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Introduction 

In this dissertation we examine a popular quantitative investment strategy commonly referred 

to as statistical pairs trading, which was first pioneered in the mid 1980’s by a quantitative 

trading group headed by Nunzio Tartaglia at Morgan Stanley (Gatev et al., 2006).  

Pairs trading works by exploiting profitable opportunities arising from temporary mispricing 

between prices of related securities which share a long-term equilibrium relationship. In the 

presence of mispricing, one security will be overvalued relative to the other security. Pairs 

trading strategies aim at exploiting this mispricing by simultaneously selling the overvalued 

security (short position) and purchasing the undervalued security (long position). The trade is 

then closed out by taking opposite positions on these securities, i.e. by selling the long position 

and off-setting the short position, when the security prices have settled back to their long-term 

equilibrium, leading to a profit for the trader (Huck and Afawubo, 2015).  

Pairs trading is classified within a group of quantitative trading approaches collectively referred 

to as statistical arbitrage strategies. The arbitrage part in this context is somewhat misleading 

as arbitrage implies a riskless profit opportunity at zero upfront net investment. Clearly a pairs 

trading strategy is by no means riskless since there is not guarantee that the securities’ prices 

will converge to the long-term equilibrium value (Avellaneda and Lee, 2010). Lazzarino et al. 

(2018) define statistical arbitrage as a relative value strategy with positive expected return and 

a tolerably small potential loss, highlighting the fact that the risk of potential losses is a crucial 

component of this type of strategies, which differentiate them from pure arbitrage strategies 

where negative payoffs are assumed to occur with zero probability. 

In this thesis we focus on cointegration-based pairs trading strategies in which the pairs 

selection process is based on the concept of cointegrated prices which possess a stationary long-

term equilibrium relationship with the associated property of mean reversion. The phenomenon 

of cointegration has been observed for the first time by Engle and Granger in 1987. The idea is 

very simple, even if two time series are found to be nonstationary, in some instances it is 

possible that a linear combination of them is stationary. If this is the case the two time series 

are said to be cointegrated. In other words, this means that it is possible that two time series, 

which are found to be individually nonstationary, tend to move together over time, in the sense 

that they cannot drift too far away from each other, except for transitory fluctuations. This 

cointegration relationship defines a sort of long-term equilibrium relationship to which the time 

series will be forced to return, despite short run deviations (Vidyamurthy, 2004).                                          

The aim of this thesis is to explore the profitability of different cointegration-based pairs trading 

strategies using the daily closing stock prices of the major banks in the Italian banking system 
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over the period from 2 January 2015 to 30 December 2019. Our findings indicate that almost 

all the strategies that we have analysed result to be significantly profitable under all the 

specifications analysed. Moreover, we investigate if the impact of losses, due to the closure of 

the positions at the end of the trading period before the convergence to the closing trigger has 

occurred, could be reduced if a longer trading period is taken into account. Our results show 

that an increase in the length of the trading period significantly reduces the number of 

unprofitable trades, leading to greater average annualized returns for all the parametrization 

examined. 

The dissertation is organized as follows. The first chapter is devoted to the introduction of the 

various classes of statistical arbitrage strategies, with particular emphasis on pairs trading. 

Specifically, we analyse the different pairs trading approaches cited in the literature, which are: 

distance approach, cointegration approach, time series approach, stochastic control approach 

and copula approach. The second chapter is an accurate presentation of all the statistical and 

econometric elements needed to understand the concept of cointegration, as exposed by Engle 

and Granger in 1987. The third chapter is dedicated to the analysis of the three steps required 

for the implementation of a cointegration-based pairs trading strategy, which are pre-selection 

of stock pairs, testing for cointegration and trading design. The fourth chapter is dedicated to 

our empirical analysis and the simulations, along with the main results of this research.  
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Chapter 1 

Statistical Arbitrage Pairs Trading Strategies: Overview 

1.1 Introduction 

According to Ross (2004, p. 1) the arbitrage is an investment strategy that guarantees positive 

payoffs in some circumstances with no possibility of negative payoffs and without initial net 

investment. A widely applied arbitrage tactic entails the sale of a security at a relatively high 

price in one market and the simultaneous purchase of the same security, or its functional 

equivalent, in another market at a relatively low price (Sharpe et al., 1999, p. 284).                     

The principle is very simple, the arbitrageur extracts a riskless profit exploiting the temporary 

discrepancies in the price of a security in different markets; he purchases the security in the 

market in which the price is lower and simultaneously he sells it in the market in which the 

price is higher.                                                         

The role of arbitrage is crucial in the analysis of securities markets, its effect is dual: it allows 

to bring the securities’ prices to their fundamental values and to keep markets efficient (Shleifer 

and Vishny, 1997).                                                                 

The assumption of no arbitrage represents a fundamental pillar of financial economics and 

mathematical finance. Indeed, as argued by Ross (2004, p. 2), no arbitrage is a necessary 

condition for an equilibrium in the financial markets: if arbitrage opportunities were present in 

the market, then the demand and supply for the securities involved would be infinite, which is 

inconsistent with equilibrium.                             

Analytically the absence of arbitrage condition can be described as follow: 

If ℙ(�̅� ≠ rf) > 0 then it must be true that ℙ(�̅� > rf) > 0 and ℙ(�̅� < rf) > 0 

Where �̅� is the return of the portfolio composed of available assets and rf is the return of the 

risk-free asset.                                                      

The meaning of this condition is that none of the two assets systematically produces a higher 

return than the other, thus it is not possible to gain a profit without the risk of incurring in a 

loss.                        

According to Shleifer and Vishny (1997) pure arbitrage, thus an investment strategy which 

requires no capital and entails no long run fundamental risk and which always leads to a positive 

payoff, is unlikely to occur in real trading environment, since in most real world situations 

arbitrageurs in order to arrange their trades need substantial amounts of capital and face some 

forms of risk. In other terms, their positions pay off only on average and not with certainty.      

When the risks, faced by the trader in arranging an investment strategy, are statistically assessed 
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it is appropriate to use the term statistical arbitrage.                     

Statistical arbitrage is not an investment strategy free of risk (i.e. it is not a pure arbitrage 

strategy), but it is an investment strategy in which the risks is assessed using statistical tools. 

Lazzarino et al. (2018) define the statistical arbitrage as a relative value strategy with positive 

expected excess return and an acceptably small potential loss. This conceptual definition 

underlines different important features of statistical arbitrage: it is defined as a relative value 

strategy, meaning that it is a strategy aimed to find mispricing using historical relationship 

between securities. Another relevant element is given by the expected positive excess return 

which highlights two important characteristics of statistical arbitrage: first, the fact that losses 

are allowed, since the focus is on expected return and not on positive payoff; this is crucial in 

order to differentiate statistical arbitrage from pure arbitrage where negative outcomes are not 

admissible. Second, the fact that arbitrageurs invest in a strategy involving some risk only if 

there are expectations of return higher than the risk free, i.e. positive expected excess return, 

whenever an initial investment is required. The last element is the acceptability of small 

potential loss; according to Lazzarino et al. (2018) this feature is crucial to differentiate 

statistical arbitrage from simple investment. A strategy in order to be classified as arbitrage 

needs to have a constrained loss profile, meaning that the strategy is closed whenever the 

prearranged criteria are no longer satisfied, e.g. when the loss is no longer acceptably small or 

when the expected excess return is no longer positive.                      

In other words, statistical arbitrage is an investment strategy in which one can accept negative 

pay-outs with a small probability if the expected positive returns are high enough and the 

probability of losses, assessed using statistical techniques, is sufficiently small (Saks and 

Maringer, 2008).                                        

Lazzarino et al. (2018) proposed the following classification of statistical arbitrage strategies 

in fixed income, based on the previous categorization introduced by Duarte et al. (2006): 

• Yield curve arbitrage (or Term structure arbitrage) 

• Volatility arbitrage 

• Mortgage arbitrage 

• Swap spread arbitrage 

• Capital structure arbitrage (or Credit arbitrage) 

• Pairs trading 

The yield curve arbitrage is a typical statistical arbitrage strategy which involves taking market-

neutral long-short positions at different point along the yield curve, as suggested by a relative 

value analysis (Lazzarino et al., 2018). The yield curve is a graphical representation of the 
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yields of fixed income treasury securities having equal credit quality but different maturities. 

When the yield curve is flat this means that short-term yields and long-term yields are similar, 

while when the yield curve is heavily sloped there is a significant gap between short-term and 

long-term yields. The yield curve arbitrage seeks to gain from treasuries misprices along 

different points of the yield curve, which represent profit opportunities for the investor, by 

taking long and short positions in bonds with different maturities in such a way that the risk of 

the portfolio is minimized.                               

The volatility arbitrage is a widely used trading strategy that seeks to profit from the difference 

between actual volatility, that is the amount of ‘noise’ in the stock market or the amount of 

randomness that transpires, and the implied volatility, i.e. how the market is currently pricing 

the option based on the stock (Ahmad and Willmott, 2005). Since the option pricing is 

influenced by the volatility of the underlying stock, if the actual volatility and the implied 

volatility differ, there will be a discrepancy between the expected price of the option and its 

market price which could generate profitable opportunities. According to Duarte et al. (2006) 

the simplest form of volatility arbitrage can be implemented through a delta-neutral portfolio 

obtained selling an option (short position in the option) and then delta-hedging the exposure to 

the underlying asset (long or short position in the underlying asset). The investor, in this 

situation, hopes to profit from the tendency of implied volatility to exceed subsequent realized 

volatility. Assuming that the price of the stock does not change, if the investor is correct about 

implied volatility declining, he/she may profit from the reduction in the value of the option.           

Mortgage backed-securities arbitrage is a strategy that consists of buying mortgage backed-

securities (MBSs) while hedging their interest rate exposure primarily through derivatives.                   

A mortgage-backed security is a securitization of a set of mortgages collateralized by real estate. 

Through the securitization the set of mortgages held by a financial institution is pooled and sold 

to investors which become the recipients of the cash flows generated by the mortgages 

(principal and interest payments). From the investor’s perspective, the MBS is a fixed-income 

security embedding a prepayment option: homeowners can choose to prepay all or part of their 

loans at any time during the life of the mortgages, making the mortgage’s future cash flow, and 

therefore the MBS value, uncertain. Specialized investors using proprietary models can 

estimate the option-adjusted spread (OAS) that is the security’s incremental value with respect 

to Treasury bonds with the same maturity, adjusted for impact of possible MBS prepayments. 

At this point, MBSs offering the highest OAS values, that are the cheapest MBSs, are purchased 

and hedged with short sale of Treasury bonds of equal duration or with the sale of Treasury 
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bond futures, establishing a position hedged against the interest rate risk (Stefanini, 2006, pp. 

173-174).             

A swap spread trade is a strategy in which the investor bets on the difference between a fixed 

and a floating yield. Following Duarte et al. (2006), it is structured in two parts: on the one 

hand, the trader enters into a par swap and receives a fixed coupon rate CMS (constant maturity 

swap rate) and pays the floating Libor rate (Lt). On the other hand, the trader shorts a par 

Treasury bond (CMT, i.e. constant maturity Treasury rate) with the same maturity of the swap 

and invests the revenues in an account earning the repurchase agreement rate (rt). Combining 

the two parts shows that the trader receives (CMS -CMT) that is the fixed interest rate 

component and pays (Lt - rt) which represents the floating spread. The swap spread arbitrage is 

a bet on whether the fixed component received by the investor will be larger than the floating 

spread paid.                        

Capital structure arbitrage is a trading strategy that seeks to take advantage of the relative 

mispricing between a company’s debt and its other securities, such as equity. The rationale for 

this strategy is to exploit lack of integration or synchronicity between different securities issued 

by the same company. According to Lazzarino et al. (2018) a simple version of capital structure 

arbitrage can be implemented exploiting the mispricing between a company’s credit default 

swap1 (CDS) and its equity. Using information about the equity price and the capital structure 

of an obligor, the investor computes the theoretical CDS spread that is then compared with the 

level quoted in the market. A discrepancy between the two values is the signal of a potential 

profitable opportunity for the investor. If the market spread is lower (higher) than the theoretical 

spread, then the profitable strategy will be a long (short) position on the CDS contract while 

simultaneously hedging the equity with a long (short) position.               

The simplest statistical arbitrage strategy is the so-called statistical pairs trading. The idea 

behind this strategy is trivial: find two securities whose price is affected by the same common 

factors. According to the law of one price securities with similar characteristics should have 

similar prices. If for some reasons the price of the securities diverges: sell the higher-priced and 

buy the lower-priced, in the expectation that the mispricing will correct itself in the future.     

One of the main objectives of a trader investing in the financial markets is to gain a profit and 

to do so he must be able to sell overvalued securities and buy undervalued ones. The problem 

is that, in order to understand if a security is undervalued or overvalued, the trader must know 

 
1 Credit default swaps are essentially insurance contracts against the default of an obligor. In particular, the buyer 

of the CDS contract pays a premium to the seller, usually express as a percentage of the notional amount of the 

underlying bond, and the seller agrees to pay the notional value of the bond should the obligor default before the 

maturity of the contract (Duarte et al., 2006). 
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the fundamental value of that security and this is a very difficult, or even impossible, task.                 

With the introduction of pairs trading strategy, the focus moves from absolute pricing 

(fundamental value) to relative pricing. When dealing with pairs trading is not important that 

prices are correct, the only thing that matters is that similar securities have similar prices 

(Vidyamurthy, 2004, p. 74).                     

The principal assumption of pairs trading is the existence of a long-term equilibrium 

relationship between two securities, since pairs trading is a short-term speculation strategy, 

modelling this relationship would allow the trader to take advantage of any short-term 

deviations opening a long-short position that will be reversed upon restoration of the price 

relationship, thus leading to a profit (Rad et al., 2016).                 

Put differently, pairs trading exploits opportunities generated by temporary anomalies between 

prices of related assets which have a long-term equilibrium. When such an event occurs, one 

asset will be overvalued compared to the other one. At this point, the trader will invest in a two-

assets portfolio composed by a short position in the overvalued asset and a long position in the 

undervalued asset, it follows that pairs trading can be classified as a contrarian investment 

strategy since the investor is buying a stock performing relatively poorly and he/she is selling 

a stock performing relatively well. The trade is closed out by reverting the positions after the 

asset prices have settled back into their long-term relationship (Puspaningrum, 2012).  

From what has been said, it follows that pairs trading is a market-neutral investment strategy 

since the return from the strategy is uncorrelated with the movement of the market, i.e. the 

trader profits from the short-term discrepancies in the prices of the assets considered regardless 

of whether the market goes up or down (Vidyamurthy, 2004, p. 8 ).                            

However, the implementation of this strategy is far more complicated, since there are a lot of 

factors that need to be considered, such as the risk-attitude of the traders and their capability of 

bearing losses. The problem of pairs trading strategy is that the existence of a long-term 

relationship between two securities does not say anything about the timing of mean-reversion 

(see Section 2.10.1) or about the width of the divergence in price. What can be said is that it is 

reasonable to assume that given enough time the relationship between two similar securities 

will be restored, but there is no chance to know a priori the patterns that they will follow, and 

so it is possible that the traders may suffer considerable losses. According to Krauss (2017) 

pairs trading research is divided in five streams of literature: 

• Distance approach: searching for pairs by minimizing the sum of squared differences 

between two normalized time series over a fixed formation period and define opening 

and closing threshold as trading signals (Gatev et al., 2006). 
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• Cointegration approach: pairs selection is based on the concept of cointegrated price 

series which possess a stationary long-term equilibrium relationship with the associated 

property of mean reversion. Whenever a deviation from the long-run mean arise, a 

profitable opportunity is created (Lin et al., 2006). 

• Time-series approach: this approach explicitly models the mean reverting behaviour of 

the spread, i.e. the difference between two stock prices, in a continuous time setting. It 

relies on the assumption that the spread follows an Ornstein-Uhlenbeck process, which 

is useful for the generation of optimized trading signals using different methods of time-

series analysis. 

• Stochastic control approach: the focus lies on finding the optimal investment in the two 

legs of a pair when other assets are available. Stochastic control theory is used to obtain 

closed form characterisations of the portfolio optimization problem (Krauss, 2017). 

• Copula approach: this approach has been introduced in order to overcome the limitation 

of correlation or cointegration as a measure of dependency. Copulas are useful 

extensions of approaches for modelling joint distributions and dependence between 

financial assets (Liew and Wu, 2013).  

 

1.2. Distance Approach 

The most important research concerning the distance approach have been conducted by Gatev 

et al. (2006) and Do and Faff (2010). The pairs trading strategy developed by Gatev et al. 

(2006), and subsequently used by Do and Faff (2010), followed a two steps process: 

1. Creation of pairs over a 12-month formation period. 

2. Trade the pairs in the next 6-month trading period. 

The first step can be further broken down into two phases: first, a cumulative total return index 

is constructed for each stock and normalized to the first-day of the formation period; second, 

considering a portfolio of n different stocks, in the CRSP (Centre for Research in Security 

Prices) universe, the sum of Euclidean squared distances (SSD) for the price time series of                  

n(n-1)/2 possible combinations of pairs is calculated and then each stock is paired with the 

‘matching partner’ that minimizes the SSD (Krauss, 2017): 

𝑆𝑆𝐷𝑖,𝑗 =∑(𝑃𝑖,𝑡 − 𝑃𝑗,𝑡)
2

𝑇

𝑡=1
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with 𝑃𝑖,𝑡 and 𝑃𝑗,𝑡 the normalized prices for stock i and j on day t, and T the number of trading 

days in the formation period. 

For the trading step only the 20 pairs with the smallest historical distance measure are 

considered. The trading rule for opening positions is based on a standard deviation metric: 

positions are opened when prices diverge by more than two historical standard deviations, as 

estimated during the pairs formation period, and they are closed at the next crossing of the 

prices (i.e. when the spread between the two prices equals zero), at the end of the trading interval 

or upon delisting (Gatev et al., 2006).    

Figure 1.1 illustrates the pairs trading strategy adopted by Gatev et al. (2006) using two stocks 

(Uniroyal and Kennecott), in the six-month period from August 1962 to January 1963. The top 

lines represent the normalized price path with dividend reinvested, while the bottom line 

indicates the opening and closing of the strategy on a daily basis. Notice that the position first 

opens around the seventh trading day, when the spread between the prices is sufficiently large, 

and it closes on day 36, when the prices converge. While over the first interval, the spread 

initially increased significantly before convergence, in the subsequent intervals the prices 

remain relatively close and cross frequently.  

 

Figure 1.1: Daily Normalized Prices: Kennecott and Uniroyal (Trading period August 1963-January 1964) 

 

Source: Gatev et al. (2006) 
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The total payoff of the trader is the algebraic sum of the cash flows occurred during the trading 

period. During the trading period pairs are opened when the spread between the prices of the 

stocks considered diverges by more than two standard deviations, and then positions can be 

unwound for three reason: 

• Convergence: pairs that open and converge during the same trading interval will 

generate positive cash flows. Since pairs can reopen after initial convergence, they can 

have multiple positive cash flows (multiple round-trip trades) during the same trading 

period.  

• Last day of the trading period: pairs that open but never converge will only have cash 

flows on the last day of the trading period when all positions are closed out. The cash 

flows generated by this type of trades can be either positive or negative depending on 

the spread between prices on the last day of the trading period. 

• Delisting: if a stock in a pair is delisted from CRSP, the position in the pair involving 

the stock is closed using the last available price. Even in this case, the cash flows can 

be either positive or negative depending on the spread between the prices at the date of 

the delisting.  

The results obtained by Gatev et al. (2006) are remarkable: in the period from January 1962 to 

December 2002 the excess monthly return for the 20 best pairs is 1.436% (t-Statistic= 11.56), 

that is both economically and statistically significant. As argued by the authors, pairs trading is 

a contrarian investment strategy, thus the returns may be biased upward because of the bid-ask 

bounce. Bid-ask bounce occurs when the price of a stock bounces back and forth within the 

very limited range between the bid price and the ask price. According to Alexander (2008, p. 

331) this happens when market are not trending and there is roughly the same proportion of 

buyers and sellers in the market so that the traded price tends to flip between the bid and the 

ask prices, without implying a real movement in the price of the stock. 

Pairs trading tends to buy stocks whose prices have been decreasing, thus closing transactions 

of many of these stocks may be at bid prices due to substantial selling pressure. It also tends to 

sell stocks whose prices have been increasing, thus the closing transactions of many of these 

stocks may be at ask prices due to significant buying pressure. Thus, it is possible that some 

portion of the trading profits is due to the bid-ask bounce, rather than to actual returns associated 

with pairs trading (Mori and Ziobrowski, 2011). 

In order to minimize the effect of the bid-ask bounce the excess monthly returns are re-

calculated considering the situation in which positions are opened on the day following the 
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divergence of the spread by more than two historical standard deviations, and they are 

liquidated on the day after the convergence of the prices. The drop in the monthly returns is 

substantial (54.1 basis point) from 1.436% to 0.895% (t-Statistic= 9.29), suggesting that an 

important portion of the excess returns may be due to the bid-ask bounce. Nonetheless the 

results remain economically and statistically significant.                                 

Gatev et al. (2006) also demonstrate that pairs trading is profitable in every sector by restricting 

the matching rules in order to obtain pairs composed by stocks belonging to the same large 

sector grouping used by S&P (Utilities, Transportation, Financial and Industrials), the monthly 

excess returns remain significant, ranging from 1.084% (t-Statistic=10.26) in the Utilities sector 

to 0.577% (t-Statistic= 4.26) in the Transportation sector.                                                 

Despite the positive and significant excess returns, what emerges from a subperiod analysis is 

that the profitability of pairs trading is declining over time. According to Gatev et al. (2006) 

the monthly excess return of the top 20 pairs drops from 1.181% in the period between 1962 

and 1988 to 0.375% in the period between 1989 and 2002, representing a 68% decline.                                               

These results are in line with those by Do and Faff (2010) that, considering the same time 

interval, registered a reduction of the monthly excess return from 0.86% to 0.37% (57 percent 

decline).                                                

The purpose of the study conducted by Do and Faff (2010) is to find a possible explanation for 

the decline in the returns, since the answer provided by Gatev et al (2006) concerning a latent 

risk factor, that is not captured by conventional measures of systemic risk, remained relatively 

dormant in the second part of the sample (January 1989-December 2002), is not considered 

exhaustive. The results by Do and Faff (2010) show that the main driver of the general declining 

trend in pairs trading profitability is the increasing proportion of nonconvergent pairs (pairs that 

do open but never converge during the trading interval) from 26% (1962-1988) to 39% (1989-

2002) and to 40% (2003-2009) at the expense of the profitable pairs with multiple round-trip 

trades (pairs that open several times within the same trading interval)  that decreased from 42% 

(1962-1988) to 24% (1989-2009). Interestingly, Do and Faff (2010) found out that pairs trading 

performance is particularly strong during market crises: dot-com bubble (2000-2002) and 

financial crisis (2007-2009). During the dot-com bubble the good performance of pairs trading 

strategy was driven by higher average monthly returns among convergent pairs with respect to 

adjacent periods: 4.84% in the crisis period compared with 1.51% of the period 1989-1999 and 

1.69% of the period 2003-2007. On the other end, the profitability of pairs trading during the 

recent financial crisis was driven by a combined effect of higher average monthly return from 

1.69% in the pre-crisis interval 2003-2007 to 2.49%  in the crisis period 2007-2009 and also to 
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a decrease in the proportion of divergent pairs from 44% (2003-2007) to 32% (2007-2009) 

accompanied by an increase in the fraction of multiple-round trip pairs from 18% (2003-2007) 

to 37% (2007-2009) (Do and Faff, 2010). 

The distance approach developed by Gatev et al. (2006) has several advantages: it is easy to 

implement, robust to data snooping2 and results in statistically significant risk-adjusted excess 

returns (Krauss, 2017). Moreover, as Do et al. (2006) point out the distance approach is 

economic model-free and consequently, it has the advantage of not being exposed to model 

mis-specification and mis-estimation. However, being a non-parametric approach, it lacks 

forecasting ability regarding the convergence time or the expected holding period. 

As argued by Galenko et al. (2012) another shortfall in the study by Gatev et al. (2006) is that 

they support their results using the theory of cointegration asset prices (the idea is that 

cointegrated systems have a long-run equilibrium, thus two time series that are cointegrated are 

also mean-reverting (see section 2.10.1)), but never used any tests for cointegration to justify 

the trading strategy. The omission of the cointegration test implies that there is not a rational 

reason for expecting a long-term equilibrium; in other words, there is no motive to believe that 

prices that have diverged will converge again. Clearly the potential lack of a long-term 

equilibrium implies higher divergence risks which in turns leads to higher potential losses. 

Finally, according to Krauss (2017), the choice of Euclidean squared distance as selection 

metric is analytically suboptimal. A rational trader has the objective of maximizing the excess 

return per pair, which is the product between the number of trades per pair and the profit per 

trade. The profit-maximizing investor seeks for spread exhibiting frequent and significant 

divergences (high spread variance) from the equilibrium with subsequent convergences (strong 

mean-reversion) to it. The empirical spread variance and the average sum of squared distances 

can be expressed as follow: 

𝑠𝑃𝑖−𝑃𝑗
2 =

1

𝑇
∑(𝑝𝑖,𝑡 − 𝑝𝑗,𝑡)

2

𝑇

𝑡=1

− (
1

𝑇
∑(𝑝𝑖,𝑡 − 𝑝𝑗,𝑡)

𝑇

𝑡=1

)

2
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𝑇
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1
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𝑇
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2

 

 

 
2 Data snooping is a statistical bias that occurs when a given set of data is used more than once for purpose of 

inference. When such data reuse occurs, there is the possibility that any satisfactory results may be due to chance 

rather than to any merit inherent to the method used. The probability that a result arises by chance increases with 

the number of combinations tested (White, 2000). 
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with 𝑝𝑖,𝑡 and 𝑝𝑗,𝑡 denoting the realization of the normalized price processes 𝑃𝑖 = (𝑃𝑖,𝑡)𝑡𝜖 𝑇 and 

𝑃𝑗 = (𝑃𝑗,𝑡)𝑡𝜖 𝑇 and 𝑠2(. ) the sample variance.  

Recalling that Gatev et al. (2006) choose the top 20 pairs with minimum SSD, it is easy to see 

that the optimal pair, that is the one with zero SSD, has a spread of zero and thus produces no 

profits. This is a clear signal that the choice of Euclidean squared distance as selection metric 

is not optimal, since one would expect the best pair to generate the highest profits. 

 

1.3. Cointegration approach 

The phenomenon of cointegration has been observed for the first time by Engle and Granger 

(1987). Even though two time series are nonstationary it is possible that in some instances, a 

linear combination of the two is stationary, in this case the time series are said to be cointegrated 

(Vidyamurthy, 2004, p. 76).                        

Consider {𝑥𝑡}  and {𝑦𝑡}  to be time series integrated of order one, i.e. 𝑥𝑡~𝐼(1) and 𝑦𝑡~𝐼(1) 

(see Section 2.5). If there is a linear combination of the two time series that is stationary (see 

Section 2.2), i.e. (𝑥𝑡 − 𝛽𝑦𝑡)~𝐼(0), it is possible to conclude that {𝑥𝑡}  and {𝑦𝑡} are cointegrated 

(see Section 2.10.1).  

Alexander (2008, p. 201) argued that there is little incentive in building forecasting models 

based on nonstationary processes since they are totally unpredictable over time (see Section 

2.6); conversely stationary processes can be used for this purpose, by exploiting their mean-

reverting behaviour. Cointegration is a measure of long-term dependency between asset prices: 

whenever a spread is found to be mean-reverting this means that the two asset prices are “tied 

together” in the long-term (see Section 2.10). In other words, while it is not possible to predict 

exactly where the price of an asset will be in the future, given its nonstationary nature, if two 

time series are found to be cointegrated, this implies the existence of a long term equilibrium 

relationship that prevents them from drifting too far apart from each other. In the short-run the 

spread could deviate from the long-term equilibrium (that is the long-run mean of the linear 

combination of the two time series), allowing for profitable trading opportunities, but given a 

sufficiently long timeframe the prices will adjust themselves restoring the equilibrium.  

The cointegration relationship can be equivalently shown using the Error Correction Model (see 

Section 2.10.4). The error correction representation for two nonstationary time-series {𝑥𝑡} and 

{𝑦𝑡} is: 

𝑦𝑡 − 𝑦𝑡−1 = 𝛼𝑦(𝑦𝑡−1 − 𝛽𝑥𝑡−1) + 휀𝑦𝑡 

𝑥𝑡 − 𝑥𝑡−1 = 𝛼𝑥(𝑦𝑡−1 − 𝛽𝑥𝑡−1) + 휀𝑥𝑡 
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where 휀𝑥𝑡 and 휀𝑦𝑡 are white noise processes associated respectively to {𝑥𝑡} and {𝑦𝑡}.              

Consider the first equation, the left-hand side represents the increment of the time series at each 

time step. The right-hand side is the sum of the error correction part, i.e. 𝛼𝑦(𝑦𝑡−1 − 𝛽𝑥𝑡−1), 

and the white noise component, i.e. 휀𝑦𝑡. The equation shows that the evolution of a time series 

consists of a white noise process which is responsible for possible deviations from the long-run 

equilibrium and an error correction term which reverts the time series towards its long-run 

equilibrium (Rad et al., 2016).  

Pairs trading strategy involves trading on the oscillations about the equilibrium value for the 

spread: when the spread has diverged “sufficiently” from the equilibrium value, an appropriate 

position in the two stocks is opened, betting that the divergence will correct itself restoring the 

equilibrium. The key steps involved in the design and analysis of the pairs trading strategy 

implemented using the cointegration approach are (Vidyamurthy, 2004, pp. 83-84): 

• Identification of stock pairs potentially cointegrated based on statistical analysis of 

historical data (see Section 3.2). 

• Cointegration testing to verify the hypothesis that the stock pairs are indeed cointegrated 

based on statistical evidence (see Section 3.3). 

• Identification of optimal entry/exit threshold using parametric or non-parametric 

method in order to maximize the expected profits (see Section 3.4). 

According to Krauss (2017), the key benefit of the cointegration approach is the 

econometrically more reliable equilibrium relationship of identified pairs, compared to the 

distance approach proposed by Gatev et al. (2006). Moreover, it provides a statistical 

methodology for modelling both the long-term and the short-term dynamics (see Section 2.10 

and Section 2.11). 

 

1.4. Time-Series Approach  

Elliott et al. (2005) provide the most cited work for time-series based pairs trading. They model 

the mean reversion behaviour of the spread between the paired stocks in a continuous time 

setting. The observed spread, {yk}, is defined as the difference between the prices of the paired 

stocks, and it is driven by a state process {xk} plus a measurement error captured by a Gaussian 

noise (ωk): 

𝑦𝑘 = 𝑥𝑘  +  Dω𝑘 
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Where xk represents the value of some real variable at time tk = kτ, ω𝑘~IID N (0,1) and D > 0 

is a parameter representing the standard deviation of the error term ω𝑘.                                                                        

The state process {xk|k=0,1,2…} is assumed to be mean reverting: 

                        𝑥𝑘+1  −  𝑥𝑘  = (𝑎 − 𝑏𝑥𝑘)𝜏 + 𝜎√𝜏  휀𝑘+1                                          (1) 

with a, σ ϵ 𝑅0
+, b ϵ 𝑅+and {ε𝑘} consists of i.i.d. random variables with standard normal 

distribution, i.e. N (0, 1). The purpose is to compute the conditional expectation: 

�̂�𝑘 = 𝑬 [𝑥𝑘|𝑌𝑘] 

where 𝑌𝑘 = 𝜎{𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑘} represents the information obtained by observing 𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑘. 

The conditional expectation in the previous formula denotes the best estimate of the hidden 

state process x at time k, which is the variable of interest, given the information obtained from 

the observed spread process up to time k. 

According to Triantafyllopoulos and Montana (2011), the observed process should be seen as 

a noisy realization of the underlying hidden process {xk} describing the true spread, which 

captures the true market condition. Thus, a comparison between the estimated unobserved 

spread process and the observed one, may lead to the discovery of temporary market 

inefficiencies. At time t, if  𝑦𝑡 > (<)  �̂�𝑡|𝑡−1 =  𝑬 [𝑥𝑡|𝑌𝑡−1], that is if the observed spread is 

strictly larger (lower) than the best estimate of the process xt given the information up to t-1.   

In this situation, the spread is regarded as too large, and so the investor could take a long (short) 

in the spread portfolio whenever yk exceeds �̂�𝑘|𝑘−1 by some threshold value, calculated using 

time-series analysis, and profiting when a correction, i.e. when the spread has reverted back to 

its mean, occurs.                       

The process {xk} mean reverts to μ = 𝑎 𝑏⁄  with strength b. Equation (1) can be rewritten as: 

                                      𝑥𝑘+1 =  A + B𝑥𝑘 + Cε𝑘+1                                          (2) 

where A = aτ, B= 1 − bτ and C = σ√𝜏.                   

The discrete process described by equation (2) can be approximated by a continuous process 

{Xt|t≥0} that satisfies the following stochastic differential equation: 

                         d𝑋𝑡 =  ρ(μ  −  𝑋𝑡)dt  +  σ𝑑𝑊𝑡                                                   (3) 

with μ = 𝑎 𝑏⁄  denoting the mean, ρ=b denoting the speed of mean-reversion and {W(t)|t≥0} 

representing a standard Brownian motion.                                                  

Using the Ornstein-Uhlenbeck, described in equation (3), it is possible to compute the most 
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likely time T at which X(T)=μ, representing the moment in which the position is closed (Elliot 

et al., 2005): 

𝑇 =
1

𝜌
�̂� =

1

2𝜌
𝑙𝑛 [1 +

1

2
(√(𝑐2 − 3)2 + 4𝑐2 + 𝑐2 − 3)] 

In other terms, T is the expected time needed for the process Xt to converge to its long-term 

equilibrium, assuming that at time t=0 the process diverged from its equilibrium value of a 

certain prespecified threshold.                               

Elliott et al. (2005) propose a strategy in which the investor enters a pairs trade when the spread 

moves away from its mean (μ) and hits one of the two bounds, that is when: 

𝑦𝑘 ≥ μ + c(σ/√2ρ)        or      yk ≤ μ − c(σ/√2ρ) 

where c is a fixed parameter that can be regarded as an optimal threshold to open a pair trade 

for which Elliot et al. (2005) give no indication on how to determine it.  

The investor should enter in a pairs trade as long as the spread moves away from its mean, 

hitting one of the two bounds, knowing that the spread will revert back to its mean since it 

follows a mean-reverting process. In particular, the position is unwound at time T, which 

represents the first passage time resulting from the OU process (Krauss,2017).                    

According to Do et al. (2006) the model proposed by Elliott et al. (2005) has three main 

advantages: 

• It captures mean reversion which underlies pairs trading. 

• It can be exploited for forecasting purposes. It is indeed possible to compute the 

expected time for the spread to converge to the long-term mean. 

• The model is fully tractable, meaning that all the parameters can be estimated by the 

Kalman filter in a state space setting. 

Despite the great advantages, Do et al. (2006) criticised that the model has a fundamental 

limitation since it is only applicable to securities in return parity, i.e. in the long run, the two 

stocks must provide the same return such that any departure from it will be expected to be 

corrected in the future. This is a severe limitation since in practice it is almost impossible to 

find two stocks with identical return.                                                          

Do et al. (2006) proposed a pairs trading strategy, known as Stochastic Residual Spread, that 

models mispricing at return level rather than price level.                           

This approach differs from the others due to the methodology of quantification of mean 

reversion behaviour, that is made considering the theoretical asset pricing relationship instead 

of being purely based on statistical consideration leading to ad hoc trading rules (Do et al., 
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2006).             

Their model starts with an assumption on the existence of a long-term equilibrium in the relative 

value of the two stocks measured by the spread. Mispricing is described as the state of 

disequilibrium, which is quantified by a residual spread function 𝐺(𝑅𝑡
𝐴, 𝑅𝑡

𝐵 , 𝑈𝑡), where 𝑅𝑡
𝐴 and 

𝑅𝑡
𝐵 represents respectively the return of stock A and stock B at time t, while U denotes some 

exogenous vector potentially present in formulating the equilibrium.            

Do et al. (2006) adopt the same modelling framework proposed by Elliot et al. (2005), that is a 

one-factor stochastic model used to describe the state of mispricing or disequilibrium and 

incorporates a white Gaussian noise (ωt ~ IID N (0,1)) that affects its actual observation being 

measured by the residual spread function 𝐺(𝑅𝑡
𝐴, 𝑅𝑡

𝐵, 𝑈𝑡) (Fiz, 2014). The state of mispricing or 

residual spread with respect to a given long-term equilibrium relationship is described by the 

variable xt whose dynamics is follows a Vasicek process: 

𝑑𝑥𝑡 = 𝜅(𝜃 − 𝑥𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡 

where 𝑑𝐵𝑡 is a standard Brownian motion, 𝜃 is the long-run mean of the state variable 𝑥𝑡 and 

𝜅 is the speed of mean reversion. 

Instead, the observed mispricing (residual spread function) is defined as follow: 

𝑦𝑡 = 𝐺𝑡 = 𝑥𝑡 +𝜔𝑡 

These two equations described a state space model of relative mispricing, defined with respect 

to some equilibrium relationship between two assets.       

At this point, Do et al. (2006) specify the residual spread function (G) as follow (see Do et al. 

(2006)): 

𝐺𝑡 = 𝐺(𝑅𝑡
𝐴, 𝑅𝑡

𝐵, 𝑈𝑡) =  𝑅𝑡
𝐴 − 𝑅𝑡

𝐵 − 𝛤𝑟𝑡
𝑚 

where  𝛤 is a vector of exposure differentials and 𝑟𝑡
𝑚 is the vector of risk factor returns in excess 

over the risk free asset return. 

If the value of 𝛤 is known and 𝑟𝑡
𝑚is specified, 𝐺𝑡is fully observable and a completely tractable 

model of mean-reverting relative pricing for two stocks A and B exists, which can be used for 

pairs trading strategies (Fiz, 2014). 

Unlike pairs trading strategies which are predicted on mispricing at the price level, the strategy 

proposed by Do et al. (2006) is based on mispricing at return levels. The practical implication 

is that the proposed strategy opens positions when the accumulated residual spread in the returns 

is sufficiently large, and unwind when the accumulated spread is equal to the long run level of 

spread, in contrast to the other models in which positions open when the prices drift sufficiently 

apart and unwind when they converge (Do et al., 2006). 
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1.5. Stochastic Control Approach 

Jurek and Yang (2007) are the most cited authors in this domain. Their model assumes that the 

size of the positions that arbitrageurs are willing to take is affected by two kinds of risk: the 

horizon risk and the divergence risk. The former represents the uncertainty about the timing in 

which the mispricing will be eliminated, the other one represents the uncertainty about a 

possible deterioration in the mispricing prior to its elimination.          

The arbitrage opportunity, which is interpretable as a long/short relative value trade whose 

magnitude is measured by the price differential (spread), is described by a mean-reverting 

process (Ornstein-Uhlenbeck process) in order to capture these two forms of risk.   

Under this assumption, the arbitrageur faces uncertainty about the magnitude of mispricing at 

all future date. In Jurek and Yang’s model (2007) arbitrageurs can invest in a riskless bond (Bt) 

and in the mean-reverting spread (St) whose dynamics are described by: 

𝑑𝐵𝑡 =  𝑟𝐵𝑡𝑑𝑡 

𝑑𝑆𝑡 = 𝜅(𝑆̅  −  𝑆𝑡)𝑑𝑡  +  𝜎𝑑𝑍𝑡 

If St > 𝑆̅, meaning that at time t the spread is higher than the long-run mean spread (𝑆̅), the 

arbitrageurs shorts the spread (buying the undervalued and selling the overvalued) and invests 

the revenues in the risk-free assets. If the reverse is true, the agent goes long on the spread and 

invests the proceeds in the riskless asset.               

Jurek and Yang (2007) derive the arbitrageur’s optimal dynamic portfolio policy for two 

different non-myopic preference specifications:  

• Constant relative risk aversion (CRRA) defined over final wealth at a finite horizon 

• Epstein-Zin recursive utility defined over intermediate consumption 

Denoting with Nt and Mt respectively the number of units of the spread and of the bond held by 

the arbitrageurs it is possible to compute the budget constraints for both specifications: 

{
𝑑𝑊𝑡 = 𝑁𝑡𝑑𝑆𝑡 +𝑀𝑡𝑑𝐵𝑡             for CRRA specification

𝑑𝑊𝑡 = 𝑁𝑡𝑑𝑆𝑡 +𝑀𝑡𝑑𝐵𝑡 − 𝐶𝑡𝑑𝑡        for Epstein − Zin specification
 

where 𝑊𝑡 represents the wealth of the investor at time t and Ct represents the consumption rate, 

which affects the evolution of wealth only when the Epstein-Zin form is considered. 

Substituting the assets’ prices dynamics into the budget constraints one obtains: 

{
𝑑𝑊𝑡 = (𝑟(𝑊𝑡 − 𝑁𝑡𝑆𝑡) + 𝜅(𝑆̅ − 𝑆𝑡)𝑁𝑡)𝑑𝑡 + 𝜎𝑁𝑡𝑑𝑍𝑡                          for CRRA specification

𝑑𝑊𝑡 = (𝑟(𝑊𝑡 − 𝑁𝑡𝑆𝑡) + 𝜅(𝑆̅ − 𝑆𝑡)𝑁𝑡 − 𝐶𝑡)𝑑𝑡 + 𝜎𝑁𝑡𝑑𝑍𝑡            for Epstein − Zin specification
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Given these budget constraints, Jurek and Yang (2007) applying the standard stochastic control 

theory derive the Hamilton-Jacobi-Bellmann (HJB) equation for each stochastic dynamic 

programming problem and find closed-form solutions for the policy and value functions, which 

are the optimal strategy as a function of the state variables of the model, and the best possible 

value of the objective function expressed as a function of the state variables, respectively.  

Another important finding of the study by Jurek and Yang (2007) is that arbitrageurs do not 

always perform arbitrage. The authors analytically demonstrate that there is a crucial level of 

mispricing beyond which further divergence can result in a decline of the portion of wealth 

allocated to the spread portfolio.                             

According to classic economic theory as the spread widens the arbitrageur increases the 

proportion of wealth invested in the spread portfolio, thus producing a stabilizing effect on the 

mispricing and contributing to its elimination. In practice, it is also possible that the arbitrageur 

reduces his position in response to an adverse shock, meant as a change in the market conditions 

which has the effect of distancing the spread from its long-run equilibrium value, thus 

producing a destabilizing effect and exacerbating the mispricing. The direction in which the 

agent trades in response to adverse shocks to the value of the spread depends on the combination 

of two different effects: the wealth effect and the ‘investment opportunity’ effect.                

An adverse shock, since it increases the magnitude of the deviation of the spread from its long-

term mean, makes the investment opportunity more attractive, inducing the investors to take 

larger positions in the spread portfolio relative to their wealth, but at the same time it has a 

negative effect on the arbitrageur’s wealth since it causes traders to lose money on their current 

positions, leading them to reduce their positions.                         

As long as the improvement in the investment opportunity dominates the wealth effect, the 

arbitrageur will increase his position in the mean-reverting portfolio, while if the wealth effect 

outweighs the ‘investment opportunity’ effect the agent will reduce his position in the spread 

portfolio.                        

Analytically it is possible to identify a stabilization region: if the spread is within this 

stabilization region a rational agent will increase his position in the spread asset in response to 

increasing mispricing, if not he will reduce his position thus exacerbating the mispricing (Jurek 

and Yang, 2007).                                  

Based on the work by Jurek and Yang (2007) Liu and Timmermann (2013), using a 

cointegration framework for the asset price dynamics, show that the optimal convergence 

trading strategy that maximizes expected utility generally does not involve holding a delta 

neutral long-short position. Delta neutral trades aimed at exploiting temporary mispricing 
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between assets by taking long-short positions in such a way that the market exposure gets 

eliminated. According to Liu and Timmerman (2013), the main limitation of the delta neutral 

approach, that is also the reason why this approach cannot be the most efficient way to exploit 

a temporary mispricing, is that it does not consider the trade-off between diversification and 

arbitrage. By focusing only on long-term arbitrage, delta neutral strategies do not completely 

exploit the short-term risk-return trade-off and diversification benefits. By examining the 

arbitrage opportunity in the context of a portfolio maximization problem, the strategy developed 

by Liu and Timmerman (2013), accounts for both arbitrage opportunities and diversification 

benefits.             

Following Jurek and Yang (2007), the authors derive the HJB equation for an investor 

maximizing the expected value of a power utility function defined over terminal wealth. They 

find the value and policy functions from which the optimal portfolio weights can be derived. 

Liu and Timmermann (2013) obtain two surprising results: first, it can be optimal to hold both 

risky assets long (or short) at the same time, even if prices eventually converge (only in 

multiperiod model). Second, it can be optimal to hold just one asset disregarding the second. 

This optimal investment policy is in stark contrast to standard delta neutral long-short strategy. 

 

1.6. Copula Approach                       

The copula approach has been conceived in order to overcome one of the main issues related to 

the most commonly used pairs trading techniques (distance approach and cointegration 

approach) that is the assumption of linear dependence and the relative use of correlation 

coefficient or cointegration as measures of dependency. This assumption is too simplistic, real 

financial data are very rarely normally distributed, therefore correlation and cointegration 

cannot completely describe the dependency and predict the future movements (Liew and Wu, 

2013).                             

A copula establishes a functional relationship between a multivariate distribution function and 

its marginals; it captures the dependence structure between the marginal distributions (Rad et 

al., 2016). The copula approach can solve the problems mentioned earlier as it uses a two-step 

methodology that separates the choice of the best-fitting marginal distribution describing the 

variables from the application of a suitable copula to establish the dependence.               

The use of copulas produces greater flexibility in the framework when joint distributions are 

specified, while providing richer information regarding the dependency between stocks (Liew 

and Wu, 2013).                                            
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From an analytical point of view, following Krauss and Stübinger (2015), any function                  

C: [0,1]n→ [0,1] is an n-dimensional copula if three conditions are satisfied; 

• ∀𝑢  =  (𝑢1, 𝑢2, … , 𝑢𝑛) ϵ [0,1]
𝑛: 𝑚𝑖𝑛{𝑢1, 𝑢2, … , 𝑢𝑛} = 0 → 𝐶(𝑢) = 0, 

• C(1,… ,1, 𝑢𝑖 , 1, … ,1) =  𝑢𝑖  ∀ 𝑢𝑖 ϵ [0,1] (𝑖 𝜖 1, … , 𝑛), 

• 𝑉𝐶([a, b]) ≥ 0, where 𝑉𝐶([a, b]) denotes the C-volume of the hyperrectangle  

[a, b] =∏[𝑎𝑖 , 𝑏𝑖]

𝑛

𝑖=1

, 𝑎𝑖 ≤ 𝑏𝑖    ∀𝑖 𝜖 1, … , 𝑛 

As expressed in Sklar’s theorem: let 𝐹𝑋1, . . . ,𝑋𝑛be an n-dimensional distribution function with 

marginal distributions 𝐹𝑋𝑖(i=1,…,n). Then, there exists an n-copula C which satisfies the 

following equation for all (𝑥1, … , 𝑥𝑛)ϵ𝑅
𝑛: 

𝐹𝑋1, . . . ,𝑋𝑛(𝑥1, … , 𝑥𝑛) = C (𝐹𝑋1(𝑥1), … , 𝐹𝑋𝑛(𝑥𝑛)) 

If the margins are continuous, then C is unique (Sklar, 1959).                

According to Krauss (2017), two sub-streams can be found in the literature: the return-based 

copula approach and the level-based copula approach.            

Return-based copula approach: during the formation period, pairs are selected applying either 

correlation criteria or cointegration criteria. Then, the log returns 𝑅1 = (𝑅1,𝑡) 𝑡𝜖𝑇 and 𝑅2 =

(𝑅2,𝑡) 𝑡𝜖𝑇 for the two stocks of each pairs are considered, as well as their marginal 

distributions 𝐹𝑅1 and  𝐹𝑅2, which can be estimated either using fitting parametric distribution 

functions (Liew and Wu, 2013) or parametric and non-parametric approaches (Stander et al., 

2013).  At this point, applying probability integral transform by plugging the returns into their 

distribution functions creates two uniform variables, 𝑈1 =  𝐹𝑅1(𝑅1) and 𝑈2 =  𝐹𝑅2(𝑅2), which 

allow  the identification of an appropriate copula function (Krauss, 2017).                                          

Several methodologies can be used for the identification of the copula function: Stander et al. 

(2013) rely on a set of 22 Archimedean copulas, listed by Nelsen (2006), and determine the 

best-fit applying the Kolmogorov-Smirnov goodness-of-fit test, while Liew and Wu (2013) use 

five copula largely applied in financial applications (Gumbel, Student-t, Normal, Frank and 

Clayton) and select the best fitting one using three different information criteria (Schwarz 

Information Criteria, Akaike Information Criterion and Hannan-Quinn Information Criterion). 

At this point, the best fitting copula is used in order to calculate the conditional marginal 

distribution functions as first partial derivatives of the copula function C (u1, u2): 
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ℎ1(𝑢1|𝑢2) =  𝑃(𝑈1 ≤ 𝑢1|𝑈2 = 𝑢2) =
𝜕𝐶(𝑢1, 𝑢2)

𝜕𝑢2
 

ℎ2(𝑢2|𝑢1) =  𝑃(𝑈2 ≤ 𝑢2|𝑈1 = 𝑢1) =
𝜕𝐶(𝑢1, 𝑢2)

𝜕𝑢1
 

Stocks are identified as relatively undervalued if the conditional probability is less than 0.5 and 

relatively overvalued if the conditional probability is greater than 0.5.                          

Stander et al. (2013) and Liew and Wu (2013) suggest trading when the conditional 

probabilities are in the tail regions of the conditional distribution functions.                             

Placing the upper bound at 0.95 and the lower bound at 0.05 for the threshold of conditional 

probabilities, trading occurs if the pair of transformed returns falls outside both confidence band 

derived by 𝑃(𝑈2 ≤ 𝑢2|𝑈1 = 𝑢1)= 0.05 and 𝑃(𝑈1 ≤ 𝑢1|𝑈2 = 𝑢2)=0.95; in this particular case 

stock 1 is sold and stock 2 is bought. The opposite transactions will occur if inverse conditions 

apply.                                            

For what concerns the exit strategies: Liew and Wu (2013) suggest exiting a trade once the 

positions revert (i.e. when the conditional probabilities cross the boundary of 0.5); Stander et 

al. reverse their positions as soon as it is profitable or alternatively after one trading week, since 

pairs trading is a short-term strategy.                     

The main issues with this approach are: first, pairs selection is not copula-based, and this 

introduces a selection bias. Second, the time structure of data is completely lost, meaning that 

copula-based entry and exit signals are anchored on the last return without assessing how each 

pair trades after the entry signal (Krauss and Stübinger, 2015).                

Level-based copula method: this method is introduced by Rad et al. (2016) and Xie et al. (2014). 

According to Rad et al. (2016), the trading strategy is the following: first, during a formation 

period 20 pairs with the least SSD are nominated for trading during the trading period (like 

Gatev et al., 2006). For each pair, the daily returns of the formation period are fitted to the best-

fitting marginal distributions and by maximizing the log likelihood of each copula density 

function the best fitting copula is nominated.                                   

At this point, using the daily realization of random variables U1 and U2 it is possible to calculate 

the conditional probabilities h1 and h2 for each pair used, similarly to Xie et al. (2014), to define 

two mispriced indices: 

𝑚1,𝑡 = ℎ1,𝑡(𝑢1,𝑡|𝑢2,𝑡)  − 0.5 = 𝑃(𝑈1,𝑡 ≤ 𝑢1,𝑡|𝑈2,𝑡 = 𝑢2,𝑡) − 0.5 

𝑚2,𝑡 = ℎ2,𝑡(𝑢2,𝑡|𝑢1,𝑡)  − 0.5 = 𝑃(𝑈2,𝑡 ≤ 𝑢2,𝑡|𝑈1,𝑡 = 𝑢1,𝑡) − 0.5 
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Positive value of 𝑚1,𝑡  and negative value of 𝑚2,𝑡 can be interpreted as stock 1 being overvalued 

with respect to stock 2 at time t, and vice versa.                

Consider the cumulative mispricing indices 𝑀1,𝑡 and 𝑀2,𝑡, set to zero at the beginning of the 

trading period and calculated each day as:  

𝑀1,𝑡 = 𝑀1,𝑡−1 +𝑚1,𝑡  

𝑀2,𝑡 = 𝑀2,𝑡−1 +𝑚2,𝑡 

Positive (negative) M1 and negative (positive) M2 are interpreted as stock 1 (stock 2) being 

overvalued with respect to stock 2 (stock 1).                

The main downsides of the level-based copula approach are: first, pairs selection is not copula-

based, the 20 pairs with minimum SSD are selected introducing a severe selection bias. Second, 

there is no differentiation between pairs reaching critical levels of mispricing indices over time 

by aggregating many small mispricings versus pairs reaching the critical levels in a few large 

steps (Krauss and Stübinger, 2015). 
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Chapter 2 

Cointegration Approach: Statistical Tools 

This chapter is dedicated to the introduction of the elements necessary for understanding the 

concept of cointegration, as exposed by Engle and Granger in 1987. Section 2.1 briefly 

introduces a very useful operator in time series analysis, that is the lag operator. Section 2.2 

presents the definition of two crucial concepts used in time series analysis, which are 

stationarity and ergodicity. Section 2.3 and 2.4 investigate the concept and the most relevant 

properties of univariate ARMA processes. Section 2.5 and 2.6 analyse different type of 

nonstationary time series and discuss the different techniques which are used to produce 

stationary time series. Section 2.7 and 2.8 present two different types of test used to determine 

if a time series variable is nonstationary and possesses a unit root. Section 2.9 explores an 

important problem, known as spurious regression, that can arise if the error terms in a regression 

are integrated of order one. Section 2.10 introduces the concept of cointegration and develops 

different representations of a cointegrating system. Section 2.11 examines two different tests 

used to detect cointegration among the elements of one or more time series: the first is a simple 

residual-based testing method, while the second is based on full-information maximum 

likelihood estimation. 

 

2.1 Lag Operator 

A time series is a collection of observations indexed by the date of each observations. The 

collected data begin at some particular date (t=1) and end at another date (t=T): 

(𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑇) 

Statisticians often imagine that they could have obtained earlier observations (𝑦0, 𝑦−1, 𝑦−2, . . . ) 

or later observations (𝑦𝑇+1, 𝑦𝑇+2, 𝑦𝑇+3, . . . ) had the process been observed for more time. The 

observed sample (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑇) could be view as a finite segment of a doubly infinite 

sequence, denoted {𝑦𝑡} 𝑡=−∞
∞

: 

𝑦𝑡 = {. . . , 𝑦−1, 𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑇, 𝑦𝑇+1, 𝑦𝑇+2, . . . } 

 

 

A time series operator transforms one time series or group of time series into a new time series. 

It takes as input a sequence such as {𝑘𝑡} 𝑡=−∞
∞

 or a group of sequences such as ({𝑧𝑡} 𝑡=−∞
∞

,  

{𝑤𝑡} 𝑡=−∞
∞

) and it gives as output a new sequence {𝑦𝑡} 𝑡=−∞
∞

.     

observed sample 
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A useful operator, used in time series analysis, is the lag operator (L) which operates on an 

element of a time series to produce the previous element. Consider a sequence {𝑘𝑡} 𝑡=−∞
∞

 which 

generates a new sequence {𝑦𝑡} 𝑡=−∞
∞

, where the value of y for date t is equal to the value of k  at 

date t-1: 

𝑦𝑡 = 𝑘𝑡−1 

This can be described applying the lag operator to the sequence {𝑘𝑡} 𝑡=−∞
∞

: 

𝐿𝑘𝑡 ≡ 𝑘𝑡−1  =  𝑦𝑡 

From the previous equation, it follows that: 

𝐿2𝑘𝑡 = 𝐿(𝐿𝑘𝑡)  =  𝐿𝑘𝑡−1 = 𝑘𝑡−2 

In general, for any integer number p and q: 

𝐿𝑝𝑘𝑡 = 𝑘𝑡−𝑝 

(𝐿𝑝)𝑞𝑘𝑡 = 𝐿
𝑝𝑞𝑘𝑡 = 𝑘𝑡−𝑝𝑞 

(𝐿𝑝)(𝐿𝑞)𝑘𝑡 = 𝐿
𝑝𝑘𝑡−𝑞 = 𝐿

𝑝+𝑞𝑘𝑡 = 𝑘𝑡−𝑝−𝑞 

2.2 Stationarity and Ergodicity                 

A time series {𝑦𝑡} 𝑡=−∞
∞

 is said to be weakly stationary (or covariance-stationary) if neither its 

mean 𝜇𝑡 nor its autocovariances 𝛾𝑗𝑡 depend on the date t, that is: 

𝐸(𝑦𝑡) = 𝜇                         for all t 

𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡−𝑗) = 𝐸[(𝑦𝑡 −  𝜇)(𝑦𝑡−𝑗 − 𝜇)] =  𝛾𝑗  for all t and any j 

If a process is weakly stationary its mean and variance (γ0) are constant and finite over time, 

and the covariances between any two observations of the process (e.g. 𝑦𝑡 and 𝑦𝑡−𝑗) depends 

only on the length of time separating the two observations, and not on the date of the observation 

(t). It follows that for a covariance-stationary process, 𝛾𝑗and 𝛾−𝑗 would represent the same 

quantity (Hamilton, 1994, pp.45-46). 

A time series {𝑧𝑡} 𝑡=−∞
∞

is strictly stationary if the joint probability distribution of any set of  m 

consecutive observations [𝑧𝑡 , 𝑧𝑡+1, . . . , 𝑧𝑡+𝑚−1] is the same regardless of the time instant t 

(Greene, 2018, p. 992). In other words, a process is strictly stationary if the distribution of its 

value remains the same as time progresses, implying that the probability that 𝑧𝑡 increases or 

falls within a particular interval is the same at any time in the past or in the future (Brooks, 

2008, p. 208).   
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Notice that if a process is strictly stationary with finite second moments, then it must be weakly 

stationary. However, it is possible that a weakly stationary process is not strictly stationary, 

because the mean and the autocovariances are time-invariant but higher moments such as 

𝐸(𝑦𝑡
3) or 𝐸(𝑦𝑡

4) are not (Hamilton, 2004, p. 46).  

For the purpose of this thesis only weak stationarity is required so from now on, the term 

stationarity (or stationary) by itself is taken to mean covariance stationarity. 

Another crucial property of time series that needs to be examined is ergodicity. Consider the 

following sample of T observations from the process {𝑦𝑡} 𝑡=−∞
∞

 ,denoted {𝑦1, 𝑦2, . . , 𝑦𝑇}.From 

these observations is possible to calculate the sample mean �̅�, that is: 

�̅� =
1

𝑇
∑𝑦𝑡

𝑇

𝑡=1

 

A weakly stationary process is ergodic for the mean if the sample mean converges in probability 

to the unconditional mean of the process 𝐸(𝑦𝑡) = 𝜇, as 𝑇 → ∞. In other words, the sample 

mean provides an unbiased estimate of the population mean. 

Applying the law of large numbers to a covariance stationary process it is possible to 

demonstrate that if the autocovariances satisfies the following condition: 

∑ |𝛾𝑗|
∞

𝑗=0
< ∞ 

then the process {𝑦𝑡} 𝑡=−∞
∞

 is ergodic for the mean (Hamilton, 1994, pp. 46-47). 

 

2.3 White Noise Processes 

A process {휀𝑡}𝑡=−∞
∞  is described as a white noise process if it satisfies the following condition: 

 

 𝐸(휀𝑡) = 𝜇 

𝑉𝑎𝑟 (휀𝑡) =  𝜎
2 

        𝐸(휀𝑡 , 휀𝑠) = 0   for 𝑡 ≠
𝑠 

(2.1) 

(2.2) 

(2.3) 

   

Thus, a white noise process is a process with mean and variance that are constant and finite 

over time and for which the random variables ε are uncorrelated across time. In some 

circumstances it could be useful to replace the condition regarding the autocorrelation with a 

stronger one, that is: 

휀𝑡 , 휀𝑠 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡 ≠ 𝑠 

A process with mean and variance that are constant over time and for which the random 

variables ε are independent is called an independent white noise. The difference between the 
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white noise process and the independent white noise process is that the first has uncorrelated 

increments, while the latter has independent increments. Finally, an independent white noise 

process for which 

휀𝑡~𝑁(0, 𝜎
2) 

is defined as a Gaussian white noise process (Hamilton, 1994, pp. 47-48).  

 

2.4 Stationary ARMA Processes 

This section presents the definition and the notation of univariate Autoregressive Moving 

Average (ARMA) processes, which provide a valuable class of models for time series analysis. 

In order to understand the concept of Autoregressive Moving Average process, it is essential to 

introduce the definition and notation of two key time series models which are the Moving 

Average (MA) process and the Autoregressive (AR) process. 

 

The qth-Order and Infinite Order Moving Average Process 

A qth-order Moving Average process, denoted MA(q), is characterized by (Hamilton, 1994, 

p.50): 

 𝑦𝑡 = 𝜇 + 휀𝑡 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2+. . . +𝜃𝑞휀𝑡−𝑞 (2.4) 

where {휀𝑡}𝑡=−∞
∞  satisfies the conditions (2.1), (2.2) and (2.3), (𝜃1, 𝜃2, . . . , 𝜃𝑞) could be any real 

numbers and 𝜇 is the mean of the process and could be any real number. The term “moving 

average” comes from the fact that the process is constructed from a weighted sum of the q most 

recent values of 휀. The mean, variance and autocovariances of the process can be computed as 

follow: 

𝐸(𝑦𝑡) = 𝜇 + 𝐸(휀𝑡) + 𝜃1𝐸(휀𝑡−1) + 𝜃2𝐸(휀𝑡−2)+. . . +𝜃𝑞𝐸(휀𝑡−𝑞) = 𝜇 

𝑉𝑎𝑟(𝑦𝑡) = 𝐸(𝑦𝑡 − 𝜇)
2 = 𝐸(휀𝑡 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2+. . . . +𝜃𝑞휀𝑡−𝑞)

2 = (1 + 𝜃1
2 + 𝜃2

2, . . . +𝜃𝑞
2)𝜎2 

For 𝑗 = 1, 2, . . . , 𝑞, 

𝛾𝑗 = 𝐸[(휀𝑡 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2+. . . +𝜃𝑞휀𝑡−𝑞)(휀𝑡−𝑗 + 𝜃1휀𝑡−𝑗−1 + 𝜃2휀𝑡−𝑗−2+. . . +𝜃𝑞휀𝑡−𝑗−𝑞)]

= 𝐸[𝜃𝑗휀𝑡−𝑗
2 + 𝜃𝑗+1𝜃1휀𝑡−𝑗−1

2 + 𝜃𝑗+2𝜃2휀𝑡−𝑗−2
2 +. . . +𝜃𝑞𝜃𝑞−𝑗휀𝑡−𝑞

2 ] 

 

𝛾𝑗 = {
(𝜃𝑗 + 𝜃𝑗+1𝜃1 + 𝜃𝑗+2𝜃2+. . . +𝜃𝑞𝜃𝑞−𝑗)𝜎

2   for 𝑗 = 1, 2, . . . , 𝑞

0                                                          for 𝑗 > 𝑞
 

Notice that the mean and the variance of the MA(q) process are finite and constant over time, 

and the covariances between any two observations of the process depends only on the length of 
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time separating the two observations; thus, the MA(q) process is covariance stationary for any 

value of (𝜃1, 𝜃2, . . . , 𝜃𝑞). 

The infinite-order Moving Average process, denoted MA (∞), is the process resulting from a 

MA(q) process when 𝑞 → ∞ (Hamilton, 1994, p. 52): 

𝑦𝑡 = 𝜇 +∑𝜓𝑗휀𝑡−𝑗

∞

𝑗=0

= 𝜇 + 𝜓0휀𝑡 + 𝜓1휀𝑡−1 + 𝜓2휀𝑡−2+ . . ..  

It is possible to demonstrate that this infinite sequence generates a well-defined covariance-

stationary process provided that the sequence {𝜓𝑗}𝑗=0
∞  is absolutely summable, that is (see 

Hamilton, 1994, pp. 69-70): 

∑|𝜓𝑗| < ∞

∞

𝑗=0

 

where 𝜓𝑗 represents the coefficients of an infinite order moving average process. 

 

The pth-Order Autoregressive Process 

A pth-order Autoregressive process, denoted AR(p), is characterized by (Hamilton, 1994, p. 

58): 

 𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2+. . . +𝜙𝑝𝑦𝑡−𝑝 + 휀𝑡 (2.5) 

where {휀𝑡}𝑡=−∞
∞  satisfies the conditions (2.1), (2.2) and (2.3), c is a constant which could be any 

real number. This difference equation is stable, in the sense that the consequences of any shock 

gradually die out, provided that all the roots of the following characteristic equation: 

1 − 𝜙1𝑧 − 𝜙2𝑧
2−. . . −𝜙𝑝𝑧

𝑝 = 0 

lie outside the unit circle. When this condition is satisfied, the AR(p) process turns out to be 

covariance-stationary, and the inverse of the autoregressive operator is: 

𝜓(𝐿) = (1 − 𝜙1𝐿 − 𝜙2𝐿
2−. . . −𝜙𝑝𝐿

𝑝)−1 = 𝜓0 + 𝜓1𝐿 + 𝜓2𝐿
2+. . .. 

with ∑ |𝜓𝑗| < ∞∞
𝑗=0 . Multiplying both sides of equation (2.5) by 𝜓(𝐿) gives: 

𝑦𝑡 = 𝜇 + 𝜓(𝐿)휀𝑡 

which can be viewed as a MA (∞) process with mean 𝜇 = 𝑐 (1 −⁄ 𝜙1−. . . −𝜙𝑝).  

Equation (2.5) can be rewritten as: 

𝑦𝑡 − 𝜇 = 𝜙1(𝑦𝑡−1 − 𝜇) + 𝜙2(𝑦𝑡−2 − 𝜇)+. . . +𝜙𝑝(𝑦𝑡−𝑝 − 𝜇) + 휀𝑡 

from which is possible to find the autocovariances and the variance (𝛾0) of the process simply 

by multiplying both sides of the equation by (𝑦𝑡−𝑗 − 𝜇) and taking the expectation, such that: 

𝛾𝑗 = {
𝜙1𝛾𝑗−1 + 𝜙2𝛾𝑗−2+. . . +𝜙𝑝𝛾𝑗−𝑝      for 𝑗 = 1, 2, . . .

𝜙1𝛾1 + 𝜙2𝛾2+. . . +𝜙𝑝𝛾𝑝 + 𝜎
2         𝑓𝑜𝑟 𝑗 = 0             
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The Autoregressive Moving Average Process 

An Autoregressive Moving Average process, denoted ARMA(p, q), includes both autoregressive 

and moving average terms, and it is characterized by (Hamilton, 1994, p. 59): 

 𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2+. . . +𝜙𝑝𝑦𝑡−𝑝 + 휀𝑡 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2+. . . +𝜃𝑞휀𝑡−𝑞 (2.6) 

which can be rewritten in lag form as: 

 𝑦𝑡(1 − 𝜙1𝐿 − 𝜙2𝐿
2−. . . −𝜙𝑝𝐿

𝑝) =  𝑐 + (1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞)휀𝑡 (2.7) 

  

If all the roots of the characteristic equation: 

1 − 𝜙1𝑧 − 𝜙2𝑧
2−. . . −𝜙𝑝𝑧

𝑝 = 0 

lie outside the unit circle, both sides of the equation (2.7) can be divided by 

(1 − 𝜙1𝐿 − 𝜙2𝐿
2−. . . −𝜙𝑝𝐿

𝑝)−1 to get: 

𝑦𝑡 = 𝜇 + 𝜓(𝐿)휀𝑡 

with ∑ |𝜓𝑗| < ∞∞
𝑗=0  and where 𝜓(𝐿) and 𝜇 are respectively: 

𝜓(𝐿) =
(1 + 𝜃1𝐿 + 𝜃2𝐿

2+. . . +𝜃𝑞𝐿
𝑞)

(1 − 𝜙1𝐿 − 𝜙2𝐿
2−. . . −𝜙𝑝𝐿

𝑝)
                  𝜇 =  

𝑐

(1 − 𝜙1 − 𝜙2−. . . −𝜙𝑝)
   

 

Thus, from the equation describing 𝜇 it is easy to see that the stationarity of an ARMA process 

depends entirely on the autoregressive parameters (𝜙1, 𝜙2, . . . , 𝜙𝑝) and not on the moving 

average parameters (𝜃1, 𝜃2, . . . , 𝜃𝑞). 

  

Invertibility for the qth-Order Moving Average Process 

Consider the following MA(q) process: 

 (𝑦𝑡 − 𝜇) = (1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞)휀𝑡 (2.8) 

where {휀𝑡}𝑡=−∞
∞   satisfies the condition (2.1), (2.2) and (2.3). Provided that all the roots of the 

characteristic equation: 

1 − 𝜃1𝑧 − 𝜃2𝑧
2−. . . −𝜃𝑞𝑧

𝑞 = 0 

lie outside the unit circle, then equation (2.8) can be written as an AR(∞) by inverting the MA 

operator (Hamilton, 1994, p. 67): 

(1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞)−1(𝑦𝑡 − 𝜇) = 휀𝑡 

with: 

(1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞)−1 = (1 + 𝜂1𝐿 + 𝜂2𝐿
2+. . . . ) 

If these conditions are satisfied, the MA(q) process, described in equation (2.8), is invertible. 
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2.5 Integrated Processes 

Consider the following process:                                         

 𝑦𝑡 = 𝛼 + 𝛿𝑡 + 𝑢𝑡       for all 

t 
 (2.9) 

where 𝑢𝑡 follows a zero-mean ARMA (p, q) process (see Section 2.4) described by the following 

equation: 

 𝑢𝑡 = 𝜙1𝑢𝑡−1 + 𝜙2𝑢𝑡−2+. . . +𝜙𝑝𝑢𝑡−𝑝 + 휀𝑡 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2 +…+𝜃𝑞휀𝑡−𝑞 (2.10) 

 

where {휀𝑡}𝑡=−∞
∞  is a white noise sequence with mean zero and variance 𝜎2 and (𝜃1, 𝜃2, . . . , 𝜃𝑞) 

could be any real number. Equation (2.10) can be rewritten in lag form as: 

 (1 − 𝜙1𝐿 − 𝜙2𝐿
2−. . . −𝜙𝑝𝐿

𝑝)𝑢𝑡 = (1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞) 휀𝑡   (2.11) 

 

where the moving average operator (1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞) is invertible (see Section 2.4).  

Consider the following factorization of the autoregressive operator (see Hamilton, 1994, p. 33): 

 (1 − 𝜙1𝐿 − 𝜙2𝐿
2−. . . −𝜙𝑝𝐿

𝑝) = (1 − 𝜆1𝐿)(1 − 𝜆2𝐿). . . (1 − 𝜆𝑝𝐿)  

In order to solve this equation, it is necessary to substitute the lag operator L with a scalar z 

because L denotes a particular operator, not a number, and find a result for L would not be a 

sensible statement: 

 (1 − 𝜙1𝑧 − 𝜙2𝑧
2−. . . −𝜙𝑝𝑧

𝑝) = (1 − 𝜆1𝑧)(1 − 𝜆2𝑧). . . (1 − 𝜆𝑝𝑧) (2.12) 

 

The goal is to find the values of (𝜆1, 𝜆2,…, 𝜆𝑝) so that the two sides of the equation (2.12) 

represent the identical polynomial in z. It is easy to see that the left hand side is equal to zero if 

𝑧 ≡  𝜆−1, so if one finds a value of z that sets the right hand side to zero, that value of z must 

set the left hand side to zero as well. 

If all the values (𝜆1, 𝜆2,…, 𝜆𝑝) are inside the unit circle, that is |𝜆𝑖| < 1, then equation (2.11) 

represents a stationary process and can be expressed as: 

𝑢𝑡 =
(1 + 𝜃1𝐿 + 𝜃2𝐿

2+. . . +𝜃𝑞𝐿
𝑞)

(1 − 𝜆1𝐿)(1 − 𝜆2𝐿). . . (1 − 𝜆𝑝𝐿)
휀𝑡 = 𝜓(𝐿)휀𝑡 

with absolute summability of the moving average coefficients (see Section 2.4), that is  

∑ |𝜓𝑗|
∞
𝑗=0 < ∞, and the roots of the characteristic equation 𝜓(𝑧) = (1 − 𝜙1𝑧 −

𝜙2𝑧
2−. . . −𝜙𝑝𝑧

𝑝) = 0 outside the unit circle. 

Consider the case in which 𝜆1 = 1 and |𝜆𝑖| < 1 for i =2, 3,…, p. From (2.11) one obtains: 

(1 − 𝐿)(1 − 𝜆2𝐿). . . (1 − 𝜆𝑝𝐿)𝑢𝑡 = (1 + 𝜃1𝐿 + 𝜃2𝐿
2+. . . +𝜃𝑞𝐿

𝑞) 휀𝑡 

this implies that: 
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(1 − 𝐿)𝑢𝑡 =
(1 + 𝜃1𝐿 + 𝜃2𝐿

2+. . . +𝜃𝑞𝐿
𝑞)

(1 − 𝜆2𝐿)(1 − 𝜆3𝐿). . . (1 − 𝜆𝑝𝐿)
 휀𝑡 

with ∑ |𝜓𝑗|
∞
𝑗=0 < ∞ and the roots of  𝜓(𝑧) = (1 − 𝜙1𝑧 − 𝜙2𝑧

2−. . . −𝜙𝑝𝑧
𝑝) = 0 outside the 

unit circle. At this point, if (2.9) is first-differenced, the result is: 

(1 − 𝐿)𝑦𝑡 = (1 − 𝐿)𝛼 + [𝛿𝑡 − 𝛿(𝑡 − 1)] + (1 − 𝐿)𝑢𝑡

= 0 + 𝛿 + 
(1 + 𝜃1𝐿 + 𝜃2𝐿

2+. . . +𝜃𝑞𝐿
𝑞)

(1 − 𝜆2𝐿)(1 − 𝜆3𝐿). . . (1 − 𝜆𝑝𝐿)
 휀𝑡 

which is a unit root process. If a process written in the form (2.9) and (2.11) has one eigenvalue 

𝜆1 equals to one and all the others inside the unit circle, then the first difference produces a 

stationary process. This process is said to be integrated of order one, denoted I(1) (Hamilton, 

1994, p. 437). In general, a nonstationary time series is integrated of order d, denoted I(d), if it 

becomes stationary, denoted I(0), after being differenced d times, which is equivalent to say 

that the process has d eigenvalues equal to one and all the other inside the unit circle.  

A process written in the form of (2.9) and (2.11) is a generalization of an ARMA model (see 

Section 2.4), which is called autoregressive integrated moving average process, denoted 

ARIMA (p, d, q), where the first parameter (p) refers to the number of time lags of the 

autoregressive model (not including the unit roots), the second parameter (d) refers to the order 

of integration and the third parameter (q) refers to the order of  the moving average model. 

Taking d differences of an ARIMA (p, d, q) process produces a stationary ARMA (p, q) process. 

 

2.6 Non-Stationarity: Random Walk with and without drift and 

Trend-Stationary Processes 

There are two important models that have been used in order to represent the non stationarity: 

• The random walk with drift:      

 𝑦𝑡 = 𝜇 + 𝑦𝑡−1 + 휀𝑡  with  휀𝑡~ 𝑖. 𝑖. 𝑑. (0, 𝜎
2)  (2.13) 

where 𝜇 is a constant representing the drift in the process.  

• The trend-stationary process:  

 𝑦𝑡 = 𝛼 + 𝛽𝑡 + 휀𝑡  with  휀𝑡~ 𝑖. 𝑖. 𝑑. (0, 𝜎
2)       (2.14) 

   

The random walk with drift model can be generalized as follow: 

𝑦𝑡 = 𝜇 + 𝜙𝑦𝑡−1 + 휀𝑡 

where 𝜙 is the coefficient of the term 𝑦𝑡−1 and could be any real number. 

This generalization is useful to understand how a shock at time (t-T) will affect the system in 

the future (t). For this purpose, it is sufficient to consider an AR (1) model with no drift:                                                 
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 𝑦𝑡 = 𝜙𝑦𝑡−1 + 휀𝑡 (2.15) 

   

Lagging the equation (2.15), one obtains: 

 𝑦𝑡−1 = 𝜙𝑦𝑡−2 + 휀𝑡−1 (2.16) 

 𝑦𝑡−2 = 𝜙𝑦𝑡−3 + 휀𝑡−2 (2.17) 

   

Substituting (2.16) and (2.17) into (2.15) the result is: 

                                                    𝑦𝑡 = 𝜙
3𝑦𝑡−3 + 𝜙

2휀𝑡−2 + 𝜙휀𝑡−1 + 휀𝑡     

                                                                    

Repeating this substitution T times leads to the following result: 

𝑦𝑡 = 𝜙
𝑇+1𝑦𝑡−𝑇−1 + 𝜙휀𝑡−1 + 𝜙

2휀𝑡−2+. . . +𝜙
𝑇휀𝑡−𝑇 + 휀𝑡 

 

At this point, three different scenarios are possible (Brooks, 2008, pp. 321-322): 

▪ If 𝜙 < 1 𝑡ℎ𝑒𝑛 𝜙𝑇 → 0 𝑎𝑠 𝑇 → ∞: in this case a shock to the system gradually 

disappears (stationary case). 

▪ If 𝜙 = 1 𝑡ℎ𝑒𝑛 𝜙𝑇 = 1 ∀𝑇 : in this case a shock persists in the system (unit root case). 

▪ If 𝜙 > 1 : in this case a shock to the system becomes more influential as time goes on 

(explosive case).  

The random walk with drift described in (2.13) can be written also as: 

𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐿)𝑦𝑡 =  𝜇 + 휀𝑡 

The characteristic equation associated to the previous equation is (see Section 2.5): 

1 − 𝑧 = 0 

And the root of this characteristic equation is one, meaning that the process is integrated of 

order one, thus nonstationary. Indeed, it is easy to see that the first difference of {𝑦𝑡}𝑡=−∞
∞ :

      

 𝑤𝑡 = ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝜇 + 휀𝑡 (2.18) 

is simply the sum of the innovation (휀𝑡) and the mean of the process {𝑤𝑡}𝑡=−∞
∞ , and so it is a 

stationary process. Thus, the random walk with drift is an integrated process of order one, 

denoted 𝑦𝑡~𝐼(1). 

The trend-stationarity process is composed by a trend process (𝛼 + 𝛽𝑡) plus a stationary process 

represented by the innovation, 휀𝑡~𝐼(0).  

Both processes will produce strongly trended nonstationary series, the difference is that the 

random walk has a stochastic trend, implying that the series will increase in each period by a 

stochastic amount given by the realization of the disturbance, while the trend-stationary process 

will increase in each period by a deterministic amount, due to the deterministic trend, plus the 

concrete realization of the random disturbance. The two processes are very different from each 
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other and when analysing a phenomenon is crucial to understand which process is generating 

such phenomenon because the transform required to make the process stationary is not the same 

for the two models (Alexander, 2008, pp. 214-215). 

To transform a random walk, or any integrated process of order one, into a stationary process 

it is sufficient to take the first difference, as in equation (2.18). In order to transform a trend-

stationarity process into a stationary process detrending is required; in other words, a regression 

in the form given in (2.14) would be run, and any subsequent estimation would be done on the 

residuals from (2.14), which would have had the linear trend removed (Brooks, 2008, p. 322). 

 

2.7 Unit Root Tests 

Statistical tests of the null hypothesis that a time series is non-stationary versus the alternative 

that it is stationary are called unit root tests from the fact that an autoregressive series is 

stationary, or integrated of order zero, if and only if the roots of its characteristic equation lie 

inside the unit circle. The hypotheses for a unit root test are the following: 

𝐻0: 𝑦𝑡~𝐼(1)   𝑣𝑠   𝐻1: 𝑦𝑡~𝐼(0)  

Many economic and financial time series exhibit trending behaviour (i.e. nonstationary in the 

mean), and as discussed in Section 2.6 a crucial econometric task is determining the most 

appropriate form of the trend that is present in the data, because there exists different trend 

removal procedures (first differencing and detrending). The role of unit root tests is crucial in 

determining whether the data are integrated processes of order one which need to be first 

differenced or trend-stationary processes which need to be detrended (Zivot and Wang, 2006, 

p. 107).  

The major shortcoming of the unit root tests is their low statistical power against 𝐼(0) 

alternatives that are close to be 𝐼(1). In other terms, the test is unable to distinguish between 

unit root and near-unit root time series. With near unit root time series, the risk is to be unable 

to reject the null hypothesis of unit root. This means that the test has a high probability of not 

rejecting a false null hypothesis (Kočenda and Černý, 2015, p. 72). 

 

2.7.1 Dickey-Fuller test 

The early and pioneering work on testing for unit root in time series was done by Dickey and 

Fuller (1979). The Dickey-Fuller (DF) test allows to evaluate the presence of a trend or of unit 

roots in the series analysed. 

Consider the following autoregressive model:       

 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝑢𝑡           (2.19) 
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Where 𝑦0 = 0, 𝜙 is the coefficient of the term 𝑦𝑡−1 and could be any real number,  𝑢𝑡~𝑁(0, 𝜎
2) 

and 𝐶𝑜𝑣 (𝑢𝑡 , 𝑢𝑠) = 0 ∀ 𝑡 ≠ 𝑠. 

The basic purpose of the Dickey-Fuller test is to verify the null hypothesis of non-stationarity, 

i.e. the series contains a unit root, against the alternative hypothesis of stationarity, i.e.  the root 

of the characteristic equation lies inside the unit circle: 

𝐻0: 𝜙 = 1  𝑣𝑠   𝐻1: |𝜙| < 1 

 

As it is generally easier to test a null hypothesis that a coefficient is equal to zero, 𝑦𝑡−1 is 

subtracted from both sides of the equation (2.19) in order to obtain the following regression: 

𝑦𝑡 − 𝑦𝑡−1 = 𝜙𝑦𝑡−1 − 𝑦𝑡−1 + 𝑢𝑡 

∆𝑦𝑡 = (𝜙 − 1)𝑦𝑡−1 + 𝑢𝑡 = 𝜓𝑦𝑡−1 + 𝑢𝑡 

 

in which testing for 𝜓 = 0 is equivalent to test for 𝜙 = 1 in equation (2.19). Thus, the new 

hypotheses of the test become: 

𝐻0: 𝜓 = 0  𝑣𝑠   𝐻1: 𝜓 < 0 

 

The test can be conducted allowing for an intercept, or an intercept and a deterministic trend or 

neither, in the test regression. The general model for the unit root test can be described as follow: 

 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝜇 + 𝜆𝑡 + 𝑢𝑡 (2.20) 

 

Subtracting 𝑦𝑡−1 from both sides one obtains: 

𝑦𝑡 − 𝑦𝑡−1 = (𝜙 − 1)𝑦𝑡−1 + 𝜇 + 𝜆𝑡 + 𝑢𝑡 

 ∆𝑦𝑡 = 𝜓𝑦𝑡−1 + 𝜇 + 𝜆𝑡 + 𝑢𝑡 (2.21) 

   

From (2.21) is possible to obtain three model specification, which are applied according to the 

characteristics of the process considered: 

• Unit Root Test (Random Walk):  ∆𝑦𝑡 = 𝜓𝑦𝑡−1 + 𝑢𝑡 

• Unit Root Test with Drift: ∆𝑦𝑡 = 𝜇 + 𝜓𝑦𝑡−1 + 𝑢𝑡 

• Unit Root Test with Drift and Deterministic Time Trend: ∆𝑦𝑡 = 𝜇 + 𝜆𝑡 + 𝜓𝑦𝑡−1 + 𝑢𝑡 

Consider the easiest case in which the estimated regression, that indicates the form in which the 

regressions is estimated, is described by equation (2.19), while the true process, which describes 

the null hypothesis under which the distribution is calculated, is a random walk without drift, 

such that: 

Estimated process: 

True process: 
𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝑢𝑡 
𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡 

(2.22) 

𝑢𝑡~ 𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎
2)     (2.23) 
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The two main test statistics for the Dickey-Fuller test are the following: 

𝛿𝑇  =  𝑇 (�̂�𝑇 − 1) 

 𝜏𝑇 =
(�̂�𝑇 − 1)

�̂��̂�𝑇
 

where �̂�𝑇 is the estimate of the parameter 𝜙 derived using ordinary least squares (OLS), �̂��̂�𝑇 is 

the OLS standard error for the estimated coefficient �̂�𝑇 and T is the size of the observed series. 

Consider the OLS estimate of the parameter 𝜙: 

�̂�𝑇 = 
∑ 𝑦𝑡𝑦𝑡−1
𝑇
𝑡=1

∑ 𝑦𝑡−1
2𝑇

𝑡=1

 

 

If the true value of 𝜙 is less than one in absolute value, it is possible to demonstrate that 

(Hamilton, 1994, p. 216): 

√𝑇(�̂�𝑇 − 𝜙)
𝐿
→𝑁(0, (1 − 𝜙2)) 

where (�̂�𝑇 − 𝜙) is the deviation of the OLS estimate �̂�𝑇 from the true value 𝜙, T is the size of 

the observed series and (
𝐿
→) is a mathematical symbol which indicates the convergence in 

distribution (or in law). However, if the true value of 𝜙 is one, to obtain a nondegenerate 

asymptotic distribution for �̂�𝑇, i.e. to obtain a variable with a useful asymptotic distribution, it 

is necessary to multiply (�̂�𝑇 − 1) by T rather than by √𝑇. This means that the unit root 

coefficient converges at a faster rate (T) with respect to a coefficient in a stationary regression 

(√𝑇). When the true value of 𝜙 is one, the difference between the estimate �̂�𝑇 and the true 

value can be expressed as (Hamilton, 1994, p. 210): 

 

 
(�̂�𝑇 − 1) =  

∑ 𝑦𝑡−1𝑢𝑡
𝑇
𝑡=1

∑ 𝑦𝑡−1
2𝑇

𝑡=1

 (2.24) 

from which: 

 
𝑇(�̂�𝑇 − 1)  =  

𝑇−1∑ 𝑦𝑡−1𝑢𝑡
𝑇
𝑡=1

𝑇−2∑ 𝑦𝑡−1
2𝑇

𝑡=1

 (2.25) 

At this point, it could be useful to understand why it is necessary scaling equation (2.24) by T 

rather than √𝑇 when the true value of 𝜙 is one. The process described by equation (2.23) can 

be rewritten as follow: 

𝑦𝑡
2 = (𝑦𝑡−1 + 𝑢𝑡)

2 = 𝑦𝑡−1
2 + 2𝑢𝑡𝑦𝑡−1 + 𝑢𝑡

2 

from which: 

 
𝑦𝑡−1𝑢𝑡 =

1

2
(𝑦𝑡

2 − 𝑢𝑡
2 − 𝑦𝑡−1

2 ) (2.26) 
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summing equation (2.26) over 𝑡 = 1,2, . . . , 𝑇, one gets: 

 

∑𝑦𝑡−1𝑢𝑡

𝑇

𝑡=1

=
1

2
(𝑦𝑇

2 − 𝑦0
2 −∑𝑢𝑡

2

𝑇

𝑡=1

) (2.27) 

Dividing both sides for T and 𝜎2, which represents the variance of each random variable 𝑢𝑡,  

and recalling that 𝑦0 = 0, equation (2.27) becomes (Hamilton, 1994, p. 477): 

 

(
1

𝑇𝜎2
)∑𝑦𝑡−1𝑢𝑡

𝑇

𝑡=1

=
1

2
 (

1

√𝑇𝜎
𝑦𝑇)

2

−
1

2
 
1

𝑇𝜎2
∑𝑢𝑡

2

𝑇

𝑡=1

 (2.28) 

where  𝑦𝑇 = (𝑢𝑇 + 𝑢𝑇−1+. . . . +𝑢1) ~ 𝑁(0, 𝑇𝜎
2), implying that: 

(
1

√𝑇𝜎
𝑦𝑇)~𝑁(0, 1) 

so that its square is a chi-square with one degree of freedom (see Hamilton, 1994, p. 746), and 

so:  

 
(
1

√𝑇𝜎
𝑦𝑇)

2

~𝜒2(1) (2.29) 

 

Consider the second term on the right hand side of the equation (2.28), this term is the sum of 

independent and identically distributed random variables, as stated in equation (2.23), each one 

with mean equal to 𝜎2. From the law of large numbers (see Hamilton, 1994, p. 183) is possible 

to state that: 

1

𝑇
∑𝑢𝑡

2

𝑇

𝑡=1

𝑝
→ 𝜎2 

so that 

 1

𝑇𝜎2
∑𝑢𝑡

2

𝑇

𝑡=1

𝑝
→  1 (2.30) 

 

where (
𝑝
→) is a mathematical symbol indicating the convergence in probability. Based on (2.29) 

and (2.30), equation (2.18) becomes: 

 

(
1

𝑇𝜎2
)∑𝑦𝑡−1𝑢𝑡

𝐿
→

𝑇

𝑡=1

1

2
 (𝑋 − 1) (2.31) 

 

where X is a 𝜒2(1) random variable.  

Finally, from equation (2.25) consider: 

∑𝑦𝑡−1
2

𝑇

𝑡=1
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Recall that 𝑦𝑇 = (𝑢𝑇+. . . . +𝑢1) ~ 𝑁(0, 𝑇𝜎
2), so that 𝑦𝑡−1 = (𝑢𝑡−1+. . . . +𝑢1) ~ 𝑁(0, (𝑡 − 1)𝜎

2), from 

which the expected value of 𝑦𝑡−1
2 , is 𝐸[𝑦𝑡−1

2 ] =  (𝑡 − 1)𝜎2 which implies that: 

 

𝐸 [∑𝑦𝑡−1
2

𝑇

𝑡=1

] = 𝜎2 (𝑇 − 1)
𝑇

2
= 𝜎2

𝑇2 

2
− 𝜎2

𝑇

2
 

 

(2.32) 

Notice that the leading term (see Hamilton. 1994, p.456) in the previous equation is 𝑇2 2⁄ , thus in 

order to obtain a random variable with a convergent distribution it is necessary to divide equation (2.32) 

by 𝑇2, from which one obtains exactly the denominator of the equation (2.25). 

Phillips (1987) exploiting the functional central limit theorem (see Hamilton, 1994, pp. 479-

482) and the continuous mapping theorem (see Hamilton, 1994, pp. 482-483) shows that the 

asymptotic distribution of statistics constructed from unit root processes can be calculated in 

terms of functionals on standard Brownian motion3. Thus, recalling the equation (2.25) it is 

possible to state that: 

 

(
1

𝑇
)∑𝑦𝑡−1𝑢𝑡

𝐿
→
1

2
𝜎2{[𝑊(1)]2 − 1}

𝑇

𝑡=1

 (2.33) 

 

(
1

𝑇
)
2

∑𝑦𝑡−1
2

𝑇

𝑡=1

𝐿
→𝜎2∫ [𝑊(𝑟)]2𝑑𝑟

1

0

 (2.34) 

 

Since (2.25) is a continuous function of (2.33) and (2.34) it follows that under the null 

hypothesis of non-stationarity, the OLS estimate of the parameter ϕ is described by (Hamilton, 

1994, p. 488): 

𝑇(�̂�𝑇 − 1)
𝐿
→
(1 2)⁄ {[𝑊(1)]2 − 1}

∫ [𝑊(𝑟)]2𝑑𝑟
1

0

 

The other statistic for testing the null hypothesis that 𝜙 = 1 is based on the traditional OLS t 

test of this hypothesis:  

 
𝜏𝑇 =

(�̂�𝑇 − 1)

�̂��̂�𝑇
 (2.35) 

Where �̂��̂�𝑇 is the standard error of the estimated coefficient �̂�, and can be expressed as (see 

Hamilton, 1994, pp. 488-489): 

 
3 Standard Brownian motion W(∙) is a continuous-time stochastic process, associating each date 𝑟 ∈
[0, 1] with the scalar W(r) such that: (1) W(0)=0; (2) for any dates 0 ≤ 𝑡1 < 𝑡2 <. . . < 𝑡𝑘 ≤ 1 the 

changes [W(t2) − W(t1)], …, [W(𝑡𝑘−1) −𝑊(𝑡𝑘)] are independent multivariate Gaussian with [𝑊(𝑠) −
𝑊(𝑡)]~𝑁(0, 𝑠 − 𝑡); (3) for any given realization, W(t) is continuous in t with probability 1 (see 

Hamilton, 1994, pp. 477-479). 
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�̂��̂�𝑇 = √
𝑠𝑇
2

∑ 𝑦𝑡−1
2𝑇

𝑡=1

= √
∑ [(𝑦𝑡 − �̂�𝑇𝑦𝑡−1)

2 (𝑇 − 1)]⁄𝑇
𝑡=1

∑ 𝑦𝑡−1
2𝑇

𝑡=1

 (2.36) 

 

with 𝑠𝑇
2 denoting the OLS estimate of the residual variance. Even if the 𝜏𝑇 test is calculated in 

the same way as the usual t test, its limiting distribution is not Gaussian under the null 

hypothesis of non-stationarity (i.e. when 𝜙 = 1). The 𝜏𝑇 test described in equation (2.35) is 

closely related to the 𝛿𝑇 test described in equation (2.25), indeed the 𝜏𝑇 test is simply the 𝛿𝑇 

test  divided by T and by the standard error of the estimated coefficient �̂� (�̂��̂�𝑇), that is: 

𝜏𝑇 =
𝛿𝑇

𝑇 �̂��̂�𝑇
 

Substituting equation (2.36) one obtains: 

𝜏𝑇 =
𝑇 (�̂�𝑇 − 1)

𝑇 
 {

𝑠𝑇
2

∑ 𝑦𝑡−1
2𝑇

𝑡=1

}

−1/2

=  𝑇 (�̂�𝑇 − 1)  
{𝑇−2∑ 𝑦𝑡−1

2𝑇
𝑡=1 }

(𝑠𝑇
2)1/2

1/2

 

Finally, substituting equation (2.25) the result is: 

𝜏𝑇 =
𝑇−1∑ 𝑦

𝑡−1
𝑢𝑡

𝑇
𝑡=1

𝑇−2∑ 𝑦
𝑡−1
2𝑇

𝑡=1

 
{𝑇−2∑ 𝑦𝑡−1

2𝑇
𝑡=1 }

(𝑠𝑇
2)1/2

1/2

=
𝑇−1∑ 𝑦

𝑡−1
𝑢𝑡

𝑇
𝑡=1

{𝑇−2∑ 𝑦
𝑡−1
2𝑇

𝑡=1 }
1/2
(𝑠𝑇
2)1/2

 

where the consistency of  �̂�𝑇 implies that 𝑠𝑇
2
𝐿
→𝜎2 (see Hamilton, 1994, p. 211). 

As in the case of the 𝛿𝑇 test, it is possible to write the asymptotic distribution of the 𝜏𝑇 test in 

terms of functional on standard Brownian motion (Hamilton, 1994, p. 489): 

(�̂�𝑇 − 1)

�̂��̂�𝑇

𝐿
→
(1 2)⁄ {[𝑊(1)]2 − 1}

{∫ [𝑊(𝑟)]2𝑑𝑟
1

0
}1/2

 

 

In practice, the critical values for statistics that have unknown distribution or a distribution that 

cannot be expressed in a closed form, as the test statistic 𝑇(�̂�𝑇 − 1) and  
(�̂�𝑇−1)

�̂��̂�𝑇

, are found 

using simulation techniques, such as the Monte Carlo technique. When some properties of a 

particular estimation method are unknown or cannot be described analytically, Monte Carlo 

technique is used to create a large enough random sample from the unknow distribution 

considered in order to simulate these properties. The main steps of the Monte Carlo technique 

are the following (Kočenda and Černý, 2015, p. 193): 

1. Random generation of the data with the desired properties using proper data generating 

process. 
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2. Performance of the regression and computation of the investigated test statistics (or 

other parameters of interest). 

3. Repetition of the whole procedure, described in the point (1) and (2), N times (number 

of replications). The larger is N, the more representative will be the sampled distribution 

obtained from the values of the test statistics collected. The central idea of the Monte 

Carlo techniques is that of random sampling from a given distribution. Thus, if the 

number of replications is set too small the final results will be unreliable. 

Therefore, it could be of interest to understand how the critical values for the simplest version 

of the DF test analysed in this section (equations (2.22) and (2.23)) are obtained. The first step 

concerns the generation of a series {𝑦𝑡}𝑡=1
𝑇  of length T (required number of observations) which 

follows a unit root process, and such that the series of randomly generated errors 

{𝑢𝑡}𝑡=1
𝑇 ~𝑁(0, 𝜎2). Assuming for simplicity a first value of the series  𝑦𝑡 = 0 it is possible to 

construct the series for {𝑦𝑡}𝑡=1
𝑇  recursively (𝑦1 = 𝑦0 + 𝑢1; 𝑦2 = 𝑦1 + 𝑢2; . . . ;  𝑦𝑇 = 𝑦𝑇−1 + 𝑢𝑇). 

The second step concerns the estimation of the parameters of the artificial time series {𝑦𝑡}𝑡=1
𝑇  

using OLS and the computation of the t-statistics of interest. By performing N times this 

procedure an estimate of the exact small sample distribution of the OLS estimates can be 

obtained (Hamilton, 1994, pp. 216-217). 

It is important to notice that the asymptotic properties of the OLS estimate �̂�𝑇 when 𝜙 = 1 

depend on the assumptions that are made about the true model and on the particular 

specification that is selected in order to estimate the parameter of interest �̂�𝑇. There are four 

different cases that can be considered: 

• Case 1: The estimated process does not contain a constant or a time trend and the true 

process is a random walk. This is the case analysed in this section. 

• Case 2: The estimated process contains a constant but not a time trend and the true 

process is a random walk (see Hamilton, 1994, pp. 490-494). 

• Case 3: The estimated process contains a constant but not a time trend and the true 

process is a random walk with drift (see Hamilton, 1994, pp. 495-497). 

• Case 4: The estimated process contains a constant and a time trend and the true process 

is a random walk with drift (see Hamilton, 1994, pp. 497-500). 

A full set of Dickey-Fuller critical values for the cases reported above (with the exception of 

the Case 3) and considering various sample sizes T, obtained using Monte Carlo technique, for 

the test statistics 𝑇(�̂�𝑇 − 1) and (�̂�𝑇 − 1) �̂��̂�𝑇⁄   is reported in the Appendix A (Table A1 and Table 

A2). For Case 3 the estimated coefficients are asymptotically Gaussian, meaning that the standard OLS 
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t statistic can be calculated in the usual way and compared with the critical values for the standard t 

distribution. 

Based on the critical values obtained with the Monte Carlo technique is possible to determine for the 

two test statistics when the null hypothesis of non-stationarity (𝜙 = 1) is accepted or when it is 

rejected in favour of the alternative of stationarity (𝜙 < 1). For both the test statistics 

considered, if the value of the test is lower (more negative) than the corresponding critical value, 

at a given level of significance, then the null hypothesis is rejected in favour of the alternative 

hypothesis. Conversely, if the value of the test is greater (less negative) than the corresponding 

critical value, at a given level of significance, then the null hypothesis of non-stationarity cannot 

be rejected, i.e. the null hypothesis of non-stationarity is accepted. For example, under the Case 

1, assuming a sample size T=100, the critical value at the 5% level for the test statistics 𝛿𝑇 and 

 𝜏𝑇 is respectively −7.9 and −1.95. This means that in order to reject the null hypothesis of 

non-stationarity for a sample of this size the test statistics must be respectively 𝛿𝑇 < −7.9 and 

𝜏𝑇 < −1.95.  

 

2.7.2 Augmented Dickey-Fuller test 

An important assumption on which is based the ordinary Dickey-Fuller test is that the error 

terms must be uncorrelated, as stated in equation (2.23). However, in practice, it is possible that 

these error terms in the DF test show evidence of serial correlation, leading to unreliable results. 

The solution proposed by Said and Dickey (1984) is to ‘augment’ the test including in the 

regression  p lagged differences, such as ∆𝑦𝑡−1, ∆𝑦𝑡−2, . . . , ∆𝑦𝑡−𝑝, in order to ensure that the 

error term is effectively a white noise process. The resulting test is the so called Augment 

Dickey-Fuller test (ADF). 

In order to understand the derivation of the general regression equation used in the ADF test, it 

could be useful to begin with an example. Consider the following AR (3) process: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝑢𝑡 

 

Subtracting 𝑦𝑡−1 from both sides of the equation, one gets: 

𝑦𝑡 − 𝑦𝑡−1 = (𝜙1 − 1)𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝑢𝑡 

 

Add and subtract 𝜙3𝑦𝑡−2 to the right hand side of the equation: 

∆𝑦𝑡 = (𝜙1 − 1)𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜙3𝑦𝑡−3 + 𝜙3𝑦𝑡−2 − 𝜙3𝑦𝑡−2 + 𝑢𝑡 

∆𝑦𝑡 = (𝜙1 − 1)𝑦𝑡−1 + (𝜙2 + 𝜙3)𝑦𝑡−2 − 𝜙3(𝑦𝑡−2 − 𝑦𝑡−3) + 𝑢𝑡 
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Finally, add and subtract (𝜙2 + 𝜙3)𝑦𝑡−1: 

∆𝑦𝑡 = (𝜙1 − 1)𝑦𝑡−1 + (𝜙2 + 𝜙3)𝑦𝑡−2 − 𝜙3(𝑦𝑡−2 − 𝑦𝑡−3) + (𝜙2 + 𝜙3)𝑦𝑡−1 − (𝜙2 + 𝜙3)𝑦𝑡−1 + 𝑢𝑡 

∆𝑦𝑡 = (𝜙1 + 𝜙2 + 𝜙3 − 1)𝑦𝑡−1 − (𝜙2 + 𝜙3)(𝑦𝑡−1 − 𝑦𝑡−2) − 𝜙3(𝑦𝑡−2 − 𝑦𝑡−3) + 𝑢𝑡 

∆𝑦𝑡 = (𝜙1 + 𝜙2 + 𝜙3 − 1)𝑦𝑡−1 − (𝜙2 + 𝜙3)∆𝑦𝑡−1 − 𝜙3∆𝑦𝑡−2 + 𝑢𝑡                                     

 

∆𝑦𝑡 = 𝜓𝑦𝑡−1 +∑𝛾𝑗∆𝑦𝑡−𝑗

3−1

𝑗=1

+ 𝑢𝑡   (2.37) 

where 𝜓 = (∑ 𝜙𝑖)
3
𝑖=1 − 1 and 𝛾𝑗 = −∑ 𝜙𝑘

3
𝑘=𝑗+1 . 

The procedure can be generalized to the testing of a single unit root in an AR (p) process 

described by the following equation: 

𝑦𝑡 = 𝜇 + 𝛽𝑡 + 𝜙1𝑦𝑡−1+. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝑢𝑡 

which becomes:                                

 

∆𝑦𝑡 = 𝜇 + 𝛽𝑡 + 𝜓𝑦𝑡−1 +∑𝛾𝑗∆𝑦𝑡−𝑗

𝑝−1

𝑗=1

+ 𝑢𝑡
 (2.38) 

 

with 

𝜓 = (∑ 𝜙𝑖)
𝑝
𝑖=1 − 1   and   𝛾𝑗 = −∑ 𝜙𝑘

𝑝
𝑘=𝑗+1  

where p is the number of autoregressive lag terms incorporated in the test.   

From (2.38) is possible to obtain three model specifications for the ADF test, which are applied 

according to the characteristics of the process considered: 

• Unit Root Test (Random Walk):  ∆𝑦𝑡 = 𝜓𝑦𝑡−1 + ∑ 𝛾𝑗∆𝑦𝑡−𝑗
𝑝−1
𝑗=1 + 𝑢𝑡, which is obtained 

by removing the constant term (𝜇) and the time trend (𝛽𝑡). 

• Unit Root Test with Drift: ∆𝑦𝑡 = 𝜇 + 𝜓𝑦𝑡−1 +∑ 𝛾𝑗∆𝑦𝑡−𝑗
𝑝−1
𝑗=1 + 𝑢𝑡, which is obtained 

by removing the time trend (𝛽𝑡). 

• Unit Root Test with Drift and Deterministic Time Trend: ∆𝑦𝑡 = 𝜇 + 𝛽𝑡 + 𝜓𝑦𝑡−1 +

∑ 𝛾𝑗∆𝑦𝑡−𝑗
𝑝−1
𝑗=1 + 𝑢𝑡. 

The basic objective of this test, just like the ordinary DF test, is to evaluate the null hypothesis 

of non-stationarity against the alternative hypothesis of stationarity in the previous three cases: 

𝐻0: 𝜓 = 0  𝑣𝑠   𝐻1: 𝜓 < 0 

 

The coefficients in equation (2.38) can be consistently estimated by ordinary least squares, and 

the estimate of the coefficient for 𝑦𝑡−1 provides a means for testing the null hypothesis of non-

stationarity, that is 𝜓 = (∑ 𝜙𝑖)
𝑝
𝑖=1 − 1 = 0. The resulting t-type statistic has the same 
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asymptotic critical values of the corresponding ordinary DF test (see Appendix A, Table A2), 

and it can be computed as: 

𝜏 =
�̂�

�̂��̂�
 

where �̂� is the OLS estimate of the parameter 𝜓 and �̂��̂� is the standard error of the estimated 

coefficient �̂�. The null hypothesis of an integrated process is rejected in favour of the alternative 

hypothesis of stationarity whenever the test statistics is lower than the critical value at a given 

level of significance. Conversely, if the test statistic is greater than the critical value at a given 

level of significance, the null hypothesis cannot be rejected.  

The main problem to face when utilizing the ADF test is how to decide the optimal lag length 

of the dependent variable. Two rules of thumb are suggested by Brooks (2008, p. 329) to 

overcome this problem:  

• First, the frequency of the data can be used to determine the adequate number of lags to 

use. For example, if the data are monthly use 12 lags, if the data are quarterly use 4 lags 

and so on. 

• Second, the optimal number of lags can be found choosing the number of lags that 

minimizes the value of an information criterion. 

As argued by Verbeek (2017, p. 305) the choice of the optimal lag length is extremely 

important, if too many lags are considered this will reduce the power of the test, but, if too few 

lags are included the asymptotic distributions from the table in the Appendix A (Table A1 and 

Table A2) are not valid, and the test may lead to seriously biased results. 

 

2.7.3 Phillips-Perron test 

An alternative to the Augmented Dickey-Fuller tests is the Phillips-Perron test (PP) named after 

the two authors who first proposed it in 1988. The main difference between the PP unit root 

tests and the ADF tests is the treatment of serial correlation and heteroskedasticity in the error 

terms. Instead of adding additional lagged differences in the regression in order to obtain a 

white noise error term, Phillips and Perron (1988), starting from the same regression considered 

for the Dickey-Fuller test, make a non-parametric correction of the Dickey-Fuller test statistics 

to take into account the potential autocorrelation pattern in the errors (Verbeek, 2017, p. 306).  

To illustrate the idea of the Phillips-Perron test consider the following regression: 

 𝑦𝑡 = 𝜇 + 𝜙𝑦𝑡−1 + 𝑢𝑡 (2.39) 
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where 𝜇 is a constant, 𝜙 is the coefficient of the term 𝑦𝑡−1 and 𝑢𝑡 may be serially correlated 

and possibly heteroskedastic. The assumption regarding the true process are that 𝜇 = 0 and 

𝜙 = 1, meaning that the true process can be described as: 

𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡 

In other words, this specification considers the case in which the estimated process contains a 

constant but not a time trend and the true process is a random walk (see also Case 2 in Section 

2.7.1). Phillips and Perron (1988) suggest estimating equation (2.39) by OLS even if 𝑢𝑡 are 

serially correlated and then directly modifying the statistics (𝜏𝑇 test and 𝛿𝑇) to account for the 

serial correlation. For completeness these modified statistics, denoted respectively 𝑍𝜏 and 𝑍𝜋, 

are reported below, but they will not be explained in detail since this is beyond the objectives 

of the thesis (see Hamilton, 1994, pp. 509-510): 

 

 
𝑍𝜏 = (

𝛾0
𝜆2
)
1/2

𝜏𝑇 −
1

2
(
𝜆2 − 𝛾0
𝜆

)(
𝑇 �̂��̂�𝑇
𝑠𝑇

) (2.40) 

 
𝑍𝜋 = 𝑇(�̂�𝑇 − 1) −

1

2
(
𝑇2 �̂��̂�𝑇
𝑠𝑇
2 ) (𝜆2 − 𝛾0) (2.41) 

where 𝜏𝑇 is the DF t-type statistic, 𝑠𝑇
2 is the OLS estimate of the variance of 𝑢𝑡, �̂��̂�𝑇 is the OLS 

standard error for the estimated coefficient �̂�𝑇, T is the size of the observed series, 𝛾0 = 𝐸(𝑢𝑡
2), 

𝜆2 is the asymptotic variance of the sample mean (�̅�) of u, that is (Hamilton, 1994, p. 510): 

√𝑇�̅� = 𝑇−1/2∑𝑢𝑡

𝑇

𝑡=1

𝐿
→  𝑁(0, 𝜆2) 

The statistics (2.40) and (2.41) require knowledge of the population parameters 𝛾0 and 𝜆2. Even 

if these parameters are unknown they are easy to estimate, in fact the sample variance of the 

OLS residual �̂�𝑡 is a consistent estimate of 𝛾0, the Newey-West variance estimate (see 

Hamilton, 1994, pp. 281-283) of 𝑢𝑡 using �̂�𝑡 is a consistent estimate of 𝜆2. The resulting 

estimates �̂�0 and �̂�2 can be used in the equations (2.40) and (2.41) to calculate the test statistics, 

which under the null hypothesis that 𝜇 = 0 and 𝜙 = 1 have the same asymptotic distribution 

as the corresponding Dickey-Fuller tests (𝜏𝑇 and 𝛿𝑇), which in the case considered is the Case 

2 described in Section 2.7.1. If the PP statistics is statistically significant, i.e. if the test statistic 

considered is lower than the corresponding critical values at a given level of significance, it is 

possible to reject the null hypothesis of unit root, even in the presence of serial correlation 

and/or heteroskedasticity (Kočenda and Černý, 2015, p. 72).       

There are two important advantages that the PP tests has over the ADF tests: first, the PP tests 



 

 

 
45 

are robust to general forms of heteroskedasticity in the error term; second, in the PP tests there 

is no need to define the optimal lag length for the regression (Zivot and Wang, 2006, p. 123). 

Despite the advantages, the ADF test is generally preferred to the PP test because there is good 

evidence that the Phillips-Perron tests perform less well in finite sample than the Augmented 

Dickey-Fuller tests (Davidson and Mackinnon, 2004, p. 613). 

 

2.8 Stationarity Tests 

The technical approach of the stationarity tests is completely different from that of the unit root 

tests, the main difference is the transposition of the null and the alternative hypothesis. While 

the unit root tests evaluate the null hypothesis that a time series is non-stationary against the 

alternative hypothesis of stationarity, the stationarity tests evaluate the null hypothesis that the 

time series is an integrated process of order zero, i.e. stationary, against the alternative 

hypothesis of a unit root. 

The most commonly used stationarity test is the KPSS test that owes its name to Kwiatkowski, 

Phillips, Schmidt and Shin (1992). This approach has been developed in order to overcome the 

low test power of the unit root tests, a time series with a root close to one that was typically 

found non-stationary with the ADF test and the PP test can be correctly found stationary with 

the KPSS test (Kočenda and Černý, 2015, p. 73). 

The KPSS test is derived by the following model (Kwiatkowski et al, 1992): 

         𝑦𝑡 = 𝜉𝑡 + 𝑟𝑡 + 휀𝑡   
        𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡   with 𝑢𝑡 are i.i.d. 𝑁(0, 𝜎𝑢

2) 
where 𝑦𝑡, with 𝑡 = 1,2, . . . , 𝑇, is the observed series that has to be test for stationarity. This 

series is decomposed into the sum of a deterministic trend (𝜉𝑡), a random walk (𝑟𝑡) and the error 

term (휀𝑡) which may be serially correlated and possibly heteroskedastic, as for the Phillips-

Perron test (see Section 2.7.3). The initial value of 𝑟𝑡, that is 𝑟0, is treated as fixed and serves 

the role of an intercept. 

The null hypothesis of stationarity (or trend stationarity) of the time series {𝑦𝑡}𝑡=−∞
∞  

corresponds to the hypothesis that the variance of the random walk {𝑟𝑡}𝑡=−∞
∞  equals zero, which 

implies that {𝑟𝑡}𝑡=−∞
∞   is a constant: 

𝐻0: 𝜎𝑢
2 = 0  𝑣𝑠   𝐻1: 𝜎𝑢

2 > 0 

The test statistic is given by (Kwiatkowski et al., 1992): 

𝐾𝑃𝑃𝑆 = 𝑇−2∑
𝑆𝑡
2

�̂�2

𝑇

𝑡=1
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where 𝑆𝑡 = ∑ 휀�̂�
𝑡
𝑠=1  is the partial sum process of the OLS residuals (휀�̂�) from the regression of  

{𝑦𝑡} on an intercept and time trend. The authors define the ‘long-run variance’ (𝜎2) as: 

𝜎2 = 𝑙𝑖𝑚
𝑇→∞

𝐸(𝑆𝑇
2) 

so that �̂�2 is a consistent estimator of 𝜎2 which can be constructed from the residuals (휀�̂�), as 

in Phillips and Perron (1988) (see Section 2.7.3). 

The asymptotic distribution of the KPSS test is nonstandard, and Kwiatkowski et al. (1992) 

calculate the critical values via direct simulation, using sample size of 2000 and 50000 

replications. These critical values are reported in Appendix A (Table A3). 

Although the KPSS test resolves the low test power of the unit root tests, it is important to be 

aware that any results of statistical testing are just probabilistic, meaning that there is always a 

non-zero chance of being wrong. A clever approach that should be used in unit root testing is 

to combine the ADF test (or the PP test) and the KPSS test. If a time series is found stationary 

with the ADF test then it will be more likely to find stationarity also using the KPSS test. 

Similarly, if a time series is found non-stationary using the KPSS test then it is reasonable to 

expect non-stationarity also with the ADF test. Nonetheless, it can happen that a time series that 

was found stationary with the ADF test will be marked as non-stationary using the KPSS test. 

In such cases it is important to be very careful with the final conclusions (Kočenda and Černý, 

2015, p. 73). 

 

 

2.9 Spurious Regressions 

The usual statistical results for the linear regression model are based on the assumption that the 

variables 𝑥𝑡 and 𝑦𝑡 are stationary, that is 𝑥𝑡~𝐼(0) and 𝑦𝑡~𝐼(0). Consider a regression in the 

following form: 

𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝑢𝑡 

where the elements of 𝑦𝑡 and 𝑥𝑡 might be nonstationary. If  there does not exist some value for 

𝛽 for which the residual is stationary, i.e. 𝑢𝑡 = 𝑦𝑡 − 𝑥𝑡
′𝛽  ~𝐼(0), then the OLS estimator is 

prone to generate spurious regression (Hamilton, 1994, p. 557). 

Consider the variables 𝑥𝑡 and 𝑦𝑡, generated by two independent random walks: 

 𝑦𝑡 = 𝑦𝑡−1 + 𝑢1𝑡 
𝑥𝑡 = 𝑥𝑡−1 + 𝑢2𝑡 

𝑢1𝑡~𝐼𝐼𝐷 (0, 𝜎1
2) 

𝑢2𝑡~𝐼𝐼𝐷 (0, 𝜎1
2) 

where 휀1𝑡 and 휀2𝑡 are mutually independent disturbance terms. The process generating these 

two variables are independent and so there is nothing that leads to a relationship between them.  

Suppose that one of those variables is regressed on the other such that: 
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𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑢𝑡 

One should expect to find no evidence of a relationship, so that the estimate of 𝛽 is near to zero 

and its associated t-statistics is insignificant. However, as argued by Granger and Newbold 

(1974), these types of regression, which relate nonstationary time series, frequently have high 

𝑅2 and also highly autocorrelated residuals (indicated by a very low Durbin-Watson statistics). 

In such situations the usual significance tests about regression coefficients can be very 

misleading. Granger and Newbold (1974) conducting sampling experiments demonstrate that 

the traditional significance tests are severely bias towards rejection of the null hypothesis of no 

relationship, i.e. acceptance of a spurious relationship. According to Phillips (1986), the reason 

for these ambiguous results is that the distributions of the conventional test statistic under the 

assumption of no-stationarity are very different from those derived under the assumption of 

stationarity. In particular, the following results about the behaviour of the OLS estimator are 

due to Phillips (1986): 

• The OLS estimator of the coefficients do not converge in probability to constants as 

𝑇 → ∞. 

• The conventional OLS t-statistics used to assess the significance of the coefficients in 

the regression analysis do not have well defined asymptotic distributions.  

• Low value for the Durbin Watson statistics and relatively high values coefficient of 

determination 𝑅2 are expected in spurious regressions. 

Because 𝑥𝑡 and 𝑦𝑡 contain stochastic trend, the OLS estimator tends to find a significant 

correlation between them, even if they are totally unrelated. This means that the final results 

seem to be good under standard measures, but they are valueless (Verbeek, 2017, p. 352). 

Statistically, the problem is that 𝑢𝑡 is nonstationary because both 𝑥𝑡 and 𝑦𝑡 are nonstationary 

process. According to Hamilton (1994, pp. 561-562) one approach to avoid the problems of 

spurious regressions is to include lagged values of both the dependent and the independent 

variables: 

𝑦𝑡 = 𝛼 + 𝜙𝑦𝑡−1 + 𝛽𝑥𝑡 + 𝛿𝑥𝑡−1 + 𝑢𝑡 

In this case, there are no spurious regression problem because there exist coefficients (𝜙 = 1, 

𝛽 = 𝛿 = 0) for which 𝑢𝑡~𝐼(0). Thus, the OLS estimator is consistent for all parameters. 
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2.10 Cointegration 

2.10.1 Definition of Cointegration 

A peculiar feature of most macroeconomic time series is the presence of a unit root in levels, 

that is 𝑘𝑡~𝐼(1), and stationarity in first differences, that is ∆𝑘𝑡~𝐼(0). This kind of time series 

has very unpleasant characteristics; consider a time series 𝑘𝑡~𝐼(1) with 𝑘0 = 0 : it does not 

exhibit mean reversion even if it could have a constant long term mean (e.g. a random walk 

with drift), its variance goes to infinity as t goes to infinity, an innovation has a permanent effect 

on the value of the time series (see Section 2.6), the expected time between two consecutive 

crossings of the value 𝑘0 = 0 is infinity and finally the autocorrelations 𝜌𝑠 are not independent 

of time and converge to one for all s as 𝑡 → ∞ (Engle and Granger, 1987). These unappealing 

features are the reason why nonstationary time series need to be manipulated (differencing or 

detrending (see Section 2.6)) in order to reduce them to stationary time series which can be 

analysed more easily. If a time series {𝑤𝑡} 𝑡=−∞
∞

 is weakly stationary its variance is finite, an 

innovation has only a temporary effect on its value, this means that any shock that occurs at 

time t, intended as a deviation from the long-run mean 𝐸(𝑦𝑡) = 𝜇,  has a diminishing effect 

over time and finally disappears at time t+s as 𝑠 → ∞, bringing the time series back to its long 

term equilibrium, i.e. stationary time series has limited memory of its past behaviour (see 

Section 2.6) and the expected time between two consecutive crossings of the long-run mean is 

finite (Engle and Granger, 1987). This property of stationary time series to return to its long-

run mean is called mean reversion. 

 

Figure 2.1: Stationarity, Non-Stationarity and Unit Root Time Series: A Comparison 

Source: E. Kočenda, A. Černý (2015) 
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In order to better understand the property of mean reversion, it can be useful to consider the 

example illustrated in Figure 2.1. Figure 2.1 shows examples of stationary and nonstationary 

(Non-stationarity and Unit root) time series. The line labelled as ‘Non-stationary’ referrer to a 

random walk in the explosive case scenario (see Section 2.6), while the line labelled as ‘Unit 

root’ referred to an integrated process of order one (see Section 2.5). The stationary time series 

tends to return often to its initial value (i.e. the long-run mean), while the ‘Non-stationary’ time 

series explodes after a very short period of time. Finally, the time series containing a unit root 

seems to have a trend very similar to the stationary time series, but it does not return to its initial 

value as often. Being on the edge between stationary and nonstationary time series, unit root 

processes play a crucial role in time series analysis and this is the reason why testing for unit 

root is one of the most important tasks for this type of analysis (see Section 2.7). 

Since integrated of order one processes have infinite variance, while stationary processes have 

finite variance, it is always true that if  𝑤𝑡~𝐼(0)  and 𝑘𝑡~𝐼(1), their sum will be an integrated 

process of order one (Engle and Granger, 1987).  

If {𝑤𝑡} 𝑡=−∞
∞

 and {𝑘𝑡} 𝑡=−∞
∞

 are both integrated processes of order d, i.e. 𝐼(𝑑), then it is generally 

true that the linear combination: 

𝑔𝑡 = 𝑤𝑡 − 𝑎𝑘𝑡 

will also be an integrated process of order d. However, in some cases, it is possible that some 

linear combinations of {𝑤𝑡} 𝑡=−∞
∞

 and {𝑘𝑡} 𝑡=−∞
∞

produce a time series {𝑔𝑡} 𝑡=−∞
∞

that can be 

𝑔𝑡~𝐼(𝑑 − 𝑏) with 𝑏 > 0. 

If such a linear combination exists, then the time series are called cointegrated. The concept 

of cointegration was first introduced by Granger (1981) and Granger and Weiss (1983), but 

the classical reference is the seminal paper by Engle and Granger (1987). 

Engle and Granger (1987) propose the following definition: “The components of the vector 𝑥𝑡 

are said to be co-integrated of order d, b, denoted 𝑥𝑡~𝐶𝐼(𝑑, 𝑏), if (i) all the components of 𝑥𝑡 

are I(d); (ii) there exists a vector 𝛼(≠ 0) so that 𝑧𝑡 =  𝛼′𝑥𝑡 ~𝐼(𝑑 − 𝑏), b>0. The vector 𝛼 is 

called the co-integrated vector.” In other words, the N components of a vector 𝑥𝑡 =

 (𝑥1𝑡  , 𝑥2𝑡 , . . . , 𝑥𝑁𝑡)  are said to be cointegrated of order (d, b), denoted 𝐶𝐼(𝑑, 𝑏), if each element 

of 𝑥𝑡 is I(d), and if a linear combination 𝑧𝑡 = 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡+. . . +𝛽𝑁𝑥𝑁𝑡 exists that is 𝐼(𝑑 −

𝑏). The vector 𝛽 = (𝛽1𝑡 , 𝛽2𝑡 , . . . , 𝛽𝑁𝑡) ≠ 0 is a Nx1 cointegrating vector (Kočenda and Černý, 

2015, p. 157). 
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Since the generalization to orders of integration higher than one does not have remarkable 

economics applications, because integrations of order two or higher are very rare in economics, 

from now on it will be analysed the case of integrated time series of order one. 

Consider two time series {𝑥𝑡} 𝑡=−∞
∞

and {𝑦𝑡} 𝑡=−∞
∞

 both 𝐼(1), they are said to be cointegrated of 

order (1, 1), denoted 𝐶𝐼(1, 1), if there exists a non-zero linear combination 𝑧𝑡 = 𝛽1𝑥𝑡 −

 𝛽2𝑦𝑡 that is stationary, where the vector 𝛽 = (𝛽1, 𝛽2) is the cointegrating vector. Intuitively, 

the two time series individually are nonstationary but ‘move together’ over time, in the sense 

that there exist some influences on them, which imply that they do not drift too far away from 

each other except for transitory fluctuations. The cointegrating linear combination defines a sort 

of long run equilibrium relationship to which the cointegrating variable will be forced to return, 

despite short run deviations (Brooks, 2008, p. 336). 

Consider the cointegrating linear combination: 

𝑧𝑡 = (𝛽1𝑥𝑡 − 𝛽2𝑦𝑡)~𝐼(0) 
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This is a time series of the short-run deviations of {𝑥𝑡} and {𝑦𝑡} from their long-run equilibrium 

which is defined by (𝛽1𝑥𝑡 − 𝛽2𝑦𝑡) = 𝛼, where 𝛼 is a constant which can assume any real value. 

Since {𝑧𝑡} 𝑡=−∞
∞

 is a stationary process it can deviate in the short-run from its equilibrium value 

(𝛼), but in the long-run it tends to return to it (Kočenda and Černý, 2015, p. 158). 

Figure 2.2 provides an intuitive illustration of the property of cointegration. The first panel plots 

two upward trending time series, it is easy to notice that these processes are nonstationary since 

they wander far from their respective starting value but they do not drift too far away from each 

other; the second panel plots the stationary linear combination of the two time series which 

exhibits the typical mean reverting behaviour around the long-term equilibrium. 

 

 

 

Figure 2.2: Examples of cointegrated time series 

Source: E. Kočenda, A. Černý (2015) 
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2.10.2 Properties of the Cointegrating Vector 

Consider the (Nx1) vector  𝑥𝑡 = (𝑥1𝑡  , 𝑥2𝑡 , . . . , 𝑥𝑁𝑡)  ~𝐼(1). The vector 𝑥𝑡 is cointegrated if 

there exist an (Nx1) vector 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑁)′ ≠ 0 such that: 

 𝛽′𝑥𝑡 = 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 , . . . +𝛽𝑁𝑥𝑁𝑡~𝐼(0) (2.42) 

 

The cointegrating vector 𝛽 is not unique, if 𝛽′𝑥𝑡 is stationary then so is 𝑐𝛽′𝑥𝑡 for any nonzero 

scalar c, this means that if 𝛽 is a cointegrating vector, then so is 𝑐𝛽. Hence, in order to uniquely 

identify 𝛽, an arbitrary normalization must be made. A typical approach is to normalize the 

cointegrating vector such that the first element of 𝛽 is one (Hamilton, 1994, p. 574): 

𝛽 = (1,−𝛽2, . . . , −𝛽𝑁)′ 

Then, the equilibrium relationship can be written as: 

𝛽′𝑥𝑡 = 𝑥1𝑡 − 𝛽2𝑥2𝑡 , . . . −𝛽𝑁𝑥𝑁𝑡~𝐼(0) 

 

If there are more than two variables contained in 𝑥𝑡 there might be more than one cointegrating 

linear relationship, meaning that there might be more than one equilibrium relationship. In fact, 

because there are N variables in the process {𝑥𝑡}, at least in principle, the number on linearly 

independent cointegrating relationship h (cointegrating rank) can range from 0 to N-1. 

Consider a generic h, such that 0 < ℎ ≤ 𝑁 − 1. In this case, the cointegrating vector 𝛽 becomes 

an 𝑁xℎ cointegration matrix: 

 𝛽 = (𝛽𝑖
(1)
, 𝛽𝑖

(2)
, 𝛽𝑖

(3)
, . . . , 𝛽𝑖

(ℎ)
)   with 𝑖 =  1,2,3, … , 𝑁 

Again, the cointegrating vectors and consequently the equilibrium relationships are not 

uniquely identified (see Section 2.11.2). Any linear combination of the cointegrating vectors is 

a cointegrating vector as well. Moreover, if 𝛽′𝑥𝑡 is stationary, then for any nonzero (1 x h) 

vector k’, the scalar 𝑘′𝛽′𝑥𝑡 is also stationary. Then the (N x 1) vector 𝛼′ = 𝑘′𝛽′ could also be 

described as a cointegrating vector (Hamilton, 1994, p. 574). 

 

2.10.3 Common Trends Model 

The common trends model is an approach introduced by Stock and Watson (1988) to model the 

cointegration. The idea behind the common-trends representation is that a time series can be 

expressed as a sum of two component time series: a stationary component and a nonstationary 

component. Consider two time series: 

 𝑥𝑡 = 𝜂𝑥𝑡 + 휀𝑥𝑡 

𝑦𝑡 = 𝜂𝑦𝑡 + 휀𝑦𝑡 
(2.43) 
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Where {휀𝑥𝑡} and {휀𝑦𝑡} represents the stationary components  and {𝜂𝑥𝑡} and {𝜂𝑦𝑡} represent the 

random walk components or stochastic trend component (nonstationary components) defined 

by the equations: 

𝜂𝑥𝑡 = (𝜂𝑥𝑡−1 + 𝜔𝑥𝑡) ~𝐼(1) 

𝜂𝑦𝑡 = (𝜂𝑦𝑡−1 + 𝜔𝑦𝑡) ~𝐼(1) 

 

Suppose that the linear combination 𝑥𝑡 = 𝛾𝑦𝑡 is the cointegrating combination that results in a 

stationary process. Substituting the equations (2.43) in the linear combination and rearranging 

the terms, one obtains: 

𝑥𝑡 − 𝛾𝑦𝑡 = 𝜂𝑥𝑡 + 휀𝑥𝑡 − 𝛾(𝜂𝑦𝑡 + 휀𝑦𝑡) 

𝑥𝑡 − 𝛾𝑦𝑡 = (𝜂𝑥𝑡 − 𝛾𝜂𝑦𝑡) + (휀𝑥𝑡 − 𝛾휀𝑦𝑡) 

Clearly, the two series cannot be cointegrated unless 𝜂𝑥𝑡 = 𝛾𝜂𝑦𝑡, that is the nonstationary 

component must be zero. This means that the two stochastic trends must be generated by the 

same random walk processes and can only differ by a linear scaling factor 𝛾 (Kočenda and 

Černý, 2015, p. 159). 

𝑥𝑡 − 𝛾𝑦𝑡 = (휀𝑥𝑡 − 𝛾휀𝑦𝑡)~𝐼(0) 

In the common trends model the cointegrating linear composition acts to nullify the 

nonstationary components (Vidyamurthy, 2004, pp. 78-79). 

 

2.10.4 Error Correction Model 

The cointegration dynamics can be explained using the notion of error correction. The idea is 

that cointegrated processes have a long-run equilibrium, represented by the long-run mean of 

the linear combination of the processes involved. If a short-run deviation from the long-term 

equilibrium occurs, then the series involved will adjust themselves in order to restore the 

equilibrium (Vidyamurthy, 2004, p. 76). The error correction model links the long-run 

equilibrium with the short-run dynamic adjustment mechanism which explains how the 

variables involved react when they deviate from the equilibrium. 

 In a seminal paper Engle and Granger (1987) demonstrate that cointegrated time series can 

always be represented by an error correction model and that the existence of an error correction 

model always implies cointegration. 

Consider a bivariate vector integrate of order one 𝑦𝑡 = (𝑦1𝑡 , 𝑦2𝑡)′ which is cointegrated with 

cointegrating vector 𝛽 = (1,−𝛽2)′ so that: 

 𝛽𝑦𝑡 = (𝑦1𝑡 − 𝛽2𝑦2𝑡)~𝐼(0)  
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To derive a simple version of the error correction model, consider the following vector auto-

regressive model: 

𝑦1𝑡 = 𝜇1 + 𝑎11𝑦1𝑡−1 + 𝑎12𝑦2𝑡−1 + 휀1𝑡 

𝑦2𝑡 = 𝜇2 + 𝑎21𝑦1𝑡−1 + 𝑎22𝑦2𝑡−1 + 휀2𝑡 

Subtracting 𝑦1𝑡−1 from both sides of the first equation and 𝑦2𝑡−1 from both sides of the 

second equation, one obtains: 

𝑦1𝑡 − 𝑦1𝑡−1 = 𝜇1 + (𝑎11 − 1)𝑦1𝑡−1 + 𝑎12𝑦2𝑡−1 + 휀1𝑡 

𝑦2𝑡 − 𝑦2𝑡−1 = 𝜇2 + (𝑎21 − 1)𝑦1𝑡−1 + 𝑎22𝑦2𝑡−1 + 휀2𝑡 

which can be expressed in matrix form as: 

(
∆𝑦1𝑡
∆𝑦2𝑡

) = (
𝜇1
𝜇2
) + (

(𝑎11 − 1) 𝑎12
𝑎21 (𝑎22 − 1)

) (
𝑦1𝑡−1
𝑦2𝑡−1

) + (
휀1𝑡
휀2𝑡
) 

setting (𝑎11 − 1) = −
𝑎12𝑎21

1−𝑎22
, one gets: 

∆𝑦1𝑡 = 𝜇1 +−
𝑎12𝑎21
1 − 𝑎22

𝑦1𝑡−1 + 𝑎12𝑦2𝑡−1 + 휀1𝑡 

∆𝑦2𝑡 = 𝜇2 + 𝑎21𝑦1𝑡−1 − (1 − 𝑎22)𝑦2𝑡−1 + 휀2𝑡 

 

Assuming 𝑎12 ≠ 0 and 𝑎21 ≠ 0, it is possible to normalize the cointegrating vector with 

respect to either variable, obtaining the error correction representation. For example, 

normalizing with respect to 𝑦1𝑡−1 the resulting error correction model is: 

 

 
∆𝑦1𝑡 = 𝜇1 + 𝛼1(𝑦1𝑡−1 − 𝛽2𝑦2𝑡−1) + 휀1𝑡 = 𝜇1 + 𝛼1𝑧𝑡−1 + 휀1𝑡 
∆𝑦2𝑡 = 𝜇2 + 𝛼2(𝑦1𝑡−1 − 𝛽2𝑦2𝑡−1) + 휀2𝑡 = 𝜇2 + 𝛼2𝑧𝑡−1 + 휀2𝑡 

(2.44) 

(2.45) 

 

Where 𝛽2 =
(1−𝑎22)

𝑎21
, 𝛼1 = −

𝑎12𝑎21

1−𝑎22
 and 𝛼2 = 𝑎21 are the adjustment coefficients, indicative 

of the speed at which the time series correct themselves to maintain equilibrium, 휀1𝑡 and 휀2𝑡 are 

white noise disturbances, 𝜇1 and 𝜇2 are constants, and {𝑧𝑡} is the equilibrium cointegrating 

linear combination (𝑦1𝑡 − 𝛽2𝑦2𝑡), {𝑧𝑡} is a stationary process denoting the deviation from the 

long-term equilibrium. From this analysis it is easy to see that equations (2.44) and (2.45) 

indicate that the current changes of 𝑦1𝑡 and 𝑦2𝑡, respectively ∆𝑦1𝑡 and ∆𝑦2𝑡, are proportional to 

the previous deviation from the equilibrium (Kočenda and Černý, 2015, p. 159).  

A significant problem that might arise with the simplest version of the error correction model 

is that this specification might not be sufficient to assure that 휀1𝑡 and 휀2𝑡 are white noise 

disturbances. A solution to overcome this problem is to include in the model p lags of ∆𝑦1𝑡 and 

∆𝑦2𝑡 in order to ensure that the disturbances are effectively white noise processes (this is the 
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same approach used to proceed from the ordinary Dickey-Fuller test to the Augmented Dickey-

Fuller test) (Zivot and Wang, 2006, p. 437): 

∆𝑦1𝑡 = 𝜇1 + 𝛼1(𝑦1𝑡−1 − 𝛽2𝑦2𝑡−1) +∑𝛾11
𝑗
∆𝑦1𝑡−𝑗

𝑝

𝑗=1

+∑𝛾12
𝑗
∆𝑦2𝑡−𝑗

𝑝

𝑗=1

+ 휀1𝑡 

∆𝑦2𝑡 = 𝜇2 + 𝛼2(𝑦1𝑡−1 − 𝛽2𝑦2𝑡−1) +∑𝛾21
𝑗
∆𝑦1𝑡−𝑗

𝑝

𝑗=1

+∑𝛾22
𝑗
∆𝑦2𝑡−𝑗

𝑝

𝑗=1

+ 휀2𝑡 

where 𝛤𝑗 = (
𝛾11
𝑗

𝛾12
𝑗

𝛾21
𝑗

𝛾22
𝑗
) are 2x2 matrixes of autoregressive coefficients.  

Finally, it is also possible to expand the error correction model to the general case with N 

cointegrated variables: 

 

 ∆𝑦𝑡 =  𝜇 + 𝛼𝛽′𝑦𝑡−1 +∑𝛤𝑗∆𝑦𝑡−𝑗

𝑝

𝑗=1

+ 휀𝑡 (2.46) 

where 𝑦𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , . . . , 𝑦𝑁𝑡)′ represents the vector of the N cointegrated variables, 𝜇 =

( 𝜇1, 𝜇2, . . . , 𝜇𝑁)′ represents the vector of the N intercepts, 휀𝑡 = (휀1𝑡 , 휀2𝑡 , . . . , 휀𝑁𝑡)′ represents the 

vector of the N disturbances, 𝛽 = (𝛽𝑖
(1)
, 𝛽𝑖

(2)
, 𝛽𝑖

(3)
, . . . , 𝛽𝑖

(ℎ)
) with i=1,2,…,N represents the 

𝑁 × ℎ cointegrating matrix, 𝛼 is a 𝑁 × ℎ matrix of the adjustment coefficients and 

𝛤𝑗 = (
𝛾11
𝑗

⋯ 𝛾1𝑁
𝑗

⋮ ⋱ ⋮

𝛾𝑁1
𝑗

⋯ 𝛾𝑁𝑁
𝑗
) 

are the 𝑁 × 𝑁 matrixes of autoregressive coefficients (Kočenda and Černý, 2015, p. 159). 

 

2.11 Testing for Cointegration 

 

2.11.1 Engle-Granger Methodology 

Testing for cointegration means testing for the existence of long-run equilibria among the 

elements of one or more time series. The testing methodology proposed by Engle and Granger 

(1987) is a simple residual-based testing method which only consider the case with at most one 

cointegrating vector. The testing methodology proposed by Engle and Granger (1987) enables 

to distinguish if two or more variables are cointegrated and it allows for the estimation of a very 

simple form of error correction representation. The main problem of this technique is that it 

allows to estimate only one cointegrating vector, meaning that if a system of N > 2 cointegrated 

variables is considered, in which there could be up to N-1 cointegrating vectors, the Engle-
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Granger methodology can only detect the presence of cointegration among the variables but it 

is unable to test for the number of cointegrating vectors. 

Following Kočenda and Černý (2015, pp. 162-165) the Engle-Granger methodology for the 

simple case of two cointegrated variables, 𝑥𝑡 and 𝑦𝑡, can be divided into four steps: 

1. The first step is to test the two variables individually for their order of integration. In 

order to proceed with the cointegration test 𝑥𝑡 and 𝑦𝑡 should be integrated of order one, because 

if the individual time series are integrated of different orders then in can be concluded that they 

are not cointegrated (see Section 2.10.1). To ascertain the order of integration it is possible to 

use all the unit root tests discussed earlier, e.g. the Augmented Dickey-Fuller test (Section 2.7.2) 

or the Phillips Perron test (Section 2.7.3). In general, a good approach is to combine unit root 

tests and stationarity tests, such as the KPSS test (Section 2.8).If the null hypothesis of a unit 

root is individually accepted for both variables, meaning that 𝑥𝑡~𝐼(1) and 𝑦𝑡~𝐼(1), it is 

possible to proceed to the next step.  

2. The second step concerns the estimation of the long run equilibrium relationship 

between the time series using OLS. Two different specifications can be considered: 

 𝑦𝑡 = 𝜇 + 𝛽𝑥𝑡 + 휀𝑡 
𝑦𝑡 = 𝜇 + 𝛾𝑡 + 𝛽𝑥𝑡 + 휀𝑡 

(2.47) 

(2.48) 

 

Equation (2.47) considers only the presence of a constant while equation (2.48) controls for 

possible linear time trends in the time series. In general, if the two series appear to be trending 

then the proper specification to be estimated should be equation (2.48), otherwise should be 

considered equation (2.47).  

Engle and Granger (1987) demonstrate that if two variables are cointegrated, then OLS 

estimator produce super-consistent estimate of the cointegrating vector, which means that the 

OLS estimate �̂� converges to the true value 𝛽 faster than it would if the series were stationary. 

The parameter estimates in equation (2.47) are estimated from: 

�̂� =
∑(𝑥𝑡 −  �̅�𝑡)(𝑦𝑡 −  �̅�𝑡)

∑(𝑥𝑡 −  �̅�𝑡)
2

           �̂� =  �̅�𝑡 − �̂� �̅�𝑡 

 

where  �̅�𝑡 and  �̅�𝑡 is the mean of 𝑥𝑡 and 𝑦𝑡 respectively. Thus, the estimated regression is given 

by: 

�̂�𝑡 = �̂� + �̂�𝑥𝑡 

Finally, the residuals can be estimated as: 

휀�̂� = 𝑦𝑡 − �̂�𝑡 
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3. The third step concerns the application of a unit root test, for example the Augmented 

Dickey Fuller test, on the estimated residuals (휀�̂�) of the OLS regression in order to decide 

whether the residuals are stationary or not. If the residuals are stationary then 𝑥𝑡 and 𝑦𝑡 are 

cointegrated, while if the residuals are nonstationary then 𝑥𝑡 and 𝑦𝑡 are not cointegrated. 

Recall that unit root tests are statistical tests of the null hypothesis that a time series is 

nonstationary against the alternative that it is stationary. Thus, the hypotheses to be tested are: 

 𝐻0: 휀�̂�~𝐼(1) 
𝐻1: 휀�̂�~𝐼(0) 

(no stationarity) 

(stationarity) 

 

Under the null hypothesis a stationary linear combination of 𝑥𝑡 and 𝑦𝑡 has not been found. This 

means that if 𝐻0 is not rejected, there is no cointegration between the variables. Conversely, if 

𝐻0 is rejected this means that a stationary linear combination of 𝑥𝑡 and 𝑦𝑡 has been found and 

so the two variables are cointegrated (Brooks, 2008, p. 340). 

The ADF test is performed on the following model: 

 

 

∆휀�̂� = 𝜓휀�̂�−1 +∑𝛾𝑗∆휀�̂�−𝑗

𝑘

𝑗=1

+ 𝑢𝑡 (2.49) 

 

where ∆휀�̂� are the estimated first differenced residuals, 휀�̂�−1 are the estimated lagged residuals, 

𝜓 is the parameter of interest and 𝑢𝑡 are the error terms. The hypothesis of the model can be 

restated as follow: 

 𝐻0: 𝜓 = 0 

𝐻1: 𝜓 < 0 

(no stationarity) 

(stationarity) 

 

At this point, it is possible to test the hypotheses on 𝜓 as described in Section 2.7.2. The only 

difference with respect to the standard ADF test is that the critical values are different because 

the test is operating on residuals of an estimated model and not on an observed time series 

(Kirchgässner et al., 2013, p. 217). The residuals have been constructed from a specific set of 

coefficient estimates with a specific sampling estimation error which change the distribution of 

the test statistic (Brooks, 2008, p. 339). The critical values differ depending on the number of 

variables tested for cointegration but also on the deterministic components of the equilibrium 

relationship (constant or linear time trend) and also on the number of observations. The most 

commonly used critical values for the Augmented Dickey Fuller test on the residual time series 

were computed by MacKinnon (1991) using Monte Carlo simulations. Comparing these critical 

values with those used for the standard ADF test, it is possible to notice that they are more 
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negative meaning that more evidence against the null hypothesis is required in order to reject it 

and so it is less likely to allow the rejection of the null hypothesis. The null hypothesis of a unit 

root is rejected in favour of the alternative hypothesis if the test statistic is more negative than 

the critical value at some significance level, otherwise the null hypothesis cannot be rejected. 

4. The final step concerns the estimation of the error correction model. It is possible to 

proceed to this stage only if the ADF test performed in the previous step indicates cointegration 

between the variables, i.e. 휀�̂�~𝐼(0). 

The error correction model can be described as (see Section 2.10.4): 

 

∆𝑥𝑡 = 𝜇1 + 𝛼1𝑧𝑡−1 +∑𝛾11
𝑗
∆𝑥𝑡−𝑗

𝑝

𝑗=1

+∑𝛾12
𝑗
∆𝑦𝑡−𝑗

𝑝

𝑗=1

+ 휀1𝑡 

∆𝑦𝑡 = 𝜇2 + 𝛼2𝑧𝑡−1 +∑𝛾21
𝑗
∆𝑥𝑡−𝑗

𝑝

𝑗=1

+∑𝛾22
𝑗
∆𝑦𝑡−𝑗

𝑝

𝑗=1

+ 휀2𝑡 

where 𝑧𝑡 is the process denoting the deviation from the long-term equilibrium. Since the actual 

deviation from the long-term equilibrium is unknown, Engle and Granger (1987) propose to 

substitute it with the residuals from the OLS regression performed in the second stage: 

 

∆𝑥𝑡 = 𝜇1 + 𝛼1휀�̂�−1 +∑𝛾11
𝑗
∆𝑥𝑡−𝑗

𝑝

𝑗=1

+∑𝛾12
𝑗
∆𝑦𝑡−𝑗

𝑝

𝑗=1

+ 휀1𝑡 

∆𝑦𝑡 = 𝜇2 + 𝛼2휀�̂�−1 +∑𝛾21
𝑗
∆𝑥𝑡−𝑗

𝑝

𝑗=1

+∑𝛾22
𝑗
∆𝑦𝑡−𝑗

𝑝

𝑗=1

+ 휀2𝑡 

(2.50) 

Then, the error correction equations (2.50) can be estimated separately using the OLS estimator. 

The shortfalls of the Engle-Granger method can be summarised as follow (Ssekuma, 2011): 

▪ The estimation of the long-run equilibrium regression requires to choose the dependent 

variable and the independent variable. In the case of two variables, the Engle-Granger 

method can be applied by using the residuals from either of the following regression: 

𝑦𝑡 = 𝜇1 + 𝛽1𝑥𝑡 + 휀1𝑡 

or 

𝑥𝑡 = 𝜇2 + 𝛽2𝑦𝑡 + 휀2𝑡 

The theory suggests that a test for a unit root in the 휀1𝑡 sequence should be equivalent 

to the same unit root test in the 휀2𝑡 sequence if the sample size in sufficiently large. 

However, the properties of large samples may not be applicable to the actual sample 

sizes usually available. In practice, the problem is that it is possible to obtain ambiguous 
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results with one regression indicating cointegration between the variables, and the other 

one indicating no cointegration. 

▪ Engle- Granger methodology relies on a two-step estimator: first, the residual series (휀�̂�) 

is generated from the estimation of the long run equilibrium relationship between the 

time series using OLS. Then, the residual series is used to estimate the regression 

equation (2.49). Thus, the coefficient 𝜓 is obtained by regressing the residuals from 

another regression on lagged differences of itself, meaning that any errors introduced in 

the first step are carried out also in the second step, making the results unreliable. 

 

 

2.11.2 Johansen Methodology 

An alternative method that could avoid the defects of the Engle-Granger methodology is the 

one introduced by Johansen (1988, 1991) which investigates cointegration in general 

multivariate systems where there are at least two integrated series. It is more powerful than the 

Engle-Granger methodology because it enables testing for the number of cointegrating vectors 

among N variables. However, it is important to highlight that the two methodologies have 

different objectives. The Engle-Granger method, being based on OLS, seeks the stationary 

linear combination that has the minimum variance, whereas the Johansen’s method seeks the 

linear combination which is more stationary (Alexander, 2008, p. 235). 

Johansen’s procedure does not rely on OLS estimation, but it builds cointegrated variables 

directly on full-information maximum likelihood estimation, using sequential tests for 

determining the number of cointegrating vectors. Johansen tests can be thought of as a 

multivariate generalization of the Augmented Dickey-Fuller test described in Section 2.7.2 

(Ssekuma, 2011). 

The starting point of the Johansen’ approach is the error correction model described in equation 

(2.46), from which the author formulates the following model of N variables: 

 

 ∆𝑦𝑡 =  𝜇 + 𝛤𝑦𝑡−1 +∑𝛤𝑗∆𝑦𝑡−𝑗

𝑝

𝑗=1

+ 휀𝑡 (2.51) 

where 𝑦𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , . . . , 𝑦𝑁𝑡)′ is a 𝑁 × 1 vector of  N cointegrated variables; 𝜇 is a 𝑁 × 1 

vector of constant terms; 𝛤𝑗 are 𝑁 × 𝑁 matrices of coefficients; 𝛤 is a 𝑁 × 𝑁 long-run 

coefficient matrix that can be interpreted as 𝛤 = 𝛼𝛽’ where 𝛽 is an 𝑁 × ℎ cointegrating matrix, 

with h cointegrating vector, and 𝛼 is an 𝑁 × ℎ matrix of the adjustment coefficients, and finally 

휀𝑡 = (휀1𝑡 , 휀2𝑡 , . . . , 휀𝑁𝑡) is a 𝑁 × 1 vector of normally distributed disturbances. 
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The focus of Johansen’s procedure is on the rank coefficient of 𝑦𝑡−1, which is the rank of the 

matrix 𝛤. The rank of a matrix is equal to the number of its characteristic roots, also called 

eigenvalues, that are different from zero. 

 Suppose that there are h cointegrating vectors, this means that the rank of the matrix 𝛤 is h. 

The rank of the matrix, at least in principle, can range from 0 to N-1. Thus, the following cases 

should be considered (Kočenda and Černý, 2015, p. 171): 

• If ℎ = 0 then 𝛤 is a zero matrix and all elements of 𝑦𝑡 are integrated of order one, that 

is 𝑦𝑡~𝐼(1), and so equation (2.51) describes a Vector Auto-Regressive in first 

differences. 

• If  0 < ℎ ≤ 𝑁 − 1 then all elements of 𝑦𝑡 are integrated of order one, that is 𝑦𝑡~𝐼(1), 

h cointegrating vectors exist and equation (2.51) describes an error correction model. 

• If ℎ = 𝑁 then all elements of 𝑦𝑡 are stationary, that is 𝑦𝑡~𝐼(0), and so equation (2.51) 

describes a Vector Auto-Regressive in levels. 

The first phase of Johansen’s approach concerns testing hypotheses about the rank of 𝛤. This 

test can be interpreted as a test for the number of its non-zero eigenvalues of the matrix 𝛤. Since 

𝛤 is an 𝑁 × 𝑁 matrix there will be N (theoretical) eigenvalues, denoted 𝜆1 ≥ 𝜆2 ≥. . . ≥ 𝜆𝑁. 

Suppose that there are 0 < ℎ ≤ 𝑁 − 1 cointegrating vectors, i.e. the rank of 𝛤 is ℎ, which means 

that there are h eigenvalues that are different from zero. In this context, it is possible to use the 

order sample of the estimated eigenvalues (�̂�1 ≥ �̂�2 ≥. . . ≥ �̂�𝑁) to test hypothesis about the rank 

of 𝛤.  Johansen (1988, 1991) proposes two different likelihood ratio tests: 

▪ The trace test: 𝜆𝑡𝑟𝑎𝑐𝑒(ℎ) =  −𝑇∑ 𝑙𝑛(1 − �̂�𝑖)
𝑁
𝑖=ℎ+1 . 

▪ The maximum eigenvalue test: 𝜆𝑚𝑎𝑥(ℎ, ℎ + 1) =  −𝑇𝑙𝑛(1 − �̂�ℎ+1).  

Here T is the sample size and �̂�𝑖 is the ith estimated eigenvalue. The trace test is used to test the 

null hypothesis that the rank of 𝛤 is less than or equal to h, i.e. 𝐻0: 𝑟𝑎𝑛𝑘 𝛤 ≤ ℎ, against the 

alternative hypothesis that the rank of 𝛤 is greater than h, i.e.  𝐻1: 𝑟𝑎𝑛𝑘 𝛤 > ℎ. The maximum 

eigenvalue test is used to test the null hypothesis that the rank of 𝛤 is less than or equal to h, i.e. 

𝐻0: 𝑟𝑎𝑛𝑘 𝛤 ≤ ℎ, against the alternative hypothesis that the rank of 𝛤 is h+1, i.e. 𝐻1: 𝑟𝑎𝑛𝑘 𝛤 =

ℎ + 1. These tests are likelihood ratio (see Hamilton, 1994, pp. 144-145) but they do not have 

the usual chi-squared distributions. As in the unit root tests, Augmented Dickey-Fuller test (see 

Section 2.7.2) and Phillips-Perron test (see Section 2.7.3), the percentiles of the distributions 

depend on whether a constant or a time trend are included in the model specification. Moreover, 

in this case, the percentile distributions depend on the value of 𝑁 − ℎ, that is the number of 

nonstationary components under the null hypothesis, which is given by the number of variables 
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described by the Vector Autoregressive model (N) minus the number of cointegration relations 

under the null hypothesis (h). Critical values for the trace test and for the maximum eigenvalue 

test can be tabulated using Monte Carlo simulation, as in Osterwald-Lenum (1992). A set of 

critical values for both tests is reported in Appendix A (Table A4 and Table A5).  

Consider the trace test, if the test statistic is greater than the corresponding critical value for a 

given level of significance then the null hypothesis that there are h cointegrating vectors (or 

less) is rejected in favour of the alternative hypothesis that there are more than h cointegrating 

vectors. Similarly, if the value of the maximum eigenvalue test is greater than the corresponding 

critical value for a given level of significance then the null hypothesis that there are h 

cointegrating vectors (or less) is rejected in favour of the alternative hypothesis that there are 

h+1 cointegrating vectors. Thus, conducting an appropriate sequence of tests with 𝜆𝑚𝑎𝑥(ℎ, ℎ +

1) or  𝜆𝑡𝑟𝑎𝑐𝑒(ℎ) and considering different values of h, it is possible to estimate the rank of the 

matrix 𝛤. At this point, given the rank of the matrix and imposing the reduced rank restrictions 

in 𝛤 = 𝛼𝛽’, maximum likelihood estimates of model parameters can be calculated (see 

Hamilton, 1994, pp.637-638). It is important to notice that the parameters 𝛼 and 𝛽 are not 

uniquely identified, since different combinations of these parameters produce the same matrix 

𝛤 = 𝛼𝛽’. In other words, using full-information maximum likelihood estimation (see Hamilton, 

1994, pp. 247-250) it is only possible to estimate the linear space spanned by the cointegrating 

vectors. Thus, the cointegrating vectors contained in 𝛽 have to be normalized in order to obtain 

unique cointegrating relations. The choice concerning the identification of an adequate 

normalization of the cointegrating vector cannot be based on a rule of thumb, but it has to be 

made on the basis of an economic interpretation of the data considered.  
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Chapter 3 

Pairs Trading using Cointegration 

 

3.1 Pairs Trading 

The strategy of statistical pairs trading was first pioneered in the mid 1980’s by a quantitative 

trading group headed by Nunzio Tartaglia at Morgan Stanley. They found that certain pairs of 

securities were correlated in their day-to-day price movements, i.e. the prices of certain pairs 

of securities tended to move together over time. However, they noticed that sometimes these 

relationships presented some anomalies, and whenever such an event occurred the pair was 

traded based on the assumption that the anomaly would correct itself in the future leading to a 

profit (Vidyamurthy, 2004, pp. 73-74). The key idea behind the concept of pairs trading is that 

it is possible to gain a profit by exploiting temporary anomalies between prices of related 

securities which have a long-term equilibrium. When such an event occurs, one security will be 

overvalued relative to the other one, or conversely one security will be undervalued relative to 

the other. This mutual mispricing between the two securities’ prices is captured by the notion 

of spread. Consider two stocks A and B and their prices at time t, which are respectively 𝑝𝑡
𝐴 

and 𝑝𝑡
𝐵, their spread at time t can be defined in two different ways: 

1. As the scaled difference in the price of the two stocks, that is: 

 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑝𝑡
𝐴 − 𝛾𝑝𝑡

𝐵 (3.1) 

2. As the scaled difference of the logarithm of the two stocks’ prices, that is: 

 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑙𝑜𝑔(𝑝𝑡
𝐴) − 𝛾𝑙𝑜𝑔(𝑝𝑡

𝐵) (3.2) 

where 𝛾 is a constant representing the scaling factor. 

In the pairs trading framework, the spread can be thought as the degree of mutual mispricing 

between two related stocks: the greater the spread, the higher the magnitude of mispricing and 

the greater the profit potential. 

Pairs trading involves the creation of a pair portfolio, where the overvalued security is sold 

(short position) and the undervalued security is bought (long position), whenever the spread is 

away from its long-term equilibrium value. A profit can be made by closing out the trade, i.e. 

by selling the long position and off-setting the short position, upon convergence of the spread 

to its equilibrium value. In other words, pairs trading is designed to capture profits by exploiting 

short-term deviations from a long-run equilibrium between securities. 

 Whenever a pairs trading strategy is constructed and implemented properly, the underlying 

behaviour of the stock market does not affect the profits of the pair portfolio, i.e. the profits 
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generated by the portfolio should be independent of the general stock market returns (Dunis 

and Ho, 2005). Thus, as discussed in Section 1.1, pairs trading can be considered a market-

neutral trading strategy since the trader profits simply by exploiting short-term discrepancies in 

the prices of the securities regardless of whether the market goes up or down. Market-neutral 

trading strategies combine a long position with a short position in order to reduce directional 

exposure, and so they are hedged against the market risk (Miao, 2014).  

Nevertheless, it is must be pointed out that pairs trading classifies as statistical arbitrage strategy 

rather than a pure arbitrage one (see Section 1.1), and so it is not riskless. Recalling the 

definition proposed by Lazzarino et al. (2018), statistical arbitrage qualifies as a relative value 

strategy with positive expected excess return and a tolerably small potential loss (see Section 

1.1). From this definition it follows that the risk of potential losses, due for example to market 

events, structural price changes or persistent pricing inefficiencies (Lin et al., 2006), is an 

important component of pairs trading strategies. By using statistical tools, this risk needs to be 

assessed and compared with the expected positive excess return in order to evaluate the 

strategy’s profitability.  

According to Chen et al. (2019) pairs trading follows a two-step process. First, identification 

of pairs of trading instruments whose prices are found to be highly correlated, i.e. the price of 

one instrument moves in the same direction as the other, during a formation period. Second, 

monitor the spread between them in a subsequent trading period, and when a sufficient 

divergence in the spread is observed, a long-short position is simultaneously established.  

Pairs trading relies on the key assumption of the existence of a long-term equilibrium in the 

spread. Put differently, pairs trading requires the spread to be a stationary process (see section 

2.2) so that any deviation from the equilibrium has only a transitory effect and tends to disappear 

over time, bringing the spread back to its long-term value (see Section 2.10.1).  

The main shortfall of the aforementioned traditional two-step process is that the identification 

process is based on correlation rather than on cointegration. According to Alexander and 

Dimitriu (2005) correlation analysis is only valid for stationary variables. Since most 

macroeconomic variables, such as prices, are usually found to be nonstationary, this type of 

analysis in order to be implemented requires prior de-trending of the variables. The main 

weakness resulting from this procedure is that many valuable information is lost. In particular, 

any long-term trend is removed from the data so that it is not possible to base any decision on 

common trends in prices. By contrast, the main purpose of cointegration analysis is to test 

whether the prices share any common stochastic trends; if it does exits then the prices must 

have a long term equilibrium relationship (see Section 2.10.3), which can be used in an Error 
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Correction Model (see Section 2.10.4) to explain how short-term deviations from the 

equilibrium value are corrected (Alexander, 2008, pp. 225-226). 

According to Alexander (1999), cointegration and correlation are related but very different 

concept. Correlation is intrinsically a short run measure since it reflects co-movement in returns, 

which are usually unstable over time. For this reason, correlation based portfolio allocation 

strategies or hedging strategies require frequent rebalancing. Furthermore, long-short strategies, 

such as pairs trading, that are based only on correlation cannot promise long term performance 

because there is not a mechanism guaranteeing the existence of a long-term equilibrium value 

and the subsequent reversion to it. On the other hand, cointegration measures long-term co-

movements in prices. Therefore, cointegration enables the trader to combine the stocks in a 

certain linear combination so that the resulting portfolio is stationary. If the combination of the 

two stocks is stationary, this means that they share a long-term equilibrium relationship to 

which they will tend to converge over time (see Section 2.10.4). In other words, cointegration 

incorporates mean reversion into pairs trading framework, which is the most important 

statistical relationship necessary for a profitable strategy: if the value of a portfolio is known to 

fluctuate around an equilibrium value, any deviations from it can be exploited to gain a profit 

(Puspaningrum, 2012). 

The objective of this chapter is to expand the traditional two-step process based on correlation 

in order to provide a structure for the design and analysis of pairs trading using cointegration. 

Vidyamurthy (2004, pp. 83-84) provides the most cited work for cointegration-based pairs 

trading. The framework relies on three crucial steps.  

1. The first step, examined in Section 3.2, concerns the identification of stock pairs that 

could potentially be cointegrated.  

2. The second step, discussed in Section 3.3, concerns the verification of the hypothesis 

that the stock pairs identified in the previous point are indeed cointegrated, based on the 

statistical analysis of the data.  

3. The third step, considered in Section 3.4, concerns the design of proper trading rules, 

which can be based on parametric or nonparametric approaches.  

Finally, a literature review of the cointegration-based pairs trading strategy is examined in 

Section 3.5. 

 

3.2 Pre-Selection of Stock Pairs 

The first phase of cointegration based pairs trading consists in the identification of potential 

stock pairs. The aim of this procedure is to short-list the candidates of pairs trading in order to 
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reduce the pairs for cointegration testing and further analysis. Pre-selection techniques must be 

simple and straightforward relative to cointegration testing, otherwise it would be more 

convenient to test directly for cointegration with all the pairs from the universe of stocks 

considered.  

The approach suggested by Vidyamurthy (2004, p.86) aims at producing an ordered list of the 

pairs based on the degree of co-movement. For each pair is computed a score (distance 

measure): the higher this value, the greater the degree of co-movement. 

The methodology proposed by Vidyamurthy (2004) exploits the common trend model, 

introduced by Stock and Watson (1988), to motivate the use of a distance measure based on 

correlation as a pre-selection technique to rank the candidates of pairs trading. As discussed in 

Section 2.10.3, the idea behind the common trend model is that a time-series can be expressed 

as the sum of a stationary component and a nonstationary component: 

𝑥𝑡 = 𝜂𝑥𝑡 + 휀𝑥𝑡 

𝑦𝑡 = 𝜂𝑦𝑡 + 휀𝑦𝑡 

where {𝜂𝑥𝑡} and {𝜂𝑦𝑡} represent the random walk components (common trends component), 

while {휀𝑥𝑡} and {휀𝑦𝑡} represents the stationary components (specific components). The two time 

series are cointegrated if and only if there exists a parameter 𝛾, which can assume any real 

value, so that their stochastic trends are generated by the same random walk process and can 

only differ by a linear scaling factor 𝛾, which represents the cointegration coefficient, such that: 

 𝜂𝑥𝑡 = 𝛾𝜂𝑦𝑡 (3.3) 

 

Consider the innovation sequences (𝑟𝑥𝑡and 𝑟𝑦𝑡) resulting from the random walk component of 

the time series, which can be obtained simply by differencing them: 

𝑟𝑥𝑡+1 = 𝜂𝑥𝑡+1 − 𝜂𝑥𝑡 

𝑟𝑦𝑡+1 = 𝜂𝑦𝑡+1 − 𝜂𝑦𝑡 

According to equation (3.3), the random walk components must be identical up to a scalar, so 

it must also be true that the innovation derived from those random walk components must be 

identical up to the same scalar, so that: 

 𝑟𝑥𝑡+1 = 𝛾𝑟𝑦𝑡+1 (3.4) 

 

According to Vidyamurthy (2004, p. 88), if two variables are identical up to a scalar, they must 

be perfectly correlated, which means that if the cointegration coefficient is positive (negative), 

then the correlation coefficient must be +1 (−1). Put differently, if two time series are 
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cointegrated, the innovation sequences derived from the random walk components must be 

perfectly correlated. 

Furthermore, given a linear relationship between innovation sequences, such as the one 

described in equation (3.4), the cointegration coefficient can be estimated by performing a 

simple regression of one innovation sequence against the other (Vidyamurthy, 2004, p. 89): 

 
�̂� =

𝑐𝑜𝑣(𝑟𝑥𝑡+1 , 𝑟𝑦𝑡+1)

𝑣𝑎𝑟(𝑟𝑦𝑡+1)
 (3.5) 

 

According to Vidyamurthy (2004, pp. 90-92), the rationale of using correlation as a selection 

filter comes from arbitrage pricing theory (APT), which suggests that stock returns may be 

decomposed into common factor returns, which represent the returns based on the exposure of 

stocks to diverse risk factors, and idiosyncratic returns, which represent the specific components 

of the stocks . APT states that two assets with the same risk factor exposure profile should have 

the same expected return (see Vidyamurthy, 2004, pp. 39-42). 

The idea proposed by Vidyamurthy (2004, pp. 90-92) is that the common factor returns of the 

APT theory can be interpreted as the innovations derived from the common trends model. To 

clarify this concept, consider two stocks A and B with the following common risk factor returns 

vectors: 

Stock A 

Stock B 

𝑤𝑡 = (𝑤1,𝑡 , 𝑤2,𝑡 , . . . , 𝑤𝑛,𝑡) 

𝛾𝑤𝑡 = (𝛾𝑤1,𝑡 , 𝛾𝑤2,𝑡 , . . . , 𝛾𝑤𝑛,𝑡) 

 

which are identical up to a scalar (𝛾). Let 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) be the vector of factor loadings, 

i.e. the vector describing the exposure of a stock return with respect to the n common risk 

factors, and {𝑟𝐴,𝑡
𝑠𝑝𝑒𝑐

} and  {𝑟𝐵,𝑡
𝑠𝑝𝑒𝑐

} be the idiosyncratic returns for the two stocks which must be 

stationary. The returns for the stocks can be expressed as: 

𝑟𝐴,𝑡 = (𝑏1𝑤1,𝑡 , 𝑏2𝑤2,𝑡 , . . . , 𝑏𝑛𝑤𝑛,𝑡) + 𝑟𝐴,𝑡
𝑠𝑝𝑒𝑐

 

𝑟𝐵,𝑡 = 𝛾(𝑏1𝑤1,𝑡 , 𝑏2𝑤2,𝑡 , . . . , 𝑏𝑛𝑤𝑛,𝑡) + 𝑟𝐵,𝑡
𝑠𝑝𝑒𝑐

 

where  

𝑟𝐴,𝑡
𝑐𝑓
= (𝑏1𝑤1,𝑡 , 𝑏2𝑤2,𝑡 , . . . , 𝑏𝑛𝑤𝑛,𝑡) 

𝑟𝐵,𝑡
𝑐𝑓
= 𝛾(𝑏1𝑤1,𝑡 , 𝑏2𝑤2,𝑡 , . . . , 𝑏𝑛𝑤𝑛,𝑡) 

are the common factor returns for the two stocks. Since the innovation sequences of the 

common trend are identical up to a scalar, i.e. 𝑟𝐵,𝑡
𝑐𝑓
= 𝛾𝑟𝐴,𝑡

𝑐𝑓
, the condition for cointegration is 

satisfied. 

Finally, consider the following linear combination of the returns: 
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𝑟𝐵,𝑡 − 𝛾𝑟𝐴,𝑡 = (𝑟𝐵,𝑡
𝑐𝑓
− 𝛾𝑟𝐴,𝑡

𝑐𝑓
)  + (𝑟𝐵,𝑡

𝑠𝑝𝑒𝑐
− 𝛾𝑟𝐴,𝑡

𝑠𝑝𝑒𝑐
 ) 

 

Assuming that the stocks are cointegrated, i.e. 𝑟𝐵,𝑡
𝑐𝑓
= 𝛾𝑟𝐴,𝑡

𝑐𝑓
, then the return of the portfolio 

composed by a long position in one share of stock B and a short position in 𝛾 shares of A 

becomes: 

𝑟𝐵,𝑡 − 𝛾𝑟𝐴,𝑡 = 𝑟𝐵,𝑡
𝑠𝑝𝑒𝑐

− 𝛾𝑟𝐴,𝑡
𝑠𝑝𝑒𝑐

  

 

Which means that the return of the portfolio depends only on specific returns. 

Since the common factor returns of the Arbitrage Pricing Theory can be interpreted as the 

innovations derived from the common trends model, the necessary condition for cointegration, 

discussed above, can be restated as follows: if the common factor returns of the stocks are 

perfectly correlated thein it is possible to conclude that they are cointegrated. The distance 

measure proposed by Vidyamurthy (2004, p. 94) is the absolute value of the correlation of the 

common factor return: 

|𝜌| = ||
𝑐𝑜𝑣(𝑟𝐴

𝑐𝑓
, 𝑟𝐵
𝑐𝑓
)

√𝑣𝑎𝑟(𝑟𝐴
𝑐𝑓
) 𝑣𝑎𝑟(𝑟𝐵

𝑐𝑓
)

|| 

The closer this value is to one, the greater the degree of co-movement.  

Based on this value, the trader can create a ranking of all the potential pairs and short-list them 

so that only the pairs with a distance measure sufficiently close to one will be tested for 

cointegration. 

The model proposed by Vidyamurthy (2004) suggests that the cointegration coefficient (𝛾) 

should be interpreted as the relative risk factor exposure in the two stocks, so that one share of 

stock B exposes the trader to the same amount of systemic risk as 𝛾 shares of stock A. Do et al. 

(2006) criticize this argument by pointing out that under the APT, the return due to exposure to 

risk factor is on top of the risk free return (𝑟𝑓,𝑡): 

𝑟𝐴,𝑡 = 𝑟𝑓,𝑡 + (𝑏1𝑤1,𝑡 , 𝑏2𝑤2,𝑡 , . . . , 𝑏𝑛𝑤𝑛,𝑡) + 𝑟𝐴,𝑡
𝑠𝑝𝑒𝑐

 

𝑟𝐵,𝑡 = 𝑟𝑓,𝑡 + 𝛾(𝑏1𝑤1,𝑡 , 𝑏2𝑤2,𝑡 , . . . , 𝑏𝑛𝑤𝑛,𝑡) + 𝑟𝐵,𝑡
𝑠𝑝𝑒𝑐

 

Thus, it is not generally true that when the risk exposure profiles of two stocks are identical up 

to a scalar the return of one share of stock B is identical to the return of 𝛾 shares of stock A plus 

some Gaussian noise, as suggested by Vidyamurthy (2004). However, in order to overcome the 

problem pointed out by Do et al. (2006) it is sufficient to consider in the procedure introduced 
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by Vidyamurthy (2004) the excess returns, defined as (𝑟𝐴,𝑡 − 𝑟𝑓,𝑡) and (𝑟𝐵,𝑡 − 𝑟𝑓,𝑡), instead of 

the returns, defined as 𝑟𝐴,𝑡 and 𝑟𝐵,𝑡. 

Miao (2014) proposes two different methodologies for ranking and selecting stock pairs: the 

first is based, similarly to the distance measure, on the correlation coefficients, while the second 

is based on the minimum-distance criterion.  

Consider two stocks A and B and their prices at time t which are respectively 𝑝𝑡
𝐴 and 𝑝𝑡

𝐵. The 

first approach proposed by Miao (2014) is based on the Pearson correlation coefficient (𝜌) of 

the two stocks, which can be computed as follow: 

𝜌 =
∑ (𝑝𝑡

𝐴 − 𝑃𝐴̅̅ ̅̅𝑇
𝑡=1 )(𝑝𝑡

𝐵 − 𝑃𝐵̅̅ ̅̅ )

[∑ (𝑝𝑡
𝐴 − 𝑃𝐴̅̅ ̅̅𝑇

𝑡=1 )2∑ (𝑝𝑡
𝐵 − 𝑃𝐵̅̅ ̅̅𝑇

𝑡=1 )2]1/2
 

where T represents the sample size considered, while 𝑃𝐴̅̅ ̅̅   and 𝑃𝐵̅̅ ̅̅  are respectively the sample 

mean of the prices of stocks A and B.  

According to Miao (2014) the closer 𝜌 is to one, the more stocks are correlated, which means 

that stocks A and B are highly matched pairs. Thus, only pairs with a sufficiently high value of 

𝜌 will be selected for the cointegration testing phase. It is important to highlight that this 

methodology is based on prices, and so it is substantially different from the distance measure 

based on correlation proposed by Vidyamurthy (2004), which is based on returns.  

However, according to Chan (2013, p.65) since it is normally the case that log-prices are 

cointegrated when the prices are cointegrated, both the choice to use prices and log-prices are 

theoretically justified. 

The minimum-distance criterion (SSD) (see Section 1.2) consists in the sum of squared 

deviations between normalized stock prices: 

𝑆𝑆𝐷𝐴,𝐵 =∑(𝑃𝑡
𝐴 − 𝑃𝑡

𝐵)2
𝑇

𝑡=1

 

where 𝑃𝑡
𝐴 and 𝑃𝑡

𝐵 are respectively the normalized price of stocks A and B at time t.  

The smaller the deviation between the normalized prices, i.e. the closer the value of 𝑆𝑆𝐷𝐴,𝐵 is 

to 0, the more similar the two stocks will be. Thus, only pairs with a sufficiently small value of 

𝑆𝑆𝐷𝐴,𝐵 will be chosen for the next stage. 

As highlight by Miao (2014) the correlation coefficient and the minimum-distance criterion can 

be used only as pre-selection criteria. Indeed, as discussed in Section 3.1, a high level of 

correlation is not sufficient to ensure mean reversion between prices, since correlations is a 

short-run measure which is very unstable over time.  
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So far, quantitative methods for selecting stock pairs have been analysed. However, qualitative 

methods, based on economic reasons, for short-listing candidates of pairs trading can also be 

considered, such as stocks belonging to the same industry. The intuition is that it is more 

probable to find cointegrated price stock series within the same sector because they are exposed 

to the same market risks and are affected by the same driving factors. The main disadvantage 

of this method is that it does not provide any criteria to rank all the potential stock pairs. As a 

consequence, if the sector considered is very big, this approach will prove to be of little use in 

the identification of potentially cointegrated pairs. In this case, a solution could be to combine 

this methodology with one of the others described above. 

 

3.3 Testing for Tradability 

The previous section discusses the procedures that can be implemented to select potential stocks 

for pairs trading. The objective of this section is to verify if the identified stocks are actually 

cointegrated. 

Vidyamurthy (2004, p. 105), in order to test for cointegration, adopts the Engle-Granger 

approach (see Section 2.11.1), which is a simple residual-based testing methodology based on 

two main steps: 

1. Ordinary Least Squares estimation of the long run equilibrium relationship between the 

time series considered. 

2. Application of unit root tests on the estimated residuals of the OLS regression, in order 

to verify whether they are stationary or not. 

Vidyamurthy (2004, p. 106) considers the case in which the log price of stock A, 𝑙𝑜𝑔(𝑝𝑡
𝐴), is 

regressed against the log price of stock B, 𝑙𝑜𝑔(𝑝𝑡
𝐵): 

 

 𝑙𝑜𝑔(𝑝𝑡
𝐴) − 𝛾𝑙𝑜𝑔(𝑝𝑡

𝐵) = 𝜇 + 휀𝑡 (3.6) 

where 𝛾 is the cointegration coefficient, 𝜇 represents the equilibrium value, which captures 

some sense of “premium” in stock A versus stock B (Do et al., 2006), and 휀𝑡 is a time series 

with mean 0 and variance 𝜎𝜀
2, which represents the disturbance term in the equilibrium.  

Recalling equation (3.5), the cointegration coefficient in equation (3.6) can be estimated by 

performing a regression of the common factor returns of one stock, against the other. Notice 

that there are two possible values of the cointegration coefficient depending on the choice of 

the independent variable (see Section 2.11.1): 

1. The linear relationship is expressed considering stock B to be the independent variable 

and stock A to be the dependent variable: 
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휀�̂� = 𝑙𝑜𝑔(𝑝𝑡
𝐴) − �̂�𝑙𝑜𝑔(𝑝𝑡

𝐵) 

�̂� =
𝑐𝑜𝑣(𝑟𝐴,𝑡

𝑐𝑓
, 𝑟𝐵,𝑡
𝑐𝑓
)

𝑣𝑎𝑟(𝑟𝐵,𝑡
𝑐𝑓
)

 

where 𝑟𝐴,𝑡
𝑐𝑓

 and 𝑟𝐵,𝑡
𝑐𝑓

 are the common factor returns, defined as log-prices, at time t of 

stock A and stock B, respectively. 

2. The linear relationship is expressed considering stock A to be the independent variable 

and stock B to be the dependent variable: 

휀�̂� = 𝑙𝑜𝑔(𝑝𝑡
𝐵) − 𝛾′̂𝑙𝑜𝑔(𝑝𝑡

𝐴) 

𝛾′̂ =
𝑐𝑜𝑣(𝑟𝐴,𝑡

𝑐𝑓
, 𝑟𝐵,𝑡
𝑐𝑓
)

𝑣𝑎𝑟(𝑟𝐴,𝑡
𝑐𝑓
)

 

In order to choose between the two alternative estimates of the cointegration coefficient, 

Vidyamurthy (2004, p. 108) suggests choosing the larger one because it is the one with the 

lower variance. In fact, if 𝛾′̂ > �̂� then it follows that 𝑣𝑎𝑟(𝑟𝐴,𝑡
𝑐𝑓
) < 𝑣𝑎𝑟(𝑟𝐵,𝑡

𝑐𝑓
). 

Finally, the estimated residual series (휀�̂�) is tested for stationarity using the Augmented Dickey 

Fuller test (see Section 2.7.2). If the residuals are found to be stationary, i.e. if the ADF test 

rejects the null hypothesis of no stationarity, then 𝑙𝑜𝑔(𝑝𝑡
𝐴) and 𝑙𝑜𝑔(𝑝𝑡

𝐵) are cointegrated.  

At this point, it is possible to rank all the stock pairs based on two different criteria: 

1. The cointegration test values: this approach is based on the value of the ADF test (or 

any other unit root test) used to verify the stationarity of the residuals: the smaller the 

value of the test, the higher the rank of the pair (Miao, 2014). 

2. The Sharpe ratio (𝑆𝑅): it measures the risk-adjusted returns of a pair of stocks and is 

calculated as: 

𝑆𝑅 =
𝑟�̅� − 𝑟𝑓
𝜎𝑝

 

where 𝑟�̅� is the mean return associated to the pair, 𝑟𝑓 is the risk-free rate and 𝜎𝑝 is the 

standard deviation associated to the pair. In this case, the higher the Sharpe ratio, the 

higher the rank of the pair (Caldeira and Moura, 2013). 

Equation (3.6) can be interpreted as the return on a portfolio consisting of a long position in one 

share of stock A and a short position in 𝛾 shares of stock B. Cointegration between the two 

stocks implies that the spread time series, i.e. 𝑙𝑜𝑔(𝑝𝑡
𝐴) − 𝛾𝑙𝑜𝑔(𝑝𝑡

𝐵), has a long run mean 𝜇 and 

any deviations from this value are only temporary fluctuations, since 휀𝑡~𝐼(0) (Do et al., 2006). 

Do et al. (2006) criticised the approach proposed by Vidyamurthy (2004) mainly for two 

reasons: first, the Engle-Granger methodology makes results sensitive to the ordering of the 
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variables, and so it creates a potential problem of ambiguity where one regression may indicate 

cointegration and the other one may indicate no cointegration (see Section 2.11.1). Second, if 

the bivariate series considered are not cointegrated, the cointegrating regression, described in 

equation (3.6), could lead to spurious regression (see Section 2.9). 

Many researchers, such as Huck and Afawubo (2015) and Caldeira and Moura (2013), in order 

to avoid the asymmetry problem in treating variables, perform a more rigorous test of 

cointegration, which is the Johansen test based on a Vector Error Correction Model (VECM). 

As discussed in Section 2.11.2, the Johansen test is more informative than the Engle-Granger 

because it investigates cointegration in general multivariate systems where there are at least two 

integrated series, allowing to test for the number of cointegrating vectors at the same time.  

However, as long as only pairs of potentially cointegrated stocks are considered, there exist 

only one cointegrating vector which can be uniquely identified normalizing to one the 

coefficient assigned to one of the two stocks (see Section 2.10.2). Thus, in this type of 

framework, the Johansen test is not necessarily more powerful than the Engle-Granger 

methodology.  

Furthermore, according to Alexander (2008, p. 239) there could be at least two good reasons 

for choosing the Engle-Granger as the preferred methodology for some financial application. 

First, from a risk management prospective, the criterion of minimum variance (typical of the 

Engle-Granger approach) is often more important than the criterion of maximum stationarity 

(typical of the Johansen approach). Second, there is often a natural choice of dependent 

variables in the cointegrating regressions, which eliminates the ambiguity problem discussed 

above. 

 

3.4 Trading Design 

The final stage of the framework developed by Vidyamurthy (2004) for cointegration-based 

pairs trading concerns the design of optimal trading rules, i.e. optimal entry/exit thresholds, 

which are based on the profit maximization principle. 

The model used is the one described in equation (3.6), which is reported below: 

𝑙𝑜𝑔(𝑝𝑡
𝐴) − 𝛾𝑙𝑜𝑔(𝑝𝑡

𝐵) = 𝜇 + 휀𝑡 

 

The basic trading idea is to open a spread position on a deviation of ∆ from the equilibrium 

value and revert the position upon mean reversion. In other words, the strategy is to open a long 

position in the spread portfolio, i.e. buy one share of stock A and sell 𝛾 shares of stock B, when 

it is sufficiently below its long-run equilibrium (𝜇 − ∆), and to short the spread portfolio, i.e. 
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sell one share of stock A and buy 𝛾 shares of stock B, when it is sufficiently above its long-run 

equilibrium (𝜇 + ∆). Once the portfolio mean reverts to its equilibrium value then position is 

unwound and a profit is obtained (Puspaningrum, 2012).  

The main objective of the trading design phase is to find the value of ∆ that maximises the profit 

function, which can be expressed as the product between the profit per trade and the numbers 

of trade. According to Vidyamurthy (2004, p. 124), any choice for the threshold level has a 

profit per trade associated with it. If one is able to calculate the rate at which the threshold level 

is crossed (rate of zero crossing), it is possible to determine the expected number of trades. 

Thus, the total expected profit can be calculated simply by multiplying the profit per trade with 

the expected number of trades. This approach can be repeated for different threshold levels, and 

the value of ∆ which yields the higher profit is chosen as optimal trigger. 

The main problem of this methodology is that estimating the rate of zero crossing is not an easy 

task. Vidyamurthy (2004, p. 125) considers the case of a spread modelled as an ARMA process, 

for which the rate of zero crossing can be calculated using the Rice’s formula (Rice, 1944). 

An alternative approach, proposed by Puspaningrum (2012), suggests using the first passage-

time (see Elliott et al. (2005), Bertram (2010)) for stationary series which calculates the time 

needed for the time series to mean revert to its long-run equilibrium after crossing a pre-

specified threshold level (see Section 1.4). 

In practice, the most used technique to determine when to open and when to close a position is 

based on a standard deviation metric, as in the distance method proposed by Gatev et al. (2006) 

(see Section 1.2). For each cointegrated pairs identified during the previous steps (see Section 

3.2 and Section 3.3), the spread at time t is defined as the scaled difference of the logarithm of 

the two stocks’ prices: 

𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑙𝑜𝑔(𝑝𝑡
𝐴) − 𝛾𝑙𝑜𝑔(𝑝𝑡

𝐵) 

Since the two stocks are cointegrated, the spread is a stationary time series, that is: 

𝑆𝑝𝑟𝑒𝑎𝑑𝑡~𝐼(0) 

At this point, the dimensionless z-score (or normalized spread), which measures the distance to 

the long-run mean in units of long-term standard deviation (Caldeira and Moura, 2013), is 

calculated as: 

𝑧𝑡 =
𝑆𝑝𝑟𝑒𝑎𝑑𝑡 − 𝜇𝑒

𝜎𝑒
 

where 𝜇𝑒 is the spread’s mean and 𝜎𝑒 is the spread’s standard deviation, both calculated using 

the data of the formation period considered. 



 

 

 
74 

Most authors, such as Rad et al. (2016) and Caldeira and Moura (2013), consider the 2-standard 

deviation rule (2 and 3-standard deviation rule is considered by Huck and Afawubo (2015) (see 

Section 3.5.2)), introduced by Gatev et al. (2006), as opening trigger. According to this rule, it 

is possible to identify two different opening thresholds: 

• Lower threshold: when the z-score is less than or equal to  −2, this means that the 

portfolio of pairs is sufficiently below its long-run equilibrium. In this case, the portfolio 

is undervalued and so one should purchase it, which means simultaneously buy one 

share of stock A and sell 𝛾 shares of stock B.  

• Upper threshold: when the z-score is greater than or equal to 2, this means that the 

portfolio of pairs is sufficiently above its long-run equilibrium. Thus, since the portfolio 

is overvalued one should sell it, which means simultaneously sell one share of stock A 

and buy 𝛾 shares of stock B. 

It is important to highlight that the greater the trigger, i.e. the greater the deviation from the 

long-run equilibrium required to open a trade (e.g. 3-standard deviation rule), the lower the 

number of openings and trades during a specific trading period. However, a higher opening 

threshold would yield a higher profit per trade than a lower value. On the other hand, a lower 

threshold-value will lead to more trades during a specific trading period, potentially increasing 

the total profits. Thus, it is not possible to determine a priori whether total profits increase or 

decrease with higher thresholds value. 

 Finally, the position is closed when the z-score approaches zero again, which translates into 

the pair returning to their long-term equilibrium. However, it is not necessary that a position is 

closed when 𝑧𝑡 = 0; for example, Caldeira and Moura (2013) select empirically slightly 

different exit signals, following a procedure already used by Avellaneda and Lee (2010), 

specifically: 

• A short position in the portfolio is closed when 𝑧𝑡 < 0.75. 

• A long position in the portfolio is closed when 𝑧𝑡 > −0.50. 

According to Lin et al. (2006), the main risks of the aforementioned trading strategy are that, 

due for example to significant pricing inefficiencies or particular market events: 

▪ Price spreads may continue to diverge after position opening rather than revert to the 

long-term equilibrium, so that when the trader is forced to close the trade on the last 

day of the trading period, he/she might experience substantial losses. 

▪ The long-run equilibrium value may vary during the trading period, so that the 

developed trading strategy becomes completely unreliable, leading to potential losses 

for the trader.  
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The profit reduction consequences of these risks can be offset with the introduction of some 

additional rules, aimed at limiting the loss of too much trading capital on a single pairs trading, 

such as: 

• A stop-loss constrain, which is a function used to automatically unwind a position 

whenever a pre-defined loss is registered (e.g. Caldeira and Moura (2013) set a stop 

loss to close a position if a loss of 7% is observed). 

• Maximum holding length of a trade: which is the maximum time a trade can be kept 

opened, exceeding this generates an exit signal (e.g. Caldeira and Moura (2013) set the 

maximum holding length of a trade to 50 days, because according to their data the 

average profitability of the strategy starts decreasing after this period of time). 

 

Summing up 

The standard procedure for the implementation of a pairs trading strategy based on 

cointegration can be summarized as follows (Caldeira and Moura, 2013): 

1. The data considered are initially divided into formation (usually one or two years) and 

trading periods (usually 4 or 6 months). During the formation period (or training period) 

the parameters of the experiment are computed. During the trading period (or testing 

period) the experiment is run using the parameters computed in the training period. 

2. During the formation period, all the possible combinations of pairs are short-listed based 

on the pre-selection procedures discussed in Section 3.2. The pairs identified are tested 

for cointegration using the Engle-Granger approach or the Johansen test. Finally, the 

pairs that passed the cointegration test are ranked based on the cointegration test values 

or based on their Sharpe ratio (see Section 3.3). 

3. The best pairs identified during the formation period are used, during the trading period, 

to test the performance of the pairs trading strategy.  

4. At the end of each trading period the positions that were opened are closed, and a new 

training period starting on the last observation of the previous trading period is initiated. 

This procedure continues in a rolling window fashion until the end of the sample 

considered. 

According to Puspaningrum (2012), there is not a standard rule for deciding the lengths of the 

formation period and the trading period. The formation period has to be long enough so that it 

is possible to verify whether a cointegration relationship exist or not, but not so long that there 

is not enough information for the following trading period. The trading period is chosen so that 

the selection process is recent, and round-trips have time to occurs using reasonable opening 
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triggers, but not so long because it is possible that the cointegration relationship between two 

stocks may change over time. 

 

3.5 Literature Review 

This section presents three interesting applications of the cointegration-based pairs trading 

strategy which can be found in the literature. In Section 3.5.1, we examine the study by Lin et 

al. (2006) which develop a minimum profit condition for a pair of cointegrated securities. In 

Section 3.5.2, we analyse the work by Huck and Afawubo (2015) which run a comparison 

study, analysing the cointegration approach, the distance approach, and the stationarity of the 

price ratio approach (this approach is based on the idea that in order to generate profits in a 

pair-trade, the price ratio between two stocks has to be a stationary process) for the S&P 500 

constituents and using different parametrizations, in order to understand if one of these selection 

methods dominates the other in terms of monthly returns. Finally, in Section 3.5.3, we consider 

the research by Naccarato et al. (2019) which aims at solving the Markowitz portfolio 

optimization problem through the pairs trading cointegrated strategy. 

 

3.5.1 Loss Protection in Pairs Trading Through Minimum Profit Bounds: A Cointegration 

Approach (Lin et al., 2006) 

The strategy proposed by Lin et al. (2006) is based on the so called Cointegration Coefficient 

Weighted (CCW) Rule. The idea behind the CCW rule is to trade a pair of stocks which are 

found to be cointegrated, based on the cointegration coefficient, in order to achieve a guaranteed 

minimum profit per trade.  

The strategy developed by Lin et al. (2006) is based on the following assumptions: 

• The two share price series are cointegrated over the entire time horizon considered. 

• Stock A always represents the short position (sell), while stock B always represents the 

long position (buy). 

• At the opening of any trade, based on the relationship described in equation (3.7), the 

price received for one share of stock A (short position) is always higher than the price 

paid for 𝛾 shares of stock B (long position), i.e. 𝑝𝐴,𝑡 > 𝛾𝑝𝐵,𝑡. 

• It is possible to open a trade only if the previous opened trade is closed yet. 

Consider two stocks A and B whose prices are integrated process of order 1, i.e. 𝑝𝐴,𝑡~𝐼(1) and  

𝑝𝐵,𝑡~𝐼(1). According to the first assumption the two share price series are cointegrated over 

the period considered, so there must be a non-zero linear combination that is stationary, so that: 



 

 

 
77 

 

 𝑝𝐴,𝑡 − 𝛾𝑝𝐵,𝑡 = 𝜇 + 휀𝑡 (3.7) 

where {휀𝑡} is the cointegration errors and it is a stationary time series, i.e. 휀𝑡~𝐼(0), 𝜇 represents 

the equilibrium value, and 𝛾 > 0 is the cointegration coefficient. Notice that the cointegrating 

relationship described in (3.7) is different from the one described in (3.6) because: in (3.7) the 

spread is described as a scaled difference in the price of the two stocks, while in (3.6) the spread 

is described as a scaled difference of the logarithm of the two stocks’ prices. 

In order to ensure that the proceeds from the sale of stock A at time 𝑡0 (time at which a trade is 

opened) are sufficient to cover the outflow to buy stock B, the following condition needs to be 

satisfied: 

 𝑁𝐴𝑝𝐴,𝑡0 ≥ 𝑁𝐵𝑝𝐵,𝑡0 (3.8) 

 

where 𝑁𝐴 and 𝑁𝐵 are the number of shares in the short position and in the long position at time 

𝑡0, respectively.  

 

Open trade condition (OTC(φ)) 

A time 𝑡0 can be considered as an open trading time if it satisfies the following condition: 

 𝑝𝐴,𝑡0 − 𝛾𝑝𝐵,𝑡0 = 𝜇 + 휀𝑡0 > 𝜇 + 𝜑 (3.9) 

 

where 𝜑 is a positive real number, representing the opening trigger. 

At this point, one can calculate the total profit (𝜋𝑡𝐶) per trade obtained at time 𝑡𝐶 (time at which 

the trade is closed) as follow: 

 𝜋𝑡𝐶 = 𝑁𝐵[𝑝𝐵,𝑡𝐶 − 𝑝𝐵,𝑡0] + 𝑁𝐴[𝑝𝐴,𝑡0 − 𝑝𝐴,𝑡𝐶] (3.10) 

 

To ensure that both condition (3.8) and (3.9) are satisfied, another condition on 𝑁𝐴 and 𝑁𝐵 needs 

to be established. If a trader decides to buy 𝑁𝐵 shares of stock B, then he/she must sell at least 

𝑁𝐵
𝛾⁄  shares of stock A, that is 𝑁𝐴 =

𝑁𝐵
𝛾⁄ . Substituting this condition in equation (3.10), one 

gets: 

 

 𝜋𝑡𝐶 = 𝑁𝐵[𝑝𝐵,𝑡𝐶 − 𝑝𝐵,𝑡0] + 
𝑁𝐵
𝛾
[𝑝𝐴,𝑡0 − 𝑝𝐴,𝑡𝐶] (3.11) 

 

The first term in equation (3.11) can be rewritten, using equation (3.9), as follow: 
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𝑁𝐵[𝑝𝐵,𝑡𝐶 − 𝑝𝐵,𝑡0] = 𝑁𝐵 [
1

𝛾
(𝑝𝐴,𝑡𝐶 − 𝜇 − 휀𝑡𝐶) −

1

𝛾
(𝑝𝐴,𝑡0 − 𝜇 − 휀𝑡0)]

=
𝑁𝐵
𝛾
[𝑝𝐴,𝑡𝐶 − 𝑝𝐴,𝑡0 + 휀𝑡0 − 휀𝑡𝐶] 

(3.12) 

 

Substituting equation (3.12) in equation (3.11), one obtains: 

 
𝜋𝑡𝐶 =

𝑁𝐵
𝛾
[𝑝𝐴,𝑡𝐶 − 𝑝𝐴,𝑡0 + 휀𝑡0 − 휀𝑡𝐶] +

𝑁𝐵
𝛾
[𝑝𝐴,𝑡0 − 𝑝𝐴,𝑡𝐶] 

=
𝑁𝐵
𝛾
[𝑝𝐴,𝑡0 − 𝑝𝐴,𝑡𝐶 − (휀𝑡𝐶 − 𝑝𝐴,𝑡𝐶) + (휀𝑡0 − 𝑝𝐴,𝑡0)] 

=
𝑁𝐵
𝛾
(휀𝑡0 − 휀𝑡𝐶) 

(3.13) 

 

Close trade condition (CTC (φ, ω)) 

The final step concerns the identification of an appropriate closing time 𝑡𝐶, such that a trader 

who opens a trade under OTC(φ), by buying 𝑁𝐵 shares of stock B and selling 
𝑁𝐵

𝛾⁄  shares of 

stock A, will be able to gain a minimum profit of K when the trade is closed. From equation 

(3.13), to ensure that a minimum profit per trade (MPPT) of K > 0 is gained, the following 

condition needs to be satisfied: 

𝑁𝐵
𝛾
(휀𝑡0 − 휀𝑡𝐶) > 𝐾 

From which: 

(휀𝑡0 − 휀𝑡𝐶) >
𝛾

𝑁𝐵
𝐾 

Lin et al. (2006) proposed the following close trade condition, CTC (φ, ω), in order to obtain 

the required minimum profit K on any completed trade: a position is opened under OTC(φ) by 

buying 𝑁𝐵 >
𝐾𝛾

(𝜑−𝜔)
 shares of stock B, with 𝜑 > 𝜔,   and selling 𝑁𝐴 =

𝑁𝐵
𝛾⁄  shares of stock A, 

then the position is closed at time 𝑡𝐶 when 휀𝑡𝐶 <  𝜔. It is easy to demonstrate, based on equation 

(3.9), that 𝑁𝐵 >
𝐾𝛾

(𝜑−𝜔)
 represents a sufficient condition to obtain a profit larger than K if the 

position opened under OTC(φ), i.e. when 휀𝑡0 > 𝜑, is closed when 휀𝑡𝐶 <  𝜔. Consider the 

following example: 

𝑁𝐵 =
𝐾𝛾

(𝜑 − 𝜔)
+ 1 

Recalling equation (3.13), the profits at time 𝑡𝐶 can be rewritten as follows: 

𝜋𝑡𝐶 =
𝑁𝐵
𝛾
(휀𝑡0 − 휀𝑡𝐶) =

1

𝛾
(

𝐾𝛾

(𝜑 −𝜔)
+ 1) (휀𝑡0 − 휀𝑡𝐶) =  

(휀𝑡0 − 휀𝑡𝐶)

(𝜑 −𝜔)
𝐾+

1

𝛾
(휀𝑡0 − 휀𝑡𝐶) 
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Since (휀𝑡0 − 휀𝑡𝐶) > (𝜑 − 𝜔) and 
1

𝛾
(휀𝑡0 − 휀𝑡𝐶) > 0, it is possible to conclude that: 

𝜋𝑡𝐶 =
(휀𝑡0 − 휀𝑡𝐶)

(𝜑 −𝜔)
𝐾+

1

𝛾
(휀𝑡0 − 휀𝑡𝐶) > 𝐾 

 

Applications of the CCW strategy 

The authors test their approach using sample price data generated from the following 

cointegration model: 

𝑝𝐴,𝑡 − 𝛾𝑝𝐵,𝑡 = 𝜇 + 휀𝑡 

where 𝜇 represents the equilibrium value, {휀𝑡} is a stationary process and 𝛾 is the cointegration 

coefficient. Lin et al. (2006) demonstrate that under the CCW rule, the number of trades 

completed in a trading horizon is heavily affected by the open and close criterion. They 

demonstrate that the lower is the difference between the value of opening condition (φ) and the 

value of the closing condition (𝜔), the higher is the average total trade numbers in a certain 

trading period. 

In addition, they also considered another simulation study, in which the total dollar investment 

permitted per trade is constrained. In other words, trades that require an investment above a 

certain threshold are not considered. The results demonstrate that the size of the average dollar 

commitment per trade required to meet the minimum profit per trade condition can make the 

rate of return on investment very small. 

Finally, the authors test their strategy using the daily closing prices from January 2, 2001 to 

August 30, 2002 (20 months) for two Australian quoted banks: Australia New Zealand Bank 

and Adelaide Bank. Three results of this empirical application are remarkable: 

• At least one valid trade is generated at all MPPT levels unless the open condition is too 

low to allow potential trades to develop at the given investment levels. 

• The higher the size of the dollar commitment per trade, the higher the number of valid 

trades for a given MPPT. 

• In general, a reduction of the open trade boundary value increases the number of valid 

trades, but it falls to zero trades when the spread becomes too small to generate trades 

within the investment level considered. 

Despite the interesting results, the strategy developed by Lin et al. (2006) has several 

weaknesses. First, the MPPT is set in absolute terms, so the profitability scaled by initial 

investment can be very small. Second, the simulation study lacks diversity since it considers 

only one cointegration model. Finally, the empirical analysis only examines two shares over a 

very limited sample period of less than two year (Krauss, 2017). 
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3.5.2 Pairs Trading and Selection Methods: Is cointegration Superior? (Huck and 

Afawubo, 2015) 

In their research Huck and Afawubo (2015) considers three different selection methods for pairs 

trading, specifically: 

• The distance approach: each stock is paired with the ‘matching partner’ that minimizes 

the sum of Euclidean squared distances (SSD) and during the trading period a long/short 

position in a pair is opened whenever its normalized price difference diverge more than 

a prespecified trigger (see Section 1.2). 

• The stationarity of the price ratio approach: it is based on the idea that in order to 

generate profits in a pair-trade, the price ratio between two stocks needs to have a 

constant mean and a constant volatility over time. In other words, the price ratio has to 

be a stationary process (see Section 2.2), so that any deviation from the equilibrium has 

a diminishing effect over time and finally disappears bringing the series back to its 

equilibrium value. In order to find price ratio with a constant mean and volatility, Huck 

and Afawubo (2015) use the Augmented Dickey Fuller test (see Section 2.7.2) and then 

select for the trading period only the pairs with the lowest ADF t-statistics. 

• The cointegration approach: in this study potential cointegration between the stocks is 

examined using the Johansen test (see Section 2.11.2) and then cointegrated pairs with 

the highest trace statistics will be kept as eligible pairs for the trading period. 

The objective of the study by Huck and Afawubo (2015) is to establish whether or not, one of 

these approaches can be considered superior, relative to the others, in terms of significant 

monthly positive returns. 

The data used are the prices of the S&P 500 stocks in the period from August 2000 to September 

2011 (134 months), which are among the most liquid in the world, implying relatively low 

transaction costs. The authors consider two formation periods (one year (252 trading days) and 

two years (504 trading days)) and two opening triggers (2-standard deviation and 3-standard 

deviation) for each selection method, meaning that they perform four different specifications 

for each approach. It is important to notice that the greater the opening trigger, the lower the 

number of trades during the trading period, so the 3-SD rule is a more selective scheme with 

respect to the classical 2-SD rule used by most authors, such as Gatev et al. (2006) and Do and 

Faff (2010). A selection procedure starts every month (21 trading days) and the trading period 

of a pair lasts six months (126 trading days).  
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Returns Computation 

The returns are computed on a daily basis as the mean return among all pairs (which must be at 

least ten) opened a given day in the entire portfolio, i.e. the sum of the six portfolios that start 

one month apart. It is possible that some days the whole portfolio is composed of less than ten 

pairs (especially if the more selective scheme is considered). In this case, the missing positions 

will be filled by a long position in the market index. The daily return (excluding transaction 

costs) of the portfolio at time t can be computed as follow: 

𝑅𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑡 =
1

𝑁𝑡
∑𝑅𝑖,𝑡

𝑁𝑡

𝑖=1

 

where 𝑁𝑡 is the number of open pairs at time t, 𝑅𝑖,𝑡 is the return of the price ratio of the ith pair 

at time t. If 𝑁𝑡 < 10, 𝑅𝑖,𝑡 = 𝑌𝑡 , ∀𝑖 ∊ [𝑁𝑡 + 1;  10], where 𝑌𝑡 is the return of the market at time 

t. The monthly transaction costs are estimated based on the three components identified by Do 

and Faff (2012): commissions (one way cost of 0.1%), market impact (one-way cost of 0.2%) 

and short-selling constraints (1% p.a. payable over the duration of each trade). 

Empirical Results 

Huck and Afawubo (2015) demonstrate that the strategies considered are based on very 

different groups of eligible pairs. Indeed, the percentage of identical eligible pairs among 

strategies is never above 13%. In other words, the proportion of pairs which are selected the 

same month by two different strategies is always below 13%.  

The most important results obtained by the researchers are reported in Table 3.1, which 

considers the six specifications obtained considering a formation period of one year, and in 

Table 3.2, which reports the parametrizations obtained with a training period of two years. 
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Table 3.1: Result with 1-year formation period 

Method 

Design of the strategy (1-year formation period) 

Distance Stationarity Cointegration 

Opening Trigger (nb of σ) 2 3 2 3 2 3 

Monthly Returns        

(without transaction costs) 0,33 0,27 0,48 0,36 2,08 5,86 

Consistent p-values (Hansen) 0,00 0,03 0,02 0,01 0,00 0,00 

Monthly transaction costs 0,38 0,28 0,40 0,30 0,33 0,20 

Monthly Returns        

(with transaction costs) -0,05 -0,01 0,08 0,06 1,75 5,66 

Consistent p-values (Hansen) 1,00 0,47 0,31 0,26 0,00 0,00 

       

Trading statistics and portfolio composition (per pair, per 6-month period) 

Non-traded pairs (%) 4,93 20,75 5,07 14,93 3,81 43,21 

Non convergent (NC) pairs (%) 45,49 52,95 41,68 53,40 60,00 44,66 

Single round trip pairs (%) 33,28 51,38 34,18 26,16 28,28 11,87 

Multiple opening pairs (%) 16,31 4,93 19,07 5,52 7,91 0,26 

Profitable trades (%) 62,59 58,31 61,90 57,45 66,82 76,00 

NC profitable trades (%) 27,93 37,85 26,11 35,41 47,76 69,79 

NC unprofitable trades (%) 72,07 62,15 73,89 64,59 52,24 30,21 

Source: N. Huck, K. Afawubo (2015) 

  

Table 3.2: Result with 2-year formation period 

Method 

Design of the strategy (2-year formation 

period) 

Distance Stationarity Cointegration 

Opening Trigger (nb of σ) 2 3 2 3 2 3 

Monthly Returns        

(without transaction costs) 0,44 0,47 0,58 0,64 1,68 3,77 

Consistent p-values (Hansen) 0,00 0,00 0,00 0,01 0,00 0,00 

Monthly transaction costs 0,29 0,20 0,31 0,23 0,30 0,19 

Monthly Returns        

(with transaction costs) 0,15 0,27 0,27 0,41 1,38 3,58 

Consistent p-values (Hansen) 0,11 0,02 0,09 0,05 0,00 0,00 

       

Trading statistics and portfolio composition (per pair, per 6-month period) 

Non-traded pairs (%) 19,03 45,86 13,43 34,89 12,09 47,16 

Non convergent (NC) pairs (%) 50,60 41,64 51,42 49,40 56,53 43,21 

Single round trip pairs (%) 24,25 10,82 27,54 13,62 25,97 9,14 

Multiple opening pairs (%) 6,12 1,68 7,61 2,09 5,41 0,49 

Profitable trades (%) 61,04 58,79 58,89 59,14 64,00 71,11 

NC profitable trades (%) 38,40 45,78 35,17 46,00 45,94 64,89 

NC unprofitable trades (%) 61,60 54,22 64,83 54,00 54,06 35,11 

Source: N. Huck, K. Afawubo (2015) 
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The first result is that the monthly returns (ignoring transaction costs) are positive and 

statistically significant at 5% level for all the approaches, regardless of the length of the 

formation period and the opening trigger.  

However, the strategies with monthly returns robust to transaction costs are the following: 

▪ Cointegration approach for all the parametrizations considered. With monthly returns 

ranging from 1.38% (2-year formation period and 2-SD rule) to 5.66% (1-year 

formation period and 3-SD rule). 

▪ Distance approach with 2-year formation period and 3-SD as opening trigger (Monthly 

returns after transaction costs of 0.27%). 

▪ Stationarity approach with 2-year formation period and 3-SD as opening trigger 

(Monthly returns after transaction costs of 0.41%). 

The percentage of profitable trades is crucial for the success of pairs trading. In the experiments 

considered, this percentage ranges from 57.45% (stationarity approach with 1-year formation 

period and 3-SD rule) to 76% (cointegration approach with 1-year formation period and 3-SD 

rule). Despite these proportions are quite high, some strategies have weak and insignificant 

monthly returns. This can be explained by looking at the percentage of unprofitable 

nonconvergent trades that for the distance approach and the stationary approach are particularly 

high. It is not surprising that the most successful parametrizations, that are: 

▪ Cointegration approach with 1-year formation period and 3-SD as trigger (Monthly 

returns (with transaction costs) of 5.66%) 

▪ Cointegration approach with 2-year formation period and 3-SD as trigger (Monthly 

returns (with transaction costs) of 3.58%) 

are the only strategies in which the percentage of profitable non-convergent trades stays above 

50% (69.79% and 64.89%, respectively). As argued by Huck and Afawubo (2015), the 

cointegration approach seems to significantly reduce nonconvergent risk, or better the risk of 

losses in case of non-convergent trades. 
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Finally, consider Figure 3.1 which compares the cumulative returns (including transaction 

costs) of the different strategies with a 2-SD opening trigger versus the return of the market 

index (S&P 500 index). Notice that, over the eleven years considered in this research, the 

cointegration-based pairs trading strategy significantly outperforms the alternative pairs trading 

strategies and also the market index. Therefore, it is possible to conclude that over the 134 

months examined by Huck and Afawubo (2015) the pairs trading cointegrated strategy is clearly 

superior, in terms of monthly returns, relative to the other strategies. The main driver of the 

success of the cointegration-based pairs trading strategy seems to be its ability to identify 

econometrically more stable relationships compared to other approaches, which translates into 

a higher percentage of profitable non-convergent trades. 

 

 

 

Figure 3.1: Cumulative returns including transaction costs pairs trading strategies with a 2-SD trigger 

versus equity premium 

Source: N. Huck, K. Afawubo (2015) 
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3.5.3 Markowitz Portfolio Optimization through Pairs Trading Cointegrated Strategy in 

Long-Term Investment (Naccarato et al., 2019) 

 The objective of this research is to solve the Markowitz portfolio optimization problem 

(Markowitz, 1952) for a long-term horizon investment, through the pairs trading cointegrated 

strategy. In order to solve this problem, it is necessary to know the return and the risk of each 

stock included in the portfolio. The return of a stock depends on its price fluctuation over time 

and, therefore, its determination requires an estimation procedure. Naccarato et al. (2019) 

suggest estimating stock prices through a cointegration-based pairs trading strategy, which 

allows to identify the prices of each stock based on a cointegration relationship estimated with 

the Vector Error Correction Model (VECM) (see Section 2.10.4). The value of the estimated 

cointegration relationship represents the equilibrium between the prices, and the return of the 

stocks depends on the extent to which the two prices fluctuate around this equilibrium. 

Since the authors aim at solving the Markowitz optimization problem using cointegration-based 

pairs trading strategy, this implies that the portfolio considered must contain pairs of 

cointegrated stocks. In particular, they consider the 30 stocks with the highest capitalization 

among all real European stock in the financial sector over the period from August 2008 to 

August 2018. Moreover, the authors consider stocks belonging to the same sector because, as 

discussed in Section 3.2, they are more likely to be cointegrated since they are affected by the 

same common factors. Among the 435 potential pairs that can be obtained combining the 30 

selected stocks, Naccarato et al. (2019) find out, using the Johansen test (see Section 2.11.2), 

that only 148 pairs are actually cointegrated. Finally, the authors randomly select three pairs 

among the 148 cointegrated pairs for the implementation of their strategy. 

Consider the ith pair of cointegrated series (i = 1, 2, 3) consisting of stocks A and B, where 𝑝𝐴,𝑡 

and 𝑝𝐵,𝑡 are the observed prices of stock A and B at time t, respectively. Their return can be 

computed as: 

Stock A 

Stock B 
𝑟𝑖𝐴,𝑡 = 𝑙𝑜𝑔 (𝑝𝑖𝐴,𝑡) − 𝑙𝑜𝑔 (𝑝𝑖𝐴,𝑡−1) 
𝑟𝑖𝐵,𝑡 = 𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡) − 𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡−1) 

 

 

If the two time series 𝑙𝑜𝑔 (𝑝𝑖𝐴,𝑡) and 𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡) are cointegrated, this means that there exists a 

linear combination which is stationary, that is: 

𝑤𝑖,𝑡 = (𝑙𝑜𝑔 (𝑝𝑖𝐴,𝑡) − 𝛽𝑖𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡))~𝐼(0) 

 

where  𝛽𝑖 = (1, 𝛽𝑖)’ is the vector of the cointegration coefficients for the pair i. 
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The time series 𝑤𝑖,𝑡 fluctuates around an equilibrium relationship between the time series 

𝑙𝑜𝑔(𝑝𝑖𝐴,𝑡) and  𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡), which is represented by 𝜇𝑖,𝑤 = 𝐸(𝑤𝑖,𝑡). 

The VECM for the two series 𝑙𝑜𝑔 (𝑝𝑖𝐴,𝑡) and 𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡) can be written as: 

[
𝑙𝑜𝑔(𝑝𝑖𝐴,𝑡) − 𝑙𝑜𝑔(𝑝𝑖𝐴,𝑡−1)

𝑙𝑜𝑔(𝑝𝑖𝐵,𝑡) − 𝑙𝑜𝑔(𝑝𝑖𝐵,𝑡−1)
] = [

𝛼𝑖,𝐴
𝛼𝑖,𝐵

] (𝑤𝑖,𝑡−1 − 𝜇𝑖,𝑤) + 

+[
𝜙𝑖,𝐴𝐴 𝜙𝑖,𝐴𝐵
𝜙𝑖,𝐵𝐴 𝜙𝑖,𝐵𝐵

] [
𝑙𝑜𝑔(𝑝𝑖𝐴,𝑡−1) − 𝑙𝑜𝑔(𝑝𝑖𝐴,𝑡−2)

𝑙𝑜𝑔(𝑝𝑖𝐵,𝑡−1) − 𝑙𝑜𝑔(𝑝𝑖𝐵,𝑡−2)
] + [

휀𝑖𝐴,𝑡
휀𝑖𝐵,𝑡

] 

 

(3.14) 

where 𝛼𝑖 = (𝛼𝑖,𝐴, 𝛼𝑖,𝐵)′ is the vector of the adjustment coefficients, 휀𝑖,𝑡 = (휀𝐴𝑖,𝑡 , 휀𝑖𝐵,𝑡)′ 

represents the vector of disturbances, 𝛤𝑖 = [
𝜙𝑖,𝐴𝐴 𝜙𝑖,𝐴𝐵
𝜙𝑖,𝐵𝐴 𝜙𝑖,𝐵𝐵

] is the 2 × 2 matrix of autoregressive 

coefficients and the term (𝑤𝑖,𝑡−1 − 𝜇𝑖,𝑤) represents the deviation from the equilibrium value of 

the two time series 𝑙𝑜𝑔 (𝑝𝑖𝐴,𝑡) and 𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡). Equation (3.14) describes the returns of the 

stocks A and B at time t as a function of their return at time t-1 and of the deviation of 𝑙𝑜𝑔(𝑝𝑖𝐴,𝑡) 

and 𝑙𝑜𝑔 (𝑝𝑖𝐵,𝑡) from the equilibrium relationship at time t-1.  

The authors estimate the returns of stock A and B using the Engle-Granger methodology (see 

Section 2.11.1), and then they apply the pairs trading strategy to calculate the return of the ith 

pair. The pairs trading strategy requires two steps: 

• If at time t the trader notices a sufficient deviation below the equilibrium relationship, 

i.e. 𝑤𝑖,𝑡 = 𝜇𝑖,𝑤 − ∆𝑖, the trader will buy one share of stock A and sell 𝛽𝑖 shares of stock 

B. 

• If at time 𝑡 + ℎ𝑖 the trader observes a sufficient deviation above the equilibrium value, 

i.e. 𝑤𝑖,𝑡 = 𝜇𝑖,𝑤 + ∆𝑖, he/she will buy 𝛽𝑖 shares of stock B and sell one share of stock A. 

 

The pairs trading strategy is concluded at time 𝑡 + ℎ𝑖, when the double deviation from the 

equilibrium occurs, and the trader will obtain a return (𝑟𝑖,𝑡+ℎ𝑖) equal to 2∆𝑖. 

Each pair of stocks produces the expected return (𝑟𝑖,𝑡+ℎ𝑖) after a certain period ℎ𝑖, which is 

generally different for each pair. Thus, the investment period of the Markowitz portfolio will 

correspond to that of the pair that takes the longest period of time to achieve the expected return. 

Once the return 𝑟𝑖,𝑡+ℎ𝑖 have been obtained, the next step concerns the resolution of the following 

problem of risk minimization, in order to find the allocation coefficients (𝜃𝑖) for each pair: 
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 𝑚𝑖𝑛

1
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∑ 𝜃𝑖𝜃𝑖′𝜎𝑖𝑖′

3

𝑖,𝑖′=1

∑𝜃𝑖𝑟𝑖,𝑡+ℎ𝑖

3

𝑖=1

= �̅�

∑𝜃𝑖

3

𝑖=1

= 1

 (3.15) 

 

where 𝜎𝑖𝑖′ is the covariance between the returns of the pair i and i’, 𝜃𝑖 is the proportion of 

capital to be invested in each pairs of stocks and �̅� is the expected overall return of the 

Markowitz portfolio. By varying the value of �̅� in the interval [min (𝑟𝑖,𝑡+ℎ𝑖), max (𝑟𝑖,𝑡+ℎ𝑖)], with 

𝑖 = 1, 2, 3, the efficient frontier can be constructed. 

However, the trader needs to know the number of shares to be purchased for each of the 6 stocks 

in the portfolio and not the proportion of capital to be invested in each pair. The proposal by 

Naccarato et al. (2019) to overcome this problem is based on the fact that the ith product 𝜃𝑖𝑟𝑖,𝑡+ℎ𝑖 

in (3.15) is a function of the return of the single stocks: 

𝜃𝑖𝑟𝑖,𝑡+ℎ𝑖 = 𝜃𝑖𝑟𝐴,𝑡+ℎ𝑖 − 𝛽𝑖𝜃𝑖𝑟𝐵,𝑡+ℎ𝑖 

 

Since the parameters that define the quantity 𝜃𝑖𝑟𝑖,𝑡+ℎ𝑖 are the cointegration coefficient (𝛽𝑖) and 

the capital to be invested in each pair (𝜃𝑖), it seems reasonable to obtain the allocation of the 

single stock (𝛾𝑖,𝐴 and 𝛾𝑖,𝐵) from the linear combination of this two quantities, that is: 

[
𝛾𝑖,𝐴
𝛾𝑖,𝐵

] = [
𝜃𝑖

−𝛽𝑖𝜃𝑖
] 

 

The last objective of the research by Naccarato et al. (2019) is to compare, by means of a 

bootstrap simulation, the results of the pairs trading cointegrated strategy (PAIRS TRADING) 

with five more methods, specifically the Autoregressive Integrated Moving Average model 

(ARIMA), Vector Autoregressive model (VAR), Capital Asset Pricing Model (CAPM), the 

Multifactor model (FACTOR), and the Dynamic Linear Model (DLM). 

Multifactor models of asset returns can be divided into three types: macroeconomic, 

fundamental, and statistical factor models. All these models can be considered extensions to 

the CAPM model, which assumes that the returns of the assets are almost completely explicable 

by the behaviour of the overall market. Thus, the CAPM is based on a single explanatory factor 

and exposure value, the market return and beta (which measures the asset’s linear sensitivity to 

the market), respectively (Vidyamurthy, p. 38). In contrast, the multifactor models consider 
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multiple explanatory factors and exposure values in order to explain assets’ returns, specifically 

(Connor, 1995): 

• The macroeconomic factor models use historical asset returns and observable economic 

variables (e.g. inflation, percentage change in industrial production, excess return to 

long-term government bonds, etc.) as measures of the pervasive factors in asset returns. 

The main shortfall of these models is that they require identification and measurement 

of all the pervasive shocks affecting the asset returns, which is a very complex task (see 

Chen et al. (1986), Burmeister and McElroy (1988)). 

• The fundamental factor models use company and industry attributes (e.g. firm size, 

dividend yield, book-to-market ratio, etc.) and market data as descriptors to explain the 

asset returns. The factors in a fundamental factor model are the realized returns to a set 

of mimicking portfolios designed to capture the marginal returns associated with a unit 

of exposure to each attribute. In other words, each factor is the realized return per extra 

unit of factor, holding other attributes constant (see Fama and French (1993) and Griffin 

(2002)). 

• The statistical factor models use maximum-likelihood and principal-components based 

factor analysis procedures on cross sectional samples of asset returns to identify the 

pervasive factors in returns. The key advantage of these models is that the only 

information needed is the asses’ prices, from which it is possible to calculate the returns 

which are used to estimate the statistical model. On the other hand, the main 

disadvantage of these models is that it could be difficult to provide an economic 

interpretation of the statistical factors (see Grinold et al. (1992)). 

The Dynamic Linear Model (DLM), also called Gaussian linear state-space model, belongs to 

the class of state-space models. The state-space models are based on the idea that a time-series 

{𝑌𝑡}, denoting a vector of variables observed at date t, is an incomplete and noisy function of 

some underlying unobservable process {𝜃𝑡}, called the state process (Petris et al., 2009). Put 

differently, the observable process {𝑌𝑡} depends on the latent process {𝜃𝑡}, meaning that it is 

possible to assume that the observation process {𝑌𝑡} only depends on the state of the system at 

the time the measurement is taken, {𝜃𝑡}. The simplest dynamic linear model is the so-called 

random walk plus noise model, defined by the following system of equations (Petris et al. 

2009): 

Observation equation 𝑌𝑡 = 𝜇𝑡 + 𝑣𝑡 𝑣𝑡~𝑁(0, 𝑉) 
State equation 𝜇𝑡 = 𝜇𝑡−1 + 𝑤𝑡 𝑤𝑡~𝑁(0,𝑊) 

 

where the disturbances {𝑣𝑡} and {𝑤𝑡} are assumed to be uncorrelated at all lags, that is: 
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 𝐸(𝑣𝑡 , 𝑤𝜏′) = 0 For all t and τ 

 

In the model by Naccarato et al. (2019) the observations {𝑌𝑡}, i.e. the series of returns, are 

modelled as random fluctuations around a level {𝜇𝑡}, which can evolve randomly over time 

(i.e. it is described by a random walk).  

These five models are estimated using the same six time series of stocks considered for the 

cointegration-based pairs trading strategy, and each estimated model is used to solve the 

Markowitz problem, described in (3.15).  

Ultimately, the six strategies are replicated 1000 times using the bootstrap methodology in order 

to compare their financial performance, which are summarized in Table 3.3. 

 

 

Method Median Lower Bound Upper bound 

PAIRS TRADING 24.9215 18.5500 34.3225 

ARIMA 0.0335 0.0146 7.8548 

CAPM 0.0196 0.0019 0.3975 

FACTOR 0.0916 0.0007 0.3694 

VAR 0.0037 0.0013 0.3951 

DLM 0.1552 0.0015 0.3851 

 

 

The synthetic index used to compare the performance of the different models is the median of  

�̅�
𝑠⁄ , that is the ratio between the portfolio return and the corresponding minimum risk. The 

median of the PAIRS TRADING model is 24.9215, which is much higher than the other models 

for which this value is not higher than 0.1552 (DLM). Moreover, from the 95% confidence 

intervals it is possible to notice that the lower bound for the PAIRS TRADING model is 

significantly higher than the upper bounds of the confidence intervals for all the other methods. 

In other words, in 95% of cases, the PAIRS TRADING strategy provides a higher overall return 

per unit of risk relative to the other strategies.  

 

 

Method Median Lower Bound Upper bound 

PAIRS TRADING 0.3050 0.2616 0.3451 

ARIMA 0.0010 0.0010 0.2518 

CAPM 0.0100 0.0001 0.0100 

FACTOR 0.0100 0.0001 0.0100 

VAR 0.0001 0.0001 0.0100 

DLM 0.0100 0.0001 0.0100 

 

 

Table 3.3: 
�̅�

𝑠
  median and confidence intervals at 95% for the different strategies 

Sources: A. Naccarato, A. Pierini, G. Ferraro (2019) 

Table 3.4: �̅�  median values and confidence intervals at 95% for the different strategies 

Sources: A. Naccarato, A. Pierini, G. Ferraro (2019) 
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Method Median Lower Bound Upper bound 

PAIRS TRADING 0.0123 0.0090 0.0162 

ARIMA 0.0346 0.0229 0.0684 

CAPM 0.0367 0.0240 0.0537 

FACTOR 0.0473 0.0255 0.1973 

VAR 0.0364 0.0237 0.0856 

DLM 0.0376 0.0241 0.0834 

 

 

The ratio �̅� 𝑠⁄  can be very high for two reasons:  

• A very high portfolio return (�̅�) for a given level of risk (s). 

• A very low level of risk (s) for a given level of portfolio return (�̅�). 

Thus, it can be useful to evaluate �̅� and s separately for all the different methods. The results 

are reported in Table 3.4 and Table 3.5. 

The median value of the portfolio’s total return is much higher than those obtained with the 

other models; in 50% of the cases the PAIRS TRADING model has a portfolio return value of 

0.3050, which is thirty times the value of the best of the other models (0.0100). Moreover, the 

median of the risk s is much smaller compared with the risk associated with the other strategies. 

This means that the better results reported in Table 3.3 are due to both higher return and lower 

risk.  

It is important to highlight that the authors are comparing the cointegration-based pairs trading 

method, which is based on strategies of entry/exit rules in the different cointegrated pairs, to 

simple factorial models which do not imply any particular strategy, but simply represent 

different descriptions of the returns of the stocks considered. In other words, they do not 

demonstrate that the cointegration-based pairs trading approach is necessarily a better strategy 

than other types of dynamic trading, but they simply demonstrate that pairs trading strategy has 

significant returns compared to the market. In conclusion, their study shows that the 

cointegration-based pairs trading is profitable, but the other five models under analysis cannot 

be considered as competing strategies.  

Table 3.5: s median values and confidence intervals at 95% for the different strategies 

Sources: A. Naccarato, A. Pierini, G. Ferraro (2019) 
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Chapter 4 

Empirical Analysis 

This chapter is dedicated to our empirical analysis. In particular, we explore the performance 

of different cointegration-based pairs trading strategies, using the daily closing stock prices of 

the major banks in the Italian banking system over the period from 2 January 2015 to 30 

December 2019. Section 4.1 presents in detail the data that we have used to assess the 

profitability of our pairs trading strategies. Section 4.2 describes the first phase of the 

cointegration analysis which consists in the verification of the order of integration of the time 

series under analysis. In our work, this preliminary analysis is carried out using the Augmented 

Dickey-Fuller test (see Section 2.7.2) and the KPSS test (see Section 2.8). Section 4.3 describes 

the trading design that we have selected for our pairs trading strategies, which is based on the 

work by Huck and Afawubo (2015). In particular, this study considers two different lengths for 

the formation period (1 year and 2 years) and one length for the trading period (6 months) with 

two opening triggers, which are based on a standard deviation metric (2-standard deviations 

and 3-standard deviations). Moreover, we decide to widen the pairs trading strategy proposed 

by Huck and Afawubo (2015) considering two different closing triggers, which are the 

convergence of the spread to its long-term equilibrium and the re-convergence of the spread to 

the opening trigger (i.e. the first time that the spread crosses the opening trigger the position is 

opened and the second time the position is unwound). Finally, in Section 4.4 we present the 

results of our empirical analysis for the different parametrizations considered.  

 

4.1 Data 

For the purpose of our empirical analysis we consider four out of five major listed Italian banks, 

as defined in the research conducted by Mediobanca (2019). The reasons behind the choice of 

selecting only four out of five banks are explained below in this section. The ranking is based 

on the level of total tangible assets as of 31 December 2018. The resulting classification of this 

study is reported in Table 4.1. 

Table 4.1:  List of the major Italian banks by total tangible assets (data as of December 2018) 

Ranking Banks Total Tangible Assets (Thousands €) 

1 UniCredit S.p.A. 827,961,000 

2 Intesa Sanpaolo S.p.A. 778,624,000 

3 Banco BPM S.p.A. 159,186,850 

4 Banca Monte dei Paschi di Siena S.p.A. 130,267,082 

5 Unione Banche Italiane S.p.A. 123,576,082 

Source: Mediobanca (2019). 
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The data used in our study, retrieved on 14 May 2020 from the Thomson Reuters Eikon 

Database, consist in Euro-denominated daily closing stock prices of the five aforementioned 

banks. As for the time period, a 5-year interval from 2 January 2015 to 30 December 2019 

provides a total of 1268 daily observations for each financial institution. Figure 4.1 provides a 

graphical representation of our time series. 

 

 

We have decided not to consider Banca Monte dei Paschi di Siena for two main reasons: first, 

because of the significant fluctuations experienced by the stock price over the last five years 

compared to the other competitors under analysis. From a simple look at Figure 4.1 it is clear 

that there were exceptional events in the time series of Monte dei Paschi di Siena over the last 

five years, which are also confirmed by the results summarized in Table 4.2. Second, due to a 

lack of data during the period between 23 December 2016 and 24 October 2017 (for a total of 

213 daily observations). During this period of time, there was a temporary suspension of 

trading, ordered by CONSOB4, on regulated markets, multilateral trading systems and Italian 

systematic internalization systems in relation to securities issued or guaranteed by Banca Monte 

dei Paschi and to financial instruments having securities issued by Banca Monte dei Paschi 

standing as underlying. 

 
4 CONSOB (Commissione Nazionale per le Società e la Borsa) is the Italian government authority responsible for 

regulating the Italian securities market.  

Figure 4.1: Daily prices for Banco BPM, Intesa Sanpaolo, UniCredit, Unione di Banche Italiane, Banca Monte dei Paschi 

di Siena. 
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Thus, the financial institutions considered for the purpose of this study are the following: 

• UniCredit S.p.A. 

• Intesa Sanpaolo S.p.A. 

• Banco BPM S.p.A. 

• Unione di Banche Italiane S.p.A. (Ubi) 

Figure 4.2 shows a graphical representation of the time series of these four banks.  

 

From the results reported in Table 4.2, we can obtain some insights regarding the situation of 

the five credit institutions considered over the period from 2 January 2015 to 30 December 

2019: 

▪ The average stock price of Banco BPM is 4.22 €, ranging from a minimum price of 

1.56€ (registered on 26 October 2018) to a maximum price of 12.12€ (registered on 20 

July 2015), with a standard deviation of 3.24. 

▪ The average stock price of Intesa Sanpaolo is 2.54 €, ranging from a minimum price of 

1.55€ (registered on 27 June 2016) to a maximum price of 3.60€ (registered on 20 July 

2015), with the lowest standard deviation among the banks considered (0.46). 

▪ The average stock price of Ubi is 3.82 €, ranging from a minimum price of 1.90€ 

(registered on 29 September 2016) to a maximum price of 7.44€ (registered on 23 July 

2015), with a standard deviation of 1.53. 

▪ The average stock price of UniCredit is 16.98 €, ranging from a minimum price of 8.78€ 

(registered on 7 July 2016) to a maximum price of 32.82€ (registered on 27 April 2015), 

Figure 4.2: Daily prices for Banco BPM, Intesa Sanpaolo, UniCredit and Ubi. 
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with the highest standard deviation among the four banks selected for our analysis 

(6.87). 

▪ The average stock price of Banca Monte dei Paschi di Siena is 49.52 €, this value is 

obtained by keeping the stock price constant to 15.08€ (quoted price as of 22 December 

2016) during the period from 23 December 2016 to 24 October 2017, ranging from a 

minimum price of 1.00 € (registered on 6 June 2019) to a maximum price of 256.16€ 

(registered on 7 April 2015), with a standard deviation of 73.25, which is more than 10 

times the standard deviation of UniCredit. 

 

Table 4.2: Summary statistics: January 2015-December 2019 

Banks Mean Median St Dev Min Max Skew Kurt 

Banco BPM 4.22 2.72 3.24 1.56 12.12 1.33 3.08 

Intesa Sanpaolo 2.54 2.46 0.46 1.55 3.60 0.23 1.86 

Unione Banche Italiane 3.82 3.37 1.53 1.90 7.44 1.01 2.78 

UniCredit 16.98 14.71 6.87 8.78 32.82 1.07 2.82 

Banca MPS 49.52 15.08 73.25 1.00 256.16 1.48 3.69 

 

 

4.2 Preliminary Analysis: Testing for the Order of (Co-) Integration 

The first phase of a cointegration analysis consists in the verification of the order of integration 

of the individual time series considered. As discussed in Section 2.10.1, two time series, both 

integrated of order one, are said to be cointegrated if there exists a non-zero linear combination 

that is stationary, i.e. integrated of order zero. Therefore, the purpose of our preliminary analysis 

is to test whether the time series that we have selected are effectively integrated of order one. 

This can be done through unit root tests (see Section 2.7) and the stationarity tests (see Section 

2.8). As highlighted in Section 2.8, the stationarity tests have been developed to resolve the low 

test power of the unit root tests: a time series with unit root close to one that was typically found 

non-stationary with the unit root tests can be correctly found stationary with the stationarity 

test. Although the stationarity tests resolve the low test power of the unit root tests, it is 

important to be aware that the results obtained with statistical testing are probabilistic, and so 

there is always a non-zero chance of being wrong. In order to increase the probability of a right 

inference, a clever approach that should be used in unit root testing is to combine stationarity 

tests and unit root tests. In particular, in this work we decide to use one unit root test, specifically 

the Augmented Dickey-Fuller test (see Section 2.7.2) together with one stationarity test, 

specifically the KPSS test (see Section 2.8). 
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We recall that the unit root tests are statistical tests which evaluate the null hypothesis that a 

generic time series {𝑋𝑡} is non-stationary against the alternative hypothesis of stationarity, that 

is: 

𝐻0: 𝑋𝑡~𝐼(1)        𝑣𝑠.        𝐻1: 𝑋𝑡~𝐼(0) 

Conversely, the stationarity tests evaluate the null hypothesis that a generic time series {𝑋𝑡} is 

stationary against the alternative hypothesis of no stationarity, that is: 

𝐻0: 𝑋𝑡~𝐼(0)        𝑣𝑠.        𝐻1: 𝑋𝑡~𝐼(1) 

 

In our study, we divide the verification procedure of the time series’ order of integration in two 

steps: 

1. First, we perform the aforementioned tests on each time series considered (Banco BPM, 

Intesa Sanpaolo, Ubi and UniCredit) in order to verify whether the data are stationary 

or non-stationary. The results of the Augmented Dickey-Fuller test are reported in Table 

4.3, while those of the KPSS test are shown in Table 4.4. 

 

 

 

From the results of the Augmented Dickey-Fuller test it is possible to ascertain that all the four 

variables fail to reject the null hypothesis of non-stationarity at a 5% confidence level. The 

consistency of these results is supported by the values obtained for the KPSS test, whose values 

indicate that the tests strongly reject the null hypothesis of stationarity, for all the variables 

under analysis, in favour of the alternative of non-stationarity. 

Table 4.3: Augmented Dickey-Fuller test results  

  BPM Intesa Ubi UniCredit 

Reject the Null Hypothesis No No No No 

ADF test (stat. value) -1.0322 -1.9902 -1.4930 -1.5664 

ADF Critical Value (5%) -2.8647 -2.8647 -2.86417 -2.8647 

ADF test (p-Value) 0.7251 0.3009 0.5211 0.4886 

The p-Values are left-tail probabilities. In MATLAB when the test statistics are outside the tabulated critical values, 

the function adftest returns maximum p-Values of 0.999 or minimum p-Values of 0.001. 

Table 4.4: KPSS test results  

  BPM Intesa Ubi UniCredit 

Reject the Null Hypothesis Yes Yes Yes Yes 

KPSS test (stat. value) 83.1467 35.245 63.0604 71.0604 

KPSS Critical Value (5%) 0.4630 0.4630 0.4630 0.4630 

KPSS test (p-Value) < 0.0100 < 0.0100 < 0.0100 < 0.0100 

The p-Values are right-tail probabilities. In MATLAB when the test statistics are outside the tabulated critical 

values, the function kpsstest returns maximum p-Values of 0.100 or minimum p-Values of 0.01. 
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2. The second step consists in the implementation of the same tests on the differenced 

series, to check whether these data show any evidence of unit roots. If the unit root tests 

reject the null hypothesis of non-stationarity, or if the stationarity tests do not reject the 

null hypothesis of stationarity, we can conclude that the differenced time series under 

analysis are stationary processes. In Table 4.5 and Table 4.6 are reported the results of 

the Augmented Dickey-Fuller test and of the KPSS test for the differenced data, 

respectively. 

Table 4.5: Augmented Dickey-Fuller test results: Differenced data 

  BPM Intesa Ubi UniCredit 

Reject the Null Hypothesis Yes Yes Yes Yes 

ADF test (stat. value) -34.0714 -36.5771 -35.4759 -37.0759 

ADF Critical Value (5%) -2.8647 -2.8647 -2.8647 -2.8647 

ADF test (p-Value) < 0.001 < 0.001 < 0.001 < 0.001 

The p-Values are left-tail probabilities. In MATLAB when the test statistics are outside the tabulated critical 

values, the function adftest returns maximum p-Values of 0.999 or minimum p-Values of 0.001. 

 
 

Table 4.6: KPSS test results: Differenced data 

  BPM Intesa Ubi UniCredit 

Reject the Null Hypothesis No No No No 

KPSS test (stat. value) 0.1793 0.0636 0.1111 0.1272 

KPSS Critical Value (5%) 0.4630 0.4630 0.4630 0.4630 

KPSS test (p-Value) > 0.1000 > 0.1000 > 0.1000 > 0.1000 

The p-Values are right-tail probabilities. In MATLAB when the test statistics are outside the tabulated critical 

values, the function kpsstest returns maximum p-Values of 0.100 or minimum p-Values of 0.01. 

 

Focusing on the results of the ADF test: the four variables strongly reject the null hypothesis of 

presence of a unit root at a 5% confidence level, in favor of the alternative of stationarity. Also 

in this case, the results of the unit root tests are validated by the outcomes of the stationarity 

tests, which do not reject the null hypothesis of stationarity. Therefore, since there is strong 

evidence that the processes are nonstationary in levels (point 1), but they are stationary in first 

difference, it is possible to conclude that the variables under consideration are all integrated 

processes of order one. Figure 4.3 provides a graphical representation of the differenced time 

series of Banco BPM, Intesa Sanpaolo, Ubi and UniCredit. From these figures it is possible to 

observe that the data differenced once seem to be effectively stationary processes, indeed they 

tend to oscillate along a stationary mean of about zero. 
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4.3 Methodology: Trading Design and Returns Computation 

Following Huck and Afawubo (2015) (see Section 3.5.2), in this study we consider two 

different lengths for the formation (training) period, which represents the time interval during 

which the parameters of the experiment are computed (1 years and 2 years), and one length for 

the trading period, which represents the time period during which the experiment is run using 

the parameters computed in the training period (6 months), combined in the following two 

strategies: 

1. Formation period: 1 year (252 days) and trading period: 6 months (126 days). 

2. Formation period: 2 years (504 days) and trading period: 6 months (126 days). 

Consider a generic formation period of M days, the idea is to test if two time series are 

cointegrated over this training period adopting the Engle-Granger approach (see Section 

2.11.1). If evidence of cointegration exists then a pairs trading strategy will be implemented in 

the following N days (trading period) based of the cointegrating relationship found. Conversely, 

if the time series are found not to be cointegrated, no pairs trading strategy will be implemented 

in the subsequent trading period. In other words, we are using the information of the preceding 

M days to estimate the cointegrating relationship in the following N days. A new formation 

period is initiated after N days and the procedure is repeated in a rolling window fashion until 

the end of the sample considered. 

As discussed in Section 3.4, whenever a cointegrating relationship is detected, in order to 

implement our pairs trading strategy, we have to select some trading rules to determine when 

Figure 4.3: Differenced time series: Banco BPM, Intesa Sanpaolo, UniCredit and Ubi. 
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to open and when to close a position. First, we have to calculate the spread between the two 

time series considered, e.g. stock A and stock B, over the subsequent trading period, which can 

be defined as the scaled difference of the two stocks’ prices: 

𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑝𝑡
𝐴 − 𝛾𝑝𝑡

𝐵 

where 𝛾 represents the cointegration coefficient estimated during the formation period. 

Accordingly, we compute the dimensionless z-score (or normalized spread), which can be 

calculated as: 

𝑧𝑡 =
𝑆𝑝𝑟𝑒𝑎𝑑𝑡 − 𝜇𝑒

𝜎𝑒
 

where 𝜇𝑒 is the spread’s mean and 𝜎𝑒 is the spread’s standard deviation, both calculated using 

the data of the formation period. Following Gatev et al. (2006), our trading signals for opening 

a position are based on a standard deviation metric. In particular, we consider two different 

triggers: 

• 2-standard deviations (2-SDs) 

• 3-standard deviations (3-SDs) 

Consider a general q-standard deviation rule, whenever the normalized spread (𝑧𝑡) hits the 

lower threshold, i.e. 𝑧𝑡 < −𝑞, this means that the portfolio of pairs considered is below its long-

run equilibrium and so we should purchase it (long position), which means simultaneously buy 

one share of stock A and sell 𝛾 shares of stock B. Conversely, if the normalized spread hits the 

upper threshold, i.e. 𝑧𝑡 > 𝑞, this means that the portfolio of pairs in overvalued and so we 

should sell it (short position), which means simultaneously sell one share of stock A and 

purchase 𝛾 shares of stock B. 

Furthermore, we decide to consider two closing signals: 

• Closing the position when: 𝑧𝑡 = 0, which indicates that the normalized spread has 

reverted back to its long-run mean. 

• Closing the position when the normalized spread crosses the opening trigger twice, 

which means that the first time that the z-score crosses the opening trigger a pairs trading 

position is opened and the second time the position is unwound. Analytically this can 

be stated as follows:  

Closing a short position when: 𝑧𝑡 < 𝑞  with 𝑞 = 2,3.  

Closing a long position when: 𝑧𝑡 > −𝑞  with 𝑞 = 2,3. 

In both cases, pairs that open but never converge to the closing threshold will only produce a 

cash flow on the last day of the trading period when all the positions will be close out. The cash 

flows generated by this type of trades can be either positive or negative depending on the spread 
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between prices on the last day of the trading period. As explained in Section 3.4, the fact that 

price spreads may continue to diverge after position opening rather than revert to the long-run 

equilibrium value, due for example to significant pricing inefficiencies or particular market 

events, is one of the main risks associated to pairs trading strategies which can lead to 

substantial losses for the investor when he/she is forced to close his positions on the last day of 

the trading period. 

As discussed in Section 3.4, it is not possible to establish a priori whether total profits increase 

or decrease with different opening triggers. In fact, the higher the opening threshold the lower 

the number of openings and trades during the trading period considered, but the higher the 

potential profits on each completed transaction. In contrast, a lower opening threshold will 

produce a higher number of trades during a specific trading period, which could potentially lead 

to higher total profits.  

Moreover, it is important to notice that in our strategy the total profits also depend on the closing 

trigger selected. If we consider the case in which a position is closed whenever the normalized 

spread reverts back to its long-run mean, the number of completed trades during a particular 

trading period will be lower compared to the case in which the position is closed once the z-

score cross the opening trigger twice, but the potential profits for each completed trade will be 

higher.  

In this study we consider all the possible pairs that can be obtained with the four time series 

introduced in Section 4.2 (
𝑁×(𝑁−1)

2
= 6). As discussed in Section 3.3, the Engle-Granger 

approach is not invariant or robust with respect to the direction of normalization, which means 

that the result of the estimated cointegrating relationship could change according to the choice 

of the dependent and independent variable, creating a potential problem of ambiguity (see 

Section 2.11.1). Since in the cases considered in this research it does not seem to exist a natural 

choice of dependent and independent variable, we decide to conduct for each pair under analysis 

both cointegration relationships with either one bank or the other as independent variable, that 

is: 

𝑝𝑡
𝐴 = 𝜇1 + 𝛾1𝑝𝑡

𝐵 + 휀1𝑡 

𝑝𝑡
𝐵 = 𝜇2 + 𝛾2𝑝𝑡

𝐴 + 휀2𝑡 

where 𝑝𝑡
𝐴 and 𝑝𝑡

𝐵 represent the stocks’ prices of the two banks considered, 𝜇1 (𝜇2) and 𝛾1 (𝛾2) 

represent the equilibrium value and the cointegration coefficient respectively resulting from the 

first (second) regression, and 휀1𝑡 and 휀2𝑡 represent the disturbance term in the equilibrium for 

the first and the second regression, respectively. 
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The cumulative profits of each strategy are calculated as the algebraic sum of the cash flows 

which occur during each trading period over the time horizon of 5 years considered, which can 

be: 

• Positive: if a position is opened and unwound during a particular trading period. 

• Positive or negative: if a position is opened but never converges to the closing threshold, 

and so we are forced to close it on the last day of the trading period. 

 

 

Returns Computation 

Consider two stocks A and B and their prices at a generic time t, which are respectively 𝑝𝑡
𝐴 and 

𝑝𝑡
𝐵, their spread at time t is defined as the scaled difference in the price of the two stocks, that 

is: 

 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑝𝑡
𝐴 − 𝛾𝑝𝑡

𝐵 (4.1) 

where 𝛾 is the cointegration coefficient. Let 𝜗𝑡
𝐴 and 𝜗𝑡

𝐵 be the number of units of stock A and 

stock B held in the portfolio at time t, respectively. Assuming a positive cointegration 

coefficient, that is 𝛾 > 0, a long (short) position on stock A and a short (long) position on stock 

B correspond to 𝜗𝑡
𝐴 > 0 (𝜗𝑡

𝐴 < 0) and 𝜗𝑡
𝐵 < 0 (𝜗𝑡

𝐵 > 0), respectively.  

In order to exploit the cointegrating relationship between the two stocks under analysis, the 

following relation must be satisfied: 

 𝜗𝑡
𝐵 = −𝛾𝜗𝑡

𝐴 (4.2) 

Indeed, if relation (4.2) holds, then the value of the portfolio can be calculated as: 

 𝜗𝑡
𝐴𝑝𝑡

𝐴 + 𝜗𝑡
𝐵𝑝𝑡

𝐵 = 𝜗𝑡
𝐴(𝑝𝑡

𝐴 − 𝛾𝑝𝑡
𝐵) (4.3) 

from which it is possible to ascertain that the value of the portfolio at time t is proportional to 

the spread, as defined in equation (4.1).  

Pairs trading relies on the idea that if prices diverge sufficiently from the long-term equilibrium 

value, there is a chance to make a profit because they are expected to converge to their 

equilibrium value sooner or later. Whenever a trading signal occurs, that is when the normalized 

spread hits one of the pre-specified opening threshold, the trade is opened by simultaneously 

buying (long position) the undervalued stock, whose price is expected to increase, and selling 

(short position) the overvalued stock, whose price is expected to decrease. Assuming that the 

money raised from shorting a stock can be immediately invested to buy the other stock, these 

positions are self-financing and do not require any capital to trade. The transaction is then closed 

by reverting the opening positions once the z-score hits the pre-determined closing threshold.  

As discussed by Broussard and Vaihekoski (2012) the computation of the return on a zero net 

capital transaction is a problematic concept and no standardized method is available. In the 
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literature different methodologies have been proposed to overcome this problem: returns can 

be computed either on the long leg of the position (i.e. on the cost incurred to buy the 

undervalued stock), the margin capital needed to undertake the short position, or on the gross 

capital exposure, intended as the sum of the long leg of the position and the absolute value of 

the short leg of the position. 

In this study we decide to calculate the returns on the long leg of the position, assuming an 

initial capital of 1€. Our methodology relies on the assumption that the proceeds deriving from 

the short-selling of the overvalued stock are not immediately available to be invested in the 

long position, but they remain deposited in the broker’s account until the end of the transaction.  

Consider the following strategy: at time 𝑡1 the normalized spread 𝑧𝑡1indicates that the portfolio 

composed by stock A and stock B is undervalued. The investor, at this point, should buy the 

undervalued stock (long position on stock A) and sell the overvalued stock (short position on 

B). Assuming that all the proceeds from the short position remain deposited in the broker’s 

account, at time 𝑡1 the investor with an initial wealth of 1€ can purchase 𝜗𝑡1
𝐴 =

1

𝑝𝑡1
𝐴  shares of 

stock A. At time 𝑡2 the z-score reverts back to its long-term equilibrium, so that a closing signal 

occurs; at this point the investor closes out his strategy by reverting the previously opened 

positions, and the profit or loss (𝑟𝑡2) can be computed as: 

 𝑟𝑡2 = 𝜗𝑡1
𝐴 (𝑝𝑡2

𝐴 − 𝑝𝑡1
𝐴 ) + 𝜗𝑡1

𝐵 (𝑝𝑡2
𝐵 − 𝑝𝑡1

𝐵 ) = 𝜗𝑡1
𝐴∆𝑝𝑡2

𝐴 + 𝜗𝑡1
𝐵∆𝑝𝑡2

𝐵  (4.4) 

 

Recalling the relationship described in (4.2), the equation (4.4) can be rewritten as: 

𝑟𝑡2 = 𝜗𝑡1
𝐴∆𝑝𝑡2

𝐴 + 𝜗𝑡1
𝐵∆𝑝𝑡2

𝐵 =
1

𝑝𝑡1
𝐴 (∆𝑝𝑡2

𝐴 − 𝛾∆𝑝𝑡2
𝐵 ) 

Now consider the case in which at time 𝑡1 the normalized spread 𝑧𝑡1indicates that the portfolio 

composed by stock A and stock B is overvalued. The investor should purchase the undervalued 

stock (long position on stock B) and sell the overvalued stock (short position on stock A). 

Assuming that all the revenues from the short position remain deposited in the broker’s account, 

at time 𝑡1 the investor with an initial capital of 1€ can purchase 𝜗𝑡1
𝐵 =

1

𝑝𝑡1
𝐵  shares of stock B, 

while the number of shares of stock A which are sold short can be determined using equation 

(4.2). The return of the investor at the closing time 𝑡2, i.e. when the z-score hits the pre-specified 

closing trigger, can be calculated as: 

𝑟𝑡2 = 𝜗𝑡1
𝐴∆𝑝𝑡2

𝐴 + 𝜗𝑡1
𝐵∆𝑝𝑡2

𝐵 = −
1

𝛾𝑝𝑡1
𝐵 (∆𝑝𝑡2

𝐴 − 𝛾∆𝑝𝑡2
𝐵 ) 
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Suppose that the strategy is re-opened at time 𝑡3, at this date the available capital (𝑊𝑡3) of the 

investor will be equal to the initial capital, which was assumed to be 1€, plus the profits/losses 

generated by the previous transaction, that is: 

𝑊𝑡3 = 1 + 𝜗𝑡1
𝐴∆𝑝𝑡2

𝐴 + 𝜗𝑡1
𝐵∆𝑝𝑡2

𝐵  

This capital will be completely invested in the stock which will result to be undervalued at time 

𝑡3. In general, the available capital of the investor at time 𝑡𝑛 (𝑊𝑡𝑛) can be calculated as: 

𝑊𝑡𝑛 = 𝑊𝑡𝑛−1(1 + 𝜗𝑡𝑛−1
𝐴 ∆𝑝𝑡𝑛

𝐴 + 𝜗𝑡𝑛−1
𝐵 ∆𝑝𝑡𝑛

𝐵 ) 

where 𝑊𝑡𝑛−1 is the available capital at time 𝑡𝑛−1 and (𝜗𝑡𝑛−1
𝐴 ∆𝑝𝑡𝑛

𝐴 + 𝜗𝑡𝑛−1
𝐵 ∆𝑝𝑡𝑛

𝐵 ) represents the 

return at time 𝑡𝑛 by the strategy initiated at time 𝑡𝑛−1. 

Thus, in order to calculate the return of the entire strategy it is sufficient to subtract the initial 

capital of 1€ from the final available wealth, that is: 

𝑟𝑡𝑛
𝑆 = (𝑊𝑡𝑛 − 1) 

 

4.4 Empirical Results 

4.4.1 Closing Trigger: 𝒛𝒕 = 𝟎 

In this section we present the results obtained in the case in which the pairs trading positions 

are closed when the z-score reverts back to its long-term equilibrium, i.e. when 𝑧𝑡 = 0. The 

results reported in Table 4.7 represent the annualized returns of the twelve pairs analysed, both 

considering a length of the  formation period of one year (252 days) with trading period of 6 

month (126 days), and a formation period of two years (504 days) with a trading period of 6 

months (126 days), these parametrizations are analysed considering two opening triggers set at 

2-standard deviations and 3-standard deviations, respectively. 

Notice that four pairs, which are Ubi_BPM, BPM_UniCredit, UniCredit_BPM and Intesa_Ubi, 

result not to be cointegrated during the entire time horizon of 5 years considered. Excluding 

these four pairs from the analysis, we have a total of 40 annualized returns which can be divided 

as follows: 

• 60% positive annualized returns (24 strategies out of 40). 

• 32.5% negative annualized returns (13 strategies out of 40). 

• 7.5 % zero annualized returns (3 strategies out of 40). 

The positive annualized returns range from 9.94% (UniCredit_BPM, formation period of 2 year 

and trading period of 6 months with opening trigger set at 2-standard deviations) to 85.93% 

(Intesa_BPM, formation period of 1 year and trading period of 6 months with opening trigger 

set at 2-standard deviations); the negative returns range from -4.66% (BPM_Intesa, formation 
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period of 2 years and trading period of 6 months with opening trigger set at 3-standard 

deviations) to -67.39% (BPM_Intesa, formation period of 1 year and trading period of 6 months 

with opening trigger set at 2-standard deviations). All the positive annualized returns are due to 

single or multiple profitable trades which are not offset by unprofitable trades deriving from 

the closure of the positions on the last day of the trading period before the convergence to the 

closing trigger has occurred. Conversely, the negative annualized returns are the result of single 

unprofitable trades which occur on the last day of the trading period when all the opened 

positions are closed out, i.e. positions that open during the trading period considered but never 

converge to the closing trigger, which completely offset the positive returns deriving from 

successfully completed trades, if any (see Table B1 in the Appendix B). 

The first thing that shall be noticed is that in most of the cases considered, when we increase 

the opening trigger from 2-standard deviations to 3-standard deviations, the annualized returns 

increase. This is due to the fact that opening a position when the z-score is less than or equal to 

-3, which corresponds to a deviation of the spread from the long-term equilibrium of 3-standard 

deviations, allow us to purchase the portfolio, which in this case is undervalued with respect to 

its long-term equilibrium, at a more convenient price compared to the case in which the same 

position is opened when the z-score is less than or equal to -2. Similarly, opening a position 

when the z-score is greater than or equal to +3, allow us to sell the portfolio, which in this case 

results to be overvalued with respect to its equilibrium value, at a more convenient price 

compared to the case in which the position is opened when the normalized spread is greater or 

equal to +2.  

 

Table 4.7: Annualized returns with closing trigger: 𝑧𝑡 = 0 

Formation Period, Trading period 
Opening 

trigger 
BPM_Intesa Intesa_BPM 

1 year, 6 months 
2 SDs -67.39% 85.93% 

3 SDs -28.74% -10.42% 

 

2 years, 6 months  

2 SDs -17.56% -50.61% 

3 SDs -4.66% -23.39% 

Formation Period, Trading period 
Opening 

trigger 
BPM_Ubi Ubi_BPM 

1 year, 6 months 
2 SDs 37.54% Not cointegrated 

3 SDs 0% Not cointegrated 

2 years, 6 months 
2 SDs -28.91% -56.98% 

3 SDs -8.19% -34.92% 

Formation Period, Trading period 
Opening 

trigger 
BPM_UniCredit UniCredit_BPM 

1 year, 6 months 
2 SDs Not cointegrated Not cointegrated 

3 SDs Not cointegrated Not cointegrated 
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2 years, 6 months 
2 SDs 18.24% 9.49% 

3 SDs 44.90% 31.47% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_Ubi Ubi_Intesa 

1 year, 6 months 
2 SDs Not cointegrated 24.29% 

3 SDs Not cointegrated 0% 

2 years, 6 months 
2 SDs 82.87% 16.59% 

3 SDs 0% 35.34% 

Formation Period, Trading period 
Opening 

trigger 
Ubi_UniCredit UniCredit_Ubi 

1 year, 6 months 
2 SDs 19.95% -12.24% 

3 SDs 25.90% -6.51% 

2 years, 6 months 
2 SDs 22.48% 22.09% 

3 SDs 26.11% 20.94% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_UniCredit UniCredit_Intesa 

1 year, 6 months 
2 SDs 19.01% 20.02% 

3 SDs 27.60% 29.82% 

2 years, 6 months 
2 SDs 27.73% 22.85% 

3 SDs 48.91% 42.01% 

In this work for each pair under analysis both cointegration relationships with either one bank or the other 

as dependent variable are conducted. For each pair reported in the table, the first bank represents the time 

series that is used as dependent variable during the Engle-Granger test for cointegration, while the second 

bank represents the independent variable.  

 

The fact that the prices at which we buy or sell the portfolio are more convenient considering 

the higher opening trigger can be the result of three different scenarios: 

1. The price at which we purchase the undervalued stock is much lower at 3-SDs with 

respect to its price at 2-SDs, even if the price at which we sell the overvalued stock is 

slightly lower at 3-SDs compared to the its price at 2-SDs. 

2. The price at which we sell the overvalued stock is much higher at 3-SDs with respect to 

its price at 2-SDs, even if the price at which we purchase the undervalued stock is 

slightly lower at 2-SDs compared to its price at 3-SDs. 

3. The price at which we purchase the undervalued stock is lower at 3-SDs compared to 

its price at 2-SDs and the price at which we sell the overvalued stock is higher at 3-SDs 

compared to its price at 2-SDs. 

Since the positions are closed in both cases either when the z-score reverts back to its 

equilibrium value, or on the last day of the trading period, having bought (or sold) the portfolio 

at a more convenient price allows us to obtain higher annualized returns. 

However, one should notice that there exist five strategies for which an increase of the opening 

trigger produces a reduction of the annualized returns, and they are the following: 
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• Intesa_BPM, formation period of 1 year and trading period of 6 months. 

• BPM_Ubi, formation period of 1 year and trading period of 6 months. 

• Ubi_Intesa, formation period of 1 year and trading period of 6 months. 

• Intesa_Ubi, formation period of 2 years and trading period of 6 months. 

• UniCredit_Ubi, formation period of 2 years and trading period of 6 months. 

 As discussed in Section 3.4, the higher the opening trigger, the higher the deviation from the 

long-term equilibrium required to open a trade, and so the lower the number of openings and 

trades during a specific trading period. This is precisely the reason behind the reductions of the 

annualized returns for the aforementioned strategies: increasing the opening trigger generates a 

reduction of the number of profitable trades, which in turn produces a decline in the annualized 

returns (see Table B1 in the Appendix B). Figure 4.4 and Figure 4.5 provide a graphical 

representation of the normalized spread for the five strategies during the 5-year time horizon 

considered. In particular, the panels on the left-hand side represent the normalized spreads with 

opening trigger set at 2-standard deviations, while the panels on the right-hand side represent 

the normalized spread with opening trigger set at 3-standard deviations. From these figures it 

is easy to observe that whenever the opening trigger increases, the number of openings and the 

number of profitable trades decrease, leading to a reduction of the returns.  Moreover, it is also 

possible to see that when we increase the opening trigger from 2-SDs to 3-SDs, three out of 

five strategies, namely BPM_Ubi, Intesa_Ubi and Ubi_Intesa, never cross the opening trigger 

and so they never trade, leading to an annualized return of 0%. 

 

 

 

Figure 4.4: Normalized spread of Intesa_Ubi and UniCredit_Ubi with opening trigger set at 2-SDs 

and 3-SDs. 
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The most successful strategies are the following: 

• Intesa_BPM, 1-year formation period and 6-month trading period with opening trigger 

set at 2-standard deviations, with an annualized return of 85.93% generated by 2 

profitable trades and one unprofitable trade (see Figure 4.6 A). 

• Intesa_Ubi, 2-year formation period and 6-month trading period with opening trigger 

set at 2-standard deviations, with an annualized return of 82.87%, generated by 4 

profitable trades (see Figure 4.6 B). 

• BPM_UniCredit, 2-year formation period and 6-month trading period with opening 

trigger set at 3-standard deviations, with an annualized return of 44.90%, produced by 

one profitable trade (see Figure 4.6 C). 

 

 

 

 

 

 

 

 

 

Figure 4.5: Normalized spread of Intesa_BPM, BPM_Ubi and Ubi_Intesa with opening trigger 

set at 2-SDs and 3-SDs. 
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Instead, the least successful strategies are the following: 

• BPM_Intesa, 1-year formation period and 6-month trading period with opening trigger 

set at 2-standard deviations, with an annualized return of -67.39% generated by one 

profitable trade and one unprofitable trade (see Figure 4.7 A). 

• Ubi_BPM, 2-year formation period and 6-month trading period with opening trigger set 

at 2-standard deviations, with an annualized return of -56.98%, generated by one 

unprofitable trade (see Figure 4.7 B). 

• Intesa_BPM, 2-year formation period and 6-month trading period with opening trigger 

set at 2-standard deviations, with an annualized return of -50.61%, produced by one 

unprofitable trade (see Figure 4.7 C).  

 

 

 

 

 

 

 

 

Figure 4.6: Normalized spreads with related opening triggers and cumulative returns for the most 

successful strategies with closing trigger 𝑧𝑡 = 0 
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In conclusion, in order to understand if the four parametrizations analyzed would have been 

profitable over the 5-year period considered, we decided to consider the average annualized 

return of the twelve pairs for each parametrization (i.e. formation period of 1 year and trading 

period of 6 months with opening trigger set at 2-SDs and 3SDs and formation period of 2 years 

and trading period of 6 months with opening trigger set at 2-SDs and 3-SDs), calculated as the 

sum of the annualized return of each strategy divided for the number of strategies which result 

to be cointegrated over the 5-year time horizon considered. The outcomes are summarized in 

Table 4.8. From these results we can conclude that all the parmetrizations considered result to 

be significantly profitable over the period from January 2015 and December 2019. In particular, 

the most succesful specification is 1-year formation period and 6-month trading period  

cominbed with a less restrictive opening trigger (2-SDs) with an average annualized return of 

15.89%, follwed by the specification 2-year formation period and 6-month trading period, with 

opening trigger set at 3-SDs, which generates an average annualized return of 14.88%.  

 

Figure 4.7: Normalized spreads with related opening triggers and cumulative returns for the least 

successful strategies with closing trigger 𝑧𝑡 = 0 
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4.4.2 Closing Trigger: 𝒛𝒕 > −𝒒 𝐨𝐫 𝒛𝒕 < 𝒒 with 𝒒 =  𝟐, 𝟑 

In this section we present the results obtained in the case in which the opened positions are 

closed when the normalized spread crosses the opening trigger twice (e.g. q-standard 

deviations), i.e. when 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞. The results reported in Table 4.9 represent the 

annualized returns of the twelve pairs analysed, both considering a length of the  formation 

period of one year (252 days) with trading period of 6 month (126 days), and a formation period 

of two years (504 days) with a trading period of 6 months (126 days). These parametrizations 

are analysed considering two opening triggers (and closing triggers) set at 2-standard deviations 

and 3-standard deviations, respectively. 

As discussed in Section 4.3, if we consider the case in which a position is closed whenever the 

normalized spread crosses the opening trigger twice, the number of completed trades during a 

particular trading period will be greater (or equal) compared to the case in which the position 

is closed once the z-score reverts back to its long-term equilibrium. However, the potential 

profits for each completed trade will be lower. Since it is not possible to determine a priori 

which strategy is the most profitable, the purpose of this section is to present the results obtained 

when positions are closed upon re-convergence of the normalized spread to the opening trigger, 

i.e. the first time that the z-score crosses the opening trigger the position is opened and the 

second time the position is closed,  and compare them with those presented in Section 4.4.1. 

 

 

 

 

 

 

 

Table 4.8: Average Annualized Returns with closing trigger: 𝑧𝑡 = 0. 

Formation period, 

Trading period 

Opening 

trigger 

Average 

Annualized 

Returns 

Nr. of profitable 

str. 

Nr. of 

unprofitable 

str. 

Nr. of str. with 

zero returns 

1 year, 6 months 
2 SDs 15.89% 6 2 0 

3 SDs 4.71% 3 3 2 

2 years, 6 months 
2 SDs 5.68% 8 4 0 

3 SDs 14.88% 7 4 1 

Notice that the total number of strategies for the parametrization 1-year formation period and 6-month trading 

period is 8 instead of 12 because we are not considering the four pairs which result not to be cointegrated over 

the 5-year period considered. 
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Table 4.9: Annualized returns with closing trigger: 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3 

Formation Period, Trading period 
Opening 

trigger 
BPM_Intesa Intesa_BPM 

1 year, 6 months 
2 SDs -13.34% -22.06% 

3 SDs -42.17% -33.32% 

 

2 years, 6 months  

2 SDs -26.49% -23.65% 

3 SDs -3.64% 19.67% 

Formation Period, Trading period 
Opening 

trigger 
BPM_Ubi Ubi_BPM 

1 year, 6 months 
2 SDs 11.39% Not cointegrated 

3 SDs 0% Not cointegrated 

2 years, 6 months 
2 SDs -22.03% -57.06% 

3 SDs 11.84% -15.97% 

Formation Period, Trading period 
Opening 

trigger 
BPM_UniCredit UniCredit_BPM 

1 year, 6 months 
2 SDs Not cointegrated Not cointegrated 

3 SDs Not cointegrated Not cointegrated 

2 years, 6 months 
2 SDs 14.74% 3.79% 

3 SDs 19.95% 30.17% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_Ubi Ubi_Intesa 

1 year, 6 months 
2 SDs Not cointegrated 15.81% 

3 SDs Not cointegrated 0% 

2 years, 6 months 
2 SDs 11.32% 34.61% 

3 SDs 0% 2.45% 

Formation Period, Trading period 
Opening 

trigger 
Ubi_UniCredit UniCredit_Ubi 

1 year, 6 months 
2 SDs 26.28% -7.17% 

3 SDs 4.83% 4.10% 

2 years, 6 months 
2 SDs 16.79% 17.17% 

3 SDs 15.83% 14.59% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_UniCredit UniCredit_Intesa 

1 year, 6 months 
2 SDs 25.80% 34.26% 

3 SDs 42.91% 48.94% 

2 years, 6 months 
2 SDs 14.19% 17.72% 

3 SDs 10.02% 14.83% 

In this work for each pair under analysis both cointegration relationships with either one bank or the other 

as dependent variable are conducted. For each pair reported in the table, the first bank represents the time 

series that is used as dependent variable during the Engle-Granger test for cointegration, while the second 

bank represents the independent variable. 
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Excluding the four pairs which result not to be cointegrated over the sample period considered, 

the annualized returns can be divided as follows:  

• 65% positive annualized returns (26 strategies out of 40) 

• 27.50% negative annualized returns (11 strategies out of 40) 

• 7.50% zero annualized returns (3 strategies out of 40) 

The positive returns range from 2.45% (Ubi_Intesa, formation period of 2 years and trading 

period of 6 months with opening trigger set at 3-standard deviations) to 48.94% 

(UniCredit_Intesa, formation period of 1 year and trading period of 6 months with opening 

trigger set at 3-standard deviations); the negative returns range from -3.64% (BPM_Intesa, 

formation period of 2 years and trading period of 6 months with opening trigger set at 3-standard 

deviations) to – 57.06% (Ubi_BPM, formation period of 2 years and trading period of 6 months 

with opening trigger set at 2-standard deviations). 

The most successful strategies are the result of a very high number of profitable trades (see 

Table B2 in the Appendix B) occurred during the period under analysis whose gains are not 

offset by the negative returns deriving from unprofitable trades (if any), and they are the 

following: 

▪ UniCredit_Intesa, 1-year formation period and 6-month trading period with annualized 

returns of 48.94% (opening trigger set at 3-standard deviations),  generated by 15 

profitable trades (percentage of profitable trades: 100%), and 34.26% (opening trigger 

at 2-standard deviations), produced by 24 profitable trades (percentage of profitable 

trades: 96%). These normalized spread and cumulative returns of these strategies are 

represented in Figure 4.8 A and Figure 4.8 B, respectively. 

▪ Intesa_UniCredit, 1-year formation period and 6-month trading period with an 

annualized return of 42.91% (opening trigger set at 3-standard deviations), generated by 

17 profitable trades (percentage of profitable trades: 100%). The z-score and cumulative 

returns of this strategy are represented in Figure 4.9 A. 

▪ Ubi_Intesa, 2-year formation period and 6-month trading period with an annualized 

return of 34.61% (opening trigger set at 2-standard deviations), produced by 12 

profitable trades (percentage of profitable trades: 100%). A graphical representation of 

the normalized spread and the cumulative returns of this strategy can be found in Figure 

4.9 B. 
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Figure 4.9: Normalized spreads with related opening triggers and cumulative returns for the most 

successful strategies with closing trigger 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3 

Figure 4.8: Normalized spreads with related opening triggers and cumulative returns for the most 

successful strategies with closing trigger 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3 
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 Conversely, the negative annualized returns are the result of a very low number of profitable 

trades whose positive returns are completely offset by the negative returns deriving from 

unprofitable trades which occur on the last day of the trading period when all the opened 

positions are closed out (see Table B2 in the Appendix B). The most unsuccessful strategies are 

the following: 

▪ Ubi_BPM, 2-year formation period and 6-month trading period with an annualized 

return of -57.06% (with opening trigger set at 2-standard deviations), produced by 3 

profitable trades and a single unprofitable trade (see Figure 4.10 C). 

▪ BPM_Intesa, 1-year formation period and 6-month trading period with an annualized 

return of -42.17% (with opening trigger set at 3-standard deviations), resulting by 2 

profitable trades and one unprofitable trade (see Figure 4.10 B). 

▪ Intesa_BPM, 1-year formation period and 6-month trading period with an annualized 

return of -33.32% (with opening trigger set at 3-standard deviation), generated by one 

profitable trade and one unprofitable trade (see Figure 4.10 A). 

 

 

Also in this case, in order to assess the profitability of the four parametrizations over the period 

considered, we consider the average annualized returns of the twelve pairs for each 

Figure 4.10: Normalized spread with related opening triggers and cumulative returns for the 

least successful strategies with closing trigger 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3 
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parametrization (i.e. formation period of 1 year and trading period of 6 months with opening 

trigger set at 2-SDs and 3SDs, formation period of 2 year and trading period of 6 months with 

opening trigger set at 2-SDs and 3-SDs). The results are summarized in Table 4.10. From these 

results it is possible to observe than only three parametrizations out of four are significantly 

profitable, while the specification 2-year formation period and 6-month trading period with 

opening trigger set at 2-standard deviations provides a slightly positive average annualized 

return of 0.09%, resulting from 4 unprofitable strategies (BPM_Intesa, Intesa_BPM, BPM_Ubi 

and Ubi_BPM) which almost completely offset the positive returns deriving from the 8 

profitable strategies. 

 

In this case the most succesful parametrization is 2-year formation period and 6-month trading 

period cominbed with an opening trigger of 3-SDs with an average annualized return of  9.98%. 

The reason behind the profitability of this parametrization is the high number of profitable 

strategies (9 out of 12) compared to the number of unprofitable strategies (2 out of 12) and to 

the number of strategies with zero returns (1 out of 12). 

Comparing the results in Table 4.10 with those summarized in Table 4.8 it is possible to observe 

that pairs trading strategies are more profitable when we consider as closing trigger the 

convergence of the normalized spread to its long-term equilibrium, i.e. 𝑧𝑡 = 0, since the average 

returns for all the parmetrizations analysed result to be greater. 

 

4.4.3 Could a longer trading period reduce the impact of unprofitable 

trades? 

The purpose of this section is to consider a single formation period of two years, from 2 January 

2015 to 20 December 2016, and a single trading period of two years, from 21 December 2016 

to 12 December 2018, to understand if the impact of the losses, due to the closure of the 

positions at the end of the 6-month trading period considered in Section 4.4.1 and in Section 

4.4.2, could be reduced if a longer trading period is considered.  

Table 4.10: Average Annualized Returns with closing trigger: 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3. 

Formation period, 

Trading period 

Opening 

trigger 

Average 

Annualized 

Returns 

Nr. of profitable 

str. 

Nr. of 

unprofitable 

str. 

Nr. of str. 

with zero 

returns 

1 year, 6 months 
2 SDs 8.87% 5 3 0 

3 SDs 3.16% 4 2 2 

2 years, 6 months 
2 SDs 0.09% 8 4 0 

3 SDs 9.98% 9 2 1 

Notice that the total number of strategies for the parametrization 1-year formation period and 6-month trading 

period is 8 instead of 12 because we are not considering the four pairs which result not to be cointegrated over 

the 5-year period considered. 
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As discussed in Section 3.4, it does not exist a standard rule for deciding the lengths of the 

formation period and the trading period. However, the formation period should be long enough 

so that it is possible to verify whether a cointegration relationship between the two stocks under 

analysis exists or not, and the trading period should be chosen so that the selection process is 

recent, but not too long because it is possible that the cointegrating relationship estimated during 

the formation period may change during the trading period, making the pairs trading strategy 

completely unreliable. For these reasons, we must be aware that considering a relatively long 

trading period of two years could potentially lead to greater losses. 

The results reported in Table 4.11 represent the annualized returns of the twelve pairs for the 

case in which the pairs trading positions are closed upon convergence of the z-score to its long-

term equilibrium, considering a length of the  formation period of two year (504 days) with 

trading period of two years (504 days). As in the cases discussed above, the parametrization is 

analysed considering two opening triggers set at 2-standard deviations and 3-standard 

deviations, respectively. 

 

Table 4.11: Annualized returns for the parametrization 2-year formation period and 2-year trading 

period with closing trigger: 𝑧𝑡 = 0 

Formation Period, Trading period 
Opening 

trigger 
BPM_Intesa Intesa_BPM 

2 years, 2 years 

  

2 SDs 50.54% 50.77% 

3 SDs 50.91% 51.36% 

Formation Period, Trading period 
Opening 

trigger 
BPM_Ubi Ubi_BPM 

2 years, 2 years 
2 SDs 7.24% 7.96% 

3 SDs 13.13% 13.66% 

Formation Period, Trading period 
Opening 

trigger 
BPM_UniCredit UniCredit_BPM 

2 years, 2 years 
2 SDs Not cointegrated 25.78% 

3 SDs Not cointegrated 35.60% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_Ubi Ubi_Intesa 

2 years, 2 years 
2 SDs 50.47% Not cointegrated 

3 SDs 25.34% Not cointegrated 

Formation Period, Trading period 
Opening 

trigger 
Ubi_UniCredit UniCredit_Ubi 

2 years, 2 years 
2 SDs 11.58% 10.46% 

3 SDs 5.12% 3.38% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_UniCredit UniCredit_Intesa 

2 years, 2 years 
2 SDs 21.15% 19.96% 

3 SDs 25.50% 24.83% 
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Notice that all the annualized returns obtained with this particular specification result to be 

positive, with the only exceptions of BPM_UniCredit and Ubi_Intesa which result not to be 

cointegrated over the formation period and so they are not considered for the subsequent trading 

period. In particular, these positive returns range from 3.38% (UniCredit_Ubi, formation period 

of two years and trading period of two years with opening trigger set at 3-standard deviations) 

to 51.36% (Intesa_BPM, 2-year formation period and 2-year trading period with opening trigger 

at 3-standard deviations).  

All the annualized returns stem from single profitable trades (see Table B3 in the Appendix B), 

meaning that positions are opened only once during the entire trading period and then they are 

closed either because of the convergence of the normalized spread to the long-term equilibrium 

or on the last day of the trading period. 

The only exceptions are represented by the following pairs: 

• Intesa_Ubi (see Figure 4.11 A1 and Figure 4.11 A2) 

• Ubi_UniCredit (see Figure 4.11 B1 and Figure 4.11 B2)  

• UniCredit_Ubi (see Figure 4.11 C1 and Figure 4.11 C2)  

which under the less restrictive opening trigger (2-SDs) generate two profitable trades.  

In Figure 4.11 are represented the normalized spreads for the three aforementioned strategies, 

both considering an opening trigger of 2-standard deviations (panels on the left-hand side) and 

an opening trigger of 3-standard deviations (panels on the right-hand side). Moreover, as we 

expect, these are the only strategies whose annualized returns decrease when we increase the 

opening trigger from 2-standard deviations to 3-standard deviations. 

In order to evaluate the profitability of the two parametrizations analysed in this section, i.e. 2-

years formation period and 2-year trading period with opening triggers at 2-SDs and 3-SDs, we 

apply the same methodology used in Section 4.4.1 and 4.4.2. Thus, we compute the average 

annualized return of the ten pairs which result to be cointegrated over the formation period 

considered for each specification. The results are summarized in Table 4.12. 
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From these results it is possible to observe that the two parametrizations provide very similar 

average annualized returns, which in both cases result to be economically significant. However, 

the specification with 2-standard deviations as opening trigger is slightly superior, with an 

average annualized return of 25.59%.  

At this point, it could be useful to compare these results with those reported in Table 4.8 to 

understand which specification among the six examined turns out to be the most profitable 

when we consider the convergence of the z-score to its long-term equilibrium as closing trigger. 

The average annualized returns obtained with a formation period and a trading period of two 

years, both considering 2-standard deviations and 3-standard deviations as opening trigger, 

clearly outperform those obtained in Section 4.4.1. The reason behind the success of these 

Table 4.12: Average Annualized Returns for the parametrization 2-year formation period and 2-year trading 

period with closing trigger: 𝑧𝑡 = 0. 

Formation period, 

Trading period 

Opening 

trigger 

Average 

Annualized 

Returns 

Nr. of profitable 

str. 

Nr. of 

unprofitable 

str. 

Nr. of str. 

with zero 

returns 

2 year, 2 years 
2 SDs 25.59% 10 0 0 

3 SDs 24.88% 10 0 0 

Notice that the total number of strategies for this parametrization is 10 instead of 12 because we are not 

considering the two pairs which result not to be cointegrated over the 2-year formation period considered, from 

2 January 2015 to 20 December 2016. 

Figure 4.11: Normalized spread with related opening for Intesa_Ubi, Ubi_UniCredit and UniCredit_Ubi 
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parametrization is the reduction of the number of unprofitable strategies, which in this particular 

case falls to zero. 

Finally, we consider the case in which the pairs trading positions are closed when the 

normalized spread crosses the opening trigger twice, i.e. when 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3. 

Also in this case, the objective is to present the results obtained for the parametrization 2-year 

formation period and 2-year trading period and compare them with those summarized in Table 

4.10, in order to understand if an increase of the trading period could improve the profitability 

of our strategy. The annualized returns for the twelve pairs under analysis in the case in which 

positions are closed upon re-convergence of the normalized spread to the opening trigger, 

considering a formation period of 2 years and a trading period of 2 years with opening trigger 

at 2-standard deviations and 3-standard deviations are reported in Table 4.13. 

 

 

 

Table 4.13:  Annualized returns for the parametrization 2-year formation period and 2-year trading 

period with closing trigger: 𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3 

Formation Period, Trading period 
Opening 

trigger 
BPM_Intesa Intesa_BPM 

2 years, 2 years 

  

2 SDs 53.80% 85.28% 

3 SDs 79.43% 66.70% 

Formation Period, Trading period 
Opening 

trigger 
BPM_Ubi Ubi_BPM 

2 years, 2 years 
2 SDs 18.83% 23.73% 

3 SDs 24.69% 20.04% 

Formation Period, Trading period 
Opening 

trigger 
BPM_UniCredit UniCredit_BPM 

2 years, 2 years 
2 SDs Not cointegrated 17.57% 

3 SDs Not cointegrated 50.32% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_Ubi Ubi_Intesa 

2 years, 2 years 
2 SDs 20.53% Not cointegrated 

3 SDs 9.79% Not cointegrated 

Formation Period, Trading period 
Opening 

trigger 
Ubi_UniCredit UniCredit_Ubi 

2 years, 2 years 
2 SDs 21.29% 20.94% 

3 SDs 0.79% 0.89% 

Formation Period, Trading period 
Opening 

trigger 
Intesa_UniCredit UniCredit_Intesa 

2 years, 2 years 
2 SDs 20.46% 21.80% 

3 SDs 13.17% 16.90% 
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Notice that, also in this case, all the annualized returns are positive and they range from 0.79% 

(Ubi_UniCredit, formation period of two years and trading period of two years with opening 

trigger set at 3-standard deviations) to 85.28% (Intesa_BPM, formation period of two years and 

trading period of two years with opening trigger set at 2-standard deviations). Looking at the 

results stated in Table B4 in the Appendix B, it is possible to observe that these positive 

annualized returns are the result of multiple profitable trades and no unprofitable trades 

occurred during the trading period examined. Furthermore, the most successful strategies are 

associated with a relatively high number of profitable trades, while the least successful are 

linked to a low number of profitable trades. In particular, the strategies with the highest returns 

are the following: 

• Intesa_BPM with annualized returns of 85.28% (generated by 4 profitable trades) under 

the less selective opening scheme (2-SDs), and 66.70% (produced by 9 profitable trades) 

under the 3-SDs rule. 

• BPM_Intesa with an annualized return of 79.43% (generated by 10 profitable trades) 

under the 3-SDs opening rule. 

Instead, the least successful strategies can be summarized as follows: 

• Ubi_UniCredit with an annualized return of 0.79% (produced by 1 profitable trade) 

under the 3-SDs rule. 

• UniCredit_Ubi with an annualized return of 0.89% (produced by 2 profitable trades) 

under the more selective opening scheme (3-SDs). 

• Intesa_Ubi with an annualized return of 9.79% (generated by 2 profitable trades) under 

the 3-SDs opening rule. 

 In the end, we proceed in calculating the overall performance of these parametrizations by 

considering the average annualized returns of the ten pairs which result to be cointegrated over 

the formation period considered for each specification. The results are reported in Table 4.14. 

 

 

Table 4.14: Average Annualized Returns for the parametrization 2-year formation period and 2-year trading period 

with closing trigger:𝑧𝑡 > −𝑞 or 𝑧𝑡 < 𝑞 with 𝑞 = 2,3. 

Formation period, 

Trading period 

Opening 

trigger 

Average 

Annualized 

Returns 

Nr. of profitable 

str. 

Nr. of 

unprofitable 

str. 

Nr. of str. with 

zero returns 

2 year, 2 years 
2 SDs 30.42% 10 0 0 

3 SDs 28.27% 10 0 0 

Notice that the total number of strategies for this parametrization is 10 instead of 12 because we are not considering 

the two pairs which result not to be cointegrated over the 2-year formation period considered, from 2 January 2015 to 

20 December 2016. 
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Notice that both the parametrizations provide economically significant annualized returns, 

which are the result of ten profitable strategies without any unprofitable strategies or strategies 

yielding zero returns. Specifically, the best parametrization is the one in which we consider a 

less selective opening scheme (2-SDs) which generates a remarkable average annualized return 

of 30.42%. 

Comparing these results with those reported in Table 4.10 it is evident that the returns achieved 

considering a longer trading period strongly outperform those realized with a trading period of 

6 months, either by examining a formation period of one year or two years. Also in this case, 

the greater results obtained considering a longer trading period are due to the fact that with this 

particular combination of formation period (2 years) and trading period (2 years) we completely 

eliminate the unprofitable strategies. However, it is important to highlight that the aim of this 

work is of course not to find the ‘optimal’ parametrization of pairs trading strategies. The 

objective was just to establish if considering a sufficiently long trading horizon the impact of 

the losses due to the closure of the positions at the end of a relatively short trading period of 6 

months could be reduced, and it turns out that this is exactly what happens in our case, since 

considering a trading period of two years we are able to completely eliminate unprofitable 

trades and so achieving greater returns for both the closing schemes examined.  
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Conclusions 

 

The purpose of this thesis was to investigate the profitability of different cointegration-based 

pairs trading strategies, using the daily closing stock prices of the major banks in the Italian 

banking system over the period from 2 January 2015 to 30 December 2019.  

First of all, we provide an accurate overview of the various classes of statistical arbitrage 

strategies, with particular emphasis on the different pairs trading approaches cited in the 

literature. Then we proceed with presenting all the statistical and econometric elements required 

to understand the concept of cointegration, as exposed by Engle and Granger in 1987. Finally, 

we provide a rigorous analysis of the three-step process (i.e. pre-selection of the stock pairs, 

testing for cointegration and trading design) that need to be followed to implement a 

cointegration-based pairs trading strategy. 

For the purpose of this thesis we have followed the work by Huck and Afawubo (2015), which 

consider two different lengths of the formation period (1 year and 2 years) and a single length 

of the trading period (6 months) combined in two different strategies which are 1-year formation 

period and 6-month trading period and 2-year formation period and 6-month trading period, 

respectively. Our findings indicate that almost all these strategies are significantly profitable 

either examining a more selective opening scheme (3-standard deviations) and a less selective 

one (2-standard deviations), both considering as closing trigger the convergence of the 

normalized spread to its long-term equilibrium and the re-convergence of the spread to the 

opening trigger (i.e. the first time that the spread crosses the opening trigger the position is 

opened and the second time the position is unwound). The only exception is represented by the 

parametrization 2-year formation period and 6-month trading period with opening trigger set at 

2-standard deviations considering as closing trigger the re-convergence of the normalized 

spread to the opening trigger which, over the 5-year trading horizon considered, generates a 

slightly positive average annualized return of 0.09% (see Table 4.10). Moreover, we show that 

pairs trading strategies are more profitable when we consider as closing trigger the convergence 

of the normalized spread to its long-term equilibrium, i.e. 𝑧𝑡 = 0, since the average returns for 

all the parmetrizations analysed result to be greater. In particular, for these kind of specification 

the average annualized returns range from 4.71% considering a formation period of 1 year and 

a trading period of 6 months with an opening trigger of 3-standard deviations to 15.89% 

considering  a formation period of 1 year and a trading period of 6 months with an opening 

trigger of 2-standard deviations (see Table 4.8). 
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Furthermore, we have decided to investigate if the impact of losses, due to the closure of the 

pairs trading positions at the end of the 6-month trading period before the convergence to the 

closing trigger has occurred, could be reduced if a longer trading period was taken into account. 

To this effect, we have considered a single formation period of two years, from 2 January 2015 

to 20 December 2016, and a single trading period of two years, from 21 December 2016 to 12 

December 2018. From this analysis it turns out that considering a longer trading period 

generates greater average annualized returns with respect to those obtained with a shorter 

trading period of 6 months. The reason behind the success of these specifications is the 

reduction of the number of unprofitable strategies, which in these particular cases falls to zero. 

The main limitation of this work is that we focus only on the analysis of annualized returns and 

we do not consider any measure of risk, which would have provided a more complete 

description of the profitability of the strategies analyzed. For example, one of the main metrics 

used in the literature to assess the riskiness of a pairs trading strategy is the maximum 

drawdown. According to Caldeira and Moura (2013), the drawdown is the measure of the 

decline from a historical peak in some variable, typically the cumulative profit or total open 

equity of a financial trading strategy. The maximum drawdown (MDD) defines the total 

percentage loss experienced by a pairs trading strategy before it starts winning again. In other 

words, it is the maximum negative distance between a local maximum and the subsequent local 

minimum, and it gives a good measure of the downside risk for the investor (Dunis et al., 2010). 

Analytically it can be defined as (Caldeira and Moura, 2013): 

𝑀𝐷𝐷 = 𝑚𝑎𝑥
𝑡𝜖[0,𝑇]

[ 𝑚𝑎𝑥
𝑠 𝜖 [0,𝑡]

𝑅𝑠 − 𝑅𝑡] 

where  𝑅𝑡 is the daily return of the portfolio of pairs under analysis on day t. 

Another way of improving this research could be to consider some risk management tools as 

an attempt to reduce the risk and limit the downside of the pairs trading strategy. In our work 

we have tried to improve the performance of the strategy by optimizing the pairs selection 

process and the length of the trading period. However, it is possible to improve the strategy by 

managing in a more efficient way the risk of the portfolio. In Section 3.4, we have highlighted 

the fact that one of the main risks associated to pairs trading strategies is that securities’ prices 

may continue to diverge after position opening rather than revert to the long-term equilibrium, 

potentially leading to substantial losses for the trader. Thus, in order to limit the decline in the 

profitability of the strategy it is possible to implement proper risk management tools, such as: 

• Stop loss constraint: which is a function used to automatically unwind a position 

whenever a pre-defined loss is registered. 
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• Maximum holding length of a trade: which is the maximum time a trade can be kept 

opened, exceeding this threshold automatically generates an exit signal. 

Finally, in order to achieve a more realistic and rigorous modelling of pairs trading strategies, 

it could be useful to consider models in which the cointegration coefficient is not constant but 

may vary with time. This can be done using the Kalman filter, which allows parameters (in this 

case the cointegration coefficient) to vary over time (Dunis et al., 2010). According to Hamilton 

(1994, p. 372), the idea behind the concept of Kalman filter is to express a dynamic system in 

a particular form called state-space representation. The Kalman filter is an algorithm for 

sequentially updating a linear projection for the system, providing a way to calculate exact 

finite-sample forecasts and the exact likelihood function for Gaussian ARMA process. The 

objective of state space modelling is to provide an estimate of the unobservable states of the 

dynamic system in the presence of noise. The Kalman filter is a recursive method for filtering 

out the observations noise in order to optimally estimate the state space vector at a generic time 

t, based on the information available at time t. In other words, the filter consists of a system of 

equations which allow us to update the estimate of a state when new observations become 

available (Bentz, 2003). In their seminal paper Elliott et al. (2005) suggest that Gaussian linear 

state-space processes may be suitable for modelling spreads arising in pairs trading, and they 

describe how such models can yield statistical arbitrage strategy. As argued by Miao (2014), 

the Kalman filter can be used, within the pairs trading framework, for estimating and identifying 

the adaptive stability of the parameters of the cointegration model in real-time mode, providing 

enhancements of profitability and mitigation of risks for pairs trading based on the market-

neutral statistical arbitrage strategy. 
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Table A1: Critical Values for the Phillips-Perron 𝒁𝝅 Tests and for the Dickey-Fuller Test Based on Estimated OLS 

Autoregressive Coefficient 

Sample Size T 
Probability that  𝑇(�̂�𝑇 − 1) is less than entry 

0.01 0.025 0.05 0.10 0.9 0.95 0.975 0.99 

Case 1 

25 -11.90 -9.30 -7.30 -5.30 1.01 1.40 1.79 2.28 

50 -12.90 -9.90 -7.70 -5.50 0.97 1.35 1.70 2.16 

100 -13.30 -10.20 -7.90 -5.60 0.95 1.31 1.65 2.09 

250 -13.60 -10.30 -8.00 -5.70 0.93 1.28 1.62 2.04 

500 -13.70 -10.40 -8.00 -5.70 0.93 1.28 1.61 2.04 

∞ -13.80 -10.50 -8.10 -5.70 0.93 1.28 1.60 2.03 

Case 2 

25 -17.20 -14.60 -12.50 -10.20 -0.76 0.01 0.65 1.40 

50 -18.90 -15.70 -13.30 -10.70 -0.81 -0.07 0.53 1.22 

100 -19.80 -16.30 -13.70 -11.00 -0.83 -0.10 0.47 1.14 

250 -20.30 -16.60 -14.00 -11.20 -0.84 -0.12 0.43 1.09 

500 -20.50 -16.80 -14.00 -11.20 -0.84 -0.13 0.42 1.06 

∞ -20.70 -16.90 -14.10 -11.30 -0.85 -0.13 0.41 1.04 

Case 4 

25 -22.50 -19.90 -17.90 -15.60 -3.66 -2.51 -1.53 -0.43 

50 -25.70 -22.40 -19.80 -16.80 -3.71 -2.60 -1.66 -0.65 

100 -27.40 -23.60 -20.70 -17.50 -3.74 -2.62 -1.73 -0.75 

250 -28.40 -24.40 -21.30 -18.00 -3.75 -2.64 -1.78 -0.82 

500 -28.90 24.80 -21.50 -18.10 -3.76 -2.65 -1.78 -0.84 

∞ -29.50 -25.10 -21.80 -18.30 -3.77 -2.66 -1.79 -0.87 

The probability shown at the head of the column is the area in the left-hand tail. 

Source: Wayne A. Fuller (1976, p. 371), Introduction to Statistical Time Series, Wiley, New York. 
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Table A2: Critical Values for the Phillips-Perron 𝒁𝝉 Tests and for the Dickey-Fuller Test Based on Estimated OLS 

t Statistic 

Sample Size T 
Probability that (�̂�𝑇 − 1) �̂��̂�𝑇⁄  is less than entry 

0.01 0.025 0.05 0.10 0.9 0.95 0.975 0.99 

Case 1 

25 -2.66 -2.26 -1.95 -1.60 0.95 1.33 1.70 2.16 

50 -2.62 -2.25 -1.95 -1.61 0.91 1.31 1.66 2.08 

100 -2.60 -2.24 -1.95 -1.61 0.90 1.29 1.64 2.03 

250 -2.58 -2.23 -1.95 -1.62 0.89 1.29 1.63 2.01 

500 -2.58 -2.23 -1.95 -1.62 0.89 1.28 1.62 2.00 

∞ -2.58 -2.23 -1.95 -1.62 0.89 1.28 1.62 2.00 

Case 2 

25 -3.75 -3.33 -3.00 -2.63 -0.37 0.00 0.34 0.72 

50 -3.58 -3.22 -2.93 -2.60 -0.40 -0.03 0.29 0.66 

100 -3.51 -3.17 -2.89 -2.58 -0.42 -0.05 0.26 0.63 

250 -3.46 -3.14 -2.88 -2.57 -0.42 -0.06 0.24 0.62 

500 -3.44 -3.13 -2.87 -2.57 -0.43 -0.07 0.24 0.61 

∞ -3.43 -3.12 -2.86 -2.57 -0.44 -0.07 0.23 0.60 

Case 4 

25 -4.38 -3.95 -3.60 -3.24 -1.14 -0.80 -0.50 -0.15 

50 -4.15 -3.80 -3.80 -3.18 -1.19 -0.87 -0.58 -0.24 

100 -4.04 -3.73 -3.73 -3.15 -1.22 -0.90 -0.62 -0.28 

250 -3.99 -3.69 -3.69 -3.13 -1.23 -0.92 -0.64 -0.31 

500 -3.98 -3.68 -3.68 -3.13 -1.24 -0.93 -0.65 -0.32 

∞ -3.96 -3.66 -3.66 -3.12 -1.25 -0.94 -0.66 -0.33 

The probability shown at the head of the column is the area in the left-hand tail. 

Source: Wayne A. Fuller (1976, p. 371), Introduction to Statistical Time Series, Wiley, New York 

 

 

 

Table A3: KPSS Critical Values 

Critical Level Critical Value 

 For the Stationary Case (Dt = 1) For the Trend-Stationary case (Dt = (1, t)') 

0.10 0.347 0.119 

0.05 0.463 0.146 

0.025 0.574 0.176 

0.01 0.739 0.216 

Source: D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, Y. Shin (1992). 
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Table A4: Critical Values for Johansen's Likelihood Ratio Test of the Null Hypothesis of h Cointegrating Relations 

Against the Alternative of No Restrictions 

Number of random walks 

(𝑔 = 𝑛 − ℎ) 
Sample size (T) 

Probability that 2(ℒA − ℒ0) is greater than entry 

0.500 0.200 0.100 0.050 0.025 0.010 

                                                                     Case 1 

1 400 0.58 1.82 2.86 3.84 4.93 6.51 

2 400 5.42 8.45 10.47 12.53 14.43 16.31 

3 400 14.30 18.83 21.63 24.31 26.64 29.75 

4 400 27.10 33.16 36.58 39.89 42.30 45.58 

5 400 43.79 51.13 55.44 59.46 62.91 66.52 

                                                                    Case 2  

1 400 2.415 4.905 6.691 8.083 9.658 11.576 

2 400 9.335 13.038 15.583 17.844 19.611 21.962 

3 400 20.188 25.445 28.436 31.256 34.062 37.291 

4 400 34.873 41.623 45.248 48.419 51.801 55.551 

5 400 53.373 61.566 65.956 69.977 73.031 77.911 

                                                                    Case 4 

1 400 0.447 1.699 2.816 3.962 5.332 6.936 

2 400 7.638 11.164 13.338 15.197 17.299 19.310 

3 400 18.759 23.868 26.791 29.509 32.313 35.397 

4 400 33.672 40.250 43.964 47.181 50.424 53.792 

5 400 52.588 60.215 65.063 68.905 72.140 76.955 

The probability shown at the head of the column is the area in the right-hand tail. The number of random walks under 

the null hypothesis (g) is given by the number of variables described by the vector autoregression (n) minus the number 

of cointegrating relations under the null hypothesis (h). In each case the alternative is g = 0. 

Source: Michael Osterwald-Lenum (1992), A Note with Quantiles of the Asymptotic Distribution of the Maximum 

Likelihood Cointegration Rank Test Statistics, Oxford Bulletin of Economics and Statistics 54: p. 462. 
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Table A5: Critical Values for Johansen's Likelihood Ratio Test of the Null Hypothesis of h Cointegrating Relations 

Against the Alternative of h+1 Relations 

Number of random walks 

(𝑔 = 𝑛 − ℎ) 

Sample size 

(T) 

Probability that 2(ℒA − ℒ0)  is greater than entry 

0.500 0.200 0.100 0.050 0.025 0.010 

                                                               Case 1 

1 400 0.58 1.82 2.86 3.84 4.93 6.51 

2 400 4.83 7.58 9.52 11.44 13.27 15.69 

3 400 9.71 13.31 15.59 17.89 20.02 22.99 

4 400 14.94 18.97 21.58 23.80 26.14 28.82 

5 400 20.16 24.83 27.62 30.04 32.51 35.17 

                                                               Case 2 

1 400 2.415 4.905 6.691 8.083 9.658 11.576 

2 400 7.474 10.666 12.783 14.595 16.403 18.782 

3 400 12.707 16.521 18.959 21.279 23.362 26.154 

4 400 17.875 22.341 24.917 27.341 29.599 32.616 

5 400 23.132 27.953 30.818 33.262 35.700 38.858 

                                                               Case 4 

1 400 0.447 1.699 2.816 3.962 5.332 6.936 

2 400 6.852 10.125 12.099 14.036 15.810 17.936 

3 400 12.381 16.324 18.697 20.778 23.002 25.521 

4 400 17.719 22.113 24.712 27.169 29.335 31.943 

5 400 23.211 27.899 30.774 33.178 35.546 38.341 

The probability shown at the head of the column is the area in the right-hand tail. The number of random walks under 

the null hypothesis (g) is given by the number of variables described by the vector autoregression (n) minus the number 

of cointegrating relations under the null hypothesis (h). In each case the alternative is that there are h+1 cointegrating 

relations. 

Source: Michael Osterwald-Lenum (1992), A Note with Quantiles of the Asymptotic Distribution of the Maximum 

Likelihood Cointegration Rank Test Statistics, Oxford Bulletin of Economics and Statistics 54: p. 462. 
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Appendix B: Summary Tables 

 

  

Table B1: Percentage of profitable and unprofitable trades with closing trigger: 𝑧𝑡 = 0  

BPM_Ubi  

Strategy 
Opening 

trigger 
Total number of trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

 

1 year, 6 months 
2 SDs 1 100% 0%  

3 SDs 0 0% 0%  

2 years, 6 months 
2 SDs 2 50% 50%  

3 SDs 2 50% 50%  

BPM_UniCredit  

Strategy 
Opening 

trigger 
Total number of trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

 

1 year, 6 months 
2 SDs Not cointegrated - -  

3 SDs Not cointegrated - -  

2 years, 6 months 
2 SDs 1 100% 0%  

3 SDs 1 100% 0%  

BPM_Intesa  

Strategy 
Opening 

trigger 
Total number of trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

 

1 year, 6 months 
2 SDs 2 50% 50%  

3 SDs 2 50% 50%  

2 years, 6 months 
2 SDs 2 50% 50%  

3 SDs 2 50% 50%  

Intesa_Ubi  

Strategy 
Opening 

trigger 
Total number of trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

 

1 year, 6 months 
2 SDs Not cointegrated - -  

3 SDs Not cointegrated - -  

2 years, 6 months 
2 SDs 4 100% 0%  

3 SDs 0 0% 0%  

Intesa_UniCredit  

Strategy 
Opening 

trigger 
Total number of trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

 

1 year, 6 months 
2 SDs 4 75% 25%  

3 SDs 4 100% 0%  

2 years, 6 months 
2 SDs 3 100% 0%  

3 SDs 2 100% 0%  
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Ubi_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

  2 SDs 1 0% 100% 

2 years, 6 months 
3 SDs 1 0% 100% 

  

Ubi_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 1 100% 0% 

3 SDs 0 0% 0% 

2 years, 6 months 
2 SDs 2 100% 0% 

3 SDs 1 100% 0% 

Ubi_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 2 100% 0% 

3 SDs 2 100% 0% 

2 years, 6 months 
2 SDs 4 100% 0% 

3 SDs 1 100% 0% 

UniCredit_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

2 years, 6 months 
2 SDs 2 50% 50% 

3 SDs 1 100% 0% 

Intesa_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 3 66.67% 33.33% 

3 SDs 2 50% 50% 

2 years, 6 months 
2 SDs 1 0% 100% 

3 SDs 1 0% 100% 
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UniCredit_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 4 75% 25% 

3 SDs 4 100% 0% 

2 years, 6 

months 

2 SDs 4 100% 0% 

3 SDs 2 100% 0% 

UniCredit_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 1 0% 100% 

3 SDs 1 0% 100% 

2 years, 6 

months 
2 SDs 3 100% 0% 

 3 SDs 1 100% 0% 

In this work for each pair under analysis both cointegration relationship with either one bank or the 

other as dependent variable is conducted. For each pair reported in the table, the first bank represents 

the time series that is used as dependent variable during the Engle-Granger test for cointegration, 

while the second bank represents the independent variable 

Source: Thomson Reuters Eikon Database. 
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Table B2: Percentage of profitable and unprofitable trades with closing trigger: 𝑧𝑡 > −𝑞 and 𝑧𝑡 <
𝑞, with 𝑞 = 2,3 

BPM_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 1 100% 0% 

3 SDs 0 0% 0% 

2 years, 6 

months 

2 SDs 5 80% 20% 

3 SDs 9 88.89% 11.11% 

BPM_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

2 years, 6 

months 

2 SDs 4 100% 0% 

3 SDs 2 100% 0% 

BPM_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 3 66.67% 33.33% 

3 SDs 3 66.67% 33.33% 

2 years, 6 

months 

2 SDs 5 80% 20% 

3 SDs 5 80% 20% 

Intesa_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

2 years, 6 

months 

2 SDs 7 100% 0% 

3 SDs 0 0% 0% 

Intesa_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 14 92.86% 7.14% 

3 SDs 17 100% 0% 

2 years, 6 

months 

2 SDs 8 100% 0% 

3 SDs 2 100% 0% 
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Ubi_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

2 years, 6 

months 

2 SDs 4 75% 25% 

3 SDs 4 75% 25% 

Ubi_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 5 100% 0% 

3 SDs 0 0% 0% 

2 years, 6 

months 

2 SDs 12 100% 0% 

3 SDs 2 100% 0% 

Ubi_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 8 100% 0% 

3 SDs 2 100% 0% 

2 years, 6 

months 

2 SDs 12 100% 0% 

3 SDs 3 100% 0% 

UniCredit_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

2 years, 6 

months 

2 SDs 6 83.33% 16.67% 

3 SDs 2 100% 0% 

Intesa_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 4 75% 25% 

3 SDs 2 50% 50% 

2 years, 6 

months 

2 SDs 2 50% 50% 

3 SDs 5 80% 20% 
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UniCredit_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 25 96% 4% 

3 SDs 15 100% 0% 

2 years, 6 

months 

2 SDs 17 100% 0% 

3 SDs 3 100% 0% 

UniCredit_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 months 
2 SDs 2 50% 50% 

3 SDs 3 66.67% 33.33% 

2 years, 6 

months 

2 SDs 10 100% 0% 

3 SDs 3 100% 0% 

In this work for each pair under analysis both cointegration relationship with either one bank or the 

other as dependent variable is conducted. For each pair reported in the table, the first bank represents 

the time series that is used as dependent variable during the Engle-Granger test for cointegration, 

while the second bank represents the independent variable 

Source: Thomson Reuters Eikon Database. 
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Table B3: Percentage of profitable and unprofitable trades for the parametrization 2-year formation 

period and 2-year trading period with closing trigger: 𝑧𝑡 = 0  

BPM_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

BPM_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

BPM_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

Intesa_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 2 100% 0% 

3 SDs 1 100% 0% 

Intesa_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 mont2 

years, 2 years hs 

2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

Ubi_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years  
2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

Ubi_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 
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Ubi_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 2 100% 0% 

3 SDs 1 100% 0% 

UniCredit_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

Intesa_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

UniCredit_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 1 100% 0% 

3 SDs 1 100% 0% 

UniCredit_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 1 100% 0% 

3 SDs 2 100% 0% 

In this work for each pair under analysis both cointegration relationship with either one bank or the 

other as dependent variable is conducted. For each pair reported in the table, the first bank represents 

the time series that is used as dependent variable during the Engle-Granger test for cointegration, 

while the second bank represents the independent variable 

Source: Thomson Reuters Eikon Database. 

 

 

 

 

 

 

 

 

 



 

 

 
142 

Table B4: Percentage of profitable and unprofitable trades for the parametrization 2-year formation 

period and 2-year trading period with closing trigger: 𝑧𝑡 > −𝑞 and 𝑧𝑡 < 𝑞, with 𝑞 = 2,3 

BPM_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 4 100% 0% 

3 SDs 10 100% 0% 

BPM_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 

BPM_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 3 100% 0% 

3 SDs 10 100% 0% 

Intesa_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 11 100% 0% 

3 SDs 2 100% 0% 

Intesa_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

1 year, 6 mont2 

years, 2 years hs 

2 SDs 7 100% 0% 

3 SDs 5 100% 0% 

Ubi_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years  
2 SDs 7 100% 0% 

3 SDs 10 100% 0% 

Ubi_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs Not cointegrated - - 

3 SDs Not cointegrated - - 
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Ubi_UniCredit 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 14 100% 0% 

3 SDs 1 100% 0% 

UniCredit_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 7 100% 0% 

3 SDs 19 100% 0% 

Intesa_BPM 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 4 100% 0% 

3 SDs 9 100% 0% 

UniCredit_Intesa 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 8 100% 0% 

3 SDs 7 100% 0% 

UniCredit_Ubi 

Strategy 
Opening 

trigger 

Total number of 

trades 

% of 

Profitable 

trades 

% of 

Unprofitable 

trades 

2 years, 2 years 
2 SDs 18 100% 0% 

3 SDs 2 100% 0% 

In this work for each pair under analysis both cointegration relationship with either one bank or the 

other as dependent variable is conducted. For each pair reported in the table, the first bank 

represents the time series that is used as dependent variable during the Engle-Granger test for 

cointegration, while the second bank represents the independent variable 

Source: Thomson Reuters Eikon Database. 
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Appendix C: Matlab Code 

%We present the Matlab code used in this dissertation. Here, we present the 

%code only for the pair BPM_Intesa. The same code has been used for all the 

%other pairs examined. 

 

clear; 
clc; 
data=readtable('BPM_Intesa_5years.xlsx'); 
dates=data(1:end,1); 
dates=dates{:,1}; 
assetNames=data.Properties.VariableNames(2:end); 
assetPrice=data(:,assetNames).Variables; 
BPM=assetPrice(:,1); 
Intesa=assetPrice(:,2); 

  
%Plot of the time series under analysis over the 5-year trading horizon 

 
figure 
plot(dates,assetPrice(1:end,1:2),'LineWidth',2) 
xlabel('Years') 
ylabel('Price') 
names=assetNames(1:end) 
legend(names,'Location','SW') 
title('{Price series}') 
axis tight 

  
%Preliminary Analysis: Testing for the Order of (Co-)Integration 

 
%%Unit Root test: Augmented Dickey-Fuller Test 
%BPM 
[h1,pVal1,stat1,cValue1,reg1]=adftest(BPM,'model','ARD','lags',[0:10]); 
[h1D,pValD1,statD1,cValueD1]=adftest(diff(BPM),'model','ARD','lags',[0:10])

; 

  
%Intesa 
[h12,pVal2,stat2,cValue2]=adftest(Intesa,'model','ARD','lags',[0:10]); 
[h1D2,pVal1D2,statD2,cValueD2]=adftest(diff(Intesa),'model','ARD','lags',[0

:10]); 

  
%%Stationarity test: KPSS test 
%BPM 
[h_kpss1,pValue_kpss1,statkpss1,cValuekpss1]= 

kpsstest(BPM,'trend',false,'lags',[0:10]); 
[h_kpss1D,pValue_kpss1D,statkpssD1,cValuekpssD1]= 

kpsstest(diff(BPM),'trend',false,'lags',[0:10]); 

  
%Intesa 
[h_kpss2,pValue_kpss2,statkpss2,cValuekpss2]= 

kpsstest(Intesa,'trend',false,'lags',[0:10]); 
[h_kpss2D,pValue_kpss2D,statkpssD2,cValuekpssD2]= 

kpsstest(diff(Intesa),'trend',false,'lags',[0:10]); 

 

save BPM_Intesa_5years.mat 

 

 

%BPM_Intesa_Pairs Trading Strategy 

 

clear 
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clc 
load BPM_Intesa_5years.mat 
Y_d=BPM_Intesa(:,1:2); 
 

 

 

%BPM_Intesa_function_5years: this is the function used to produce a trading 

signal for our pairs trading strategy 
 

%M represents the length of the formation period 

%N represents the length of the trading period 

%delta represents the opening trigger 

%scaling represents a scaling factor 

%cost represents the amount of transaction cost 

 

function [s, reg1, r, res, trn, indicate] = pairs(dates,series, M, N, delta, 

scaling, cost) 

 
%% Sweep across the entire time series 

%We use the information of the preceding M days to estimate the cointegration 

%relationship (if it exists) for the following N days. A new formation period 

%is initiated after N days and the procedure is repeated until the end of 

the %sample considered. 
% We then use this estimated relationship to identify trading opportunities 
% until the end of the trading period. 

  
s = zeros(size(series)); 
indicate = zeros(length(series),1); 

  
for i = M : N : length(s)-N 
    % Calibrate cointegration model using the Engle-Granger methodology. 
    [h,~,~,~,reg1] = egcitest(series(i-M+1:i, :)); 
    if h ~= 0 

 
      % Only engage in trading if we reject the null hypothesis that no 
      % cointegrating relationship exists, i.e. only if h==0. Conversely, if  

%the time series are found to be not cointegrated, no pairs trading 

%strategy will be implemented in the subsequent trading period. 

         
      % The pairs trading strategy: 

 
      % 1. Compute residuals over next N days 

res = series(i:i+N-1, 1) - (reg1.coeff(1) + 

reg1.coeff(2).*series(i:i+N-1, 2)); 

 
% 2. If the residuals are large and positive, then the first series 
% is likely to decline vs. the second series.  Short the first                                         
% series by 1 share and long the second series by a scaled number equal   

%to the estimated cointegration coefficient) of shares.  If the 

%residuals are large and negative, do the opposite. 

 
        indicate(i:i+N-1) = res/reg1.RMSE; 
        if reg1.RMSE*delta>cost 
            j=1; 
            s(i,1)=(res(j)/reg1.RMSE < delta)-(res(j)/reg1.RMSE > -delta); 
            i=i+1; 
            for j=2:N 
                if(s(i-1,1)~=0)*(res(j)*res(j-1)>=0) 
                    s(i,1)=s(i-1,1); 
                else 
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                    s(i,1)=(res(j)/reg1.RMSE<delta)-(res(j)/reg1.RMSE>-

delta); 
                end 
                i=i+1; 
            end 
            i=i-N; 
        end 
        s(i:i+N-1, 2) = -reg1.coeff(2) .* s(i:i+N-1, 1); 
    end 
end 

  
%% Calculate performance statistics: r represents the cumulative profits of  

%% our pairs trading strategy 

  
r  = sum([0 0; s(1:end-1, :) .* diff(series) - abs(diff(s))*cost/2] ,2); 

     

 
% Count the numbers of trades  
 trn=0; 
 for i=M:length(series) 
     if (s(i,1)~=0)*(s(i-1,1)~=s(i,1)) 
         trn=trn+1; 
     end 
 end 
   %% Plot results 
   

    %% Plot of the time series under analysis 

 
    ax(1) = subplot(3,1,1); 
    plot(dates,series,'LineWidth',2),  

    grid on 
    legend('BPM','Intesa') 
    title(['Time Series’)]) 

    ylabel('Price (€)') 
     

   %% Plot of the normalized spread with the relative opening trigger 

 
    ax(2) = subplot(2,1,1); 
    plot(dates,[indicate,delta*ones(size(indicate)),-

delta*ones(size(indicate))]) 
    grid on 
    legend(['Normalized Spread'],'BPM: Overvalued','BPM: 

Undervalued','Location','NorthWest') 
    title(['BPM_Intesa: Formation period = ' num2str(M) ' days, Trading 

period = ' num2str(N) ' days, Target Deviation = ', num2str(delta), ' Standard 

Deviations'])  
    ylabel('Indicator') 

 

%% Plot of the cumulative profits 

 
    ax(3) = subplot(2,1,2); 
    plot(dates)  
    grid on 
    legend('Annualized Returns', 'NorthWest') 
    title(['Annualized Returns']) 
    ylabel('Returns (%)') 
    xlabel('Date') 
    linkaxes(ax,'x') 
end 
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%% Exploiting the function BPM_Intesa_function_5years, we compute the results 

%%for different combination of formation period, trading period and target 

%%deviations 

  
figure(1) 
[s,reg1,r,res,trn] = BPM_Intesa_function_5years(dates,Y_d,252,126,2,252,0); 
figure(2) 
[s,reg1,r,res,trn] = BPM_Intesa_function_5years (dates,Y_d,252,126,3,252,0); 
figure(3) 
[s,reg1,r,res,trn] = BPM_Intesa_function_5years (dates,Y_d,504,126,2,252,0); 
figure(4) 
[s,reg1,r,res,trn] = BPM_Intesa_function_5years (dates,Y_d,504,126,3,252,0); 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


