1)]− P (n, t) [(b+ d)n+ b] (2.8)

Detailed balance is easily seen to hold. In fact every possible path that returns to its initial condition
n in our 1D system can be thought of a succession of 1 unit closed loops, and for each of these loops
time-reversibility holds in fact:

T [n+ 1|n]T [n|n+ 1] = T [n|n+ 1]T [n+ 1|n]

Thus we can use eq. (2.3) in order to obtain our stationary solution

Ps(n) =

(
1− b

d

) n∑
z=1

bz

dz
= (1− r)rn (2.9)

where we put r = b/d. The previous solution is valid only when b < d, otherwise if r ≥ 1 the geometric
series will not converge and the probability distribution will not be normalizable. The functional form
of the RSA is identical to the Bose-Einstein distribution for non-degenerate energy levels, from which it
is named after.

We first proceed by calculating the expectation values and fluctuations around the mean in the stationary
case. We have

E(n) = 〈n〉s =

∞∑
n=0

nP (n) =

∞∑
n=0

nrn(1− r) =
r

1− r
(2.10)

E[(n− E(n))2] = ∆n2
s =

∞∑
n=0

[n− 〈n〉s]2P (n) =
∞∑
n=0

n2rn(1− r)− 〈n〉2s =
r

(1− r)2
(2.11)

We immediately note that as r → 1− the mean and the fluctuation diverge to infinity. In fact as
we already noted r = 1 is a special case where the probability distribution (2.9) is not normalizable.
We also look at the ratio of the variance to the mean in order to see if there are points where the
fluctuations around the mean get much larger than the mean itself, thus indicating a critical point
where the system is particularly erratic. We obtain

∆n2
s

〈x〉s
=

1

1− r

11
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from which we see that for r → 1− even their ratio diverges.

In order to study the time dependence of our system the easiest approach is to make a Van Kampen’s
system size expansion and then obtain the corresponding Fokker-Planck equation, which we can solve
in the stationary case to obtain a continuous probability distribution for the population to compare to
the discrete case and ultimately, neglecting the fluctuations in the FPE, obtain the Liouville equation
in order to find the time evolution of the mean. There is no hard constraint on the population of our
system thus the Van Kampen’s system size expansion is justified and from equation (2.5) we can write:

∂p(x, t)

∂t
=

∂

∂x
{[x(d− b)− b]p(x, t)}+

1

2

∂2

∂x2
{[x(d+ b) + b]p(x, t)} (2.12)

It’s interesting to solve the previous equation in the stationary case by imposing the time derivative to
be zero and obtaining

∂xp

p
= −(d− b)(2x+ 1)

x(d+ b) + b

which has solution

p(x) =
e−2x( d−bd+b )[x(b+ d) + b]−( d−bd+b )

2

∞∫
0

e−2x( d−bd+b )[x(b+ d) + b]−( d−bd+b )
2

dx

= Ne−2x( d−bd+b )[x(b+ d) + b]−( d−bd+b )
2

with N = (d+ b)

[
2(d− b)
(d+ b)2

]α e−2b
(d−b)
(d+b)2

Γ (α)

It is useful to illustrate how to find the above solution starting from the standard form of the Fokker-
Planck equation, so that we can underline the ecological meaning of its coefficients. By substituting the
next change of variables in equation (2.12)

y = x(b+ d) + b τ = t(d+ b)

we get

∂p(y, τ)

∂τ
=

∂

∂y

{[
y

(d− b)
(d+ b)

− 2bd

(d+ b)

]
p(y, τ)

}
+

(d+ b)

2

∂2

∂y2
{yp(y, τ)}

=
∂

∂y

{[
µy − b̃

]
p(y, τ)

}
+D

∂2

∂y2
{yp(y, τ)} (2.13)

Where we have

• µ = 1/τc = (d− b)/(d+ b) as a drift coefficient;

• b̃ = 2bd/(d+ b) as a speciation rate;

• D = (d+ b)/2 as a individual death rate.

We know that equation (2.13) has a stationary solution proportional to a Gamma distribution[1, p. 15]

Ps(y) ∝ y(b̃/D−1)e−y/(Dτc) = y(4bd/(d+b)2−1)e−2y(d−b)/(d+b)2 (2.14)

We can simplify this equation by making another change of variables

α =
4bd

(d+ b)2
w = 2y

(d− b)
(d+ b)2

and find that our non-normalized probability density function is ps(w) = w(α−1)e−w. We can normalize
it and find that our final, normalized, probability density function is a Gamma distribution

ps(w) =
w(α−1)e−w

Γ (α)

12



2.3. THE ECOLOGICAL ENSEMBLE

By substituting back the inverse change of variables, we can get the stationary probability distribution
solution of eq. (2.13) is

Ps(y) =

[
2(d−b)
(d+b)2

]α
yα−1e

−y
[
2(d−b)
(d+b)2

]
Γ (α)

and ultimately find the normalized probability distribution solution of eq. (2.12)

p(x) = (d+ b)

[
2(d− b)
(d+ b)2

]α e−2b
(d−b)
(d+b)2

Γ (α)
[x(b+ d) + b]−( d−bd+b )

2

e−2x( d−bd+b ) (2.15)

Liouville’s equation (eq. (1.9)) is found by dropping the term of second order in the Fokker-Planck
equation and from it we can study the deterministic equation describing the temporal evolution of the
population. We can write

∂p(x, t)

∂t
= − ∂

∂x
{[x(b− d) + b]p(x, t)}

from which we obtain[7, p. 54]

ẋ = [x(b− d) + b] = b(x+ 1)− dx (2.16)

We can easily integrate the previous equation with initial condition n(0) = n0 and find

x(t|n0) = n0e
−(d−b)t +

r

1− r

(
1− e−(d−b)t

)
= 〈x〉s + (n0 − 1)e−(d−b)t (2.17)

and immediately note that for t→∞ the time evolution of the population approaches the stationary
value ∀n0.

Lastly we study the correlation time of the system R(t) = 〈x(t0 + t)x(t0)〉 − ∆n2
s with ∆n2

s as in
definition 2.11. We can use the regression theorem because our system is described by a Markov process
which has a homogeneous evolution for the mean that can be made linear by a change of variables.
Thus at stationarity the one time correlation function is

dR(t)

dt
= −(d− b)R(t) −→ R(t) = ∆n2

se
−(d−b)t (2.18)

This function describes a system whose state in the limit t→∞ becomes uncorrelated with the state
assumed in t = 0 and which reaches this condition with exponential behaviour. The ergodic conditions
are satisfied and we can say that this is a homogeneous process with correlation time τc = 1/(d− b).

2.3 The Ecological Ensemble

In this section we study an ensemble which has an analytic solution and is also more suited to model
ecological systems.

This ensemble uses three different parameters (one more than the grand-canonical ensemble) and with
a different functional form. The birth and death rates are now{

b(0) = ν n = 0
b(n) = bn n ≥ 1

d(n) = dn n ≥ 0 (2.19)

with d > 0, b > 0 and ν > 0. The main difference with the Bose-Einstein ensemble is that when n = 0,
corresponding to the extinction of all individuals of the specie, in order to not let the system die we
introduce a speciation rate ν which assures that a new individual of a different specie will restart the
birth-death process. We can now write eq. (2.1) in the ecological ensemble and find:

∂tP (n, t|n0, 0) = P (n− 1, t)b(n− 1) + P (n+ 1, t)d(n+ 1)− P (n, t) [(b+ d)n] (2.20)
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Figure 2.1: Visual representation of the transition rates.

Detailed balance is still easily seen to hold, thus we can use eq. (2.3) in order to obtain our stationary
solution {

Ps0(0) = 1
1− ν

b
ln(1−r) n = 0

Ps1(n) = ν
b

1
1− ν

b
ln(1−r)

rn

n n ≥ 1
(2.21)

where we put r = b/d. We note that if r ≥ 1 the logarithm series will not converge and the probability
distribution will not be normalizable.

This ensemble is important because it describes ecologic dynamics independently of the underlying
density distribution of the individuals; it explains well the dynamics of species living inside a meta-
community composed of a large number of individuals, whose main driver of population change are
the birth and death rate while the speciation rate assumes the important role of guaranteeing the
appearance of new species in the metacommunity[1]. In particular it is found that, studying areas of
inter-continental size, the birth and death rates obtained experimentally have the functional form of
equation 2.19 with a speciation rate ν � 1 [12]. The distribution 2.21 was in fact proposed by Fisher[6]
in order to explain the differences in the population between rare and common species and it suited
well the data. Nonetheless it was challenged by Preston in 1948[14] who found that the RSA shows a
triphasic mode dependent on the dimension of the sampled area.

As we did in the case of the Bose-Einstein distribution, we proceed by calculating the mean and the
variance at stationarity.

E(n) = 〈n〉s =
∞∑
n=1

nPs1(n) =
∞∑
n=1

ν

b

1

1− ν
b ln (1− r)

rn

n
=
f(r, ν)r

1− r
(2.22)

E[(n− E(n))2] = ∆n2
s =

∞∑
n=0

[n− 〈n〉s]2Ps1(n) =
f(r, ν)r

(1− r)2
[1− f(r, ν)r] (2.23)

∆n2
s

〈n〉s
=

1

1− r
(1− f(b, ν̃)) (2.24)

where f(r, ν̃) = ν̃ 1
1−ν̃ln(1−r) and ν̃ = ν

b . Even in this case there is a critical point in r → 1− where the
mean and the variance diverge and also the ratio of the variance to the mean diverges.

In order to study the time dependence of the system we do a Van Kampen’s system size expansion
an write the associated Fokker-Planck equation (see eq. 2.4). In this case the birth rate has a Dirac
delta in zero an this is problematic because, in order to do a Van Kampen’s system size expansion, we
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need the transition rates to be smooth functions of x. In order to do so we divide the Fokker-Planck
equation in two intervals, (0, 1) and [1,∞). In the first interval we will make an arbitrary choice for the
transition rates while in the second interval we do not have problems in extending the domain of the
transition rates from the discrete to the continuum, analogously to what we did in the Bose-Einstein
ensemble. So we write

∂p0(x, t)

∂t
=

∂

∂x
{[d(x)− b(x)]p0(x, t)}+

1

2

∂2

∂x2
{[d(x) + b(x)]p0(x, t)} 0 < x < 1

∂p1(x, t)

∂t
=

∂

∂x
{x(d− b)p1(x, t)}+

1

2

∂2

∂x2
{x(d+ b)p1(x, t)} x ≥ 1

where we have left the transition rates unspecified in the first case of the FPE. We will choose an
exponential behaviour in the interval (0, 1) for them because it will led to a uniform probability
distribution as is in the discrete case, while the FPE in [1,∞) we will use as transition rate b(x) = bx
and d(x) = dx.

We proceed to solve the previous equation in the stationary case requiring the time derivative to be zero

0 =
∂

∂x
{[d(x)− b(x)]p0(x, t)}+

1

2

∂2

∂x2
{[d(x) + b(x)]p0(x, t)} 0 ≤ x < 1 (2.25)

0 =
∂

∂x
{x(d− b)p1(x, t)}+

1

2

∂2

∂x2
{x(d+ b)p1(x, t)} x ≥ 1 (2.26)

and we focus on the first case. In order to have a uniform probability in the first interval we need the
coefficient multiplying the probability distribution to be identically zero. This happens if we choose an
exponential behaviour for the transition rates

b(x) = νe2x d(x) = de−2(x−1)

where we choose the coefficients as to have b(0) = ν and d(1) = d. From this choice we obtain

0 =
1

2
[d(x) + b(x)]

dp0(x)

dx

and since a sum of exponential is never identically zero, we have to put p′0 ≡ 0, thus p0 = N0. The
second case can be easily solved by integration and we get

0 = µxp1 +D ∂
∂x
{xp1} −→ p1(x) = N1

e−
µ
D
x

x

The indefinite integral of the probability distribution on the right is the exponential integral, which
diverges in x = 0. We change the names to the coefficients putting µ = d− b and D = (d+ b)/2 in order
to return to the standard naming in a Fokker-Planck equation; the coefficients have the same meaning
as in the Bose-Einstein distribution, but we notice how there in no coefficient b̃ corresponding to a
speciation rate. Because of the choice made of transition rates, int the approximation to the continuum
the speciation rate does not appear and the system goes extinct for t→∞.

Instead there is no problem in the interval [1,∞) and we only have to normalize the piece-wise probability
distribution obtained. In order to do that it’s meaningful to compare the discrete RSA (eq. (2.21)) and
the continuous RSA in the case of large population n� 1, that is r → 1−. We write rn = exp(n lnr)
and compare the two expression

Ps0(0) = 1
1− ν

b
ln(1−r) ⇐⇒ p0 = N0

Ps1(n) = ν
b

1
1− ν

b
ln(1−r)

enln(r)

n ⇐⇒ p1(x) = N1
e−

µ
D
x

x

By putting d = b+ ε and ε→ 0+ and expanding in zero

ln
(

1− ε

b+ ε

)
∼ −ε

b
− µ

D
∼ −ε

b
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and we recover the fact that as the population grows larger the continuous approximation is identical
to the discrete case in first order of ε; we already saw that for r → 1− the mean diverges. From these
observations we choose that in order to normalize our probability distribution we put N1 = ν

b
1

1− ν
b
ln(1−r)

and find N0 by imposing the normalizing condition

N0 = 1 +
ν

b

1

1− ν
b ln (1− r)

Ei
(
− µ
D

)
Ei(z) =

∞∫
1

exp(−zx)

x
dx is the Exponential integral

After all these considerations we get that our final probability distribution solution of (2.25) is p0(x) = 1 + ν
b

1
1− ν

b
ln(1−r)Ei

(
− µ
D

)
0 < x < 1

p1(x) = ν
b

1
1− ν

b
ln(1−r)

e−
µ
D
x

x x ≥ 1
(2.27)

Lastly we study the deterministic behaviour of the system. We recover Liouville’s equation from the
Fokker-Planck equation and write{

∂p(x,t)
∂t = − ∂

∂x

[
[de−2(x−1) − νe2x]p(x, t)

]
0 < x < 1

∂p(x,t)
∂t = − ∂

∂x [[x(d− b)]p(x, t)] x > 1
(2.28)

and here we begin to see some problems caused by the piecewise division of the FPE and the arbitrary
choice of the transition rates. In the interval (0, 1) we would have a nonsensical solution that would led
our system to have a negative number of individuals. Therefore we choose to discard the first case and
extend the second case from [1,∞)→ (0,∞) thus obtaining

ẋ = [x(b− d)] = bx− dx (2.29)

We note that when n = 0 there is no speciation rate prevent the complete extinction of the species.
However we proceed by integrating this equation with the initial condition n(0) = n0 and find

x(t|n0) = n0e
−(d−b)t 6= 〈x〉s (2.30)

and immediately note that, differently from the grand-canonical distribution, for t→∞ the mean does
not approach the stationary value obtained from the discrete probability distribution but instead is
driven to extinction.

Lastly we study the correlation time of the system. We can use the regression theorem because our
system is described by a Markov process whose mean is described by a linear evolution (although not
quite correct in the interval (0, 1)). Thus at stationarity the one time correlation function is

dR(t)

dt
= −(d− b)R(t) −→ R(t) = ∆n2

se
−(d−b)t (2.31)

As in the grand-canonical ensemble this function describes a system whose state at time t → ∞
becomes uncorrelated with a state at t0 and which reaches this condition with exponential behaviour.
The ergodic conditions are satisfied and this is in fact an homogeneous process with correlation time
tauc = 1/(d− b), identical to the Bose-Einstein distribution.
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2.4 Results

In this section we will present the results of the simulation of both ensembles.

First we show some plots for the well behaved cases of r = 0.5 (figure 2.3a for the Bose-Einstein ensemble,
figure 2.3b for the ecological ensemble) and r = 0.9 (figures 2.5a and 2.5c for the Bose-Einstein ensemble,
figures 2.5b and 2.5d for the ecological ensemble), which are away from the critical point r = 1. For
both cases and both ensembles we choose d = 1 and used 500k steps; we used the Gillespie algorithm
to do the simulation. In order to compute the mean and the variance we discarded all simulated values
which had a time t ≤ 5 · τc (found theoretically in eq. (2.18) for the Bose-Einstein distribution and in
eq. (2.31) for the Fisher distribution); moreover we used a weighted mean to compute the expectation
values, whose weight for each value x(ti) was given by the time spent by the system in that state
∆t = ti+1 − ti.

Figure 2.2: Histograms for b = 0.5, ν = 0.5 and d = 1.
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(a) Graph showing the histogram of a simulation in the
Bose-Einstein ensemble.
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(b) Graph showing the histogram of a simulation in the
ecological ensemble.

From the histograms we can clearly see the difference between the Bose-Einstein ensemble (which is
displayed on the left) and the ecological ensemble (which is displayed on the right). Both simulations
are perfectly fitted by the discrete probability distributions given by eq. (2.9) in the grand-canonical
ensemble and by eq. (2.21) in the ecological ensemble; instead the continuous probability distributions
given by eq. (2.12) in the grand-canonical ensemble and by eq. (2.27) in the ecological ensemble are
seen to overestimate the probability of low values of the population, however they approximate well the
tail which better satisfies the limit of large population n� 1. We also found that for values of r up to
∼ 0.95 the simulated mean and variance approximate very well the theoretical ones obtained using eq.
(2.10) (grand-canonical ensemble) and eq. (2.22) (ecological ensemble).

We also tried to do simulations near the critical point and found out that for r ∼ 0.99 we don’t get
correct results for the mean and variance, even if we increase the number of steps tenfold. When looking
at the histograms (not reported in this work), we see that the empirical RSA lies above the discrete
RSA predicted by Neutral Theory. This happens because as r → 1− the process becomes a random
walk and in order to compute the expected values we need to average the results of multiple simulations
and cannot rely upon averaging the values of just one simulation even if it is made arbitrary long:
instead we have to average different simulations.

We also checked the transient time of our process for both ensembles. Comparing our theoretical
predictions (eq. (2.18) for the Bose-Einstein distribution and eq. (2.31) for the Fisher distribution) with
the simulations we found that if we are not too close to the critical point, our continuous deterministic
evolution obtained from the Liouville equation describes very well the time evolution of the system
away from equilibrium. In figure 2.7a and 2.7b we see both types of evolutions.
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Figure 2.4: Time series and histograms for b = 0.9, ν = 0.9 and d = 1.
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(a) Graph showing the evolution of the population in
time at stationarity in the case of the Bose-Einstein
ensemble. Theoretical mean and standard deviation:
9.0 ± 9.5. Simulated mean and standard deviation:
8.7± 9.2.
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(b) Graph showing the evolution of the population in
time at stationarity in the case of the ecological ensem-
ble. Theoretical mean and standard deviation: 2.7±4.5.
Simulated mean and standard deviation: 2.8± 4.6.
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(c) Graph showing the histogram of the above time
series in the Bose-Einstein ensemble.
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(d) Graph showing the histogram of the above time
series in the ecological ensemble.

Figure 2.6: Transient time for b = 0.1, ν = 0.1 and d = 1.
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(a) Graph showing the transient time in the Bose-
Einstein ensemble, with τc = 1.
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(b) Graph showing the transient time in the ecological
ensemble, with τc = 1.
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We also checked that the system has reached stationarity by computing the one-time correlation function
for both ensembles. In the title of figures 2.8a and 2.8b the theoretical values of the variance are
reported. The delay τ corresponds not to the time in the simulation, but indicates the delay as a
distance between the i-th value of the simulation and the (i+ τ)-th value; in the ordinate there is the
value of the one-time correlation function. We can clearly see that by averaging the one-time correlation
function over multiple simulations we obtain values much closer to zero; this corresponds to the fact
that the theoretical one-time correlation function is given by a decaying exponential with correlation
time τc = 10 for both ensembles.

At last we checked that our system is effectively at stationarity and that the average population of
multiple simulations (and not only the average in time of one simulation) converges to the stationary
value. We did it in the most interesting case for the Bose-Einstein ensemble near the critical point
putting b = r = 0.99 and d = 1; in figure 2.9 the mean of 20 and 40 different simulation averaged
together are presented and we can see how there are oscillations of the order of tens of individuals, who
become smaller as more simulations are averaged together. For comparison, a single simulation usually
can have deviations from the stationary mean of the order of hundreds of individuals.
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2.5. THE 2D LOTKA-VOLTERRA EQUATION

2.5 The 2D Lotka-Volterra Equation

In this section we will cover shortly and qualitatively the stochastic Lotka-Volterra equation describing
a prey-predator system, highlighting the main differences with the one dimensional systems studied in
the previous chapter and its unique properties but without dwelling too much on the underlying math
since an analytic solution to the associated BDME doesn’t exist.

In order to model competition between species we can resort to differential equations. In the simple
case of a prey-predator system, we immediately realize that the rate of change of preys cannot depend
only on its number as was the case for mono-trophics systems governed by births and deaths, but must
be influenced in some way by the fact that predators are actively hunting down the preys. The most
straightforward way to model this interaction is to introduce a new term that is the product of the
population of preys and predators, multiplied by a coefficient. The standard prey-predator differential
equation associated to a bi-dimensional system is{

ẋ = ak1x− k2xy
ẏ = k2xy − k3y

and its interpretation is simple. We have 3 different terms:

• ak1x is the product of the resources generation rate a > 0 that for example represents the
abundance of food, of k1 > 0 which represents the probability of a prey finding the food and
x which represents that if more preys are presents, more encouters will happen and preys will
reproduce faster;

• k2xy is the product of the prey-predator encounter rate k2 > 0 multiplied by the numbers of
both populations; it is subtracted from the population of preys and added to the population of
predators because it represents the fact that a predator has successfully killed a prey and had an
offspring;

• k3y is the product of the death rate k3 > 0 analogous to the one seen in the systems previously
studied.

The Lotka-Volterra deterministic system of equations presents two points of equilibrium in O = (0, 0)
and Q = (k3/k2, ak1/k2). The presence of the stationary solution in O corresponds to the extinction
of both species, and the presence of the trivial solutions obtained by putting either x = 0(y = 0)
corresponding to the exponential growth(extinction) of preys(predators) limits the existence of the
solution to the first quadrant, where x, y > 0. Its first integral is f(x, y) = k2(x+y)−k3ln(x)−ak1ln(y)
and since it is a convex function which goes to +∞ as x→ 0+ and x→ +∞ uniformly in y (and vice
versa) we show that all solutions are closed curves in the first quadrant that are cyclically repeated.

As we already saw, we can find the associated Birth-Death Master equation associated to a deterministic
equation. From eq. (1.3.2) we have that the 2D BDME associated to the Lotka-Volterra equations is

∂tP (x, y, t|x′, y′, t′) =


[P (x− 1, y, t)(x− 1) −P (x, y, t)x] ak1+
[P (x+ 1, y, t)(x+ 1)y −P (x, y, t)xy] k2+
[P (x, y − 1, t)x(y − 1) −P (x, y, t)xy] k2+
[P (x, y + 1, t)(y + 1) −P (x, y, t)y] k3

An analytic solution doesn’t exist and thus we don’t have an explicit expression for the RSA. We can,
however, qualitatively study this equation by doing some simulations.

Using the SSA algorithm we have to carefully choose the coefficients ki and the starting prey/predator
populations to highlight the untamed behaviour of the system. We choose a = 1, k1 = 3, k2 = 0.01 and
k3 = 3. The point of equilibrium inside the first quadrant is Q = (300, 300) and thus we initialize the
populations to be (x0, y0) = (200, 200). We choose coefficients of the order of unity because this allows
us to do a more accurate simulation: in the case of the SSA they just modify the rate T and thus slow
or accelerate the evolution in time of the system. We choose populations near the point of equilibrium

21



CHAPTER 2. ECOLOGICAL CONCEPTS

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

Po
pu
la
tio
n	
(n
)

Time	(t)	a.u.

Stochastic	and	Deterministic	Evolution

Prey
Predator

Prey
Predator

Figure 2.10: Lotka-Volterra deterministic and stochastic time series.

because, as we will see, the stochastic evolution of the system drifts away from equilibrium. The fact
that k1 = k3 simplifies even more the solution. In order to make the simulation we use 105 steps.

From the inspection of figure 2.10 we can clearly see that although the deterministic solutions of the
Lotka-Volterra equations are periodic and with the same amplitude, the corresponding evolution of
the stochastic process isn’t so regular. Preys and predators do not have the same amplitude (although
similar) neither between them neither for successive maxima or minima, and this worsens with time.

In figure 2.11 we can see the starting evolution of the system in the phase space and corresponds to the
first 104 steps. We can see the start of the stochastic process in (200, 200) and how it almost follows the
deterministic evolution for the first cycle (corresponding to the almost overlap of the deterministic and
the stochastic evolution of the first oscillation in figure 2.10). We can recognize that if we put preys on
the x-axis and predators on the y-axis the system evolves counter-clockwise because preys can be born
and thus drift to the right of the x-axis, while predators can die off and thus drift to zero on the y-axis.

In figure 2.12 we can see the last 2 · 104 steps. We notice how the system sweeps much larger ranges
for the population of the preys and the predators, almost double of the first cycle. The stochastic
evolution has definitely departed from the level curve corresponding to the initial condition. Since the
system is markovian there is no way, for the system, to remember where it started and greater and
greater oscillations are induced until one of the two species goes extinct. If the preys go extinct, the
predator will also go extinct; if the predators die off, the preys will exponentially grow (these are the
trivial solution of the deterministic Lotka-Volterra equations). This is a great problem in ecology where
stochastic model predict that two species can’t survive together but one, or both, eventually die off
(this is also known as the atto-fox problem).

We lastly look at the histograms. We have the histogram of the prey population, of the predator
population, and the histogram of both on the phase space. Since we choose k1 = k3, which ultimately
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Figure 2.11: Time evolution in the phase space at the beginning.
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Figure 2.12: Time evolution in the phase space at the end.
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Figure 2.13: Histogram of the prey’s population of the whole stochastic time series, of which figures 2.11 and 2.12 show a slice. 100
bins were used for the histogram.

means that preys are equal to predators, we get that both histograms are approximately the same. The
majority of the time is spent on the low part of the point of equilibrium because it’s where the rate of
change Rtot that dictates the time increment is small but without being far enough from the point of
equilibrium so that the system isn’t inclined to violently rebound from the deviation.
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Figure 2.14: Histogram of the predator’s population of the whole stochastic time series, of which figures 2.11 and 2.12 show a slice.
100 bins were used for the histogram.
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Chapter 3

Persistence times Analysis

As we already presented in section 1.2.5, from the analysis of the generating function, we can define the
survival probability of a system and ultimately the distribution of the persistence times of a stochastic
process. We briefly recall the definition of the survival probability P(t):

P(t) = 1−G(s = 0, t) = 1− P (n = 0, t),

i.e. the probability that a species has at least one individual at time t.

The quantity P (n = 0, t) is commonly known as the first-passage time through zero of a stochastic
process and is of crucial importance when studying ecological processes because it represents the
probability that, locally, a specie goes extinct.

3.1 Empirical Persistence-time distribution

Neutral Theory is based upon the assumption that the evolution of an ecological system is governed by
four major processes: birth, death, migration and speciation. Migration becomes particularly important
when we consider a local community which communicates with a larger metacommunity and local
persistence times represent the time span for which a species can be located in the local community.
Since the persistence time distribution can be described from the birth and death master equation that
also governs the RSA (as seen in section 2.1), then neutral theory predict that also P (n = 0, t) will
display and emergent universal shape. Indeed, it has been found[16] that empirical persistence-time
distributions computed from real macro-ecological data for breeding birds, grasslands, forests and fish
follow the same type of functional form, namely a power law with a cutoff.

3.2 Theoretical Persistence-time distribution

From the theoretical point of view, it has been shown analytically[13] that in the general for birth and
death rates given by Eq. (2.6), the persistence-time distribution follows a power law with exponential
cutoff

ρ(t|ν) ∝ t−αe−νt. (3.1)

ρ(t|ν) is described by two parameters:

• ν, that is a parameter determined by migration or speciation processes;

• α that is a parameter determined by the spatial structure of environment where the ecosystem
lives [2]. Its value ranges from 3/2 for a one-dimensional system to 2 for systems in 3 or greater
dimensions and for the mean field case, while the persistence of the system in two dimensions
assumes the form t−2ln(t).
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We now find the analytic solution for the ecological ensemble.

Ecological ensemble

We write the generating function associated to the BDME (2.20) in the ecological ensemble (eq. (2.19))
but we rewrite the birth rates as b(n) = bn, thus ignoring the Dirac delta.

∂G(s, t)

∂t
=
∞∑
n=0

sn
∂P (n, t)

∂t

=

∞∑
n=0

sn {[P (n− 1, t)b(n− 1) + P (n+ 1, t)(n+ 1)d]− P (n, t) [(b+ d)n]}

=
∞∑
n=0

sn−1P (n) [n(1− s)(d− bs)]

= (1− s)(d− bs)∂G(s, t)

∂s
(3.2)

We can solve this linear PDE by using the method of the characteristic[20]. First we divide by d and
define r = b/d; then we redefine the time scale as t→ t/d. We obtain

∂G(s, t)

∂t
− (1− s)(1− rs)∂G(s, t)

∂s
= 0 (3.3)

and proceed to define the characteristics
dt

dσ
= 1

ds

dσ
= (1− s)(1− rs)

with initial condition t(0) = 0 and s(0) = s0, from which we find

t = σ s0 =

(
1− s
1− rs

)
By imposing the initial condition

G(s, 0) = sn0
0 = F

(
1− s
1− rs

)
we obtain

F (z) =

(
1− z
1− rz

)n0

we find the generating function for the ecological ensemble:

G(s, t) =

(
1−A(s, t)

1− rA(s, t)

)n0

(3.4)

A(s, t) =

(
1− s
1− rs

)
e−(1−r)t

From the generating function we can find the persistence time distribution. First we find the survival
probability

P(t|r) = 1−

(
1− e−(1−r)t

1− re−(1−r)t

)n0

and then in the scaling limit, assuming r → 1− and (1− r)t ' const, we can get an approximation

P(t|r) ∼
r→1

n0(1− r)
e(1−r)t − 1

and then by taking the time derivative we get the lifetime distribution

ρ(t|r) = −∂P(t|r)
∂t

= n0(1− r)2 e(1−r)t(
e(1−r)t − 1

)2 (3.5)
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Figure 3.1: Example of a measurement of an extinction time, as indicated by the arrow. Notice how also the time where there are
no individuals alive, namely from ∼ 0.3 to ∼ 1.7 is included.

3.3 Simulated Persistence-time distribution

In order to check the validity of eq. 3.5 we do a simulation in the ecological ensemble by:

1. set initial conditions and after that let the system evolve in time for about 100M steps;

2. discard the first part of the time series consisting of 5 times the transient time, in order to make
sure the system is stationary;

3. measure the time differences of the time series corresponding to successive population extinctions;

4. after finding the time differences we simply count the frequencies without any weight and using
100 bins.

We compute the extinction times comprising also of the time spent by the system without any individuals
alive. This is shown in figure 3.1, where the black arrows starts at the beginning of the extinction of
the previous specie and ends as soon as the current species goes extinct again.

In figure 3.2 we can see a simulation near the critical case of b = r = 0.99 and d = 1. We choose
ν = 0.99 so that the system would not spend too much time extinct and can be thought as a system
subject to extreme mutations; the values of speciation and of birth rate are close to the critical point
in order to satisfy the scaling assumption. We see that eq (3.5) perfectly fits our data even near the
critical point but the tail of the curve is not perfectly approximated because it is difficult to sample.
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