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Abstract

Kerr-AdS black holes develop superradiant instabilities if their angular velocity

Ω > 1, as their Hawking quanta get exponentially amplified in a “Penrose-like”

process. These black holes must then decay into some other stable solutions. In this

work we review the mechanism behind the superradiant instabilities and discuss

some proposals for their endpoint, focusing in particular on Revolving Black Holes

and Grey Galaxies. These solutions are built by “storing” part of the energy and

angular momentum outside of the black hole itself, respectively into its center of

mass motion and into a cloud of far away, large angular momentum field excitations.

They extend the gravitational phase space from the extremality bound for black holes

down to the unitarity bound of the dual CFT. We will show how several holographic

arguments provide useful information on such solutions and help us to construct

them.
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1 Introduction

It is a well known fact that, due to quantum effects, black holes are unstable. Hawking

radiation is continuously emitted from the black hole horizon, taking away energy from the

black hole; as the black hole shrinks, its temperature increases and the more and more power is

emitted as Hawking radiation, leading eventually to the complete evaporation of the black hole.

Black hole evaporation makes the study of black hole thermodynamics harder, since we have to

deal with a thermodynamic system outside of thermodynamic equilibrium. The most obvious

way in which we can solve this issue is by surrounding the black hole with mirrors, such that

all the outgoing Hawking radiation will be reflected back and reabsorbed by the black hole. A

new dynamical equilibrium is thus established between the black hole and a cloud of Hawking

quanta that surrounds it: at any moment, as many Hawking quanta are emitted as those that

fall again behind the horizon. Since there is no net flux of energy across the horizon, the black

hole stays at a constant energy and thus at a constant size. Additionally, for large black holes

the Hawking temperature is really small; therefore, the cloud of Hawking quanta surrounding

the black hole is very “rarefied” and its effects can be safely neglected in most computations.

The natural way to introduce a mirror in the gravitational context is to put the black hole

inside Anti-de Sitter (AdS) space. AdS space indeed acts as a confining box, where only particles

with infinite energy can actually escape all the way to spatial infinity. Therefore, the above

reasoning suggests that a black hole in AdS is a stable configuration, contrary to a black hole

in flat space which evaporates. However, it was discovered 20 years ago that not all black

holes in AdS are actually stable, due to a new kind of instabilities, the so-called “superradiant

instabilities”. In this work we will focus on superradiant instabilities of rotating Kerr-AdS black

holes, since the behavior in the charged (and possibly rotating) case appear to be far more

complex; additionally, we will stick for simplicity to AdS4, though most of the considerations

we will make should be easily generalizable in D ≥ 4.

The main cause behind superradiant instabilities is a generalization of the Penrose process for

waves. In the Penrose process, an observer can extract energy from the ergosphere of a rotating

black hole without actually falling behind the horizon. It turns out that some of the Hawking

quanta in the rotating cloud that surrounds the black hole in AdS can actually extract some

energy from the black hole when they pass through the ergosphere; then, instead of escaping

to infinity, they are again reflected back by the AdS confining potential towards the black hole

and can extract some more energy, leading to an exponential growth of such modes. A heuristic

argument explaining the mechanism with which waves can extract energy from the black hole

was first proposed by Zel’dovich [1]. The idea is to modify the equations of motion of a field

(in our case, a scalar field for simplicity) by taking into account the presence of a rotating black

hole. Near the horizon, the black hole absorbs radiation, and this effect is captured by a simple

dampening term added to the equations of motion. The rotation is then simply introduced

by applying a Lorentz boost; while usually the equations of motion are Lorentz invariant and
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thus a boost would not modify them, we now have the dampening term, which transforms non-

trivially. After the boost, the dampening gets an additional contribution proportional to the

angular velocity, which can switch the sign of the dampening term, thus causing an exponential

growth.

While the above heuristic method shows us that some modes will go superradiant, a more

rigorous treatment of the problem is to explicitly compute the quasi-normal modes of fields in

the Kerr-AdS background [2]. While the explicit calculation for a generic Kerr-AdS background

is too complex, it becomes viable once we consider the case of a small, slowly rotating black

hole. This way, we split the problem in two: the quasi-normal modes in the near-horizon region

are the usual ones for a Kerr black hole; the modes far away from the horizon are almost the

empty AdS ones. The two solutions must match in the intermediate region, not too close to the

horizon and not too far away, allowing us to extract the quasi-normal modes. The result is that

a Kerr-AdS black hole is unstable if its angular velocity satisfies Ω > 1, i.e. if it rotates fast

enough. Therefore, all the black holes between the onset of the instabilities at Ω = 1 and the

extremality bound for black holes are unstable. We will review the Zel’dovich heuristic argument

and the quasi-normal modes computation in section 2.

After establishing that black holes with Ω > 1 are unstable and thus decay, the question

becomes to find the endpoints of such decays. The main tool that we will use in all our calcu-

lations is the AdS/CFT correspondence. The AdS/CFT correspondence is a much-studied and

widely accepted conjectured duality between a D-dimensional theory of gravity with a negative

cosmological constant — i.e. gravity in AdSD — and a dual Conformal Field Theory (CFT) in

D − 1 dimensions living on the conformal boundary of the AdSD (i.e. at spatial infinity). In

particular, this is a weak-strong duality, meaning that as the gravity becomes weakly coupled

the CFT becomes strongly coupled (and vice versa). The AdS/CFT was first proposed in the

context of string theory, by considering stacks of D-branes in the decoupling limit [3]; however,

it is generically expected that any theory of gravity on AdSD admits a dual CFT on its (D−1)-

dimensional boundary, however complex this CFT might be. Some evidence supporting this

claim comes from comparing the symmetries of the two systems: the isometry group SO(d, 2) of

AdS acts on the conformal boundary as conformal transformations, and indeed SO(d, 2) is also

the conformal group in D−1 dimensions. Additionally, one can show that the 2-point functions

of the CFT agree with the boundary-to-boundary 2-point functions of fields in the bulk, where

the operators have the same spins and the conformal dimension in the CFT is related to the

mass of the bulk field and the dimension of the spacetime. In particular, the 2-point functions in

the bulk are constructed both using normalizable and non-normalizable modes (the latter blow-

ing up at some point in the spacetime): normalizable modes are mapped to states in the CFT,

while non-normalizable modes are mapped to the operators in the CFT, which can be thought

as sources for the bulk fields [4]. Notice that the issue of superradiant instabilities and their

interpretation in the dual CFT has raised many questions since the early days of holography,

see e.g. [5].
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Coming back to the endpoints, we need to find some new stable solutions that cover at least,

in the E − J phase diagram of Kerr-AdS, the whole region between the1 Ω = 1 line down to

the extremality line. However, the AdS/CFT correspondence suggests that these new solutions

might actually cover a much bigger region. From the CFT point of view, there is no trace of the

extremality bound; the only limit on states is instead the unitarity bound E ≥ J , which is much

weaker than extremality. In a generic CFT we should expect states down the unitarity bound;

this seem in tension with the fact that there are no gravitational solutions (even unstable) below

the extremality bound. We can therefore hope (and we will in fact show) that the new endpoints

will actually solve this tension, providing gravitational states below the extremality bound and

down to the unitarity bound.

As for actual endpoints, we will focus in section 3 on three candidates: black resonators,

Revolving Black Holes (RBHs) and Grey Galaxies (GGs). The first proposed endpoints were

the black resonators [6]. They are built by placing a black hole inside a geon or a boson star.

Geons and boson stars are non-linear generalizations of normal modes for the gravitational

field and a scalar field respectively; they are essentially solitons kept together by the confining

effect of AdS. The idea then is that, as a mode goes superradiant and grows, one is left by

a “combination” of such mode (which becomes solitonic as it grows) and the black hole; in

particular, the resulting solution is left with the single helicoidal Killing vector ∂t + Ω∂φ. It

turns out however that such solutions are still unstable [7], and thus they cannot be the actual

endpoints of the instabilities. Nevertheless, they could still be intermediate, metastable steps in

the decay.

RBHs and GGs have been instead proposed both in [8]. They share the same common idea:

take away some of the energy and angular momentum from the black hole and “store it” into

some other degrees of freedom outside the horizon, such that the angular velocity of the original

black hole is brought down to Ω = 1. The difference between RBHs and GGs is then the choice

of degrees of freedom in which to store the energy. RBHs are built by taking a black hole and

setting its center of mass in motion, spinning around the center of AdS. In the semiclassical

limit, a black hole can be seen as a spinning, heavy geodesic. One can then change a geodesic into

another one by simply applying an isometry of the background; at the infinitesimal level, this

means shifting the center of mass along the Killing vectors of AdS, i.e. exciting one of the black

hole normal modes. The normal modes contribute to the one-loop determinant of the black hole;

however, the key insight of RBHs is that one of the normal mode (with ∆E = ∆J = 1) gives a

divergent contribution as Ω → 1. Therefore, this mode becomes populated at the macroscopic

level, meaning that the black hole actually starts to rotate around the center of AdS.

GGs instead are built on the observation that the modes that become superradiant are

actually really large angular momentum modes; due to the large angular momentum, they live

1 Note that we always consider the microcanonical ensemble when constructing the E− J phase diagram, that
is Ω = Ω(E, J).
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really far away from the black hole itself and therefore their interaction with the black hole is

essentially negligible. Therefore, GGs are built by considering a Kerr-AdS black hole and a

cloud of large angular momentum mode in empty AdS in thermal equilibrium. It turns out

that the cloud contribution to the partition function diverge as Ω → 1 and thus a macroscopic

amount of energy and angular momentum — with once again ∆E = ∆J — can be stored in the

gas of modes. It turns out that GGs have a higher entropy than RBHs, and thus they dominate

in the thermodynamic limit; additionally, since the black hole at their center has Ω = 1, they

are stable. Finally, both RBHs and GGs exist down to the unitarity bound, thus extending the

gravitational E − J phase diagram and solving the tension with the prediction from the CFT

point of view.

Finally, notice that in the constructions of RBHs and GGs the crucial step is respectively

to compute the one-loop determinant due to the normal modes and the partition function of

the large angular momentum modes. In both cases, to simplify our calculations we employ the

AdS/CFT correspondence, and perform the computations on the CFT side. In particular, the

normal modes contribution to the partition function is obtained by starting with an ensemble

of primary states with energy E and angular momentum J — i.e. the states corresponding to

the Kerr-AdS black hole in the semiclassical limit — and acting with the conformal generators,

which are simply the infinitesimal isometries of AdS. As for the partition function of the gas

of large angular momentum modes, we instead use the fact that the normalizable modes in

empty AdS are mapped to the states in the CFT, themselves mapped to operators in the CFT

using the operator-state correspondence. In particular, the single-particle Hilbert space of a

certain field is (essentially by definition) an irreducible representation of the isometry group

of AdS; this group is simply the conformal group, whose irreducible representations are just

the conformal families built by acting with derivatives on primaries. Therefore, computing the

partition function of such modes is reduced to simply labeling all the descendants that can be

built by starting from an operator in the CFT and by acting with derivatives. Holography and

the AdS/CFT correspondence thus prove to be essential to simplify the construction of these

new solutions. Although holography do not directly provide the explicit form of the solutions

— which would require much more work — it is a valuable tool to obtain important physical

information about the solutions in a relatively simple way, while also offering a radically new

view on the gravitational phenomena under study.

2 Superradiant instabilities of Kerr-AdS

2.1 Black hole superradiance

The superradiant instabilities in Kerr-AdS come from the interaction between two well known

physical phenomena related to rotating black holes and AdS space: the former is black hole

superradiance and the latter is the fact that AdS space acts like a gravitational “box”. Let us

first focus on black hole superradiance. The idea behind black hole superradiance is essentially
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to generalize the Penrose process from particles to waves scattering with the black holes. Via the

Penrose process, a body can enter into the ergosphere of a rotating black hole, eject some mass

into the black hole and then come out with more energy than it started, effectively extracting

energy and angular momentum from the rotating black hole. This is possible because the energy

at spatial infinity is measured with respect to the timelike Killing vector ∂t; this vector turns

spacelike inside the ergosphere, making the energy of worldlines inside it negative. However, the

actual black hole horizon is the surface at which the vector field ∂t+Ω∂φ becomes null, and such

surface lies inside the ergosphere. Thus, while in the ergosphere everything is forced to rotate

in the same direction of the black hole, objects are still allowed to escape.

The way to generalize the Penrose process to waves has been first discussed by Zel’dovich

in [1]; in this section we will review his heuristic argument, and integrate it with knowledge of

the AdS normal modes in order to figure out which Kerr-AdS black holes are stable and which

suffer from superradiant instabilities. Suppose for simplicity that we are studying the behavior

of waves for a scalar field Φ subject to the usual Klein–Gordon wave equation:

□Φ−m2Φ = 0 . (2.1)

We now wish to find a way to include the effect of the black hole on the scalar field without

actually having to solve the above equation in the black hole background, find the modes of Φ,

quantize them and pick the appropriate vacuum. Zel’dovich’s idea is to approximate the black

hole as a rotating body that absorbs radiation; we assume that the rotating body has radius rBH

and angular velocity Ω. Let us first turn off the angular velocity, so that we are just left with

a static body that absorbs radiation. Near the surface of the body, we can effectively describe

the absorption of waves falling behind the horizon by introducing a dampening coefficient α ≥ 0

and modifying the wave equation (2.1) as follows:

□Φ+ α
∂Φ

∂t
−m2Φ = 0 . (2.2)

Notice that this is exactly the same as adding a dampening to a harmonic oscillator. If we

now switch back on the rotation, setting Ω ≥ 0, (2.2) will still be valid near the surface of the

body, in a reference frame comoving with the surface itself. In order to go back to the static

frame of an observer looking at the black hole from infinity, we just need to perform a Lorentz

transformation. Let us assume without loss of generality that we are near a point of the horizon

moving in the x direction at a speed v = ΩrBH. Since the □ is already Lorentz invariant, we

just need to Lorentz transform the dampening term, obtaining:

□′Φ+ αγ
(︁
∂′
t +ΩrBH∂

′
x

)︁
Φ−m2Φ = 0 , (2.3)

where the ′ denote the static reference frame coordinates and γ = 1/
√︂
1− Ω2r2BH.
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We now look for a cylindrical solution at infinity of the form

Φω,lz ∼ ei(ωt
′−lzφ) = ei(ωt

′−lz arctan (y′/x′)) , (2.4)

with φ′ the polar angle in the x′y′ plane, lz the angular momentum of the mode and ω its energy.

Plugging the above ansatz and zooming near the horizon (setting x′ ∼ 0, y′ ∼ −rBH, so that we

are at the point moving in the x′ direction) into (2.3), the dampening term becomes:

αγ
(︁
∂′
t +ΩrBH∂

′
x

)︁
Φω,lz = αγi (ω − Ωlz) Φω,lz . (2.5)

Therefore, we see that if the condition

Ω >
ω

lz
(2.6)

is satisfied, the dampening term changes sign and becomes an enhancing term. This means that

the mode scattering with the rotating black hole comes out with a bigger amplitude than it had

coming in; this phenomenon is called superradiance.

The above discussion covers the first half of the physics of superradiant instabilities in Kerr-

AdS, the phenomenon of black hole superradiance. The fact that we can throw a wave in a

black hole and get a bigger wave back suggests a way to trigger an instability for the system

[9]: if we can manage to reflect the wave once again back to the black hole with a “mirror”,

the wave can become bigger and bigger in amplitude without stopping, rendering the whole

system unstable. General Relativity gives us a really natural mirror to consider: Anti-de Sitter

space (AdS). It is in fact well known that AdS space acts like a gravitational box, such that

massive particles with finite energy cannot reach the conformal boundary at spatial infinity. We

can see this by using the conservation of the Killing energy E = p0/z2 in Poincaré coordinates

ds2 = (−dt2 + dz2 + . . . )/z2; for a finite initial energy, this implies p0 ∼ z2 near the boundary.

For a generic particle, we have

pµp
µ = p0p0 + pipi ≥ g00

(︁
p0
)︁2 ∼ z2 . (2.7)

At the conformal boundary, z = 0 and hence pµp
µ ≥ 0; therefore, no massive particle can reach

the conformal boundary, and must then be reflected back to the center of AdS. In other words,

the particle sees a “confining potential” that grows as it gets closer to the conformal boundary.

Let us now take a black hole and put it inside AdS, starting from a non-rotating Schwarzschild

black hole. In flat space, due to Hawking radiation, we expect the Schwarzschild black hole to

slowly radiate away, as more and more energy is carried away by the Hawking quanta. In AdS,

however, the Hawking quanta are reflected back by the AdS wall, and thus fall back into the

black hole; therefore there is a dynamic equilibrium of the Schwarzschild black hole with a

cloud of Hawking quanta, contrary to what happens in flat space. Notice that this cloud, for

non-superradiant black holes, carries negligible energy with respect to the black hole; hence we
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do not need to worry about backreaction and the Schwarzschild-AdS metric (obtained without

accounting for this cloud) is still a good approximation of the real spacetime. If we now take

a Kerr black hole and put it inside AdS, we should once again expect the Hawking quanta to

form a cloud around the black hole; however, if some of them satisfy the superradiant condition

(2.6), they will become more and more energetic, triggering a superradiant instability in the

Kerr-AdS spacetime.

To find wether a black hole is stable or not, we need to find the ω and lz of all of its modes

and check whether there exist at least one mode satisfying (2.6). In particular, since we want to

find the weakest condition possible on Ω, we should minimize the right hand side of (2.6). This

suggest that we should focus on large lz modes, for which the denominator on the right hand

side is big. Modes with a large angular momentum mostly live really far away from the center

of AdS, and are thus just weakly coupled to the black hole. They will therefore be essentially

the same as the large lz modes of empty AdS. Focusing for simplicity on the case of a massless

scalar in empty AdS, we will show in section 2.2 that for such a field:

ω0 = 3 + 2n+ l , (2.8)

where n ∈ N+ is additional parameter labeling the modes, l is the total angular momentum of

the mode and we added the subscript 0 to emphasize that it is the frequency in empty AdS. In

particular, the black hole will begin to be unstable if any mode saturates the inequality (2.6):

Ω >
ω0

lz
=

3 + 2n+ l

lz
. (2.9)

This first happens when Ω becomes bigger than the lowest possible value of the right hand side

of the above equation. To achieve the lowest value, we can first off set n = 0. Then, since

|lz| ≤ l, we set lz = l; finally, we send l → +∞ to get rid of the 3. Therefore, a Kerr–AdS black

hole will suffer from superradiant instabilities if:

Ω > lim
l→+∞

[︃
3 + 2n+ l

lz

]︃⃓⃓⃓⃓
n=0, lz=l

= 1 . (2.10)

2.2 Quasi-normal modes

While in section 2.1 we discussed a heuristic description of superradiant instabilities in Kerr-

AdS, it would be nice if we could make our intuition more precise with some explicit computa-

tions. In this section, we will thus review the computation of quasi-normal modes in Kerr-AdS

following [2]. To find the frequency ω of the quasi-normal modes we need to solve the wave

equation for fields in the Kerr-AdS background. If we take the time dependence of the modes

to be Φ ∼ e−iωt , we see that if Im(ω) < 0 the mode is dampened in time, due to part of the

wave falling into the black hole. If however we can find some modes for which Im(ω) > 0, these

modes grow in time and thus signal the superradiant instability of the system. To make our
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life easier, we will focus in what follows on the quasi-normal modes of a scalar field Φ in the

4D background of Kerr-AdS4. Additionally, we set the AdS length ℓAdS = 1; it can later be

reintroduced by dimensional analysis.

The Kerr-AdS spacetime is a vacuum solution of Einstein’s equations with negative cosmo-

logical constant. The metric is as follows [10]:

ds2 = −∆r

ρ2

(︂
dt− a

Σ
sin2 θdφ

)︂2
+

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ

ρ2
sin2 θ

(︃
a dt− r2 + a2

Σ
dφ

)︃2

, (2.11)

with

∆r = (r2 + a2)
(︁
1 + r2

)︁
− 2mr , Σ = 1− a2 ,

∆θ = 1− a2 cos2 θ , ρ2 = r2 + a2 cos2 θ .
(2.12)

The range of m and a, which parameterize all the possible solutions, are limited as follows.

To avoid unphysical behaviors of the metric (such as the θ coordinate changing signature), we

should impose ∆θ ≥ 0 and thus 0 ≤ a ≤ 1. If we now look at the horizons of the solutions, the

outer horizon is located at r = r+, with r+ denoting the largest root of the equation ∆r(r+) = 0.

The black hole reaches extremality when ∆r has a double root at the outer horizon r+|extr, i.e.
when ∂r∆r(r+|extr) = 0. If r+ < r+|extr, naked singularities appear in the solutions; imposing

r+ ≥ r+|extr by solving the two equations explicitly yields:

r2+ ≥ 1

6

(︂√︁
1 + 14a2 + a4 − 1− a2

)︂
. (2.13)

The extensive quantities characterizing the thermodynamics of the black hole, that is the

energy E, the angular momentum J and the entropy S, are expressed in terms of the parameters

a and m as follows [11]:

E =
1

GN

m

(1− a2)2
, J =

1

GN

ma

(1− a2)2
, S =

π
(︁
r2+ + a2

)︁
GN (1− a2)

. (2.14)

The intensive quantities corresponding to E and J , namely the (inverse) temperature β and the

angular velocity Ω (with respect to a non-rotating frame at infinity2), are given by:

β =
4π
(︁
r2+ + a2

)︁
r+
(︁
1 + a2 + 3r2+ − a2/r2+

)︁ , Ω =
a
(︁
1 + r2+

)︁
r2+ + a2

. (2.15)

Let us now attempt to solve for the quasi-normal modes of a scalar field Φ in the Kerr-AdS

2 As noted in [11], in the literature other slightly different definitions of Ω have appeared; these measure the
angular velocity with respect to rotating frames at infinity. However, while some choices (coupled with a different
definition of E) can still satisfy the Quantum Statistical Relation [12], only the choices of (2.14) and (2.15) satisfy
the first law of thermodynamics.
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background (2.11); let us also assume that the scalar field is massless, so that the wave equation

is simply the Klein–Gordon equation:

□Φ =
1√
−g

∂µ
(︁√

−ggµν∂νΦ
)︁
= 0 . (2.16)

Kerr-AdS is stationary and axisymmetric; this suggests that a good way to solve the above

equation is to split:

Φ (t, r, θ, φ) = e−iωt+ilzφ ˜︁Yllz(θ)R(r) . (2.17)

Here ω is the frequency of the mode and lz its angular momentum along the axis of rotation.

We then introduce the function ˜︁Yllz(θ) as generalized spherical harmonics in Kerr-AdS, with

an additional parameter l in analogy to the total angular momentum of the usual spherical

harmonics. Finally, the radial dependence of the wave function is captured by the function

R(r). If we now take the ansatz (2.17) and plug it into the Klein–Gordon equation, we can solve

the equation by separating the variables, obtaining [2]:

∆θ

sin θ

(︂
∆θ sin θ∂θ ˜︁Yllz(θ))︂+ (︃a2ω2 cos2 θ − l2zΣ

2

sin2 θ
+Allz∆θ

)︃ ˜︁Yllz(θ) = 0 ,

∆r∂r (∆r∂rR(r)) +
[︁
ω2(r2 + a2)2 − 2malzωr + a2l2z −∆r

(︁
a2ω2 +Allz

)︁]︁
R(r) = 0 ,

(2.18)

where Allz is the separation constant, i.e. the eigenvalue of the angular part of the equation

needed to separate the variables.

Additionally, we need to decide which boundary conditions to impose on the scalar field at

infinity (r → +∞) and at the horizon (r → r+). Starting from the former, since AdS acts as

reflecting box and we are not considering any sources at infinity, we should simply set:

Φ
r→+∞−−−−→ 0 . (2.19)

As for r → r+, we generically find both ingoing and outgoing modes. However, since we are not

interested in Hawking radiation and we are just looking for modes that are (partially) falling

into the black hole, we will keep just the ingoing modes. More explicitly, we can switch to

tortoise coordinates r∗ — satisfying dr∗/dr = (r2 + a2)/∆r — to “straighten” the light rays at

the horizon and then impose that the scalar field behaves as follows [2]:

Φ
r∗→−∞−−−−−→ e−iωt−i(ω−lzΩ)r∗ . (2.20)

Trying to solve (2.18) analytically is practically an impossible task. In order to get some

analytical results we will therefore need a few simplifying assumptions. We will assume the

following:

• m ≪ 1/ω, that is the mode wavelength is much larger than the size of the black hole;
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• m ≪ ℓAdS = 1, i.e. we have a small black hole with respect to the AdS radius;

these two approximations combined then give us a hierarchy of scales m ≪ 1 ≪ 1/ω. Addition-

ally, to simplify matter further, we also require:

• a ≪ m and a ≪ ℓAdS = 1, that is the black hole is slowly rotating.

The idea behind these approximations is to solve (2.18) in two different regimes: a near-horizon

region such that r − r+ ≪ 1/ω and a far-away region with r − r+ ≫ m. In the near-horizon

region, since the black hole is small, we are approximately in flat space and we can “forget”

that we are in AdS; hence we are just left with the simpler task of finding the solution of the

Klein–Gordon equation in the background of a Kerr black hole, rather than a Kerr-AdS one; the

scalar modes in the Kerr background can for example be found in [13]. In the far-away region,

instead, the effect of the black hole is negligible — since once again the black hole is small —

and thus the problem simplify to finding the scalar modes in empty AdS, which are also well

known [4]. The trick is then to consider the “intermediate” region where m ≪ r − r+ ≪ 1/ω:

here both approximations are valid, and therefore we can match the two solutions. It is precisely

this matching that allows us to extract the value of the frequencies ω. Finally, the slow rotation

approximation allows us to simplify the angular equation in (2.18); in particular, it turns out

that for a ≪ 1 and aω ≪ 1 the separation constant Allz becomes the more “traditional”:

Allz = l(l + 1) +O(a2, a2ω2) . (2.21)

Let us now solve (2.18) in the near-horizon region. First off, we can neglect the presence of

the cosmological constant, and thus consider a Kerr background. Then, due to the slow rotation,

ωa2 ∼ 0, a ≪ m and r ∼ r+ ∼ m. The radial part of (2.18) becomes3:

∆∂r (∆∂rR(r)) + r4+(ω − lzΩ)
2R(r)− l(l + 1)∆R(r) = 0 , (2.22)

where

∆ = r2 + a2 − 2mr . (2.23)

To solve the above equation, one needs to perform the change of variables

z =
r − r+
r − r−

, R(r) = ziϖ (1− z)l+1 F (z) , (2.24)

3 Notice that technically the Ω that appears in [2] is actually different from the Ω defined in (2.15) that we use
in this work and that is used in [8]. This is exactly because, as explained in the footnote 2, one can measure Ω
with respect to different rotating frames. In particular, [2] extract the angular velocity from the periodicity of the
φ coordinate; in the coordinate system (2.11) this angular velocity is however measured with respect to a rotating
frame at infinity [14]. In [8] the angular velocity is instead obtained by subtracting off the rotation at infinity, so
that the frame at infinity is static. This might prompt some confusion on which Ω should appear in the Ω > 1
condition obtained from the analysis of the quasi-normal modes. However, in the small, slowly rotating black hole
limit the two definitions are equivalent; (2.22) thus holds true in this approximation with both definitions of Ω,
and we will therefore stick with the definition used in [8] rather then the one used in [2].
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where we introduce the superradiant factor

ϖ ≡ (ω − lzΩ)
r2+

r+ − r−
, (2.25)

where r− is the inner horizon radius. This way (2.22) turns into the differential equation

satisfied by the standard hypergeometric function 2F 1. After imposing the appropriate boundary

conditions (no outgoing flux at the horizon), one can then expand for large radius (i.e. for r the

“intermediate” region), obtaining the solution [2]:

R(r) ∼ Γ(1− 2iϖ)

[︄
Γ(2l + 1)

Γ(l + 1)Γ(l + 1− 2iϖ)

rl

(r+ − r−)
l
+

Γ(−2l − 1)

Γ(−l)Γ(−l − 2iϖ)

(r+ − r−)
l+1

rl+1

]︄
.

(2.26)

Focusing now on the far-away region, we can simply forget about the presence of the small

black hole — setting a ∼ m ∼ 0 — and solve (2.18) in the background of empty AdS. The

radial equation this time becomes:

(︁
r2 + 1

)︁
∂2
rrR(r) + 2

(︃
2r +

1

r

)︃
∂rR(r) +

(︃
ω2

1 + r2
− l(l + 1)

r2

)︃
R(r) = 0 , (2.27)

and it can be once again casted as a standard hypergeometric differential equation via the change

of variables:

x = 1 + r2 , R(r) = xω/2 (1− x)1/2 F (x) . (2.28)

It is well known that there are two types of solutions to the Klein–Gordon equation in AdS:

normalizable and non-normalizable modes. In AdS/CFT, the former corresponds to states in

the CFT, while the latter correspond to the insertion of operators in the CFT, which act as

sources for the scalar field at the conformal boundary [4]. Since here we are interested only in

solutions that go to zero at infinity (AdS acts as a box), we should just keep the normalizable

modes4. This time we can explicitly write down R(r) in the intermediate region by taking r to

be small, obtaining:

R(r) ∼

[︄
(−1)l/2Γ(−l − 1

2)

Γ
(︁
2−l−ω

2

)︁
Γ
(︁
2−l+ω

2

)︁rl + (−1)−3l/2Γ(l + 1
2)

Γ
(︁
3+l+ω

2

)︁
Γ
(︁
3+l−ω

2

)︁ 1

rl+1

]︄
. (2.29)

Now, if we were in empty AdS, the above expression would show us that, for a generic ω, there

is a divergence of the mode as r → 0. To get a physically sensible result with no divergence, we

should therefore require one of the two Γ functions in the denominator to be infinite; this can

4 As we reach the boundary z → 0 of AdSD, a scalar field behaves as Φ(z) ∼ Φnormz∆ + Φnonz
D−1−∆, where

∆ (a function of D and the mass) is the dimension of the corresponding CFT primary operator. If the field is
massless, ∆ = D − 1. Hence the non-normalizable modes becomes constant on the boundary.
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be achieved by setting5:

ω = 3 + 2n+ l . (2.30)

In the AdS/CFT context, the above condition is simply telling us that the normalizable modes

of the massless scalar are in one-to-one correspondence with the descendants of a scalar primary

of scaling dimension ∆ = 3 [4]. In the case at hand, however, we are not in empty AdS, but

there is a small black hole with radius r = r+ ≪ 1. Therefore, we can assume that the relation

(2.30) gets slightly perturbed to:

ω = ω0 + iδ = 3 + 2n+ l + iδ , (2.31)

where ω0 = 3+2n+ l is the empty AdS frequency and δ ≪ 1. Notice that we chose δ such that

it contributes to the imaginary part of ω. This is because, due to the presence of the black hole,

part of the wave will be absorbed (or amplified if there is superradiance), thus changing the

amplitude of the wave (2.17). In particular, if δ < 0 the amplitude will decrease exponentially

in time (i.e. the wave falls into the black hole), while if δ > 0 the amplitude grows exponentially

in time, signaling the onset of superradiant instabilities.

To find δ, we can now proceed as follows. First, we Taylor expand (2.29) for δ ≪ 1, obtaining:

R(r) ∼

[︄
(−1)l/2Γ(−l − 1

2)

Γ
(︁
−1

2 − l − n
)︁
Γ
(︁
5
2 + n

)︁rl + iδ
(−1)−3l/2+n+1n! Γ(l + 1

2)

2 (2 + l + n)!

1

rl+1

]︄
. (2.32)

If we now focus on the intermediate region where m ≪ r − r+ ≪ 1/ω, both the near-horizon

solution (2.26) and the far-away solution above are valid at the same time. By direct comparison

of the two expressions, we can finally obtain δ as a function of δ(l, n; r+, r−, a). The full analytic

expression for δ is not particularly illuminating, so it will not be reported here (see [2] for more

details). For our purposes, it is enough to know that

δ ∼ lzΩ− (3 + 2n+ l) = lzΩ− ω0 , (2.33)

up to a positive proportionality constant. Hence, the condition δ > 0 for superradiant instabili-

ties becomes

Ω >
ω0

lz
=

3 + 2n+ l

lz
, (2.34)

which coincides with the heuristic estimates (2.9). Taking large angular momentum modes,

we therefore recover the condition Ω > 1 (see (2.10)) for the superradiant instabilities. Notice

that while the above calculation focus on the quasi-normal modes of a scalar field, the same

conclusion is expected to hold also for fields with spin [2]; since the Kerr-AdS solution appears

within a theory with at least a graviton, all Kerr-AdS black holes with Ω > 1 in any theory will

be unstable.

5 We could also set ω = −(3 + 2n+ l), though here we focus only on the positive frequencies.
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Additionally notice that the condition Ω = 1 is saturated at r2+ = a; comparing with (2.13),

we have a ≥ r2+
⃓⃓
extr

, and thus the Ω ≥ 1 bound is always saturated before the extremality

bound. Therefore, in the energy-angular momentum (E − J) phase diagram of Kerr-AdS, if we

start from a black hole with Ω(E, J) = 1, all the black holes with a lower mass E down to the

extremality limit will be unstable. The E − J phase diagram is reported below:

Figure 1: E − J phase diagram of Kerr-AdS, in units of GN .

While (2.10) does not tell us what happens to an unstable black hole — i.e. what is the

endpoint of the instability — it suggests a way we could build such endpoints. In particular,

since a black hole is unstable for Ω > 1, we can imagine that the black hole will “shed” some of

its energy and angular momentum until it reaches the value Ω = 1. These additional energy and

angular momentum will then have to be stored in some additional degrees of freedom outside

the horizon. As we will discuss in section 3, this is indeed a way to construct some possible

endpoints, with the extra energy and momentum stored either in the motion of the black hole

center of mass (for the Revolving Black Boles of section 3.2) or in a thermal gas of particles

surrounding the black hole (for the Grey Galaxies of section 3.3).

2.3 An AdS/CFT argument

In the two previous sections we have reviewed some aspects of superradiant instabilities in

Kerr-AdS. While we have yet to discuss what exactly are the endpoints of these instabilities,

we can expect them to be new solutions of the Einstein’s equations in AdS. In particular these

solutions must for sure replace the Kerr-AdS black holes in the E−J phase diagram between the

Ω = 1 line (i.e. when instabilities appear) and the extremality bound of the black hole. However,

nothing forbids these new solutions to enlarge the E− J phase diagram beyond the extremality

bound. From a holographic perspective the only bound for states in the E−J phase diagram is

the unitarity bound, while there is apparently no sign of the extremality bound. This suggests

that the new endpoints of the superradiant instabilities might not only replace the Kerr-AdS
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solution between the Ω = 1 instability onset to the extremality bound, but additionally be valid

solutions down to the unitarity bound E = J [8]. We will now review how the unitarity bound

is obtained for a CFT following [15].

The AdS/CFT correspondence states that a theory of quantum gravity on AdSD is equivalent

to a CFTD−1 living on its conformal boundary; this is an example of strong/weak duality, since

the gravitational theory is weakly coupled when the CFT is strongly coupled (and vice versa). In

particular, there is a one-to-one mapping between the states of the gravitational theory and the

states of the CFT, which themselves are in one-to-one correspondence with the local operators of

the CFT itself. Let us now consider a Kerr-AdS black hole with mass E and angular momentum

J . From the Bekenstein–Hawking area law, we know that the black hole carries an entropy and

should therefore be thought as a huge ensemble of microstates. From the CFT point of view, the

black hole should then correspond to an ensemble of states with roughly conformal dimension

E and z component of the spin J . Note that here “roughly” means that the spacing between

the conformal dimensions of the states has to be small enough so that in the gravitational

theory at the semiclassical level they cannot be distinguished, thus reproducing the degeneracy

of microstates captured by the area law. In other words, since quantum gravity effects kick in

at energy ∼ Mpl, the spacing between the energy levels should be ≲ Mpl.

We can now ask ourselves for which values of E and J we expect states in the CFT to

exist. In a generic CFT, the only requirement comes from unitarity. We will work in Euclidean

signature, and we are thus free to pass to radial quantization. In radial quantization, the CFT

lives on R3, but time evolves in an unusual manner: the CFT states live on spheres S2, which

time evolve outward from the center of R3 (corresponding to past infinity). The main advantage

of radial quantization is the operator-state correspondence. Since any state can be brought to

past infinity and thus live just at the origin of R3, any state can be obtained by acting on the

CFT vacuum with a local operator at the origin. This establishes a correspondence between

states and local operators, allowing us to work in either of the two perspectives depending on

the situation.

Let us then consider an in-state |E, J⟩{s} ≡ OE,J{s}(0) |0⟩, where OE,J{s}(0) is a primary with

conformal dimension E and spin J > 0. Here the subscript {s} denotes the explicit tensor indices

ofOE,J{s}, which is an operator with spin; we will suppress these indices for clarity when possible.

To define the norm of the state, we first need to define the out-state ⟨E, J | = ⟨0| [OE,J(0)]
†

living at infinity, or in other words the Hermitian conjugate, which is a non-trivial task in radial

quantization. For a primary scalar field O, the conjugate is defined as [15]

[OE,J(0)]
† ≡ lim

|x|→0
|x|−2EOE,J(R(x)) , (2.35)

with R the spatial inversion operator sending the radius |x| → 1/|x| and the additional factor

of |x|−2E needed to normalize ⟨E, J |E, J⟩ = 1.
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To find the unitarity bound, notice first that under the radial quantization inner product

P †
µ = Kµ, where Pµ and Kµ are respectively the generators of translations and special confor-

mal transformations. Additionally, we have that [Kµ, Pν ] = 2i (∆δµν −Mµν), where ∆ is the

generator of scaling transformations and Mµν are the generators of6 SO(D − 1). Let us now

consider the matrix of expectation values:

Aµν ≡ 1

2 {s}⟨E, J |[Pµ,Kν ] |E, J⟩{s} , (2.36)

where {s} denotes explicitly the spin indices of the operator (that we previously suppressed for

better readability). Due to P †
µ = Kµ, unitarity implies that A = A†, and hence that this matrix

is positive definite A ≥ 0, i.e. it has only eigenvalues λ ≥ 0. We then rewrite

Aµν = i {s}⟨E, J |∆δµν −Mµν |E, J⟩{s} = Eδµν − δ{s}{t}
(︁
ΣJ
µν

)︁
{s}{t} , (2.37)

where ΣJ
µν is the finite-dimensional spin J representation of the generator Mµν of SO(D − 1).

The unitarity condition then becomes

E ≥ δ{s}{t}
(︁
ΣJ
µν

)︁
{s}{t} . (2.38)

For simplicity, let us focus on the case of a CFT3, relevant for AdS4. Since in
(︁
ΣJ
µν

)︁
{s}{s} both

µ, ν are fixed it is convenient to rewrite it as7:

(︁
ΣJ
µν

)︁
{s}{t} =

1

2

(︁
δρµδ

σ
ν − δρνδ

σ
µ

)︁ (︁
ΣJ
ρσ

)︁
{s}{t} = −1

2

(︁
Σ1
µν

)︁ρσ (︁
ΣJ
ρσ

)︁
{s}{t}

=− 1

2

(︁
Σ1
ρσ

)︁µν (︁
ΣJ
ρσ

)︁
{s}{t} ,

(2.39)

where we use the explicit form of the spin 1 generators. Using the fact that in D − 1 = 3 we

can dualize the antisymmetric rotation generators to the usual angular momentum vector —

e.g. Mµν = ϵµνρM
ρ — we can further rewrite:

(︁
ΣJ
µν

)︁
{s}{t} = −

(︁
Σ1
α

)︁µν (︁
ΣJ
α

)︁
{s}{t} . (2.40)

Since Σ1
α and ΣJ

α are just three dimensional angular momentum operators, we can simply use

the well known quantum mechanical rules for adding angular momenta:

−L⃗ · S⃗ =
1

2

(︃
L⃗
2
+ S⃗

2 −
(︂
L⃗+ S⃗

)︂2)︃
, (2.41)

where we identify L⃗ → Σ1
α and S⃗ → ΣJ

α. Since L⃗ and S⃗ are respectively a spin 1 and spin J

6 Since in this work we use D to denote the dimension of AdSD, we will take the dimension of the CFT
spacetime to be D − 1.

7 Since we are working in radial quantization and hence Euclidean signature, we are not being too careful with
the position of the indices.
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representation, we can decompose L⃗+ S⃗ into a 1⊗J = (J +1)⊕J ⊕ (J −1) spin representation.

Hence, since our aim is to maximize −L⃗ · S⃗, we should just pick the spin J − 1 for the L⃗ + S⃗

operator, obtaining:

(︁
ΣJ
µν

)︁
{s}{t} ≥

1

2
(J(J + 1) + 2− (J − 1)J) = J + 1 . (2.42)

Therefore, unitarity of the boundary CFT3 constrains the states of the gravitational theory on

AdS to obey:

E ≥ J + 1 . (2.43)

Notice that, for other values of the dimensionD−1 and different representations under SO(D−1)

(still with J > 0), the above bound still applies up to terms of order O(D − 1) (which are

negligible for black hole states with macroscopic E and J). Finally, notice that in principle

we could repeat the same reasoning by modifying (2.36) and adding more operators in the

expectation value. However, it turns out that higher levels do not provide stronger bounds for

J ≥ 1, while in the spin J = 0, 1/2 case only the second level is needed [15].

Therefore, starting from a gravitational theory dual to a generic CFT we would expect that

there would be states for all values of E ≥ J , where we ignore from here on the order O(1) term.

However, if we look at (2.14), we see that for a generic Kerr-AdS black hole:

E =
1

a
J . (2.44)

For a fixed E and J , the parameter a is a function a = a(E, J) in the range 0 ≤ a ≤ 1. The

maximum aextr = 1 of this function is achieved when the black hole is extremal. Additionally,

aextr = 1 only when J = 0, i.e. the black hole is not rotating. Therefore, in the whole phase-space

region

J ≤ E ≤ 1

aextr
J , (2.45)

between extremality and the unitary bound, there are no black hole states, despite the fact

that from the CFT point of view there is nothing preventing states in this region. In principle

this fact could be interpreted as a special requirement that a boundary CFT must satisfy in

order to be dual to a gravitational system. However, taking into account the superradiant

instabilities of black holes with Ω > 1, the unitarity bound (2.43) hints at the presence of other

gravitational states — different from Kerr-AdS — that would fill the E−J phase diagram down

to the unitarity bound E = J and that could additionally be the endpoints of the superradiant

instabilities (thus extending up to the Ω = 1 line).

Let us now recap what we learned from the previous sections by plotting once again the E−J

phase diagram of Kerr-AdS, this time taking into account the unitarity bound:
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Figure 2: E−J phase diagram of Kerr-AdS, in units of GN , including the 45° line of the unitary bound.

From the plot we can distinguish three shaded regions. In the green shaded region, the

angular velocity of the black hole is Ω < 1, and hence we are in a phase dominated by stable

Kerr-AdS black holes. If we lower the energy (at fixed J) and we cross the green line of Ω = 1

(obtained via (2.15)), we reach the red shaded region with Ω > 1; here Kerr-AdS solutions

still exist but they suffer from superradiant instabilities. Therefore, some new solutions — the

endpoints of such instabilities — should exist, at least up to extremality. The red line is instead

extremality bound (2.13). Below the extremality bound, Kerr-AdS solutions develop naked

singularities and are thus thought to be unphysical. However, from the point of view of the dual

CFT, nothing forbids some new solutions to exist in this regime (the blue shaded region). The

only hard limit below which we do not expect any solution is the unitary bound (the 45° blue
line), below which the corresponding CFT states would not satisfy the unitarity bound (2.43),

making the gravitational theory non-unitary. As explained in this section, the fact that no black

hole solutions exist below extremality seems at odds with the fact that in a generic CFT we

expect states down to the unitarity bound. In principle, this might be seen as a requirement

on the CFT states for a generic CFT to be dual to a gravitational system. However, we know

that new solutions must exist due to the superradiant instabilities, at least down to extremality.

Therefore, it is not a stretch to conjecture that these gravitational solutions might extend below

the extremality bound and down to the unitarity bound, thus reconciling the existence of states

in a generic CFT below extremality with the gravitational description of the system.
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3 Endpoints of the instability

3.1 Black resonators

After providing evidence for the superradiant instabilities of Kerr-AdS and hints of the pos-

sible solutions in section 2, it is now finally time to discuss the possible endpoints that could

replace such instabilities. We will start now by briefly discussing black resonators following [6],

the first of such proposals.

The idea behind black resonators is to create a “bridge” between the Kerr-AdS solution with

other horizonless solutions of the Einstein equations in AdS, such as boson stars [16, 17] and

geons [18, 19]. Boson stars and geons are essentially non-linear normal modes, i.e. solitonic

solutions of the equations of motion with a certain energy ω and angular momentum lz that are

based once again on the fact that AdS acts as a box, reflecting outgoing waves back to the center.

Therefore, at the non-linear level, it is possible that the fluctuations of any field will collapse

together forming a bound state (possibly without a horizon), instead of escaping to infinity as

usual. In particular, boson stars are built from fluctuations of a massless scalar field, while geons

are solitons of the gravitational field itself. Notice that in both cases — due to the complexity of

solving the equations of motion — the solutions have been constructed analytically only at the

perturbative level, while there are only numerical solutions to the full non-linear problem. A key

feature of both boson stars and geons is that these solutions are neither static nor stationary.

They have only the single helicoidal Killing vector field ∂t+Ω∂φ (while ∂t and ∂φ are not Killing

vector separately), and therefore they are periodically rotating solutions that oscillate with a

fixed frequency. Black resonators [6] are then constructed as solutions with a horizon and the

single helicoidal vector field ∂t+Ω∂φ; in the zero horizon size limit and in the absence of matter,

they reduce to geons. They can be intuitively thought as taking a black hole and putting it at

the core of a geon, such that part of the energy and the angular momentum is stored in the

soliton. Notice that, once again, these solutions have been constructed either perturbatively or

numerically.

The way in which geons can provide an endpoint for the instability of the Kerr-AdS black

holes goes as follows [20]. Let us consider a regular black hole on the onset of the superradiant

instabilities, i.e. when Ω ≳ 1. At that point, a large angular momentum mode with energy

ω = Ωlz goes superradiant, due to (2.34). As the mode grows further, the black hole finds itself

in a Bose condensate of the scalar mode

Φ (t, r, θ, φ) ∼ e−iωt+ilzφ = e−ilz(Ωt−φ) . (3.1)

This mode thus breaks the symmetry of the Kerr-AdS solution under shifts of t and φ, while

preserving the helicoidal Killing vector ∂t+Ω∂φ, the same Killing vector preserved by the geons.

Therefore, it seems reasonable that the black hole with these growing “hair” simply decays to

the corresponding black resonator.
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Finally, we would like to study the thermodynamics of black resonators. While black res-

onators have been mostly constructed numerically and there is therefore no analytical formula

for their entropy, a perturbative computation for low angular momentum l = lz scalar modes

around a small E and J black hole has been performed in [6], yielding:

Sbr = 4πGNE2

[︃
1−

(︃
1 +

1

l

)︃
J

E

]︃2
. (3.2)

However, it turns out that black resonators are themselves unstable [21, 7] since they still have

Ω > 1, and thus they cannot be the true endpoint of the superradiant instabilities. They are

regardless interesting solutions since, while unstable, they can possibly act as an intermediate

step in the decay of the black holes: as the superradiant modes grow, the black hole first

transitions into a state with only a helicoidal Killing vector (the black resonator), which later

settles down into the final endpoint.

3.2 Revolving Black Holes

The two other possible endpoints that we will discuss are Revolving Black Holes (RBHs) and

Grey Galaxies (GGs), which were both introduced in [8]. In both cases, the idea is to “store”

part of the energy and angular momentum of the unstable Ω > 1 black hole in some other

degrees of freedom, in order to reduce the angular velocity of the black hole to Ω = 1. The

chosen degrees of freedom are however very different in the two cases; we will focus here on

RBHs, developing an alternative approach to the one of [8], which follows a similar reasoning

but is completely holographic. We will discuss Grey Galaxies in the next section 3.3.

The idea behind RBHs stems from noticing that Kerr-AdS black holes have a few normal

modes, in addition to the quasi-normal modes associated to infalling waves. We can understand

these modes by looking at the black hole from “far away”, i.e. consider the black hole as a

geodesic of a massive particle with spin sitting at the center of AdS. We can then “kick” the

geodesic by applying AdS isometries, obtaining another black hole solution that is moving on

a non-static geodesic. Since we just applied isometries, we have not excited any of the quasi-

normal modes and there is no way for the new solution to dissipate the energy and angular

momentum stored in its center of mass geodesic motion. Therefore, if we take a Kerr-AdS black

hole and apply an infinitesimal isometry, we have constructed a normal mode of the Kerr-AdS

solution. In order to see how these normal modes alter the partition function of the Kerr-AdS

solution, we should therefore quantize the motion of a free particle with spin J and energy E in

AdS4.

As usual, the phase space of such a particle is simply given by the coset SO(3, 2)/H, where

SO(3, 2) is the group of isometries of AdS4 and H is the subgroup of isometries leaving the

particle trajectory and spin invariant. The quantization of this coset then produces the corre-

sponding irreducible representation of the isometry group SO(3, 2) describing the single-particle
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states. If the particle were spinless, then H = SO(3) × SO(2): the SO(3) are rotations at

fixed time around the center of the particle, while the SO(2) are time translations8. If we now

turn on spin, some of the SO(3) rotations centered around the particle will rotate its spin and

therefore they no longer leave the geodesic unchanged. However, the rotations in the Cartan

SO(2) of SO(3) — i.e. the rotations around the axis of the particle spin — will leave both the

trajectory and the particle spin untouched. Hence, the phase space of geodesics to be quantized

is the group coset SO(3, 2)/ (SO(2)× SO(2)). The standard way to quantize such spaces is to

consider coadjoint orbit quantization, i.e. constructing the coset by acting with SO(3, 2) on a

chosen element of the coadjoint algebra of so(3, 2). With this construction we explicitly obtain

a symplectic form on the coset, allowing us to construct the corresponding Hilbert space via e.g.

geometric quantization. This method, often called the Kirillov’s orbit method, gives a direct

correspondence between quantization of coadjoint orbits and irreducible unitary representations

of SO(3, 2), i.e. one-particle states [22].

Once we have the (quantized) normal modes of Kerr-AdS, we can compute the contributions

of these normal modes to the black hole partition function using the Denef–Hartnoll–Sachdev

(DHS) formula [23, 24]. This formula computes the one-loop determinant around an Euclidean

saddle as an infinite product of factors, with each factor associated to a (quasi-)normal mode.

In particular, the factor associated to a quasi-normal mode is just the partition function of

a dampened quantum harmonic oscillators, while normal modes contribute with the partition

function of a regular (non-dampened) harmonic oscillator. The main insight of [8] is that the

contribution of one of the normal modes is divergent as Ω → 1. The one-loop correction due to

this normal mode — which is usually subleading — thus becomes important, and an order 1/GN

of energy and angular momentum (i.e. comparable with the black hole E and J) can be stored

in the normal mode, which becomes occupied macroscopically. From the geodesic description,

this normal mode corresponds to making the black hole rotate infinitesimally around the center

of AdS; since the mode gets occupied macroscopically, this indicates that the center of mass

is actually rotating macroscopically around the center of AdS. The new solution obtained by

taking the Kerr black hole and setting its center of mass in motion with a large amount of

energy and angular momentum is thus called “Revolving Black Hole” (RBH). In particular, it

can be shown by studying the wave equation of a massive spinning particle in AdS that the

wavefunction of the center of mass is completely delocalized in φ, i.e. in the angular position of

the black hole in the θ = π/2 plane [8]; we are thus in the unusual situation of a macroscopic

object (the black hole) whose wavefunction is inherently quantum in nature, and is not well

approximated by a classical configuration.

The above derivation of RBHs appears in [8], where the AdS4 geodesics and the black hole

normal modes have been explicitly studied with the help of additional considerations coming

from the easier AdS3 case. In [8] it is also mentioned that one should be able to derive RBHs by

8 This is because AdS4 is a hyperboloid in R3,2, and the time translations come from the rotations in the two
dimensions with negative signature.
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using the AdS/CFT correspondence and working directly in the dual CFT. In the following we

will flesh out this idea, finding the normal modes, rederiving the DHS formula for the one-loop

determinant of the partition function and constructing the RBH thermodynamics by working

directly in the CFT.

Generically we expect that a black hole on the gravity side is mapped to an ensemble of

states in the CFT. The semiclassical approximation of the black hole partition function then

corresponds to taking an ensemble of exp (S(E, J)) highest spinning primary states |E, J, J⟩
with energy E, total angular momentum J and angular momentum along the z axis Jz = J ;

loop corrections (which include the effects of the normal modes we are interested in) are then

captured by the contributions of other primaries or of descendants. Approximating further the

black hole as a massive, spinning geodesics is then equivalent to taking only one of these states

|E, J, J⟩. Kicking the geodesic by applying an AdS4 isometry translates, in the CFT language, to

applying a conformal transformation at the boundary; the normal modes obtained by applying

infinitesimal isometries are then simply level 1 descendant states obtained by applying a single

conformal generator to the “approximate” ensemble of just highest spin primaries |E, J, J⟩.

In the Kerr-AdS4 case, the relevant CFT3 at the boundary is a CFT living on S2 × R,

where R is the temporal direction. After going to Euclidean time and applying a conformal

transformation, the CFT3 lives on R3 and thus we can apply radial quantization. We will

approximate the Kerr-AdS black hole as an ensemble of highest spinning primaries |E, J, Jz = J⟩
satisfying:

i∆ |E, J, J⟩ = E |E, J, J⟩ ,

M2 |E, J, J⟩ = J(J + 1) |E, J, J⟩ ,

Mz |E, J, J⟩ = J |E, J, J⟩ .

(3.3)

Here we keep explicit the fact that the states |E, J, J⟩ have both M2 = J(J + 1) and Mz = J ,

since they are highest spinning states. This is important since in black hole thermodynamics we

care only about ∆ and Mz, not M2, since these are the extensive quantities kept fixed in the

microcanonical ensemble. Alternatively, when computing the canonical partition function only

∆ and Mz appear in the trace, not M2.

We are now tasked with building level 1 descendants (i.e. the normal modes) of |E, J, J⟩ by
acting with the remaining conformal operator:

Px, Py, Pz, Mx, My ; (3.4)

notice that the Kµ annihilate the primaries, so they can be excluded from the analysis. Starting

from the Pµ, since [∆, Pµ] = −iPµ, we have:

i∆Pµ |E, J, J⟩ = (E + 1)Pµ |E, J, J⟩ ; (3.5)
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the Pµ will therefore give rise to normal modes with energy ∆E = +1. As for their behavior

under Mz, using the well known fact that [Mz, Px ± iPy] = ± (Px ± iPy), we obtain:

MzPz |E, J, J⟩ = JPz |E, J, J⟩ ,

Mz (Px ± iPy) |E, J, J⟩ = (J ± 1) (Px ± iPy) |E, J, J⟩ .
(3.6)

Therefore the Pµ generate three normal modes, of energy ∆E = +1 and angular momentum

∆J = 0,±1. These normal modes change the energy of the geodesics, thus moving it around in

AdS4.

As for Mx and My, we can similarly use the relations:

[∆,Mx ± iMy] = 0, [Mz,Mx ± iMy] = ± (Mx ± iMy) ; (3.7)

notice however that (Mx + iMy) |E, J, J⟩ = 0, so we just need to consider Mx− iMy. Therefore,

we have:

i∆(Mx − iMy) |E, J, J⟩ = E (Mx − iMy) |E, J, J⟩ ,

Mz (Mx − iMy) |E, J, J⟩ = (J − 1) (Mx − iMy) |E, J, J⟩ .
(3.8)

Hence, we have found another normal mode with energy ∆E = 0 and angular momentum ∆Jz =

−1, which modifies the spin of the black hole without changing its energy. This correspond to

a rotation of the spacetime around the geodesics, leaving the trajectory of the massive particle

untouched but modifying its spin.

To recap, we have three normal modes with energy ∆E = +1 and angular momentum

∆J = 0,±1 and a normal mode with energy ∆E = 0 and angular momentum ∆J = −1,

exactly the same as the ones obtained in [8] from the geodesics point of view. Notice that these

modes are bosonic, and thus they can be excited multiple times; in particular, the modes with

energy ∆E = 1 can be excited (i.e. we can apply the corresponding operator again) infinitely

many times, while the mode with ∆E = 0 can only be excited 2J times, i.e. until the operator

(Mx − iMy) hits the state |E, J,−J⟩. Let us now compute the canonical partition function of the

black hole. In the semiclassical approximation, i.e. considering only highest spinning primary

operators, the partition function is:

Z = Tr
[︂
e−βH+βΩMz

]︂
≈ eS(E,J) ⟨E, J, J | e−βH+βΩMz |E, J, J⟩ = eS−βE+βΩJ , (3.9)

where the entropy S(E, J) counts the degeneracy of these spinning primary operators. Let us

now refine the semiclassical approximation by taking into account the presence of the normal

modes. If we focus for simplicity on a single (bosonic) normal mode of energy ∆E and angu-

lar momentum ∆J generated by applying the operator O to |E, J, J⟩, the canonical partition
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function becomes:

Z = Tr
[︂
e−βH+βΩMz

]︂
≈ eS(E,J)

+∞∑︂
n=0

⟨E, J, J | (On)†e−βH+βΩMzOn |E, J, J⟩ =

= eS(E,J)−βE+βΩJ

(︄
+∞∑︂
n=0

e−β(∆E−Ω∆J)n

)︄
=

1

1− e−β(∆E−Ω∆J)
eS(E,J)−βE+βΩJ .

(3.10)

In other words, the effect of a single normal mode of energy ∆E and angular momentum ∆J is

to multiply the semiclassical black hole partition function by the partition function of a quantum

harmonic oscillator of energy ∆E−Ω∆J ; we have thus rederived the normal modes contribution

to the DHS formula by using holographic considerations. If we have more than one mode, since

all the modes are independent, we simply get the product of the various denominators. Notice

that for the ∆E = 0 mode, we should just sum over n ∈ [0, 2J ] rather than n ∈ [0,+∞]; however,

since the black hole has a large spin J , we can approximate the sum as a sum to +∞ up to

exponential accuracy in J [8]. Finally, in general normal and quasi-normal modes contribute

to the partition function via the one-loop determinant computed around the saddle. Therefore,

the above procedure is just an approximate, quicker way to obtain the one-loop contribution of

the normal modes to the partition function, without having to actually expand the gravitational

action around the saddle point and deal with e.g. gauge fixing and ghosts.

Let us now apply (3.10) to the Kerr-AdS case, where we have three normal modes with

∆E = 1, ∆J = 0,±1 and one with ∆E = 0, ∆J = −1:

Z =
1

1− e−β(1−Ω)

1

1− e−β(1+Ω)

1

1− e−β

1

1− eβΩ
eS(E,J)−βE+βΩJ . (3.11)

As Ω → 1, we see that the denominator associated with the ∆E = 1, ∆J = 1 mode goes to zero,

making the partition function diverge. To better understand what is going on, we can compute

the thermodynamic energy Enorm, angular momentum Jnorm and entropy Snorm “stored” in the

normal modes:

Enorm =− ∂β logZ +
Ω

β
∂Ω logZ − E ,

Jnorm =
1

β
∂Ω logZ − J ,

Snorm = logZ + β(E + Enorm)− βΩ(J + Jnorm) .

(3.12)

Focusing on the near-superradiant regime Ω ∼ 1, we have:

Enorm =− 1

β(Ω− 1)
+O

(︁
(Ω− 1)0

)︁
,

Jnorm =− 1

β(Ω− 1)
+O

(︁
(Ω− 1)0

)︁
,

Snorm =O
(︁
(Ω− 1)0

)︁
.

(3.13)
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The above equations are telling us that, as Ω → 1, macroscopic amounts of energy and angular

momentum are being stored in the ∆E = 1, ∆J = 1 normal mode of the black hole (as shown

by Enorm = Jnorm +O
(︁
(Ω− 1)0

)︁
), i.e. the black hole center of mass starts moving around the

center of AdS. More importantly, this means that we cannot keep increasing Ω to values Ω > 1:

if we continue to add energy and angular momentum to the system, they will simply increase the

motion of the black hole center of mass, without actually being stored in the black hole itself.

Additionally, the entropy associated to these mode is exactly zero, and not just approximately

zero as it would seem from (3.13). This is because, given a certain E and J , there is just a

single combination of conformal operators that can act on |E, J, J⟩ to increase the energy of the

system to E + Enorm and the angular momentum of the system to J + Jnorm. The non-zero

entropy of (3.12) is then just an artifact of the thermodynamic approximation.

Therefore, we have inferred the existence of a new kind of solutions, obtained by taking a

Kerr-AdS black hole and setting its center of mass in motion around the center of AdS, the

Revolving Black Holes. In particular, since Ω ≤ 1, RBHs are stable, and thus they are valid

candidates for the endpoint of the Kerr-AdS superradiant instabilities. Notice also that the

black hole center of mass is not at a particular point in AdS; if we approximate it as a heavy

particle, its wavefunction will be peaked around a particular radius r, but completely delocalized

in φ [8]. This is an unusual situation, since we have massive classical object in a purely quantum

superposition. In order to better understand how the E−J phase space is modified by the RBH,

let us consider a generic point (E, J) such that if we had a Kerr-AdS black hole it would have

Ω > 1. Let us now consider a RBH with a fraction (1− x) of energy E and angular momentum

J stored in the normal mode, and the remaining fraction x stored in the actual black hole itself.

Using (2.14), this means that the actual black hole has the same a fixed while m → xm. The

total system has entropy:

Stot(E, J ;x) = SKerr-AdS (xE, xJ) , (3.14)

since there is no entropy contribution coming from the normal mode. In principle the black hole

could shed any fraction x of energy in the normal mode; the actual value of x is then the ones

that is most thermodynamically stable, i.e. the value that maximizes Stot(E, J ;x) while keeping

Ω ≤ 1. To find x, we then simply take a derivative:

∂xStot(E, J ;x) = 0 =⇒ Ω = 1 . (3.15)

This means that the most stable RBH solution is, as expected, the one obtained by storing just

enough energy and angular momentum in the normal mode to avoid superradiance (Ω = 1). In

particular, since at Ω = 1 we have r2+ = a, its entropy will be:

SRBH(E, J) = SKerr-AdS

(︁
a,
√
a
)︁
=

πa

GN (1− a)
. (3.16)
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Here a is the ratio

a =
JBH

EBH

⃓⃓⃓⃓
Ω=1

(3.17)

between the energy and angular momentum of the moving black hole. In particular, given a

total energy E and J , in the RBH solution we have

E − J = (EBH|Ω=1 + Enorm)− (JBH|Ω=1 + Jnorm) = (EBH − JBH)|Ω=1 , (3.18)

since the normal mode carries ∆E = ∆J . Thus, using (2.14), we have:

(EBH − JBH)|Ω=1 =
1

GN

√
a

2(1− a2)2
. (3.19)

Let us also compare compare the RBH entropy SRBH with the entropy Sbr of a black resonator

(3.2). Plugging (3.19) into (3.2), we have:

Sbr < 4πGN (E − J)2
π

GN

a

(1− a2)2
≈ π

GN
a , (3.20)

where the inequality comes from neglecting the l dependent term in (3.2). Notice that we

approximated a ≪ 1, since (3.2) is valid for a small and slowly rotating black hole. Finally,

comparing the above equation with the small a limit of (3.16), we see that:

Sbr(E, J) < SRBH(E, J) ; (3.21)

therefore, black resonators (which are already unstable) also have a lower entropy than RBHs.

Notice that, while black resonators are unstable, they can still be intermediate metastable steps

of the decay of superradiant black holes, arising as one of the superradiant mode grows. Ad-

ditionally, there is nothing granting us that there are no other solutions, different from RBHs,

which appear in the Ω > 1 region and have a higher entropy than the RBHs. Indeed, in section

3.3 we will find such solutions, the so-called Grey Galaxies.

Finally, notice that the RBH construction is not just valid for values of E and J between the

superradiant Ω > 1 bound and extremality bound, but it can be extended to construct RBHs

for any point with E ≥ J . To do this, we simply start from a black hole with Ω = 1 and start

to store energy and angular momentum in the ∆E = 1,∆J = 1 normal mode, creating a new

family of RBHs that live on a 45° line in the E − J phase diagram9. Since the Ω = 1 curve

exists for all values of E ≥ J , with E = J only at the origin E = J = 0, we can extend the

RBH solutions to any point with E ≥ J phase diagram. In other words, the RBHs not only

work as endpoints of the instabilities, but they fill the entire possible phase space up to the

unitarity bound E = J (which was previously empty). This realizes the heuristic prediction of

9 The same exact construction holds for Grey Galaxies; see the discussion at the end of 3.3 and in particular
figure 3.
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section 2.3, and shows that the apparent absence of the extremal bound on the CFT side of the

AdS/CFT duality is not a feature of the gravitational dual CFT, but rather it is simply due to

the onset of new gravitational solutions below extremality which had not been previously taken

into consideration.

3.3 Grey Galaxies

RBHs, however, are not the only possible endpoints for a Kerr-AdS black hole. As shown

in [8], there exists another class of solutions that can replace superradiant Kerr-AdS black hole

in the whole E ≥ J region: Grey Galaxies (GGs). We will now construct GGs following [8].

We however take a slightly different route in the computation of the partition function of the

gas of large l modes (3.35): we will introduce plethystic exponentials to explicitly rewrite the

multi-particle partition function in terms of the (easier) single-particle partition function and

make a different approximation than [8] in order to reach (3.35).

These solutions share some similarities with both black resonators and RBHs. The idea is

once again — similarly to RBHs — to store a fraction of the total energy and angular momentum

outside of the black hole itself; the difference it that, instead of considering the motion of the

black hole center of mass, the energy and angular momentum are stored in the cloud of Hawking

radiation that naturally surrounds a black hole in AdS. Due to the confining potential seen by a

particle in AdS, the Hawking quanta emitted by the horizon cannot escape to infinity, but they

will bounce back and fall again behind the horizon. A dynamic equilibrium is established between

the black hole itself and a cloud of Hawking radiation, with Hawking quanta being continuously

emitted and absorbed by the black hole at an equal rate. If we ignore the backreaction of the

cloud on the metric (which we know is fine for Ω < 1, since nothing catastrophic happens),

a Hawking quantum is then just a simple fluctuation of a field in the Kerr-AdS background;

therefore the quanta in the cloud are just a collection of quasi-normal modes of the Kerr-AdS

solution, and statistically will cover all the possible values of the energy ω and the angular

momentum l of the quasi-normal modes.

As the black hole crosses the Ω = 1 limit, (2.34) tells us that the first modes to go superradiant

are the ones with angular momentum l = lz such that:

l ≥ 3

Ω− 1
. (3.22)

Since Ω ≈ 1 at the onset of superradiant, the superradiant modes have a really high angular

momentum l ≫ 1. It can be shown that modes with l = lz ≫ 1 live really far away from the

black hole, at a radius rl ∼
√
l, and are sharply peaked at an angle θ = π/2 [8]. Even without

doing the actual math, we can understand these facts as follows. Modes with really high angular

momentum will feel a really powerful centrifugal force; the larger the l, the further away the

modes will orbit the black hole, and the squashing from the centrifugal force will focus most of the

wave into the equatorial plane of rotation at θ = π/2. The key idea behind GGs is to recognize
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that, since these modes live further away, they essentially live in empty AdS, interacting only

very weakly with the black hole at its center. As these modes grow due to superradiance, they

will form a gas of modes that carry energy and angular momentum comparable to the black

hole itself, and thus they are no longer negligible when computing the thermodynamics of the

whole system. Nevertheless, this gas of Hawking quanta essentially does not interact with the

black hole since it is so far away. Therefore, we can consider the black hole and the gas of modes

in empty AdS as independent system, compute their partition functions separately and then

simply add their energies, entropies and angular momenta together. Since the gas of far-away

modes is rotating in the equatorial plane θ = π/2 and it is outside the horizon, it forms a “white”

(i.e. visible) accretion disk around the black hole, hence the name “Grey Galaxies”.

Finally, note that the approximation of the gas of modes as independent of the black hole

is essentially what separates GGs from black resonators. In the black resonator case, one does

indeed consider that a mode grows due to superradiance, while taking into account the full

non-linear interaction of the mode with the black hole background; however, one picks just a

single quasi-normal mode, rather than a gas of all the superradiant modes. One might worry

that taking all the modes into account at the same time at the non-linear level would make the

solutions too hard to study; the new insights of GGs is that, since these modes live far away

from the black hole, the non-linearity can be simplified by taking the background to be empty

AdS rather than Kerr-AdS.

Due to the very weak interaction between the cloud of superradiant modes and the black hole,

to compute the thermodynamics of GGs we just need to take the result (2.14) for Kerr-AdS and

add the contribution of a gas of large l modes in pure AdS. Once again, in order to compute

the partition function of the modes in empty AdS, we can use the AdS/CFT correspondence

and translate the problem in a CFT language. As explained previously, single-particle states

in AdS form irreducible representations of the isometry group of AdS4, which is the conformal

group SO(3, 2) of the boundary. In the CFT, via the operator-state correspondence, each rep-

resentation corresponds to a family of descendant operators obtained by acting with conformal

generators on a primary operator O∆,s, where ∆ is the conformal dimension of the operator

(related to the mass of the AdS particle) and s is the spin of the operator (which coincides with

the spin of the AdS particle). The partition function for the gas of modes can be decomposed

as:

Zgas = Tr
(︂
e−βH+βΩMz

)︂
=
∑︂
∆,s

Z∆,s , Z∆,s = Tr∆,s

(︂
e−βH+βΩMz

)︂
, (3.23)

where we split the trace into the contribution of each conformal family with primary O∆,s. The

trace Tr∆,s is a multi-particle trace; in the CFT language, this is a trace over the space of local

operators obtained by taking an arbitrary number of tensor products of the descendants of the

primary with dimension ∆ and spin s. To simplify the calculations, it is convenient to rewrite
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the multi-particle trace in terms of a single-particle trace using the plethystic exponential:

Z∆,s = PE[Zsingle
∆,s ](eβ) , Zsingle

∆,s = Trsingle∆,s

(︂
e−βH+βΩMz

)︂
(3.24)

where the plethystic exponential is defined as follows

PE[f ](x) ≡ exp

[︄
+∞∑︂
k=1

f(xk)

k

]︄
. (3.25)

The trace Trsingle∆,s is then a single-particle trace, meaning a trace over just the space of descen-

dants of the conformal primary O∆,s.

All we have left to do is to find all the descendants of the primary O∆,s with conformal

dimension ∆ and spin s. The descendants are built by acting with conformal generators on

O∆,s; if we put O∆,s at the origin, acting with conformal generators simply means acting with

derivatives. In particular, it is convenient to separate the action of the derivatives into a trace

and a traceless part as follows [8]:

On,l
∆,s = (∂ν∂

ν)nCµ1...µl∂[µ1
· · · ∂µl]O∆,s , (3.26)

where Cµ1...µm is a traceless antisymmetric tensor and On,l
∆,s denotes the descendant. Notice that

in general it might happen that different combinations of derivatives give the same operator, or

equivalently that there are some null states among the descendants. This is the case for short

representations that satisfy the unitary bound ∆ = 1 + s. Let us focus for now just on long

representations with ∆ > 1 + s, so that we do not have to worry about the null states. The

operator On,l
∆,s has conformal dimension ∆n,l = ∆+ 2n+ l, since each derivative operator adds

+1 to the conformal dimension. As for the total angular momentum, the trace ∂ν∂
ν is a scalar

and thus does not contribute. As for the antisymmetric combination ∂[µ1
· · · ∂µl], it transforms

in the spin l representation of SO(3); thus we get a family of operators On,l
∆,s with total angular

momentum j ∈ |l − s|, . . . , l + s − 1, l + s, and hence jz ∈ −j, . . . , j − 1, j. The single-particle

partition function thus reads:

Zsingle
∆,s =

+∞∑︂
n=0

+∞∑︂
l=l∗

l+s∑︂
j=|l−s|

jz=j∑︂
jz=−j

e−β(∆+2n+l)+βΩjz , (3.27)

where we sum only over modes with large angular momentum l ≳ l∗, where l∗ ≫ 1 is a fixed

value. It is convenient to redefine j = j′ − l, jz = j′ − l − j′z, so that the partition function

becomes (assuming l∗ > s):

Zsingle
∆,s =

+∞∑︂
n=0

+∞∑︂
l=l∗

+s∑︂
j′=−s

2(l−j′)∑︂
j′z=0

e−β(∆+2n)eβl(Ω−1)eβΩj′e−βΩj′z . (3.28)
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For large angular momenta, we can extend the extremum of the j′z sum from j′z = 2(l − j′) to

j′z = +∞, since the exponential e−βΩj′z is suppressed for l ≫ 1. Next, notice that in the sum over

l, due to the exponential eβl(Ω−1), most of the contributions come from l ∼ 1/(β(1 − Ω)) ≫ 1;

therefore, we can extend the sum from l = l∗ down to l = 0 without altering the result. We can

then perform the sums over n, l and j′z, finding the single-particle partition function:

Zsingle
∆,s ≈

+∞∑︂
n=0

+∞∑︂
l=0

+s∑︂
j′=−s

+∞∑︂
j′z=0

e−β(∆+2n)eβl(Ω−1)eβΩj′e−βΩj′z

=

+s∑︂
j′=−s

1

1− e−β(Ω−1)

e−β∆

1− e−2β

1

1− e−βΩ
eβΩj′ .

(3.29)

Notice that we could also easily compute them sum over j′, since

+s∑︂
j′=−s

eβΩj′ =
sinh

(︂
βΩ
2 (2s+ 1)

)︂
sinh

(︂
jβΩ
2

)︂ ; (3.30)

however, leaving the sum as it is shows us that the contribution of a single particle with spin s is

the same as 2s+1 spinless particle with conformal dimension ∆−Ωs,∆−Ω(s− 1), . . . ,∆+Ωs.

To obtain the multi-particle trace (3.24) we simply use (3.25) as follows:

logZ∆,s =
+∞∑︂
k=1

1

k

1

1− e−kβ(Ω−1)

1

1− e−kβΩ

+s∑︂
j′=−s

e−kβ(∆−Ωj′)

1− e−2kβ
(3.31)

The summand for large k goes as e−kβ(∆−Ωj′)/k, with j′ = −s, . . . , s; for a long representation

with ∆ > s+1, the summand is thus highly suppressed. Therefore we can expand to first order

in Ω ∼ 1 as follows:

logZ∆,s ≈
+∞∑︂
k=1

1

k2
1

β(1− Ω)

1

1− e−kβ

+s∑︂
j′=−s

e−kβ(∆−j′)

1− e−2kβ
≡ − 1

β(1− Ω)

s∑︂
j′=−s

C∆−j′(β) , (3.32)

where we defined the function C∆(β) as the contribution of a single spinless particle of conformal

dimension ∆. Notice also that short representations with ∆ = s+ 1 can be obtained by taking

a long representation with ∆ = s+ 1 and subtracting the null states, which themselves form a

long representation of conformal dimension s+ 2 and spin s− 1 [8]. The single-particle trace of

a short representation is thus simply the difference of the single-particle traces of a (s+1, s) and

a (s+ 2, s− 1) long representation. Using the following property of the plethystic exponential:

PE[f − g](x) = PE[f ](x)PE[g]−1(x) , (3.33)

29



the multi-particle trace of a short representation is:

logZshort
s+1,s = logZs+1,s − logZs+2,s−1 = − 1

β(1− Ω)
(C1(β) + C2(β)) . (3.34)

To find the full partition function of the large l modes, we simply sum the contributions of

all the particles in the bulk, obtaining:

logZgas = − 1

β(1− Ω)

∑︂
∆,s

s∑︂
j′=−s

C∆−j′(β) ≡ − 1

β(1− Ω)
C(β) , (3.35)

where C(β) is the summation of the Cs of all the fields in the bulk. Notice that C(β) < 0 by

construction, and it is also possible to show that C ′(β) > 0. From (3.35), we can finally extract

the thermodynamic quantities of the (free) gas of large angular momentum modes:

Egas =− C(β)

β2(1− Ω)2
+

C ′(β)

β(1− Ω)
≈ − C(β)

β2(1− Ω)2
,

Jgas =− C(β)

β2(1− Ω)2
,

Sgas =
βC ′(β)− 2C(β)

β(1− Ω)
.

(3.36)

At leading order, this gas of angular momentum modes carries an energy and angular momentum

E = J , i.e. it behaves exactly as the normal mode with ∆E = ∆J = 1 in the RBH case (3.13).

However, the gas carries additional entropy, which was not the case for the normal mode (which

had null entropy). Grey galaxy solutions are then obtained by considering this gas of large l

modes in thermodynamic equilibrium with the Kerr-AdS black hole. To find the equilibrium

point, we assume that a fraction x of energy and angular momentum is stored into the black

hole, and the remaining (1−x) is stored in the gas; then we simply maximize the total entropy:

Stot(E, J, x) = SKerr-AdS(xE, xJ) + Sgas((1− x)E, (1− x)J) . (3.37)

However, while SKerr-AdS ∼ 1/GN , the gas entropy is subleading at Sgas ∼ 1/
√
GN (when the

energy of the gas is of order Egas ∼ 1/GN ); thus in the maximization we just need to maximize

the Kerr-AdS entropy, neglecting the gas (i.e. the same as we did for the RBHs). Since the

black hole entropy grows with the energy, we simply put as much energy as possible in the black

hole while keeping it stable, i.e. we just set Ω = 1 (once again, this is the same as for RBHs).

A Grey Galaxy is thus given by a Kerr-AdS black hole at Ω = 1 in equilibrium with a gas of

modes with large angular momentum living really far away from the black hole; since for the gas

Egas = Jgas, we have families of GGs living on 45° lines in the E − J phase diagram — starting

from the Ω = 1 line — for all the possible values of E ≥ J in the phase diagram. Since the

entropy of the gas is greater than zero (though still subleading in 1/GN ), the GGs dominate
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over the RBHs (and hence also over the black resonators, as explained in section 3.2) in the

whole region between the Ω = 1 line and the unitarity bound E = J .

Finally, let us plot again the E − J phase diagram of the system (see figure 2), this time

taking into accounts the existence of GGs:

Figure 3: E − J phase diagram of Kerr-AdS and Grey Galaxies, in units of GN .

Comparing the above phase diagram with figure 2, we first off notice that there is no longer

any mention of the extremality bound, and we are thus left with only two phases (i.e. two

shaded regions). Above the Ω = 1 (green) line, Ω < 1 and thus the regular Kerr-AdS black

holes are stable. Below the Ω > 1 line, however, Kerr-AdS black holes develop superradiant

instabilities and decay to GGs, which dominate over the whole pink shaded region between the

Ω = 1 line and the unitarity bound (blue line). We also highlighted a few particular families of

GGs (the dashed pink lines). By “family” here we mean that we start from a Kerr-AdS black

hole at Ω = 1 and then we increase the total E and J of the system by storing the additional

energy and angular momentum into a cloud of large angular momentum modes far away from

the black hole. Since the cloud of modes carries E = J (see (3.36)), a single family of GGs

in the E − J phase diagram is given by a 45° line starting from a particular black hole with

Ω = 1, parallel to the unitarity bound E = J . By attaching a 45° line to each point on the

Ω = 1 curve — i.e. by considering all the possible families of GGs — we can cover with the GGs

phase the whole region between the onset of superradiant instabilities at Ω = 1 and the CFT

unitarity bound E = J . Finally, notice that since RBHs also have E = J (from (3.16)) the same

exact construction applies for RBHs. In particular, for every GG we have a RBH with the same

energy and angular momentum, which is connected to the same Ω = 1 Kerr-AdS black hole by

the same 45° line; however, since the RBHs have a smaller entropy, there is no RBH-dominated

phase and GGs are thermodynamically favored any time they exist.
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At last, let us mention that in our analysis we simply assumed on physical grounds that the

interaction between the black hole and the cloud of large l modes is negligible and hence that

the two systems are independent. One might worry that as we put a large amount of energy and

angular momentum Egas = Jgas ∼ 1/GN , the back-reaction of the cloud on the spacetime might

substantially modify the Kerr-AdS background and the interaction between the cloud and the

black hole might no longer be negligible. However, it has been shown perturbatively in [8] that

the back-reaction of the gas remains indeed small, and that the approximation of the gas living

in empty AdS with no interaction with the Kerr-AdS black hole is still valid.

4 Conclusions

4.1 Summary of the work

In conclusion, we have reviewed the superradiant instabilities of Kerr black holes in an AdS

background, and discussed the possible endpoints of such instabilities. We identified two new

solutions proposed in [8] — Grey Galaxies and Revolving Black Holes — that are stable in the

whole region between the onset of the superradiant instabilities down to the unitarity bound,

with the former dominating at thermodynamic equilibrium. These solutions extend the gravita-

tional phase space below the extremality bound for the black holes. Properties of these solutions

have been investigated with the help of holographic arguments, which simplify considerably the

calculations.

In section 2.1 and 2.2, we reviewed some evidence for the superradiant instabilities of Kerr-

AdS black holes, starting with the heuristic argument proposed by Zel’dovich and then comput-

ing explicitly the quasi-normal modes in the Kerr-AdS background. These two approaches are

complementary to each other. The study of quasi-normal modes of section 2.2 is more rigorous,

but it requires the assumption of a small, slowly rotating black hole to make the computations

manageable analytically. While one can use numerical methods to find the quasi-normal modes

of bigger black holes, the heuristic argument of section 2.1 shows that the conclusions drawn

from the quasi-normal modes analysis can be extended safely to black holes of all sizes, while

additionally providing some more physical intuition of the process of superradiance, which is

seen as arising from the combination of AdS acting as a reflecting box and the possibility of

extracting energy from a rotating black hole via a generalized Penrose process.

Before discussing the possible endpoints of the black hole decays, we used the AdS/CFT

correspondence in section 2.3 to establish which region in the E − J phase space we expect

to be dominated by the new solutions. We highlighted how there is some tension between the

expectations derived from the gravitational and the CFT side of the duality: from the gravity

point of view, the new solutions should extend from the onset of the instabilities down the

extremality bound (2.13); from the CFT point of view, the solutions can in principle extend

further, down to the much weaker unitarity bound (2.43). The explicit construction of GGs
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and RBHs — which indeed exist down to the unitarity bound — solve the tension between the

gravitational theory and the CFT, providing the missing gravitational states in the gravitational

phase diagram, which now covers the whole region E ≥ J .

We then moved on to discuss in section 3 various attempts to construct the endpoints of

the superradiant instabilities: black resonators, RBHs and GGs. Black resonators are built

essentially by letting one of the superradiant modes grow, that is by combining geons and boson

stars — generalized solitonic normal modes — with a black hole at their center. RBHs and

GGs are instead built with the common idea of taking out some of the total E and J from the

black hole itself and storing it into some other degrees of freedom in the system, respectively

the motion of the black hole center of mass and the gas of large angular momentum Hawking

quanta surrounding a black hole in AdS. While black resonators are themselves unstable due

to still having a black hole with Ω > 1 at their core, both RBHs and GGs manage to reduce the

angular velocity of the black hole down to Ω = 1. In both cases, an amount ∆E = ∆J of energy

and angular momentum is stored outside of the black hole horizon; in the E−J phase diagram,

we thus get families of solutions on 45° lines starting from Ω = 1 Kerr-AdS black holes (see

figure 3). In particular, RBHs in a single family carry zero additional entropy with respect to

their common Ω = 1 Kerr-AdS black hole entropy, since any point of the 45° line is reached by

setting the center of mass in motion uniquely (i.e. applying only a unique AdS isometry). As for

GGs, the Ω = 1 Kerr-AdS black hole at their center is surrounded by a cloud of large l modes,

which is by its nature a statistical system. Therefore the modes carry some additional (though

subleading in GN ) entropy and hence GGs have a higher entropy than RBHs and dominate in

the microcanonical ensemble.

For both RBHs and GGs, AdS/CFT considerations proved once again essential for simpli-

fying the calculations. As for RBHs, the easiest way to compute the normal modes and their

contribution to the one-loop determinant for the Kerr-AdS geometries was to study the descen-

dants of the primaries associated to a Kerr-AdS black hole in the semiclassical approximation.

As for GGs, the AdS/CFT correspondence was used to compute the partition function of the

gas of modes, without actually having to solve for the wavefunctions of the fields and to compute

their one-loop determinants. In principle, one might worry that the calculations on the CFT

side are limited by the fact that the CFT is strongly coupled when the gravitational theory

is weakly coupled. However, all our considerations were based purely on the conformal alge-

bra itself, and thus work at any value of the CFT coupling. In particular, the unitary bound

is obtained by evaluating commutators of the conformal algebra in generic states, and thus it

holds for any CFT. As for RBHs, the normal modes are once again built by applying the con-

formal generators on an ensemble of primaries. In particular, we do not care about the specific

details of this ensemble but just about the values of ∆E and ∆J of the normal modes, which

are fixed by conformal symmetry. Finally, as for GGs, the single-particle states in AdS simply

form irreducible representations of the conformal group; therefore, even if we do not know the

specific relation between the mass of a particle in AdS and the conformal dimension ∆ of the
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corresponding primary (which will depend on the coupling), the thermodynamics of the gas of

large l modes — given by (3.36) — stays the same.

4.2 Future directions

The introduction of GGs and RBHs lead to many possible generalizations and future research

directions. The most important one is arguably to understand what happens when the black

hole carries electromagnetic charge. It has been shown in [25] that charged black holes in AdS

also suffer from instabilities, when the charge of the charged field is high enough. The first

proposed endpoints in the case of charged, non-rotating black holes in AdS [26, 27] are hairy

black holes whose hair are a Bose condensate of the charged field living in the vicinity of the

black hole; as usual, these solutions have been built either perturbatively (for small black holes)

or numerically. However, angular momentum and charge are not that different for black holes:

it is indeed the case that some charged black holes can be uplifted to higher dimensional purely

rotating solutions, where the “lower-dimensional” charge comes from the rotations of the higher-

dimensional black hole in the compactified directions. While we did not derive GGs and RBHs

in dimensions higher than 4 — i.e. with more than one angular momentum Cartans — their

construction is general enough that we expect similar solutions to exist in higher dimensions. If

we see charge as a “higher-dimensional” rotation, it is reasonable to expect that an analogue of

GGs (and maybe even RBHs) should exists also for charged black holes. In particular, since the

large l modes of the GGs live far away from the black hole and are weakly interacting with it,

we might expect that these “electric GGs” consist of clouds of some different modes living yet

again far away from the black hole at their center. These solutions will therefore be different

from the hairy black holes [26, 27], whose charged condensates live close to the black hole.

Additionally, the analogous condition for the instabilities due to the charge is considerably

less “clean” than the superradiant condition due to the angular momentum. In particular, a

small charged black hole is unstable under a mode if qµq > ω [8], where q is the charge of the

mode, µq the electric potential of the black hole and ω the frequency of the mode; this expression

however gets corrected as we take bigger and bigger black holes. This is in contrast with the

superradiance condition lzΩ > ω, which leads to Ω > 1 for black hole of any size. By uplifting

the solutions and considering the charge as angular momentum, one might then hope to find a

better condition for the charge instability that works for black holes of any size.

Studying the behavior of unstable Kerr–Newman black holes in AdS is also of central impor-

tance for two (partially related) reasons: the possibility of finding new supersymmetric solutions

and understanding the CFT dual of the endpoints. Let us discuss both of these reasons in one of

the easiest setups, namely the duality between Type IIB supergravity on AdS5 ×S5 and N = 4

SU(N) super-Yang–Mills theory on the 4D conformal boundary of AdS5. In the dimensionally

reduced gravitational theory on S5, black holes can carry up to two angular momenta J1, J2

and three charges Q1, Q2, Q3; the angular momenta come from the SO(4) Cartans of the AdS5
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spatial rotations, while the charges come from the Cartans of the S5 rotations. Restricting for

simplicity to the subsector with J1 = J2 ≡ J and Q1 = Q2 = Q3 ≡ Q, black holes are labeled

by the triplet (E, J,Q), with E the mass of the black holes. Supersymmetry and extremality

actually impose two independent conditions on E, J and Q, and both must be imposed to obtain

physical solutions (i.e extremal solutions with a real and not complex metric). Therefore, BPS

black holes that are both supersymmetric and extremal do not exist for every value of J and Q,

but only for a certain curve in the J −Q plane; these black holes are called the Gutowski–Reall

black holes [28]. Finding a generalization of GGs in this context therefore not only solves the

issue of superradiant instabilities, since Gutowski–Reall black holes have Ω = 2 [8]; additionally

they might provide a new family of supersymmetric solutions in the whole J−Q plane, similarly

to how GGs provided new solutions in the whole E − J phase diagram down to the extremality

bound.

As for the CFT point of view, the advantage of the above setup is two-fold: first, the CFT

dual (SU(N) super-Yang–Mills) is known explicitly and well studied; second, supersymmetry

allows for better control on both sides of the duality. In particular, regular black holes should

be thought as a “quark-gluon plasma” on the CFT side [8]; the superradiant instabilities of

the black holes then indicate that this plasma is not stable, and must decay into a new CFT

phase. As for GGs, the gas of large l far away modes in GGs should correspond to a gas

of independent, fast rotating “glue-balls” that are expelled by the quark-gluon plasma [8]. It

would therefore be interesting to get a better understanding of what is actually happening on

the CFT side, and to what phase of the CFT GGs correspond to. Additionally, while RBHs are

not dominant thermodynamically, they exist as solutions and thus they should also correspond

to some different phase on the CFT side. A possible approach to connect to the CFT side of

the duality comes from index calculations and explicit microstate counting (see e.g. [29, 30,

31]); index computations can only “see” supersymmetric black holes, hence the importance of

extending GGs (and possibly RBHs) to the supersymmetric case.

Note that there has been already some work in finding a generalization of GGs in the dimen-

sional reduction of Type IIB supergravity on AdS5 × S5 [32]. The advantage of this setup is

that one can work on the uplifted solution — where charge is mapped to angular momentum

— in order to leverage the construction of GGs (which deals with angular momentum only). In

particular, the main proposal of [32] is that the hairy black holes that were speculated to be the

endpoint of charged black holes are themselves unstable, and they decay into so-called “Dual

Dressed Black Holes”. These solutions are obtained by considering a black hole surrounded by

one, two or three dual giant gravitons that live far away from the black hole and are thus weakly

interacting with it. Dual giant graviton are probe D3 brane in the 10D theory that wrap an S3

that moves inside the S5 [33]; they are stabilized by their high angular momenta and thus live

far away from the black hole. In the large N limit, they carry E = Qi (similarly to E = J for

large l modes of GGs), and thus we can store energy and charge in these dual giant gravitons,

outside of the black holes, producing new stable endpoints [32].
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Finally, besides an explicit construction of GGs and RBHs fully backreacted solutions, another

interesting direction to explore is to get a better understanding of the decay of superradiant black

holes into GGs. Numerical simulations do not give particularly conclusive results at the moment

[8]. The issue is that, exactly because large l modes live far away and are thus interact weakly

with the black hole, the decay of the black hole takes a really long time, making numerical

computations challenging. It would therefore be interesting to have some better understanding

of the decay, either by some more advanced numerical calculations or additional analytic insights.

In particular, one might also explore the role of black resonators and RBHs in the decay. While

the former are not stable and the latter have a lower entropy than GGs, they could still be

intermediate step in the decay of superradiant black holes to GGs. For example, a superradiant

black hole might first start to shed some of its energy and angular momentum into its center

of mass motion rather than the large l modes, since they live far away, forming a RBH. This

energy can then later be transferred to the large l modes, over a much longer period of time

[8]. A further study of these fascinating phenomena will likely provide a deeper inside into the

dynamics of black holes in AdS.
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