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INTRODUCTION 
 

We are used to think of humans as individuals, but we actually are ecosystems. We 

all carry upon and inside our bodies an incredibly complex microbial population that 

helps us digest, synthetize useful components and fend off pathogens. Indeed, this 

huge community of bacteria, which are mainly symbiont, cooperates with us in 

maintaining a dynamic equilibrium with the world surrounding us. Although often 

neglected so far, recent developments revealed that the delicate balance between us 

and our bacterial community may play a great role in defining our health status. 

Moreover, several studies have already proven that a certain degree of correlation 

exists between alteration of this micro flora and severe human diseases, like cancer, 

BPCO and bowl inflammatory diseases. To understand how this is possible, it 

suffices to think that only one in ten cells that populates our body is really “human”, 

while the remaining nine actually are microbial cells.   

Studies evaluating the composition of this microbial community, trying to 

understand its interaction patterns, as well as many other issues, are all considered to 

be addressing the human microbiota. The term microbiota is used to refer to the 

bacterial population considered as a whole, while its genomic content is in turn called 

the human microbiome. Indeed, we perform these exploratory analysis by means of 

new DNA sequencing technologies, whose capability of sequencing up to hundreds of 

millions of DNA fragments in a single run allows us to study the microbiota in its 

own environment: the human body.  

However, in order to control such a powerful tool, we first have to assess a 

standardized methodology to guide us towards trustworthy and truthful results. The 

aim of this thesis is therefore to understand a typical microbiome analysis pipeline, 

pointing out where a detailed examination of the available methods still has not been 

carried out and what the impact of such disambiguation might be. In details, we will 

give a brief introduction on what microbiome is, why and how it is investigated in 

Chapter 1, also providing some examples of published researches on the subject. In 

Chapter 2 we will give an overview of the available ecological measures used to 

assess biodiversity and we will evaluate their adequacy to microbiome studies’ needs 

by means of a simulation. In the third chapter we will investigate why normalization 

approaches are particularly needed when dealing with microbiome dataset and what 

are the possible methods to be used; moreover, we will propose a new method that 

addresses data sparsity. Again we will examine the impacts these approaches have on 

the obtained outcomes, by testing them on a simulated datasets. Chapter 4, lastly, 
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will describe how we structured our microbiome simulation, starting from real data 

analysis.  

Microbiome exploration could really give us a new perspective on human health and 

disease, providing us with a novel instrument to investigate and monitor how genetic 

and environmental factors impact on our physical condition. Great potential lies in 

its analysis, with the possibility for new medical treatments approaches to develop, 

possibly beneficial both for us and our symbiotic microbes. Genomics and 

bioinformatics tools, therefore, play a major role in exploring it, trying to understand 

if particular alterations in the microbiota could be markers, targets, or even causes, of 

some particular diseases. 
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CHAPTER 1: 

WHAT IS MICROBIOME? 
In recent years increasing attention has been devoted to explore the bacteria that 

inhabit our world, making use of technologies that allows us to observe them directly 

in their environment. Microbes are the most numerous and diverse kingdom in 

nature: indeed, the majority of the Earth's biomass is microbial. We usually relate 

microbes to infections and diseases, while their major role is quite the opposite: they 

play a part in maintaining the environmental equilibrium (e.g. in the carbon cycle) 

and, even when related to human, they often contribute to our health.  

Although many studies have been developed to describe microbial community in 

ecology context, from salty lakes to deep sea, great potential lies in the analysis of 

microbial community that lives in contact with human body, the so-called Human 

Microbiome. Exploring and characterizing it could give us unprecedented information 

to understand its structure, function and role in human health and disease.  

In this chapter, we will give a brief overview of what human microbiome is and why 

we study it; then we will describe how we explore it and, finally, we will report two 

recent studies to convey the possibilities these techniques give us for future 

developments.  

1 OVERVIEW 

As Joshua Lederberg  first defined, microbiota is "the ecological community of 

commensal, symbiotic, and pathogenic microorganisms that literally share our body space” [1], 

while we refer to microbiome as the collective genome that we can extract form it. 

Indeed, the human body really is an ecosystem, composed by an incredible number of 

different kinds of microbes, living inside and outside our bodies.  

To convey an idea of the impact human microbiome might play in our lives, we can 

look it from two different perspectives. First of all, quantitatively, the human body 

contains over 10 times more microbial cells than human cells: so, if each of us 

consists of about 10 trillion human cells, we have as many as 100 trillion microbial 

cells on and inside of our bodies. Secondly, from a functional point of view, we know 

that our DNA-and particularly our genes-encode the functions that characterize us. 

Each of us has about 20,000 human genes, but again we have between 2 and 20 

million microbial genes, helping us digest, fend off pathogens and react to external 
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agents. Our microbiota does indeed carry out a number of metabolic reactions not 

encoded in our genome that are necessary for human health.  

Many studies have targeted microbiota and its correlation with several diseases, from 

auto-immune pathologies to diabetes [2] [3] [4]  and interest in understanding his 

part in human health is growing worldwide. Actually a collaborative worldwide 

project has been developed, the Common Fund's Human Microbiome Project (HMP) 

program, aimed at developing tools and dataset for the scientific community to 

explore the role of microbes in human health and disease, as we will briefly describe 

in the following section.  

Traditionally, microorganisms have been studied by direct observation of cultures 

upon Petri dishes in the laboratory. Unfortunately, most of the microbial species 

composing human microbiota have never been successfully isolated in the laboratory, 

typically due to the inability to reproduce necessary growth conditions in the lab. 

Notably, microbes that grow well in culture may not be the most important nor the 

most abundant in a particular habitat (e.g. the well-known bacterium Escherichia 

Coli). This discrepancy between the number of bacteria directly observable from 

environmental samples and the number of cultured bacteria was defined “the great 

plate count anomaly”, by Staley and Konopka in 1984 [5] [6].  

Advances in DNA sequencing technologies have allowed many new fields of research 

to flourish, one of which, called metagenomics, studies samples of genetic material 

recovered directly from their natural habitats. These culture independent techniques 

allowed to begin the exploration of microbial communities independently of bacterial 

cultivation, thus granting the possibility to detect even bacterial strains that went so 

far undercover because of culture limitations. 

Most of the microbes our microbiota is composed by are difficult to grow on culture 

in laboratory. Therefore only the new techniques of DNA sequencing have allowed 

us to investigate microbiome by observing its composition in its own environment. 

Two different approaches are currently used to tackle this problem: marker gene 

targeted sequencing (using 16S rRNA) and whole genome shotgun sequencing. 

Although very (both from a technical point of view as well as for the actual 

throughput produced), these two techniques follow a pretty similar analysis pattern. 

Therefore, since target sequencing has a longer history of published studies and 

freely available databases and tools, in this thesis we will focus on this technique 

only, starting from describing what kind of gene 16S is and how it is commonly used 

to determine bacterial taxonomy [7].  
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In the next paragraphs we will describe briefly how the Human Microbiome Project 

developed, succeeding in using Next Generation Sequencing (NGS) on human 

microbiota’s DNA samples to investigate microbial richness and structure. We will 

also describe a typical analysis pipeline used to explore microbiome samples, from 

sequencing steps to data analysis.  

2 THE HUMAN MICROBIOME PROJECT 

The NIH Common Fund Human Microbiome Project (HMP) was founded with the 

primary goal of generating research resources that could aid comprehensive 

description of the human microbiota and analysis of its role in human health and 

disease [8] [9] [10]. 

“The NIH Human Microbiome Project is one of several international efforts 

designed to take advantage of large scale, high through multi ‘omics analyses to study 

the microbiome in human health. As a community resource program, the HMP is a 

partner in an international collaboration to generate rich, comprehensive, and 

publicly available datasets of the microbiome. This information will be available 

worldwide for use by investigators and others in efforts to understand and improve 

human health.” [11] 

The first phase of HMP (developed during 2007-2012) characterized the composition 

and diversity of microbial communities placed in the major mucosal surfaces of the 

human body, also evaluating the genetic and metabolic potential of these 

communities. The current phase of HMP (started in 2013 and ongoing until 2015) 

intend to create the first dataset integrating biological properties from both the 

microbiome and host from cohort studies of microbiome-associated diseases. 

In the HMP new sequencing technologies for culture-independent microbiome 

analysis complements genetic analyses of existing reference strains, providing an 

incredibly high quantity of data about the complexity of human-associated 

microbiota.  

Several goals have been set by this initiative: 

- determining if there exist a core human microbiome; 

- exploring the relation between changes in the human microbiome 
composition and disease conditions; 

- developing a repository of sequenced high-quality reference genomes as well 
as new computational analysis tools; 

- performing a complete characterization of the human microbiome.   
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The HMP cohort has targeted the microbial communities of 242 healthy volunteers, 

men and women, between the ages of 18 and 40, by sampling it from 15 or 18 body 

sites. Samples were collected non-invasively from 5 major sampling spots: oral 

cavity, nasal cavity, skin, gastrointestinal tract and urogenital tract [12]. Data were 

analyzed by both targeting 16S gene (elder analyses) and using a whole genome 

shotgun approach (more recent studies). The current reference database is planning 

to sequence up to 3000 genomes from both cultured and uncultured bacteria, to 

provide a comprehensive pool of high-quality sequences to be used in the analysis of 

human microbiome data. 

 

 
FIGURE 1 AN OVERVIEW OF THE HMP SAMPLING SPOTS AND THEIR MEAN POPULATION [13] 

 

3 THE 16S RIBOSOMAL GENE 

The 16S rRNA is a sequence, found in all organisms, that partly composes the 30S 

small subunit of prokaryotic ribosomes. This ribosomal gene has been long used to 

help identify taxonomic groups found in a sample, since the first studies from C. 

Woese and G. E. Fox in 1977 [6].  

16S is composed by several regions, as depicted in Fig. 3 (here an example of 16S 

from E. Coli). Some of these regions are highly conserved, and are thus called constant 

regions: they are common to all organisms and allow to distinguish and detect 16S 
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from the rest of the genome. Therefore, when 16S is used as a marker gene to be 

sequenced, common constant regions are targeted as primer binding sites. Other 

regions, defined hypervariable regions, are nine in number and are identified with 

symbols V1 through V9. These regions are used to infer taxonomic identity of 

organisms according to phylogeny, making 16S rRNA sequencing a keystone for 

metagenomic analysis. Actually, due to the rates of evolution of this regions, it is 

possible to infer taxonomy among bacterial strains by identification of species-

specific signature sequences useful for bacterial classification. The amount of 

sequence difference between different organisms gives indeed a proxy of the amount 

of evolution that taxonomically separates the organisms.  

Therefore, targeted 16S sequencing allows to discover what kinds of microbes live in 

different samples, simply by processing an environmental sample DNA. If all the 

ribosomal RNA genes in the sample are isolated, their sequences can be determined 

using multiplexed NGS. Sequences are then compared to collections of known 

sequences, stored in publicly available database to identify the microbes found in the 

original sample. 

There are three main database used to determine RNA sequences:  

 the Ribosomal Database Project (RDP) is a curated database that offers both 

ribosome data and analysis tools, including phylogenetical alignment of 

rRNA sequences and phylogenetic trees; 

 the Greengenes is a web application providing access to the 16S rRNA gene 

sequence alignment, helping users to annotate sequences; 

 the Silva database is an on-line resource for high quality alignment of 

ribosomal RNA sequence data to reference small and large subunits of rRNA 

[14]. 

4 NEXT GENERATION SEQUENCING (NGS) 

The term Next Generation Sequencing refers to a plethora of technologies, developed 

in the last decades, characterized by an incredible decrease in sequencing cost and 

increase in sequencing speed compared to traditional methods like Sanger 

sequencing. These high-throughput techniques have allowed many new research 

field to develop, like whole genome sequencing and RNA-sequencing. However, the 

advantages of NGS are balanced by shorter read-lengths and lower accuracy 

(increased error profiles), therefore an accurate evaluation of both their potentiality 

and drawbacks is an important consideration to be done. In this section we will focus 

our attention on two technologies, the Roche/454 GS FLX Titanium sequencer and 

the Illumina Genome Analyzer [15] [16], since these are the two most widespread 
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instrument used to develop microbiome analysis. We will describe in details how 

sequencing is performed using these two platforms, once sample collection and DNA 

extraction have been carried out. 

 

FIGURE 2 E.COLI 16S RRNA [17] 

4.1 ROCHE/454 GS FLX TITANIUM SEQUENCER 

Released in 2005, this was the first high-throughput sequencing platform available. 

Its technology combines emulsion-PCR amplification of the fragments followed by 

pyrosequencing, a sequencing-by-synthesis approach that reads the nucleotide 

sequence simultaneously as the sequence extension proceeds. 

First of all sequencing libraries are created, by adding two adaptors to each DNA 

fragment, one at the 3’ end and the other at the 5’ end of the molecule. These 
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adaptors are really pre-synthetized oligos, one of which contains a specific sequence 

complementary to the oligonucleotides bound on 28-μm sequencing beads. 

Therefore, hybridization is possible between molecules and beads at a very low 

molecule-to-bead ratio, so that the probability that each bead captures more than one 

fragment is minimized.  

Then, emulsion-PCR is performed by capturing the beads in an oily emulsion that 

keeps each bead separated. Within each droplet, PCR (i.e. Polymerase Chain 

Reaction) amplifies the DNA fragment, so that, at the end of the amplification 

process, each bead is covered by thousands of copies of the starting molecule. During 

PCR DNA is repeatedly denatured, primer annealed and copied using known primer 

sequences, DNA polymerase and nucleotides. 

When emulsion is broken, each bead (carrying million copies of a single DNA 

template) is captured using the second adapter and deposited on a micro-fabricated 

array (picotiterplate) containing up to 2 ∙ 106, 44μm well. Each bead fills a well and 

smaller beads, bearing useful enzymes like ATP sulfurylases and luciferases, are 

added to the plate before the reaction begins. The flow cell is exposed to a CCD 

camera for signal detection and to a stream carrying the nucleotides to be added in a 

fixed sequence. 

During the pyrosequencing phase, one nucleotide at time is washed over the flow 

cell, so that DNA polymerase can incorporate it when complementary to the 

template sequence. When an incorporation event occurs, a phyrophosphate is 

released as a side product, which in turn can react with ATPsulfurylase to synthetize 

ATP. ATP then reacts with luciferase emitting light signal, which is measured by 

the CCD camera. Conversely, if no incorporation occurs, no signal is emitted and the 

exceeding nucleotides are removed by the aphyrase enzyme or are simply washed 

away. 

This reaction allows the camera to sense light spot only in the position 

correspondent to a well in which an incorporation has occurred. Therefore, by 

combining the information from the sequence of nucleotides repeatedly washed on 

the array and from the emitted signal, a flow gram is produced, from which the 

sequencer is able to read the complementary sequence of the template investigated. 

The signal revealed is indeed proportional to the number of incorporation, at least 

for homopolimers sequences shorter than 8-mers. 

The 454/Roche sequencer allows for up to 800nt long read sequences, with a mean 

throughput of 750Mb/day. However the possibility for long homopolimers to 

happen causes a high rate of insertion/deletion and possible interference with 
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neighboring well’s signal. Moreover, the error rate usually increases with the read 

length because of a reduction in both enzyme quantity and efficiency. 

4.2 ILLUMINA GENOME ANALYZER 

This platform combines bridge-PCR amplification of the reference fragment with 

polymerase-based sequencing using reversible terminator technology. Indeed, 

similarly to Sanger sequencing, the incorporation reaction is stopped after each base 

ligation and the base calling is obtained thanks to fluorescent dyed labels 

incorporated in each base. 

Again the first step is creating the sequencing library adding two different adapters 

to both ends of the targeted fragment. Both the adapters are also tethered to a solid 

substrate, the flow cell, therefore it is possible for single stranded fragments to bind 

to the surface through complementary hybridization. Since a very low concentration 

of single stranded reference DNA is pumped on the flow cell, they will most probably 

attach to the surface far from each other: this will allow in the next steps to obtain 

clusters of identical copies of the starting fragment, ensuring strong and clear 

sequencing signal. 

Adding nucleotides and the required enzymes for PCR, bridge amplification can take 

place. The single stranded DNA molecule bends, so that its second adapter can 

hybridize with its complementary one, attached to the flow cell. In this way reverse 

strand can be synthetized, starting from the double-stranded adapters, thus creating 

the new strand covalently bound to the surface of the cell. If the double strand is 

denatured again, the single stranded fragments bend again, and another covalently 

bound reverse strand can be synthetized. By repeating this process of bending and 

reverse strand synthesis, the so called bridge amplification, clusters up to 1000 clonal 

amplicons are generated very closely on the array. Before proceeding with the 

sequencing step, one of the two strands population has to be cleaved from the cluster, 

in order to avoid base calling conflicts. 

After cluster generation, amplicons are all single-stranded, identically oriented 

copies of the target molecule, that can be sequenced by annealing primers to adapter 

oligos. This polymerase-based sequencing uses reversible terminator chemistry in 

order to ensure single-base extension of the reference. Indeed, the nucleotides 

available for the extension are modified by a chemically cleavable blockage at the 3’ 

position, preventing the DNA polymerase to incorporate more than one base at the 

time.  

Moreover, each base is laballed with four different fluorescent markers that identify 

the nucleotide at each cycle. Indeed, an imaging phase follows the incorporation, in 
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which laser excitation stimulates the marker to emit light signal, that can be read by 

a camera. In this way it is possible to add all four the nucleotides at each cycle, 

because automatic software will call the base using the specific fluorochrome. After 

base calling, it is possible to remove both the fluorophore and the blockage.  

This platform is characterized by a huge throughput, up to 5000Mb/day at less than 

one dollar per Mb. On the other hand, its read length is quite poor, no longer than 

100nt, although a paired end sequencing approach is also available to redress this 

issue. Its error rate is also quite high compared to Sanger sequencing, because of a 

combination of uncorrected PCR errors, reduction enzyme efficiency with read 

length and possible spurious sequences in the clusters.  

5 A TYPICAL ANALYSIS PIPELINE 

Mirobiome studies have to follow several phases to pass from marker gene data to 

diversity profiling. In this section we will revise the preliminary steps that we apply 

to raw data produced by a sequencer to generate a so-called OTU table, i.e. a matrix 

having species counts on its rows and data samples on its columns, as summarized in 

the shaded boxes of Fig.3. By doing so, we will implicitly refer to some of the most 

used and reliable pipeline already available, like QIIME and MG-RAST [18]. We 

will not describe the downstream analysis, because they depend on the study purpose 

and still there is no agreement on what processing are essential and what are not for 

a generic exploratory analysis. However, the reader should know that it is possible to 

develop diversity analysis, comparative metagenomics and network analysis starting 

from this very steps. 

As described in the previous sections, suppose we decided to conduct our microbiome 

analysis by targeting 16S rRNA gene. This means we have already detected an 

appropriate constant region to be targeted by our primer and we have amplified and 

sequenced the hypervariable region of interest (for example, V1-V3). Now that we 

have our samples prepared, we sequence them (for example, using Illumina or 

Roche/454 as described above) and we obtain the output reads of our target 

sequences. 

1) Preanalysis step: this phase requires the user to provide metadata containing 

information like sample ID, barcode sequences, primer sequences and 

information about the samples. It includes: 

a) Primer detection and read demultiplexing1; 

                                                             

1 A multiplex sequencing assay is a fast, high-throughput, cost-effective sequencing process in 
which a large number of different samples are pooled and sequenced together, attaching 
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b) Quality Filtering: usually a minimum quality Phred score of 25 is used to 

filter or trim the reads; minimum and maximum sequence length are fixed 

(usually around 200-1000 nucleotide range); maximum number of ambiguous 

bases and homopolymer length are set. 

2) 16S rRNA Detection and Clustering: during this phase an alignement tool is used 

to compare and identify 16S rRNAs against a well-known database (like RDP, 

Greengenes or Silva) using an identity threshold; this step is needed to eliminate 

every source of DNA/RNA content that might be sequenced that is not 16S 

rRNA derived from the microbial community under investigation. Then reads 

are clustered together at 97% identity, forming the so-called OTUs (Operational 

Taxonomic Units), which are operational group used in DNA sequencing as 

representative of species (or at least genera) present in the sample. The longest 

sequence or the most abundant one within the cluster after this OTU-picking 

procedure is used as the representative sequence for each OTU.  

3) Taxonomic Classification: the representative sequences are used to be aligned 

against a known database to obtain the taxonomic description of the respective 

OTU: phylum, class, order, family, genus and species (when possible). There are 

several taxonomic assignment algorithms available, like the Rdp classifier, Blast, 

Mothur, Rtax, Pyrotagger. All the OTUs for which taxonomic classification isn’t 

possible, are collected in the category “unknown” or “unclassified”. Based upon 

taxonomic classification it is possible to build phylogenetic trees of the samples 

when the metadata available are rich enough.  

As subsequent analysis, several possibility have to be taken into account: 

- Diversity Analysis, as will be described in Chapter 2; 

- Graphical inspection using tree plots, heat maps, bar plots and plot 

ordination methods (PCoA, NMDS, etc.), which are dimensional reduction 

methods useful to investigate trend in the data; 

- Differential abundance estimation, assessed by statistical testing; 

- Network analysis. 

It still isn’t univocally recognized by the scientific community whether or not it is 

necessary to apply a normalization step to the OTU table before moving on to 

downstream analysis: we will deal with this procedure ourselves in Chapter 3.  

                                                                                                                                                                 

individual “barcode” sequences to each sample so that they can be distinguished in the data 
analysis phase. It is a useful technique when targeting specific genomic regions, as in the 16S 
case.  
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FIGURE 3 OVERVIEW OF A TYPICAL MICROBIOME ANALYSIS PIPELINE 

6 RECENT STUDIES  

6.1 AN OBESITY-ASSOCIATED GUT MICROBIOME WITH 

INCREASED CAPACITY FOR ENERGY HARVEST (TURNBAUGH, 

P.J.; LEY, R.E.; MAHOWALD, M.A.; MAGRINI, V.; MARDIS, 

E.R.; GORDON, J.I.; 2006) 

In this article, the authors explored the already proven relationship existing between 

obesity and distal gut microbiota, seeking to establish a cause-effect association. 

Using both metagenomic and biochemical analyses they verified that change in the 

gut microbiome composition affect the metabolic potential of the host, by modifying 

its energy balance between intake and consumption. 

The main goal was to verify whether or not the microbiota of obese individuals could 

be more efficient at energy extraction from food, compared to the microbiota of lean 

individuals. Two different phenomena supported this idea:  

- obesity is characterized by variation in the relative abundance of the two 

dominant bacterial divisions, the Bacteroidetes and the Firmicutes, compared to 

lean individuals;  

- germ-free mice tend to gain weight when colonized with distal gut microbial 

community derived from conventional mice, proving that the microbiota 

encodes metabolic capabilities to process some otherwise indigestible 
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components; this impacts energy balance by increasing energy extraction 

from food income. 

By sequencing 16S rRNA samples for microbiome analysis the authors proved that 

an increase in the relative abundance of Firmicutes is typical of obese hosts, whose 

microbial profile tend to cluster together. Moreover, obese microbiome is enriched 

for gene tags encoding useful enzymes for polysaccharides digestion, that help the 

host degrading these complex molecules into simpler (and absorbable) ones. This 

entails that obese mice microbial composition do play a role in their ability to harvest 

energy from ingested food, thus favoring weight gain. 

In order to assess a cause-effect relation between gut microbiome and obesity, a 

microbiota transplant experiment has been developed, in which both obese and lean 

mice were used as donors of harvested microbiota. Interestingly, mice colonized by 

obese-derived microbiota showed an increase in body fat (during the two weeks of 

observation) that was significally greater than their lean counterparts, showing a 

percentage increase of adipose tissue greater than 45%. 

The results from this study therefore suggest that obesity-associated gut microbiome 

do play a role in increasing the host capacity to extract energy from dietary intake.  

6.2 DEVELOPMENT OF THE HUMAN GASTROINTESTINAL 

MICROBIOTA AND INSIGHTS FROM HIGH-THROUGHPUT 

SEQUENCING (DOMINGUEZ-BELLO, M.G.; BLASER, M.J.; 

LEY, R.E.; KNIGHT, R.; 2013) 

In this study, the authors investigated the development of the gastrointestinal tract 

microbiota, by exploiting high-throughput DNA sequencing and bioinformatics tools 

to compare bacterial population among individuals and time points. They collected 

data from many sampling spot of a small cohort of subjects to monitor developmental 

trajectories of microbiome composition at different stages of life, from newborn to 

older people.  

By supposing that bacteria pioneering newborn microbiota will have a major impact 

on its development in future stages of life, they evaluated how this primordial 

ensemble could lead to a complex and stable adult ecosystem. First of all, they 

reversed the idea that infant are delivered in an almost sterile environment: on the 

contrary, the birth canal is highly colonized by communities dominated by 

Lactobacillus and Prevotella species. Indeed, the vaginal community undergoes several 

changes during pregnancy, in order to provide newborns with beneficial bacterial 

strains. Therefore, vaginally delivered babies have their founder species to be related 
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mainly from their own mother’s vaginal microbiota. Neonates’ body sites are 

colonized by mainly this unique microbiota, showing largely undifferentiated 

bacterial communities throughout all their body sites. Before developing the highly 

differentiated adult microbial communities, infants have to be exposed to diverse 

human microbes during development that, together with genetic, physiochemical, 

and dietary factors will contribute to shape microbiome into a unique fingerprint of 

the individual. For example, breastfeeding has proven to reinforce vaginally acquired, 

lactic-acid producing bacteria in the infant’s GI tracts. 

However, an increasingly percentage of newborn babies are now delivered by C-

section, that prevents them to get through the birth canal. The authors indeed 

proved that C-section babies are initially populated by bacterial communities 

resembling adult skin microbiota. These communities comprise Staphylococcus, 

Corynebacterium and Propionibacterium, and their intestinal microbiota has proven to 

remain highly different from natural newborns for several months after birth. The 

lack of mother-derived microbial colonies affects the development of their 

gastrointestinal tract microbiota; several hypothesis are being evaluated concerning 

the possible relationship between C-section babies microbiome and various 

pathologies, including asthma and allergies. 

After birth, the gastrointestinal bacterial community increases rapidly in diversity, 

although with high instability as well. This trend is maintained over the first few 

years of life, contemporaneously with exposure to new environments, food and, 

therefore, bacterial strains. Infancy is indeed a timeframe of rapid colonization 

related to external events (like diet or health condition) in a cause-effect manner. 

Although it seems to be a rather individual evolution, major external factors like 

children’s origin clearly cluster children’s microbiota together, even if it is still 

unclear if diet, genetics or environmental factors impact on this patterns. Aging is 

itself a major feature in determining microbial population composition and diversity 

of gastrointestinal tract. 
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FIGURE 4 AN OVERVIEW OF TAXONOMIC ASSIGNEMENT AND COMPOSITION OF HUMAN MICROBIOME [19] 
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CHAPTER 2: 

HOW TO MEASURE BIODIVERSITY 
When comparing biological samples, it is interesting to evaluate how different they 

are, in order to relate them and assess their biodiversity. This concept, although 

intuitive, is very broad and sometimes difficult to define precisely: each of us has an 

inborn ability to detect differences among two specimens, however is far less obvious 

to agree on which features a diversity measure should focus on, or which properties it 

should have.  

Ecology first dealt with the need of measuring and comparing quantitatively 

diversity among species and habitats, in order to investigate and preserve 

ecosystem’s richness and variety. Therefore, ecologists felt the need to find suitable 

indices to measure both species richness and diversity among samples: some of them 

are derived from well-known theories, e.g. Shannon’s information theory [20] or 

Fisher’s log-normal distribution [21], while many others have been newly defined on 

purpose. Whittaker [22] [23], in 1972, first defined three different terms to measure 

ecological biodiversity: alpha, beta, and gamma diversity. Alpha diversity refers to 

the local diversity found within a particular site, area or ecosystem, and is often 

expressed as the total or mean number of species in that habitat. Beta diversity 

measures the observed differences among species belonging to different habitats or 

ecosystems. Gamma diversity is a measure of the overall diversity for different 

ecosystems or regions, and is determined both by local diversity (i.e. alpha diversity) 

and habitat diversity (i.e. beta diversity). 

Microbiome analyses make use of the concepts expressed above, although with 

somehow different goals: to compare bacterial population among body sites, to 

evaluate  differences between case and control patients or simply to explore 

microbiome richness in a new sampling spot. Therefore, they often employ diversity 

indices to quantitatively measure species richness within a single sample and diversity 

between different samples. When diversity indices are applied to ecology, they 

usually refer to the observed species in different habitats or regions. Microbiome 

studies can easily extend these concepts by referring to species or taxa presence, 

absence, abundance in samples belonging to different subjects or anatomical sites. In 

this chapter, as in most microbiome studies, attention is focused on alpha and beta 

diversity, applied within or between sample to assess biodiversity. Gamma diversity 

is indeed a disputed measure, since it can be obtained from alpha and beta diversity 

using different  models. However, debating its definition goes beyond our purposes 
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and we will therefore neglect it, keeping in mind that alpha and beta diversity 

already provide a complete description of what we need to calculate it. 

The rationale behind this review has emerged by noticing that a vast and 

heterogeneous literature concerning diversity indices exists, spanning from ecology 

to economics and, last but not least, to microbiome studies. However, it is not clear in 

the literature what indices do really measure and when to use them, how they can be 

adapted to microbiome features and how they are influenced by them. Many authors 

before us already faced this problem, all of them having an ecological background 

[24] [25] [26] [27] [28] [29] [30], well aware that, as Henk Wolda said [30]: 

[…] the results depend largely on the index chosen, which suggests the dangerous 

possibility that one can choose an index to demonstrate whatever one wants the data 

to show, without necessarily being able to prove that this is indeed what they do show. 

However, microbiome studies have seldom dealt with this problem, mainly 

borrowing measures that had already proven their effectiveness in other fields of 

study. Indeed, with the current computational capability of computers, there is no 

need to choose one particular index, since all of them can be calculated with ease. 

Nonetheless we believe that having many measures at hand without considering 

what properties they are inspecting or what can influence them, could worsen or 

mislead our understanding of the data, instead of shedding light on their inner 

characteristics. Thus we have structured this review, far from being exhaustive, to be 

focused on the pros and cons of applying some of the most used measures to 

microbiome data, aware of the biological question these indices are asked in this 

specific context and of the unique features this kind of data have. This is exactly the 

approach we are going to use, in the next sections, to explore alpha and beta 

diversity, separately, sure that it will be of some use to those approaching 

biodiversity investigation of microbiome data. 

1 USEFUL NOTATION AND TERMINOLOGY 

In the next sections we will review most of the proposed measures we found in 

microbiome literature to quantify biodiversity. In order to do so, we will here 

introduce a list of symbols and terms the reader may refer to in the next sections, for 

sake of clarity. Figures 5 and 6 provide further graphical explanation of the same 

concepts. 

 ecological niche: we represent it as a matrix, containing M different samples as 

columns and N different species as rows. 
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 species: in this context we will refer to species to indicate OTU, genera, or 

any taxonomic level we have decided to focus on. 

 true number of species R: it describes the (unknown) real number of species 

present in the sample from which data are drawn. 

 observed number of species S: it measures the total number of species within a 

sample having non zero abundance; it is always true that S≤R. 

 total number of species N: it represents the number of species found in the 

union set composed by all the samples (columns) considered. 

 total abundance in a sample Nk: total number of individuals/counts found in 

sample k; it equals 𝑁𝑘 = ∑ 𝑛𝑖𝑘
𝑁
𝑖=1 . 

 abundance nik: the measured quantity in sample k belonging to species i; note 

that it may represent the number of individuals identified as well as the 

number of count mapped to the specific taxa, depending on the context.    

 relative abundance pi: it describes what proportion of the total individuals in a 

sample belongs to a particular species i; it is calculated as 𝑝𝑖 =
𝑛𝑖𝑘

∑ 𝑛𝑗𝑘𝑗
 . 

 shared species (a): when comparing two samples, the number of species having 

nonzero abundance in both of them.  

 unique species (b and c): when comparing two samples, the number of species 

being nonzero in only one of them. 
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FIGURE 5 DEFINITION OF M SAMPLES, N SPECIES,  ABUNDANCES NIJ 

FIGURE 6 DEFINITIONS OF TOTAL NUMBER OF SPECIES N, MEASURED NUMBER OF SPECIES S, SHARED SPECIES (A) 

AND UNIQUE SPECIES (B AND C) 
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2 ALPHA DIVERSITY 

Alpha diversity is a measure, introduced in 1960 by Whittaker [22] [23], describing 

the ecological diversity found within a particular sample. In principle, the value of 

the diversity indices used to quantify it increases according to the number of species 

found in the sample (i.e. the so-called richness) and the evenness of their distribution. 

However, many different measures of alpha diversity are available. Here we consider 

measures of richness and evenness, both deriving from data distribution or species-

abundance models, as summarized in Table1.  

We can consider species richness and evenness as two independent characteristics of 

biological communities, that together contribute to its overall diversity. Indeed, 

species richness describes the contribution to the total alpha diversity brought by the 

number of different species found in the sample, while species evenness focuses on 

how different abundance distribution of individuals in the sample may affect its 

diversity. Nearly all richness and evenness indices are calculated starting from 

relative abundance of species, i.e. on 𝑝𝑖 = 𝑛𝑖𝑗/𝑁𝑗, with 𝑛𝑖𝑗  the abundance of the i-th 

species in the sample j and 𝑁𝑗 the total abundance of the sample. 

The goal of this section is to clarify what experimental features may affect alpha 

diversity analysis, looking for robust, clearly understandable and comparable 

measures among the many proposed. Many factors indeed are involved in 

determining the alpha diversity estimated for a sample: how many species are in it, 

how many of them are effectively measurable, how individuals are distributed among 

species, what is the discriminating power of the measure being used, and many 

others. To all these sources of uncertainty has to be added the complexity brought by 

the experimental features of microbiome analysis. Therefore we developed an 

introductory analysis of some of the available indices commonly used to quantify 

alpha diversity, followed by a simulation analysis useful to investigate both measure’s 

reliability and experimental factors’ impacting on them.  

2.1 DEFINITION OF ALPHA DIVERSITY INDICES 

Here follows a description of the indices used in this survey, divided into three 

categories: measures focusing on sample’s richness, measures dealing with evenness 

of their abundance, and measures summarizing them both in a unique index. 

Species richness 

 Observed species, Margalef, Menhinick 
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The simplest index available measures the total number of observed species S in the 

sample, i.e., the number of species showing a nonzero abundance in the dataset. 

Clearly, by its definition, this measure is correlated with sample size. Many authors 

have tried to correct this index, using different strategies: e.g. Margalef’s diversity 

index (𝐷𝑀𝑔 =
(𝑆−1)

ln 𝑁𝑗
) and Menhinick’s diversity index (𝐷𝑀𝑛 =

𝑆

√𝑁𝑗
) try somehow to 

disentangle this measure from the total abundance found in the sample. Both these 

indices show good discriminating ability, but their measures remain strongly 

influenced by the total abundance sampled.  

 Chao index 

This index, first proposed by Anne Chao in 1984 [31], aimed at correcting species 

richness, accounting for unknown missing species. It uses the number of rare species 

in the sample to evaluate how likely it is that there are more undiscovered species 

being ignored. Once we define ni as the number of species with abundance i (or with i 

sequences) the Sc1 index is composed by S, the observed number of species, n1 the 

number of species with only one sequence (i.e. "singletons") and n2 the number of 

species with only two sequences (i.e. "doubletons"), as explained by the formula: 

𝑆𝑐1 = 𝑆 +
𝑛1(𝑛1 − 1)

2(𝑛2 + 1)
 

If a sample contains many singletons, it is likely that more undetected species exist, 

and the Chao index will then estimate greater species richness than it would for a 

sample without rare species. 

Species evenness 

 Simpson index 

The original Simpson measure, named λ, was introduced in 1949 by Edward H. 

Simpson [32] as an estimate  of concentration in a classification, and it equals the 

probability that two entities taken at random from a dataset belong to same species, 

or, in formulae: 

𝜆 =  ∑ 𝑝𝑖
2 

λ has its minimum value to be 1/S, which is reached when all types are equally 

abundant, since proportional abundances are by definition values between 0 and 1, 

while its maximum value, 1, is obtained when no diversity is observed. It is 
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considered a dominance index, indeed it is heavily weighted towards the most 

abundant species in the sample and is less sensitive to species richness. Notably, λ 

obtains smaller values for increasing number of species, showing an opposite 

behavior compared to all other diversity measures. Therefore transformations of λ 

were proposed, that increase accordingly with increasing diversity: the inverse 

Simpson index, also noted as E, that is an evenness measure, simply computes the 

reciprocal of λ; the complementary Simpson index, C, calculates its one complement, 

so that its range remains limited to [0,1]. 

 Pielou index 

Pielou’s index calculates species evenness from diversity measures, by dividing 

Shannon-Wiener index (H) by its highest value (log2 𝑆), so that it converges for 

large samples. Even if this index has a large literature proving its poor performances 

[33], it is still one of the most widely used to assess species distribution evenness 

[34]. It is dependent from richness measure and particularly it depends on the 

correct estimation of R, the true number of species in the community. Using S, the 

number of observed species in the sample, as an estimate of the true number of 

species in the sample makes this index both highly dependent on sample size and 

very sensitive to inclusion or exclusion of rare species, thus it is difficult to achieve 

robust comparison between samples. 

 Camargo index 

Camargo index is an evenness measure independent of number of species that focuses 

only on the distribution of individuals among the species:  

𝐶𝑎𝑚 = 1 −  ∑ ∑
|𝑝𝑖𝑘 − 𝑝𝑗𝑘|

𝑁

𝑆

𝑗=𝑖+1

𝑆

𝑖=1

 

pik is the relative abundance of species i in the sample; pjk is the relative abundance of 

species j in the sample while N is the total number of species. However Mouillot [35] 

proved it is less robust compared to Shannon and Pielou since it has a very high bias 

when the total species richness is high. 

 Log-series index 

This index is widely used because of its good discriminant ability and its 

independence from sample size. It derives from Fisher’s log-series [36], where it is 

assumed that the abundance of species follows the log series distribution 
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𝛼𝑥,
𝛼𝑥2

2
,
𝛼𝑥3

3
, … ,

𝛼𝑥𝑛

𝑛
 

(each term gives the number of species predicted to have 1,2,3,....n abundance in the 

sample) and the expected number of species with ni observed individuals equals  

𝐸[𝑛𝑖] =  
𝛼𝑥𝑛𝑖

𝑛𝑖
 

where α is the parameter used to describe diversity and 𝑥 = 𝑛𝑖/(𝑛𝑖 + α). Usually 

both α and x are estimated with a maximum likelihood approach from the data, or 

with an iterative approach. Indeed, they can be found as the solution of the system 

{
 𝑆 = 𝛼 ln(1 − 𝑥)

𝑁 =
𝛼𝑥

1 − 𝑥

 

This index describes the way in which individuals are divided among different 

species, which is a measure of diversity. It shows a good discrimination power 

between sites, insensitivity to density fluctuations and has normal distribution, which 

allows for confidence intervals to be defined. Still, when data distribution deviates 

from the log-series, α becomes dependent on sample size. 

Both species richness and evenness 

 Shannon-Wiener index 

This index resumes the measure originally proposed by Claude Shannon [37] to 

quantify the entropy (also called “uncertainty” or “information content”) in strings of 

text. The Shannon index calculates the uncertainty in predicting the species an 

individual taken at random from the dataset belongs to. 

When all the species in the dataset are equally common, all values equal 1/S, and the 

Shannon index hence takes its maximum value, equal to ln(S). Conversely, when 

there is only one type in the dataset, Shannon entropy exactly equals zero, since 

there is no uncertainty in predicting the type of the next randomly chosen entity. In 

its most common version, it chooses 2 to be the base of the logarithm used, although 

the meaningfulness of the consequent unity of measure, bits, is already been reported 

as doubtful in ecological applications [25].  

 Hill’s number 
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Hill proposed a unifying statistic [38] that encapsulates several diversity measures 

depending on the value assigned to an adjustable parameter a. The most interesting 

cases are: 

 a=0, in this case the Hill’s number coincides with the total number of species 

observed, S. 

 a=1, H1=exp(H) is the equivalent of the Shannon-Wiener index, but expressed 

in terms of equivalent number of species. 

 a=2, H2=1/λ coincides with the invSimpson index 

 a→ ∞, Hinf=1/px, where px is the proportional abundance of the most common 

species and a dominance index (also known as Berger-Parker index [39]). Its 

reciprocal, Hinf increases accordingly to the diversity of the sample. 

Aside from the convenience of having an only index containing several diversity 

measures of use, increasing the value assigned to a allows the user to give more 

weight to the most abundant species in the overall calculation of the diversity value.  

All the measures revised so far are summarized for ease in Table 1. By simply 

inspecting the expressions of the indices proposed, we can already investigate their 

range and critical points. Clearly the total number of species S, the Chao index Sc, the 

Fisher log-series index α, the Margalef index and the Menhinick index (DMg and DMn 

respectively) do not have an upper bound (while they have a lower bound fixed to 0) 

because all of them depend upon the number of species detected, which may assume 

any value. Conversely, the Simpson index C, the Pielou index R and the Camargo 

index Cam have their range to be bounded within 0 and 1, because their value is 

obtained by calculation on probability values. Lastly, the remaining measures have a 

limited range but different from [0,1]: the inverse Simpson index E and the Hill 

number (here we consider mainly H1 and Hinf) span from 1 to S, while the Shannon-

Wiener index ranges between [0, ln 𝑆]. Some additional characteristics of the indices 

proposed in the literature must be taken into account. The Pielou index cannot be 

evaluated if S=1 (only one species detected), because both its numerator and 

denominator equal zero; similarly the Margalef index cannot be calculated if Ntot=1, 

because in this case S=1 too and again both numerator and denominator equal zero. 

Obviously, if an empty sample is taken into account, the invSimpson, the Hinf, the 

Menhinck and the Camargo index will attain an undefined numerical result too. 

Therefore we suggest to trim away samples showing Ntot=0 before evaluating alpha 

diversity.        
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Equation Referred to 

S Total number of species in the sample 

𝐷𝑀𝑔 =
(𝑆 − 1)

ln 𝑁𝑡𝑜𝑡
 Margalef diversity index 

𝐷𝑀𝑛 =
𝑆

√𝑁𝑡𝑜𝑡

 Menhinick diversity index 

𝐻 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑖

 Shannon-Wiener index 

𝑆𝑐1 = 𝑆 +
𝑛1(𝑛1 − 1)

2(𝑛2 + 1)
 Chao index 

𝐶 = 1 − 𝜆 

 

𝐸 = 1/ 𝜆 

Complementary Simpson index (named 
Simpson index from now on) 

 

Inverse Simpson 

𝑅 =
𝐻

log2 𝑁
 Pielou’s regularity index 

𝐻𝑖𝑙𝑙𝑎 =  (∑ 𝑝𝑖
𝑎

𝑖

)

1
1−𝑎

 Hill’s diversity number 

𝐶𝑎𝑚 = 1 −  ∑ ∑
𝑝𝑖 − 𝑝𝑗

𝑁

𝑆

𝑗=𝑖+1

𝑆

𝑖=1

 Camargo index 

α estimated from  

𝐸[𝑛𝑖] =  
𝛼𝑥𝑛𝑖

𝑛𝑖
 

Log-series index 

TABLE 1 ALPHA DIVERSITY MEASURES ANALYZED IN OUR REVIEW, 

2.2 DESIRABLE PROPERTIES OF ALPHA DIVERSITY INDICES 

As we mentioned in the introduction, our aim is to test the ability of the revised 

measure to reliably detect alpha diversity, and to assess their dependence on 

experimental features like sequencing depth, number of species and evenness of 

species abundance distribution. Microbiome studies do indeed suffer from the 
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difficulty to reliably estimate species composition, richness and diversity of a sample 

because of a combination of these factors. For example, if the sequencing depth 

available is smaller than the total number of species present, some taxa is going to 

remain inevitably undetected. However, even though we have a sequencing depth 

exceeding the total number of species, some of them could be so rare that the 

sampling process doesn’t manage to detect them. 

We would theoretically look for measures that are independent from sequencing 

depth, a common feature we are very concerned about in microbiome studies. It is 

indeed often variable among samples, thus preventing them to be reliably compared. 

Then we search for measures that combines all the characteristics we want to detect 

in our samples: species richness and evenness, true samples’ dimensions and features. 

For instance, it would be desirable for an index aimed at assessing species evenness 

to be almost insensitive in variation of species richness, if the abundance distribution 

is held fixed. On the other hand, we would hope a richness index to be able to extract 

the same number of species even if species abundance distribution is varied. We 

investigated these properties and the effect of a combination of the three features 

highlighted by means of a simulation study. 

2.3 SIMULATION STUDY 

In order to evaluate the performances of the measures investigated, we built up a 

simulation study in which all these diversity indices are tested upon samples derived 

from a combination of six different sequencing depth (1e+03, 1e+04, 1e+05, 4e+05, 

7e+05, 1e+06) and nine different total number of species, expressed as percentage of 

the sequencing depth (1%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5%, 100%). 

Their abundance data are extracted from seven different cumulative counts shapes, to 

account for the difference among samples with evenly distributed species abundance 

and samples with a few species prevailing on the others, as showed for clarity in 

Fig.7.  

Firstly we investigated the effect of total species variation on alpha diversity values, 

when sequencing depth is maintained constant and all seven abundance distribution 

are evaluated (Fig.8). We examined this scenario for all the indices discussed above 

when sequencing depth equals 1e+03, 1e+04, 1e+05, 4e+05, 7e+05, 1e+06 

respectively. Then we evaluate how alpha diversity behave when the sequencing 

depth increases under all seven possible species abundance distribution (Fig.9). We 

studied this scenario for all the indices discussed above when total number of species 

equals 1%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5% and 100% of the total 

sequencing depth. Lastly we inspected alpha diversity when the total number of 

species varies and focusing our attention on different situation characterized by 
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different sequencing depth (Fig. 10). We considered this scenario for all the indices 

discussed above when cumulative sum of count abundances follow shape 0, shape 1, 

shape 2, shape 3, shape 4, shape 5 and shape 6. Besides, we separately evaluate how 

using the measured number of species observed in the sample instead of the real total 

number of species present (here known because we are in simulation conditions) 

could affect some of the indices proposed. 

2.4 RESULTS ON ALPHA INDICES 

The next paragraphs and figures summarize the results of our simulation, showing 

how alpha diversity measures behave when one of these three aspects is investigated: 

variation of the sequencing depth, variation of the total number of species, variation 

of count abundance distribution shape (see Fig.7). Only the most interesting graphics 

are shown, in order to avoid redundancy. All the other figures, that may help the 

reader verifying the statement we developed, are available in Appendix A. 

 

FIGURE 7 DIFFERENT SPECIES ABUNDANCE DISTRIBUTION SIMULATED 

 

Dependency from sequencing depth  

If we look at the results obtained in Fig. 8, 9 and 10, we notice that all the revised 

measures are influenced by sequencing depth. The measures having range in [0,1] 
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rapidly attain their saturation value as sequencing depth increases. In details, both 

Simpson and Camargo index depend less evidently from the shape selected, and gain 

their maximum value of 1. However, if sequencing depth and total number of species 

are small the dependency from abundance distribution shape cannot be neglected. 

These measures therefore obtain the same value for samples having the same total 

number of species (here expressed as percentage of the sequencing depth), but  they 

are unable to detect any difference in richness among samples having different 

number of species but the same S/Ntot ratio (where Ntot equals the sequencing depth). 

Notably, Camargo index has very poor discrimination ability, since in most of our 

simulation conditions obtains a value near to its upper bound: this evidence confirms 

that it suffers from high bias whenever the total number of species is high [35], 

which might be an important drawback for applicability to microbiome studies.  

The other measures having a limited range, i.e. Shannon, inverse Simpson and Hill’s 

indices, show an opposite trend: for high sequencing depth and high number of 

species the alpha diversity value obtained is determined mostly by the particular 

species abundance distribution shape, as desirable, regardless of the total species 

detected. The remaining indices, Fisher’s alpha, Chao index, Dmg, DMn and the total 

species S show a peculiar behavior: likewise the other measures, the alpha diversity 

value they obtain is independent from total number of species if both sequencing 

depth and total species are sufficiently high (i.e. S≥10% of the sequencing depth, and 

Ntot≥105). However, for increasing sequencing depth, DMg, DMn and alpha show 

different trend depending on the different shape involved: for the most even ones 

their diversity value increases logarithmically for small sequencing depth and then 

decreases exponentially as soon as sequencing depth exceeds 105, while a saturating 

trend is shown for most uneven species abundance distributions. Interestingly, 

invSimpson confirms it can be used as an evenness index as stated in [33], so that 

Simpson and InvSimpson together might provide a complete description of both data 

richness and evenness. Simpson index shows under every condition a saturating 

trend towards one, reached exponentially when total species increase. Chao index 

and S show a similar pattern, as both increase logarithmically with sequencing depth 

and linearly with the total number of species, toward a saturating value that depends 

upon the abundance species distribution shape considered. On the other hand, Chao, 

invSimpson, alpha and Hill’s indices increase linearly with total species in the sample, 

with slopes depending on cumulative counts shape. 

In our simulation we decided to define the total number of species detected as a 

percentage of the available sequencing depth, therefore these two features have a 

coupled effect on the alpha diversity value obtained when one of these two 

characteristics is increased. We thus developed a quick example, in which the total 

species present are fixed, in order to disentangle these two aspects in our analysis. 
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We then set total species equal to 10, 100, 1000, 4000, 7000, 10000, while the 

sequencing depth considered are the same shown before except 1e+03. Fig. 11 shows 

the same condition as Fig. 8 when the number of species is held fixed. There are two 

main differences with the previous analysis: firstly only Simpson, Camargo and 

Pielou index attain a saturation value (which is, as already explained, equal to 1 for C 

and Cam and approximately equal to 0.7 for R), while all other indices increase 

accordingly with total species, following either a linear or a logarithmic pattern 

depending on the specific formula they use. Secondly, since the total number of 

species doesn’t increase with sequencing depth anymore, only Chao, Margalef, 

Menhinick, Pielou index and S change their value with sequencing depth. This 

testifies the impact that sequencing depth has on the ability to detect the true total 

number of species present, since higher sequencing depth allows us a more powerful 

measure for S. All the indices listed indeed depend on the value obtained for S. 

Dependency from species abundance distribution shape 

In this section we evaluated the impact that species abundance distribution has on 

alpha diversity measures by simulating seven different cumulative counts layouts, as 

displayed in Fig.7. The most even one, named “shape 0” is not realistic in practice, 

since it assumes that all the species are perfectly equally abundant. However it served 

us as a reference to assess the different indices performances under the simplest 

condition, in which no abundant species may hide any rare one. This in some cases 

lead to a pattern that distinguishes this shape only from the others in determining 

the alpha diversity value measured. Most of the indices proposed follow the same 

pattern when sequencing depth or total number of species is increased, with the 

alpha diversity measure increasing monotonically from the most uneven distribution 

shape to shape 0: indeed, all the indices that look at data evenness gain higher alpha 

diversity value when the most even distribution is investigated. Each measure 

however shows a different sensibility to count abundance distribution and therefore 

has a different range of values. Simpson and Camargo index are almost insensitive to 

shape variation, while all the other measures are highly dependent from it, since it 

determines the total number of species detected, S, as discussed in the next 

paragraph.  

Dependency from S  

Most of the indices considered in this survey attain the same value when calculated 

using the observed total number of species S (that is, the number of taxa showing a 

nonzero count abundance) or using the real number of species R, fixed in our 

simulation to be a percentage of the sequencing depth. Indeed, most of them directly 

use the relative abundance of species, derived from the count distribution only.  
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However, as shown in Fig. 12, sequencing depth and abundance distribution shape 

influence greatly the discrepancy found between S and R, and therefore have a major 

impact on the alpha diversity measures that directly use this value. Three of the 

investigated indices, in detail Margalef index DMg, Menhinick index DMn and Pielou 

index show a different trend under the two conditions proposed, as displayed in Fig. 

11, 12 and 13. DMg and DMn  linearly increase with the total number of species and 

they are insensitive to the used shape if S=R is considered. Under the same 

condition, DMg increases linearly with the sequencing depth, while DMn shows a 

logarithmically increasing trend.  

Conversely, if S equals the number of observed species, both DMg and DMn become 

sensible to the species abundance distribution shape and show a different trend 

depending on the sequencing depth available. Indeed, for low sequencing depth (103-

104) these measures still increase linearly with the total number of species detected, 

with the slope depending on the abundance distribution shape used. For higher 

sequencing depth (105-106) both tend to a saturating value, that they maintain 

constant, irrespective of total species increase. This trend shows how, for high 

sequencing depth, the alpha diversity value obtained by those index is more 

influenced by the abundance distribution shape (that determines how easily all the 

present species can be detected) than from the real total number of species. 

Moreover, under the same condition, DMg and DMn show a peculiar behavior when 

sequencing depth increases, depending on the total number of species observed. If the 

sequencing depth greatly exceeds the total number of species present they still show 

the same trend obtained for S=R; in this case the sequencing depth is high enough to 

detect all the present species. However, as the total number of species increases, the 

alpha value obtained begin to increase less than linearly for DMg, while DMn shows a 

pattern where it increases logarithmically and then decrease exponentially as the 

sequencing depth increases. The Pielou index shows a different pattern from the 

measures described above. In both the theoretical and realistic condition it tends to a 

saturating value and shows to be sensitive to the abundance distribution shape used. 

However, the saturating value changes among the two situations, and the 

dependency from the shape used appear more markedly when S=R. Under this 

condition it shows to change trend, decreasing exponentially towards a lower 

saturating value when the sequencing value increases, if the total number of species 

is sufficiently high (for example if S>10% of sequencing depth, when it is≥104). We 

can explain this pattern by looking at the index formula: R≥S always, especially for 

the most unevenly distributed count abundance, therefore the index value obtained 

with the measured total number of species will always have a smaller denominator 

thus maintaining higher values.  
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FIGURE 8 ALPHA DIVERSITY VALUES FOR SEQUENCING DEPTH=1E+05: MAXIMA AND MINIMA FOR EACH INDEX ARE 

                      min          max 
Total species 106.0000000 1.000000e+04 
Margalef        9.1201841 8.685021e+02 
Menhinick       0.3352014 3.162278e+01 
Shannon         3.6093441 9.210340e+00 
Chao          115.1666667 1.000000e+04 
Simpson         0.9666726 9.999000e-01 
InvSimpson     30.0053491 1.000000e+04 
Pielou          0.5364725 6.931472e-01 
Hill_1         36.9418156 1.000000e+04 
Hill_inf       20.0160128 1.000000e+04 
Camargo         0.9999988 1.000002e+00 
alpha          11.7092627 2.766290e+03 
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FIGURE 9 ALPHA DIVERSITY VALUES WHEN SHAPE=2: MAXIMA AND MINIMA FOR EACH INDEX ARE 

                     min          max 
Total species 1.00000000 1060.0000000 
Margalef      0.00000000   76.6532313 
Menhinick     0.03162278    6.0005101 
Shannon       0.00000000    5.9116085 
Chao          1.00000000 1175.2884615 
Simpson       0.00000000    0.9966664 
InvSimpson    1.00000000  299.9766592 
Pielou        0.00000000    0.6380804 
Hill_1        1.00000000  369.2996796 
Hill_inf      1.00000000  199.9908000 
Camargo       0.00000000    1.0000047 
alpha         0.10967162  139.9756918 
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FIGURE 10 ALPHA DIVERSITY VALUE FOR TOTAL NUMBER OF SPECIES=12.5% OF SEQUENCING DEPTH: MAXIMA AND 

MINIMA FOR EACH INDEX ARE 

                     min          max 
Total species 10.0000000 1.000000e+04 
Margalef       1.3028834 8.685021e+02 
Menhinick      0.3162278 3.162278e+01 
Shannon        1.5354869 9.210340e+00 
Chao          10.0000000 1.000000e+04 
Simpson        0.7360340 9.999000e-01 
InvSimpson     3.7883667 1.000000e+04 
Pielou         0.4622276 6.931472e-01 
Hill_1         4.6435859 1.000000e+04 
Hill_inf       2.6315789 1.000000e+04 
Camargo        0.9999000 1.000004e+00 
alpha          1.5445238 2.766290e+03 
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FIGURE 11 SAME AS FIG. 2, BUT WITH FIXED TOTAL NUMBER OF SPECIES: MAXIMA AND MINIMA FOR EACH INDEX 

ARE 

                       min          max 
Total species 2.0000000000 1.000000e+04 
Margalef      0.0868588964 8.685021e+02 
Menhinick     0.0063245553 3.162278e+01 
Shannon       0.0009284090 9.210340e+00 
Chao          2.0000000000 1.000000e+04 
Simpson       0.0001799838 9.999000e-01 
InvSimpson    1.0001800162 1.000000e+04 
Pielou        0.0009284090 6.931472e-01 
Hill_1        1.0009288401 1.000000e+04 
Hill_inf      1.0000900081 1.000000e+04 
Camargo       0.5000900000 1.000000e+00 
alpha         0.1490730138 2.766290e+03 
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FIGURE 12 DIFFERENCE BETWEEN THE MEASURED TOTAL NUMBER OF SPECIES, S, AND THE TEORICAL (SIMULATED) 

ONE, UNDER ALL SIX SEQUENCING DEPTH CONDITIONS. 

 

 

FIGURE 13 DIFFERENCE BETWEEN THE MARGALEF INDEX OBTAINED WITH THE MEASURED NUMBER OF SPECIES S 

AND WITH THE TEORICAL ONE, UNDER ALL SIX SEQUENCING DEPTH CONDITIONS. 

 

FIGURE 14 DIFFERENCE BETWEEN THE MENHINICK INDEX OBTAINED WITH THE MEASURED NUMBER OF SPECIES S 

AND WITH THE TEORICAL ONE, UNDER ALL SIX SEQUENCING DEPTH CONDITIONS. 
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FIGURE 15 DIFFERENCE BETWEEN THE PIELOU INDEX OBTAINED WITH THE MEASURED NUMBER OF SPECIES S AND 

WITH THE TEORICAL ONE, UNDER ALL SIX SEQUENCING DEPTH CONDITIONS. 

 

2.5 CONCLUSION 

This paragraph reviewed some of the most common alpha diversity indices used in 

microbiome as well as in ecology studies in order to evaluate samples richness. For 

each measure we revised its range, its critical point (if possible) and its value when 

sequencing depth, total number of species or counts abundance distribution is varied. 

We underline that in most cases S, the total number of measured species, is different 

from R, the total number of species actually to be found in the sample, and that this 

undermines the reliability of some of the revised measures. Furthermore we suggest 

to make careful use of indices with range limited to [0,1], since most microbiome 

studies show a sequencing depth and a total number of taxa sufficiently high to 

weaken their discriminating ability, pushing all the sample’s alpha diversity values 

towards 1.  

We suggest Hill’s number of order 1 in association with S and Fisher’s alpha could 

represent an informative basic subset of alpha diversity measures to be calculated 

when investigating microbiome samples. Indeed, as we stated above, S describes the 

total number of species observed, an important factor to be taken into account when 

exploring alpha diversity, since it affects all the other measures considered. H1 

calculates the equivalent number of species needed to obtain the same Shannon index 

as the one obtained from the data; since it takes values ranging from 1 to S, by 

looking at it we can gain an indication of our sample’s evenness. In fact, the most its 

value approaches S the most all the species are evenly distributed, while the most it 

approaches 1 the most it is likely that one species only is prevailing in abundance 

over the others. This measure, depending upon the total number of species, might be 
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difficult to use to compare samples with different S; however it uses the same unit of 

measure of total number of species, therefore is very easy to get some information 

about species abundance distribution. This last feature has a great impact on alpha 

diversity evaluation, therefore great caution must be used when dealing with uneven 

distributed samples. In fact two samples showing the same richness, i.e. the same 

number of species, might achieve a different alpha diversity value because one has 

more unevenly distributed abundances that hide rare species, and sequencing depth 

isn’t high enough to counterbalance this effect. Lastly, Fisher’s alpha shows a good 

discriminating ability and focuses on sample’s evenness, although it assumes a less 

significant range of values.   
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3 BETA DIVERSITY 

Beta diversity is a measure, introduced in 1960 by Whittaker [23] of the variation of 

species composition among two or more sites: it compares diversity between 

ecosystems by quantifying the amount of species difference between them. Whittaker 

himself proposed several approaches to quantify species variation [22] [23] and 

different measures of beta diversity are reported in literature. As a result, beta 

diversity has become quite disputed.  

Originally it was defined to measure diversity along ecologically relevant gradients, 

like time or space, however often beta diversity has been used as a generic term to 

describe any of the numerous available indices to measure compositional similarity or 

dissimilarity. This led to an overall confusion on what are the peculiar features and 

hypothesis of every single measure, thus preventing both aware choice of what 

measure to use and reliable comparison between different studies’ results. The 

available indices of beta diversity are not completely equivalent and can, in fact, 

quantify distinct data characteristics and have different values for the same data set.  

In this section our aim is therefore to assess indices properties and test their 

performance using a simulation which allows us to control for specific features. We 

tried to eliminate redundancy and favor clear understanding of the pros and cons of 

each of the reviewed measures, in order to provide the reader with an overview that 

can help him choose the best measure to use, according to his needs and data 

characteristics.   

3.1 DEFINITION OF BETA DIVERSITY INDICES 

We started from the work of Koleff et al. [24], who reviewed 24 measures of beta 

diversity expressed in terms of “matching components”, i.e. shared and unique 

species between two samples. All these measures have flourished after that the first 

one, introduced by Witthaker himself in 1960 [22], was proposed in two different 

versions. Each of these indices was originally justified to adapt to specific needs and 

to highlight different data characteristics. However it is clear that, starting from the 

24 we revised, some of them are redundant having the exact same expression. 

Therefore we compared and tested all of them in order to narrow down their number 

to a basic core of indices with desirable properties (Table 2; for the meaning of the 

terms a, b and c, see Figure 16). In Appendix B we explain the reasoning and 

methods beyond this subsetting. Here, for sake of clarity, we will always refer to b 

and c as number of unique species (of the two sample considered, respectively), to a as 

number of shared species among the samples and to N=a+b+c as total number of 

species (Fig. 16).    
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FIGURE 16 MEANING OF A, B, C AND N. [24] 

 

 Whittaker [22] [23] [40] 

This is the first dissimilarity index proposed, expressed as 

β𝑤 =
𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

if the calculation is developed. Here we will retain only the dissimilarity version of 

this measure, as explained in Appendix B. It is the one complement of the so-called 

Czekanowsji similarity coefficient, weighting the shared species two times more than 

the unshared species. Its value is limited to be greater than or equal to 0 and less 

than or equal to 1, by its very formulation. 

 Cody [41] 

Cody’s measure, simply expressed by 

β𝑐 =
𝑏 + 𝑐

2
 

focuses on the number of unshared species found in the two samples. Clearly this 

measure shows no upper bound, while has its lower bound to be limited to 0 because 

of a, b, c are all strictly positive. 

 Routledge [42] [43] 
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This measure, expressed as 

β𝑟 =
2𝑏𝑐

(𝑎 + 𝑏 + 𝑐)2 − 2𝑏𝑐
 

looks at a complex combination of a, b and c. Because of its composition, it will 

always take values smaller than one and will achieve a value equal to 0 every time 

one of the two samples does not show any unshared species. Routledge defined two 

other indices to assess beta diversity, calculated by 

𝛽𝐼 = 𝑙𝑜𝑔(2𝑎 + 𝑏 + 𝑐) − (
1

(2𝑎 + 𝑏 + 𝑐)
⋅ 2𝑎 ⋅ 𝑙𝑜𝑔2)

− [
1

2𝑎 + 𝑏 + 𝑐
⋅ ((𝑎 + 𝑏)𝑙𝑜𝑔(𝑎 + 𝑏) + (𝑎 + 𝑐) 𝑙𝑜𝑔(𝑎 + 𝑐))] 

and  

𝛽𝑒 = 𝑒𝑥𝑝(β𝐼) − 1 

both forced to have a log dependency on at least one of the components a, b and c, 

while maintaining their value always smaller than or equal to one. In particular, both 

βI and βe obtain a value equal to zero if and only if the two samples are composed by 

common species only (a≠0, b=c=0). 

 Magurran [44] 

This measure, expressed as 

𝛽𝑚 =
(2𝑎 + 𝑏 + 𝑐)(𝑏 + 𝑐)

(𝑎 + 𝑏 + 𝑐)
 

weights the number of unshared species by the sum of species richness found in the 

two samples, balanced by the total number of species. Clearly, by its own definition, 

this index hasn’t an upper bound, while reaching the minimum value of 0 if and only 

if the two samples share all the species. 

 Harrison [45] 

This index, proposed by Harrison et al. in 1992, is expressed as 

min(𝑏, 𝑐)

𝑚𝑎𝑥(𝑏, 𝑐) + 𝑎
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and therefore evaluates the proportion of the smallest amount of unshared species 

compared number of species found in the other sample. It has range in [0,1] because 

of its formulation. 

 

 Colwell & Coddington [46] 

The measure introduced by Colwell and Coddington, expressed as 

β𝑐𝑐 =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 

can be interpreted as a simple distance measure deriving from the so-called simple 

matching coefficient, the latter being the relative proportion of species shared among 

the two samples. This index clearly has value belonging to [0,1], reaching its 

maximum when there is no common species between the two samples and its 

minimum when the two samples are identical.  

 Williams [47] 

There are two measures this author proposed in 1996, expressed as 

 

β−3 =
𝑚𝑖𝑛(𝑏, 𝑐)

𝑎 + 𝑏 + 𝑐
 

𝛽19 =
𝑏𝑐 + 1

((𝑎 + 𝑏 + 𝑐)2 − (𝑎 + 𝑏 + 𝑐))/2
 

Both of them introduce a nonlinear relation between a, b and c. Since all the three 

components are coerced to be positives, β-3 has range strictly positive but less than 

one; the same holds for β19 although it can never achieve a value equal to zero. 

 Lennon [48] 

The estimate of βz in terms of matching component is developed by Koleff et al. in 

their study [24], and is expressed by 

𝛽𝑧 = 1 − [
𝑙𝑜𝑔 (

2𝑎 + 𝑏 + 𝑐
𝑎 + 𝑏 + 𝑐

)

𝑙𝑜𝑔2
] 
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It describes the estimated power law of the ratio between species richness of a larger 

quadrat with respect to a smaller one. However, since the physical area of the 

quadrats are involved in defining it, and since these concepts have no equivalent in 

the microbiome context, we will neglect such interpretation. Whenever the two 

samples considered share no species, the Lennon index will equal 1, independently of 

the value b or c show; on the other hand, it will equal 0 when the two samples are 

identical, i.e. they have all species in common. 

In summary, the 13 beta diversity indices to be taken into account are reviewed for 

completeness in Table 2. 

Symbol  Measure re-expressed Reference 

βW 

𝑎 + 𝑏 + 𝑐

(2𝑎 + 𝑏 + 𝑐)/2
− 1 =

𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

Whittaker (1960),  Magurran 
(1988). 

Harrison et al. (1992), Wilson & 
Shmida (1984), Mourelle & Ezcurra 
(1997), Sørensen (1948) based on 
Dice (1945); Whittaker (1975), 
Magurran (1988), Southwood & 
Henderson (2000) (sim), Harte & 
Kinzig (1997). 

 

   

βc 
𝑏 + 𝑐

2
 

Cody (1975). 

Weiher and Boylen (1994), Lande 
(1996). 

βr 

 

2𝑏𝑐

(𝑎 + 𝑏 + 𝑐)2 − 2𝑏𝑐
 

Routledge (1977),  Magurran 
(1988), Southwood & Henderson 
(2000) 

   

βI 

𝑙𝑜𝑔(2𝑎 + 𝑏 + 𝑐) − (
1

(2𝑎+𝑏+𝑐)
⋅ 2𝑎 ⋅ 𝑙𝑜𝑔2) − [

1

2𝑎+𝑏+𝑐
⋅

((𝑎 + 𝑏)𝑙𝑜𝑔(𝑎 + 𝑏) + (𝑎 + 𝑐) 𝑙𝑜𝑔(𝑎 + 𝑐))]  

Routledge (1977), Wilson & 
Shmida (1984) 
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βe 𝑒𝑥𝑝(β𝐼) − 1 Routledge (1977) 

βm 

(2𝑎 + 𝑏 + 𝑐)(𝑏 + 𝑐)

(𝑎 + 𝑏 + 𝑐)
 

Magurran (1988). 

 

β-2 

𝑚𝑖𝑛(𝑏, 𝑐)

𝑚𝑎𝑥(𝑏, 𝑐) + 𝑎
 Harrison et al. (1992) 

βco 1 −
𝑎(2𝑎 + 𝑏 + 𝑐)

2(𝑎 + 𝑏)(𝑎 + 𝑐)
 Cody (1993) 

βcc 

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 

Colwell & Coddington (1994, 
“complementarity” measure), 
Pielou (1984). 

Gaston et al. (2001), Jaccard 
(1912), Magurran (1988), 
Southwood & Henderson (2000) 
(sim.) 

β-3 
𝑚𝑖𝑛(𝑏, 𝑐)

𝑎 + 𝑏 + 𝑐
 Williams (1996) 

β19 

𝑏𝑐 + 1

((𝑎 + 𝑏 + 𝑐)2 − (𝑎 + 𝑏 + 𝑐))/2
 

Williams (1996), Williams et al. 
(1999) 

βsim 

min(𝑏, 𝑐)

min(𝑏, 𝑐) + 𝑎
 

Lennon et al. (2001), based on 
Simpson (1943) 

βz 1 − [
𝑙𝑜𝑔 (

2𝑎 + 𝑏 + 𝑐
𝑎 + 𝑏 + 𝑐

)

𝑙𝑜𝑔2
] 

Lennon et al. (2001), Harte & Kinzig 
(1997) 

TABLE 2 SELECTED BETA DIVERSITY MEASURES: SYMBOL, ACCORDING TO KOLEFF ET AL., FORMULATION IN TERMS 

OF MATCHING COMPONENTS AND REFERENCES . “SIM.” INDICATES THAT THE MEASURE WAS ORIGINALLY DEFINED 

AS SIMILARITY INDEX. 

 

Starting from a simple analysis of the beta diversity formulae, we can already detect 

some interesting information: for example we can understand that, by their very 

definition, all the measures considered but βc and βm will have their maximum value 

to be less than or equal to 1, while the two mentioned indices will have no upper 

bound. Moreover, we can evaluate whether or not these indices attain their 
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maximum value when a=0, meaning that the samples do not share any species 

(maximum dissimilarity): under this condition only four out of thirteen measures (βw, 

βcc, βsim, βz) show to attain a maximum value equal to 1 (irrespective of the values of b 

or c). βco can be calculated under this condition only if the limit for a→0 is considered, 

otherwise NaN is obtained. The other measures depend upon the value that b and c 

assume: as particular cases β-3, β-2, βI and βe always achieve a value lower than one, 

while βc and βm could attain every value belonging to the range [0, (b+c)/2] or [0, 

b+c] respectively. We moreover underline that great attention must be paid to limit 

condition that lead some indices to meaningless values: this is the case of βI, βe, βco 

and βsim. For these measures, if a=0 and b or c=0, a value equal to NaN is returned 

because their expressions are of the form 0 ∙ (−∞) or 
0

0
.   For all the measures whose 

value depend on b and c, minimum diversity is detected if either of those component 

becomes zero, except for βco, βI, βe. 

3.2 DESIRABLE PROPERTIES OF BETA DIVERSITY INDICES 

Here we define a list of properties we wish a beta diversity measure to fulfill: 

- Independence from the total number of species N: we would try to measure 

diversity between two samples without being influenced by the species 

richness detected. This means, for example, that we would obtain the same 

beta diversity for two samples sharing half of their species, independently 

from the total number of species they contain. 

- Range limited to [0,1]: since we might want to compare two samples using 

different indices, it might be useful to guarantee that each of them takes 

value in the same limited range. In particular we would require 

 a maximum value equal to 1 to be gained when two samples show 

maximum dissimilarity 

 a minimum value equal to 0 to be gained when two samples show 

maximum similarity 

These properties therefore will be satisfied not only if the measure has values 

in the desired range, but if it scales accordingly to its upper and lower bound 

as requested. Generally this properties would need independency from N to 

be satisfied too. 

- Linear scaling with a/N: as a consequence of the properties described above, 

we would like our measure to range between [0,1] following a linear trend 
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depending on the relative proportion of shared species with respect to the 

total number of species. However, logarithmic and exponential scaling will 

be considered as well. 

- No need for normalization: we would require our measure to satisfy our range 

constraints without needing any form of normalization of a, b, c nor any 

scaling. 

- Independency form b/c: this requirement is far less obvious, and depends on the 

user’s need. If you want your measure to attain the same value, 

independently from the numeric values assigned to b and c, then measures 

satisfying this properties has to be preferred. On the other hand, if you want 

a measure able to distinguish among several conditions sharing the same 

amount of species, a measure for which this property doesn’t hold should be 

chosen. For example, if two samples share half of the total number of species, 

you may be interested or not in the composition of the other half of total 

species, whether they are evenly divided between the two samples or belong 

to one of them preferentially. 

- Nested samples: this can be seen as a subcase of the previous one, asking how 

the measure should behave when two nested sample differ because the 

number of unshared species varies.  

We choose not to list here some basic properties, necessary in order to refer to our 

indices as measures, to focus the reader on some features we considered more 

interesting. However, all the listed measures satisfy non negativity, symmetry, 

triangular inequality and equality for identical samples; most of them, except those 

depending on N, verify the homogeneity2 property as well. 

We investigated these properties by means of a simulation study3, aimed at assessing 

the effect of total number of species N, the effect of relative number of unique species 

a/N and the effect of variation in b/N under nested condition on our measures’ 

performances. 

3.3 SIMULATION STUDY 

                                                             

2
 β(a,b,c)= β(2a,2b,2c): beta diversity should not be affected if all the matching components 

are multiplied by the same constant. All measures satisfy this criterion, except βc, βm [24]. We 

may refer to homogeneity as a particular case of independence from total species number N. 

3
 See the section Simulation Study for details. 



49 

 

We investigated several properties of the retained measures by means of simulations 

on presence/absence data. We computed each index, using the measures 

implemented in the vegan R package, starting directly from values assigned to a, b 

and c, tailored to inspect three main aspects that could affect beta diversity analysis.  

First of all we analyzed the effect of total number of species N (N=a+b+c) when the 

two samples compared share an increasing percentage of species, ranging from 0 to 

90%  and have the same number of unique species (i.e. b=c). In Fig. 17 we have a 

visual description of the simulation conditions while in Fig. 20 we look at the beta 

diversity value obtained when b and c ratio is held fixed to 1:1, a/N varies from 0 to 

0.9 (x-axis) and the total number of species is equal to N=1000/N=2000/N=10000, 

as highlighted with different colors. 

Then we analyzed the effect of relative number of unique species (b and c, Fig. 16) 

when the two samples compared share an increasing percentage of species, ranging 

from 0 to 90%. In Fig. 21 we look at the beta diversity value obtained when the total 

number of species is fixed (N=1000), a/N varies from 0 to 0.9 (x-axis) and when the 

number of unique species (b and c respectively) are in proportion 1:1, 2:1 and 10:1, 

here highlighted with different colors. Fig. 18 graphically clarifies the simulation 

conditions.  

Afterwards we analyzed the effect of variation in b and N under nested condition 

(c=0). Fig. 19 summarizes the simulation setup, while in Fig. 22 we graphically 

represent in black the beta diversity value obtained when the total species N is held 

fixed (N=1000) and the number of shared species (a) increases, ranging from 0 to 

90% (x-axis), while in yellow the beta diversity value obtained when the number of 

shared species remain fixed (a=10) while N varies from 10000 to 10. 
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FIGURE 17 SIMULATION CONDITION 1 (IMAGE COURTESY OF DOTT. F. FINOTELLO, PRIVATE CONVERSATION) 

 

FIGURE 18 SIMULATION CONDITION 2(IMAGE COURTESY OF DOTT. F. FINOTELLO, PRIVATE CONVERSATION) 
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FIGURE 19 SIMULATION CONDITION 3(IMAGE COURTESY OF DOTT. F. FINOTELLO, PRIVATE CONVERSATION) 

3.4 RESULTS ON BETA INDICES  

This paragraph and the next figures summarize the results of our simulation, 

showing the beta diversity value obtained for each one of the investigated effects. 

Several properties can be investigated by observing Fig. 20, 21 and 22. First of all, 

we inspect the influence of  total species N on the beta diversity values obtained 

(Fig.20). Clearly, most of the beta diversity indices are insensible to variation in N, 

except βm and βc, that scale accordingly and for which normalization might be 

required, as we will suggest later on. Moreover, we can probe how beta diversity 

values change when a/N ratio increases while all the other condition are held fixed. 

βc, βcc and β-3 linearly decrease when a/N increases, βm logarithmically decrease while 

all the other indices exponentially decrease under the same conditions. All of the 

measures here considered tend to 0 for a/N reaching 1, that is all of them achieve the 

smallest dissimilarity value possible when maximum similarity is obtained. 

Then we examined how beta measures behave when b/c ratio is varied (Fig 21): βr, 

βI, βe, βco, β19, βsim, β-2 and β-3 show different trends depending on it, but remain 

unvaried with increasing sample size. This means that the total number of present 

species do not influence the β diversity value attained but, on the other hand, the 
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relative proportion of unique species affects it somehow. If the former is a desirable 

property in β diversity measures, the latter is less desirable, since it suggests that 

differences in species richness in the samples (measured through α diversity) 

influences the beta diversity measured among the two samples. Moreover we claim it 

follows a counterintuitive pattern: the most the two sample have an uneven number 

of species present, the lower the values attained are, while higher diversity values are 

shown when the two samples are “even”, meaning that they have the same number of 

unshared species. For example, we report the values obtained with βr:  

b=c b=2c b=10c 

1.000 0.800 0.198 

We argue that in no way two samples might be considered less diverse from each 

other only because one has a prevalent number of unique species present than the 

other. Other indices obtain the same value irrespective of variation in proportion 

among b and c: this is the case of βw, βc, βcc, βm, βz. Those measures indeed focus 

mainly on the number of species shared (i.e. a) among the samples: therefore their 

dissimilarity value depends upon the relative proportion of shared species 

independently of the presence of unique –unshared– species. 

Afterwards we examined the behavior of our beta diversity indices under nested 

condition (Fig. 22). This describes the particular situation in which one sample 

shows species that are all included in a second sample, but the vice versa doesn’t hold 

true. First of all, we notice that βr, β-2, β-3, β19 and βsim maintain a constant null value 

under every condition, meaning that all of them focus only on the fact that two 

nested samples share all the possible species (for the less rich one) and are therefore 

similar. βw, βco, βcc and βz show linear decrease as a/N increases considering the 

species present in the two samples (although βco does not attain its maximum value in 

nested condition); in particular they appear to be insensitive of how b decreases 

(whether a increases when N is fixed or N decreases when a is fixed). Moreover, all 

of them attain high dissimilarity values when the proportion of shared species for the 

richer sample is small compared to its total number of present species, while showing 

a value equal to zero if and only if the two samples are actually identical. βc and βm 

linearly decrease when N is held constant and only the proportion of shared species 

is varied, while exponentially decrease when only a is held fixed because of the 

already proven dependency upon total species number, N. Lastly, βI and βe behave 

peculiarly under nested condition: they show an increasing value for c (or b, because 

of symmetry property) less than or equal to a, and then a decreasing value if c (or b) 

continue increasing over a. We further developed a specific simulation to deepen this 

trend, as shown in Figures 23 and 24. 
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FIGURE 20 EFFECT OF TOTAL SPECIES NUMBER N VARIATION WHEN A/N RANGES FROM 0 TO 1. MAXIMUM AND 

MINIMUM ACHIEVED FOR EACH MEASURE: 

              min          max 
w        5.26e-02            1 
c           5e+01        5e+03 
r        5.03e-03            1 
I        3.65e-02      6.9e-01 
e        3.72e-02            1 
m         1.9e+02        1e+04 
-2       5.26e-02            1 
co       5.26e-02            1 
cc          1e-01            1 
-3          5e-02        5e-01 
19      4.997e-03   4.9995e-01 
sim      5.26e-02            1 
z         7.4e-02            1 
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FIGURE 21 EFFECT OF VARIATION IN B AND C RATIO WHEN A/N RANGES FROM 0 TO 1. MAXIMUM AND MINIMUM 

ACHIEVED FOR EACH MEASURE: 

             min          max 
w       5.26e-02            1 
c          5e+01          500 
r        1.8e-03            1 
I        3.6e-02    0.6931472 
e        3.6e-02            1 
m        1.9e+02         1000 
-2      1.01e-02            1 
co         5e-02            1 
cc         1e-01            1 
-3         1e-02          0.5 
19       1.8e-03    0.4995025 
sim       1.1-02            1 
z        7.4e-02            1 
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FIGURE 22 EFFECTS OF DECREASING B IN NESTED CONDITION. MAXIMUM AND MINIMUM ACHIEVED FOR EACH 

MEASURE: 

              min          max 
w               0     9.98e-01 
c               0    4.995e+03 
r               0            0 
I       -4.44e-16    1.786e-01 
e       -4.44e-16    1.955e-01 
m               0  9.99999e+03 
-2              0            0 
co              0    4.995e-01 
cc              0     9.99e-01 
-3              0            0 
19     1.9998e-08     1.81e-02 
sim             0            0 
z               0    9.986e-01 
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FIGURE 23 BETA DIVERSITY VALUE FOR A=100, B=10 AND C VARYING FOLLOWING X-AXIS. IN LIGHT BLUE 

HIGHLIGHTED C=A. SINGLE VALUES FOR EACH POINT ARE 

beta_1       beta_2       beta_3       beta_4       beta_5 

w          0.05         0.09         0.35     8.35e-01      9.8e-01 

c           5.5           10           55     5.05e+02    5.005e+03 

r        0.0016        0.014       0.0475     1.65e-02     1.96e-03 

I         0.035        0.063        0.203      1.9e-01     4.59e-02 

e         0.036        0.065        0.225     2.09e-01      4.7e-02 

m        20.909        36.67       162.38      1.1e+03     1.01e+04 

-2      0.00909       0.0909         0.05     9.09e-03      9.9e-04 

co         0.05       0.0909        0.295        5e-01      5.4e-01 

cc        0.099        0.167        0.524    9.099e-01      9.9e-01 

-3        0.009        0.083        0.048    9.009e-03     9.89e-04 

19      0.00177       0.0139        0.045     1.62e-02    1.957e-03 

sim      0.0099       0.0909       0.0909     9.09e-02     9.09e-02 

z        0.0733        0.126        0.438    8.756e-01     9.86e-01 
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FIGURE 24 BETA DIVERSITY VALUE FOR A=0, B=10 AND C VARYING FOLLOWING X-AXIS. IN LIGHT BLUE HIGHLIGHTED 

C=A . SINGLE VALUES FOR EACH POINT ARE 

         beta_1     beta_2       beta_3       beta_4       beta_5 

w             1          1            1            1            1 

c           5.5         10           55     5.05e+02    5.005e+03 

r         0.198          1        0.198     1.99e-02     1.99e-03 

I         0.305      0.693        0.305     5.55e-02     7.90e-03 

e         0.356          1        0.356     5.71e-02     7.93e-03 

m            11         20          110     1.01e+03    1.001e+04 

-2          0.1          1          0.1        1e-02        1e-03 

co            1          1            1            1            1 

cc            1          1            1            1            1 

-3       0.0909        0.5       0.0909     9.90e-03     9.99e-04 

19        0.167      0.481        0.164     1.96e-02      1.99-03 

sim           1          1            1            1            1 

z             1          1            1            1            1 
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Here we find that βr, βI,  βe, β19 increase their value when c≤a, while begin decreasing 

if c>a; similarly, β-3, β-2 increase if c<a, and start decreasing as soon as c≥a. All the 

other indices simply confirmed their dependency/independency form b/c ratio and 

on a=0 or a≠0.  

Lastly, we focused our attention on the range each measure shows under these 

different conditions. βm and βc show a range wider than [0,1] suggesting that 

normalization is needed if we want to obtain values comparable with other samples 

having different sample size. β-3, βI and β19 show a range smaller than [0,1], therefore 

they might need normalization too since no condition can be found in which two 

samples are more diverse than having no shared species. All the other indices have 

values always included in [0,1].  

Even though different approaches are possible to tackle the normalization problem, 

here we choose to exploit only two of them: 

1. In order to make the measures independent of variation in the total number 

of species, we re-expressed the terms a, b, c as percentages: a’=a/N, b’=b/N 

and c’=c/N. The total number of species is a+b+c, therefore a’+b’+c’=1. 

2. To gain independence from species richness, we divided a, b and c by 

2a+b+c obtaining a’’, b’’ and c’’: in fact (2a+b+c)/2 is the mean number of 

species present in one of the two samples. 

The next figures show the same analysis we conducted before, expressed in terms of 

a’, b’ and c’.  
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FIGURE 25 SAME AS FIGURE 20, BUT WITH A’, B’ AND C’. 
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FIGURE 26 SAME AS FIGURE 21, BUT WITH A’, B’ AND C’. 
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FIGURE 27 SAME AS FIGURE 22, BUT WITH A’, B’ AND C’. 

 

We notice that measures showing desirable properties without need of these 

normalization factors remain unchanged by them or worsen their trend, therefore we 

claim not to apply these approaches by default, irrespective of the indices chosen. 

However, interestingly, some measure become redundant after normalization: βc 

equals βcc/2 if the first normalization approach is used and βw/2 with the second one; 

βm  equals βcc with the second method but gains no benefit by the first one. Therefore, 

since comparability among beta diversity measures is a highly desirable property, we 

could use these equalities to further reduce to eleven the total number of beta 

diversity indices to use, in order to avoid redundancy. However the other indices to 

be normalized do not benefit from this approach, partly because of the presence of the 

logarithm or the minimum/maximum value in their expressions, and are thus to be 
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treated differently.  For example β-3 can easily be normalized by doubling its value, 

since its range is limited to [0,0.5]. We tried to scale the other indices value by 

means of a multiplicative factor calculated under condition of complete dissimilarity 

of the two samples considered. Anyhow, we are still worried that this might bring to 

arguable results, hardly comparable on solid basis with the other measures available. 

To summarize all the properties reviewed, we refer the reader to Table 3, that  we 

suggest might be useful to  revise before choosing to use some of the indices 

proposed. 

 βW βc βr βI βe βm β-2 βco βcc β-3 β19 βsim βz 

Range [0,1] x  x    x x x   x x 

1 for max 
dissimilarity 

x       x x   x x 

0 for 
maximum 
similarity 

x x x x x x x x x x x x x 

Do not need 
normalization 

x  x    x x x x  x x 

Scales 
linearly with 

a/N 

 x    x x  x x    

Independent 
from N 

x  x x x  x x x x x x x 

Independent 
of b and c 

ratio 

x x    x  x x    x 

Nested 
condition: 

scales linearly 
with b 

x       x x    x 

Nested 
condition: 

constant with 
b variation 

  x    x   x x x  

TABLE 3 REVISED PROPERTIES AND MEASURES SATISFYING THEM 
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3.5 CONCLUSION 

This section aimed at obtaining a complete review of the dissimilarity indices 

proposed in Koleff et al. [24] and often used in microbiome as well as in ecology 

studies in order to evaluate beta diversity among different samples. We succeeded in 

reducing those measures from twenty-four to thirteen, thus avoiding redundant 

expressions, and we tested all of them to investigate their properties. We further 

suggested that some of these measures may benefit from a normalization approach, 

which could be useful in order to obtain comparable results. Moreover we studied 

their trend when the total number of species N varies, when the unique species ratio 

b/c varies, when the relative shared species quantity a/N varies, when the unique 

species b varies under nested condition.  

We suggest the reader, when dealing with beta diversity, to always include at least 

one among βw, βco, βcc and βsim in their list of tested indices. Indeed, all these 

measures have a predictable behavior in most circumstances and could be useful to 

investigate the data characteristics we have focused on, to be used in comparison to 

other indices in exploring different features, or even to evaluate other measure’s 

performances under specific conditions.  

We reviewed several features, summarized in Table 3, that must be taken into 

account  when those measures are used, in order to properly interpret their result. 

We suggest that all these properties and our remarks regarding some of them could 

be a useful guide to the user who needs to choose what indices to use among the 

many available, depending on his needs.   
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CHAPTER 3: 

THE “NORMALIZATION ISSUE” 
As we discussed in the first chapter, one of the main drawbacks of using NGS of tag 

sequences like 16S to explore the microbial composition of samples is that each one 

may show a different sequencing depth. This means that the total number of mapped 

reads for each sample may differ from one sample to another, sometimes by several 

orders of magnitude. As we saw in Chapter 2, sequencing depth has a huge impact in 

evaluating diversity too, since it undermines our ability to spot all the species present 

in a sample. Moreover, the presence of rare species or, as opposite, of predominant 

ones, may impair the ability of sequenced data to detect true species abundance 

distribution. 

The main goal of normalization is to eliminate bias carried by all these effects and to 

make species abundance comparable between different samples or groups of samples. 

Indeed, DNA sequencing data consist of discrete numbers, the raw counts, of the 

equivalent 16S sequence reads, that we use as a proxy of the relative abundance of 

bacterial individuals in the sample. This means, we are making inferences on the 

presence/absence and relative abundance of bacterial strains starting from a digital 

measure, the count itself, which does not describe the exact number of individuals 

observed. Moreover, it does suffer from several error sources, both connected to 

experimental practice as well as NGS technology inner features. Therefore, many 

studies have underlined that careful normalization approaches are need to correct 

count datasets before applying any downstream analysis.   

1 WHY TO NORMALIZE? 

Since we know that the total reads per sample can vary broadly within a single 

sequencing run, what should worry us most is what impact this inner feature of the 

data might have on our ability to reliably explore and analyze the microbial 

community they represent. First of all, the major impact of different library sizes lies 

in the strong correlation that several studies have proven [49] [50] [51] between 

sequencing depth and number of nonzero species detected in high-throughput 16S 

studies. For example, Paulson [49] demonstrated that both in the Human 

Microbiome Project and in the Lung microbiome study the number of species do not 

stabilizes even for samples with high sequencing depth, indicating that in both cases 

library size may not be sufficient to obtain a complete profile of the microbial 

community underneath (see Fig.28). This strong dependency implies as well that, 

especially in samples with low coverage, zero counts aren’t always describing absent 
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taxonomic features; they might be the result of undersampling, while being 

misinterpreted as absent. Different coverage implies different levels of uncertainty in 

our data, too. This leads to two different observations: firstly, how can we compare –

in terms of absolute values- samples having similar values but different reliability; 

secondly, if we choose to look at data in terms of relative proportions, how can we 

ignore that they result from the ratio of values having diverse variability. Fig.29 

wants to give a hint of both these problems and to underline the importance of 

choosing consciously the approach to use. 

Moreover most species, in marker-gene studies, are rare (that is, they are absent 

from a large number of samples). Sparsity of count data is a typical feature, caused by 

both biological and technical variability. We refer to biological variability (BV) to 

describe the natural variation of biological and physiology parameters due to 

differences among subject or within the same subject as time passes. Therefore, BV is 

often divided into two types, namely interindividual (differences between subjects) 

and intra-individual (differences in the same subject over time/condition). Technical 

variability (TV) is instead used to describe the intrinsic variability resulting from 

experimental processes, responsible of differences in parameters found within 

technical replication of the same biological sample. 

The amount of variability affecting a dataset can lead to a strong bias, especially 

when data are scaled for comparison and tested for statistical differences. Indeed, 

even if variation in read counts between technical replicates has been often 

adequately modeled as a Poisson random variable [52] [53] [54] [55], what interest 

us most when making inferences on population distribution is the variation of 

features among biological replicates. 

We consider counts nik as a raw signal describing the level of presence of the species i 

in sample k; it really represents the number of 16S sequenced reads assigned to the 

taxonomic level observed. We suppose that:  

 there are N (unknown) number of species in sample k; 

 the species i appears with Tik individuals (unknown) in the sample;  

 the DNA fragment sequenced have on average length l; 

 the corresponding 16S fragment has fixed length Li. 

Since the sequencing process can be modeled as a random sampling process [56], 

then the probability that one read is assigned to the i-th species equals 

𝑝𝑖𝑘 =
𝑇𝑖𝑘 ∙ 𝐿𝑖/𝑙

∑ 𝑇𝑗𝑘 ∙ 𝐿𝑗/𝑙𝑁
𝑗=1
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FIGURE 28 THE NUMBER OF OTUS DETECTED IN A SAMPLE DEPENDS ON SEQUENCING DEPTH. FROM [49] 

 

FIGURE 29 DIFFERENT EFFECTS OF SEQUENCING DEPTH ON COUNT DISTRIBUTION: A) SAME ABUNDANCE BUT 

DIFFERENT RELIABILITY, B) SAME PROPORTION, BUT DIFFERENT VARIABILITY, C) ONE ABUNDANT SPECIES 

"CONSUMES" MOST OF THE SEQUENCING DEPTH 
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where, for microbiome data, the 𝐿𝑖/𝑙 ratio can be neglected since there is no length 

bias. Then, the probability that nik read map to species i in sample k is obtained from 

a binomial distribution as 

𝑃(𝑛𝑖𝑘) = (
𝑁𝑘

𝑛𝑖𝑘
) 𝑝𝑖𝑘

𝑛𝑖𝑘(1 − 𝑝𝑖𝑘)𝑁𝑘−𝑛𝑖𝑘  

where 𝑁𝑘 is the total number of read in sample k, or correspondingly its sequencing 

depth. However, if 𝑁𝑘 is high and 𝑝𝑖𝑘 is low, we know that this distribution can be 

approximated by a Poisson distribution having parameter 𝜆𝑖𝑘 = 𝑝𝑖𝑘 ∙ 𝑁𝑘.  

We allow our dataset to contain different biological samples belonging to the same 

experimental group; therefore  𝑝𝑖𝑘 is a random variable depending on the parameter 

𝜆𝑖𝑘 which is itself a random variable, having its mean and variance. This means that 

the abundance of species i is not the same across different biological replicates, 

causing the count data variability to be over-dispersed [57]:  Poisson distribution 

cannot explain this additional dispersion, thus Negative Binomial distribution models 

are preferred [57] [58] [59].  

The expected value for 𝑝𝑖𝑘 is then 

𝐸[𝑝𝑖𝑘] = 𝑝𝑖𝑘 ∙ 𝑁𝑘 =
𝑇𝑖𝑘 ∙

𝐿𝑖
𝑙

∑ 𝑇𝑗𝑘 ∙
𝐿𝑗

𝑙
𝑁
𝑗=1

∙ 𝑁𝑘                         (∗) 

meaning that the average value of raw counts of species i in sample k is proportional 

(but not equal) to the true number of individuals Tik. Indeed, the measured number of 

count  𝑛𝑖𝑘 depends upon several factors, included: 

- the sequencing depth; 

- the abundance of species i in sample k; 

- the abundance of the other species found in sample k. 

A latent problem underlying microbiome count data set is how counts are 

distributed, within a sample, among different species. Indeed, it is easily understood 

that samples having a prevalent species –and being analyzed with a finite sequencing 

depth- are more likely to detect many reads belonging to the overabundant strain 

and to neglect other, rarer, species. This may lead both to underestimate the 

abundance of some taxa and to leave some others completely undetected, being 

considered as absent. Fig. 29 (c) shows this case. 
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Often the denominator of eq. (*) is referred to as size factor Sk. It is clear that it plays 

a role in introducing a systematic bias when comparing two samples: as a result, 

normalization techniques are required to correct different size factors and make 

count data comparable. The aim of normalization is indeed to remove systematic 

technical effects in the data, thus ensuring that technical bias impact is minimized in 

favor of true biological variation. The hypothesis needed to estimate the systematic 

bias and normalize data are that we are monitoring a high number of different species 

and that most of the samples belonging to the same experimental group have species 

abundance being similarly expressed, both easily verified when dealing with 

microbiome datasets. 

Many different normalization approaches are available, ranging from simple scaling 

to more complex methods; in the next sections we will describe the state-of-the-art 

techniques and discuss what approaches we have decided to investigate in our work.   

2 REVIEW OF STATE-OF-THE-ART NORMALIZATION 

TECHNIQUES APPLIED TO MICROBIOME 

Since no agreement is found on what normalization method have to be preferred 

when dealing with microbiome data, we decided to compare and evaluate the 

performance of six different approaches. Some of them are inherited from RNA-Seq 

pipelines, because of the intrinsic similarity of data features between these two fields, 

and some of them have already been evaluated in recent microbiome studies [60] 

[49].  

 Total sum scaling (TSS) or global scaling [52]: it is the most common 

normalization technique. It simply divides raw counts by the total number of 

reads found in the sample (the sequencing depth), i.e. it transforms counts in 

the corresponding proportion within the sample by simply computing 

𝑝𝑖𝑗 = 𝑛𝑖𝑗/𝑁𝑗 . Because of its simplicity, this method is not implemented in 

any specific R function. 

 Trimmed mean of M-values (TMM) [61]: in order to account for differences in 

sequencing depth between samples and to reduce the impact due to highly 

abundant species, TMM removes a percentage of the features showing the 

highest (in absolute value) log-fold-changes between the compared samples. 

Then it evaluates the normalization factors to align columns of the count 

matrix, and uses them to correct all data. Trimmed mean is implemented in 

the edgeR package [62] [63] [64] [65] [66] function calcNormFactors. 

 DESeq size factors [58]: this scaling approach uses robust regression to 

estimate the size factors for each column. Each sample is divided by the 
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geometric means of the rows; then the median (or another location estimator 

specified by the user) of these ratios, skipping the genes with a geometric 

mean of zero, is used as the size factor for this column. This method uses the 

so-called "relative log expression", proposed by Anders and Huber in 2010, 

to compute the size factor to be used. It is implemented by calling the 

function estimateSizeFactors of the DESeq package. 

 cumulative sum scaling (CSS) [49]: this method extends the precedent idea of 

quantile normalization proposed by Bullard et al. [53] [67] by looking for a 

data-specific quantile to use in order to normalize data in a coherent way. 

This is computed in a two-step procedure: first of all the percentile  for which 

to scale by is calculated, then the cumulative sum scaling factor is applied to 

the dataset. If we denote the lth quantile of sample j as 𝑞𝑗
𝑙 (meaning that in 

sample j there are l species with counts smaller than 𝑞𝑗
𝑙 ), and the sum of 

counts in sample j up to the lth quantile as 𝑠𝑗
𝑙 , then we look for a particular 

value 𝑙 to produce our normalized counts as 

 

𝑛𝑖�̃� =
𝑛𝑖𝑗

𝑠𝑗
𝑙⁄  

(eventually scaled by a common constant so that normalized counts have 

interpretable units). 𝑠𝑗
𝑙 should be the median scaling factor across all samples. 

The choice of  𝑙  is implemented in an adaptive, data-driven way: if we 

suppose that, up to this quantile, counts are derived from a common 

distribution, we can find  𝑙 as the value for which sample count distribution 

deviates from the reference. In details, if 𝑞�̅� = 𝑚𝑒𝑑𝑗(𝑞𝑗
𝑙 ) is the median lth 

quantile across all samples, it can be used as the lth quantile of the reference 

distribution [68], and 𝑑𝑙 = 𝑚𝑒𝑑𝑗|𝑞𝑗
𝑙 − 𝑞�̅�| is the median absolute deviation of 

sample-specific quantile from the reference. Since 𝑑𝑙  is stable for low 

quantiles but tends to instability as l grows, we choose 𝑙 to be the smallest 

value for which instability is detected, in terms of relative first differences. 

Lastly, since CSS-normalized samples are well approximated by a log-normal 

distribution, a log transformation to the normalized count data is applied. It 

is worthwhile noting that, if the function is not able to detect an appropriate 

quantile for which to scale, or the identified quantile is too low, then the 

conventional quantile scaling is performed, with 75th quantile threshold. 

Cumulative sum scaling is implemented in the metagenomeSeq package [49], 

with the two step obtained using cumNormStat and cumNormMat functions 
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respectively. As a side note, relative proportion of species remains unaffected 

by this normalization procedure. 

 rarefying: rarefaction is not really a normalization method, although it is 

widely used if it is so. It actually is a subsampling procedure that aims at 

reducing all the samples at a common sequencing depth, usually the smaller 

one available. We used the rarefaction method wrapped in the phyloseq 

package’s function rarefy_even_depth [69]. This method uses random 

subsampling to extract values from the actual sample data until the wanted 

library size is reached; for computational reasons sampling with replacement 

is the default approach, although the original idea proposed by Hurlbert [70] 

used a without replacement approach. We therefore implemented another 

version of it, more similar to the one wrapped in QIIME, which repeats the 

subsampling procedure without replacement several times (5 by default) and 

for different library sizes, specified by the user. 

Two recent papers, by McMurdie and Paulson [49] [71] addressed this very same 

problem by testing several normalization approaches on real and simulated data, in 

order to assess their properties and their performance when applied to different 

microbiome-specific problems. 

Joseph N. Paulson et al., in his study [49] proposed as a new normalization technique 

the cumulative-sum scaling (CSS), implemented in the metagenomeSeq package, which is 

able to deal with under-sampled data, a common feature of microbiome datasets. To 

assess how well it performs, they compared it to the common-used normalization 

technique of total-sum scaling (TSS), DESeq size factors and trimmed mean 

normalization. TSS had already shown in RNA-seq experiments [53] [68] to add 

bias that prevent correct differential abundance estimates. CSS aim is to remove 

biases in count data matrix introduced by features being preferentially amplified in a 

sample-specific manner.  

CSS proved to be the best method, among the tested ones, to separate samples 

belonging to a longitudinal study of gnotobiotic mice gut microbiome, according to 

diet on a multidimensional scaling analysis. Methods performance were assessed 

using the 1000 features with larger variance after normalization, on both a MDS and 

linear discriminant analysis, and then log ratio of class posterior probabilities were 

calculated using leave-one-out cross validation. CSS outperformed DESeq, TMM 

and TSS, also allowing CSS-normalized sample abundance to be better approximated 

by a log-normal distribution. 

The second contribution of this study was a novel distribution mixture model, the 

so-called Zero-Inflated Gaussian (ZIG) distribution, whose main purpose was to 



 

 

72 

 

explicitly account for undersampling when testing for differential abundance among 

sample groups. This model tries to mitigate bias in this kind of tests derived from the 

over-abundance of zero-counts species due to undersampling of microbial 

communities. Its performance was tested both on simulated and real data (the latter 

related to oral microbiome extracted by the Human Microbiome Project), and 

compared to the results obtained with others metagenomic tools like Metastats, edgeR, 

DESeq, LEfSe and Xipe. The insuccess of the other models investigated was 

attributed by the authors to the lack of robust modeling in Metastats and LEfSe, and 

the impossibility to meet the hypothesis upon which DESeq and EdgeR models are 

based. Therefore this new method, justified by the observed relationship in 

microbiome data between sequencing depth and number of non-zero species detected, 

was found to be able to estimate the probability that an observed zero is caused by 

undersampling or derives from the true absence of the species in the microbial 

community. 

Paul J. McMurdie, in his work with Susan Holmes in 2013 [71] focuses on 

explaining why the common approach called rarefaction is statistically inadmissible. 

They indeed claim that it requires to throw away available valid information 

resulting in loss of statistical power when rarefied data are investigated to identify 

differential abundance4. Rarefying proofs to be inadequate in two different ways: first 

of all, it equalizes the variance between all the samples by imposing them to be equal 

to the worst value among them, thus increasing uncertainty; moreover, it adds 

additional uncertainty because of the random subsampling step, in which we lose 

data information. 

Similarly, they criticize another common method, total sum scaling, because this 

approach does not take into account the heteroscedasticity problem. In other words, it 

is incorrect to compare the species simple proportions 𝑝𝑖𝑗 = 𝑛𝑖𝑗/𝑁𝑗  without taking 

into account the difference in the denominator (the sequencing depth of sample j) and 

the variance related to it.  

In order to support their statements, they built up two different simulation, in which 

they evaluated the impact of different normalization approaches on the calculation of 

sample-wise distances and on differential abundance analysis. For both simulations, 

they used real microbiome count data from the Global Patterns dataset, repeatedly 

subsampled and ad hoc modified. In the first one, DESeq variance stabilization 

                                                             

4  This term refers to, analogously to differential expression from RNA-seq, looking for 
statistically significant differences between the mean abundance of a species between two or 

more sample classes. 



73 

 

method5 and edgeR upper-quantile log fold change normalization6 were added to the 

two methods discussed earlier. For each of the normalization approaches used, 

sample-wise distance evaluation was then calculated using Bray-Curtis, Euclidean, 

Poisson, top-MSD and UniFrac distances. Unsupervised classification was then 

performed for each combination of experimental condition, looking at the proportion 

of simulated samples that were consistently assigned to their original sampling spot 

(Ocean and Feces, respectively), despite the modifications (mainly, mix between 

samples) applied.  

Conversely, the second simulation aimed at detecting differentially abundant species 

between two classes (here, target and non-target). This was achieved by artificially 

perturbing one class by means of a fixed effect size, since both of them derived by 

random sampling from the same source environment of the Global Pattern dataset. In 

this way, it was possible to evaluate how well the species artificially inflated were 

identified, while accounting for false positives. For each simulated experiment the 

following statistical tests (all corrected for multiple comparisons) were applied: two-

sided Welch version of t-test, exact binomial test, negative binomial test, negative 

binomial Wald test, an estimate of the posterior probability using a Zero Inflated 

Gaussian mixture model. 

According to their analysis, McMurdie and Holmes demonstrated that rarefying 

count data or using proportions both undermines the performance of clustering 

methods and statistical tests, with the latter suffering from an unacceptably high 

false positive rate, with results worsening with effect-size 7 . In detail, count 

proportions tended to perform better than rarefaction, but showed a higher FP rate 

when the effect size was large. This undesired effect was independent of the other 

analysis features; it was common to TMM or DESeq normalization too, but not to 

RLE normalization approach. Interestingly, rarefied count suffered from an increase 

in both Type II (decreased sensitivity) and Type I (decreased specificity) error; those 

effects are linked to the added uncertainty brought along by random subsampling. 

However, the same analysis proved that modelling counts with a Negative Binomial 

                                                             

5  This normalization approach transforms the count data (by dividing them by the size 
factor), yielding a matrix of values which are now approximately homoskedastic. It is 

obtained by calling the DESeq function getVarianceStabilizedData.  

6 This method adjusts counts so that the effective library sizes are made equal, but preserve 
fold-changes between groups and biological variability within each group. It is obtained by 
calling the edgeR function equalizeLibSizes. 

7 Here the authors refer to effect-size as the fold-change in species abundance artificially 
added among the true-positive OTUs. 
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with RLE normalization might be an effective approach: it was able to accurately and 

specifically identify differential abundance under every simulation condition. The 

newly proposed zero-inflated Gaussian mixture model, implemented in 

metagenomeSeq performed well too. 

3 A NEW METHOD: ZERO IMPUTATION 

As already noted above, differences in sequencing depth could affect our ability to 

sample rare species. This effect, however, cannot be corrected by scaling data using a 

normalization factor, because absent species would not benefit from it. Therefore, we 

propose a method that tries to correct specific absent species, after TMM 

normalization has been applied to scale data. This approach follows several steps: 

 detect samples having zero minimum value, identify their sampleID and their 

group 

 for each of them  

- spot the species showing zero abundance (if less than 5, skip the 

correction for this subject) 

- extract a subset of the data, composed by samples belonging to the 

same class of the sample analyzed and by all the species having 

nonzero abundance in the sample of interest 

- evaluate the distance matrix between the columns of this submatrix 

- order the samples according to increasing distance from the sample 

analyzed 

- extract the IDs of the four nearer samples 

- extract another subset of the data, composed by the four nearer 

samples and only the species showing zero abundance in the sample 

of interest 

- evaluate the weighted mean of the rows of this submatrix, with 

weights being the sequencing depths of each sample 

- replace only the zero abundant species of the sample of interest with 

the corresponding weighted mean. 

The underling intuition is that similar samples, i.e. having similar patterns of count 

abundance distribution, may give us cross-information to distinguish among true 

zeros (absent species) and false zeros (rare species remained undetected). Therefore, 

it searches for a subset of similar and trustworthy samples from which to infer the 

possible abundance of the species.  Their reliability is weighted using their 

sequencing depth, since higher library size have the highest probability to detect rare 

species. 
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4 METHODS ASSESSMENT 

We assessed the impact of the different normalization approaches by applying them 

to a simulated dataset, whose structure will be discussed in the next chapter. Here we 

only report that it permitted us to disentangle technical and biological variability, 

and therefore allowed us to monitor to what extent the normalization approaches 

were able to suppress the former, leaving the latter unaltered. Indeed, we had the 

possibility to compare normalized count data with the individual abundances found 

in the corresponding sample. We performed such a comparison by evaluating: 

1. Ecological distances, between the original samples and the normalized ones: 

in detail, we computed 

a. Euclidean Distance: even if it is not an efficient measure of similarity 

in ecological context, we used it as a reference measure. It is simply 

expressed by  

 

𝑑𝑗 = √∑ (𝑐𝑖𝑗 − 𝑠𝑖𝑗)2

𝑖
 

where j is the sample analyzed, i indicates the species, c is the 

normalized count while s represents the number of individuals found 

in the sample. 

b. Bray-Curtis distance: this distance, computed as 

𝑑𝑗 =
∑ |𝑐𝑖𝑗 − 𝑠𝑖𝑗|𝑖

∑ (𝑐𝑖𝑗 + 𝑠𝑖𝑗)𝑖
 

is a semimetric 8  distance measure commonly used to quantify 

differences between samples based on abundance data, whose value 

range in [0,1]. 

c. Canberra distance9: this distance, obtained as 

                                                             

8 We refer to a measure as semimetric, if it is a function that satisfies the first three axioms, 
that are 

 non-negativity: d(x,y)≥0 

 coincidence axiom: d(x,y)=0 if and only if x=y 

 symmetry: d(x,y)=d(y,x)  
but not necessarily the triangle inequality (d(x,z)≤d(x,y)+d(y,z)). 

9 This is actually a normalized version of the original distance, here reported as it is computed 
by the vegdist function of the vegan package in R. 
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𝑑𝑗 =
1

𝑁𝑍
∑

|𝑐𝑖𝑗 − 𝑠𝑖𝑗|

(𝑐𝑖𝑗 + 𝑠𝑖𝑗)𝑖
 

(where NZ represents the number of nonzero entries) is a metric used 

to compare ranked lists of elements, having its range in [0,1]. 

We computed each of these measures directly on raw data, on data 

proportions (that is, dividing each sample by the total number of 

counts/individuals found in it) and on ranked data. The first approach is of 

course pretty weak, since we do not expect to find the exact same values in 

samples having different unity of measures (individuals and counts). Both 

proportions and ranking look for a more general comparability, namely 

searching for relative abundances or at least scale ordination to remain 

unchanged between normalized counts and original individual abundances. 

In this context, the lower the value, the better the normalization approach 

performance, since it describes the ability of the method to reduce the added 

technical variability and to let count data describe directly real microbial 

abundances.  

2. Alpha diversity: as we explained in the previous chapter, our ability to assess 

both data richness and evenness depends on several factors, among which the 

possibility to detect rare species and to resembles as much as possible real 

individuals abundance distribution. Based upon the review we conducted, we 

decided to evaluate the following measures: Fisher alpha, the measured 

number of species S, Simpson and Inverse Simpson indices, Hill’s number of 

order 1. We will compute them for each normalized dataset, and we will 

compare their value with the ones obtained directly on real data, by means of 

two statistic tests: paired t-test and Wilcoxon rank sum paired test. 

 

3. Beta diversity: we computed samples’ diversity both within a single body site 

and among two different sites. Starting from the review carried out in the 

previous chapter, we evaluated βw, βco, βcc and βsim. Again, we will compare 

beta diversity values obtained from normalized dataset with the 

corresponding values computed on the biological replicates of our 

community. Statistically significant differences will be assessed using both 

the t-test and the Wilcoxon rank sum test in their paired version. 

5 RESULTS 

First of all, we look at the ecological distances found between real and normalized 

data. When applied to compare sample’s proportion with mean proportion found in 

the real biological replicates, Canberra distance always achieves his minimum value if 

the normalization approach using TMM is followed by the zero imputation 
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procedure we have described. Bray-Curtis distance confirms this trend, even though 

sometimes DESeq Size Factor seems to outperform the zero imputation. Euclidean 

distance suggests a similar conclusion, even if a better performing measure is more 

difficult to be univocally determined in this case, because most distance values are 

really close to each other. In some (yet rare) cases rarefied sample’s proportion 

manage to be particularly close to real data; however, this appears to be the 

exception rather than the rule, since most of the times rarefied data show very poor 

performances. DESeq size factor often shows to achieve proportions near to real 

ones, even though it outperforms zero imputation only in some specific samples. 

Most of the others normalization approaches do not improve in any way the 

distances found between real and normalized data proportions, since TMM, TSS and 

CSS simply leave relative abundance unaltered. However, when a paired comparison 

is performed in which real proportion are directly matched with normalized ones, 

less accord emerges from the three measures used. Indeed, both Canberra and 

Euclidean distance agree in defining trimmed mean with zero imputation the most 

effective way to draw proportions nearer to real ones, while Bray-Curtis seems to 

suggest that one of the equivalent methods between TSS, TMM and CSS achieve 

better performances.  

Analogous conclusion might be drawn when evaluating distances on ranked 

proportions of data: in every case the trimmed mean and zero imputation 

combination outperforms all the other normalization techniques. In Fig.30 we 

reported an example, showing that on average the distance obtained with other 

normalization approaches is always greater than the one obtained with the best 

performing method. In general, therefore, zero imputation seems to have a positive 

influence in shifting normalized data proportion (or ranks) nearer to real data ones. 

Then we compared alpha diversity (both richness and evenness) found in real and 

normalized data. Again, we firstly evaluate how normalization approaches perform 

when compared with the average value obtained from real data. Then we performed 

a pairwise comparison between all the alpha diversity values measured on real and 

normalized data. In addition, this time we assessed results comparability using two 

statistical tests: the t-test and the Wilcoxon test. Here the obtained results widely 

vary depending on the chosen index. Indeed, both Fisher’s alpha index and the 

observed number of species S benefits from the zero imputation, while all the other 

indices (Simpson, Inverse Simpson index and Hill’s number of order 1) seem to show 

results nearer to their true value when other normalization methods are employed. 

Statistical test results confirm that the measured species S detected on true data 

distribution and on normalized and zero imputed dataset aren’t significantly 

different, therefore this approach can be a useful instrument to explore data richness.  
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FIGURE 30 COMPARISON OF BRAY-CURTIS DISTANCE MEASURED BETWEEN REAL AND NORMALIZED RANKED 

PROPORTION WHEN ALL THE NORMALIZATION APPROACHES ARE CONSIDERED. 

 

 

FIGURE 31 S VALUES OBTAINED WITH DIFFERENT NORMALIZATION APPROACHES AND REAL VALUE DISTRIBUTION. 
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FIGURE 32 HILL’S NUMBER OBTAINED WITH DIFFERENT NORMALIZATION APPROACHES AND REAL VALUE 

DISTRIBUTION. 

On the other hand, the S value obtained using all the remaining normalization 

methods are significantly different from reality. All the normalization approaches 

proposed show a Fisher alpha value which differs significantly from the real one; 

however, the p-value obtained when the zero imputation is used is several orders of 

magnitude greater than the one obtained for all the others normalization approaches 

(2e-04 compared to values smaller than 10e-9). These results suggest that the zero 

imputation truly helps count data to recover some rare species remained undetected: 

indeed S well approximates real data richness and Fisher’s log series index may 

benefit from this recovery in better fitting the amount of rare species10. Conversely, 

when all the other alpha diversity indices are considered, both Wilcoxon and t-test 

agree in detecting zero imputation as the normalization techniques that achieves 

significantly different results. Moreover, in all cases the values obtained when this 

method is used is greater than the real one. All these indices focus on species 

evenness distribution, therefore zero imputation seems to inflate their values by 

making normalized counts more evenly distributed than real data. Fig. 31 and 32 

visually support our discussion by presenting both a richness and an evenness index. 

                                                             

10 Here we recall that the Fisher index α tries to fit species abundance using a log series 

distribution of the form 𝛼𝑥,
𝛼𝑥2

2
,

𝛼𝑥3

3
, … where each of these terms represents the number of 

species having abundance equal to 1, 2, 3, … 
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Afterwards we assessed normalization effect on beta diversity evaluation. We 

investigated both diversity within a single body site and between two different ones, 

and again statistical tests have been used to assess significant differences. The ability 

of normalized data to reproduce beta diversity found within a body site actually 

depends on the sampling spot itself. Indeed, in most cases all the normalization 

approaches show really poor performances, by greatly overestimating or 

dramatically underestimating diversity, independently from the measure chosen. It is 

even difficult to rank normalization approaches depending on their performances, 

since most of them have variable results. In all cases, although, scaling approaches 

like TSS, TMM and DESeq size factor tend to overestimate beta diversity: this can 

be imputed to the reduced ability to find common species if some of them are rare and 

therefore go undetected. On the other hand, zero imputation always underestimates 

beta diversity within a body site. This could be seen as a consequence of using similar 

data from the same sampling spot to correct zeros, since in this way all samples 

within it will look more similar to one another. Although an undesirable feature, it 

cannot be corrected, since there is no way to distinguish a zero to be corrected from a 

zero really deriving from biological variability. In all but one case, beta diversity 

assessed on normalized data resulted significantly different from the real value. The 

exception is obtained when CSS normalization is applied to the Buccal Mucosa 

dataset, as shown in Fig. 33. Indeed in this occasion only, when βw and βcc are used, 

the beta diversity estimated is comparable to the real one. However, no general 

conclusion can be drawn on the performance of CSS normalization approach, since it 

really depends on the underlying data distribution; to support our statement, Fig. 34 

shows its poor performance when applied to  the Mid Vagina dataset. 

Finally, we investigated the performances of normalization approaches when beta 

diversity between two different body sites is computed. In this occasion only, we 

limited our analysis at comparing the Mid Vagina and the Vaginal Introitus dataset. 

Statistical testing assessed that no normalization approach is able to achieve beta 

diversity values comparable to real data; however, visual investigation of boxplot 

shows that some potential may lie in the TMM normalization and zero imputation 

pipeline. Indeed, it seems to obtain results resembling real beta diversity more than 

other normalization methods do. Again this method tends to underestimate true 

diversity, because of its inability to discern missing data from true absent species.   
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FIGURE 33 BETA DIVERSITY ASSESSED USING WHITTAKER’S INDEX ON BUCCAL MUCOSA REAL AND NORMALIZED 

DATA 

 

 

FIGURE 34 BETA DIVERSITY ASSESSED USING CODY’S INDEX ON MID VAGINA REAL AND NORMALIZED DATA 
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FIGURE 35 BETA DIVERSITY BETWEEN MID VAGINA AND VAGINA INTROITUS EVALUATED USING LENNON’S INDEX. 

 

6 CONCLUSIONS 

In this chapter we proved that microbiome data suffer from several variability 

sources. Therefore they may benefit from the application of a normalization 

technique in order to make data reliably comparable. However, no standard exists on 

what approach to prefer to normalize microbiome data. We performed a simulated 

experiment, in which a mock microbial community was generated in-silico to assess 

normalization method’s performances. Unfortunately, there is poor accord in our 

result to set a golden standard approach; the technique to be preferred actually seem 

to depend on the aim of the investigation. In particular, none of the methods tested 

were able to correct data so that the estimated sample evenness or diversity is 

comparable with the real one. On the other hand, if sample’s proportion or the 

observed number of species are to be recovered, the new zero imputation approach 

we proposed seems to work quite well. The user should keep in mind, when using it, 

that this approach tends to overestimate data richness and underestimate its 

diversity; however, richer data than the simulated one could lead to better results. 

Indeed, if technical replicates are available in the dataset, the zero imputation 

procedure is more likely to correct only the zeros which are really present species, by 

choosing as its similar nearer samples the replicates itself. In our simulation, in fact, 

each sample was a different biological community, therefore similar samples were 

chosen among data that could really differ because of biological variability, that we 

should really try to preserve. 
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As a side note, we would like to underline that the zero imputation procedure we 

proposed starts from a rather poor-performing normalization approach, the trimmed 

mean. It could be interesting to investigate if other –better performing- techniques, 

like DESeq normalization or CSS, could be a better starting point to choose before 

applying zero correction. 
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CHAPTER 4: 

MICROBIOTA DATA SIMULATION 
In this chapter we will describe the steps and the statistical background we used to 

build a microbiome count data simulation, i.e. a pipeline that, based upon several real 

data observation, generates an in-silico microbial community and the count table 

derived from its sequencing. We have simulated a count-level dataset with N taxa 

(genus-level aggregated) and M samples, extracted from the following sampling 

spot: Buccal Mucosa, Tongue Dorsum, Vaginal Introitus and Mid Vagina, which 

data had been previously downloaded from the Human Microbiome Project database. 

According to precedent findings [60], microbiome data show evident over-

dispersion, therefore we applied a Negative Binomial distribution to model them. 

Since we believed the keystone effects to be monitored are both data sparsity and 

over-dispersion, we developed our simulation step-by-step, from bacterial individuals 

to sequenced counts, replicating in-silico the different stages of a marker gene 

sequencing experiment as follows. 

1 THE COUNT TABLE GENERATION 

We started by simulating a vector representing the mean abundance of each species 

in a bacterial community, specific for a body site. This vector, called 𝑚𝐵𝑆
11, contains 

the mean number (included zero) of bacterial individuals for all N the simulated 

species: 

𝑚𝐵𝑆 = [𝑚1, 𝑚2, … , 𝑚𝑁] 

However, in order to be independent from the total number of microbial individuals 

found, we decided to model directly the proportions, i.e. the probabilities that an 

individual from a sample belongs to a particular species. Therefore we set 

𝑝𝐵𝑆(𝑖) =
𝑚𝑖

∑ 𝑚𝑗𝑗
 

to be the proportion of individuals, on average, belonging to the i-th species. 

                                                             

11
 BS here stands for body site. 
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When exploring the bacterial community of a specific body site, we would typically 

compare it among many subjects. As we introduced in the previous chapter, different 

individuals may show variation in their microbial population because of biological 

variability: we modelled such variability using a Gamma distribution, one for each 

species involved. For each body sites, we generated 10 biological replicates, their 

values being sampled from the Gamma distributions modelled.  

Thus, if we indicate with 𝑠𝑖𝑗 the relative abundance of the species i in the subject j, it 

is distributed as a Gamma across all samples, with 

𝑠𝑖𝑗 ~ Γ(𝑘, 𝜃) 

where the two positive parameters, called shape k and scale θ, are related to mean and 

variance according to the following equations 

𝐸[𝑠𝑖𝑗] = 𝑘 ∙ 𝜃 

𝑉𝑎𝑟[𝑠𝑖𝑗] = 𝑘 ∙ 𝜃2 

We fixed 

𝜃 = 𝜙 ∙ 𝑝(𝑖) 

𝑘 = 1/ 𝜙 

thus 

𝐸[𝑠𝑖𝑗] = 𝑝𝐵𝑆(𝑖) 

(**) 

𝑉𝑎𝑟[𝑠𝑖𝑗] = 𝜙 ∙ 𝑝𝐵𝑆(𝑖)2 

meaning that the average proportion of species i across all subjects is equal to 𝑝(𝑖), 

while the variance for the same species depends on the square of the mean and from a 

constant value  𝜙  (**), which is equal for all the simulated species and whose 

meaning  will be explained later. 

To simulate the sequencing of the M samples, we use a Poisson distribution to 

generate the counts 𝑛𝑖𝑗  for each species i and sample j, which accounts for the 

technical variability of the sequencing step [72] [53] [52] [57]. Therefore, if  𝑠𝑖𝑗 is 
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the proportion of individuals belonging to the i-th species in sample j, then the 

number of counts 𝑛𝑖𝑗  is distributed as a Poisson with parameter  

𝜆𝑖𝑗 =  𝑠𝑖𝑗 ∙ 𝑁𝑗 

where 𝑁𝑗 represents the sequencing depth available for sample j. As known, 

𝐸[𝑛𝑖𝑗] = 𝑉𝑎𝑟[𝑛𝑖𝑗] =  𝜆𝑖𝑗 =  𝑠𝑖𝑗 ∙ 𝑁𝑗 

Indeed, when a Poisson distribution’s parameter 𝜆  is itself a random variable 

distributed as a Gamma, as in this case, Negative Binomial distribution arises. The 

resulting count matrix is therefore distributed following a Negative Binomial 

distribution for each species’ counts. 

Thus 

𝐸[𝑛𝑖𝑗] =  𝜆𝑖𝑗 =  𝑠𝑖𝑗 ∙ 𝑁𝑗 

𝑉𝑎𝑟[𝑛𝑖𝑗] = 𝜆𝑖𝑗 ∙ (1 + 𝜙𝜆𝑖𝑗) =  𝑠𝑖𝑗 ∙ 𝑁𝑗 ∙ (1 + 𝜙 ∙ 𝑠𝑖𝑗 ∙ 𝑁𝑗)  

𝜙 is therefore the overdispersion observed in sequencing data, which, as known, are 

distributed as a Negative Binomial [57]. 

This count generation approach has been repeated for four body sites, using different 

parameters for each of them, whose values are derived from real data as described in 

the following section. 

2 PARAMETERS VALUE 

We start by recalling that, in order to develop the simulation steps described above, 

there are a few parameters to be set: 

- the data matrix dimension: the number of species N and the number of 

observed samples M; 

- the original data proportions of the body site  𝑝𝐵𝑆(𝑖), from which to extract 

the biological replicates; 

- the overdispersion parameter 𝜙; 

- the sequencing depths. 

To obtain realistic data distribution, therefore, we firstly had to investigate real 

datasets from which to derive the parameters we needed. 
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We started by downloading from the HMP database the count tables for four body 

sites: Buccal Mucosa, Tongue Dorsum, Vaginal Introitus and Mid Vagina. A few 

preprocessing steps were needed to rearrange all data in a unique count matrix, 

having rows describing speciess and columns describing different samples/subjects. 

Data were aggregated by genus level and replicate samples deriving from the same 

subject were eliminated, keeping only the sample showing higher sequencing depth. 

Lastly, we removed OTUs showing zero abundance (i.e. absent) in all the samples 

from all four sampling spots, while arbitrarily deciding to keep only 10 subject for 

each body site, selected among the ones showing the highest sequencing depth. 

These steps left us with a count table with 130 rows and 40 samples, which was then 

used in our simulation to be N and M respectively. 

As we already stated, over-dispersed data are commonly distributed according to a 

Negative Binomial distribution [73] [74] [75]. The same holds true for the real data 

we investigated, as shown in the rightmost column of Fig.37. Therefore, we used a 

Negative Binomial model to fit them, separately for each body site. We calculated the 

common dispersion12 for all the species (𝜙) to be used in our simulation, assuming 

that all species had the same mean-variance relationship. Moreover, we computed for 

each species the average log number of individuals per million13, which is a useful 

descriptive measure of the “expression level” of the species itself, to be used in our 

simulation. However, before using such a variable as representative of microbial 

population, we had to correct it both for logarithm and for the added prior (used to 

avoid applying logarithm to zero values): 

𝑐𝑝𝑚𝐵𝑆 = 2𝐴𝑣𝑒𝐿𝑜𝑔𝐶𝑃𝑀𝐵𝑆  

𝑐𝑝𝑚𝐵𝑆 =  𝑐𝑝𝑚𝐵𝑆 − min (𝑐𝑝𝑚𝐵𝑆) 

We used 𝑐𝑝𝑚𝐵𝑆 as a proxy of the average abundance of each microbial strain in our 

mock community. In order to extract a coherent yet different microbial ensemble, we 

observed the histogram of the log distribution of 𝑐𝑝𝑚𝐵𝑆 and decided to fit it with a 

Gamma distribution (see Fig.36), from which we sample our simulated vector of 

individuals, 𝑚𝐵𝑆. We decided to use a Gamma fit because of the positive support of 

this distribution (𝑥 ∈ (0, ∞)) and to exploit the flexibility its probability density 

function has, depending on the parameterization chosen. We fixed our parameters 

                                                             

12
We performed this by calling the functions calcNormFactors and estimateGLMCommonDisp, 

found in the edgeR package 

13
 Described by the AveLogCpm variable calculated by estimateGLMCommonDisp. 
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after several trials so that the simulated vectors contain a number of zeros (i.e., of 

absent species) that is similar to real data; that’s the reason why we decided to adapt 

parameterization depending on sampling spot14. However, it is worth noting that our 

main goal is not the goodness of fit, but the possibility we have, by manipulating the 

Gamma parameters, to determine the number of zeros to be found in our sample, 

thus regulating data abundance evenness or unevenness. 

The last parameter to be set in our simulation is the sequencing depth used when 

replicating the sampling step. In our simulation we used real sequencing depth, 

extracted from our real data subset, being the ten highest library size found for each 

body site; however, the user could easily use a fixed sequencing depth or generate 

random ones, by fitting realistic library sizes. 

As a simple inner check, we show in Fig. 37 that the data obtained following these 

steps show a Negative Binomial trend, with over-dispersion comparable to real data. 

The main strength of this approach is related to our ability to control and manipulate 

the sparsity of the overall dataset by changing the initial parameters of the Gamma 

distribution. 

 

FIGURE 36 HISTOGRAM OF LOG COUNT PER MILLION ABUNDANCE FOR BUCCAL MUCOSA AND ITS GAMMA FIT 

                                                             

14
 For results reproducibility: Buccal Mucosa has k=0.6, θ=2; Tongue Dorsum has k=0.45, 

θ=2; Vaginal Introitus has k=0.65, θ=3; Mid-vagina has k=0.4, θ=3. 
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FIGURE 37 COMPARISON OF MVA PLOTS (LOG SCALE) FROM REAL AND SIMULATED DATA. BCV= BIOLOGICAL 

COEFFICIENT OF VARIATION; DISP=PHI. 
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CONCLUSION 
Humans and their microbiota together build a complex symbiotic ecosystem, whose 

ensemble cooperates at the benefit of both parts. Therefore, a rising belief advocates 

that the microbiota composition and its equilibrium might have a big role in defining 

human health. As we have tried to highlight throughout this thesis, next generation 

sequencing techniques give us great opportunities to explore microbiota, by 

analyzing its genomic content. However, as we pointed out, microbiome data suffer 

from some inherent drawbacks which might prevent our investigation to target 

microbiota in a truthful way. We here recall that both limited sequencing depth and 

added technical variability alter our ability to recover true data distribution, and that 

these features further complicates the investigation of often rare and/or unevenly 

distributed data like microbiome ones.  

We therefore felt the need to study and, at least partly, try to account for this kind of 

issues. Thus, the main contributions developed in this thesis can be summarized in 

four main points. First of all, several biodiversity indices, both targeting alpha and 

beta diversity, have been reviewed, tested, and their properties have been assessed in 

a simulation context. Starting from previous work, we have tried to eliminate 

redundancies, enforce consistency and assess applicability in the microbiome context. 

Secondly, we have explored normalization approaches, often applied to microbiome 

data to reduce technical variability. We started from recent literature and analyzed 

several different methods, some of which are borrowed from other genomic 

disciplines, like RNA-Sequencing. Besides evaluating their performances, we 

proposed a new method, useful to complement normalization with a second step, the 

zero imputation. Our method is aimed at selectively correcting data for missed 

species, a problem none of the traditional normalization approaches can deal with. 

Lastly, we developed a microbiota simulation that we used to test all the reviewed 

methods. 

Several interesting results have been pointed out throughout this work. First of all, 

our revision of alpha and beta diversity underlined that clarity is needed when 

exploring microbiome biodiversity. An extensive yet not consistent literature exists, 

that we have explored in order to favor a conscious understanding of the specific 

properties being tested by each index. Moreover, a smaller, consistent subset of 

measures has been proposed to be used as a basic toolkit to explore data biodiversity. 

Then, our simulation confirmed that normalization of microbiome data is an essential 

step to be applied in order to mitigate added technical variability. Our suggestion is 

to supplement it with another step, the zero imputation, that is able to compensate 

for rare undetected data. Its first implementation and testing on microbiome 
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simulated data has proven its potential in adjusting for species richness, although 

further work might be needed to improve data diversity detection too. However, this 

test has served as a proof of principle of its applicability and effectiveness in the 

microbiome data context. Lastly, we believe the microbiota data simulation we 

developed might be useful for further works were testing and evaluating of new 

methods are needed. 

Microbiome data exploration could give us a picture of the bacterial population 

inhabiting our body space, therefore all the efforts are needed to extract the most 

complete and reliable information possible from them. Even if not exhaustive, this 

thesis aimed at detecting, understanding and trying to account for several different 

sources of error that could mislead data analysis and results. We are well aware that, 

before microbiome accesses clinical application, research still have to cover a long 

and uncertain path; however, if this works succeeds in arising curiosity for the 

subject and some consciousness on both its potential and its features, we will feel like 

we have fixed one brick of this difficult road. 
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APPENDIX A  

The next figures summarize the obtained simulation results under different conditions: 

Measure 

Sequencing depth 

1e+03 1e+04 1e+05 4e+05 7e+05 1e+06 

S 

 

Margalef 

 

Menhinick 

 

Shannon 
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Chao 

 

 

Simpson (C) 

 

 

InvSimpson 
(D) 

 

Pielou 
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Hill_1 

 

Hill_inf 

 

 

Camargo 

 

 

alpha 

 

 

TABLE 3: ALPHA DIVERSITY VALUE (Y-AXIS) WHEN TOTAL NUMBER OF SPECIES INCREASES (X-

AXIS), UNDER 6 DIFFERENT SPECIES ABUNDANCE DISTRIBUTION (COLOURS AS IN FIG 1), WHEN 

SEQUENCING DEPTH INCREASES (DIFFERENT COLUMNS). 
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Measure 
Total species 

0.01 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.00 

S 

 

 

Margalef 

 

Menhinick 

 

Shannon 
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Chao 

 

Simpson (C) 

 

InvSimpson 
(D) 

 

 

Pielou 

 

Hill_1 

 



 

 

100 

 

Hill_inf 

 

 

Camargo 

  

alpha 

 

TABLE 4: ALPHA DIVERSITY VALUE (Y-AXIS) WHEN SEQUENCING DEPTH INCREASES (X-AXIS), 

UNDER 6 DIFFERENT SPECIES ABUNDANCE DISTRIBUTION (COLOURS AS IN FIG 1), WHEN 

TOTAL NUMBER OF SPECIES INCREASES (DIFFERENT COLUMNS). 
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Measure 
Shape 

0 1 2 3 4 5 6 

S 

 

Margalef 

 

Menhinick 

 

Shannon 

 

Chao 
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Simpson 
(C) 

 

InvSimpson 
(D) 

 

Pielou 

 

Hill_1 

 

Hill_inf 

 

Camargo 
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alpha 

 

 TABLE 5: ALPHA DIVERSITY VALUE (Y-AXIS) WHEN TOTAL NUMBER OF SPECIES INCREASES (X-AXIS), UNDER 4 

DIFFERENT SEQUENCING DEPTH CONDITION, WHEN SPECIES ABUNDANCE DISTRIBUTION IS VARIED RANGING FROM 

THE MOST UNEVENLY DISTRIBUTED TO THE MOST EVENLY DISTRIBUTED ONE (DIFFERENT COLUMNS). 
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APPENDIX B 
Our analysis started from the work of Koleff et al. [24], who already reviewed beta 

diversity measures and standardized their expressions in terms of shared or unique 

species. Table 6 contains all the 24 measures analyzed.  

Since we are interested in measuring quantitatively sample’s diversity, in our review 

we focus on dissimilarity indices only, meaning that when dealing with similarity 

indices we have always considered their complementary version (i.e. for each βsimilarity, 

we considered 1-βsimilarity): this choice allowed us to compare values that scale 

accordingly with samples diversity. In addition, since some of the 24 indices reviewed 

by Koleff et al. are redundant, having the exact same expression, we searched for 

coincident measures, that we decided to aggregate. The next subparagraph are aimed 

at explaining our procedure.  

 Whittaker 

Whittaker proposed two expressions of the same index, as shown in Table 6, one 

scaling as a diversity index while the other scales as a similarity index. As we stated 

previously we choose to deal with diversity measures only, therefore we will discard 

the second variant. The retained one is computed as 

𝑎 + 𝑏 + 𝑐

(2𝑎 + 𝑏 + 𝑐)/2
− 1 

whose expression coincides with β-1 and, if we re-express it as 

𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

it equals βt, βme and βhk too. Moreover, if we re-express βsor, originally a similarity 

index, in terms of dissimilarity by evaluating its one complement, this measure too 

becomes coincident with βW and can be therefore eliminated. 

 Cody  

His measure, expressed as 

𝑏 + 𝑐

2
 

equals βl and βWb/2.  
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 Colwell & Coddington 

βcc, calculated with the following equation 

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 

is the same as βg. Once again, if we re-express βj in terms of dissimilarity, we can 

exclude this index too since it coincides with βcc.  

We further decided to withdraw βgl since it is not a true measure of beta diversity but 

rather a measure of local alpha diversity gradients (it represents the difference in 

species richness between samples) and βrlb because it does not satisfy the basic 

property of symmetry [24]. Indeed, we choose to exclude any non-symmetric 

measure, since we want all the measures to remain unchanged if we symmetrically 

switch the two sets. By doing so, we obtained a coherent subset of non-redundant 

and comparable beta diversity measures to be used when testing samples for species 

dissimilarity. 
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 Symbol Measure re-expressed Reference 

1 βW 

𝑎 + 𝑏 + 𝑐

(2𝑎 + 𝑏 + 𝑐)/2
− 1  𝑜𝑟   

𝑎 + 𝑏 + 𝑐

(2𝑎 + 𝑏 + 𝑐)/2
 

Whittaker (1960), see 
also Magurran (1988) 

2 β-1 

𝑎 + 𝑏 + 𝑐

(2𝑎 + 𝑏 + 𝑐)/2
− 1 Harrison et al. (1992) 

3 βc 
𝑏 + 𝑐

2
 Cody (1975) 

4 βwb 𝑏 + 𝑐 
Weiher and Boylen 

(1994) 

5 βr 

2𝑏𝑐

(𝑎 + 𝑏 + 𝑐)2 − 2𝑏𝑐
 𝑜𝑟 

2𝑏𝑐

(𝑎 + 𝑏 + 𝑐)2 − 2𝑏𝑐
− 1 

Routledge (1977), 
see also Magurran 

(1988), Southwood & 
Henderson (2000) 

6 βI 

𝑙𝑜𝑔(2𝑎 + 𝑏 + 𝑐) − (
1

(2𝑎 + 𝑏 + 𝑐)
2𝑎𝑙𝑜𝑔2)

− [
1

2𝑎 + 𝑏 + 𝑐
((𝑎 + 𝑏)𝑙𝑜𝑔(𝑎 + 𝑏)

+ (𝑎 + 𝑐) 𝑙𝑜𝑔(𝑎 + 𝑐))] 

Routledge (1977), 
Wilson & Shmida 

(1984) 

7 βe 𝑒𝑥𝑝(β𝐼) − 1 Routledge (1977) 

8 βt 

𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

Wilson & Shmida 
(1984) 

9 βme 

𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

Mourelle & Ezcurra 
(1997) 

10 βj 

𝑎

𝑎 + 𝑏 + 𝑐
 

Jaccard (1912), see 
also Magurran 

(1988), Southwood & 
Henderson (2000) 

11 βsor 

2𝑎

2𝑎 + 𝑏 + 𝑐
 

Sørensen (1948) 
based on Dice (1945); 

see also Whittaker 
(1975), Magurran 

(1988), Southwood & 
Henderson (2000) 
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12 βm 

(2𝑎 + 𝑏 + 𝑐)(𝑏 + 𝑐)

(𝑎 + 𝑏 + 𝑐)
 Magurran (1988) 

13 β-2 

𝑚𝑖𝑛(𝑏, 𝑐)

𝑚𝑎𝑥(𝑏, 𝑐) + 𝑎
 Harrison et al. (1992) 

14 βco 1 −
𝑎(2𝑎 + 𝑏 + 𝑐)

(𝑎 + 𝑏)(𝑎 + 𝑐)
 Cody (1993) 

15 βcc 

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 

Colwell & Coddington 
(1994, 

“complementarity” 
measure), see also 

Pielou (1984) 

16 βg 

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 Gaston et al. (2001) 

17 β-3 

𝑚𝑖𝑛(𝑏, 𝑐)

𝑎 + 𝑏 + 𝑐
 Williams (1996) 

18 βl 
𝑏 + 𝑐

2
 Lande (1996) 

19 β19 

𝑏𝑐 + 1

((𝑎 + 𝑏 + 𝑐)2 − (𝑎 + 𝑏 + 𝑐))/2
 

Williams (1996), 
Williams et al. (1999) 

20 βhk 1 −
2𝑎

2𝑎 + 𝑏 + 𝑐
 Harte & Kinzig (1997) 

21 βrlb 

𝑎

𝑎 + 𝑐
 Ruggiero et al. (1998) 

22 βsim 

min(𝑏, 𝑐)

min(𝑏, 𝑐) + 𝑎
 

Lennon et al. (2001), 
based on Simpson 

(1943) 

23 βgl 

2|𝑏 − 𝑐|

2𝑎 + 𝑏 + 𝑐
 Lennon et al. (2001) 

24 βz 1 − [
𝑙𝑜𝑔 (

2𝑎 + 𝑏 + 𝑐
𝑎 + 𝑏 + 𝑐

)

𝑙𝑜𝑔2
] 

Lennon et al. (2001), 
see also Harte & 

Kinzig (1997) 

TABLE 6 ALL THE DIVERSITY INDICES REVIEWED IN KOLEFF ET AL. IN SHADED BOXES, THE MEASURES THAT WE HAVE 

RETAINED. 
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