

Università degli Studi di Padova

Studio di inclusioni di fuso silicatico nell'aureola metamorfica del gabbro di Sondalo (dominio Austroalpino, Alpi centrali)

Laureando: Davide Cappellari

Relatore: Prof. Omar Bartoli Correlatore: Prof. Bernardo Cesare

Laurea Triennale in Scienze Geologiche Anno accademico 2018-2019

Introduzione: anatessi crostale

Parametri che influenzano la fusione parziale:

- Composizione
- Temperatura
- Pressione
- Presenza di fluidi

Prodotti:

- Metamorfismo di alto grado
- Migmatiti
- Magmi acidi

Introduzione: le inclusioni di fuso silicatico (MI)

Gocce di fuso silicatico intrappolate durante la crescita dei minerali T

- Intrappolamento durante il raffreddamento (3)
 - Cristallo ospite che cristallizza dal magma
 - Composizione evoluta del fuso
- Intrappolamento durante il riscaldamento (1)
 - Fusione incongruente
 - Formazione di minerali peritettici
 - Composizione primaria del fuso

Obiettivi

Identificazione dei campioni che contengono MI promettenti
 Caratterizzazione microstrutturale delle MI
 Ricostruzione della storia anatettica attraverso le MI

Metodologie analitiche utilizzate

Microscopio polarizzatore	Microscopio a scansione elettronica (SEM)	Microsonda elettronica (EMPA)
 Studio petrografico delle rocce Selezione delle sezioni con inclusioni di fuso silicatico cristallizzate 	 Studio delle inclusioni e delle microstrutture Selezione dei granati da analizzare con la microsonda 	 Transetti composizionali dei granati Analisi chimica puntuale degli spinelli

Università degli studi di Padova, Dipartimento di Geoscienze

Università degli studi di Padova, Dipartimento di Geoscienze

Università degli studi di Milano, Dipartimento di Scienze della Terra

Inquadramento geologico

- Sondalo, Alpi Centrali, Dominio Austroalpino
- Deformazione e metamorfismo alpino minori, preservata la tettonica prealpina
- Metamorfismo regionale nel Carbonifero, «Campo Unit» costituita da micascisti (circa 5.6 kbar/650 °C)
- Intrusione del gabbro di Sondalo nel Permiano, (300-280 Ma) e metamorfismo di contatto (circa 5.5 kbar/930 °C)

BPA-018-11A

•Bt:

Grt
 Sil.
 Crd

• Grt

0 5 mm

• Grt • Spl

Grt Crd

• Grt • Sil

Petrografia BPA-018-11A

Sil

- Roccia: incluso granulitico
- Struttura gneissica eteroblastica, con porfiroblasti di granato
- Mineralogia: Grt, Spl, Sil, Crd, Ilm, poca Bt, (Zrn)
- Evidenze di fusione parziale

■ Spl

Microstrutture delle inclusioni: BPA-018-11A

- In granati e spinelli
- Dimensioni variabili nei granati, da pochi μm (più frequenti) ad un centinaio di μm. Dimensioni minori a 30 μm negli spinelli
- Forma a cristallo negativo o forme più irregolari
- Fratture da decrepitazione
- Policristalline

BPA-014-UU

Gr

Qz

Oz

• Grt

В

G

• Grt

5 mm

0

Petrografia BPA-014-UU

- Roccia: migmatite
- Metatessite
- Mineralogia: Grt, Bt, Sil, Crd, Ilm, Kfs, Qz, Plg, (Zrn, Ru)
- Evidenze di fusione parziale

Microstrutture delle inclusioni: BPA-014-UU

- In granati
- Dimensioni variabili, da pochi μm (più frequenti) ad un centinaio di μm
- Forma a cristallo negativo
- Policristalline
- Fratture da decrepitazione
- Possono contenere fasi intrappolate (zircone, monazite, rutilo, grafite)

Analisi al SEM

BPA-018-11A

BEI x12,1 WD26,61mm 25,00k

- Inclusioni in granati e spinelli ٠
- Distribuzione casuale ٠
- Forme più irregolari ٠

BPA-014-UU

- Inclusioni in granati
- Distribuzione associata a zone con più inclusioni di minerali
- Forme più regolari

granulitico (BPA-018-11A)

- Quarzo (Qz) •
- Biotite (Bt) •
- Apatite (Ap) •
- Silicati di alluminio (Als)
- Clorite (Chl) •

Nanogranitoidi

Inclusioni nei granati della migmatite (BPA-014-UU)

- Quarzo (Qz) •
- Biotite (Bt) •
- Apatite (Ap) ٠
- Ilmenite (Ilm) ٠
- Silicati di alluminio (Als) •
- Clorite (Chl) •

Nanogranitoidi

- Grafite (Gr) •
- Rutilo (Ru) •
- Monazite (Mnz) •
- Zircone (Zrn) •
- Fasi intrappolate

Analisi con microsonda elettronica

BPA-018-11A

- Ricerca di eventuali zonature composizionali nei granati
- Analisi chimica puntuale degli spinelli

BPA-014-UU

• Verifica della zonatura composizionale dei granati

Transetto composizionale: BPA-018-11A

- Granato non zonato: profilo piatto al centro
- Variazione composizionale al rim:
 - Aumento di almandino (Fe)
 - Diminuzione di piropo (Mg)

Transetto composizionale: BPA-014-UU

Almandino
 Orossularia
 Orossularia

Granato zonato:

- <u>Nucleo</u>: maggior contenuto di grossularia (Ca) e spessartina (Mn), minore presenza di almandino (Fe) e piropo (Mg)
- <u>Rim con MI</u>: aumento di almandino e piropo, diminuzione spessartina e grossularia
- <u>Rim più esterno</u>: aumento di almandino e diminuzione di piropo

Analisi chimica degli spinelli: BPA-018-11A

	Spinello 1	Spinello 2	Spinello 3	Spinello 4	Spinello 5	Spinello 6
MgO	5.61	5.66	5.76	5.77	5.73	5.77
Al ₂ O ₃	59.43	60.31	60.49	60.27	60.11	60.21
SiO ₂	0.00	0.01	0.04	0.02	0.03	0.04
CaO	0.00	0.01	0.02	0.00	0.00	0.00
TiO₂	0.00	0.04	0.02	0.00	0.00	0.00
Cr ₂ O ₃	0.15	0.07	0.07	0.13	0.04	0.03
MnO	0.05	0.03	0.09	0.03	0.05	0.03
FeO	33.68	34.11	33.62	33.67	33.71	33.62
ZnO	0.90	0.78	0.66	0.74	0.84	0.86
Totale	99.82	101.03	100.77	100.64	100.51	100.56
X _{Mg}	0.23	0.23	0.23	0.23	0.23	0.23

- Spinello di tipo Ercinite
- La composizione degli spinelli è costante: X_{Mg}=0.23
- Basso contenuto di zinco (ZnO < 0.9 wt%) → consistente con UHT (T>900°C)

Pseudosezioni: BPA-018-11A

- > Utilizzo di pseudosezioni delle rocce studiate (tratte da Petri et al. 2016)
- Grt-Sil-Sp-Crd-Ilm-melt
- Composizione media del granato (esclusi i rim): Alm₇₃Prp₂₃Sps₁Grs₃
- Formazione delle MI a circa 880°C/5.2 kbar

Pseudosezioni: BPA-014-UU

- > Utilizzo di pseudosezioni delle rocce studiate (tratte da Petri et al., 2016)
- Grt-Sil-Crd-Bt-Ilm-Kfs-melt
- Composizione media del granato nella zona con MI: Alm₇₄Prp₁₇Sps₄Grs₅
- ➢ Formazione delle MI a circa 800°C/5.5 kbar

Conclusioni

Inclusioni di fuso silicatico trovate nei campioni BPA-018-11A e BPA-014-UU

> Le MI sono primarie e totalmente cristallizzate (nanogranitoidi)

- > Trovata l'associazione Spinello+Quarzo (nel campione BPA-018-11A) indicativa di UHT
- La presenza di MI è associata alla messa in posto del gabbro di Sondalo, che ha prodotto metamorfismo di alto grado e fusione delle rocce circostanti
- Le diverse temperature di formazione (≈800 vs ≈880°C), a parità di pressione, sono consistenti con le diverse posizioni strutturali delle rocce rispetto alla camera magmatica

Sviluppi futuri

➢ Ricostruire la composizione del fuso primario:

- Rifusione delle MI tramite «piston cylinder apparatus»
- Analisi composizionale delle MI riomogeneizzate (EMP, LA-ICP-MS, NanoSIMS)
- Valutazione di eventuali differenze composizionali tra i vari campioni

Bibliografia

- Petri et al., 2016. The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): implications for mid-crustal mafic magma emplacement. Contrib Mineral Petrol (2016) 171:52
- Bartoli et al., 2016. Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks. American Mineralogist, Volume 101, pages 1543-1559, 2016
- Cesare et al., 2015. What can we learn from melt inclusions in migmatites and granulites? Lithos 239 (2015) 186–216
- Ferrero et al., 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. J. metamorphic Geol., 2012, 30, 303–32