

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

MASTER DEGREE IN

ICT FOR INTERNET AND MULTIMEDIA

Multi Configuration Object Detection Framework for Camera Surveillance

System

 Supervisor: Prof. Michele Zorzi

Students’ name: MEMEN HAMZAH OBAID SALIHI

ACADEMIC YEAR 2021 – 2022

Date of graduation 24/03/2022

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

2

Abstract

The high delay produced by the two-stage Object detection methods is limiting their

use in video surveillance scenario. Therefore, most of the existing works use only light

object detection method to be applied on IoT devices.

The problem of these detectors is the low accuracy. To find a trade off between the

latency and the accuracy we proposed multi configuration framework where each group

of cameras are set under one configuration. After solving the optimization problem, the

system will be able to decide where to process the tasks based on the minimum cost for

all the configurations.The computation decision can be done locally (Edge) or remotely

(Cloud).

The experiment result demonstrates that the proposed multi-configuration object de-

tection framework outperforms the existing uni configuration system in terms of lower

latency and higher accuracy.

Keywords: Surveillance system, Edge-Cloud computing, Object detection, IoT

3

4

Acknowledgements

I would like to thank my family, my dad and mum, my siblings Muhammed, Nihad

and Estabraq, my second family, Roberta, Stefano, Alessandro and Elisa for their love,

patience and support through my academic life. I thank professors Simone Milani and

Leonardo Badia for their main contribution to my studying at the University of Padova

and National Taiwan University.

I thank all the lecturers and course mates at both universities, that taught me and gave

me the necessary knowledge through my study and while doing this thesis. I am grateful

for my supervisor, Professor Hung-Yu Wei for his infinite support and expert advise since

the beginning of my study at NTU. I am glad and thankful to professor Michele Zorzi for

his valuable time and advice being my supervisor in UNIPD.

I say thank you to my lab mates Ann, Louis, Howard, Zac, Zan Lun, Diego,Hao,

Kuang Hsun Lin , 楊雅婷,Jacob Hsieh and Jason. Their friendship and bonds that we

created during my stay in NTU are cherished and greatly appreciated.

Lastly, thanks to all the administration staff in both universities, they are behind all

the long process of the graduation and administrative work.

5

6

Contents

Page

Abstract 3

Acknowledgements 5

Contents 7

List of Figures 11

List of Tables 13

Denotation 15

Chapter 1 Introduction 1

1.1 Proposed framework . 2

1.2 Related work . 3

1.3 Outline . 6

Chapter 2 Object detection in camera surveillance 7

2.1 Object detection methods . 8

2.1.1 One Stage Light Detector . 8

2.1.2 One Stage Heavy Detector . 10

2.1.3 Two Stage Detector . 10

Chapter 3 Methodology 13

3.1 Materials . 13

7

3.2 Tools . 13

3.3 Methods . 15

3.3.1 Object detection inference . 15

3.3.2 Model selection . 16

3.3.3 Evaluation metrics . 17

Chapter 4 System model 23

4.1 Latency optimization problem . 24

4.1.1 Computing decision parameters . 24

4.1.2 Problem formulation . 27

4.1.3 Optimal solution characteristics . 28

4.2 Cost optimization . 29

4.2.1 System model for cost minimization 29

4.2.2 Decision model . 30

4.2.3 Computation model . 30

4.2.4 Cost minimization problem . 31

4.2.5 Problem formulation . 33

Chapter 5 Result and evaluation 35

5.1 Scenario1: The number of configurations is equal to the number of

cameras . 36

5.2 Scenario2: Each group of cameras under one configuration 38

5.2.1 Case1: Cam1 and Cam4 are set to configuration one (C1) 38

5.2.2 Case2 : Cam2 and Cam4 are set to configuration two (C2) 41

5.2.3 Case3: Cam3 and Cam4 are set to configuration three (C3) 42

8

5.3 Performance evaluation . 43

5.3.1 Overall cost comparison of the three cases of scenario2. 44

5.3.2 Overall cost comparison of multi and uni configuration system . . . 46

5.3.3 Performance comparison between uni (baseline) and multi config-

uration framework (proposed) in terms of accuracy (mAP) and cost

of each camera . 47

Chapter 6 Conclusions 53

6.1 Conclusions . 53

6.2 Future work . 55

References 57

9

10

List of Figures

1.1 The proposed framework (Hybrid). 2

2.1 One stage detector. 9

2.2 Two stage detector. 11

3.1 TensorFlow Hub. 14

3.2 Resources locally characteristics. 14

3.3 Resources remotely characteristics. 15

3.4 Example of mean Average Precision. 19

3.5 Example of ground truth bounding box and the predicted one. 20

4.1 Decision parameters. 26

5.1 Multi configuration framework (scenario1). 37

5.2 Multi configuration framework: Scenario2-Case1. 39

5.3 The total cost performance for multi configuration framework (scenario2). 45

5.4 Uni configuration framework (baseline) 46

5.5 The total minimum cost for each solution in Uni configuration frame-

work(baseline). 47

5.6 Performance comparison between Uni configuration (Baseline) build on

Configuration1 and Case1 from Multi configuration (Proposed) in terms

(a) Accuracy (mAP) and (b) Cost of each camera. 48

5.7 Performance comparison between Uni configuration (Baseline) build on

Configuration2 and Case2 from Multi configuration (Proposed) in terms

(a) Accuracy (mAP) and (b) Cost of each camera. 49

11

5.8 Performance comparison between Uni configuration (Baseline) build on

Configuration3 and Case3 from Multi configuration (Proposed) in terms

(a) Accuracy (mAP) and (b) Cost of each camera. 50

5.9 Performance comparison between (a) Case1, (b) Case2 and (c) Case3 in

terms of minimizing the cost and maximizing the mAP. 51

12

List of Tables

3.1 Object detection models . 16

3.2 Selected Object detection models . 17

3.3 Selected OD models with mean Average Precision and image scale 17

4.1 The system notations and description. 23

4.2 Configurations offloading solutions. 29

4.3 Parameters and description for general case. 31

5.1 Simulation parameters setting. 36

5.2 Object detection configurations for scenario1 37

5.3 The cost for each configuration in scenario1 37

5.4 The total cost solutions for scenario1. 38

5.5 Object detection configurations for scenario2 - Case1 39

5.6 The cost for each camera in the scenario2 - Case1 40

5.7 The total cost solutions for scenario2 - Case1 40

5.8 Object detection configurations for scenario2 - Case2 41

5.9 The cost for each camera in the scenario2 - Case2 41

5.10 The total cost solutions for scenario2- Case2 42

5.11 Object detection configurations for scenario2- Case3 42

5.12 The cost for each camera in the scenario2 - Case3 43

5.13 The total cost solutions for scenario2 - Case3 44

5.14 Performance comparison between the cost and accuracy(mAP) of config-

uration1 from uni configuration framework and Case1 from multi config-

uration framework. 48

13

5.15 Performance comparison between the cost and accuracy of uni configura-

tion2 system and multi configuration system. 49

5.16 Performance comparison between the cost and accuracy of uni configura-

tion3 system and multi configuration system. 50

14

Denotation

ML Machine Learning

DL Deep Learning

mAP mean Average Precision

OD Object Detection

CPU Central Processing Unit

GPU Graphic Processing Unit

CM Confusion Matrix

TP True Positive

TN True Negative

FP False Positive

FN False Negative

SSD Single Shot MultiBox Detector

15

OD Object detection

IoU Intersection over Union

AI Artificial Intelligent

DNN Deep Neural Network

CNN Convolutional Neural Network

IoT Internet of Things

VOC Visual Object Classes

FPN Feature Pyramid Networks

RPN Regional Proposal Network

EU End Users

MEC Multi-access Edge Computing

16

Chapter 1 Introduction

Object detection in general is one of the important challenges in the field of Deep

Learning (DL) because of the wide use in everyone’s daily life such as security, military,

medical and transportation (Autonomous driving) fields. In specific, this work focus on

Object Detection(OD) in security field as a camera surveillance scenario.

Object detection accuracy and latency in the surveillance system is an important

concern. The existing camera surveillance frameworks stand only on one configuration.

Those configurations are object detection methods that detect some specific objects ac-

cording to the target of each system such as face recognition. The challenge in this field

to build an efficient framework that can find trade-off between the accuracy of the con-

figuration and its latency.

With the purpose of building a framework that combine high accuracy detection and

low latency, many configurations has been used such as one-stage heavy and light de-

tectors. Most of the state-of-the-art detection work tend to use light backbone detector to

deploy object detection task at the end devices. Regarding two-stage detectors, because of

their heavy, complex computing requirements and resource constraints of the end devices

most of the proposed work use division strategies such as distribution, layer partitioning

and pruning between fog, edge and cloud nodes in order to reduce their computing load.

1

Although, the aforementioned division strategies reduce the latency somehow but still not

enough to be deployed on the end devices. Thus, in the proposed framework, it is sug-

gested to set some of those cameras on high accuracy configurations in order to reduce the

over all latency for the system. More on the proposed framework in 1.1

1.1 Proposed framework

To find a trade-off between the accuracy and the latency of two stage detectors in the

surveillance system, the proposed framework (Hybrid) is able to set a surveillance system

on more than one configuration. So instead of having a system where both accuracy and

latency are high or low, in our framework we will have a system with more than one

configuration for the cameras.

Figure 1.1: The proposed framework (Hybrid).

The proposed framework consists on many cameras that each or some of the them

are set to one configuration. Those configurations are object detection models that differ

2

in accuracy and latency. In this framework, each or group of cameras are set under one

configuration according to the operating system requirements. After that, each camera

can choose whether to process their task locally of by offloading based on the available

resources at each node and total minimum cost.

In this paper, object detection inference performed on ten Object detection models.

Those models or configurations are selected according to their characteristics such as one

stage light detectors, one stage heavy detectors and two stage detectors. In the model se-

lection phase,It has been selected the models with the highest accuracy and lowest latency

from each category configuration. Also, the inference time wasmeasured and recorded for

those configurations locally and by offloading in order to compute the overall minimum

cost.

The configurations (Object detection models) were selected from Tensorflow hub,

an open source software library for Machine Learning(ML) and Artificial Intelligent(AI).

It is used from across ranges of object detection tasks but it focus mostly on training and

inference of Deep Neural Network (DNN).Figure 1.1 describes the aspired state of the

proposed framework.

1.2 Related work

Due to the heavy backbone of two stage object detectors, it is difficult to deploy

them in IoT devices such as web cameras. Therefore, there is the need to design a frame-

work that handle the division of tasks between the end devices considering the available

resources.

In this section, we have three parts of relevant work concerning the surveillance sys-

3

tem, they are as follow:

1. Surveillance system or video analytics framework:

A Decomposable intelligence inference approach to video analytics on Edge-Cloud

IoT is presented in [38], they provide a framework to support joint latency and ac-

curacy aware live video analytics services. They used a game theory approach for

the negotiation between the MEC stratum and the cloud to distribute the computing

load. YOLO3 [24] as one stage detector was used for face recognition purpose. Au-

thors in [15] introduced a DeePar which is a hybrid Device-Edge-Cloud framework

that consists on layer level partitioning strategy for Deep Neural Network (DNN).

Their framework distribute the computing load between the device, edge and cloud

in order to reduce the overall execution delay. [39] presented intelligent surveil-

lance system by transferring only the required frame to precise detection when it

detect a potential risk in their construction field. Therefore, it reduces the network

traffic as well the computational burden for the server. Moreover, they used Tiny-

YOLO [17] as one-stage detector as a first step detection. While in [9] they use the

autoencoder machine learning strategy to reduce the dimensions of the input data.

First the data encoded at the edge and then decoded on the cloud to extract the fea-

ture. Finally, authors in [6] presented a surveillance intelligent system where the

deep learning models distributed on edge computing architecture layers.

2. Object detection’s division strategies in IoT.

Due to the resource constraints on the edge and the high latency produced by the

object detection methods on the cloud , there are some proposed work regarding this

concept to reduce this latency and deploy those complex deep learning models on

4

end devices. ,[28] proposed an approach to partition a deep neural notwork models

and apply progressive transmission of intermediate convolutions filter maps. Au-

thors in [14] presents a novel approach to split machine learning models between

IoT devices and Cloud in a progressive manner. Also their approach could be com-

bined with model compression and adaptive model partitioning to create an inte-

grated system on IoT-Cloud partitioning. In [36] suggest an efficient energy con-

sumption framework by pruning the layers of object detection models aggressively.

Finally,[33] present Edgelens which is a framework to deploy deep learning appli-

cations in fog-Cloud environment to harness edge and cloud resources to provide

better service quality.

3. Computation offloading:

In terms of computation offloading there are several papers have been presented, but

in this section we mention the most related to our work. In[22] authors introduced

an algorithm that do partial offloading from end users(EU) to MEC under a com-

prehensive optimization of EU’s energy consumption and performance. Another

approach was presented by [10] to enable the mobile devices to offload their task

to fog computing nodes by a module placement method. [35] proposed a dynamic

offloading framework, uplink Non-Orthogonal Multiple Access (NOMA) is used

to enable the end devices to offload their task via the same frequency. Lastly, in [4]

they improved the response time for offloading by Decision tree, Random Forest

and Ada boost classifier in mobile fog computing.

All the frameworks described above, they use light object detection configuration

to be deployed on the end devices or they use partitioning, slicing or punning to reduce

the computing load. those frameworks has the same configuration for all the cameras.

5

In other words, all the cameras in the system or IoT devices have the same accuracy and

cost. So if the system implemented on a configuration with low accuracy and low latency

they are compromising one important factor in the system which is the accuracy. Also,

if they implement a system with high accuracy, the latency will be high as well. To find

a trade-off between those two important objectives, the proposed framework utilize more

than one configuration in a surveillance system to have a balanced trade-off between the

two important factors in the surveillance system.

1.3 Outline

The rest of the paper is structured as follow:

1. Chapter two describes Object Detection concept in camera surveillance system.

2. Chapter three introduces the theory,tools, methods and materials used in this thesis

work.

3. Chapter four presents the model system for both latency and cost minimization

problem.

4. Chapter five evaluates the proposed framework and compare it with the uni con-

figuration system.

5. Chapter six concludes the work on this research and gives some suggestion for

future works.

6

Chapter 2 Object detection in camera

surveillance

Surveillance system is a camera based monitoring that observe activities and collect

information to be used in video analytics or for security purpose such as the surveillance

systems in the bank, airport and military fields. In the recent year, Unmanned Ariel Ve-

hicles (UAVs) such as drones started to be deployed for surveillance in military and civil

purposes[37].

The cameras in surveillance system usually capture point of interest according to the

purpose of the system that are designed for, in this case the selection of the detector is

very important task when it comes to sensitive scenarios such as face recognition while

wearing a mask as the situation now a days in the COVID 19 outbreak. In some scenarios

of surveillance framework the accuracy is more important than the latency therefore the

choice of the object detection models falls on two stage detectors such as Faster R-CNN

[26] and Mask R-CNN [11]. In order to understand better what is actually one stage heavy

detectors, light detectors and two stage detectors , in this chapter we provide some of the

literature review of the aforementioned object detectors categories.

7

2.1 Object detection methods

Object detection methods are Deep Learning Convolutional Neural Networks (CNN)

trained on very huge data such as ImageNet [7], MS-COCO [19] and VOC [8]. Object

detection methods are usually divided to two main parts: one-stage detector such as the

most notable one is YOLO [23] and SSD [20], while the second category is the two-stage

detectors such as Faster R-CNN. One stage methods detectors provide very fast inference

,therefore it is used for real time application. On the other hand, those detectors have lower

accuracy than two stage detectors. In the following subsections, we introduce more details

about one stage light, heavy and two stage detectors as well in more comprehensive way

and also we list the detectors that have been used to perform inference in this research.

Generally, object detection methods have Backbone or so called feature extractor

network. These backbones are Convolutional Neural Network (CNN) that takes the in-

put (image) extract the features and pass it to the fully connected for classification and

localization. Based on the number of the convolutional layer we classify the backbone

of the detector whether its heavy or light. Example of those backbones are VGG16 [30],

MobileNet [29], Hourgalss [21], ResNet [12], MobileNetV2 [29].

In the following subsection we give a brief descriptions of these three kinds of Object

Detection methods.

2.1.1 One Stage Light Detector

As the name suggest, one stage detector predict the categories from the first stage

with the bounding boxes. Figure 2.1 shows the architecture of this kind of detectors, in

8

our experiment we selected three of those as follow:

Figure 2.1: One stage detector.

• Single Shot Detector (SSD MobileNet v2):

SSD originally was presented in 2016 and it is a simple object detection method

based on VGG16 network as a backbone. While SSD MobileNetV2 has the archi-

tecture of SSD but the backbone of MobileNetV2 [29] and the last uses lightweight

convolutional layers to extract the feature. In specific this method with 320x320

image resolution give 20.2 as mean Average Precision (mAP).

• SSD MobileNet V1 FPN

This detector is Single Shot Detector architecture but with MobileNetV1 [13] as the

backbone. The difference between the first model and this, is the Feature Pyramid

Network (FPN) [18] that predicts the objects on different scales. Therefore, the

accuracy have been increased from 20 to 29.1.

• Faster R-CNN ResNet50 V1 640x640

Faster R-CNN [25] is a Region Proposal Network (RPN) that detect the objects

in each position of the image. The architecture of this method based on Faster

R-CNN but the backbone is ResNet50. The number of layers for this method is

50 convolutional layers. Therefore, it is considered as one light object detection

method but with quite high accuracy as 29.3 comparing to SSD.

9

2.1.2 One Stage Heavy Detector

Heavy detectors are similar to the light but with heavy backbone. In other words,

the number of convolutional layers is higher and as a result the accuracy of this kind of

detectors is higher. The three detectors that were used from this type are the following:

• Faster R-CNN ResNet50 V1 1024x1024 :

An ODmodel based on Regional Proposal Network (RPN) with the ResNet50 back-

bone that detect the images on 1024x1024 scale. The mean Average Precision for

this method is 31 which is higher from the same method with image scale lower.

• EfficientDet D0 512x512:

EfficientDet D0 [32] is an object detection method proposed in 2019 for prediction

on image with 512x512 scale. This version of the detector gives an accuracy of

33.6, also this accuracy starts increasing when the image scale is higher.

• Faster R-CNN ResNet101 V1 640x640

This is the same method in One stage light detector but with heavy ResNet as a

feature extractor network that contains 101 Convolution layers. Although,the image

scale is 640x640 but the accuracy is higher by 31.8.

2.1.3 Two Stage Detector

Figure 2.2 shows the structure of two stage detectors that consist of two parts: the

first part is the convolutional layer or so called backbone network that extract the features

from the input image and then it pass it to the next part. The second part is the object

10

proposal network that extracts the Region Of Interest (ROI) from the passed classification

and then it classifies it and localize the bounding box as the output of the detector.

Figure 2.2: Two stage detector.

Four detectors from this type were selected with different image scales.

• CenterNet Hourglass104

CenterNet [40] alone is not a traditional two stage detectors but because it has two

steps to detect the objects is set under the category of two stage detectors. The two

steps for detection are: Firstly, it estimate the probabilities of the classes. Secondly,

it classifies the class. Another reason for CenterNet to be under this classification

is that CenterNet is build on Hourglass104 [21] as a backbone, which means there

are 104 convolutional layers, which is considered a heavy backbone.

• Faster R-CNN Inception ResNet V2 (640x640)

It is Faster R-CNN with the Inception [31] family backbone, it predict the objects

as points with 640x640 image scale. The mean Average Precision (mAP) for this

detector is 37.7 .

• Faster R-CNN Inception ResNet V2 (1024x1024)

This method is similar to the once mentioned before but the image scale. It predicts

11

with mean Average Precision higher than the previous method with 38.7 due to the

image resolution that is 1024x1024.

• Mask R-CNN Inception ResNet V2:

It is an object detection model trained on COCO dataset as all the other methods

mentioned in this section. It is based on Mask R-CNN [11] architecture with In-

ception ResNetV2 [31] as a backbone. Due to the behavior of Mask R-CNN that

generate high quality mask instance for each object, the mAP is higher by 39.0.

12

Chapter 3 Methodology

This thesis is conducted based on the Object Detection models in TensorFlow hub

machine learning library. This is an original work inspired firstly by the decomposable

approach [38] mainly and all the papers that have been mentioned in the related work

section 1.2.

3.1 Materials

In this research it has been used articles, books and ML libraries, Python language

for the simulation part and matplotlib [16] for visualization.

3.2 Tools

In the whole thesis, Python [34] has been used as one of the most used language in

the field of Machine Learning and data science. Beside python the following tools has

been also used :

• TensorFlow Hub :

In the first step of the experiment, TensorFlow [2] Hub was used to the Object

13

Detection models. It is an open source library for large scale of Machine Learning

environment. While, Tensorflow Hub is a repository with trained Object detection

models. We have used it to run inference on ten models that was described in 2.1.

Figure 3.1: TensorFlow Hub.

• Resources locally :

For running the inference locally we used Anaconda3 [1],python distribution plat-

form for data and machine learning processing. Locally, we performed inference

on Intel(R) Core(TM) i5-8365U with frequency of 1.60GHz as (CPUloc). On the

GPU we have GeForce MX110 with memory of 2048MiB as (GPUloc). Figure 3.2

shows the properties of the available resources locally.

Figure 3.2: Resources locally characteristics.

• Resources offloading :

14

For remote offloading, Google Colab [5] has been used, it is an interactive jupyter

notebook that provide free access to the cloudGPUs andCPUs. We performed infer-

ence on Intel(R) Xeon(R) CPU@2.20GHz as (CPUoff) and Tesla T4 as (GPUoff).

Figure 3.3 shows the properties of the computing resources remotely we used to per-

form the inference.

Figure 3.3: Resources remotely characteristics.

3.3 Methods

In the following section we describes the steps to conduct our experiment:

3.3.1 Object detection inference

We performed Object Detection inference on ten models according to the classifica-

tion in section 2.1. Three of those models are under one stage light detectors where the

accuracy ranges from 20 to 30. Also, we selected three more models as one stage heavy

detector with the mean Average Precision ranges from 30 to 35. Finally, the last four

models are two stage detectors where their mAP between 35 and 40. Table 3.1 shows the

15

ten object detection models.

According to the categories of object detectors that was explained in 2.1, the three

configurations used in this work named as Configuration1 (C1) that is the One stage light

detectors, Configuration2 (C2) is the One stage heavy detectors and lastly Configuration3

(C3) which is the Two stage detectors.

Configuration Model Lci
(CPUloc)

Lci
(GPUloc)

Lci
(CPUoff)

Lci
(GPUoff)

C1 Faster R-CNN ResNet101 V1 640x640 14.21 - 13.63 10.33
C1 SSD MobileNet v2 320x320 5.57 9.40 8.55 8.04
C1 SSD MobileNet V1 FPN 640x640 6.58 10.91 11.20 8.82
C2 Faster R-CNN ResNet50 V1 1024x1024 7.515 - 15.23 10.40
C2 EfficientDet D0 512x512 6.88 11.16 10.54 10.01
C2 Faster R-CNN ResNet50 V1 640x640 7.386 - 11.69 11.46
C3 CenterNet HourGlass104 Keypoints 512x512 7.32 23.01 17.16 9.79
C3 Faster R-CNN Inception ResNet V2 640x640 15.583 - 38.88 15.19
C3 Faster R-CNN Inception ResNet V2 1024x1024 16.82 - 46.81 16.89
C3 Mask R-CNN Inception ResNet V2 1024x1024 32.84 - 69.35 20.87

Table 3.1: Object detection models

3.3.2 Model selection

After performing object detection inference on the models that were mentioned in

section 2.1, in this step we have selected one model from each category Based on the

lowest latency and highest accuracy. Table 3.2 shows the selected three models that will

be used in the next performance evaluation and simulations. Each of which is named as

Configuration1 (C1), Configuration2 (C2), Configuration3 (C3) as one stage light, one-

stage heavy and two stage detector, respectively. We selected those three models because

:

1. Our purpose in this thesis to build a framework with highest accuracy and lowest

latency, Therefore the selected models are the best between other in the same cate-

gory.

16

2. Although, their image scale is low, they predict well with high accuracy comparing

to others as we can see in Table 3.3.

3. Another reason is that we were able to run inference of the three of them on our

limited resources locally. As we can see in Table 3.1 not all of them we were able

to run them on the edge GPU, and the last represents the available resources locally

in our work.

Configuration Model Lci
(CPUloc)

Lci
(GPUloc)

Lci
(CPUoff)

Lci
(GPUoff)

C1 SSD MobileNet v2 320x320 5.57 9.40 8.55 8.04
C2 EfficientDet D0 512x512 6.88 11.16 10.54 10.01
C3 CenterNet HourGlass104 Keypoints 512x512 7.32 23.01 17.16 9.79

Table 3.2: Selected Object detection models

Configuration Model Image scale mAP

C1 SSD MobileNet v2 320x320 20.2
C2 EfficientDet D0 512x512 33.6
C3 CenterNet HourGlass104 Keypoints 512x512 40.0

Table 3.3: Selected OD models with mean Average Precision and image scale

3.3.3 Evaluation metrics

In this section, we present the metrics that have been used to evaluate the proposed

framework. For the accuracy of the object detection methods, mean Average precision

(mAP) [3] has been used to measure the accuracy of the detector. Alongside with it,

the Intersection over Union(IoU) [27] for the precision of the bounding boxes. Also, the

latency of the each model has been taken into consideration as it is explained in the latency

minimization problem in section 4.1. Moreover, the total cost for the system has been

measured and evaluated in section 4.2.

17

In the following we list the metrics that have been used in this work to evaluate the

proposed framework:

• True Positive (TP):

Is the correct detection for the ground truth bounding box.

• False Negative (FN):

It is undetected ground truth bounding box.

• True Negative (TN):

They are instances for given class and they are correctly classified negative.

• False Positive (FP):

They are instances incorrectly classified or misplacing for the predicted bounding

box comparing to the ground truth.

• Precision:

Is the ratio between the true positive instances and the predicted result(True Positive

and False Positive), also defined as following:

Precision =
TP

TP + FP
(3.1)

• Recall:

Is the True Positive predicted instances over the actual result(True Positive and False

negative) or as:

Recall =
TP

TP + FN
(3.2)

18

• mean Average Precision (mAP)

Figure 3.4 shows the area under the Precision-Recall curve, measured as follow:

mAP =
1

n

n∑
i=1

APi (3.3)

Figure 3.4: Example of mean Average Precision.

• Intersection over Union (IoU)

It is the ratio between the Ground truth bounding box and the predicted bounding

boxes as it shows in Figure 3.5, it is also defined as following:

IoU =
Bp ∩Bgt

Bp ∪ Bgt

(3.4)

• Accuracy:

It is the summation of the correct prediction and the True Negative to the Total, also

defined as follow:

19

Figure 3.5: Example of ground truth bounding box and the predicted one.

Accuracy =
TP + TN

Total
(3.5)

• Total latency (Tl):

Is the total minimum latencies for all the cameras in the system that is defined as

follow:

Tl =
N∑
i=1

Lci (3.6)

More on that in section 4.1

• Total cost (Costall−Ci
):

Finally the total minimum cost for the camera surveillance system, it is calculated

as follow:

20

Costall−Ci
=

Nci∑
i=1

CostCi
= 2Nci (3.7)

More details in subsection 4.2.4.

21

22

Chapter 4 System model

In this chapter, there are two main sections that are related to the system model. The

first part is the latencyminimization problemwhile the second part is the costminimization

problem for general camera surveillance system.

Before going to the next section , Table 4.1 shows the system notation and their

description that have been used for the latency optimization problem.

Table 4.1: The system notations and description.

Notation Description
N Number of cameras for the whole system.

i = {1, 2, 3}
N = Nc1 +Nc2 +Nc3

Nc1 Number of cameras under configuration 1.
Nc2 Number of cameras under configuration 2.
Nc3 Number of cameras under configuration 3.
C1 Configuration 1: One stage light object detection model
C2 Configuration 2: One stage heavy object detection model
C3 Configuration 3: Two stage object detection model

Lci−e The latency of configuration i on the edge.
Lci−cl The latency of configuration i on the cloud.

Tl−e, Tl−cl Total latency on the edge and cloud respectively
Lci The minimum latency between edge and cloud for configuration i
Tl The total minimum latency between edge and cloud

mAP mean Average Precision.
Dci Computing decision for configuration i.
TR Total resources.
Umax Maximum utilization.
Rav−e Available resources at the edge.
Rav−cl Available resources at the cloud.

23

4.1 Latency optimization problem

In the beginning of the optimizing problem, we consider minimizing the total latency

for all the configurations in the system. The configurations that are considered in this

section are the three selected models in Table 3.2. Therefore, latency minimizing problem

is applied on limited scale system where the number of cameras are equal to the number

of configurations and the last is equal to three.

4.1.1 Computing decision parameters

The computing decision (Dci) for each configuration task is done either locally on the

edge or to be offloaded remotely to the cloud server. The decision depends on the system

parameters such as the total minimum latency (Tl) and the total available resources (TR)

of each node.

The decision parameters are a vector that represent the characteristics of the system

environment. they are as follow:

1. The latency on the edge

The latency on the Edge for Configurationi is calculated as multiplying the num-

ber or cameras under Configurationi by the latency of that configuration on the

Edge.

Lci−e = NciLci−e (4.1)

2. The latency on the cloud

24

The latency on the Cloud forConfigurationi is calculated as multiplying the num-

ber or cameras under Configurationi by the latency of that configuration on the

Cloud.

Lci−cl = NciLci−cl (4.2)

3. Total latency on the edge

The total latency for all the configurations at the edge (Tl−e) expressed as the sum-

mation of all the latencies of all the configurations on the edge.

Tl−e =
3∑

i=1

Lci−e (4.3)

4. Total latency on the cloud

The total latency on the cloud (Tl−cl) is the sum of computing all the configuration

on the cloud.

Tl−cl =
3∑

i=1

Lci−cl (4.4)

5. The minimum total latency

Since the total delay on the edge or the cloud is not always the minimum total la-

tency, it was necessary to compute another parameter which is the minimum la-

tency (Lci) that takes the minimum latency for each configuration between edge

and cloud.

Lci = min(Lci−e, Lci−cl) (4.5)

And thus, we have the minimum total latency as

25

Tl =
3∑

i=1

Lci (4.6)

6. Maximum utilization of each configuration

The maximum utilization of each configuration (Umax−Ci
) is one of the system

parameters that is shown in Figure 4.1. 34.8 % represent the maximum resource

utilization for Configuration1 and 46.9% for Configuration2. And this is corre-

spond to the possibility of computing configuration 1 and 2 on the edge because they

utilize less than the total available resources on the edge. while forConfiguration3

must be computed on the cloud. By doing so,Configuration3 will not need to wait

for configuration 1 and 2 to be done and results in high latency.

Figure 4.1: Decision parameters.

7. Total available resources

The total available resources in the system expressed as the summation of the avail-

able resources on the edge and the cloud in this case.

TR = Rav−e +Rav−cl (4.7)

8. The available resources on the edge

The available resources on the edge (Rav−e) in our system is able to allocate only

configuration 1 and 2 or configuration 3 but the solution that result in lower latency

for all the configurations is to allocate configuration 1 and 2 on the edge and 3 on

26

the cloud according to the following equation:

Rav−e = 100− (Umax−c1 + Umax−c2) (4.8)

9. The available resources on the cloud

Since, the remaining available resources on the edge is 18.3%which is not sufficient

enough to execute configuration 3 on, as a result it will be offload to the cloud.

Rav−cl = 100− (Umax−c3) (4.9)

4.1.2 Problem formulation

The objective function is to minimize the total latency of all the configurations in the

system.The minimization problem demonstrated as follow:

Problem: min(Tl) (4.10a)

s.t. C1 : Dci ∈ {0, 1} (4.10b)

C2 : 0 ≤ Lci ≤ Tl (4.10c)

C3 :
3∑

i=1

Lci ≤ Tl (4.10d)

C4 : 0 ≤ Umax−Ci
≤ TR (4.10e)

C5 :
3∑

i=1

Umax−Ci
≤ TR (4.10f)

In the optimization problem, there are constraints are related to the latency of the

27

configurations and others related to the available resources in the system.

The first constraint (C1)is the computing decision (Dc) where each task must be pro-

cessed locally (Dc = 0) or offloaded to the cloud (Dc = 1). The second constraint (C2)

guarantees that the latency of any configuration must be between 0 and the total latency

for all the configurations in the system. The third constraint (C3) makes sure that the total

latency for all the configurations is less or equal to the minimum total latency.

Moreover, other constraints are related to the available resources in the system such

as CPUs and GPUs. C3 and C4 assure that the maximum utilization for each configuration

and the total maximum utilization for all the configurations must be less or equal than the

total available resources in the system.

4.1.3 Optimal solution characteristics

According to the optimization problem, each configuration has two choices that is

either to process on the edge or to be offloaded to the cloud. As a result we can get eight

combination of solutions showed in Table 4.2.

After solving the optimization problem, we can get the lowest minimum latency

which is 19.77 which is coming from processing all the configurations on the edge but

this is not possible solution because constraint five (C5) will not be fulfilled. At this point,

we need to look for another minimum total latency that is 22.24 which is the result of two

solutions. The first is processing Configuration1 on the cloud and Configuration2,

Configuration3 on the edge. The second minimum latency that shares the same value

is from processing Configuration1 ,Configuration2 on the edge and Configuration3

on the cloud.

28

AllocatingConfiguration2 andConfiguration3 locally on the edge does not satis-

fies constraint5 because it will exceed the total available resources on the edge. Therefore ,

the only possibleminimum total latency is processingConfiguration1 andConfiguration2

on the edge and offloading Configuration3 to the cloud as its highlighted in Table 4.2 .

Edge Cloud Tl

C1 C2 + C3 25.37
C2 C1 + C3 24.71
C3 C1 + C2 25.87

C2 + C3 C1 22.24
C1 + C3 C2 22.9
C1 + C2 C3 22.24

C1 + C2 + C3 − 19.77
− C1 + C2 + C3 27.84

Table 4.2: Configurations offloading solutions.

4.2 Cost optimization

To extend our experiment on large scale system, we consider a system with N con-

figurations and N cameras.

4.2.1 System model for cost minimization

In general model for camera surveillance system, we consider a number of camera

web N = {Cam1, Cam2,, Camn}. Each group of cameras are set under one configu-

ration Ci = {C1, C2,, Cn}

Each configuration is an Object Detection model that is different from the other in

terms of accuracy andwhether its one or two stage, heavy or light detector. Those detectors

are chosen according to the operating system requirements priorities. Object Detection

task for each web camera can choose to be processed locally or to be offloaded.

29

4.2.2 Decision model

The processing decision for each task must be done locally or to be offload to the

cloud as it was explained in subsection 4.1.1.The decision parameter Dci ∈ {0, 1} indi-

cates whether to process locally whereDci = 0, otherwiseDci = 1 where the decision is

to offload the task.

The offloading decision is taken according to the overall minimum cost and the avail-

able resources in the system.

4.2.3 Computation model

The computation decision for each configuration is performed either locally or by

offloading remotely. Thus, we denote CostCi,Cami
, ∀i ∈ [0, n] as the cost to process each

task. We calculate the cost of each decision as the following:

1. Computing locally

There are some parameters to be considered when processing locally such as the

latency of processing the task itself locally (Lci−loc) and the power consumption

for the device (ρ). Therefore, the cost function for processing locally calculated as

Costloc−Ci,Cami
= ρ+ Lci−loc (4.11)

2. Offloading

The second decision in our problem is to offload the task, by doing so we need to

take into consideration the following parameters:

30

• Transmission data latency:

We denoteLtran the time takes to transfer the data to the cloud and back (prop-

agation delay).

• Processing latency:

The delay produced by the object detectionmodel for each task to be processed

as Lci−off .

As a result we can calculate the cost of offloading the task as follow

Costoff−Ci,Cami
= Ltran + Lci−off (4.12)

4.2.4 Cost minimization problem

Before starting the cost minimization problem, Table 4.3 describes the notations and

its description that have been used for the cost optimization problem for general case.

Parameter Description
Ci Configuration i.
N The total number of cameras in the system.
Nci Total number of configurations in the system.

CostCi,Cami
The cost of configuration i or camera i between to process

locally or to be offloaded.
Lci−loc,off Latency to process configuration i locally or by offloading.
DCi,Cami

The computation decision for each configuration i or camera i
ρ Power consumption

Costloc−Ci,Cami
Cost to process configuration i or camera i locally

Ltran Data transmission latency
TR The total available resources (Locally and remotely)

Umax−Ci
Maximum utilization of configuration i.

Costoff−Ci,Cami
The cost of configuration i or camera i to offload the task

Costall−Ci,Cami
Minimum total cost for all the configurations or

the cameras in the system .
Table 4.3: Parameters and description for general case.

31

Since our target is to minimize the overall cost for the system, we need to consider

two scenarios:

1. The number of cameras are equal to the number of configurations:

In this scenario, to get the overall minimum cost for the system we need to enu-

merate through all the possible solutions for each configuration. As a result each

configuration will have two choices , either to process locally or to offload

their task remotely. So the overall cost for all the configurations in the system

(Costall−Ci
) is expressed as follow

Costall−Ci
=

Nci∑
i=1

CostCi
= 2Nci (4.13)

2. The number of cameras in the system are bigger than the number of configurations

in the system.

For this scenario where the number of cameras are more than the number of con-

figuration means there are more than one camera under each configuration. To find

the overall minimum cost we need to go through all the solutions for each camera

in this case, as a result each camera will have the choice to process their task locally

or remotely. As a result, the overall cost for this scenario is expressed in 4.14.

After that we can select the minimum possible solution that minimize the overall

cost and fulfil all the constraints in the optimization problem 4.16

Costall−Cami
=

N∑
i=1

CostCami
= 2N (4.14)

32

4.2.5 Problem formulation

The main objective function is to maximize the mean Average Precision (mAP) and

minimize the cost for each camera. the objective function is expressed as follow:

Max(αmAP − βCost) (4.15)

Where α and β are scaling coefficients.Therefore they are set according to each op-

erating system requirement.

Since the mAP is set beforehand for each camera, thus the optimization problem is

to minimize the overall cost for all the configurations or all the cameras in the system.The

minimization problem demonstrated as follow

Problem: min(Costall−Ci,Cami
) (4.16a)

s.t. C1 : DCi,Cami
∈ {0, 1} (4.16b)

C2 : 0 ≤ CostCi,Cami
≤ Costall−Ci,Cami

(4.16c)

C3 :
N∑
i=1

CostCi,Cami
≤ Costall−Ci,Cami

(4.16d)

C4 : 0 ≤ Umax−Ci
≤ TR (4.16e)

C5 :
N∑
i=1

Umax−Ci
≤ TR (4.16f)

In the optimization problem, we need to select the minimum overall cost for all the

configurations in the system by going through all the combination of solutions in 4.13 and

33

choose the combination that fulfill all the constraints in our problem 4.16.

The first constraint (C1) in the optimization problem ensure that the computing de-

cision must be either locally when (Dc = 0) or remotely when (Dc = 1). The second (C2)

and the third constraint (C3) guarantee that the cost for each configuration or camera and

the sum of all costs in system must be less or equal than the overall minimum cost in the

system. And finally Constraints C4 and C5 make sure that the maximum and the summa-

tion of the maximum utilization of each configuration is less or equal to the available total

resources in the system.

34

Chapter 5 Result and evaluation

To verify and evaluate our proposed framework, this chapter will present the simu-

lation result according to Algorithm 1.

Algorithm 1 An Algorithm Describing Multi Configuration System
Require:
1: Ci ← {C1, C2,, Cn}
2: N ← {Cam1, Cam2,, Camn}
3: TR ← {Rloc, Roff}
4: Umax−Ci

← {Umax−c1, ..., Umax−cn}
Ensure:
5: The best computation decision (DCi,Cami

)
6: The optimal minimum total cost for the system (Costall−Ci,Cami

)
7: if N = Nci then
8: for i← 1 to Nci do
9: Calculate Costloc−Ci

by equation 4.11
10: Calculate Costoff−Ci

by equation 4.12
11: end for
12: Calculate Costall−Ci

by equation 4.13.
13: Choose the minimum overall cost (Costall−Ci

) that fulfill all the constraints in the
optimization problem 4.16.

14: return(DCi
, Costall−Ci

)
15: else if N > Nci then
16: for i← 1 to N do
17: Calculate Costloc−Cami

by equation 4.11
18: Calculate Costoff−Cami

by equation 4.12
19: end for
20: Calculate Costall−Cami

by equation 4.14.
21: Choose the minimum overall cost (Costall−Cami

) that fulfill all the constraints in
the optimization problem 4.16.

22: return(DCami
, Costall−Cami

)
23: end if

In our simulation, we used some parameters such the transmission delay and power

35

consumption that is chosen from their ranges in Table 5.1. Moreover, CPU and GPU are

used as local resources and remote resources. While, other parameters are given with in

each scenario.

Parameter Value
N {3, 4}

ρ, Ltran [0, 1]
CPUloc 1.60GHz
GPUloc GeForce MX110, 2048MiB
CPUoff 2.20GHz, 39424 KB
GPUoff Tesla T4
Table 5.1: Simulation parameters setting.

The simulation is conducted in two main scenarios:

5.1 Scenario1: The number of configurations is equal to

the number of cameras

Figure 5.1 shows scenario1 from the proposed multi configuration framework, we

consider the number of configurations is equal to the number of cameras as 3 where Ci =

{C1 = SSD,C2 = EfficientDet, C3 = CenterNet} which is equal to the number of

cameras N = {Cam1, Cam2, Cam3}. Those configurations are object detection models

are selected from ten other models that are considered in this research. The reason of

choosing those models is mentioned in chapter 3.

The processing latency for each configuration locally and by offloading for each

model has been recorded in Table 3.1 in subsection 3.3.1. The maximum utilization

for those methods are Umax−Ci
= {34.8, 46.9, 96.7} for each configuration respectively.

The power consumption for each device is randomly chosen between 0 and 1 as ρ =

{0.70, 0.80, 0.98} while the transmission latency as Ltran = {0.16, 0.23, 0.4}. In addi-

36

Figure 5.1: Multi configuration framework (scenario1).

tion, Table 5.1 contains the total available resources to process the tasks locally or by

offloading .

We set the given information in Table 5.2 and after that we can follow algorithm 1 to

calculate the cost for each configuration in this scenario to get Table 5.3.

N Config. Lci
(CPUloc)

Lci
(GPUloc)

Lci
(CPUoff)

Lci
(GPUoff)

ρ Ltrans

Cam1 C1 5.57 9.40 8.55 8.04 0.70 0.16
Cam2 C2 6.88 11.16 10.54 10.01 0.80 0.23
Cam3 C3 7.32 23.01 17.16 9.79 0.97 0.04

Table 5.2: Object detection configurations for scenario1

N CostCi

(CPUloc)
CostCi

(GPUloc)
CostCi

(CPUoff)
CostCi

(GPUoff)

Cam1 6.27 10.10 8.71 8.20
Cam2 7.68 11.96 10.77 10.24
Cam3 8.29 23.98 17.20 9.83
Table 5.3: The cost for each configuration in scenario1

After that we calculate the overall cost (Costall−Ci
) that has eight solutions, they

are set in Table 5.4 with all the combinations of solution. But we need to select only the

minimum total cost that fulfill all the optimization problem constraints.

37

As a result we get only the highlighted solution in Table 5.4 where is the total mini-

mum cost and possible solution is 23.44 that is coming from processing Configuration1

and Configuration2 locally and Configuration3 remotely.

Locally (Dci = 0) Offloading (Dci = 1) Costall−Ci

C1 C2 + C3 26.78
C2 C1 + C3 26.53
C3 C1 + C2 27.92

C2 + C3 C1 24.58
C1 + C3 C2 24.83
C1 + C2 C3 23.44

C1 + C2 + C3 − 21.49
− C1 + C2 + C3 29.87

Table 5.4: The total cost solutions for scenario1.

5.2 Scenario2: Each group of cameras under one config-

uration

The second scenario in this research is setting group of cameras under one configura-

tion. We consider having four cameras and three configurations as it shows in Figure 5.2.

The first, second and third are set on configuration 1, 2 and 3, respectively. The forth

camera is set under each configuration every time in order to calculate the overall cost for

the system under each case.

5.2.1 Case1: Cam1 and Cam4 are set to configuration one (C1)

The first case has different scenario where each group of cameras is set to one con-

figuration. By assuming that Ci = {C1 = SSD,C2 = Efficient, C3 = CenterNet}

and the number of cameras are four N = {Cam1, Cam2, Cam3, Cam4}. Where Cam1

and Cam4 are set to configuration one (C1).

38

Figure 5.2: Multi configuration framework: Scenario2-Case1.

The maximum utilization for those configurations in this scenario are the same that

set in the first scenario asUmax−Ci
= {34.8, 46.9, 96.7, 34.8} for each configuration. Also,

the available resources considered in this case are all set in Table 5.1.

After having all the parameters we set them in Table 5.5.

N Config. Lci
(CPUloc)

Lci
(GPUloc)

Lci
(CPUoff)

Lci
(GPUoff)

ρ Ltrans

Cam1 C1 5.57 9.40 8.55 8.04 0.70 0.16
Cam2 C2 6.88 11.16 10.54 10.01 0.80 0.23
Cam3 C3 7.32 23.01 17.16 9.79 0.97 0.04
Cam4 C1 5.57 9.40 8.55 8.04 0.95 0.89

Table 5.5: Object detection configurations for scenario2 - Case1

Based on the inference delay for each configuration, power consumption and trans-

mission delay in Table 5.5, we computed the cost not for each configuration but for each

camera because the transmission delay and power consumption for the cameras that under

one configuration which are Cam1 and Cam4 are different from each other. Therefore,

the cost of each camera differ from one camera to another. By doing so, we get the cost

for each camera recorded in Table 5.6.

After having the cost for each camera, we need to compute the total minimum cost

39

N CostCami

(CPUloc)
CostCami

(GPUloc)
CostCami

(CPUoff)
CostCami

(GPUoff)

Cam1 6.27 10.10 8.71 8.20
Cam2 7.68 11.96 10.77 10.24
Cam3 8.29 23.98 17.20 9.83
Cam4 6.52 10.35 9.44 8.93

Table 5.6: The cost for each camera in the scenario2 - Case1

for the cameras in the system by going through all the solutions that are 16 combinations

of all the cameras, that are set in Table 5.7.

Locally (DCami = 0) Offloading (DCami = 1) Costall−Cami

Cam1 Cam2 + Cam3 + Cam4 42.64
Cam2 Cam1 + Cam3 + Cam4 35.66
Cam3 Cam1 + Cam2 + Cam4 36.68
Cam4 Cam1 + Cam2 + Cam3 35.83

Cam2 + Cam3 + Cam4 Cam1 38.80
Cam1 + Cam3 + Cam4 Cam2 38.98
Cam1 + Cam2 + Cam4 Cam3 37.96
Cam1 + Cam2 + Cam3 Cam4 39.28

Cam1 + Cam2 Cam3 + Cam4 33.22
Cam1 + Cam3 Cam2 + Cam4 38.07
Cam2 + Cam3 Cam1 + Cam4 37.38
Cam1 + Cam4 Cam2 + Cam3 33.39

Cam1 + Cam2 + Cam3 +
Cam4

- 45.16

- Cam1 + Cam2 + Cam3 +
Cam4

48.07

Cam3 + Cam4 Cam1 + Cam2 37.59
Cam2 + Cam4 Cam1 + Cam3 36.57

Table 5.7: The total cost solutions for scenario2 - Case1

Table 5.7 shows all the solutions for the overall cost. Some of those combinations

are not possible such as 45.16 and 48.07 as an overall cost for all the cameras because

the total available resources locally or remotely are not sufficient enough to process all the

cameras without waiting time. Therefore, they result in high total cost and not possible

solution.

The possible and minimum total cost for the cameras in the system where the total

40

cost is 33.22which is the result of processing the first and the second cameras locally

and the third and forth remotely.

5.2.2 Case2 : Cam2 and Cam4 are set to configuration two (C2)

In this case, the forth and the second cameras are set to configuration2, the latency

for each configuration are set in Table 5.8.

N Config. Lci
(CPUloc)

Lci
(GPUloc)

Lci
(CPUoff)

Lci
(GPUoff)

ρ Ltrans

Cam1 C1 5.57 9.40 8.55 8.04 0.70 0.16
Cam2 C2 6.88 11.16 10.54 10.01 0.80 0.23
Cam3 C3 7.32 23.01 17.16 9.79 0.97 0.04
Cam4 C2 6.88 11.16 10.54 10.01 0.95 0.89

Table 5.8: Object detection configurations for scenario2 - Case2

After having all the parameters in Table 5.8 for each camera, we calculated the cost

for each of them and we set them in Table 5.9.

N CostCami

(CPUloc)
CostCami

(GPUloc)
CostCami

(CPUoff)
CostCami

(GPUoff)

Cam1 6.27 10.10 8.71 8.20
Cam2 7.68 11.96 10.77 10.24
Cam3 8.29 23.98 17.20 9.83
Cam4 7.83 12.11 11.43 10.90

Table 5.9: The cost for each camera in the scenario2 - Case2

Table 5.10 with the total cost shows the highlighted lowest possible solution is 35.44

where First, second and forth cameras are processed locally and the third is of-

floaded. While, two other not possible solutions between the 16 combinations are 46.47

and 64.27 from processing all the cameras locally or offloading remotely.

41

Locally (DCami
= 0) Offloading (DCami

= 1) Costall−Cami

Cam1 Cam2 + Cam3 + Cam4 38.30
Cam2 Cam1 + Cam3 + Cam4 37.65
Cam3 Cam1 + Cam2 + Cam4 38.14
Cam4 Cam1 + Cam2 + Cam3 37.14

Cam2 + Cam3 + Cam4 Cam1 40.56
Cam1 + Cam3 + Cam4 Cam2 40.74
Cam1 + Cam2 + Cam4 Cam3 35.44
Cam1 + Cam2 + Cam3 Cam4 41.25

Cam1 + Cam2 Cam3 + Cam4 39.04
Cam1 + Cam3 Cam2 + Cam4 40.06
Cam2 + Cam3 Cam1 + Cam4 39.86
Cam1 + Cam4 Cam2 + Cam3 38.53

Cam1 + Cam2 + Cam3 +
Cam4

- 46.47

- Cam1 + Cam2 + Cam3 +
Cam4

64.27

Cam3 + Cam4 Cam1 + Cam2 39.35
Cam2 + Cam4 Cam1 + Cam3 38.33

Table 5.10: The total cost solutions for scenario2- Case2

5.2.3 Case3: Cam3 and Cam4 are set to configuration three (C3)

In the third case of scenario2, camera 4 and 3 are set toConfiguration3. While other

cameras are set similar to all the other cases as camera 1 and 2 under Configuration1

andConfiguration2 ,respectively. Table 5.11 shows the latency, power consumption and

transmission delay for each camera.

N Config. Lci
(CPUloc)

Lci
(GPUloc)

Lci
(CPUoff)

Lci
(GPUoff)

ρ Ltrans

Cam1 C1 5.57 9.40 8.55 8.04 0.70 0.16
Cam2 C2 6.88 11.16 10.54 10.01 0.80 0.23
Cam3 C3 7.32 23.01 17.16 9.79 0.97 0.04
Cam4 C3 7.32 23.01 17.16 9.79 0.95 0.89

Table 5.11: Object detection configurations for scenario2- Case3

The cost of each camera has been calculated and recorded in Table 5.12. After that,

we are able to compute the total cost for all the cameras in this case.

42

Table 5.13 shows all the combinations of solutions for all the cameras but not all

of them are possible. Some solutions produce high latency when the available resources

locally or remotely are not enough such as the first and the second rowswhere the total cost

is 55.69 and 52.98, respectively. These combinations are not possible because processing

camera 1 or 2 locally and the rest of cameras by offloading means one of the cameras

needs to wait until the other finishes.

N CostCami

(CPUloc)
CostCami

(GPUloc)
CostCami

(CPUoff)
CostCami

(GPUoff)

Cam1 6.27 10.10 8.71 8.20
Cam2 7.68 11.96 10.77 10.24
Cam3 8.29 23.98 17.20 9.83
Cam4 8.27 23.96 18.05 10.68

Table 5.12: The cost for each camera in the scenario2 - Case3

Other two not possible solutions found where the total cost for the cameras is 44.89

and 49.82 from processing all the cameras either locally or by offloading their tasks, re-

spectively.

The minimum overall cost is found as 37.58which is the result of processing camera

4 locally and camera 1,2 and 3 remotely as its highlighted in Table 5.13.

5.3 Performance evaluation

In this section, we evaluate and compare the three cases of scenario2 and state the

differences between uni and multi configuration frameworks in terms of accuracy and

overall cost for the system.

43

Locally (DCami
= 0) Offloading (DCami

= 1) Costall−Cami

Cam1 Cam2 + Cam3 + Cam4 55.69
Cam2 Cam1 + Cam3 + Cam4 52.98
Cam3 Cam1 + Cam2 + Cam4 38.45
Cam4 Cam1 + Cam2 + Cam3 37.58

Cam2 + Cam3 + Cam4 Cam1 56.42
Cam1 + Cam3 + Cam4 Cam2 62.69
Cam1 + Cam2 + Cam4 Cam3 40.16
Cam1 + Cam2 + Cam3 Cam4 41.03

Cam1 + Cam2 Cam3 + Cam4 45.66
Cam1 + Cam3 Cam2 + Cam4 39.84
Cam2 + Cam3 Cam1 + Cam4 39.64
Cam1 + Cam4 Cam2 + Cam3 38.97

Cam1 + Cam2 + Cam3 +
Cam4

- 44.89

- Cam1 + Cam2 + Cam3 +
Cam4

49.82

Cam3 + Cam4 Cam1 + Cam2 51.20
Cam2 + Cam4 Cam1 + Cam3 38.77

Table 5.13: The total cost solutions for scenario2 - Case3

5.3.1 Overall cost comparison of the three cases of scenario2.

Figure 5.3 shows the comparison in the total cost for the three cases in scenario2 that

have been explained in section 5.2.

Only in Figure 5.3 and Figure 5.5 theC1, C2, C3 andC4 representCam1, Cam2, Cam3

and Cam4, respectively. The green dashed line shows the total cost of each solution in

Scenario2-Case1 where we have four cameras and three configurations. The first and the

forth are set to Configuration1, while the second and third are set to Configuration2

and Configuration3.

The solid purple line represent Case2 from scenario2 where the the second and the

forth cameras are set toConfiguration2, while the first and third are set toConfiguration2

and Configuration3 ,respectively.

44

Finally, the red solid line demonstrates Case3 from scenario2. In this case we have

the third and the forth cameras are set to Configuration3, while the first and second are

set to Configuration1 and Configuration2.

Figure 5.3: The total cost performance for multi configuration framework (scenario2).

In Figure 5.3 we can see the total cost increases when we set the forth camera starting

withConfiguration1 toConfiguration3 , but also we notice in some points of solutions

the curve has been increased sharply due to the computing decision for all the cameras

is locally or remotely. Some solutions are not possible due to the resource constraints

therefore there is high total cost shown in the high points.

Comparing Figure 5.3 Case3 and Configuration3 from Figure 5.5, we can see that

the optimal minimum cost for Case3 is 37.58 that belong to the multi configuration frame-

work (proposed) but for Configuration3 that belong to the uni configuration frame-

work(baseline) is 55.45, as a result we see a huge difference between the two frameworks

in terms of total minimum cost. More on the differences between each case and configu-

ration is explained in subsection 5.3.2.

45

5.3.2 Overall cost comparison of multi and uni configuration system

For comparative purpose, We draw Figure 5.4 to show a uni based configuration

framework (baseline). In this framework, all the cameras in the system are set under one

configuration. also in this specific figure we see that all the three cameras are set under

configuration1 where the accuracy of the configuration is 20.

Figure 5.4: Uni configuration framework (baseline)

In this section, We consider a uni configuration system where firstly, all the cameras

are set underConfiguration1, Secondly onConfiguration2 and lastlyConfiguration3.

Comparing Figure 5.5 and Figure 5.3 in terms of the total cost for each combination

of solution.The curve in Figure 5.3 shows clearly the difference between each solution in

all the three cases of scenario2. On the other hand, Figure 5.5 is showing the steady curve

for the cost for each combination unless when the computing decision is done locally or by

offloading for all the cameras. This steady behaviour reflects the fact that those cameras

have the same configuration but different power consumption and transmission delay for

each of which.

46

Figure 5.5: The total minimum cost for each solution in Uni configuration frame-
work(baseline).

In all the possible solutions for multi configuration framework is achieving lower

total cost in two cases than the uni configuration framework total cost.

5.3.3 Performance comparison between uni (baseline) andmulti con-

figuration framework (proposed) in terms of accuracy (mAP)

and cost of each camera

In this sub section, we compare the uni and multi configuration system in terms of

the accuracy and minimum cost of each camera in the system. The comparison is done

on four cameras with different parameters such as power consumption and transmission

delay for each camera.

In figure (a), the red line represents the accuracy(mAP) formulti configuration frame-

work(proposed), while the green line indicates the accuracy(mAP) of each camera in uni

configuration framework (baseline) sequentially. In figure (b) the blue line represents the

cost of each camera in the Multi configuration framework(proposed), while the purple

47

line indicates the cost of each camera in the Uni configuration framework(proposed). The

performance comparison is studied as follow:

1. Configuration1 and Case1 :

Figure 5.6 illustrates the difference between building thewhole system onConfiguration1

as a uni configuration framework and building the system on Case1 from scenario2

where the accuracy of each camera is higher. We can see the mAP for all the cam-

eras in Figure 5.6 (a) for uni configuration framework are the same as 20,therefore

the cost for each camera in Figure 5.6 (b) ranges from 6 to 9. Table 5.14 shows

clearly the differences between the mAP and Cost between the two frameworks.

N mAPUni CostUni mAPMulti CostMulti

Cam1 20 6.27 20 6.27
Cam2 20 8.27 33 7.68
Cam3 20 8.08 40 9.83
Cam4 20 6.52 20 9.44

Table 5.14: Performance comparison between the cost and accuracy(mAP) of configura-
tion1 from uni configuration framework and Case1 from multi configuration framework.

Figure 5.6: Performance comparison between Uni configuration (Baseline) build on Con-
figuration1 and Case1 from Multi configuration (Proposed) in terms (a) Accuracy (mAP)
and (b) Cost of each camera.

Formulti configuration framework, although their accuracy is higher in two cameras

which are cam2 and cam3 as 33 and 40 consecutively, the cost for those cameras are

48

slightly higher than the first and the forth cameras that are set underConfiguration1.

As a result, the difference in the total cost between those system in terms of the cost

is very small but in terms of accuracy is very high.The total cost for uni configura-

tion system is 29.14, while for the multi configuration is 33.22.

2. Configuration2 and Case2 :

The performance comparison in this case shows in Figure 5.7 (a) where all the cam-

eras in the system are set to Configuration2 with accuracy (mAP) of 33 for all

the cameras in uni configuration framework (baseline). On the other hand, we have

Case2 from scenario2 where the accuracy for two cameras are 33 and others as 20

and 40 that belongs to multi configuration framework(proposed). Table 5.15 shows

the cost and the accuracy of each camera for the two frameworks.

N mAPUni CostUni mAPMulti CostMulti

Cam1 33 7.58 20 10.10
Cam2 33 7.83 33 7.68
Cam3 33 10.24 40 7.83
Cam4 33 10.05 33 9.83

Table 5.15: Performance comparison between the cost and accuracy of uni configuration2
system and multi configuration system.

Figure 5.7: Performance comparison between Uni configuration (Baseline) build on Con-
figuration2 and Case2 from Multi configuration (Proposed) in terms (a) Accuracy (mAP)
and (b) Cost of each camera.

49

Figure 5.7 (b) shows clearly the cost of each camera in both frameworks ranges

from 7 to 10. Also, it shows that the cost of three cameras that belongs to the multi

configuration framework (proposed) is less than the the cost of the same cameras in

the uni configuration framework (baseline).

3. Configuration3 and Case3 :

It has been compared a uni configuration framework (baseline) buildwithConfiguration3

and Case3 from the multi configuration framework (proposed) in terms of (a)the

mAP and (b)the cost of camera. The mAP for all the cameras in the uni Configura-

tion is 40, while for multi Configuration framework set within the range of 20 to 40.

Table 5.16 shows the cost and the mAP of each camera for both uni and the multi

configuration framework.

N mAPUni CostUni mAPMulti CostMulti

Cam1 40 8.27 20 8.27
Cam2 40 17.32 33 8.71
Cam3 40 10.02 40 10.77
Cam4 40 19.85 40 9.83

Table 5.16: Performance comparison between the cost and accuracy of uni configuration3
system and multi configuration system.

Figure 5.8: Performance comparison between Uni configuration (Baseline) build on Con-
figuration3 and Case3 from Multi configuration (Proposed) in terms (a) Accuracy (mAP)
and (b) Cost of each camera.

50

Figure 5.8 shows the cost of the cameras in uni configuration framework in the

range of 8 to 20, while in the multi Configuration is between 8 and 10. In terms of

total cost, for the uni framework is 55.46 which is very high comparing to the our

proposed framework where the total cost is 37.58.

For better comparison we merged the two objectives (mAP and Cost) in Figure 5.9 where

the red dots represent the cameras that belongs to the proposed framework (Multi config-

uration), while the blue once belongs to the baseline framework (Uni configuration). The

figure shows the optimal and non dominant solutions are the cameras in the multi config-

uration framework (proposed) are more than the cameras that belongs to uni configuration

framework(baseline) by 75%. Also second level optimal solutions are very close to be op-

timal comparing to the baseline cameras .Finally, for the baseline framework, it is shown

that optimizing the mAP objective is worsen the other objective which is the cost,while in

the proposed framework where we can see going from Case1 to Case3, we can optimize

even the cost.Therefore, our proposed framework outperform the baseline by optimizing

both the mean Average Precision (mAP) and the cost for each camera in the system.

Figure 5.9: Performance comparison between (a) Case1, (b) Case2 and (c) Case3 in terms
of minimizing the cost and maximizing the mAP.

51

52

Chapter 6 Conclusions

6.1 Conclusions

In this thesis, in order to find a trade off between the accuracy and the latency of the

detectors in the surveillance system, we proposed a multi configuration framework (Hy-

brid). The proposed framework sets each camera or a group of cameras in the system to

a configuration that is different in accuracy and latency based on the operating system re-

quirements. Each configuration is an object detectionmethod, thesemethods are classified

as light one stage detector, heavy one stage detector and two stage detector. We outlined

the methods applied and we listed some examples of scenarios as cases.The scenarios and

the cases were important to determine and evaluate the efficiency of our proposed frame-

work. Then, we described the experiment that we have performed inference on each and

we stated the findings.

In the first phase, we performed evaluation on three cases of scenario2 where each

group of camera is set under a configuration. We performed on three cases of scenario2

where each group of cameras are set to one configuration. In this phase, for Case1 we set

the first and fourth camera on configuration1 (C1) and the second and third cameras on

configuration2 and 3,respectively. Results showed that the minimum overall cost is 33.22

as a result of processing the first and second camera locally, while for the second and third

53

remotely. After that we have Case2 where the second and the forth cameras are set under

configuration2(C2) and the first and forth cameras are set under configuration 1 and 3

consecutively. Findings showed a minimum overall cost as 35.44 where the first ,second

and forth cameras process their task locally, while the third is offloaded remotely. Finally,

Case3 where the first and forth camera are set under configuration3 while the second and

third are set under configuration2 and 3,respectively. The findings showed the lowest total

cost for this case is 37.58 as a result of processing the fourth camera locally and the first,

second and third cameras remotely.

The second phase is the performance comparison between uni and multi configura-

tion framework in terms of mean Average Precision (mAP) and total cost of the system.

Firstly, comparison between uni configuration system with all the cameras set on config-

uration1 (C1) where the accuracy is 20 and multi configuration where only two cameras

with the mAP is 20 and others are 33 and 40. The results showed the total cost is 29.14

while for multi configuration is 33.22. Secondly, Performance comparison between uni

configuration system with configuration2 (C2) where the accuracy is 33 and case2 of sce-

nario2. The findings showed the minimum cost all of uni configuration is 35.7, while for

the multi configuration is 35.44 which is lower and higher accuracy. Finally, the compar-

ison between uni configuration set on configuration3 (C3) where the accuracy is 40 and

case3 of scenario2. The total minimum cost is 55.45 for uni configuration framework and

37.58 which is much lower in multi configuration system.

To conclude, with the proposed multi configuration framework (Hybrid), we could

optimize the two objectives which are the mAP and the cost of each camera in the sys-

tem. And the last proves the initial hypothesis of finding trade-off between very impor-

tant factors of object detection in surveillance systems.In this regard, we were successful

54

in finding a framework that can balance the aforementioned factors. Further experiment

with more real-life data and more configurations will be useful in finding the best config-

uration with each camera according to the operating system requirements.

6.2 Future work

For the future work of this project, we would suggest using more configurations and

more number of cameras with also setting the requirements of each camera to test the

framework.

We also suggest using real time scenario to ensure the quality and authenticity of this

work.

55

56

References

[1] Anaconda software distribution, 2020.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.

Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), pages

265–283, 2016.

[3] S. M. Beitzel, E. C. Jensen, and O. Frieder. MAP, pages 1691–1692. Springer US,

Boston, MA, 2009.

[4] S. Bi and Y. Zhang. Computation rate maximization for wireless powered mobile-

edge computing with binary computation offloading. IEEE Transactions onWireless

Communications, 17(6):4177–4190, 2018.

[5] E. Bisong. Google Colaboratory, pages 59–64. Apress, Berkeley, CA, 2019.

[6] J. Chen, K. Li, Q. Deng, K. Li, and P. S. Yu. Distributed deep learning model for

intelligent video surveillance systems with edge computing. IEEE Transactions on

Industrial Informatics, pages 1–1, 2019.

57

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-

scale hierarchical image database. In 2009 IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255, 2009.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pas-

cal visual object classes (voc) challenge. International Journal of Computer Vision,

88(2):303–338, 2010.

[9] A. M. Ghosh and K. Grolinger. Deep learning: Edge-cloud data analytics for iot. In

2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE),

pages 1–7, 2019.

[10] Y. Gong, C. Lv, S. Cao, L. Yan, and H.Wang. Task offloading in mobile fog comput-

ing by classification and regression tree. Peer-to-Peer Networking and Applications,

2020(1):69, 2020.

[11] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. CoRR, abs/

1703.06870, 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

CoRR, abs/1512.03385, 2015.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mo-

bile vision applications. CoRR, abs/1704.04861, 2017.

[14] J. Huang, C. Samplawski, D. Ganesan, B. Marlin, and H. Kwon. Clio: enabling

automatic compilation of deep learning pipelines across iot and cloud. pages 1–12,

09 2020.

58

[15] Y. Huang, F. Wang, F. Wang, and J. Liu. Deepar: A hybrid device-edge-cloud

execution framework for mobile deep learning applications. In IEEE INFOCOM

2019 - IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pages 892–897, 2019.

[16] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007.

[17] I. Khokhlov, E. Davydenko, I. Osokin, I. Ryakin, A. Babaev, V. Litvinenko, and

R. Gorbachev. Tiny-yolo object detection supplemented with geometrical data.

CoRR, abs/2008.02170, 2020.

[18] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie. Feature

pyramid networks for object detection. CoRR, abs/1612.03144, 2016.

[19] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in

context. CoRR, abs/1405.0312, 2014.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg. SSD:

single shot multibox detector. CoRR, abs/1512.02325, 2015.

[21] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose esti-

mation. CoRR, abs/1603.06937, 2016.

[22] D. Rahbari and M. Nickray. Deep learning-based computation offloading with en-

ergy and performance optimization. EURASIP Journal onWireless Communications

and Networking, 13(1):104–122, 2020.

59

[23] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only look once:

Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[24] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR, abs/

1804.02767, 2018.

[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(6):1137–1149, 2017.

[26] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object

detection with region proposal networks. CoRR, abs/1506.01497, 2015.

[27] S. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. D. Reid, and S. Savarese. Gen-

eralized intersection over union: A metric and A loss for bounding box regression.

CoRR, abs/1902.09630, 2019.

[28] C. Samplawski, J. Huang, D. Ganesan, and B. M. Marlin. Towards objection de-

tection under iot resource constraints: Combining partitioning, slicing and compres-

sion. AIChallengeIoT ’20, page 14–20, New York, NY, USA, 2020. Association for

Computing Machinery.

[29] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Inverted residuals

and linear bottlenecks: Mobile networks for classification, detection and segmenta-

tion. CoRR, abs/1801.04381, 2018.

[30] K. Simonyan and A. Zissermanl. Very deep convolutional networks for large-scale

image recognition. 2014.

60

[31] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the im-

pact of residual connections on learning. CoRR, abs/1602.07261, 2016.

[32] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detection.

CoRR, abs/1911.09070, 2019.

[33] S. Tuli, N. Basumatary, and R. Buyya. Edgelens: Deep learning based ob-

ject detection in integrated iot, fog and cloud computing environments. In 2019

4th International Conference on Information Systems and Computer Networks

(ISCON), pages 496–502, 2019.

[34] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts

Valley, CA, 2009.

[35] B. Yang, X. Cao, J. Bassey, X. Li, T. Kroecker, and L. Qian. Computation offloading

in multi-access edge computing networks: A multi-task learning approach. In ICC

2019 - 2019 IEEE International Conference on Communications (ICC), pages 1–6,

2019.

[36] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional neu-

ral networks using energy-aware pruning. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6071–6079, 2017.

[37] Z. Zaheer, A. Usmani, E. Khan, and M. A. Qadeer. Aerial surveillance system

using uav. In 2016 Thirteenth International Conference on Wireless and Optical

Communications Networks (WOCN), pages 1–7, 2016.

[38] Y. Zhang, J.-H. Liu, C.-Y. Wang, and H.-Y. Wei. Decomposable intelligence on

cloud-edge iot framework for live video analytics. IEEE Internet of Things Journal,

7(9):8860–8873, 2020.

61

[39] Y. Zhao, Q. Chen, W. Cao, W. Jiang, and G. Gui. Deep learning based couple-

like cooperative computing method for iot-based intelligent surveillance systems. In

2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile

Radio Communications (PIMRC), pages 1–4, 2019.

[40] X. Zhou, D. Wang, and P. Krähenbühl. Objects as points. CoRR, abs/1904.07850,

2019.

62

